wo 20187128850 A1 | I0K 000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Propert <
0T rpmivation = 0 0T 00O RO
International Bureau —/) (10) International Publication Number
(43) International Publication Date —— WO 2018/128850 A1
12 July 2018 (12.07.2018) WIPOI|PCT
(51) International Patent Classification: (71) Applicant: ORACLE INTERNATIONAL CORPO-
GO6F 3/06 (2006.01) GO6F 17/30 (2006.01) RATION [US/US]; 500 Oracle Parkway, M/S 5OP7, Red-
HO04L 29/08 (2006.01) wood Shores, California 94065 (US).

(21) International Application Number: (72) Inventors: KRAMER, James; 1012 Neon Forest Cir-
PCT/US2017/067962 cle, Longmont, Colorado 80504 (US). MAYBEE, Mark;

645 15th Street, Boulder, Colorado 80302 (US). GIBSON,

(22) International Filing Date: Gavin; 13343 Osage Street, Westminister, Colorado 80234

21 December 2017 (21.12.2017)

(US).
(25) Filing Language: English 74 Agent: HAYIM, Samuel ct al.; Mailstop: IP Docketing-22,
(26) Publication Language: English 1100 Peachtree Street, Suite 2800, Atlanta, Georgia 30309

US).

(30) Priority Data: (Us)
62/443,391 06 January 2017 (06.01.2017) US (81) Designated States (unless otherwise indicated, for every
15/610,380 31 May 2017 (31.05.2017) Us kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH, CL,CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(54) Title: COMPRESSION AND SECURE, END-TO-END ENCRYPTED, ZFS CLOUD STORAGE

100
130 Local 132 134 Cloud
}‘ Computing Network System
136-15 L I I 136n
I y
12441 r
12641 Host Ports Host Ports 5 124-n
Y External Interface Provider [X} External Interface Provider l5-126-n
1281 Data Storage Controlier Data Storage Controller [-128-n
I I
22 swichFabic | 1222 swichFabic || eee || swichFabic |i5122"
I 1
Storage Appliance 120-n Storage Appliance
HE12 1o Port 2 HENA o port
Proc 14 Proc 114-n
Core 11—12—‘11 Core 112
x -n
12017 Ty e gliza—r
I DRAM/Flash Cache 1 ‘ DRAM/Flash Cache j
L ol T T
[Concentrator Board I (Y X I Concentrator Board]
2-110-1 &110-n
e [} ° o
o = 2 g = 2
o = Q =3 [a)
al |£) 18] |2 .o al (2] 18] |2 Z [ove
sl 12! [Z] 18 112 =) 18] (=
gl 1= = 108-1 2 P 108-n
102-1<-104-1=105-1 =106-1 FIG- 1 102-01=104-n=105-n =106-n

(57) Abstract: Techniques described herein relate to systems and methods of data storage, and more particularly to providing layering
of file system functionality on an object interface. In certain embodiments, file system functionality may be layered on cloud object
interfaces to provide cloud-based storage while allowing for functionality expected from a legacy applications. For instance, POSIX
interfaces and semantics may be layered on cloud-based storage, while providing access to data in a manner consistent with file-based
access with data organization in name hierarchies. Various embodiments also may provide for memory mapping of data so that memory
map changes are reflected in persistent storage while ensuring consistency between memory map changes and writes. For example,
by transforming a ZFS file system disk-based storage into ZFS cloud-based storage, the ZFS file system gains the elastic nature of
cloud storage.

[Continued on next page]

WO 2018/128850 A1 ||} 1000000 0 Y

HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KIL, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

5

10

15

20

25

WO 2018/128850 PCT/US2017/067962

COMPRESSION AND SECURE, END-TO-END ENCRYPTED,
ZFS CLOUD STORAGE

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a non-provisional of and claims the benefit and priority under 35
U.S.C. 119(e) of U.S. Provisional Application No. 62/443.391, filed January 6, 2017, entitled
“FILE SYSTEM HIERARCHIES AND FUNCTIONALITY WITH CLOUD OBIJECT

STORAGE,” the entire contents of which are incorporated herein by reference for all purposes.

TECHNICAL FIELD OF THE INVENTION
[0002] This disclosure generally relates to systems and methods of data storage, and more

particularly to layering file system functionality on an object interface.
BACKGROUND

[0003] The continuous expansion of the Internet, along with the expansion and sophistication
of computing networks and systems, has led to the proliferation of content being stored and
accessible over the Internet. This, in turn, has driven the need for large and sophisticated data
storage systems. As the demand for data storage continues to increase, larger and more
sophisticated storage systems are being designed and deployed. Many large-scale data storage
systems utilize storage appliances that include arrays of physical storage media. These storage
appliances are capable of storing incredible amounts of data. For example, at this time, Oracle’s
SUN ZFS Storage ZS5-4 appliance can store up to 6.9 petabytes of data. Moreover, multiple
storage appliances may be networked together to form a storage pool, which can further increase

the volume of stored data.

[0004] Typically, large storage systems such as these may include a file system for storing and
accessing files. In addition to storing system files (operating system files, device driver files,
etc.), the file system provides storage and access of user data files. If any of these files (system
files and/or user files) contain critical data, then it becomes advantageous to employ a backup

storage scheme to ensure that critical data is not lost if a file storage device fails.

[0005] Conventional cloud-based storage is object-based and offers elasticity and scale.

However, cloud object storage presents a number of problems. Cloud object storage offers

10

15

20

25

WO 2018/128850 PCT/US2017/067962

interfaces that are based on getting and putting whole objects. Cloud object storage provides a
limited ability to search, and typically has high latency. The limited cloud-based interfaces do
not align with needs of local file system applications. Converting legacy applications to use an
object interface would be expensive and may not be practical or even possible. Cloud object

storage encryption keeps encryption keys making data more vulnerable and less secure.

[0006] Thus, there is a need for systems and methods that address the foregoing problems in
order to provide layering of file system functionality on an object interface. This and other needs

are addressed by the present disclosure.
BRIEF SUMMARY

[0007] Certain embodiments of the present disclosure relate generally to systems and methods
of data storage, and more particularly to systems and methods for layering file system

functionality on an object interface.

[0008] Various techniques (e.g., systems, methods, computer-program products tangibly
embodied in a non-transitory machine-readable storage medium, etc.) are described herein for
providing layering of file system functionality on an object interface. In certain embodiments,
file system functionality may be layered on cloud object interfaces to provide cloud-based
storage while allowing for functionality expected from a legacy applications. For instance,
Portable Operating System Interface (POSIX) interfaces and semantics may be layered on cloud-
based storage, while providing access to data in a manner consistent with file-based access with
data organization in name hierarchies. Various embodiments also may provide for memory
mapping of data so that memory map changes are reflected in persistent storage while ensuring
consistency between memory map changes and writes. For example, by transforming a ZFS file
system disk-based storage into ZFS cloud-based storage, the ZFS file system gains the elastic

nature of cloud storage.

[0009] Further areas of applicability of the present disclosure will become apparent from the
detailed description provided hereinafter. It should be understood that the detailed description
and specific examples, while indicating various embodiments, are intended for purposes of

illustration only and are not intended to necessarily limit the scope of the disclosure.

10

15

20

25

WO 2018/128850 PCT/US2017/067962

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] A further understanding of the nature and advantages of embodiments according to the
present disclosure may be realized by reference to the remaining portions of the specification in

conjunction with the following appended figures.

[0011] FIG. 1 illustrates one example storage network that may be used in accordance with

certain embodiments of the present disclosure.

[0012] FIG. 2 illustrates an instance of a file system that may be executed in a storage

environment, in accordance with certain embodiments of the present disclosure.

[0013] FIGS. 3A-3F illustrate a copy-on-write process for a file system, in accordance with

certain embodiments of the present disclosure.

[0014] FIG. 4 is a high-level diagram illustrating an example of a hybrid cloud storage system,

in accordance with certain embodiments of the present disclosure.

[0015] FIG. S illustrates an instance of an example network file system of the hybrid cloud

storage system, in accordance with certain embodiments of the present disclosure.

[0016] FIG. 6 is a diagram illustrating additional aspects of a cloud interface appliance of a

hybrid cloud storage system, in accordance with certain embodiments of the present disclosure.

[0017] FIGS. 7A-F are block diagrams that illustrates an example method directed to certain
features of a COW process for the hybrid cloud storage system, in accordance with certain

embodiments of the present disclosure including data services, snapshots, and clones.

[0018] FIG. 8 is a high-level diagram illustrating an example of the cloud interface appliance
handling incremental modifications, in accordance with certain embodiments of the present

disclosure.

[0019] FIG. 9 is a block diagram that illustrates an example method directed to certain features
of the hybrid cloud storage system that ensure integrity in the cloud and always-consistent
semantics from an eventually consistent object model, in accordance with certain embodiments

of the present disclosure.

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0020] FIG. 10 is a high-level diagram illustrating an example of the cloud interface appliance

handling the checking, in accordance with certain embodiments of the present disclosure.

[0021] FIG. 11 is a diagram of a simplified example further illustrating features of a hybrid

cloud storage system, in accordance with certain embodiments of the present disclosure.

[0022] FIG. 12 is a diagram of a simplified example further illustrating features of a hybrid

cloud storage system, in accordance with certain embodiments of the present disclosure.

[0023] FIG. 13 is a block diagram that illustrates an example method directed to certain
features of the hybrid cloud storage system for cache management and cloud latency masking, in

accordance with certain embodiments of the present disclosure.

[0024] FIG. 14 illustrates an instance of an example network file system of the hybrid cloud
storage system to facilitate synchronous mirroring, in accordance with certain embodiments of

the present disclosure.

[0025] FIG. 15 is a block diagram that illustrates an example method directed to certain
features of the hybrid cloud storage system for synchronous mirroring and cloud latency

masking, in accordance with certain embodiments of the present disclosure.

[0026] FIG. 16 depicts a simplified diagram of a distributed system for implementing certain

embodiments in accordance with present disclosure.

[0027] FIG. 17 is a simplified block diagram of one or more components of a system
environment by which services provided by one or more components of a system may be offered

as cloud services, in accordance with certain embodiments of the present disclosure.

[0028] FIG. 18 illustrates an exemplary computer system, in which various embodiments of

the present invention may be implemented.

[0029] In the appended figures, similar components and/or features may have the same
reference label. Further, various components of the same type may be distinguished by
following the reference label by a dash and a second label that distinguishes among the similar

components. If only the first reference label is used in the specification, the description is

10

15

20

25

WO 2018/128850 PCT/US2017/067962

applicable to any one of the similar components having the same first reference label irrespective

of the second reference label.
DETAILED DESCRIPTION

[0030] The ensuing description provides preferred exemplary embodiment(s) only, and is not
intended to limit the scope, applicability, or configuration of the disclosure. Rather, the ensuing
description of the preferred exemplary embodiment(s) will provide those skilled in the art with
an enabling description for implementing a preferred exemplary embodiment of the disclosure.
It should be understood that various changes may be made in the function and arrangement of
elements without departing from the spirit and scope of the disclosure as set forth in the

appended claims.

[0031] As noted above, cloud-based storage offers elasticity and scale, but presents a number
of problems. Cloud object storage offers interfaces that are based on getting and putting whole
objects. Cloud object storage provides a limited ability to search, and typically has high latency.
The limited cloud-based interfaces do not align with needs of local file system applications.
Converting legacy applications to use an object interface would be expensive and may not be
practical or even possible. Hence, solutions are needed so that is not necessary to change file
system applications to directly access cloud object storage because it promises to be complex and

expensive.

[0032] The solutions should allow native application interfaces to be preserved without
introducing various types of adaptation layers to map the data of a local storage system to object
storage in the cloud. Accordingly, certain embodiments according to the present disclosure may
layer file system functionality on cloud object interfaces to provide cloud-based storage while
allowing for functionality expected from a legacy applications. For example, legacy
applications, which are not cloud-based, may access data primarily as files and may be
configured for POSIX interfaces and semantics. From the legacy application perspective, being
able to modify content of a file without rewriting the file is expected. Likewise, being to be able

to organize data in name hierarchies is expected.

[0033] To accommodate such expectations, certain embodiments may layer POSIX interfaces

and semantics on cloud-based storage, while providing access to data in a manner that, from a

10

15

20

25

WO 2018/128850 PCT/US2017/067962

user perspective, is consistent with file-based access with data organization in name hierarchies.
Further, certain embodiments may provide for memory mapping of data so that memory map
changes are reflected in persistent storage while ensuring consistency between memory map
changes and writes. By transforming a ZFS file system disk-based storage into ZFS cloud-based
storage, the ZFS file system gains the elastic nature of cloud storage. By mapping “disk blocks”
to cloud objects, the storage requirements for the ZFS file system are only the “blocks” actually
in use. The system may always be thinly provisioned with no risk of running out of backing
storage. Conversely, the cloud storage gains ZFS file system semantics and services. Full
POSIX semantics may be provided to cloud clients, as well as any additional data services (such

as compression, encryption, snapshots, etc.) provided by the ZFS file system.

[0034] Certain embodiments may provide the ability to migrate data to-and-from the cloud and
may provide for local data to co-exist with data in the cloud by way of a hybrid cloud storage
system, which provides for storage elasticity and scale while layering ZFS file system
functionality on the cloud storage. By extending the ZFS file system to allow storing of objects
in cloud object stores, a bridge may be provided to traditional object storage while preserving
ZFS file system functionality in addition to all ZFS file system data services. The bridging of the
gap between traditional local file systems and the ability to store data in various clouds object

stores redounds to significant performance improvements.

[0035] Furthermore, embodiments of the present invention enable the use of traditional ZFS
data services in conjunction with the hybrid cloud storage. As an example, compression,
encryption, deduplication, snapshots, and clones are each available in certain embodiments of the
present invention and are described in short detail immediately below. In the present invention
users can continue to use all of the data services provided by the ZFS file system seamlessly
when extending storage to the cloud. For instance, the Oracle Key Manager or equivalent
manages the key local to a user allowing end-to-end secure encryption with locally managed
keys when storing to the cloud. The same commands used to compress, encrypt, deduplicate,
take snapshots, and make clones on disk storage are used for storage to the cloud. As a result,
users continue to benefit from the efficiencies and the security provided by ZFS compression,

encryption, deduplication, snapshots, and clones.

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0036] Compression is typically turned on because it reduces the resources required to store
and transmit data. Computational resources are consumed in the compression process and,
usually, in the reversal of the process (decompression). Data compression is subject to a space—
time complexity trade-off. For instance, a compression scheme may require intensive processing
decompression fast enough to be consumed as it is being decompressed. The design of data
compression schemes involves trade-offs among various factors, including the degree of

compression and the computational resources required to compress and decompress the data.

[0037] ZFS encryption enables an end-to-end secure data block system with locally saved
ecryption keys providing an additionlal layer of security. ZFS encryption does not of itself
prevent the data blocks from being missapropriated, but denies the message content to the
interceptor. In an encryption scheme, the intended data block, is encrypted using an encryption
algorithm, generating ciphertext that can only be read if decrypted. For technical reasons, an
encryption scheme usually uses a pseudo-random encryption key generated by an algorithm. It is
in principle possible to decrypt the message without possessing the key, but, for a well-designed
encryption scheme, large computational resources and skill are required. ZFS Data blocks are

encrypted using AES (Advanced Encryption Standard) with key lengths of 128, 192, and 256.

[0038] Data block duplication is a specialized data compression technique for eliminating
duplicate copies of repeating data blocks. Data block deduplication is used to improve storage
utilization and can also be applied to network data transfers to reduce the number of data blocks
that must be sent to store to memory. In the deduplication process, unique data blocks are
identified and stored during a process of analysis. As the analysis continues, other data blocks
are compared to the stored copy and whenever a match occurs, the redundant data block is
replaced with a small reference that points to the stored stored data block. Given that the same
data block patterm may occur dozens, hundreds, or even thousands of times the number of data

blocks that must be stored or transferred is reduced substantially using deduplication.

[0039] Snapshots for ZFS storage to the cloud object store are created seamlessly in the ZFS
system. Snapshots freeze certain data and metadata blocks so that they may not be written over
in case a backup to the snapshot is needed. A tree hierarchy can have many snapshots, and each

snapshot will be saved until deleted. Snapshots can be stored locally or in the cloud object store.

10

15

20

25

WO 2018/128850 PCT/US2017/067962

And snapshots are “free” in the ZFS system as they don’t require any extra storage capability
than creating the root block the snapshot points to. The root block and all subsequent blocks
from the root block are not available for copy on write operation when accessed from the
snapshot reference to the root block. At the next progression after the snap shot is taken - a new

root block becomes the active root block.

[0040] Clones are created from snapshots and, unlike snapshot, blocks accessed using the
clone reference to the root block are available for copy on write operation. Clones allow
development and trouble shooting on a system without corrupting the active root block and tree.
Clones are linked to snapshots and snapshots cannot be deleted if a clone linking to a snapshot

block persists. Clones, in some cases, can be promoted to the active hierarchical tree.

[0041] Various embodiments will now be discussed in greater detail with reference to the

accompanying figures, beginning with FIG. 1.

[0042] FIG. 1 illustrates one example storage network 100 that may be used to implement
certain embodiments according to the present disclosure. The selection and/or arrangement of
hardware devices depicted in FIG. 1 are shown only by way of example, and are not meant to be
limiting. FIG. 1 provides a plurality of storage appliances 120 connected through one or more
switch circuits 122. The switch circuits 122 may connect the plurality of storage appliances 120
to a plurality of I/O servers 136, which in turn may provide access to the plurality of storage
appliances 120 for client devices, such as local computer systems 130, computer systems

available over a network 132, and/or cloud computing systems 134.

[0043] Each I/O server 136 may execute multiple independent file system instances, each of
which may be responsible for the management of a portion of the overall storage capacity. As
will be described in greater detail below, these file system instances may include the Oracle ZFS
file system. The I/O servers 136 may comprise blade and/or standalone servers that include host
ports 124 to communicate with the client devices by receiving read and/or write data access
requests. The host ports 124 may communicate with an external interface provider 126 that
identifies a correct data storage controller 128 to service each I/O request. The data storage
controllers 128 can each exclusively manage a portion of data content in one or more of the

storage appliances 120 described below. Thus, each data storage controller 128 can access a

10

15

20

25

WO 2018/128850 PCT/US2017/067962

logical portion of the storage pool and satisfy data requests received from the external interface
providers 126 by accessing their own data content. Redirection through the data storage
controllers 128 may include redirection of each I/O request from the host ports 124 to a file
system instance (e.g., a ZFS instance) executing on the I/O servers 136 and responsible for the
blocks requested. For example, this may include a redirection from a host port 124-1 on one I/O
server 136-1 to a ZFS instance on another I/O server 136-n. This redirection may allow any part
of the available storage capacity to be reached from any host port 124. The ZFS instance may
then issue the necessary direct I/O transactions to any storage device in the storage pool to
complete the request. Acknowledgements and/or data may then be forwarded back to the client

device through the originating host port 124.

