(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) ## (19) World Intellectual Property Organization International Bureau ## (10) International Publication Number WO 2017/059454 A1 ## (43) International Publication Date 6 April 2017 (06.04.2017) - (51) International Patent Classification: *G06K 15/00* (2006.01) - (21) International Application Number: PCT/US2016/055218 (22) International Filing Date: 3 October 2016 (03.10.2016) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/236,495 2 October 2015 (02.10.2015) *** - (71) Applicant: eORIGINAL, INC. [US/US]; 351 W. Camden Street, Suite 800, Baltimore, MD 21201 (US). - (72) Inventors: BISBEE, Stephen, F.; 7 Brierleigh Court, Lutherville, MD 21093 (US). CAPORLETTE, Bryan, K.; 56 Bricepointe Court, Severna Park, MD 21146 (US). ATTINELLO, Adam, J.; 12370 Pleasant View Drive, Fulton, MD 20759 (US). DALY, Valerie, F.; 16010 Thoroughfare Road, Boad Run, VA 20137 (US). - (74) Agent: CRAIG, Royal, W.; Ober, Kaler, Grimes & Shriver, P.C., 100 Light Street, Baltimore, MD 21202 (US). - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. - (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). #### **Declarations under Rule 4.17:** — of inventorship (Rule 4.17(iv)) [Continued on next page] ## (54) Title: SYSTEM AND METHOD FOR ELECTRONIC DEPOSIT AND AUTHENTICATION OF ORIGINAL ELECTRONIC INFORMATION OBJECTS (57) Abstract: A system and method for securely and reliably depositing with a Trusted Repository System an authoritative information object executed, using a third, party electronic signing system, or maintained in an intermediary third party storage system having received the original information object from a third, party electronic signing system, such that the TRS may subsequently facilitate electronic transmission, storage, and retrieval of verifiable copies of the stored authenticated authoritative information object without the TRS relinquishing control of the authenticated authoritative information object. # ### Published: - with amended claims (Art. 19(1)) — with international search report (Art. 21(3)) # SYSTEM AND METHOD FOR ELECTRONIC DEPOSIT AND AUTHENTICATION OF ORIGINAL ELECTRONIC INFORMATION OBJECTS #### CROSS REFERENCE TO RELATED APPLICATIONS The present application derives priority from U.S. Provisional Application Serial No. 62/236,495, filed 2 October 2015. #### BACKGROUND OF THE INVENTION #### 1. Field of the Invention 5 10 15 20 25 The present invention relates generally to systems and methods for providing a verifiable chain of evidence and security for the authentication and deposit of original electronic documents and other information objects in digital formats. #### 2. Description of the Background The continuing evolution of methods of commerce is evident in the increasing replacement of paper-based communications and transactions with electronic communications and transactions. When communication is by electronically reproduced messages such as e-mail, facsimile machine, imaging, digital documents, electronic data interchange or electronic fund transfer, however, there no longer exists a handwritten signature or a notary's raised seal to authenticate the identity of a party to a transaction. Further, unlike the words of a document that are largely fixed on a page in a human readable format, the content of an electronically prepared, communicated and executed document stored in machine readable format can be subject to alteration and tampering after execution. To address these challenges with maintaining the integrity of electronic documents, a third-party operated Trusted Repository System (TRS) has been described that provides secure deposit and authentication of electronic documents and other information objects into a secure and trusted repository. The TRS advantageously utilizes an asymmetric cryptographic system that helps to ensure that a party depositing an information object is electronically identifiable as such, and that the integrity of electronically stored documents and other information objects are protected after deposit and even after transfer of control of such data, documents and information objects to a transferee. These information objects may include document execution information, electronically signed documents, and other information objects representing or containing information related to the overall transaction. The TRS logically relates all the deposited information objects to the owner of such information objects, such that the owner may verify, monitor, analyze, audit and evaluate the information objects, regardless of whether the owner originated the deposited information objects by transfer after origination. 5 10 15 20 As an initial matter, it will be helpful to understand the following terminology that is common in the field of secure electronic commerce and communications. "Public key cryptography (PKC)" is a cryptographic technique that uses a pair of "keys", one private (secret) key and a public key that are associated with respective registered users. The public keys are published for anyone to use for encrypting information intended for the respective users. Only the holder of the paired private key can decrypt and access an electronic information object encrypted with the public key. Conversely, the holder of a user's public key can decrypt and access an electronic information object that was encrypted using that user's private key. The encrypt and decrypt functions of the two keys are truly "one-way", meaning that it is not possible to determine a private key from the corresponding public key, and vice versa, due to the fact that it is currently computationally easy for a computer to identify large prime numbers but extremely difficult for a computer to factor the products of two large prime numbers. 5 10 15 20 The one-way characteristic of a PKC system also enables a private key holder to "digitally sign" an electronic information object by creating a "hash" of the information object itself and then encrypting the hash with the private key and appending the encrypted hash (now referred to as a digital signature) to the original information object. The hash is produced by applying an algorithm to the information object to be digitally signed, the results of which correspond directly to the information object so that the slightest change in the information object itself will result in a change in the hash. On receipt, a public key holder can verify a digital signature by decrypting the hash and comparing the decrypted hash to a newly computed hash of the information object. If the two hashes match the recipient can be assured that the user appending the signature to the information object was in possession of the private (secret) key and is thus presumably whom they purport to be. Comparison of the newly computed hash to the decrypted hash also verifies that the information object itself has not been altered since it was signed. If the new hash matches the original hash decrypted with the public key then the recipient can be assured that the information object itself has not been altered as even the slightest change in the information object itself will result in the two hashes not matching. Example PKC algorithms that comply with government and/or commercial standards include the digital signature algorithm (DSA/RSA) and secure hash algorithm (SHA-1/MD5). A "digital signature" is a cryptographically created data element that is logically associated with, applied or otherwise appended to an electronic information object with the intent of the creator to indicate their assent to the information contained in the information object or their willingness to be otherwise bound by the terms or conditions recited in the information object. As described, a digital signature is typically created by "hashing" an information object and encrypting the resulting hash (integrity block) using the signer's private (secret) key and thereafter appended to the information object. 5 10 15 20 An "electronic signature" is any one of the mechanical, holographic, digital, voice, video or biometric signatures, or such other electronic sound, symbol, picture, or process that is logically associated, applied or attached to an electronic document with the intent or commitment of the signer to sign or otherwise be bound by the terms of the electronic document. Electronic signatures may contain additional information about the signer (e.g., name, email address, etc.) and the signing event (e.g., reason, date and time, place, etc.). An "authentication certificate" is an unforgeable data element that binds a user's public key to that user's identity information and that advantageously, but not necessarily, conforms to the international standard X.509 version 3, "The Directory-Authentication Framework 1988", promulgated by the International Telecommunications Union (ITU). Authentication certificates are issued by a Certificate Authority (CA) that is a