[0044] A low-latency, memory-mapped network may tie together the host ports 124, any file
system instances, and the storage appliances 120. This network may be implemented using one
or more switch circuits 122, such as Oracle’s Sun Data Center InfiniBand Switch 36 to provide a
scalable, high-performance cluster. A bus protocol, such as the PCI Express bus, may route
signals within the storage network. The I/O servers 136 and the storage appliances 120 may
communicate as peers. The redirection traffic and ZFS memory traffic may both use the same

switch fabric.

[0045] In various embodiments, many different configurations of the storage appliances 120
may be used in the network of FIG. 1. In some embodiments, the Oracle ZFS Storage Appliance
series may be used. The ZFS Storage Appliance provides storage based on the Oracle Solaris
kernel with Oracle’s ZFS file system (“ZFS”) described below. The processing core 114 handles
any operations required to implement any selected data protection (e.g., mirroring, RAID-Z,
etc.), data reduction (e.g., inline compression, duplication, etc.), and any other implemented data
services (e.g., remote replication, etc.). In some embodiments, the processing core may comprise
an 8x15 core of 2.8 GHz Intel® Xeon® processors. The processing core also handles the
caching of stored data in both DRAM and Flash 112. In some embodiments, the DRAM/Flash
cache may comprise a 3 TB DRAM cache.

[0046] In some configurations, the storage appliances 120 may comprise an I/O port 116 to

receive I/O requests from the data storage controllers 128. Each of the storage appliances 120

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

may include an integral rack-mounted unit with its own internally redundant power supply and
cooling system. A concentrator board 110 or other similar hardware device may be used to
interconnect a plurality of storage devices. Active components such as memory boards,
concentrator boards 110, power supplies, and cooling devices may be hot swappable. For
example, the storage appliance 120 may include flash memory 102, nonvolatile RAM (NVRAM)
104, various configurations of hard disk drives 105, tape drives, RAID arrays 108 of disk drives,
and so forth. These storage units may be designed for high availability with hot swapping and
internal redundancy of memory cards, power, cooling, and interconnect. In some embodiments
the RAM may be made non-volatile by backing it up to dedicated Flash on loss of power. The
mix of Flash and NVRAM cards may be configurable, and both may use the same connector and

board profile.

[0047] Although not shown explicitly, each of the I/O servers 136 may execute a global
management process, or data storage system manager, that may supervise the operation of the
storage system in a pseudo-static, “low touch” approach, intervening when capacity must be
reallocated between ZFS instances, for global Flash wear leveling, for configuration changes,
and/or for failure recovery. The “divide and conquer” strategy of dividing the capacity among
individual ZFS instances may enable a high degree of scalability of performance, connectivity,
and capacity. Additional performance may be achieved by horizontally adding more I/O servers
136, and then assigning less capacity per ZFS instance and/or fewer ZFS instances per /O server
136. Performance may also be scaled vertically by using faster servers. Additional host ports
may be added by filling available slots in the /O servers 136 and then adding additional servers.
Additional capacity may also be achieved by adding additional storage appliances 120, and

allocating the new capacity to new or existing ZFS instances.

[0048] FIG. 2 illustrates an instance of an example network file system 200 that may be
executed in a storage environment, including the storage environment of FIG. 1, in accordance
with certain embodiments of the present disclosure. For example, the file system 200 may
include the Oracle ZFS file system (“ZFS”), which provides very large capacity (128-bit), data
integrity, an always-consistent, on-disk format, self-optimizing performance, and real-time
remote replication. Among other ways, ZFS departs from traditional file systems at least by

eliminating the need for a separate volume manager. Instead, a ZFS file system shares a

10

10

15

20

25

WO 2018/128850 PCT/US2017/067962

common storage pool of storage devices and acts as both the volume manager and the file
system. Therefore, ZFS has complete knowledge of both the physical disks and volumes
(including their condition, status, and logical arrangement into volumes, along with all the files
stored on them). Devices can be added or removed from the pool as file system capacity
requirements change over time to dynamically grow and shrink as needed without needing to

repartition the underlying storage pool.

[0049] In certain embodiments, the system 200 may interact with an application 202 through
an operating system. The operating system may include functionality to interact with a file
system, which in turn interfaces with a storage pool. The operating system typically interfaces
with the file system 200 via a system call interface 208. The system call interface 208 provides
traditional file read, write, open, close, etc., operations, as well as VNODE operations and VFS
operations that are specific to the VFS architecture. The system call interface 208 may act as a
primary interface for interacting with the ZFS as a file system. This layer resides between a data
management unit (DMU) 218 and presents a file system abstraction of the files and directories
stored therein. The system call interface 208 may be responsible for bridging the gap between

the file system interfaces and the underlying DMU 218 interfaces.

[0050] In addition to the POSIX layer of the system call interface 208, the interface layer of
the file system 200 may also provide a distributed file system interface 210 for interacting with
cluster/cloud computing devices 204. For example, a Lustre® interface may be provided to
provide a file system for computer clusters ranging in size from small workgroup clusters to
large-scale, multi-site clusters. A volume emulator 212 may also provide a mechanism for
creating logical volumes which can be used as block/character devices. The volume emulator
212 not only allows a client system to distinguish between blocks and characters, but also allows
the client system to specify the desired block size and thereby create smaller, sparse volumes in a
process known as “thin provisioning.” The volume emulator 212 provides raw access 206 to

external devices.

[0051] Underneath the interface layer lies a transactional object layer. This layer provides an
intent log 214 configured to record a per-dataset transactional history which can be replayed

upon a system crash. In ZFS, the intent log 214 saves transaction records of system calls that

11

10

15

20

25

WO 2018/128850 PCT/US2017/067962

change the file system in memory with sufficient information to be able to replay the system
calls. These are stored in memory until the DMU 218 commits them to the storage pool and they
can be discarded or they are flushed. In the event of a power failure and/or disk failure, the

intent log 214 transactions can be replayed to keep the storage pool up-to-date and consistent.

[0052] The transactional object layer also provides an attribute processor 216 that may be used
to implement directories within the POSIX layer of the system call interface 208 by making
arbitrary {key, value} associations within an object. The attribute processor 216 may include a
module that sits on top of the DMU 218 and may operate on objects referred to in the ZFS as
“ZAP objects.” ZAP objects may be used to store properties for a dataset, navigate file system
objects, and/or store storage pool properties. ZAP objects may come in two forms: “microzap”
objects and “fatzap” objects. Microzap objects may be a lightweight version of the fatzap
objects and may provide a simple and fast lookup mechanism for a small number of attribute
entries. Fatzap objects may be better suited for ZAP objects containing large numbers of

attributes, such as larger directories, longer keys, longer values, etc.

[0053] The transactional object layer also provides a data set and snapshot layer 220 that
aggregates DMU objects in a hierarchical namespace, and provides a mechanism for describing
and managing relationships between properties of object sets. This allows for the inheritance of
properties, as well as quota and reservation enforcement in the storage pool. DMU objects may
include ZFS file system objects, clone objects, CFS volume objects, and snapshot objects. The

data and snapshot layer 220 can therefore manage snapshot and clones.

[0054] A snapshot is a read-only copy of a file system or volume. A snapshot is a view of a
filesystem as it was at a particular point in time. ZFS's snapshots are useful in the same way that
some other filesystems's snapshots are: By doing a backup of a snapshot, you have a consistent,
non-changing target for the backup program to work with. Snapshots can also be used to recover
from recent mistakes, by copying the corrupted files from the snapshot. Snapshots can be created
almost instantly, and they initially consume no additional disk space within the pool. However,
as data within the active dataset changes, the snapshot consumes disk space by continuing to
reference the old data, thus preventing the disk space from being freed. The blocks containing

the old data will only be freed if the snapshot is deleted. Taking a snapshot is a constant-time

12

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

operation. The presence of snapshots doesn't slow down any operations. Deleting snapshots takes
time proportional to the number of blocks that the delete will free, and is very efficient. ZFS
snapshots include the following features: they persist across system reboots; the theoretical
maximum number of snapshots is 2°*; they use no separate backing store; they consume disk
space directly from the same storage pool as the file system or volume from which they were
created; recursive snapshots are created quickly as one atomic operation; and they are created
together (all at once) or not created at all. The benefit of atomic snapshot operations is that the
snapshot data is always taken at one consistent time, even across descendent file systems.
Snapshots cannot be accessed directly, but they can be cloned, backed up, rolled back to, and so

on. Snapshots can be used to “roll back” in time to the point when the snapshot was taken

[0055] A clone is a writable volume or file system whose initial contents are the same as the
dataset from which it was created. In the ZFS system clones are always created from snapshots.
As with snapshots, creating a clone is nearly instantaneous and initially consumes no additional
disk space. In addition, you can snapshot a clone.Clones can only be created from a snapshot.
When a snapshot is cloned, an implicit dependency is created between the clone and snapshot.
Even though the clone is created somewhere else in the dataset hierarchy, the original snapshot
cannot be destroyed as long as the clone exists. Clones do not inherit the properties of the dataset
from which it was created. A clone initially shares all its disk space with the original snapshot.
As changes are made to the clone, it uses more disk space. Clones are useful to branch off and do
development or troubleshooting — and can be promoted to replace the live file system. Clones

can also be used to duplicate a file system on multiple machines..

[0056] The DMU 218 presents a transactional object model built on top of a flat address space
presented by the storage pool. The modules described above interact with the DMU 218 via
object sets, objects, and transactions, where objects are pieces of storage from the storage pool,
such as a collection of data blocks. Each transaction through the DMU 218 comprises a series of
operations that are committed to the storage pool as a group. This is the mechanism whereby on-
disk consistency is maintained within the file system. Stated another way, the DMU 218 takes
instructions from the interface layer and translates those into transaction batches. Rather than
requesting data blocks and sending single read/write requests, the DMU 218 can combine these

into batches of object-based transactions that can be optimized before any disk activity occurs.

13

10

15

20

25

WO 2018/128850 PCT/US2017/067962

Once this is done, the batches of transactions are handed off to the storage pool layer to schedule
and aggregate the raw I/O transactions required to retrieve/write the requested data blocks. As
will be described below, these transactions are written on a copy-on-write (COW) basis, which

eliminates the need for transaction journaling.

[0057] The storage pool layer, or simply the “storage pool,” may be referred to as a storage
pool allocator (SPA). The SPA provides public interfaces to manipulate storage pool
configuration. These interfaces can create, destroy, import, export, and pool various storage
media and manage the namespace of the storage pool. In some embodiments, the SPA may
include an adaptive replacement cache (ARC) 222 that acts as a central point for memory
management for the SPA. Traditionally, an ARC provides a basic least-recently-used (LRU)
object replacement algorithm for cache management. In ZFS, the ARC 222 comprises a self-
tuning cache that can adjust based on the I/O workload. Additionally, the ARC 222 defines a
data virtual address (DVA) that is used by the DMU 218. In some embodiments, the ARC 222
has the ability to evict memory buffers from the cache as a result of memory pressure to maintain

a high throughput.

[0058] The SPA may also include an /O pipeline 224, or “I/O manager,” that translates the
DVAs from the ARC 222 into logical locations in each of the virtual devices (VDEVs) 226
described below. The I/O pipeline 224 drives the dynamic striping, compression, checksum
capabilities, and data redundancy across the active VDEVs. Although not shown explicitly in
FIG. 2, the I/O pipeline 224 may include other modules that may be used by the SPA to read
data from and/or write data to the storage pool. For example, the I/O pipeline 224 may include,
without limitation, a compression module, an encryption module, a checksum module, and a
metaslab allocator. The checksum may be used, for example, to ensure data has not been
corrupted. In some embodiments, the SPA may use the metaslab allocator to manage the

allocation of storage space in the storage pool.

[0059] Compression is the process of reducing the data size of a data block (referred to
interchangeably with leaf node or data node), typically by exploiting redundancies in the data
block itself. Many different compression types are used by ZFS. When compression is enabled,

less storage can be allocated for each data block. The following compression algorithms are

14

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

available. LZ4 - an algorithm added after feature flags were created. It is significantly superior to
LZJB. LZJB is the original default compression algorithm) for ZFS. It was created to satisfy the
desire for a compression algorithm suitable for use in filesystems. Specifically, that it provides
fair compression, has a high compression speed, has a high decompression speed and detects
incompressible data detection quickly. GZIP (1 through 9 implemented in the classic Lempel-Ziv
implementation. It provides high compression, but it often makes I0 CPU-bound. ZLE (Zero
Length Encoding) - a very simple algorithm that only compresses zeroes. In each of these cases
there is a trade-off of compression ratio to the amount of latency involved in compressing and
decompressing the data block. Typically — the more compressed the data — the longer it takes to

compress and decompress it.

[0060] Encryption is the process of adding end-to-end security to data blocks by encoding
them cryptographically with a key. Only users with a key can decrypt the data block. As used in
the ZFS system, a ZFS pool can support a mix of encrypted and unencrypted ZFS data sets (file
systems and ZVOLs). Data encryption is completely transparent to applications and provides a
very flexible system for securing data at rest, and it doesn't require any application changes or
qualification. Furhtermore ZFS encryption randomly generates a local encryption key from a
passphrase or an AES key and all keys are stored locally with the client — not in the cloud object
store 404 as traditional file systems do. Encryption is transparent to the application and storage to
the cloud object store 404 when turned on. ZFS makes it easy to encrypt data and manage data
encryption. You can have both encrypted and unencrypted file systems in the same storage pool.
You can also use different encryption keys for different systems, and you can manage encryption
either locally or remotely — although the randomly generated encryption key always remains
local. ZFS encryption is inheritable to descendent file systems. Data is encrypted using AES
(Advanced Encryption Standard) with key lengths of 128, 192, and 256 in the CCM and GCM

operation modes.

Deduplication is the process of recognizing that a data block to be stored in the file system is
already stored on the file system as an existing data block and pointing to that existing data block
rather than storing the data block again. ZFS provides block-level deduplication because this is
the finest granularity that makes sense for a general-purpose storage system. Block-level dedup

also maps naturally to ZFS's 256-bit block checksums, which provide unique block signatures

15

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

for all blocks in a storage pool as long as the checksum function is cryptographically strong (e.g.
SHA256). Deduplication is synchronous and is perfomed as data blocks are sent to the cloud
object store 404. If data blocks are not duplicated, enabling deduplication will add overhead
without providing any benefit. If there are duplicate data blocks, enabling deduplication will both
save space and increase performance. The space savings are obvious; the performance
improvement is due to the elimination of storage writes when storing duplicate data, plus the
reduced memory footprint due to many applications sharing the same pages of memory. Most
storage environments contain a mix of data that is mostly unique and data that is mostly

replicated. ZFS deduplication is per-dataset and can be enabled when it is likely to help.

[0061] In ZFS, the storage pools may be made up of a collection of VDEVs. In certain
embodiments, at least a portion of the storage pools may be represented as a self-described
Merkle tree, a logical tree where both data and metadata are stored by VDEVs of the logical tree.
There are two types of virtual devices: physical virtual devices called leaf VDEVs, and logical
virtual devices called interior VDEVs. A physical VDEV may include a writeable media block
device, such as a hard disk or Flash drive. A logical VDEYV is a conceptual grouping of physical
VDEVs. VDEVs can be arranged in a tree with physical VDEVs existing as leaves of the tree.
The storage pool may have a special logical VDEV called a “root VDEV” which roots the tree.
All direct children of the root VDEV (physical or logical) are called “top-level” VDEVs. In
general, VDEVs implement data replication, mirroring, and architectures such as RAID-Z and
RAID-Z2. Each leaf VDEV represents one or more physical storage devices 228 that actually
store the data provided by the file system.

[0062] In some embodiments, the file system 200 may include an object-based file system
where both data and metadata are stored as objects. More specifically, the file system 200 may
include functionality to store both data and corresponding metadata in the storage pool. A
request to perform a particular operation (i.e., a transaction) is forwarded from the operating
system, via the system call interface 208, to the DMU 218, which translates the request to
perform an operation on an object directly to a request to perform a read or write operation (i.e.,
an I/O request) at a physical location within the storage pool. The SPA receives the request from
the DMU 218 and writes the blocks into the storage pool using a COW procedure. COW

transactions may be performed for a data write request to a file. Instead of overwriting existing

16

10

15

20

25

WO 2018/128850 PCT/US2017/067962

blocks on a write operation, write requests cause new segments to be allocated for the modified
data. Thus, retrieved data blocks and corresponding metadata are never overwritten until a
modified version of the data block and metadata are committed. Thus, the DMU 218 writes all
the modified data blocks to unused segments within the storage pool and subsequently writes
corresponding block pointers to unused segments within the storage pool. To complete a COW

transaction, the SPA issues an I/O request to reference the modified data block.

[0063] FIGS. 3A-3D illustrate a COW process for a file system, such as the file system 200, in
accordance with certain embodiments of the present disclosure. For example, the ZFS system
described above uses a COW transactional model where all block pointers within the file system
may contain 256-bit checksum of a target block which is verified when the block is read. As
described above, blocks containing active data are not overwritten in place. Instead the new
block is allocated, modified data is written to it, and then any metadata blocks referencing it are

simply read, reallocated, and rewritten.

[0064] FIG. 3A illustrates a simplified diagram of a file system storage of data and metadata
corresponding to one or more files as a logical tree 300, according to some embodiments. The
logical tree 300, as well as other logical trees described herein, may be a self-described Merkle
tree where the data and metadata are stored as blocks of the logical tree 300. A root block 302
may represent the root of the logical tree 300, or “uberblock.” The logical tree 300 can be
traversed through files and directories by navigating through each child node 304, 306 of the root
302. Each non-leaf node represents a directory or file, such as nodes 308, 310, 312, and 314. In
some embodiments, each non-leaf node may be assigned a hash of values of its child nodes.

Each leaf node 316, 318, 320, 322 represents a data block of a file.

[0065] FIG. 3B illustrates an example of the logical tree 300-1 after an initial stage of a write
operation. In this example, the data blocks represented by nodes 324 and 326 have been written
by the file system 200. Instead of overwriting the data in nodes 316 and 318, new data blocks
are allocated for nodes 324 and 326. Thus, after this operation, the old data in nodes 316 and

318 persist in the memory along with the new data in nodes 324 and 326.

[0066] FIG. 3C illustrates an example of the logical tree 300-2 as the write operation

continues. In order to reference the newly written data blocks in nodes 324 and 326, the file

17

10

15

20

25

WO 2018/128850 PCT/US2017/067962

system 200 determines nodes 308 and 310 that reference the old nodes 316 and 318. New nodes
328 and 330 are allocated to reference the new data blocks in nodes 324 326. The same process
is repeated recursively upwards through the file system hierarchy until each node referencing a

changed node is reallocated to point to the new nodes.

[0067] When the pointer blocks are allocated in new nodes in the hierarchy, the address pointer
in each node is updated to point to the new location of the allocated child in memory.
Additionally, each data block includes a checksum that is calculated by the data block referenced
by the address pointer. For example, the checksum in node 328 is calculated using the data
block in node 324. This arrangement means that the checksum is stored separately from the data
block from which it is calculated. This prevents so-called “ghost writes” where new data is
never written, but a checksum stored with the data block would indicate that the block was
correct. The integrity of the logical tree 300 can be quickly checked by traversing the logical

tree 300 and calculating checksums at each level based on child nodes.

[0068] In order to finalize the write operation, the root 302 can be reallocated and updated.
FIG. 3D illustrates an example of the logical tree 300-3 at the conclusion of the write operation.
When the root 302 is ready to be updated, a new uberblock root 336 can be allocated and
initialized to point to the newly allocated child nodes 332 and 334. The root 336 can then be
made the root of the logical tree 300-3 in an atomic operation to finalize the state of the logical

tree 300-3.

[0069] A snapshot is a read-only copy of a file system or volume. A snapshot is a view of a
filesystem as it was at a particular point in time. ZFS's snapshots are useful in the same way that
some other file systems' snapshots are: by doing a backup of a snapshot, you have a consistent,
non-changing target for the backup program to work with. Snapshots can also be used to recover
from recent mistakes, by copying the corrupted files from the snapshot. Snapshots can be
created almost instantly, and they initially consume no additional disk space within the pool.
However, as data within the active dataset changes, the snapshot consumes disk space by
continuing to reference the old data, thus preventing the disk space from being freed. The blocks
containing the old data will only be freed if the snapshot is deleted. Taking a snapshot is a

constant-time operation. The presence of snapshots does not slow down any operations.

18

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

Deleting snapshots takes time proportional to the number of blocks that the delete will free, and
is very efficient. ZFS snapshots include the following features: they persist across system
reboots; the theoretical maximum number of snapshots is 2°*; they use no separate backing store;
they consume disk space directly from the same storage pool as the file system or volume from
which they were created; recursive snapshots are created quickly as one atomic operation; and
they are created together (all at once) or not created at all. The benefit of atomic snapshot
operations is that the snapshot data is always taken at one consistent time, even across
descendent file systems. Snapshots cannot be accessed directly, but they can be cloned, backed
up, rolled back to, and so on. Snapshots can be used to “roll back” in time to the point when the
snapshot was taken. FIG. 3E depicts an example of the snapshot data service in ZFS where the
snapshot was taken before the COW process described in FIGS. 3A-3D made root block 336 the
new live root block. A live root block is the root block that the next data progression will be
made from when performing a COW. The snapshot root and the “live” root are shown. The live
root is the root that will be operated on in the next storage operation. All blocks pointed to by
the snapshot root (302 — 322) are made “read only” meaning that they are put on list of blocks

that cannot be freed for further use by the storage system until the snapshot is deleted.

[0070] It should be noted that some terminology is used interchangeably throughout the
application. For instance leaf nodes, leaf blocks, and data blocks may be the same in certain
instances, particularly when referencing local tree instances. Further, non-leaf nodes, metadata,
and metadata blocks may be used interchangeably in certain instances, particularly when
referencing local tree instances. Root nodes and root blocks similarly may be used
interchangeably in certain instances, particularly when referencing local tree instances. Further,
it should be noted that references to leaf nodes, non-leaf nodes, and root nodes may be similarly
applied to cloud storage objects corresponding to cloud versions of logical trees generated based

at least in part on local tree instances.

[0071] When blocks are created they are given a “birth” time that represents the iteration or
progression of the COW that the block was created. FIG. 3F demonstrates this idea. In FIG.
3F, as shown in 365 — the birth time 19 of FIG. 3A. 366 shows the birth time, 25 of FIG. 3D.
367 shows a birth time 37 as shown by the new tree created by blocks 372, 378, 379, 384, 386,

and 392, and represents a data transaction on the tree 12 iterations after birth time 25. Thus a

19

10

15

20

25

WO 2018/128850 PCT/US2017/067962

rollback or back up to the snapshot would leave only the blocks as shown in FIG. 3A. Thus —
using a birth time hierarchy — the ZFS system can generate and roll back to any point in a birth
time for the entire tree structure from a snapshot of the root of the tree. Essentially, this allows
all new blocks with birth times after the snapshot to be made available in the storage pool as long

as they are not linked to by any other snapshot or metadata block.

[0072] A clone is a writable volume or file system whose initial contents are the same as the
dataset from which it was created. In the ZFS system, clones are always created from snapshots.
As with snapshots, creating a clone is nearly instantaneous and initially consumes no additional
disk space. In addition, you can snapshot a clone.Clones can only be created from a snapshot.
When a snapshot is cloned, an implicit dependency is created between the clone and snapshot.
Even though the clone is created somewhere else in the dataset hierarchy, the original snapshot
cannot be destroyed as long as the clone exists. Clones do not inherit the properties of the
dataset from which it was created. A clone initially shares all its disk space with the original
snapshot. As changes are made to the clone, it uses more disk space. Clones are useful to
branch off and do development or troubleshooting — and can be promoted to replace the live file

system. Clones can also be used to duplicate a file system on multiple machines.

[0073] The embodiments described herein may be implemented in the system described above
in FIGS. 1-3. For example, the system may comprise one or more processors of the various
servers, storage appliances, and/or switching circuits of FIG. 1. Instructions may be stored in
one or more memory devices of the system that cause the one or more processors to perform
various operations that affect the functioning of the file system. Steps of various methods may
be performed by the processors, memory devices, interfaces, and/or circuitry of the system in

FIGS. 1-2.

[0074] Turning now to FIG. 4, FIG. 4 is a high-level diagram illustrating an example of a
hybrid cloud storage system 400, in accordance with certain embodiments of the present
disclosure. The hybrid cloud storage system 400 may transform a network file system, such as a
ZFS file system, into a cloud-capable file system where functionality of the file system,
including file system data services, is layered on a cloud object store that is remote from the file

system. As in the depicted diagram, the hybrid cloud storage system 400 may include the

20

10

15

20

25

WO 2018/128850 PCT/US2017/067962

network file system 200 (also referenced herein as the “local file system 200”). The local file
system 200 may be communicatively coupled to a cloud object storage 404. In some
embodiments, the cloud object storage 404 may correspond to the cluster/cloud 204 indicated in
FIG. 2. The local file system 200 may be communicatively coupled to the cloud object storage
404 by way of a cloud interface appliance 402. The cloud interface appliance 402 may be used

by the local file system 200 as an access point for the cloud object store 404.

[0075] The hybrid cloud storage system 400 provides a solution to overcome traditional
limitations of cloud object storage. Traditional cloud object protocols are limited to restricted
data/object access semantics. Cloud object stores traditionally have limited interfaces and
primitives, and are not POSIX compliant. For example, once an object is written, it cannot be
thereafter modified; it may only be deleted and replaced with a newly created object. As another
example, traditional cloud object storage has namespace limitations such that the namespace is
simplified and limited to only top-level containers. However, not only may the hybrid cloud
storage system 400 migrate data to and from the cloud object store 404, but also the hybrid cloud
storage system 400 may layer file system functionality of the local file system 200 on cloud

object interfaces to the cloud object storage 404 to provide the cloud-based storage.

[0076] The local file system 200 may be configured for POSIX interfaces and semantics. For
example, the local file system 200 may provide a user with access to data as files, allowing for
modification of content of a file without rewriting the file. The local file system 200 may also
provide for the organization of data in name hierarchies as is typical for ZFS file systems. All
the functionalities of a ZFS file system may be available to a user of the local file system 200.
The cloud interface appliance 402 may allow for layering of file-system semantics on top of a
cloud object protocol—for example, to provide the abilities to construct a namespace, create
files, create directories, etc.—and extend such abilities with respect to data migrated to and from
the cloud object storage 404. The cloud interface appliance 402 may facilitate a plug-n-play
object storage solution to improve the local file system 200 while supporting ZFS file system

data services.

[0077] The cloud interface appliance 402 may be configured to provide an object API

(application programming interface). In some embodiments, the cloud interface appliance 402

21

10

15

20

25

WO 2018/128850 PCT/US2017/067962

may be configured to use a number of API translation profiles. According to certain
embodiments, the API translation profiles may integrate modules and functions (e.g., the data
services and modules), POSIX interfaces and semantics, and other components which may not
be natively designed to interact with cloud storage. The API translation profiles, in some
embodiments, may translate protocols, formats, and routines of the file system 200 (e.g., by way
of API calls) to allow interaction with the cloud data store 404. Information for such integration
may be stored in an API translation data store, which could be co-located with the cloud
interface appliance 402 or otherwise communicatively coupled to the cloud interface appliance
402. The cloud interface appliance 402 may utilize the information to cohesively integrate
POSIX interfaces and semantics to interface with the cloud data store 404 while preserving the

semantics.

[0078] The hybrid cloud storage system 400 may allow the local file system 200 to use the
cloud object storage 404 as a “drive.” In various instances, the files 410 may be stored as data
objects with metadata objects, and/or as data blocks with associated metadata. The cloud
interface appliance 402 may receive and transfer files 410 from and to the local file system 200.
In various embodiments, the local file system 200 may receive and/or transmit the files 410 via
the NFS (Network File System) protocol, SMB (Server Message Block Protocol), and/or the like.
In some embodiments, the cloud interface appliance 402 may translate the files 410 into objects
412. The translation of the files 410 may include translating data blocks and associated metadata
and/or data objects associated with metadata objects, any of which may correspond to the files
410. In some embodiments, the translation may include the cloud interface appliance 402
performing API translation with a number of the API translation profiles. The translation,
according to some embodiments, may include the cloud interface appliance 402 extracting data
and/or metadata from the files 410, objects, and/or blocks. The cloud interface appliance 402
may convert the files 410, objects, and/or blocks to cloud storage objects at least in part by using
the extracted data. In some embodiments, the cloud interface appliance 402 may create
corresponding cloud storage objects with extracted data embedded in put requests directed to the
cloud object store 404. Likewise, with any of the translations effected by the cloud interface

appliance 402 to interface out to the cloud data store 404, the cloud interface appliance 402 may,

22

10

15

20

25

WO 2018/128850 PCT/US2017/067962

in some embodiments, reverse the translation processes to interface with local components of the

local file system 200.

[0079] The cloud interface appliance 402 may transfer and receive objects 412 to and from the
cloud object storage 404. In some embodiments, the cloud interface appliance 402 may
transceive the objects 412 via HTTPS and/or the like. In some embodiments, the cloud interface
appliance 402 may be co-located with the local file system 200. In other embodiments, the cloud
interface appliance 402 may be located remotely from local file system 200, such as with at least
some equipment facilitating the cloud object store 404 or at some other communicatively

coupled site.

[0080] As disclosed further herein, files in the local file system 200 may be stored as “disk
blocks,” virtual storage blocks where data objects and metadata corresponding to a file are stored
as a logical tree 300 (e.g., a self-described Merkle tree where data and metadata are stored as
blocks). The cloud interface appliance 402 may create a mapping 406 of each logical block in
the tree 300 of data directly to cloud objects 414 in the cloud object store 404. Some
embodiments may employ a one-to-one block-to-object mapping. Other embodiments,
additionally or alternatively, may employ any other suitable ratio of blocks to cloud objects, for
example, to map multiple blocks to one cloud object. In some instances of such embodiments,
an entire logical tree of blocks may be mapped to a single cloud object. In other instances, only

part of a logical tree of blocks may be mapped to a single cloud object.

[0081] In some embodiments, address pointers are updated when the blocks are converted into
cloud objects. When blocks are converted into cloud objects with a one-to-one block-to-object
conversion scheme, the address pointers may be updated so that non-leaf cloud objects in the
hierarchy point to child cloud objects in the cloud object store 404. By way of example, an
address pointer could correspond to an object name of child cloud object and path specification,
which may include parameters such as the object name, a bucket specification, etc. Accordingly,
some embodiments may translate the blocks of the logical tree 300 to cloud objects of the logical
tree 300A. With some embodiments, such translation may enable the cloud interface appliance
402 to traverse the logical tree 300A of cloud objects utilizing the address pointers of the cloud

objects.

23

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

[0082] In some embodiments, when blocks are converted into cloud objects with a multiple-to-
one block-to-object conversion scheme such that part of the logical tree 300 is converted to one
cloud object, the address pointers the cloud objects comprising the logical 300A may be
similarly updated, but to a less granular extent, so that non-leaf cloud objects in the hierarchy
point to child cloud objects in the cloud object store 404. Such translation may enable the cloud
interface appliance 402 to traverse the logical tree 300A of cloud objects utilizing the address
pointers of the cloud objects, in a less granular but faster manner than traversal facilitated by the
one-to-one block-to-object conversion scheme. Additionally, in some embodiments, checksums
may be updated with conversion process. Checksums for individual cloud objects could be
updated and stored separately in parent cloud objects. In conversions employing the multiple-to-
one block-to-object conversion scheme, a single checksum could be calculated for a cloud object

that corresponds to a set of blocks.

[0083] The realization of the mapping 406 accordingly allows for communications over one or
more networks to the cloud object store 404, and the interface with the cloud object store 404
may be object-based as opposed to block-based. As disclosed further herein, with the cloud
interface appliance 402 between the local file system 200 and the cloud object store 404, the
hybrid cloud storage system 400 may possess different characteristics and failure modes than
traditional ZFS file systems. The cloud interface appliance 402 may translate file system
interfaces of the local file system 202 on the client side and may be capable of coordination via
object protocol out to the cloud object store 404 to read and write data. Through the cloud
interface appliance 402, the cloud objects 414 may remain accessible by the local file system 200

over NFS, SMB, and/or the like.

[0084] With the mapping 406 of cloud objects 414 as logical blocks, collections of the cloud
objects 414 may be grouped to form a drive that hosts ZFS storage pools as self-contained
collections. The drive content may be elastic such that cloud objects may only be created for
logical blocks that have been allocated. In some embodiments, the cloud interface appliance 402
may have the capability to assign variable object sizes (e.g., for different data types) to allow for
greater storage flexibility. The data need not be limited to a specific byte size. Storage size may
be expanded as needed by modifying the metadata. In some embodiments, cloud-based pools

may be imported on any server. Once imported, cloud-based pools may appear as local storage

24

10

15

20

25

WO 2018/128850 PCT/US2017/067962

with all ZFS services supported for the cloud-based pools. A cloud-based pool may be indicated
as a new type of storage pool. Yet, from a user perspective, the data from the cloud-based pools

may appear indistinguishable from native pools.

[0085] FIG. S illustrates an instance of an example network file system 200-1 of the hybrid
cloud storage system 400, in accordance with certain embodiments of the present disclosure.
The file system 200-1 may correspond to the file system 200, but with cloud device management
integrated directly into a ZFS control stack. Beyond that which is disclosed with respect to the
file system 200, the file system 200-1 may include a cloud interface device 502 that facilitates
leveraging of the cloud object store 404 as a storage medium for the file system 200-1. The
cloud interface device 502 may facilitate a cloud drive at least in part by mapping a cloud storage

into a device abstraction.

[0086] In some embodiments, the cloud interface device 502 may correspond to one or more
VDEVs of another VDEYV type of a device driver interface inside a ZFS file system architecture.
The ZFS may communicate directly with the cloud interface device 502. The cloud interface
device 502 may be at a virtual device layer directly above a driver layer of the file system 200-1.
Some embodiments of the cloud interface device 502 may correspond to an abstraction of the
device driver interface inside the ZFS architecture. Other components of the file system 200-1
may communicate with the cloud interface device 502 as though it was another VDEV of
another device type, such as the VDEVs 226. To enable passage of a greater amount of
information through the cloud interface device 502 relative to through other VDEVs 226,
interfaces associated with the cloud interface device 502 may be wider to pass more information
through the I/O pipeline 224 and the cloud interface device 502, out to the cloud object data store
404.

[0087] In some embodiments, the cloud interface device 502 may translate file system
interfaces on the client end. In some embodiments, in order to provide complete POSIX file
system semantics, the cloud interface device 502 may convert file system interface requests into
object interface requests directed toward the cloud object store 404. In some embodiments, the
cloud interface device 502 may be capable of communicating via object protocol out to the cloud

object store 404 to read and write data.

25

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0088] FIG. 6 is a diagram illustrating additional aspects of a cloud interface appliance 402-1
of a hybrid cloud storage system 400-1, in accordance with certain embodiments of the present
disclosure. As indicated in the example depicted, some embodiments of the cloud interface
appliance 402 may include a virtual storage pool 602 and a cloud interface daemon 604. The
virtual storage pool 602 may be at the kernel of the file system 200-1, and the cloud interface
daemon 604 may be on the user space of the file system 200-1. In various embodiments, the
cloud interface daemon 604 may correspond to a cloud interface component of the application

202 and/or the cluster/cloud 204 indicated in FIG. 5.

[0089] In some embodiments, the virtual storage pool 602 may include at least one cloud
interface device 502, intent log 214-2, and cache 222-1. The intent log 214-2 and the cache 222-
1 described above with respect to FIGS. 1-2 and below with respect to FIG. 7. The cloud
interface device 502 may interact with the cloud interface daemon 604 to coordinate operations
with respect to the cloud object data store 404 based at least in part on the mapping 406. The
cloud interface daemon 604 may include a cloud client interface 608 to interface with the cloud
object data store 404. In some implementations, the cloud client interface 608 may include an
endpoint providing Swift/S3 compatibility with the cloud object data store 404. Operations of
the cloud client interface 608 may be based at least in part on getting and putting whole data

objects 412 in order to facilitate read and write access to the cloud object data store 404.

[0090] Referring back to FIGS. 4 and 5, in operation according to some embodiments,
requests to perform one or more transactions with respect to one or more files may be received
from the application 202 at an application layer of the file system 200-1, and through the system
call interface 208 of the interface layer of the file system 200-1. The requests may be POSIX-
compliant and may be converted by one or more components of the file system 200-1 into one or
more object interface requests to perform one or more operations with respect to a cloud-based
instantiation 300A of the logical tree 300 stored in the cloud object store 404. For example, in
some embodiments, the cloud interface appliance 402 may convert the POSIX-compliant
requests, or intermediary requested caused by the POSIX-compliant requests, into corresponding
object interface requests. In some embodiments, the DMU 218 may translate the POSIX-

compliant requests into I/O requests to perform I/O operations, and the cloud interface appliance

26

10

15

20

25

WO 2018/128850 PCT/US2017/067962

402 may translate the I/O requests into corresponding object interface requests, coordinating the

object interface requests using the mapping 406.