known entity and is responsible for ensuring the unique identification of all of its users and both source and content integrity of the information contained in the certificate. An authentication certificate is created when a CA uses its own private key to digitally sign (i.e. hash and encrypt) an individual's 5 10 15 20 public key along with certain of the individual's identifying information (name, location etc.) and certain information regarding the certificate itself (issuer, expiration date etc.). The act of digitally signing by the CA makes a certificate substantially tamper-proof such that further protection is not needed. The intent of the certificate is to reliably associate (bind) a user's identity to the user's public cryptographic key. Each authentication certificate includes the following critical information needed in the signing and verification processes: a version number, a serial number, an identification of the Certification Authority (CA) that issued the certificate, identifications of the issuer's hash and digital signature algorithms, a validity period, a unique identification of the user who owns the certificate, and the user's public cryptographic signature verification key. Certificate extensions can also be used as a way of associating additional attributes with users or public keys, and for managing the public key infrastructure certificate hierarchy. A user's authentication certificate is advantageously and preferably appended to an electronic information object that the user has digitally signed with the user's private key so that it is possible to verify the digital signature by decrypting the user's public key with the known and trusted CA's public key. Alternatively, the certificate may be retrieved from the issuing CA or directory archive. The "Public Key Infrastructure (PKI)" is the hierarchy of CAs responsible for issuing authentication certificates and certified cryptographic keys used for digitally signing and encrypting information objects. A "wrapper" is used to securely hold and associate digital or electronic signatures with part or all of one or more electronic information objects contained therein. Wrappers may take the form of any open standard enveloping or information object (document) formatting schemas. Two examples are the RSA Public Key Cryptographic Standard (PKCS) #7 and the World Wide Web Consortium (W3C) Extensible Markup Language (XML) Signature Syntax and Processing Draft Recommendation. The RSA PKCS #7 standard supports zero, one, and multiple parallel and serial digital signatures (cosign and countersign). An unauthenticated attribute is not protected. Some other formats that provide support for signature syntax, processing and positioning (tags) are S/MIME, HTML, XHTML, and XFDL. Any of these wrapper formats can be applied recursively and markup languages extended to provide signature and protection layering. 5 10 15 20 As described in U.S. Pat. Nos. 5,615,268, 5,748,738, 6,237,096, 6,367,013, 7,162,635, 7,743,248, and 8,924,302 to Bisbee et al., an original electronic document or information object having the same legal weight as a blue-ink-signed paper document (e.g., a negotiable instrument or chattel paper) is made possible by contract and by PKI and associated computer technology. An electronic document, or more generally an information object, is created and transferred to a Trusted Repository System (TRS) that is specifically designed and empowered by contract to securely and reliably store any such object for its full effective life. The contractual aspect is an agreement between the TRS and the party submitting or relying on the electronically signed information object to accept reliance on the TRS as the custodian of the information objects. The TRS implements defined business rules for information objects handled by the TRS (i.e., a complete set of authorized actions). The TRS also implements a defined security policy (i.e., a set of protective measures that is necessary to prevent unauthorized actions). The TRS uses its business rules and security policy to govern requests and access to the TRS over the respective life cycles of all documents and other information objects within its control, verifying the identities and authorities of parties (local and remote) requesting access. The TRS securely stores and securely retrieves digitally signed, authenticated, and encrypted information objects such as electronic documents. Upon request, the TRS prints and issues certified copies of information objects. The TRS advantageously supports a multi-port token server for proving information object authenticity, for verifying the identities of signing parties, and for authenticating information object submissions. The TRS provides for backup and disaster recovery, and ensures that stored information is not lost within a specified retention period, whether that period is specified by a user, law, or regulation. 5 10 15 20 With all of the advantages of original electronic information objects that are provided by the U.S. patents cited above, it is important to realize that copies of an information object that exist outside of the control of a TRS must not be able to be mistaken for the original information object. For certain transactions, this is a compliance requirement of with various Federal and State laws. Such laws include State enactments of the Uniform Commercial Code (UCC) § 9-105, which provides a legislative framework that gives secured parties the ability to implement electronic systems for keeping track of and controlling "electronic chattel paper" (documents that evidence both a monetary obligation and a security interest). For electronic chattel paper, UCC §9-105(a) requires the secured party to maintain a system (such as the TRS with which a secured party may contract) employed for evidencing the transfer of interests in the electronic chattel paper, which system reliably establishes the secured party as the person to which the chattel paper was assigned. The UCC also provides more detailed specifications for such a system which will meet the broad requirements of §9-105(a). Such a system must create, store, and assign electronic chattel paper in such a manner that: - (1) a single authoritative copy of the record or records exists which is unique, identifiable and, except as otherwise provided in (4), (5) and (6) below, unalterable; - (2) the authoritative copy identifies the secured party as the assignee of the record or records; - (3) the authoritative copy is communicated to and maintained by the secured party or its designated custodian; - (4) copies or amendments that add or change an identified assignee of the authoritative copy can be made only with the consent of the secured party; - (5) each copy of the authoritative copy and any copy of a copy is readily identifiable as a copy that is not the authoritative copy; and - (6) any amendment of the authoritative copy is readily identifiable as authorized or unauthorized. As shown in the above, an information object may be effective as a blue-ink-signed paper document provided that a controlled, secure method of deposit is utilized with a system such as the TRS that reliably and securely stores original information objects for their full effective lives. 20 5 10 15 ## SUMMARY OF THE INVENTION Applicants' invention solves these and other problems incurred by prior approaches with a software-based method and system that provides secure and reliable deposit into a Trusted Repository System (TRS) of an authoritative information object which was electronically signed and maintained using one or more third party systems, such that the TRS may subsequently facilitate electronic transmission, storage, and retrieval of verifiable copies of the stored authenticated authoritative information object without the TRS relinquishing control of the authenticated authoritative information object. 5 10 15 20 In addition, Applicants' invention provides a means for depositing authoritative information objects into the TRS which can be implemented on commercially available computer hardware to create an integrated closed system for authentication of information objects such as electronic documents. Copies of an information object that exist outside of the control of a TRS must not be able to be mistaken for the original information object. Therefore, one portion of the overall workflow that is prone to risk, at least in conventional systems, is the initial deposit of the authoritative electronic information object with the TRS. Applicant's process entails exporting an electronically signed information object, such as an electronic document, from a third party electronic signing system (such as, for example, DocuSign® or AdobeSign® formerly EchoSign®), or from an intermediary third party storage system having received an electronically signed information object such as a document from a third party electronic signing system, and depositing it with the TRS as an authoritative original information object. After receipt of a notice from a third party signing or storage system that an information object is ready for deposit, the TRS creates an entry to hold the information object and then exports the signed information object from the third party system, along with any available metadata and other information regarding the creation, execution, and storage history of the signed information object. The TRS then requires a certification from the third party system as to the authenticity and uniqueness of the information object by verifying that the deposited information object is now the only authoritative and original copy. Successful authenticity verification attests to the legitimacy of the submitted information object. The TRS then creates the original authenticated information object by appending a date-time stamp and its digital signature and certificate. This TRS action establishes and demonstrates the
TRS' assumption of control of the original authenticated information object. The present invention provides a method and system for more reliable computer-implementation of the electronic deposit with the TRS of an original authenticated information object. 10 15 20 25 5 #### BRIEF DESCRIPTION OF THE DRAWINGS - FIG. 1 is a schematic view of a Trusted Repository System (TRS) architecture. - FIG. 2 is a flowchart illustrating the eight steps (100-800) and sub-steps (120-140) of the method according to the present invention. FIG. 3 is a depiction of a sample audit trail associated with a deposited authenticated original information object. ## DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Applicants' invention is a method and system for securely and reliably authenticating and depositing an original information object with a Trusted Repository System (TRS), such that the TRS may subsequently facilitate electronic transmission, storage, and retrieval of verifiable copies of the stored authoritative information object without the TRS relinquishing control of the authoritative information object. As described above, the TRS is a third-party trusted repository that is specifically designed and empowered by contract to securely and reliably store any such information object for its full effective life. The TRS is contractually bound by agreement between the TRS and the party(ies) submitting or relying on the authoritative information object to accept reliance on the TRS to serve as a repository and custodian of the authenticated authoritative information object. ## The Computer Architecture 5 10 15 20 The invention can be implemented utilizing commercially available computer hardware to create an integrated closed system for authentication of electronic information objects such as documents, as will be defined below. With reference to FIG. 1, a diagram of a high availability, secure trusted