[0091] In some instances, the transactions could correspond to operations to cause storage of
the files locally. In some instances, the file system 200-1 may store data objects and
corresponding metadata in a system storage pool 416 provided by the one or more of the VDEVs
226 and the one or more physical storage devices 228. The data objects may correspond to the
one or more files. As disclosed above, the data objects and metadata corresponding to the one or
more files may be stored as a logical tree 300. Hence, the storage of the logical tree 300 may be

stored locally in the system storage pool 416.

[0092] In further operation according to some embodiments, the file system 200-1 may cause
storage of the data objects and the corresponding metadata of the logical tree 300 in the cloud
object store 404. While the logical tree 300 may first be stored in the local storage pool before
being migrated to cloud storage in some embodiments, in other embodiments the logical tree 300
may not be stored in the local storage pool before being stored in the cloud object store 404. For
example, some embodiments may create at least part of the logical tree 300 in cache and then
migrate it to the cloud object store 404. Thus, it should be appreciated that various embodiments

are possible.

[0093] In order to store the data objects and the corresponding metadata of the logical tree 300
in the cloud object store 404, the cloud interface device 502 may create a mapping 406 of each
logical block in the logical tree 300 to a respective cloud object 414 in the cloud object store 404.
In some embodiments, the DMU 218 may read data from the system storage pool 416 (e.g., from
a RAIDZ or a RAIDZ2 of the local pool) to provide the data to the cloud interface device 502 as
a basis for creating the mapping 406. In some embodiments, the cloud interface device 502 may
communicate directly or indirectly with another VDEV 226 to read data as a basis for the
mapping 406. In some embodiments, the mapping 406 may map objects directly to blocks
represented in a physical drive. The mapping 406 may be more refined than mapping file parts
to objects; it may map at a lower level. Accordingly, the mapping 406 may be a per-object
mapping 406. The mapping 406 may map virtual storage blocks onto objects in the cloud object

store 404 so that the logical tree 300 is represented in the cloud object store 404, as is illustrated

27

10

15

20

25

WO 2018/128850 PCT/US2017/067962

by the logical tree 300A. When the local file system 200-1 interfaces with the data objects 416
in the cloud object store 404, the logical tree 300A conforms to a new device type with which the

local file system 200-1 is able to communicate.

[0094] The mapping 406 may be updated with every I/O operation or only with write
operations to the cloud object store 404. In some embodiments, the mapping 406 may include an
object directory that indexes all the cloud objects 414. Cloud object states may be kept in an
index, a table, an index-organized table, and/or the like which may be indexed on a per-object
basis. In some embodiments, the mapping 406 may include an object directory that indexes only
some of the cloud objects 414. For example, such embodiments may index only cloud objects
414 that correspond to uberblocks. In some embodiments, cloud object states for each object
relative to each leaf path may be indexed. In some embodiments, the object directory may
reference the cloud objects 414 by address pointers that could correspond to object names and
path specifications. In some embodiments, the object directory may reference the cloud objects

414 by URLs,

[0095] The cloud object states indexed in the mapping 406 may be used to route object
requests. Utilizing the index, the cloud interface device 502 may request cloud objects based at
least in part on the uberblocks. According to a first method, such requests may entail requesting
a set of cloud objects associated with a particular uberblock so that the entire logical tree 300A is
represented by the set of cloud objects transferred in response to the request. According to a
second method, such requests may entail iterative requests for subsets of cloud objects associated
with a particular uberblock in order to iteratively traverse the entire logical tree 300A until the
desired one or more cloud objects are read from the cloud object store 404. With certain
embodiments, the cloud interface device 502 may selectively used one of the two methods based
at least in part on the size of the cloud objects representing various logical trees 300A. For
example, the cloud interface device 502 could utilize one method when the size of the cloud
objects is less than an aggregate size threshold, and tranisition to the other method when the size

of the cloud objects meets or exceeds the aggregate size threshold.

[0096] Some embodiments may employ another method where the object directory may index

the cloud objects on a per-object basis and may be used to request cloud objects directly without

28

10

15

20

25

WO 2018/128850 PCT/US2017/067962

tree traversal at the cloud level. Some embodiments may retain a local snapshot of metadata of
the logical tree 300A. Such embodiments may utilize the local snapshot to request cloud objects
directly or indirectly. Additionally, some embodiments may retain checksums for the logical
tree 300A in the object directory or a local snapshots, which checksums may be used to validate

cloud objects retrieved from the cloud data store 404.

[0097] Thus, the file system 200-1 may maintain a tree of data and map that tree onto the cloud
object store 404. The namespace of the tree 300A may correspond to metadata stored within
nodes of the tree 300A. The file system 200-1 may continue to use a hierarchical tree
representation, but map the hierarchical tree representation into a cloud object store as a way to

store the data.

[0098] Referring again to FIG. 6, to effect I/O operations with respect to the cloud object store
404, the cloud interface device 502 may send requests to the cloud interface daemon 604. For
example, in some implementations, the cloud interface device 502 may send requests through the
transactional object layer and the interface layer of the file system 200-1 to the cloud interface
daemon 604. The requests sent by the cloud interface device 502 may be based at least in part on
POSIX-compliant requests received via the application 202 and/or based at least in part on I/O
requests created by the DMU 218 (e.g., responsive to POSIX-compliant requests), which the

cloud interface device 502 may convert into the requests for the cloud interface daemon 604.

[0099] In some embodiments, the requests sent by the cloud interface device 502 to the cloud
interface daemon 604 may be translated into get requests and put requests for the cloud client
interface 608. The requests sent by the cloud interface device 502 may be get requests and put
requests in some embodiments; in other embodiments, the cloud interface daemon 604 may
translate the requests sent by the cloud interface device 502 into get requests and put requests. In
any case, responsive to the requests sent by the cloud interface device 502, the cloud interface
daemon 604 may communicate, via the object protocol over the one or more networks, with the
cloud object store 404 to perform corresponding I/O operations with respect to the data objects

414,

[0100] For example, the communications to the cloud object store 404 may include specifying,

based at least in part on the mapping 406, storage of the data objects and the corresponding

29

10

15

20

25

WO 2018/128850 PCT/US2017/067962

metadata of the logical tree 300A in the cloud object store 404. In some embodiments, the
communications may specify different object sizes, for example, for different data types. Thus,
the cloud interface appliance 402 may specify a certain object size to store certain data objects
that are identified as being of one data type, and may specify a different object size to store other

data objects that are identified as being of a different data type.

[0101] FIG. 7A is a block diagram that illustrates an example method 700 directed to certain
features of a COW process for the hybrid cloud storage system 400, in accordance with certain
embodiments of the present disclosure. According to certain embodiments, the method 700 may
begin as indicated by block 702. However, teachings of the present disclosure may be
implemented in a variety of configurations. As such, the order of certain steps comprising the
method 700 and/or other methods disclosed herein may be shuffled or combined in any suitable
manner and may depend on the implementation chosen. Moreover, while the following steps
may be separated for the sake of description, it should be understood that certain steps may be

performed simultaneously or substantially simultaneously.

[0102] As indicated by block 702, POSIX-compliant request(s) to perform particular
operation(s) (i.e., a transaction(s)) may be received from the application 202. Such an operation
may correspond to writing and/or modifying data. As indicated by block 704, the POSIX-
compliant request(s) may be forwarded from the operating system, via the system call interface
208, to the DMU 218. In various embodiments, transactions effected through the DMU 218 may
include a series of operations that are committed to one or both of the system storage pool 416

and the cloud object store 404 as a group. These transactions may be written on a COW basis.

[0103] As indicated by block 706, the DMU 218 may translate requests to perform operations
on data objects directly to requests to perform write operations (i.e., /O requests) directed to a
physical location within the system storage pool 416 and/or the cloud object store 404. In some
modes, the operations may be performed on locally stored data objects first, then changes to the
data objects may be propagated to corresponding cloud-stored data objects, by the DMU 218
directing the specific changes or by the DMU 218 directed the cloud interface appliance 402 to
read the changes directly or indirectly with another VDEV 226. In other modes, the operations

may be performed on locally stored data objects and corresponding cloud-stored data objects

30

10

15

20

25

WO 2018/128850 PCT/US2017/067962

simultaneously or substantially simultaneously. In still other modes, the operations may be
performed on cloud-stored data objects only. For example, some implementations may not have
local tree 300, and may only have a cloud-based version of a logical tree 300A. Various

embodiments may be configured to allow user selection of one or more modes.

[0104] As indicated by block 708, the SPA may receive the I/O requests from the DMU 218.
And, responsive to the requests, the SPA may initiate writing of data objects into the system
storage pool 416 and/or the cloud object store 404 using a COW procedure. As indicated by
block 710, in modes where writing of data objects is performed on locally stored data objects
before, or concurrently with, writing of data objects to the cloud object store 404, the COW
procedure disclosed above (e.g., in view of FIGS. 3A-3D) may proceed with respect to the
system storage pool 416.

[0105] As indicated by block 712, the cloud interface appliance 402 may receive the I/O
requests and identify incremental modifications to the logical tree 300A. The incremental
modifications may correspond to new tree portions resulting from COW processes to effect the
write requests. The cloud interface appliance 402 may translate the I/O requests into
corresponding object interface requests. Having the modified data either from I/O requests or
from reading changes to locally stored data objects, the cloud interface device 502 may
coordinate the object interface requests using the mapping 406 of cloud storage objects 414 in

the cloud object store 404.

[0106] For example, in some embodiments, the incremental modifications may be determined
based at least in part on changes to the data objects stored locally to reflect changes to the logical
tree 300. In some instances, the cloud interface appliance 402 may read the logical tree 300 or at
least the changes thereto in order to determine the incremental modifications. Such data may be
passed to the cloud interface appliance 402 by another component of the file system such as the
DMU 218 or a mirror VDEV. With some embodiments, the incremental modifications may be
transferred to the cloud interface appliance 402. However, in some embodiments, the cloud
interface appliance 402 may determine the incremental modifications based at least in part on
analyzing write requests in view of a copy or a snapshot of the logical tree 300 and/or a snapshot

of the logical tree 300A. With embodiments where the cloud interface appliance 402 uses a

31

10

15

20

25

WO 2018/128850 PCT/US2017/067962

snapshot of the logical tree 300A, the snapshot may, in some embodiments, be retained in the

mapping 406 or otherwise be stored in memory and/or the physical layer.

[0107] Referring again more particularly to FIG. 7A, as indicated by block 714, the
determination of the incremental modifications may include creating new leaf nodes (e.g., leaf
nodes 324, 326). After an initial stage of a write operation, new data blocks (i.e., leaf nodes)
have been allocated in memory and data per the write operation has been written by the cloud
interface appliance 402 to the new data blocks, while the previous data and data blocks likewise

persist in memory.

[0108] As indicated by block 729, after the leaf nodes (data blocks) are created in block 714, a
determination is made as to whether any of the ZFS data services have been turned on or
requested. These include, but are not limited to, compression, encryption, deduplication,
snapshotting, and cloning. If any of these data services are not required — then as indicated by
block 716, new non-leaf nodes may be created (e.g., non-leaf nodes 326, 330). As the write
operation continues, the cloud interface appliance 402 may determine non-leaf nodes that
reference previous versions of nodes. In order to reference the newly written data, new non-leaf
nodes are allocated to reference the new data blocks in the leaf nodes. The same process may be
repeated recursively upwards through the hierarchy of the logical tree 300A, reflected by the
snapshot 301, until each non-leaf node referencing a changed node is reallocated to point to new
nodes. When the pointer blocks are allocated in new nodes in the hierarchy, the address pointer
in each node may be updated to point to the new location of the allocated child in memory. As
indicated by block 718, in order to finalize the write operation, the root node can be reallocated
and updated (e.g., root node 336). When the root node is ready to be updated, a new root node
(uberblock) can be allocated and initialized to point to the newly allocated child nodes below the

new root node.

[0109] As part of the writing operation, the metadata of all portions of the tree involved in
transactional write operations is updated with check summing. Each node created includes a
checksum that is calculated using the node referenced by the address pointer. This arrangement
means that the checksum is stored separately from the node from which it is calculated. By

storing the checksum of each node in its parent node pointer and not in the node itself, every

32

10

15

20

25

WO 2018/128850 PCT/US2017/067962

node in the tree contains the checksums for all its children. This is illustrated in further detail
with respect to the examples of FIGS. 3A-3D. By doing this, each tree is automatically self-

validating, and it is always possible to detect inconsistencies with read operations.

[0110] If at block 729 data services are required, the next block 719 goes to block 730 on FIG.
7B. Data services include, but are not limited to, compression, encryption, deduplication (which

must be done in that order), snapshotting and cloning.

[0111] Compression is the process of reducing the data size of a data block (referred to
interchangeably with leaf node or data node), typically by exploiting redundancies in the data
block itself. Many different compression types are used by ZFS. When compression is enabled,
less storage can be allocated for each data block. The following compression algorithms are
available. LZ4 - an algorithm added after feature flags were created. It is significantly superior
to LZJB. LZJB is the original default compression algorithm) for ZFS. It was created to satisfy
the desire for a compression algorithm suitable for use in file systems. Specifically, that it
provides fair compression, has a high compression speed, has a high decompression speed and
detects incompressible data detection quickly. GZIP (1 through 9 implemented in the classic
Lempel-Ziv implementation. It provides high compression, but it often makes I0 CPU-bound.
ZLE (Zero Length Encoding) - a very simple algorithm that only compresses zeroes. In each of
these cases there is a trade-off of compression ratio to the amount of latency involved in
compressing and decompressing the data block. Typically — the more compressed the data — the

longer it takes to compress and decompress it.

[0112] Encryption is the process of adding end-to-end security to data blocks by encoding
them cryptographically with a key. Only users with a key can decrypt the data block. As used in
the ZFS system, a ZFS pool can support a mix of encrypted and unencrypted ZFS data sets (file
systems and ZVOLs). Data encryption is completely transparent to applications and provides a
very flexible system for securing data at rest, and it doesn't require any application changes or
qualification. Furthermore ZFS encryption randomly generates a local encryption key from a
passphrase or an AES key and all keys are stored locally with the client — not in the cloud object
store 404 as traditional file systems do. Encryption is transparent to the application and storage

to the cloud object store 404 when turned on. ZFS makes it easy to encrypt data and manage

33

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

data encryption. You can have both encrypted and unencrypted file systems in the same storage
pool. You can also use different encryption keys for different systems, and you can manage
encryption either locally or remotely — although the randomly generated encryption key always
remains local. ZFS encryption is inheritable to descendent file systems. Data is encrypted using
AES (Advanced Encryption Standard) with key lengths of 128, 192, and 256 in the CCM and
GCM operation modes.

[0113] Deduplication is the process of recognizing that a data block to be stored in the file
system is already stored on the file system as an existing data block and pointing to that existing
data block rather than storing the data block again. ZFS provides block-level deduplication
because this is the finest granularity that makes sense for a general-purpose storage system.
Block-level deduplication also maps naturally to ZFS's 256-bit block checksums, which provide
unique block signatures for all blocks in a storage pool as long as the checksum function is
cryptographically strong (e.g. SHA256). Deduplication is synchronous and is perfomed as data
blocks are sent to the cloud object store 404. If data blocks are not duplicated, enabling
deduplication will add overhead without providing any benefit. If there are duplicate data
blocks, enabling deduplication will both save space and increase performance. The space
savings are obvious; the performance improvement is due to the elimination of storage writes
when storing duplicate data, plus the reduced memory footprint due to many applications sharing
the same pages of memory. Most storage environments contain a mix of data that is mostly
unique and data that is mostly replicated. ZFS deduplication is per-dataset and can be enabled

when it is likely to help.

[0114] A snapshot is a read-only copy of a file system or volume. A snapshot is a view of a
filesystem as it was at a particular point in time in terms of changes to the tree image. ZFS's
snapshots are useful in the same way that some other filesystems's snapshots are: By doing a
backup of a snapshot, you have a consistent, non-changing target for the backup program to
work with. Snapshots can also be used to recover from recent mistakes, by copying the
corrupted files from the snapshot.Snapshots can be created almost instantly, and they initially
consume no additional disk space within the pool. However, as blocks (in this case both data
and metadata) within the active dataset changes, the snapshot consumes disk space by continuing

to reference the old blocks, thus preventing the storage space from being freed. The blocks

34

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

containing the old data will only be freed if the snapshot is deleted. Taking a snapshot is a
constant-time operation. The presence of snapshots doesn't slow down any operations. Deleting
snapshots takes time proportional to the number of blocks that the delete will free and make
available, and is very efficient. ZFS snapshots include the following features: they persist across
system reboots; the theoretical maximum number of snapshots is 2%%; they use no separate
backing store; they consume disk space directly from the same storage pool as the file system or
volume from which they were created; recursive snapshots are created quickly as one atomic
operation; and they are created together (all at once) or not created at all. The benefit of atomic
snapshot operations is that the snapshot data is always taken at one consistent time, even across
descendent file systems. Snapshots cannot be accessed directly, but they can be cloned, backed
up, rolled back to, and so on. Snapshots can be used to “roll back” to the point when the

snapshot was taken

[0115] A clone is a writable volume or file system whose initial contents are the same as the
dataset from which it was created. In the ZFS system clones are always created from snapshots.
As with snapshots, creating a clone is nearly instantaneous and initially consumes no additional
disk space. In addition, you can snapshot a clone.Clones can only be created from a snapshot.
When a snapshot is cloned, an implicit dependency is created between the clone and snapshot.
Even though the clone is created somewhere else in the dataset hierarchy, the original snapshot
cannot be destroyed as long as the clone exists. Clones do not inherit the properties of the
dataset from which it was created. A clone initially shares all its disk space with the original
snapshot. As changes are made to the clone, it uses more disk space. Clones are useful to
branch off and do development or troubleshooting — and can be promoted to replace the live file

system. Clones can also be used to duplicate a file system on multiple machines..

[0116] Referring now back to FIG. 7B, flowchart 700-2 showing a method for determining
and applying data services to data blocks. At decision block 731 if compression is turned on or
requested then the next block is 740. At decision block 732, if encryption is turned on or
requested then the next block is 750. At decision block 733, if deduplication is turned on or
requested then the next block is 738. At decision block 734, if a snapshot is to be taken, the next
block is 775. Block 735 returns to block 716. FIG. 7B also illustrates the required ordering of

any requested data services. Compression must be performed first followed by encryption,

35

10

15

20

25

WO 2018/128850 PCT/US2017/067962

deduplication, and snapshotting and cloning. When data blocks are read, the reverse order must

be employed.