repository system architecture is provided that ensures the security of the authoritative copy of an information object, such as an electronic document, and any affixed electronic signatures or information. All computing components behind the firewall 109 are housed in a physically secure facility and make up the components of the trusted repository system (TRS). Strong authentication is required for client workstations, devices and systems to access the TRS and no TRS resource can be accessed directly. Authorized instructions that may accompany payloads (e.g. electronic documents, electronic signature blocks, etc.) are required to request and receive TRS services. An Internet browser running on a workstation such as a laptop 101, PDA 105 or desktop 103 equipped with an input device such as a mouse, keyboard, stylus, or voice to text conversion, is required for client access to the TRS. The workstation transmits a request protected through the use of X.509 certificates and asymmetric cryptography to authenticate the counterpart with whom sealing, authenticating, etc. electronic information objects that are stored and retrieved using a database management system (DBMS) 127. Actual storage media can be handled externally by a storage area network 131. All network and application traffic can be mirrored to an external application security module 130 for intrusion detection and prevention monitoring and alerting. The TRS necessarily performs all requested authorized actions without ever disclosing the actual authoritative copy of the information object, such as an electronic document. The TRS provides centralized support for a distributed network of clients and supports a wide range of present and future e-commerce applications by providing a secure, standards-based foundation upon which business applications can be and are built. ## TRS Chain of Trust 5 10 15 20 Applicants' invention is, in general terms, an eight-step, softwareimplemented process which combines business and technical procedures to achieve a more reliable authentication and deposit of an information object with the TRS as the authenticated and authoritative copy of such information object. FIG. 2 is a block diagram illustrating the eight basic steps 100-800 of at least one embodiment of Applicants' process in the context of the overall method of submitting and depositing an original information object to the TRS. An original information object is itself an information object, and the underlying formatting of an original information object enables parsing and processing for performing verification and validation of one or more of its electronic signatures, and extraction of the original contents for viewing or processing. 5 With reference to FIG. 2, typically, at step 100, the information object consisting of an electronic document is electronically created and electronically signed by all signatory parties, based on the purpose and content of the information object, utilizing a third party signing system (such as, for example, DocuSign® or AdobeSign® formerly EchoSign®). The information object may be stored at the third party signing system or alternatively with an intermediary third party storage system having received an electronically signed document or information object from a third party electronic signing system. According to the methods of the present invention, a hard copy, pen-and-ink document containing the information embodied in the information object is never created. The electronic document information object is embodied in a solely electronic form from the time of its inception. 15 20 10 As used herein, the term "Transfer Agent" refers generally to an entity (or an individual user or third party system acting on behalf of such entity) which attests to the integrity and validity of an information object before it is submitted to the TRS and which is authorized to submit such information object to the TRS. In addition, for the sake of clarity, the term "original information object" will be used to refer to an authenticated information object created by a process involving the TRS and a Transfer Agent, and the term "transaction" will be used to refer to a deal or account that corresponds to or is defined by a set of original information objects. An "information object" as used herein may be an electronic document or any other data, such as electronic media content, that is stored in a computer-readable format. The Transfer Agent enters into the third party system, or the third party system otherwise generates, pertinent metadata describing the transaction. Metadata are high-level summary data that describe a transaction - analogous to the metatags that are associated with World Wide Web pages and that are used by Internet search engines in searching for information. For purposes of the present invention, the pertinent metadata includes information surrounding the signature process related to the information object source file. This metadata is submitted along with a computergenerated image of the information object or electronic document, and includes, but is not limited to, at least the following metadata: 1. Each signer's full name; 5 10 15 20 - 2. Each signer's authentication method; - 3. The date and time of each signer's consent; and - 4. The date and time each signer signed the electronic document. The Transfer Agent accepts custody of the information object and authenticates it. Prior to submitting the information object to the TRS, the Transfer Agent must attest to its integrity and validity, and so the Transfer Agent (acting on behalf of the TRS) must take certain affirmative pre-qualification steps. More specifically, at step 120, the Transfer Agent verifies that the information object source file, which was originated as an electronic document file, bears at least one verifiable digital signature. At step 130, the Transfer Agent verifies that no undifferentiated copies of the information object have been distributed prior to beginning the electronic deposit process. This ensures that all copies made or distributed of the signed information object source file are marked as copies by digital watermarking or the like. At step 140, the Transfer Agent provides notice to the TRS that an information object residing on a third party system is ready for submission to the TRS, and that the Transfer Agent will attest to its integrity and validity. After successful completion of steps 100-140, including the Transfer Agent verification at step 120, the TRS implements the following seven basic steps 200-800 in accordance with Applicants' invention to securely and reliably deposit the information object with the TRS as an original information object. 10 15 5 Upon receiving notice, at step 200, the TRS initiates the electronic deposit process by creating a record entry in Database Layer 127 (FIG. 1) to hold and record the electronic deposit. The record entry may be, for example, a tuple (e.g., single, structured data item in a relational database table). In certain embodiments of the present invention, the Transfer Agent causes the TRS to create such record entry. Such embodiments include implementations of the present invention wherein the Transfer Agent is a user on behalf of such entity Transfer Agent. In either case, importantly, immediately after creation of the record entry, the TRS places a secure lock on the record entry against any third party access to ensure that no other action outside of the electronic deposit process is taken before completion of said process. 20 After creating the record entry, at step 300 the TRS exports a copy of the information object source file (image file and any available metadata) from the third party system. In certain embodiments of the present invention, the Transfer Agent performs such export in lieu of the TRS. At step 400, upon receipt of the exported information object source file, the TRS uploads such file and verifies that the information object contained in the source file contains at least one digital
signature and that all digital signatures, and all electronic signatures, in the information object are valid. 5 10 15 Upon completion of such verification, the TRS at step 500 deposits the information object source file into the record entry created at step 200. Automatically upon deposit, the TRS then digitally tamper-seals the submitted information object, Specifically, the TRS appends a date and time stamp and its digital certificate to the files using industry standard digital certificate technology. Preferably, the tamper seal is accomplished with an X.509 digital certificate issued by a certification authority to the TRS. The X.509 digital certificate associates the TRS identity with a public key value. More specifically, the certificate includes at least: (1) the TRS identity (the certificate owner); (2) the public key associated with the TRS; (3) X.509 version information; (4) a serial number that uniquely identifies the certificate; (5) the certification authority; (6) the digital signature of the TRS; and (7) information about the algorithm used to sign the digital signature. The digital signature applied by the TRS eliminates the possibility of unauthorized alteration or tampering with an information object subsequent to its sealing. In addition, the TRS's digital signature can advantageously provide for non-repudiation, i.e., precluding the Transfer Agent from disavowing the object. 20 Furthermore, upon deposit to the TRS, the TRS creates an "audit trail" record, e.g., a record consisting of a sequential listing of audit entries representing important events and interactions conducted with respect to the information object source file, which record is digitally signed by the TRS to make such record tamper evident. The be associated with the original information object for review. The TRS formats the audit trail such that it includes suitable instructions for parsing and processing its contents. A convenient form of wrapper (e.g., PEM, RSA PKCS#7, or S/MIME) or markup language (e.g., HTML, XML, or XFDL) can be used for this purpose. The contents can be one or more information objects, date-time stamps, digital signatures and matching certificates, electronic signatures, and/or indicators, which include, but are not limited to, content types, object identifiers, and encoding rules and tags. In the case of the audit trail, the contents of the wrapper consist of audit entries and the TRS date and time stamp and digital signature and certificate. Each time additional audit entries are added to the audit trail, the TRS combines the new entries with the existing digitally signed entries and applies a recursive wrapper over the package to provide signature and protection layering. 