[0117] As indicated by block 720, data objects and metadata corresponding to the incremental
modifications may be stored in the cloud object store 404. In various embodiments, the cloud
interface appliance 402 may create, read, forward, define, and/or otherwise specify data objects
and metadata corresponding to the incremental modifications. As indicated by block 722, in
some embodiments, the storage of the data objects and metadata may be caused at least in part by
the cloud interface device 502 sending requests to the cloud interface daemon 604. As indicated
by block 724, the requests sent by the cloud interface device 502 to the cloud interface daemon
604 may be translated into put requests for the cloud client interface 608. The requests sent by
the cloud interface device 502 may be put requests in some embodiments; in other embodiments,
the cloud interface daemon 604 may translate the requests sent by the cloud interface device 502

into put requests.

[0118] As indicated by block 726, responsive to the requests sent by the cloud interface device
502, the cloud interface daemon 604 may communicate, via the object protocol over the one or
more networks, with the cloud object store 404 to cause storage of the data objects and metadata
corresponding to the incremental modifications as new cloud objects. As indicated by block 728,
the cloud interface appliance 402 may update the mapping 406 in view of the data objects and

metadata corresponding to the incremental modifications stored in the cloud object store 404.

[0119] Referring now to FIG. 7C depicting a flowchart 700-3 at block 742 from block 740.
FIG. 7C depicts a flowchart of compressing the data blocks to preserve storage space.
Compression is performed in the transactional object layer at the DMU 218 as shown in FIG. 2.
Compression s typically turned on because it reduces the resources reguired to store {cloud
object store 404} and transnut data. Computational resources are consumed in the DMU 218 in
the compression process and, usually, 1o the reversal of the process (decompression) Data
compression is subject to a space—time complexity trade-off. For instance, a compression
scheme may require intensive processing decompression fast enough to be consumed as it i
being decompressed. The design of data compression schemes involves trade-offs among

various factors, including the degree of compression and the computational resources required to

36

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

compress and decompress the data. A compression type is received or retrieved at block 742 by
the DMU 218 to compress the data block. Many different types of compression are supported by
ZFS including, but not limited to, LZ4 LZJB, GZIP, and ZLE. At block 744 the data blocks is
compressed by the DMU 218 using the compression type. At decision block 746 it is determined
if there are more data blocks from the tree hierarchy that are to be written to the cloud object
store 404 that need to be compressed. If so — then block 744 is repeated until the all blocks are
compressed by the DMU 218 using the compression type. Once all blocks are compressed,
block 748 returns to block 732 of FIG. 7B.

[0120] FIG. 7D depicts a flow chart 700-4 of the process of encrypting the data blocks if
encryption is requested or turned on. At block 752, the passphrase or AES key is retrieved or
provided to the DMU 218. ZFS uses a “wraparound” encryption key system that uses a
passphrase or AES key, stored locally, to then randomly generate an encryption key to encrypt
the data blocks as shown in block 754. The passphrase or AES key can be stored in any local
storage including the ARC 224. Encryption does not of itself prevent the data blocks from being
missapropriated, but denies the message content to the interceptor. In an encryption scheme, the
intended data block, is encrypted using an encryption algorithm, generating ciphertext that can
only be read if decrypted. For technical reasons, an encryption scheme usually uses a pseudo-
random encryption key generated by an algorithm. It is in principle possible to decrypt the
message without possessing the key, but, for a well-designed encryption scheme, large
computational resources and skill are required. ZFS Data blocks are encrypted using AES
(Advanced Encryption Standard) with key lengths of 128, 192, and 256. The data blocks are
encrypted at block 756 using the randomly generated encryption key. At decision block 758, it is
determined if more data blocks need to be encrypted, and if there are, they are encrypted at block
756 until there are no more data blocks to encrypt. Then blocks 759 returns to block 733 of FIG.

7B to determine if the data blocks need more data service processing.

[0121] FIG. 7E depicts the flowchart 700-5 to deduplicate data blocks in the cloud object store
404. Data block duplication a specialized data compression technique for eliminating duplicate
copies of repeating data. Data block deduplication is used to improve storage utilization and can
also be applied to network data transfers to reduce the number of data blocks that must be sent to

store in a COW memory. In the deduplication process, unique data blocks are identified and

37

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

stored during a process of analysis. As the analysis continues, other data blocks are compared to
the stored copy and whenever a match occurs, the redundant data block is replaced with a small
reference that points to the stored data block. Given that the same data block patterm may occur
dozens, hundreds, or even thousands of times the number of data blocks that must be stored or
transferred is reduced substantially using deduplication. This type of deduplication is different
from that performed by standard file-compression discussed for FIG. 7C. That compression
identifies short repeated substrings inside individual data blocks, the intent of storage-based data
deduplication is to inspect large volumes of data and identify entire data blocks that are identical,
in order to store only one copy of it. Consider, for example a typical email system might contain
100 instances of the same 1 MB (megabyte) file attachment and if all 100 instances of the
attachment are saved, it would require 100 MB storage space. With data deduplication, only one
instance of the attachment is actually stored; the subsequent instances are referenced back to the
saved copy for deduplication ratio of roughly 100 to 1. Thus, data block deduplication can
reduce the required storage place in the cloud object store 404 and reduce the pressure on the

network transferring the data blocks to the cloud object store 404.

[0122] In FIG. 7D at block 762 the first process is to generate a name for the data block using
a name generation protocol. In ZFS that includes using a checksum algorithm such as the
SHA256. When the checksum algorithm is performed on the data block, it generates a checksum
that is unique to the content of the data block. Thus — if any other data block has exactly the
same content — the checksum, using that same algorithm or naming protocol, would be exactly
the same. And that is the key to ZFS data deduplication. At the decision block 764 it is
determined if there is an existing data block with the same name. This can be done in a
multitude of ways. One is to keep a local table of existing names. That, however, would limit
data block deduplication to deduplicating only data blocks originating locally. The table of
existing names can be stored on the object store 404. The table on objet store 404 could be
stored in the client local data pool or globally and available to all clients. Where the data is
stored at the object store will affect the amount of data block compression that can be achieved
through data block deduplication. For instance — if the table with existing names is global, only
one copy of the 1 MB file discussed above would need to be stored on the cloud object store 404

even if there were multiple clients using the cloud object store 404. This would be the case even

38

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

if the 1 MB attachment had gone “viral” through email and ending up as an attachment to
thousands of emails. With a global existing name table on the cloud object store 404 — that 1
MB file would be stored only once on the cloud object store 404 — but referenced by perhaps
1000s of metadata blocks pointing to it. To that end at block 766 the data block with the same
name as the existing name ignored when doing further storage computations with the data
blocks and the pointer to the existing block is used to create metadata blocks to generate the tree
at block 768 according to the method of blocks 716 and 718 in FIG. 7A. Decision block 770
causes a repeat of the process for as many data blocks in the tree by returning to block 762. At
decision block 773 if a snapshot has been requested the at block 774 the next block is 775 in
FIG. 7F. If a snapshot has not been requested the next block at 772 is block 720 in FIG. 7A.

[0123] FIG. 7F depicts the flowchart 700-6 of a method for ZFS snapshotting and cloning to a
cloud object store 404. ZFS snapshots are the essential and effortless backup mechanism for
ZFS systems. ZFS snapshots are a “picture” of the ZFS tree hierarchy at moment in the tree’s
“life.” As discussed in FIG. 3F, time, in terms of a snapshot, is based on the birth time of the
root block (used interchangeably with root node and uberblock) which is expressed in terms of
which progression the root block was created in. A progression occurs each time a data block is
generated to be stored. Ultimately — the complete tree hierarchy is generated before taking a
snapshot as described in FIGS. 3A-3D and blocks 716 and 718 of FIG. 7A. A reference to the
root block is stored as depicted in block 780. The root block and all blocks active at that
progression are part of the snapshot in that the snapshot reference points to the root block and the
root block points to all blocks through each lower level block, but they are not stored as duplicate
blocks. Rather, as shown in block 782 all of the blocks in the tree that accessible from the tree
root block are marked as “do not free,” which designates them as “Read Only” in ZFS syntax. In
the normal progression of the ZFS storage COW system, once a block is not active — in other
words — it is not referenced by any higher level block — it is made free for other storage needs.
The snapshot blocks must be kept intact for a snapshot to be useful at all. When a block is
referenced through a root block referenced by a snapshot — the block cannot be “freed” until the
snapshot is deleted. This makes it possible to back up to the point the snapshot was made until
the snapshot is deleted. Snapshots can be stored in the cloud object store 404, ARC 222, L2ARC
222-3, or any other local storage such as system storage 228. Using the ZFS file system,

39

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

snapshots can be requested at particular instances in the progression of the hierarchical tree and
they can be automatically generated at a particular periodic point in time. Old snapshots are not
automatically deleted when new snapshots are created — so even after a new snapshot is created —
a backup can occur to a previous snapshot as long as it has not been deleted. Thus — snapshots
enable incremental backups — since the entire file system does not have to copied indeed the
entire backup is already in the cloud object store 404 as pointed to by the root block referenced
by the snapshot. The root block pointed to by the snapshot reference becomes the active root
block and all subsequent root blocks an block created at a birth time after the snapshot can be

freed for other storage use.

[0124] At decision block 784 that determines if a clone has been requested. If a clone has not
been requested, at block 799 the snapshot process is over and block 720 in FIG. 7A is next. If a
clone has been requested — it is made from the snapshot and as shown in block 786, a clone
reference points to the same root block that the snapshot points to. A clone is always generated
from a snapshot such that a snapshot cannot be deleted until the clone is deleted as shown in
block 788. Clones are used for a variety of purposes — for multiple development purposes from
the same data storage set, to instantiate a new virtual machine, to troubleshoot issues, etc. To
that end, clones must be made able to be COW when accessed from the clone reference. Clones
are different than snapshots in that respect — since no COW can occur from a snapshot. Clones
need no extra storage capability at generation time — but as progressions are made on the clone
tree — clones will use more storage. Snapshots can be made from clones just as they can from
active trees and for all the same reasons. Clones do not inherit the properties of the root block
data. Clones can be ultimately be promoted to be the active tree as well. At block 799, clone

generation is done and block 720 in FIG. 7A is next.

[0125] FIG. 8 is a high-level diagram illustrating an example of the cloud interface appliance
402 handling incremental modifications, in accordance with certain embodiments of the present
disclosure. Certain embodiments may provide a very efficient incremental-always (also known
as incremental forever) backup capability, in addition to the ability to restore optimally (without
applying multiple incremental updates) from the cloud. Traditional backup methods in the
industry involve pushing copies into the cloud. But certain embodiments according to the

present disclosure allow for a cloud-based, copy-on-write file system where only new data

40

10

15

20

25

WO 2018/128850 PCT/US2017/067962

objects are written to cloud storage. Cloud storage where only new and modified data needs to
be sent provides an extremely effective solution for backing up and restoring from cloud
providers. Old data objects need not be modified. These embodiments, along with the
consistency model using transaction groups, facilitates cloud storage with incremental forever

backup where consistency can always be confirmed.

[0126] For illustration, FIG. 8 depicts the cloud interface appliance 402 as having created an
initial backup (e.g., cloud data objects 414 corresponding to backup logical tree 300A) of the
local instance of the logical tree 300. In some embodiments, the cloud interface appliance 402
may utilize an active tree image 301 or a full copy to create the backup. After a full backup of
the local instance of the logical tree 300 is initially created, a number of modifications 303 may
be made to the logical tree 300 with various transactions. In FIG. 8, the storing of the data
objects and metadata corresponding to the incremental modification 303 is illustrated. The
incremental modification 303 is depicted, by way of example, with new leaf nodes 324, 326; new

non-leaf nodes 328, 330, 332, 334; and a new root node 336.

[0127] The cloud interface appliance 402 may be configured to create incremental backups,
potentially indefinitely. To that end, certain embodiments of the cloud interface appliance 402
may utilize a snapshot COW process (e.g., as disclosed above with respect to FIGS. 3E and 7F).
In the example depicted in FIG. 8, may utilize an image 304 to create the incremental
modification. In some embodiments, the image 304 may correspond to an active tree image; in
some embodiments, the image 304 may correspond to a snapshot. With the image 304, the cloud
interface appliance 402 may cause storage of an incremental modification 303A, which may
correspond to cloud storage objects 414A. In accordance with the cloud-based COW process,
new cloud objects 414A are allocated for the data objects and metadata corresponding to the
incremental modification 303, with the cloud-based instantiation of the incremental modification
303 indicated as incremental modification 303A. The new root node can then be made the root
of the modified logical tree 300A-1 with the storing operation to finalize the state of the modified
logical tree 300A-1. The modified logical tree 300A-1 may correspond to the logical tree 300A
modified by the incremental modification 303A.

41

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0128] With the storing of the incremental modification 303A, blocks of the logical tree 300A
(saved as cloud data objects 414) containing active data may not be overwritten in place. The
new cloud data objects 414A may be allocated, and modified/new data and metadata may be
written to the cloud data objects 414A. The previous version of data may be retained, allowing a
snapshot version of the logical tree 300A to be maintained. In some embodiments, any
unchanged data may be shared among the modified logical tree 300A-1 and its associated

snapshots.

[0129] Thus, utilizing snapshots, such as the exemplary snapshot 301, and uberblocks, such as
those corresponding to roots 336, 336-1, the cloud object store 404 may be updated only with
respect to a subset of nodes that changed since the last snapshot. And that update of the
incremental 303A may hook in to the version of tree 300A in the cloud via the root node so that

any part of the whole modified logical tree 300A-1 may be accessed.

[0130] By sending incremental snapshots into the cloud date store 404, metadata that can be
retained inside the data instance which allows traversal of the tree and get a picture of the tree at
time of snapshot. At the same time, this allows for a very condensed representation of data that
only retains data of blocks referenced that are specified/requested as to be retained in by the
snapshot, such that only a minimal amount of data need be stored in the tree to retain point-in-
time images of the tree. Every incremental may be merged with the tree 300A previously stored
in the cloud date store 404 so that, after each incremental is sent, so that a full, current
representation of data always exists. Each merging of an additional incremental with the tree

300A may results in single data instance such that full backup operations are unnecessary.

[0131] Although unnecessary from a performance perspective, in some embodiments, full
back-ups may be made periodically to avoid having to gather up a high number of incrementals
if that is not desired by a client. With some implementations, multiple versions of full backups
may be retained, if desired. Thus, certain embodiments provide for complete control of intervals,
snapshots, and backups. Advantageously, certain embodiments may be configured to
dynamically self-adjust incremental intervals. For example, some embodiments may initially
operate according to a first interval. In various instances, an interval could be with every write

operation to the local tree, every half hour, every day, etc. When a churn rate (e.g., a metric

42

10

15

20

25

WO 2018/128850 PCT/US2017/067962

monitored by the hybrid cloud storage system 400 that indicates rates of changes the local tree)
exceeds (or decrease to) a certain churn threshold, the hybrid cloud storage system 400 may
automatically transition to a different interval. For example, if the churn rate exceeds a first
churn threshold, the hybrid cloud storage system 400 may automatically transition to a greater
interval of time for the incremental interval. Likewise, if the churn rate decreases to the first
churn threshold or another churn threshold, the hybrid cloud storage system 400 may
automatically transition to a lesser interval of time for the incremental interval. Certain
embodiments may employ multiple churn thresholds to throttle incremental frequencies per a
gradated scheme. Similarly, certain embodiments may dynamically self-adjust full backup
intervals based at least in part on such churn thresholds and/or incremental size and/or number

thresholds, which could be client-defined in some instances.

[0132] One of the chief problems with writing an object into a cloud and subsequently reading
the object from the cloud is that integrity of the object read is not guaranteed. There is a risk of
degradation of data incumbent with the cloud storage (e.g., storage loss, transmission failure,
bitrot, etc.). Furthermore, with the involvement of multiple versions of objects, there is a risk of
reading an undesired version of an object. For example, a previous version of the desired object
may be read, such as the most recent version in an instance where an update of the object is

incomplete.

[0133] Traditional object store architectures rely on copies of data wherein a quorum (i.e., 2
copies) is satisfied initially and additional copies (e.g., a third copy) are updated asynchronously.
This presents the possibility that a client could receive a copy of data before all copies been
updated, and consequently get an inconsistent view of the data. A typical solution for object
store consistency is to ensure that all copies are made prior to the data being available, however
ensuring consistency with that solution is typically not realistic or attainable. An object-based
approach where the checksum of the object is stored in the object’s metadata alongside the object
or in a reference database elsewhere would allow validation of the object content but would not
validate the correct version of the object. Moreover, solutions that might use object versioning

and check from a single location would somewhat defeat the purpose and intent of cloud storage.

43

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

[0134] However, certain embodiments according to the present disclosure may provide
consistency model that can ensure guaranteed integrity in the cloud and that can ensure always-
consistent semantics from an eventually consistent object model. For example, certain
embodiments may provide fault isolation and consistency through the use of logical trees
disclosed herein. With all transactional write operations to the cloud object stores, the
checksums in the metadata of the self-describing Merkle tree may be updated. As described
above, the storing of checksums separately from the node from which the checksums are
calculated ensures that each tree is automatically self-validating. At every tree layer, the node
below is referenced by a node pointer that includes a checksum. So, when an object is read out

of the cloud, it may be determined whether that object is correct.

[0135] FIG. 9 is a block diagram that illustrates an example method 900 directed to certain
features of the hybrid cloud storage system 400 that ensure guaranteed integrity in the cloud and
always-consistent semantics from an eventually consistent object model, in accordance with
certain embodiments of the present disclosure. According to certain embodiments, the method
900 may begin as indicated by block 902. However, as clarified above, teachings of the present
disclosure may be implemented in a variety of configurations such that the order of certain steps
of methods disclosed herein may be shuffled or combined in any suitable manner and may
depend on the implementation chosen. Moreover, while the following steps may be separated
for the sake of description, it should be understood that certain steps may be performed

simultaneously or substantially simultaneously.

[0136] As indicated by block 902, a POSIX-compliant request to perform one or more
particular operations (i.e., one or more transactions) may be received from the application 202.
Such an operation may correspond to reading or otherwise accessing data. As indicated by block
904, the POSIX-compliant request may be forwarded from the operating system, via the system
call interface 208, to the DMU 218. As indicated by block 906, the DMU 218 may translate
requests to perform operations on data objects directly to requests to perform one or more read
operations (i.e., one or more I/O requests) directed to the cloud object store 404. As indicated by
block 908, the SPA may receive the I/O request(s) from the DMU 218. Responsive to the
request(s), the SPA may initiate reading of one or more data objects from the cloud object store

404.

44

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0137] As indicated by block 910, the cloud interface appliance 402 may receive the I/O
request(s) and may send corresponding cloud interface request(s) to the cloud object store 404.
In some embodiments, the cloud interface appliance 402 may translate the I/O requests into
corresponding object interface requests. The cloud interface device 502 may coordinate the
object interface requests using the mapping 406 of cloud storage objects 414 in the cloud object
store 404. For example, the cloud interface appliance 402 may identify and request all or a

portion of a file stored as cloud data objects in accordance with a logical tree.