5 10 15 20 Upon creation of the audit trail for a source file, the TRS populates the audit trail with any provided metadata surrounding the signature process related to the source file. Such events may include creation of the source file in the third party system and the application of each electronic signature to such source file as shown in FIG. 3. In certain embodiments of the present invention, such metadata is not available to be delivered to the TRS in metadata format. In such instances, the TRS creates a second record entry in the TRS which is logically associated with the initial record entry containing the information object, creates a file containing the signing information provided by the third party system, and deposits such file into the second record entry. The TRS further populates the audit trail with events representing the export of a copy of the source file from the third party signing system and deposit of such copy into the TRS. See FIG. 3. After the copy of the source file has been successfully deposited into the TRS-locked record, and the audit trail has been created, populated using any provided metadata, and populated with events documenting deposit of the source file with the TRS at step 500, then at step 600 the TRS notifies the Transfer Agent to destroy or otherwise permanently mark the information object source file as a non-original object. Step 600 is paramount to being able to prove, via documented and enforced policies or other artifacts, that the original source file and all copies thereof existing outside of the TRS have been destroyed or otherwise permanently marked and that the Transfer Agent treats and identifies the version held in the TRS as the sole and authoritative original information object. 5 10 15 20 At step 700, the Transfer Agent provides notice to the TRS that the destruction or permanent marking of the original source file and all copies thereof has been completed. The confirmation information, including identity, time/date of destruction, and file/copy destroyed or marked as a copy, is appended to the recorded audit trail maintained by the TRS. In certain embodiments of the present invention wherein the Transfer Agent is a third party signing system on behalf of such entity Transfer Agent, this destruction step 700 may occur immediately upon completion of export of the source file at step 300. In such embodiments, the export process of the third party signing system sends to the TRS the executed information object and signing information in encrypted format and the public key for such encryption. Upon receipt of the export, the TRS runs a hash of the encrypted export package using the public key, and returns the hash to the third party signing system. If the hash matches the hash of the encrypted export package of the information object source file prepared by the third party signing system prior to export, the third party signing system then sends the TRS the private key to decrypt the encrypted export package and destroys or permanently marks the original source file and all copies thereof. 5 At step 800, the TRS then automatically removes the lock on the now authoritative original information object, and the recorded audit trail associated with the information object is updated with an audit entry to denote completion of the electronic deposit process. This action by the TRS marks the TRS's assumption of custody and control of the original information object as the authoritative copy. 10 15 Secure audit, record tracking, and record management complete the technological aspects of maintaining an original information object. The TRS vault stores the authenticated authoritative original information object in an account and controls access to the account for the benefit of the account owner and activities permitted with respect to original information objects stored in the account. The original information objects are stored and the corresponding accounts are maintained by the TRS in any convenient form of memory, such as on optical and/or magnetic disks. Once a transaction is completed and the associated original information object(s) are deposited into the TRS, the set of authorized parties who can access the TRS to obtain or further transmit an original information object may change. 20 The authoritative original information object is never disclosed or rendered by the TRS in its original state. Any copy of said information object must contain at least one forgery-resistant indicium or watermark that clearly identifies the rendered information object as a copy of the authoritative original information object held at the TRS. This combination of actions by the TRS, in conjunction with a protected audit trail, can be used at a future date to prove conclusively that a party initiated a transaction, precluding a Transfer Agent from denying that the original information object originated with that Transfer Agent and providing irrevocable proof of authenticity. 5 A validated instruction will cause the TRS to communicate the marked copy of the authoritative original information object to the designated remote workstations. An encrypted connection, such as TLS, is used to protect communications between the TRS and designated workstations. In addition, the workstation incorporates methods that accurately parse and accurately display the TRS marked copy of the authoritative original information object. 10 15 Where security is required to guarantee that the information object received at a remote workstation is a valid copy of the authoritative authenticated original information object deposited in the TRS, the TRS appends its digital signature and certificate to the marked copy of the authoritative original information object prior to transmission. The workstation rejects the marked copy as fraudulent if the TRS digital signature and certificate fail to test as valid. The workstation notifies the TRS to report the problem. The TRS retransmits the digitally signed marked copy of the authoritative original information object. Appropriate actions are initiated by the TRS if the TRS failed to transmit the marked copy of the authoritative original information object. 20 The above-described embodiment is for the purpose of promoting an understanding of the principles of the invention. It should nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alternations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated herein being contemplated as would normally occur to one skilled in the art to which the invention relates. WO 2017/059454 PCT/US2016/055218 ## STATEMENT OF INDUSTRIAL APPLICABILITY 5 10 15 The continuing evolution of methods of commerce is evident in the increasing replacement of paper-based communications and transactions with electronic communications and transactions. Unlike the words of a document that are largely fixed on a page in a human readable format, the content of an electronically prepared, communicated and executed document stored in machine readable format can be subject to alteration and tampering after execution, a critical risk in
financial and other commercial transactions. Therefore, there would be great industrial applicability in a software-based method and system providing secure and reliable deposit into a Trusted Repository System (TRS) of an authoritative information object which was electronically signed and maintained using one or more third party systems, such that the TRS may subsequently facilitate electronic transmission, storage, and retrieval of verifiable copies of the stored authenticated authoritative information object without the TRS relinquishing control of the authenticated authoritative information object. We claim: 5 10 15 20 1. In a data processing system that includes at least one remote computer workstation, that is connected via a communications network to at least one trusted repository system including at least one application server and at least one secure database management system, a method for securely depositing an information object in said trusted repository system, wherein said information object is verified by an authorized transfer agent with custody of said information object as bearing at least one verifiable digital signature, and that no other copies of said information object exist that are not marked as copies of said information object, comprising the steps of: receiving, by said trusted repository system, notice of said verification by said transfer agent; creating, by said trusted repository system, an electronic record to receive submission of said information object and placing, by said trusted repository system, a secure lock on said electronic record to ensure that no other action is taken during the submission process; exporting, by said trusted repository system, a copy of said information object from a third party storage or signing system; uploading, by said trusted repository system, said copy of said information object onto the trusted repository system, and verifying, by said trusted repository system, that said copy of said information object contains at least one digital signature, and verifying, by said trusted repository system, the validity of all digital signatures and electronic signatures in said copy of said information object; depositing, by said trusted repository system, said verified copy of the electronic information object to said electronic record in said trusted repository system, and applying, by said trusted repository system, a date and time stamp and digital signature of such trusted repository system to said deposited copy of said information object; 5 10 15 20 establishing, by said trusted repository system, an audit trail corresponding to said electronic record containing said deposited copy of said information object, and populating, by said trusted repository system, said audit trail with entries corresponding to the export and verification of said copy of said information object, and applying, by said trusted repository system, a digital signature and date-time stamp to said