[0138] As indicated by block 912, the cloud interface appliance 402 may receive data object(s)
responsive to the object interface requests. As indicated by block 914, the data object(s) may be
checked with a checksum(s) from parent node(s) in the logical tree. In various embodiments, the

checking may be performed by the cloud interface appliance 402 and/or the I/O pipeline 224.

[0139] FIG. 10 is a high-level diagram illustrating an example of the cloud interface appliance
402 handling the checking, in accordance with certain embodiments of the present disclosure.
Again, in other embodiments, another component of the system 400 may perform the checking.
But, in FIG. 10, the cloud interface appliance 402 is depicted as having accessed the cloud
object store 404 to read data stored according to the logical tree 300A-1. In the example
depicted, the cloud storage appliance 402 is illustrated as having accessed cloud objects 414A
corresponding to the logical tree 300A-1. The cloud storage appliance 402 accessed the leaf
node 324-2 by way of the addresses of the non-leaf nodes 326-2, 334-2, and the root node 336-2.

[0140] As described herein, when reading a node out of the logical tree, the node is read using
a pointer of a node in higher level in the logical tree. That pointer includes a checksum for the
data that is expected to be read so that, when data is pulled from the cloud, the data may be
checked with the checksum. The actual checksum of the data may be calculated and compared
to the expected checksum already obtained by the cloud interface appliance 402 and/or the /O
pipeline 224. In the example depicted, the non-leaf node 326-2 includes the checksum for leaf
node 324-2.

[0141] In some embodiments, a checksum may be received from the cloud data store with one
object and the data to be checked with the checksum is received with a different object. The

checksum may be received from the cloud data store with the separate object prior to receiving

45

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

the different object with the data to be checked, according to some embodiments. Some
embodiments may employ an iterative object interface request process such that, in response to a
particular object interface request, the object with the checksum is received, and, in response to a
subsequent object interface request, the object with the data to be checked is received. Further,
with some embodiments, the subsequent object interface request may be made using addressing
information that was received with the particular object interface request and points to the object
with the data to be checked. With some embodiments, instead of an iterative process, a plurality
of objects is received from the cloud data store, after which the checking may be performed on
the plurality of objects. The integrity of the logical tree can be quickly checked by traversing the
logical tree and calculating checksums of child nodes at each level based on parent nodes. In
alternative embodiments, the cloud interface appliance 402 and/or the I/O pipeline 224 may
obtain the checksum prior to initiating the read operations and/or may obtain the checksum from
another source. For example, in such alternative embodiments, the checksum may be retained in

the mapping 406, a snapshot of the logical tree, and/or a local data store.

[0142] Referring again to FIG. 9, as indicated by block 916, it may be determined whether to
validate the data object(s) by the checksum(s) from parent node(s) in the logical tree with the
actual checksum(s) of the data object(s). As indicated by block 918, in the case of the data
object(s) being validated, the reading and/or further processing operations of the system 400 may
proceed, as the data has been determined to be not corrupted and not the incorrect version. As
necessary, checking may proceed with additional objects until all objects are check summed and

validated by parent object pointer metadata.

[0143] In the case of mismatch of actual and expected checksums of the data object(s), an error
condition may be identified. This is the case illustrated in FIG. 10, where the actual checksum
of the object D’ (which corresponds to leaf node 324-2) does not match the checksum specified
by the parent node 326-2 (which corresponds to object C’). With an error condition, process
flow of FIG. 9 may proceed to block 920. The mismatch of actual and expected checksums may
correspond to situations of getting the wrong version of data that is not up to date, degradation of
data due to cloud storage failure, bitrot, and/or transmission loss, etc. As indicated by block 920,
remediation may be initiated. In some embodiments, the remediation may include reissuing one

or more cloud interface requests to the cloud object store 404. Responsive to each reissued

46

10

15

20

25

WO 2018/128850 PCT/US2017/067962

request, process flow may return to block 912, where the cloud interface appliance 402 may

receive one or more data objects and another iteration of the checking process may proceed.

[0144] The reissuance of the one or more cloud interface requests may correspond to requests
that the cloud object store 404 try harder to find the correct version of the object requested. With
some embodiments, the cloud interface appliance 402 may iteratively go through cloud
nodes/devices until the correct version is retrieved. Some embodiments may iteratively check
snapshots of previous versions of tree portions that may be stored in the cloud object store 404.
Some embodiments may employ a threshold such that the cloud interface appliance 402 may
proceed to other remediation measures after the threshold has been satisfied. The threshold may
correspond to a number of reissuances of the one or more cloud interface requests. Alternatively
or additionally, the threshold may correspond to an limit on the extent of the search of nodes
and/or snapshots. For example, the threshold may govern how many nodes and/or how many
snapshots are to be searched before the cloud interface appliance 402 turns to a different

remediation measure.

[0145] Another remediation measure that the cloud interface appliance 402 may employ is the
requesting the correct version of the data from another cloud object store in multiple-cloud
implementations, as indicated by block 924. Certain embodiments of multiple-cloud storage are
described further herein. A record of the second cloud object store may be inspected to
determine whether a copy of the data had been stored in the second cloud object store. In some
embodiments, the record could correspond to another mapping 406 specific to the second cloud
object store. Having determined that a copy of the data had been stored in the second cloud
object store, the cloud interface appliance 402 may initiate one or more object interface requests

to the second cloud object store in order to retrieve the desired data.

[0146] With such embodiments, the request for the object of interest may be made to the
second cloud object store after the threshold of reissued requests to the cloud object store 404 has
been satisfied without successfully received the correct version. Alternatively, some
implementations could resort to the second cloud object store as a first default, rather than
reissuing requests to the cloud object store 404. In any case, responsive to the request to the

second cloud object store, process flow may return to block 912, where the cloud interface

47

10

15

20

25

WO 2018/128850 PCT/US2017/067962

appliance 402 may receive one or more data objects and another iteration of the checking process
may proceed. In the case of the correct data being retrieved from the second cloud object store
and being validated, the reading and/or further processing operations of the system 400 may
proceed, as indicated by block 918. Additionally, having received correct data from the second
cloud object store, the system 400 may write the correct data to the cloud object store 404, as
indicated by block 926. The writing of the correct data may be effected with a COW procedure

to apply an incremental modification, as disclosed with respect to FIG. 7.

[0147] In some embodiments, if the correct data is not retrievable through the remediation
processes, an error message and a most recent version of the data may be returned, as indicated
by block 928 With some instances, the most recent version of the data may not be retrievable.
For example, metadata that should point to the data may be corrupted such that the most recent
version of the data cannot be referenced and retrieved. In those instances, an error message may
be returned without a most recent version of the data. However, when the most recent version of
the data is retrievable, it may be returned, as well. Accordingly, with an end-to-end checksum
model, certain embodiments may cover end-to-end traversal of the data from the client into the
cloud and back again. Certain embodiments may not only provide for check summing of an
entire tree and detecting errors, but also the ability to correct portions of the tree through

resilvering and data scrubbing.

[0148] FIG. 11 is a diagram of a simplified example further illustrating features of a hybrid
cloud storage system 400-2, in accordance with certain embodiments of the present disclosure.
The hybrid cloud storage system 400-2 illustrates how a hybrid storage pool 1100 is at least
partially formed of the system storage pool 416 and the virtual storage pool 602-1. Flows for
read operations and write operations are illustrated for each of the system storage pool 416 and

the virtual storage pool 602-1.

[0149] In some embodiments, the ARC 222 may include the ARC 222-2. Read operations of
the system storage pool 416 may be facilitated by the ARC 222-2 and system storage blocks 228-
1. As indicated, certain embodiments of the ARC 222-2 may be implemented with DRAM. As
is also indicated, certain embodiments of the system storage blocks 228-1 may have a

SAS/SATA-based implementation. With some embodiments, read operations of the system

48

10

15

20

25

WO 2018/128850 PCT/US2017/067962

storage pool 416 may be further facilitated by a L2ZARC device 222-3 that may extend the cache
size. With some embodiments, the ARC 222 may be referenced as inclusive of the L2ARC
device 222-3. As indicated in FIG. 11, certain embodiments of the L2ZARC device 222-3 may
have a SSD-based implementation. Write operations of the system storage pool 416 may be
facilitated by the system storage blocks 228-1 and the intent log 214-3. As indicated, certain

embodiments of the intent log 214-3 may have a SSD-based implementation.

[0150] To the local system, the virtual storage pool 602-1 may appear and behave as a logical
disk. Similar to the system storage pool 416, read operations of the virtual storage pool 602-1
may be facilitated by the ARC 222-4 and the cloud storage objects blocks 414-1. With some
embodiments, the ARC 222 may be referenced as inclusive of the ARC 222-4, even though the
ARC 222-4 may be implemented with one or more separate devices in some embodiments. As
indicated in FIG. 11, certain embodiments of the ARC 222-4 may be implemented with DRAM.
In some embodiments, the ARC 222-4 may be the same cache as the ARC 222-2; in other
embodiments, the ARC 222-4 may be a separate cache of the virtual storage pool 602-1 that is
distinct from the ARC 222-2. As indicated, certain embodiments facilitating the cloud storage
objects blocks 414-1 may have an HTTP-based implementation.

[0151] With some embodiments, read operations of the virtual storage pool 602-1 may be
further facilitated by a L2ZARC device 222-5. With some embodiments, the ARC 222 may be
referenced as inclusive of the L2ZARC device 222-5. In some embodiments, the LSARC device
222-5 may be the same cache as the L2ZARC device 222-3; in other embodiments, the LSARC
device 222-5 may be a separate cache device of the virtual storage pool 602-1 that is distinct
from the L2ARC device 222-3. As indicated, certain embodiments of the L2ZARC device 222-5
may have a SSD-based or a HDD-based implementation.

[0152] Write operations of the virtual storage pool 602-1 to the cloud storage objects blocks
414-1 may be facilitated by the intent log 214-4. In some embodiments, the intent log 214-4
may be the same as the intent log 214-3; in other embodiments, intent log 214-4 may be a
separate and distinct from the intent log 214-3. As indicated, certain embodiments of the intent

log 214-4 may have a SSD-based or a HDD-based implementation.

49

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0153] The transition to cloud storage provides several advantages (e.g., cost, scale, and
geographic locality), but, when used conventionally, cloud storage comes with some limitations.
When application clients are located on premise and not co-resident in the cloud, latency is
frequently a significant concern with conventional technologies. However, the hybrid cloud
storage system 400 can eliminate that concern. Certain embodiments of the hybrid cloud storage

system 400 may provide mirroring features to facilitate performance, migration, and availability.

[0154] With the hybrid cloud storage system 400, the differential between latencies of read
operations of the system storage pool 416 and read operations of the virtual storage pool 602-1
may be minimized. The ARCs and L2ARC devices of the two pools could be local
implementations in some embodiments. And the latencies at the ARCs and L2ZARC devices of
the two pools may be equivalent or substantially equivalent. For example, typical latencies for
read operations of the ARCs may be 0.01 ms or less, and typical latencies for the L2ZARCs may
be 0.10 ms or less. Latencies of read operations from the cloud storage objects blocks 414-1
may be higher, but the hybrid cloud storage system 400 may intelligently manage both pools to

minimize the higher latencies.

[0155] Certain embodiments may provide for low-latency, direct cloud access with file system
semantics. Certain embodiments may facilitate running from cloud storage while preserving
application semantics. Certain embodiments may enable local storage read performance while
retaining replicated copies of all data in the cloud. In order to provide those features, certain
embodiments may utilize on premise caching devices and leverage the hybrid storage pool
caching algorithms. By providing cloud storage with effective caching and file system
semantics, cloud storage may be employed for more than backup and restore. The hybrid storage
system may use cloud storage “live.” Stated otherwise, through the intelligent use of on premise
caching devices, the benefit of full performance may be provided to the local system without

having to keep full or multiple copies locally.

[0156] FIG. 12 is a diagram of a simplified example further illustrating features of a hybrid
cloud storage system 400-2, in accordance with certain embodiments of the present disclosure.
With effective caching devices and algorithms, the hybrid cloud storage system 400-2 may cache

at the block level and not at the file level, so accesses to large objects (e.g., a large database) do

50

10

15

20

25

WO 2018/128850 PCT/US2017/067962

not require caching of the entire object. In various embodiments, the example depicted may
correspond to one or a combination of the virtual storage pool 602-1 and the system storage pool

416.

[0157] The hybrid cloud storage system 400-2 may employ adaptive I/O staging to capture
most of the objects needed for system operations. The hybrid cloud storage system 400-2 may
configure a plurality of cache devices to provide adaptive I/O staging. In the example depicted,
adaptive I/O staging is implemented with an ARC 222-5. Yet, in various embodiments, the
hybrid cloud storage system 400-2 may be configured to use a plurality of ARCs 222 and/or
L2ARCs 222 to provide adaptive I/O staging. While the following description uses an ARC 222
as an example, it should be understood that various embodiments may use a plurality of ARCs

222, as well as one or more L2ARCs 222, to provide the disclosed features.

[0158] In some embodiments, the ARC 222-5 may be self-tuning such that the ARC 222-5
may adjust based on the I/O workload. By way of example, in embodiments where the hybrid
cloud storage system 400-2 uses cloud storage in a live mode, not merely for back-up and
migration, the ARC 222-5 may provide caching algorithms that stage objects according to a
precedence order. That precedence order for caching may correspond to most recently used
(MRU) objects, most frequently used (MFU) objects, least frequently used (LFU) objects, and
least recently used (LRU) objects. With each I/O operation, the ARC 222-5 may determine
whether self-adjustment of staged data objects is necessary. Note that, in certain embodiments,
the L2ZARC 225-5 may work in conjunction with ARC 222-5 to facilitate one or more of the
stages. By way of example, the L2ZARC 225-5, which may have a higher latency than the ARC
222-5, may be used for one or more of the lower ranked stages, such as the LRU and/or LFU
stages. In some embodiments, another component of the hybrid cloud storage system 400-2 may
cause the caching in accordance with these embodiments. By way of example, the cloud storage
appliance 402 may coordinate the caching and servicing of read and write requests. Further, the
cloud storage appliance 402 may include the ARC(s) 222-5, L2ARC(s) 222-5, and/or intent log

214-4 according to some embodiments.

[0159] With each I/O operation, the ARC 222-5 may adjust the staging of one or more objects

previously staged to some extent. At a minimum, the adjustment may include updating tracking

51

10

15

20

25

WO 2018/128850 PCT/US2017/067962

of accesses of at least one object. The adjustment may include demotion to a lower stage,
eviction, or promotion to a higher stage. The transition criteria for promotion and demotion may
be different for each transition from a current stage to another stage or to eviction. As disclosed
herein, the ARC 222-5 may have the ability to evict memory buffers from the cache as a result of

memory pressure to maintain a high throughput and/or to meet usage thresholds.

[0160] With a given I/O operation, if the one or more objects corresponding to the I/O
operation had not already been staged as MRU objects, then the one or more objects may be
newly staged as MRU objects. Yet, if the one or more objects corresponding to the I/O operation
are already be staged as MRU objects, the ARC 222-5 may apply transition criteria to the one or
more objects to determine whether to transition the one or more objects to a different stage. If
the transition criteria is not met, no change in staging is necessary with the servicing of the I/O

operation.

[0161] FIG. 13 is a block diagram that illustrates an example method 1300 directed to certain
features of the hybrid cloud storage system 400-3 for cache management and cloud latency
masking, in accordance with certain embodiments of the present disclosure. According to
certain embodiments, the method 1300 may begin as indicated by block 1302. However, as
clarified above, certain steps of methods disclosed herein may be shuffled, combined, and/or
performed simultaneously or substantially simultaneously in any suitable manner and may

depend on the implementation chosen.

[0162] As indicated by block 1302, POSIX-compliant request(s) to perform particular
operation(s) (i.e., a transaction(s)) may be received from the application 202. Such an operation
may correspond to reading, writing, and/or modifying data. As indicated by block 1304, the
POSIX-compliant request(s) may be forwarded from the operating system, via the system call
interface 208, to the DMU 218. As indicated by block 1306, the DMU 218 may translate
requests to perform operations on objects directly to requests to perform I/O operations directed
to a physical location within the cloud object store 404. The DMU 218 may forward the I/O
requests to the SPA.

[0163] As indicated by block 1308, the SPA may receive the I/O requests from the DMU 218.

And, responsive to the requests, the SPA may initiate performing I/O operations. As indicated

52

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

by block 1310, in the case of write operations, the SPA may initiate writing of objects to the
cloud object store 404 using a COW procedure. For example, the cloud interface appliance 402
may proceed with the COW procedure disclosed above (e.g., in view of FIG. 7) with respect to
the cloud object store 404. As indicated by block 1312, in the case of read operations, the SPA
may initiate reading of objects. The ARC 222-5 may be checked for the one or more requested
objects. In some embodiments, as indicated by block 1314, it may be determined whether one or
more validated data objects corresponding to the I/O request(s) exist in the ARC 222-5. This
may include the SPA first determining if one or more objects corresponding to the read
request(s) is retrievable from the ARC 222-5. Then, if such one or more objects are retrievable,
the object(s) may be checked with one or more checksums from one or more parent nodes in the
logical tree. In various embodiments, the checking may be performed by the ARC 222-5, the
cloud storage appliance 402, and/or the I/O pipeline 224. As indicated by block 1316, in the case
of the data object(s) being validated (or, in some embodiments not employing validation, in the
simple case of a hit), the reading and/or further processing operations of the system 400 may

proceed.

[0164] In some embodiments, as indicated by block 1318, in the case of the data object(s) not
being validated (or, in some embodiments not employing validation, in the simple case of no hit),
the SPA may initiate reading of one or more objects from the local storage 228. With some
embodiments, a pointer to the one or more objects may be cached and used to read the one or
more objects from the local storage 228. Some implementations may not check local storage 228
for the one or more objects if such a pointer is not cached. If the one or more objects are
retrievable, the one or more objects may be checked with one or more checksums from one or
more parent nodes in the logical tree. Again, in various embodiments, the checking may be
performed by the ARC 222-5, the cloud storage appliance 402, and/or the I/O pipeline 224. As
indicate by block 1320, in the case of the object(s) being validated, the process flow may
transition to block 1316, and the reading and/or further processing operations of the system 400

may proceed.

[0165] As indicated by block 1320, in the case of the data object(s) not being validated (or, in
some embodiments not employing validation, in the simple case of no hit), the process flow may

transition to block 1322. As indicated by block 1322, the SPA may initiate reading of the one or

53

10

15

20

25

WO 2018/128850 PCT/US2017/067962

more data objects from the cloud object store 404. In various embodiments, the imitating of the
reading may be performed by one or a combination of the DMU 218, the ARC 222-5, the I/O
pipeline 224, and/or the cloud interface appliance 402. The reading of the one or more objects
from the cloud object store 404 may include steps previously disclosed herein, for example, with
regard to FIG. 9. Such steps may include one or a combination of issuing I/O request(s) to the
cloud interface appliance 402, sending corresponding cloud interface request(s) to the cloud
object store 404 using the mapping 406 of cloud storage objects 414, receiving data object(s)
responsive to the object interface requests, and the like, which are detailed above. As indicated
by block 1324, it may be determined whether a validated object has been retrieved from the
cloud object store 404. Again, this may involve steps previously disclosed herein, for example,
with regard to FIG. 9, where it is determined whether to validate the data object(s) by the

checksum(s) from parent node(s) in the logical tree.

[0166] In the case of mismatch of actual and expected checksums of the data object(s), the
process flow may transition to block 1326, where remediation processes may be initiated. This
may involve steps previously disclosed herein, for example, with regard to FIG. 9, where
remediation processes are disclosed. However, in the case of the data being validated, the
process flow may transition to block 1316, and the reading and/or further processing operations

of the system 400 may proceed.

[0167] As indicated by block 1328, having retrieved the one or more objects, the cache staging
may be adjusted. In certain instances, the adjustment of cache staging may include newly
caching one or more objects as MRU objects, as indicated by block 1330. If the one or more
objects corresponding to a given I/O operation had not already been staged as MRU objects, then

the one or more objects may be newly staged as MRU objects.

[0168] Yet, in certain instances, when the one or more objects corresponding to the I/O
operation are already be staged as MRU, MFU, LFU, or LRU objects, the ARC 222-5 may apply
transition criteria to the one or more objects to determine whether to transition the one or more
objects to a different stage, as indicated by block 1332. However, if the transition criteria is not

met, a change in staging may not be necessary with the servicing of the I/O operation.

54

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0169] In some embodiments, the staging of objects may be at least partially a function of
recency of access of the objects. As indicated by block 1334, in some embodiments, the
adjustment of cache staging may include updating one or more recency attributes. The ARC
222-5 may define a recency attribute for the one or more new objects in order to track recency of
access of the one or more objects. The recency attribute may correspond to a time parameter that
indicates a last access time corresponding to one or more objects (e.g., by absolute time, system
time, time differential, etc.) and/or a sequential parameter that indicates an access count
corresponding to the one or more objects against which recency attributes of other objects may

be compared.

[0170] In various embodiments, the transition criteria may include one or more recency
thresholds defined in order for objects to qualify for transition from current stages. For example,
the ARC 222-5 may determine if the one or more objects should be transitioned to LFU or LRU
stages (or eviction) based at least in part on the value of the recency attribute assigned to the one
or more objects. In some embodiments, the recency threshold may be a dynamic threshold,
adjusted as a function of recency attributes defined for other objects in one or more stages. For
example, the recency threshold may be a function of a lowest value of any recency attribute
defined for any objects already staged as MFU objects, when the values of recency attributes

defined for the staged objects are sorted in an ascending or descending order.

[0171] Additionally or alternatively, in some embodiments, the staging of objects may be at
least partially a function of frequency of access of the objects. As indicated by block 1336, in
some embodiments, the adjustment of cache staging may include updating one or more
frequency attributes. With the particular I/O operation, the ARC 222-5 may increment a
frequency attribute defined for the one or more objects in order to track the frequency of access
of the one or more objects. The frequency attribute may indicate numbers of accesses over any
suitable time period, which could be an absolute time period, an activity-based time period (e.g.,
a user session, or time since a last amount of access activity that meets a minimum activity

threshold), and/or the like.

[0172] In various embodiments, the transition criteria may include one or more frequency

thresholds defined in order for objects to qualify for transition from current stages. For example,

55

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

consequent to a change in the value of the frequency attribute, the ARC 222-5 may determine if
the one or more objects should be staged as MFU objects (or as objects in another stage). Such a
determination may be made based at least in part on comparing the updated frequency attribute
to a frequency threshold. In some embodiments, the frequency threshold may be a dynamic
threshold, adjusted as a function of frequency attributes defined for other staged objects (e.g.,
staged as MFU objects or objects in another stage). For example, the frequency threshold may
be a function of a lowest value of any frequency attribute defined for any objects already staged
as MFU objects, when the values of frequency attributes defined for the staged objects are sorted

in an ascending or descending order.

[0173] As indicated by block 1338, additionally or alternatively, the adjustment of cache
staging may include specifying one or more other staging attributes, according to some
embodiments. A staging attribute could indicate an operation type. With some embodiments,
the staging of objects may be at least partially a function of operation type. For example, the
staging algorithm could employ discrimination of write operations versus read operations so that
only objects accessed with a read operation may be staged as MFU objects. In such
embodiments, objects referenced with write operations may be initially maintained as MRU
objects and be thereafter subject to demotion according to LFU staging criteria. Alternatively, in
such embodiments, objects referenced with write operations may be initially maintained as MRU
objects and be thereafter subject to demotion according to LRU staging criteria and then be
subject to eviction, effectively skipping LFU staging. As another alternative, objects referenced
with write operations may be initially maintained as MRU objects and be thereafter subject to
eviction, effectively skipping LFU staging and LRU staging. With such alternatives, the ARC
222-5 discriminates write operations to commit cloud objects to the cloud object store 404 as
being less likely needed for subsequent read operations, hence allowing such potential operations

to incur cloud access latencies should the operations arise.

[0174] A staging attribute could indicate a data type. Additionally or alternatively, in some
embodiments, the staging of objects may be at least partially a function of data type. For
example, some embodiments may accord a higher priority to metadata vis-a-vis data. That
higher priority may include retaining all metadata objects, and subjecting data objects to staging.

Alternatively, that higher priority may include applying different criteria for staging transition

56

10

15

20

25

WO 2018/128850 PCT/US2017/067962

(promotion and/or demotion from current stages) to metadata objects versus data objects. For
example, thresholds (e.g., recency, frequency, and/or the like thresholds) defined for data objects
to qualify for demotion may be lower (and, hence, more easily satisfied) than thresholds defined
for metadata objects to qualify for demotion. Alternatively, other embodiments may accord a
higher priority to data vis-a-vis metadata. With some embodiments, a portion of the cloud

objects may be defined as always to cached regardless of frequency of use.

[0175] A staging attribute could indicate an operation characteristic. ~ Additionally or
alternatively, in some embodiments, the staging of objects may be at least partially a function of
read operation characteristics. For example, some embodiments may accord a higher priority to
read operations having a size characteristic such that the size of objects read satisfies a size
threshold. Additionally or alternatively, a higher priority may be accorded to read operations
having a sequential characteristic such that the sequence of objects read satisfies a sequence
threshold. Accordingly, a large, sequential streaming read operation may be given a higher
priority for caching than smaller, more isolated read operations. In that way, higher cloud-access

latencies for the large, sequential streaming read operations are avoided.

[0176] Certain embodiments of the ARC 222-5 may employ different functions, transition
criteria, and/or thresholds for each stage. In some embodiments, the ARC 222-5 may employ a
staging scoring system. Some embodiments may score objects with a numerical expression, for
example, a staging score. The staging scores may reflect qualifications of the objects with
respect to any suitable criteria, such as the transition criteria. For example, a given staging score
for an object may be cumulative of scoring according to criteria such as frequency of access,
recency of access, operation type, data type, operation characteristics, object size, and/or the like.
The given object could be scored with respect to each criterion. For example, relatively greater
values of attributes such as frequency attributes, recency attributes, and/or like may be accorded
greater scores. Likewise, scores may be assigned in view of the other criteria and priorities.
The cumulative staging score for the object may be used, along with the staging scores of other
objects stored in the cache, to rank the objects according to a precedence order. Again, the

precedence order may be used to transition the objects to different stages and/or toward eviction.

57

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0177] The ARC 222-5 may adapt the stages and the objects stored therein to satisfy one or
more cache usage and capacity constraints. For example, given a cache device capacity of, say,
1 TB of DRAM, the ARC 222-5 may adapt the stages and the objects stored therein to maintain a
maximum cache usage of 80%. In addition, some embodiments may adapt the stages and the
objects stored therein to satisfy one or more speed constraints. For example, the ARC 222-5 may
monitor throughput to maintain an acceptable amount of access latencies (e.g., average access
latencies) given both local accesses and cloud accesses in order to determine whether more or
less caching should be employed to satisfy one or more latency tolerances. In view of such
adaption constraints, adaption of the stages and the objects stored therein may include apply the
different functions and thresholds for each stage in order to sort the objects in a precedence
order. The precedence order may be utilized by the ARC 222-5 to shift stored objects toward

eviction in order to meet the adaption constraints.

[0178] As indicated by block 1340, in some embodiments, the cache staging adjustment may
include transitioning to a different caching mode. Some embodiments may dynamically change
modes of operation in order to load balance while meeting usage and latency constraints. An
initial or default mode of operation may correspond to operating from the cloud in a live manner
such that objects are accessed from cache first, then, if necessary, from the cloud. Some
embodiments of the ARC 222-§ may initially (e.g., within a session or time period) cache all
objects that are accessed with /O operations, and then transition to employing staging as cache
usage meets one or more thresholds. The transition to staging may be incremental with one or
more secondary modes of operation. For example, staging may be initially relegated to MRU
and MFU staging, and then expanded to one or more of the other stages as one or more cache
usage thresholds (which may be preliminary to, and lower than, the maximum cache usage

threshold) are met.

[0179] In view of cache usage approaching usage constraints and meeting one or more usage
thresholds, certain transition criteria may be applied incrementally with one or more additional
modes of operation. For example, objects corresponding to write operations may not be initially
discriminated against. Yet, as the cache usage approaches a usage constraint, that discrimination

criteria may be applied after one or more usage thresholds are met.

58

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

[0180] As another example, as the cache usage further approaching a usage constraint and
meeting one or more usage thresholds, the hybrid cloud storage system 400-2 may begin to make
use of extended cache with one or more L2ZARC devices (which may correspond to one or more
low-latency Sides) for lower ranked stages (e.g., LRU and/or LFU stages). As still another
example, as the cache usage further approaching a usage constraint and meeting one or more
usage thresholds, the hybrid cloud storage system 400-2 may begin to make use of local storage
228 in order to conform to latency tolerances with one or more tertiary modes of operation. By
way of a more specific example, rather than evicting a large, sequential streaming read operation
without provisioning for future low-latency access, the extend of the operation and the frequency
of access of the corresponding objects may be sufficient to meet size and frequency thresholds
such that the objects are to be transitioned to local storage 228. In this way, the hybrid cloud
storage system 400-2 may keep the objects available for local-latency read operations, while
freeing up cache capacity for other low-latency access (which could entail other large, sequential
read operations) and avoiding paying cloud latencies should the large, sequential read operation
be called for again. Such selective utilization of both local storage 228 and cloud storage at the
object level may further facilitate masking of cloud latencies while using cache a majority of the
time and load balancing between cloud storage and local storage 228 to operate within latency
tolerances. In various embodiments, this trifurcated storage adaptation can be initiated as a
fallback operational mode or an initial default for certain types of operations have certain

characteristics.

[0181] Accordingly, certain embodiments may alter caching modes and techniques based at
least in part on the characteristics of object access. Certain embodiments may leverage caching
features, cloud storage, and local storage 228 to mask latencies for cloud-based operations. In
such embodiments, a majority of operations may be serviced from cache with cache hit rates
typically exceeding 90% or more, which results in local latencies most of the time. If any local
object is missing or corrupt, the cloud copy of the object may be accessed. With some
embodiments, reading from the cloud object store 404 may only be necessary when there is no

cache hit and the read request cannot be serviced from local storage 228.

[0182] In some embodiments, in lieu of the ARC checking, the local storage checking, and/or
the cloud object store checking disclosed above, the mapping 406 may be used to identify the

59

10

15

20

25

WO 2018/128850 PCT/US2017/067962

location of the one or more objects of interest. As described above, the mapping 406 may
include an object directory and may maintain object states that are updated with every I/O
operation. Cloud object states may be kept in an index, a table, an index-organized table, and/or
the like which may be indexed on a per-object basis. The object states may include object cache
states. The object cache states may indicate locations of objects in any one or combination of
ARC, L2ARC, adaptive stage, local storage, and/or cloud storage. By utilizing the mapping 406,
the cloud interface device 402 may directly identify the location of the one or more objects of
interest. In some embodiments, the cloud interface device 402 may only utilize the mapping 406

in the event that there is no hit persuant to the ARC checking,

[0183] In some embodiments, in addition or in alternative to the caching, the intelligent pool
management include keeping a mirror that continuously syncs with the cloud object storage 404.
At least partially by supporting cloud object data stores as virtual devices, certain embodiments
may provide mirroring between local and cloud storage. Mirroring cloud storage with local
storage may enable local storage read performance while retaining replicated copies of all data in
the cloud. Through the use of the mirror, the benefit of full performance may be provided to the
local system without having to keep multiple copies locally. If any local data is missing or
corrupt, the cloud copy of the data may be accessed. The synchronous mirroring cloud and local

devices may facilitate higher levels of performance.

[0184] To facilitate such synchronous mirroring, certain embodiments may include a mirror
VDEV. FIG. 14 illustrates an instance of an example network file system 200-2 of the hybrid
cloud storage system 400 to facilitate synchronous mirroring, in accordance with certain
embodiments of the present disclosure. The file system 200-2 may correspond to the file system
200-1, but with mirror management integrated directly into a ZFS control stack. Beyond that
which is disclosed with respect to the file system 200-1, the file system 200-2 may include a
mirror VDEV 1402 that facilitates cloud copies of data but local access times/speeds to read the

data.

[0185] In some embodiments, the mirror VDEV 1402 may correspond to one or more VDEVs
of another VDEYV type of a device driver interface inside a ZFS file system architecture. The

ZFS may communicate directly with the mirror VDEV 1402, which may be at a virtual device

60

10

15

20

25

WO 2018/128850 PCT/US2017/067962

layer directly above a driver layer of the file system 200-2 and which, in some embodiments,
correspond to an abstraction of the device driver interface inside the ZFS architecture. The file
system 200-2 may create the mirror VDEV 1402 to be a funnel for I/O operations. In some
embodiments, the mirror VDEV 1402 may be a point with which other components of the file
system 200-2 may communicate primarily. For example, in some embodiments,
communications from the transactional object layer may go through the mirror VDEV 1402 to
the physical layer. More specifically, communications from the DMU 218 may be directed to
the I/O pipeline 224 and to the mirror VDEV 1402. Responsive to such communications, the
mirror VDEV 1402 may direct communications to other VDEVs, such as the VDEV 226 and the
cloud interface device 502. As such, the mirror VDEV 1402 may coordinate I/O operations with

respect to local storage 228 and cloud object storage 404.

[0186] In some embodiments, the mirror VDEV 1402 may only coordinate write operations
with respect to local storage 228 and cloud object storage 404 such that read operations need not
go through the mirror VDEV 1402. With such embodiments, the other VDEVs, such as the
VDEV 226 and the cloud interface device 502, may bypass the mirror VDEV 1402 for read
operations. In alternative embodiments, the mirror VDEV 1402 may coordinate all /O

operations.

[0187] Advantageously, the mirror VDEV 1402 may coordinate write operations so that each
write operation is synchronously performed with respect to local storage 228 via one or more
VDEVs 226 and with respect to the cloud object store 404 via the cloud interface device 502.
This synchronous mirroring of each I/O operation is performed at the object level, not the file
level. The data replications with each I/O operation enables the hybrid cloud storage system 400
to achieve local storage read performance that masks latencies for cloud access. As a default, the
hybrid cloud storage system 400 may read from local storage 228 in order to avoid paying cloud
latencies for the vast majority of read operations. Only when the hybrid cloud storage system
400 determines that local data is missing or corrupt does the hybrid cloud storage system 400
need to access the cloud object store 404 to read a cloud copy of the desired data. Such
exceptions may be performed on an object basis so that the latency for cloud access is

minimized.

61

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0188] FIG. 15 is a block diagram that illustrates an example method 1500 directed to certain
features of the hybrid cloud storage system 400 for synchronous mirroring and cloud latency
masking, in accordance with certain embodiments of the present disclosure. According to
certain embodiments, the method 1500 may begin as indicated by block 1502. However, as
clarified above, certain steps of methods disclosed herein may be shuffled, combined, and/or
performed simultaneously or substantially simultaneously in any suitable manner and may

depend on the implementation chosen.

[0189] As indicated by block 1502, POSIX-compliant request(s) to perform particular
operation(s) (i.e., a transaction(s)) may be received from the application 202. Such an operation
may correspond to writing and/or modifying data. As indicated by block 1504, the POSIX-
compliant request(s) may be forwarded from the operating system, via the system call interface
208, to the DMU 218. As indicated by block 1506, the DMU 218 may translate requests to
perform operations on data objects directly to requests to perform write operations (i.e., I/O
requests) directed to a physical location within the system storage pool 416 and the cloud object

store 404. The DMU 218 may forward the I/O requests to the SPA.

[0190] The mirror VDEV 1402 of the SPA may receive the I/O requests (e.g., by way of the
ARC 222 and the I/O pipeline 224). As indicated by block 1508, the mirror VDEV 1402 may
initiate writing of a data object with synchronous replication on a per-I/O operation basis. One
part of the mirror VDEV 1402 may point to local storage, and one part of the mirror VDEV 1402
may point to the cloud interface device 502 of the cloud storage appliance 402. As indicated by
block 1510, the mirror VDEV 1402 may direct a first instance of the write operation to one or
more of the VDEVs 226. In some embodiments, as indicated by block 1514, the COW
procedure disclosed above (e.g., in view of FIGS. 3A-3D) may proceed in order to write the data

object to the local system storage.

[0191] Asindicated by block 1512, the mirror VDEV 1402 may direct a second instance of the
write operation to the cloud interface device 502 of the cloud storage appliance 402. In some
embodiments, as indicated by block 1516, the COW procedure disclosed above may proceed in
order to write the data object to the local system storage. For example, the method 1500 may

transition to block 712 or another step of the method 700.

62

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

[0192] With each write operation synchronously performed with respect to local storage 228
and with respect to the cloud object store 404, the hybrid cloud storage system 400 may
thereafter intelligently coordinate read operations in order to achieve local storage read
performance that masks latencies for cloud access. At any suitable time after consummation of
the replicative data storage, the hybrid cloud storage system 400 may coordinate such read
operations. Referring again to FIG. 15, as indicated by block 1518, a POSIX-compliant request
to perform one or more particular operations (i.e., one or more transactions) may be received
from the application 202. Such an operation may correspond to reading or otherwise accessing
data. As indicated by block 1520, the POSIX-compliant request may be forwarded from the
operating system, via the system call interface 208, to the DMU 218. As indicated by block
1522, the DMU 218 may translate requests to perform operations on data objects directly to
requests to perform one or more read operations (i.e., one or more I/O requests) directed to the
local storage 228. The SPA may receive the I/O request(s) from the DMU 218. As indicated by
block 1524, responsive to the request(s), the SPA may initiate reading of one or more data
objects from the local storage 228. In some embodiments, the ARC 222 may be checked first for
a cached version of the one or more data objects and, absent a cached version being found, an

attempt to read the one or more data objects from the local storage 228 may then be made.