updated audit trail; receiving, by said trusted repository system from said transfer agent, certification that the transfer agent has destroyed all copies of said information object or has permanently marked all copies of said information object such that said copy of said information object now stored in the trusted repository system is the only authoritative original information object; removing, by said trusted repository system, the secure lock from the record in the trusted repository system now containing the authoritative original information object; and updating, by said trusted repository system, said audit trail with an entry corresponding to completion of the deposit process for said authoritative original information object, and applying, by said trusted repository system, a digital signature and date-time stamp to said updated audit trail; whereby the original information object residing in the trusted repository system is thereby designated as a sole authoritative copy of said original information object. - The method of claim 1, wherein said step of creating, by said trusted repository system, an electronic record is initiated by a request made by the transfer agent. - 3. The method of claim 1, wherein said step of exporting, by said trusted repository system, a copy of said information object is initiated by a request made by the transfer agent. - 4. The method of claim 1, wherein: 5 10 15 20 said step of exporting, by said trusted repository system, a copy of said information object further comprises exporting signer metadata from said third party system regarding information related to an electronic signing process which created said information object; wherein said step of uploading, by said trusted repository system, said copy of said information object onto the trusted repository system further comprises the upload of said signer metadata; and said step of populating, by said trusted repository system, said audit trail with entries further comprises populating said audit trail with entries corresponding to signing events contained within said signer metadata. 5. The method of claim 4, wherein: said step of exporting, by said trusted repository system, a copy of said information object further comprises exporting a second information object from said third party system regarding information related to the electronic signing process which created said information object; said step of uploading, by said trusted repository system, said copy of said information object onto the trusted repository system further comprises the upload of said second information object; said method further comprising creating, by said trusted repository system, a second electronic record to receive submission of said second information object and relating said second electronic record to said first electronic record; 5 10 15 20 placing, by said trusted repository system, a secure lock on said second record to ensure that no other action is taken during the submission process; depositing, by said trusted repository system, said second information object into said second record and applying, by said trusted repository system, a date and time stamp and digital signature of such trusted repository system to said deposited copy of said second information object; and establishing, by said trusted repository system, a second audit trail corresponding to said second electronic record containing said deposited copy of said second information object, and populating, by said trusted repository system, said second audit trail with an entry corresponding to the deposit and tamper seal of said copy of said second information object, and applying, by said trusted repository system, a digital signature and date-time stamp to said updated second audit trail. 6. The method of claim 1, wherein: said step of exporting, by said trusted repository system, a copy of said information object further comprises exporting signer metadata from said third party system regarding information related to the electronic signing process which created said information object; and wherein said step of uploading, by said trusted repository system, said copy of said information object onto the trusted repository system further comprises the upload of said signer metadata; said method further comprising 5 10 15 20 creating, by said trusted repository system, a second electronic record to receive submission of said signer metadata and relating said second electronic record to said first electronic record: placing, by said trusted repository system, a secure lock on said second electronic record to ensure that no other action is taken during the submission process; creating, by said trusted repository system, a document image depicting said signer metadata; depositing, by said trusted repository system, said document image into said second record and applying, by said trusted repository system, a date and time stamp and digital signature of such trusted repository system to said deposited copy of said second information object; and establishing, by said trusted repository system, a second audit trail corresponding to said second electronic record containing said deposited copy of said second information object, and populating, by said trusted repository system, said second audit trail with an entry corresponding to the deposit and tamper seal of said copy of said second information object, and applying, by said trusted repository system, a digital signature and date-time stamp to said updated second audit trail. 7. The method of claim 1, further comprising, immediately after completion of said export step, the steps of: calculating a hash, by said trusted repository system, of the exported information object and a public key used to encrypt such information object for export and sending, by said trusted repository, to said transfer agent the hash; receiving, by said trusted repository system, the private key corresponding to the exported information object; and 5 10 15 20 receiving, by said trusted repository system, from said transfer agent, certification that the transfer agent has destroyed all copies of said information object or has permanently marked all copies of said information object such that said copy of said information object now stored in the trusted repository system is the only authoritative original information object. - 8. The method of claim 1, wherein said transfer agent is an authorized user representative of an entity authorized to make deposits to the trusted repository system. - 9. The method of claim 1, wherein said transfer agent is a third party signing system acting on behalf of an entity authorized to make deposits to the trusted repository system. - 10. The method of claim 1, wherein said transfer agent is a third party storage system acting on behalf of an entity authorized to make deposits to the trusted repository system. - 11. In a data processing system that includes at least one remote
computer workstation connected via a communications network to at least one trusted repository system (TRS) including at least one application server and at least one secure database management system, a method of maintaining a chain of trust for an 5 10 15 20 original information object inclusive of electronic signatures in absence of any corresponding hard copy counterpart document, comprising the steps of: said TRS authenticating an authorized transfer agent using a remote computer workstation, said transfer agent having custody of an information object; said TRS verifying that said information object is an original information object by the substeps of, verifying by said authorized transfer agent that said information object includes at least one verifiable digital signature, and verifying by said authorized transfer agent that no other copies of said information object exist that are not marked as copies of said information; said TRS creating an electronic record at said TRS to receive submission of said original information object, and placing a secure lock on said electronic record to ensure that no other action is taken during submission of said original information object; said TRS uploading a copy of said original information object to said TRS, and verifying validity of all verifiable digital signatures and electronic signatures; said TRS applying a date and time stamp and digital signature of said TRS to said uploaded copy of said original information object; said TRS verifying that said uploaded copy is the sole remaining copy of said information object by said authorized transfer agent certifying to said TRS that that the transfer agent has destroyed all other copies of said information object or has permanently marked all copies of said information object as copies; said TRS removing the secure lock from the record now containing the authoritative original information object; said TRS compiling an audit log, logging an entry in said audit log signifying completion of the foregoing steps, and applying a digital signature to said audit log; whereby the original information object residing in the trusted repository system is an authoritative original information object. 5 - 12. The method according to claim 11, wherein the step of said TRS compiling an audit log further includes logging an entry in said audit log signifying completion of said TRS uploading step, logging an entry in said audit log signifying completion of said step of said TRS applying a date-time stamp and the digital signature of said TRS, logging an entry in said audit log signifying completion of the foregoing steps, and applying a digital signature to the aggregate audit log. - 10 15 13. The method according to claim 11, wherein the step of said TRS uploading a copy of said original information object to said TRS further comprises uploading said copy to transitory memory at said TRS, and verifying validity of all verifiable digital signatures and electronic signatures, said method further comprising a step of depositing said uploaded copy into non-transitory memory at said TRS after verifying validity of all verifiable digital signatures and electronic signatures. WO 2017/059454 PCT/US2016/055218 ## AMENDED CLAIMS received by the International Bureau on 03 March 2017 (03.03.2017) 1. In a data processing system that includes at least one remote computer workstation, that is connected via a communications network to at least one trusted repository system including at least one application server and at least one secure database management system, a method of providing authenticated transaction data comprising the steps of: establishing, by said trusted repository system, an owner identifier for an owner of one or more transactions, and associating said owner identifier with at least one authenticated transfer agent; establishing, by said trusted repository system, a transaction profile; assigning, by said trusted repository system, a transaction identifier to said transaction profile; logically associating, by said trusted repository system, said owner identifier with said transaction identifier; establishing, by said trusted repository system, at least one document profile; assigning, by said trusted repository system, a document identifier to each said document profile; logically associating, by said trusted repository system, each document identifier with said transaction identifier: establishing, by said trusted repository system, one or more data fields; receiving, by said trusted repository system, instructions from said authenticated transfer agent designating said one or more data fields as auditable; placing, by said trusted repository, on said data fields designated as auditable a secure lock that prevents all modification of their configuration and that prevents all modification of any information objects subsequently associated with said data field other than system operations of destruction and export; assigning, by said trusted repository system, a data field identifier to each of said one or more data fields; logically associating, by said trusted repository system, said data field identifiers with a data field level; identifying, by said trusted repository system, one or more first information; depositing, by said trusted repository system, each of said first information objects into one of said data fields; assigning, by said trusted repository system, an information object identifier to each said first information object; logically associating, by said trusted repository system, said information object identifiers with said data field identifiers; logically associating, by said trusted repository system, said information object identifiers with either said document identifier or said transaction identifier in accordance with instructions provided by said authenticated transfer agent: generating, by said trusted repository system, a dataset of said first information objects populated into said data fields and creating an entry to maintain said dataset; applying a digital signature and date-time stamp to said dataset of said first information objects: logically associating, by said trusted repository system, said dataset with each of said information object identifiers; and storing, by said trusted repository system, said first information objects and said dataset of first information objects in said secure database management system. ## 2. The method of claim 1, further comprising: receiving, by said trusted repository system, an instruction from at least one of said authenticated transfer agents to open said transaction profile; verifying, by the trusted repository system, said digital signature and date-time stamp applied to said dataset of first information objects associated with said transaction profile; receiving, by said trusted repository system via said communications network, one or more second information objects from at least one of said authenticated transfer agents at one of said at least one remote computer workstation; depositing, by said trusted repository system, said second information objects into at least one of said one or more data fields; assigning, by said trusted repository system, an information object identifier to each of said second information objects; logically associating, by said trusted repository system, each of said information object identifiers with one of said data field identifiers; logically associating, by said trusted repository system, each of said second information object identifiers with said transaction identifier; generating, by said trusted repository system, a dataset of said second information objects populated into said data fields; adding, by the trusted repository system, said dataset of second information objects to said digitally signed and date-stamped dataset of first information objects housed in said secure database management system to generate an aggregated dataset; applying, by the trusted repository system, a recursive wrapping digital signature and date-time stamp to said aggregated dataset; logically associating, by said trusted repository system, said aggregated dataset with each of said second information object identifiers; and storing, by said trusted repository system, said aggregated dataset and said second information objects in said secure database management system. ### 3. The method of claim 1, wherein: said step of establishing, by said trusted repository system, a transaction profile further comprises establishing, by said trusted repository system, a transaction level audit trail corresponding to said transaction profile; and wherein said step of storing said one or more first information objects and said dataset of first information objects in said secure database management system further comprises updating said transaction level audit trail after said receiving, depositing, assigning, associating, applying and storing steps with a one or more entries corresponding thereto and applying, by the trusted repository system, a digital signature and date-time stamp to said updated transaction level audit trail. ### 4. The method of claim 1, wherein: said step of establishing, by said trusted repository system, a transaction profile further comprises establishing, by said trusted repository system, a data audit trail corresponding to said transaction profile; and wherein said step of storing said information object and said dataset of information objects in said secure database management system further comprises updating said data audit trail after said receiving, depositing, assigning, associating, applying and storing steps with one or more entries corresponding thereto and applying, by the trusted repository system, a digital signature and date-time stamp to said updated data audit trail. - 5. (Cancelled) - 6. The method of claim 1, further comprising: receiving, by said trusted repository system, an instruction from at least one of
said authenticated transfer agents to open said document profile; verifying, by the trusted repository system, the digital signature and date-time stamp applied to said dataset of first information objects associated with said document profile; receiving, by said trusted repository system via said communications network, one or more second information objects from at least one of said authenticated transfer agent at one of said at least one remote computer workstations; depositing, by said trusted repository system, each of said second information objects into at least one of said one or more data fields; assigning, by said trusted repository system, an information object identifier to each of said second information objects; logically associating, by said trusted repository system, each of said information object identifiers with one of said data field identifiers; logically associating, by said trusted repository system, each of said information object identifiers with said document identifier; generating, by said trusted repository system, a dataset of said second information objects populated into said data field identifiers; adding, by the trusted repository system, said dataset of one or more second information objects to said digitally signed and date-stamped first information objects to generate an aggregated dataset; applying, by the trusted repository system, a recursive wrapping digital signature and date-time stamp to said aggregated dataset; logically associating, by said trusted repository system, said aggregated dataset with each of said second information object identifiers; and storing, by said trusted repository system, said aggregated dataset and said second information objects in said secure database management system. ## 7. The method of claim 1, wherein: said step of establishing, by said trusted repository system, a document profile further comprises establishing, by said trusted repository system, a document level audit trail corresponding to said document profile; and said step of storing said information objects and said dataset of information objects associated with said document identifier in said secure database management system further comprises updating said document level audit trail after said identifying, depositing, associating, assigning, applying and storing steps with one or more entries corresponding thereto and applying, by the trusted repository system, a digital signature and date-time stamp to said updated document level audit trail. - 8. (Cancelled) - 9. The method of claim 1, further comprising the steps of: receiving, by said trusted repository system, a request by at least one of said authenticated transfer agents to open said document profile; verifying, by the trusted repository system, the digital signature and date-time stamp applied to said dataset of first information objects associated with said document profile; receiving, by said trusted repository system from at least one of said authenticated transfer agents, a request to upload a document to said document profile; establishing, by said trusted repository system, a document level audit trail corresponding to said document profile; receiving, by said trusted repository system, said document from at least one of said authenticated transfer agents at one of said at least one remote computer workstation via said communications network; assigning, by said trusted repository system, a version identifier to said document; logically associating, by said trusted repository system, said version identifier to said document identifier; applying, by the trusted repository system, a tamper seal comprising a digital signature and date-time stamp to said document; storing, by said trusted repository system, said document in said secure database management system; and updating, by said trusted repository system, said document level audit trail after said receiving, assigning, associating, applying and storing steps with one or more entries corresponding thereto and applying, by said trusted repository system, a digital signature and date-time stamp to said updated document level audit trail. - 10. The method of claim 7, wherein said step of verifying a digital signature and date-time stamp applied to said dataset of first information objects further comprises verifying said digital signature and date-time stamp applied to said document level audit trail. - II. The method of claim 9, wherein said step of verifying the digital signature and date-time stamp applied to said dataset of first information objects further comprises verifying said digital signature and date-time stamp applied to said document and verifying said digital signature and date-time stamp applied to said document audit trail. - 12. The method of claim 6, wherein said step of verifying said digital signature and date-time stamp applied to said dataset of first information objects comprises verifying a digital signature applied to any existing dataset of first information objects associated with said transaction profile associated with said document profile and any existing transaction level audit trail. - 13. The method of claim 4, wherein said step of verifying a digital signature and date-time stamp applied to said dataset of information objects further comprises verifying a digital signature applied to said data audit trail. - 14. (Cancelled) - 15. In a data processing system that includes at least one remote computer workstation, that is connected via a communications network to at least one trusted repository system consisting of at least one application server and at least one secure database management system, a method of compiling and transferring verifiable transaction data comprising the steps of: receiving, by said trusted repository system, a request from a first authenticated transfer agent associated with a first owner at said remote computer workstation to transfer at least one document and information objects related to a first transaction profile having a first transaction identifier; compiling, by said trusted repository system, one or more tamper sealed documents and one or more tamper sealed datasets logically associated with said first transaction identifier; verifying, by said trusted repository system, one or more digital signatures applied to each of said tamper sealed documents, said tamper sealed datasets, and at least one tamper sealed audit trail associated with each of said tamper sealed documents and tamper sealed datasets; placing, by said trusted repository system, on said first transaction identifier a secure lock that prevents all system operations other than the transfer process; sending, by said trusted repository system via said communications network, a notice of transfer to a second authenticated transfer agent associated with a second owner; updating, by said trusted repository system, said tamper sealed audit trails with entries corresponding to said transfer request; applying, by said trusted repository system, a digital signature and date-time stamp to said updated tamper sealed audit trails; creating, by said trusted repository system, a second transaction profile associated with said second owner and a second transaction identifier related to said second transaction profile; creating, by said trusted repository system, a second one or more document profiles associated with said second transaction profile; creating, by said trusted repository system, a document level audit trail corresponding to each second document profile; logically associating, by said trusted repository system, said information objects associated with said tamper sealed datasets from said first transaction profile to said second transaction profile; logically associating, by said trusted repository system, said information objects associated with said tamper sealed datasets and said tamper sealed documents from said first document profiles to said second document profiles; generating, by said trusted repository system, a dataset of said information objects logically associated with said second tamper sealed datasets and creating an entry to maintain said dataset; applying a digital signature and date-time stamp to said dataset of said information objects; updating, by said trusted repository system, each said document level audit trail corresponding to each first document profile with entries to reflect said logical association step, aggregating, by said trusted repository system, said digitally signed and date-stamped first document level audit trail with said second document level audit trail; logically associating, by said trusted repository system, such aggregated document level audit trails with each second document profile, and applying, by said trusted repository system, a recursive wrapping digital signature and date-time stamp to each said updated and aggregated document level audit trail; and removing, by said trusted repository system, from said first transaction identifier and from said second transaction identifier the secure locks thereby indicating completion of the transfer process. - 16. The method of claim 1, wherein said data field level is chosen from the group consisting of transactional, document, or global. - 17. The method of claim 1, wherein said step of identifying, by said trusted repository system via said communications network, one or more first information objects comprises receiving said one or more first information objects from an authenticated transfer agent at one of said at least one remote computer workstation via said communications network. - 18. The method of claim 1, wherein said step of identifying, by said trusted repository system via said communications network, one or more first information objects comprises generating said one or more first information objects by said trusted repository system. - 19. The method of claim 15 wherein said request for transfer by said first authenticated
transfer agent associated with said first owner includes confirmation that copies of the transferred documents and information objects are to be retained after transfer, and prior to said steps of logically associating, by the trusted repository system, said information objects and documents, the following is added: copying, by said trusted repository system, said information objects corresponding to said first transaction profile; copying, by said trusted repository system, said information objects corresponding to one or more first document profiles; copying, by said trusted repository system, said tamper sealed documents corresponding to one or more first document profiles to said second document profiles; removing, by said trusted repository system, all electronic signatures from said first tamper sealed documents, adding, by said trusted repository system, a forgery-resistant indicia that clearly identifies that said first documents are a copy, and applying a digital signature and date-time stamp to said copies; logically associating said copies of said information objects and said tamper sealed documents with said first transaction identifier and said first document identifiers; and storing, by said trusted repository system, said copies of said information objects and said tamper sealed documents in said secure database management system. 20. The method of claim 15 wherein said step of establishing, by said trusted repository system, a second transaction profile further comprises establishing, by said trusted repository system, a second transaction level audit trail corresponding to said second transaction profile; and wherein said step of logically associating, by said trusted repository system, said information objects from said first transaction profile with said second transaction identifier further comprises updating said second transaction level audit trail and applying, by the trusted repository system, a digital signature and date-time stamp to said updated second transaction level audit trail: adding, by the trusted repository system, said digitally signed and date-stamped first transaction level audit trail to said digitally signed and date-stamped second transaction level audit trail; and applying, by the trusted repository system, a recursive wrapping digital signature and date-time stamp to said aggregated second transaction level audit trail. 21. The method of claim 15 wherein said step of creating, by said trusted repository system, a second transaction profile further comprises establishing, by said trusted repository system, a data audit trail corresponding to said transaction profile; and wherein said step of logically associating, by said trusted repository system, said tamper sealed information objects from said first transaction profile, and said tamper sealed information objects and said tamper sealed documents from said first document profiles with said second document identifiers, further comprises updating said data audit trail and applying, by the trusted repository system, a digital signature and date-time stamp to said updated data audit trail; adding, by the trusted repository system, said digitally signed and date-stamped first data audit trail to said digitally signed and date-stamped second data audit trail; and applying, by the trusted repository system, a recursive wrapping digital signature and date-time stamp to said aggregated second data level audit trail. 22. The method of claim 15 wherein said step of providing read only access, by said trusted repository system, to said recipient authorizes transfer agent includes: receiving, by said trusted repository system from said second authenticated transfer agent, a request to upload a dataset for comparison to said information objects offered for transfer; receiving, by said trusted repository system, said dataset from an authenticated transfer agent at one of said at least one remote computer workstations via said communications network and placing, by said trusted repository system, said dataset into temporary storage; comparing, by said trusted repository system, said dataset to said information objects offered for transfer; producing, by said trusted repository system for display to said second authenticated transfer agent, a report indicating discrepancies between said data set and said information objects offered for transfer; and said second authenticated transfer agent sending to said trusted repository system a notice of acceptance or rejection of said information objects and documents offered for transfer based on the results of such report. 23. The method of claim 15 wherein said step of providing read only access, by said trusted repository system, to said recipient authorizes transfer agent includes: delivery, by said trusted repository system to an authenticated transfer agent at one of said at least one remote computer workstations via said communications network, a copy of said information objects offered for transfer; performing, by said authenticated transfer agent, a comparison of said copy of said information objects offered for transfer with data maintained by said authenticated transfer agent; and said second authenticated transfer agent sending to said trusted repository system a notice of acceptance or rejection of said information objects and documents offered for transfer based on the results of such comparison. 24. The method of claim 9, wherein said step of identifying, by said trusted repository system via said communications network, one or more first information objects comprises receiving, by said trusted repository system, instructions from said authenticated transfer agent to extract information objects from said document, to associate one or more of said data fields with said document profile, and to populate said information objects into said data fields; logically associating, by said trusted repository system, said field identifiers corresponding to said data fields with said document identifier; extracting, by said trusted repository system, one or more first information objects from said document or from metadata embedded in such document; depositing, by said trusted repository system, each of said first information objects into one of said data fields; assigning, by said trusted repository system, an information object identifier to each said first information objects; logically associating, by said trusted repository system, said information object identifiers with one or more of said field identifiers; generating, by said trusted repository system, a dataset of said first information objects populated into said field identifiers and creating an entry to maintain said dataset; applying, by said trusted repository system, a digital signature and date-time stamp to said dataset of first information objects; logically associating, by said trusted repository system, said dataset of first information objects with said information object identifiers; and storing, by said trusted repository system, said dataset of first information objects and said first information objects in said secure database management system and updating, by said trusted repository system, said document level audit trail after said receiving, depositing, generating, assigning, applying and storing steps with one or more entries corresponding thereto and applying, by the trusted repository system, a digital signature and date-time stamp to said updated document level audit trail. - 25. The method of claim 2, wherein said step of verifying said digital signature and date-time stamp applied to said dataset of first information objects comprises verifying a digital signature applied to any existing dataset of first information objects associated with said transaction profile associated with said document profile and any existing transaction level audit trail. - 26. The method of claim 15, wherein said steps of logically associating comprise copying, by said trusted repository system. - 27. The method of claim 15, further comprising, prior to said step of creating a second transaction profile associated with said second owner and a second transaction identifier related to said second transaction profile: receiving, by said trusted repository system, from said second authenticated transfer agent acceptance of at least one of said one or more documents and information objects offered for transfer: sending, by said trusted repository system, a notice of acceptance of said one or more documents and information objects to said first authenticated transfer agent; receiving, by said trusted repository system, from said first authenticated transfer agent confirmation of transfer of the accepted one or more documents or information objects offered for transfer; updating, by said trusted repository system, said tamper sealed audit trails with entries corresponding to said acceptance and confirmation of transfer; and applying, by said trusted repository system, a digital signature and date-time stamp to said updated tamper sealed audit trails. ## | Date | Action | Recorded
By | Participant | \$30.00Y | Audit | |----------------------------------|---|---|---|---------------|-------------| | 9/30/2016 06:15:44 AM | Confirmed Transfer of Control from | DocuSign | eCore System Acount | Y /Z | × | | EDT | SSWeb Destination Site Org to | Connect | <support@eoriginal.com></support@eoriginal.com> | | | | | Coverage Testing Transfer Recipient | | | | | | 930201606:15:44 AM | Accepted Transfer of Control from | DocuSign | Transfer Recipient | マ シ | × | | EDT | SSWeb Destination Site Org to | Connect | <qatest(a)eoriginal.com></qatest(a)eoriginal.com> | | | | | Coverage Testing Transfer Recipient | | | | | | 9/30/2016 06:15:44 AM |
Initiated Transfer of Control from | DocuSign | eCore System Acount | 71.16.78.2 | * | | EDT | SSWeb Destination Site Org to | Connect | <support@eoriginal.com></support@eoriginal.com> | 52 | ••••• | | | Coverage Testing Transfer Recipient | | | | | | 9302016 06:15:43 AM | eDeposit Completed Form DocuSign | DocuSign | eCore System Acount | 71.16.78.2 | × | | 0/20/2014 04:14:42 484 | Court and Circums Name in | December | ollows Suctions Account | 0 3 2 7 1 1 2 | > | | 2/20/2010 00,13,43 AW | Cicaton Signon Volsion | LYNCH SIGH | ecore oystem Acount | ***** | < | | EDI | | Connect | <support@eoriginal.com></support@eoriginal.com> | 52 | | | 930201606:15:41 AM | Exported Form DocuSign | DocuSign | eCore System Acount | 71.16.78.2 | У, | | EDT | | Connect | ~support@eoriginal.com> | 52 | | | 9/30/2016 06:15:07 AM | Signed Envelope in DocuSign | DocuSign | QA | 71.16.78.2 | × | | EDI | | Connect | <eoriginalqa@eoriginal.co< td=""><td>52</td><td>******</td></eoriginalqa@eoriginal.co<> | 52 | ****** | | | | | \M | | | | 930201606:14:59.AM | Consented in DocuSign | DocuSign | S | 16.78.2 | × | | EDT | | Connect | Seoriginalqa@eoriginal.co | S | | | 9/30/2016 06:14:22 AM | Created in DocuSign | DocuSign | Tyler Earnest | 71.16.78.2 | × | | EDT | } | Connect | <tearnest@eoriginal.com></tearnest@eoriginal.com> | 52 | | | Details | | | Digital Certificate Information | 3.38 2.0833 | | | Block: ENVELOPEId 5537; | Block: ENVELOPEid_55373cc829d84A4CB2F835640DB04D96 | | Issued to: DocuSign, Inc. | | | | Date: 09/30/2016 06:15:41 AM EDT | MEDT | | Issued by: Entrust, Inc. | | • | | Reason: Digitally verifiable ! | Reason: Digitally verifiable PDF exported from www.docusign.com | | | | | | Block: Vault Tamper Seal | | | Issued to: TCUP12 | | *********** | | Date: 09/30/2016 06:15:43 AM EDT | MEDT | | Issued by: eOriginal | | | | | | *************************************** | | | | ## INTERNATIONAL SEARCH REPORT International application No. PCT/US 16/55218 | A. CLASSIFICATION OF SUBJECT MATTER IPC(8) - G06K 15/00 (2016.01) CPC - G06K 15/00 According to International Patent Classification (IPC) or to both national classification and IPC | | | | | | | |--|---|--|-------------------------------|--|--|--| | B. FIELDS SEARCHED | | | | | | | | Minimum documentation searched (classification system followed by classification symbols) IPC(8): G06K 15/00 (2016.01) CPC: G06K 15/00 | | | | | | | | Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched USPC: 358/1.14 ror 713/179 or 713/178 or 713/180 or 713/168 IPC(8): G06K 15/00 (2016.01); CPC: G06K 15/00 or G06F 21/608 or G06F 3/1296 or H04N 2201/0094 or H04N 2201/0082 | | | | | | | | Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Patbase; Google (Scholar, Patents); trusted repository, database, lock, record, sign, third-party, destroy, delete, object, document, file | | | | | | | | C. DOCUMENTS CONSIDERED TO BE RELEVANT | | | | | | | | Category* | Citation of document, with indication, where ap | propriate, of the relevant passages | Relevant to claim No. | | | | | Α | US 2012/0086971 A1 (Bisbee et al.) 12 April 2012 (12 para [0026], [0034]-[0035], [0040], [0042]-[0043], [0047] | | 1-13 | | | | | Α | US 2001/0010045 A1 (Stefik et al.) 26 July 2001 (26.0 [0313]) | 7.2001) entire document (especially para | 1-13 | | | | | A | US 7,139,910 B1 (Ainsworth et al.) 21 Novmeber 2006 (especially col. 6, In 27-33; col. 7, In 49-50) | 1-13 | | | | | | Α . | US 6,233,684 B1 (Stefik et al.) 15 May 2001 (15.05.20 | 1-13 | | | | | | Α | US 2006/0123249 A1 (Maheshwari et al.) 08 June 200 | 1-13 | | | | | | Α | US 6,367,013 B1 (Bisbee et al.) 02 April 2002 (02.04.2002) entire document | | 1-13 | · | | | | | | | Further documents are listed in the continuation of Box C. | | | | | | | | "A" docume | categories of cited documents:
ent defining the general state of the art which is not considered
particular relevance | "T" later document published after the interdate and not in conflict with the applic the principle or theory underlying the i | ation but cited to understand | | | | | "E" earlier application or patent but published on or after the international filing date | | "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone | | | | | | "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | | "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is | | | | | | "O" document referring to an oral disclosure, use, exhibition or other means | | considered to involve an inventive s
combined with one or more other such of
being obvious to a person skilled in the | locuments, such combination | | | | | The second secon | | "&" document member of the same patent family | | | | | | | | Date of mailing of the international search report | | | | | | 12 Decembe | er 2016 (12.12.2016) | 27DEC 2016 | | | | | | | nailing address of the ISA/US | Authorized officer: | | | | | | Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 | | Lee W. Young PCT Helpdesk: 571-272-4300 | | | | | | Facsimile No. 571-273-8300 | | PCT Helpdesk: 571-272-4300 PCT OSP: 571-272-7774 | | | | |