[0193] As indicated by block 1526, it may be determined whether one or more validated data
objects corresponding to the I/O request(s) exist. This may include the SPA first determining if
one or more objects corresponding to the one or more I/O request(s) are retrievable from the
local storage 228. Then, if such one or more objects are retrievable, the object(s) may be
checked with a checksum(s) from parent node(s) in the logical tree. In various embodiments, the
checking may be performed by one or more of the VDEVs 226, the mirror VDEV 1402, and/or
the /O pipeline 224. As indicated by block 1528, in the case of the data object(s) being
validated, the reading and/or further processing operations of the system 400 may proceed, as the

data has been determined to be not corrupted and not the incorrect version.

[0194] However, in the case of the SPA determining that validated data objects corresponding
to the I/O request(s) does not exist, process flow may transition to block 1530. Such a
determination could correspond to an absence of retrievable data objects corresponding to the

one or more I/O request(s), in which case an error condition may be identified. Similarly, such a

63

10

15

20

25

WO 2018/128850 PCT/US2017/067962

determination could correspond to mismatch of actual and expected checksums of the data
object(s) corresponding to the one or more I/O request(s), in which case an error condition may
also be identified. In either case, the SPA may initiate reading of the one or more data objects
from the cloud object store 404, as indicated by block 1530. In various embodiments, the
initiating of the reading may be performed by one or a combination of the DMU 218, the mirror

VDEYV 1402, the I/O pipeline 224, and/or the cloud interface appliance 402.

[0195] The reading of the one or more data objects from the cloud object store 404 may
include steps previously disclosed herein, for example, with regard to FIG. 9. Such steps may
include one or a combination of issuing I/O request(s) to the cloud interface appliance 402,
sending corresponding cloud interface request(s) to the cloud object store 404 using the mapping
406 of cloud storage objects 414, receiving data object(s) responsive to the object interface
requests, and the like, which are detailed above. As indicated by block 1532, it may be
determined whether a validated data object has been retrieved from the cloud object store 404.
Again, this may involve steps previously disclosed herein, for example, with regard to FIG. 9,
where it is determined whether to validate the data object(s) by the checksum(s) from parent

node(s) in the logical tree.

[0196] In the case of the data being validated, the process flow may transition to block 1528,
and the reading and/or further processing operations of the system 400 may proceed. Further, as
indicated by block 1534, the correct data may be written to the local system storage. In various
embodiments, the correction process may be performed by one or a combination of the DMU
218, the mirror VDEV 1402, the I/O pipeline 224, and/or the cloud interface appliance 402. In
some embodiments, the process flow may transition to block 1514, where a COW procedure may

proceed in order to write the correct data to the local system storage.

[0197] However, in the case of mismatch of actual and expected checksums of the data
object(s), the process flow may transition to block 1536, where remediation processes may be
initiated. This may involve steps previously disclosed herein, for example, with regard to FIG.
9, where remediation processes are disclosed. For example, the remediation processes may
include reissuing one or more cloud interface requests, requesting the correct version of the data

from another cloud object store, and/or the like.

64

10

15

20

25

WO 2018/128850 PCT/US2017/067962

[0198] Advantageously, when an amount of data maintained by the hybrid cloud storage
system 400 exceeds a certain amount, it may become more cost-benefit optimal to transition
from a mirroring mode disclosed above to a caching mode in accordance with embodiments
disclosed with respect to FIGS. 12 and 13. Certain embodiments may make that transition
automatically. The hybrid cloud storage system 400 may begin with mirroring techniques,
proceeding until one or more thresholds are reached. Such thresholds could be defined in terms
of storage usage. For example, when the usage of local storage capacity reaches a threshold
percentage (or absolute value, relative value, etc.), the hybrid cloud storage system 400 may
transition to adaptive I/O staging. In that way, the hybrid cloud storage system 400 may balance
the load imparted on the local storage by shifting operational modes. Then, the hybrid cloud
storage system 400 may the most relevant X amount of data (e.g., 10 TB, and/or the like) and
shunt the rest of the data to the cloud storage. This load balancing may allow for fewer storage

devices, while accommodating increasing amounts of data storage.

[0199] FIG. 16 depicts a simplified diagram of a distributed system 1600 for implementing
certain embodiments in accordance with present disclosure. In the illustrated embodiment,
distributed system 1600 includes one or more client computing devices 1602, 1604, 1606, and
1608, which are configured to execute and operate a client application such as a web browser,
proprietary client (e.g., Oracle Forms), or the like over one or more network(s) 1610. Server
1612 may be communicatively coupled with remote client computing devices 1602, 1604, 1606,

and 1608 via network 1610.

[0200] In various embodiments, server 1612 may be adapted to run one or more services or
software applications provided by one or more of the components of the system. In some
embodiments, these services may be offered as web-based or cloud services or under a Software
as a Service (SaaS) model to the users of client computing devices 1602, 1604, 1606, and/or
1608. Users operating client computing devices 1602, 1604, 1606, and/or 1608 may in turn
utilize one or more client applications to interact with server 1612 to utilize the services provided

by these components.

[0201] In the configuration depicted in the figure, the software components 1618, 1620 and

1622 of system 1600 are shown as being implemented on server 1612. In other embodiments,

65

10

15

20

25

WO 2018/128850 PCT/US2017/067962

one or more of the components of system 1600 and/or the services provided by these
components may also be implemented by one or more of the client computing devices 1602,
1604, 1606, and/or 1608. Users operating the client computing devices may then utilize one or
more client applications to use the services provided by these components. These components
may be implemented in hardware, firmware, software, or combinations thereof. It should be
appreciated that various different system configurations are possible, which may be different
from distributed system 1600. The embodiment shown in the figure is thus one example of a

distributed system for implementing an embodiment system and is not intended to be limiting.

[0202] Client computing devices 1602, 1604, 1606, and/or 1608 may be portable handheld
devices (e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass® head-mounted display), running
software such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems
such as 10S, Windows Phone, Android, BlackBerry, Palm OS, and the like, and being Internet,
e-mail, short message service (SMS), Blackberry®, or other communication protocol enabled.
The client computing devices can be general purpose personal computers including, by way of
example, personal computers and/or laptop computers running various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating systems. The client computing devices
can be workstation computers running any of a variety of commercially-available UNIX® or
UNIX-like operating systems, including without limitation the variety of GNU/Linux operating
systems, such as for example, Google Chrome OS. Alternatively, or in addition, client
computing devices 1602, 1604, 1606, and 1608 may be any other electronic device, such as a
thin-client computer, an Internet-enabled gaming system (e.g., a Microsoft Xbox gaming console
with or without a Kinect® gesture input device), and/or a personal messaging device, capable of

communicating over network(s) 1610.

[0203] Although exemplary distributed system 1600 is shown with four client computing
devices, any number of client computing devices may be supported. Other devices, such as

devices with sensors, etc., may interact with server 1612.

[0204] Network(s) 1610 in distributed system 1600 may be any type of network familiar to

those skilled in the art that can support data communications using any of a variety of

66

10

15

20

25

WO 2018/128850 PCT/US2017/067962

commercially-available protocols, including without limitation TCP/IP (transmission control
protocol/Internet protocol), SNA (systems network architecture), IPX (Internet packet exchange),
AppleTalk, and the like. Merely by way of example, network(s) 1610 can be a local area
network (LAN), such as one based on Ethernet, Token-Ring and/or the like. Network(s) 1610
can be a wide-area network and the Internet. It can include a virtual network, including without
limitation a virtual private network (VPN), an intranet, an extranet, a public switched telephone
network (PSTN), an infra-red network, a wireless network (e.g., a network operating under any
of the Institute of Electrical and Electronics (IEEE) 802.11 suite of protocols, Bluetooth®, and/or

any other wireless protocol); and/or any combination of these and/or other networks.

[0205] Server 1612 may be composed of one or more general purpose computers, specialized
server computers (including, by way of example, PC (personal computer) servers, UNIX®
servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms,
server clusters, or any other appropriate arrangement and/or combination. In various
embodiments, server 1612 may be adapted to run one or more services or software applications
described in the foregoing disclosure. For example, server 1612 may correspond to a server for

performing processing described above according to an embodiment of the present disclosure.

[0206] Server 1612 may run an operating system including any of those discussed above, as
well as any commercially available server operating system. Server 1612 may also run any of a
variety of additional server applications and/or mid-tier applications, including HTTP (hypertext
transport protocol) servers, FTP (file transfer protocol) servers, CGI (common gateway interface)
servers, JAVA® servers, database servers, and the like. Exemplary database servers include
without limitation those commercially available from Oracle, Microsoft, Sybase, IBM

(International Business Machines), and the like.

[0207] In some implementations, server 1612 may include one or more applications to analyze
and consolidate data feeds and/or event updates received from users of client computing devices
1602, 1604, 1606, and 1608. As an example, data feeds and/or event updates may include, but
are not limited to, Twitter® feeds, Facebook® updates or real-time updates received from one or
more third party information sources and continuous data streams, which may include real-time

events related to sensor data applications, financial tickers, network performance measuring tools

67

10

15

20

25

WO 2018/128850 PCT/US2017/067962

(e.g., network monitoring and traffic management applications), clickstream analysis tools,
automobile traffic monitoring, and the like. Server 1612 may also include one or more
applications to display the data feeds and/or real-time events via one or more display devices of

client computing devices 1602, 1604, 1606, and 1608.

[0208] Distributed system 1600 may also include one or more databases 1614 and 1616.
Databases 1614 and 1616 may reside in a variety of locations. By way of example, one or more
of databases 1614 and 1616 may reside on a non-transitory storage medium local to (and/or
resident in) server 1612. Alternatively, databases 1614 and 1616 may be remote from server
1612 and in communication with server 1612 via a network-based or dedicated connection. In
one set of embodiments, databases 1614 and 1616 may reside in a storage-area network (SAN).
Similarly, any necessary files for performing the functions attributed to server 1612 may be
stored locally on server 1612 and/or remotely, as appropriate. In one set of embodiments,
databases 1614 and 1616 may include relational databases, such as databases provided by
Oracle, that are adapted to store, update, and retrieve data in response to SQL-formatted

commands.

[0209] FIG. 17 is a simplified block diagram of one or more components of a system
environment 1700 by which services provided by one or more components of a system may be
offered as cloud services, in accordance with certain embodiments of the present disclosure. In
the illustrated embodiment, system environment 1700 includes one or more client computing
devices 1704, 1706, and 1708 that may be used by users to interact with a cloud infrastructure
system 1702 that provides cloud services. The client computing devices may be configured to
operate a client application such as a web browser, a proprietary client application (e.g., Oracle
Forms), or some other application, which may be used by a user of the client computing device
to interact with cloud infrastructure system 1702 to use services provided by cloud infrastructure

system 1702.

[0210] It should be appreciated that cloud infrastructure system 1702 depicted in the figure
may have other components than those depicted. Further, the embodiment shown in the figure is
only one example of a cloud infrastructure system that may incorporate an embodiment of the

invention. In some other embodiments, cloud infrastructure system 1702 may have more or

68

10

15

20

25

WO 2018/128850 PCT/US2017/067962

fewer components than shown in the figure, may combine two or more components, or may have

a different configuration or arrangement of components.

[0211] Client computing devices 1704, 1706, and 1708 may be devices similar to those
described above for 1602, 1604, 1606, and 1608. Although exemplary system environment 1700
is shown with three client computing devices, any number of client computing devices may be
supported. Other devices such as devices with sensors, etc. may interact with cloud

infrastructure system 1702.

[0212] Network(s) 1710 may facilitate communications and exchange of data between clients
1704, 1706, and 1708 and cloud infrastructure system 1702. Each network may be any type of
network familiar to those skilled in the art that can support data communications using any of a
variety of commercially-available protocols, including those described above for network(s)
1610. Cloud infrastructure system 1702 may comprise one or more computers and/or servers

that may include those described above for server 1612.

[0213] In certain embodiments, services provided by the cloud infrastructure system may
include a host of services that are made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions, Web-based e-mail services, hosted
office suites and document collaboration services, database processing, managed technical
support services, and the like. Services provided by the cloud infrastructure system can
dynamically scale to meet the needs of its users. A specific instantiation of a service provided by
cloud infrastructure system is referred to herein as a “service instance.” In general, any service
made available to a user via a communication network, such as the Internet, from a cloud service

2

provider's system is referred to as a “cloud service.” Typically, in a public cloud environment,
servers and systems that make up the cloud service provider's system are different from the
customer's own on-premises servers and systems. For example, a cloud service provider's
system may host an application, and a user may, via a communication network such as the

Internet, on demand, order and use the application.

[0214] In some examples, a service in a computer network cloud infrastructure may include
protected computer network access to storage, a hosted database, a hosted web server, a software

application, or other service provided by a cloud vendor to a user, or as otherwise known in the

69

10

15

20

25

WO 2018/128850 PCT/US2017/067962

art. For example, a service can include password-protected access to remote storage on the cloud
through the Internet. As another example, a service can include a web service-based hosted
relational database and a script-language middleware engine for private use by a networked
developer. As another example, a service can include access to an email software application

hosted on a cloud vendor's web site.

[0215] In certain embodiments, cloud infrastructure system 1702 may include a suite of
applications, middleware, and database service offerings that are delivered to a customer in a
self-service, subscription-based, elastically scalable, reliable, highly available, and secure
manner. An example of such a cloud infrastructure system is the Oracle Public Cloud provided

by the present assignee.

[0216] In various embodiments, cloud infrastructure system 1702 may be adapted to
automatically provision, manage and track a customer’s subscription to services offered by cloud
infrastructure system 1702. Cloud infrastructure system 1702 may provide the cloud services via
different deployment models. For example, services may be provided under a public cloud
model in which cloud infrastructure system 1702 is owned by an organization selling cloud
services (e.g., owned by Oracle) and the services are made available to the general public or
different industry enterprises. As another example, services may be provided under a private
cloud model in which cloud infrastructure system 1702 is operated solely for a single
organization and may provide services for one or more entities within the organization. The
cloud services may also be provided under a community cloud model in which cloud
infrastructure system 1702 and the services provided by cloud infrastructure system 1702 are
shared by several organizations in a related community. The cloud services may also be

provided under a hybrid cloud model, which is a combination of two or more different models.

[0217] In some embodiments, the services provided by cloud infrastructure system 1702 may
include one or more services provided under Software as a Service (SaaS) category, Platform as
a Service (PaaS) category, Infrastructure as a Service (IaaS) category, or other categories of
services including hybrid services. A customer, via a subscription order, may order one or more
services provided by cloud infrastructure system 1702. Cloud infrastructure system 1702 then

performs processing to provide the services in the customer’s subscription order.

70

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

[0218] In some embodiments, the services provided by cloud infrastructure system 1702 may
include, without limitation, application services, platform services and infrastructure services. In
some examples, application services may be provided by the cloud infrastructure system via a
SaaS platform. The SaaS platform may be configured to provide cloud services that fall under
the SaaS category. For example, the SaaS platform may provide capabilities to build and deliver
a suite of on-demand applications on an integrated development and deployment platform. The
SaaS platform may manage and control the underlying software and infrastructure for providing
the SaaS services. By utilizing the services provided by the SaaS platform, customers can utilize
applications executing on the cloud infrastructure system. Customers can acquire the application
services without the need for customers to purchase separate licenses and support. Various
different SaaS services may be provided. Examples include, without limitation, services that
provide solutions for sales performance management, enterprise integration, and business

flexibility for large organizations.

[0219] In some embodiments, platform services may be provided by the cloud infrastructure
system via a PaaS platform. The PaaS platform may be configured to provide cloud services that
fall under the PaaS category. Examples of platform services may include without limitation
services that enable organizations (such as Oracle) to consolidate existing applications on a
shared, common architecture, as well as the ability to build new applications that leverage the
shared services provided by the platform. The PaaS platform may manage and control the
underlying software and infrastructure for providing the PaaS services. Customers can acquire
the PaaS services provided by the cloud infrastructure system without the need for customers to
purchase separate licenses and support. Examples of platform services include, without

limitation, Oracle Java Cloud Service (JCS), Oracle Database Cloud Service (DBCS), and others.

[0220] By utilizing the services provided by the PaaS platform, customers can employ
programming languages and tools supported by the cloud infrastructure system and also control
the deployed services. In some embodiments, platform services provided by the cloud
infrastructure system may include database cloud services, middleware cloud services (e.g.,
Oracle Fusion Middleware services), and Java cloud services. In one embodiment, database
cloud services may support shared service deployment models that enable organizations to pool

database resources and offer customers a Database as a Service in the form of a database cloud.

71

10

15

20

25

WO 2018/128850 PCT/US2017/067962

Middleware cloud services may provide a platform for customers to develop and deploy various
business applications, and Java cloud services may provide a platform for customers to deploy

Java applications, in the cloud infrastructure system.

[0221] Various different infrastructure services may be provided by an IaaS platform in the
cloud infrastructure system. The infrastructure services facilitate the management and control of
the underlying computing resources, such as storage, networks, and other fundamental
computing resources for customers utilizing services provided by the SaaS platform and the PaaS

platform.

[0222] In certain embodiments, cloud infrastructure system 1702 may also include
infrastructure resources 1730 for providing the resources used to provide various services to
customers of the cloud infrastructure system. In one embodiment, infrastructure resources 1730
may include pre-integrated and optimized combinations of hardware, such as servers, storage,
and networking resources to execute the services provided by the PaaS platform and the SaaS
platform. In some embodiments, resources in cloud infrastructure system 1702 may be shared by
multiple users and dynamically re-allocated per demand. Additionally, resources may be
allocated to users in different time zones. For example, cloud infrastructure system 1730 may
enable a first set of users in a first time zone to utilize resources of the cloud infrastructure
system for a specified number of hours and then enable the re-allocation of the same resources to
another set of users located in a different time zone, thereby maximizing the utilization of

resources.

[0223] In certain embodiments, a number of internal shared services 1732 may be provided
that are shared by different components or modules of cloud infrastructure system 1702 and by
the services provided by cloud infrastructure system 1702. These internal shared services may
include, without limitation, a security and identity service, an integration service, an enterprise
repository service, an enterprise manager service, a virus scanning and white list service, a high
availability, backup and recovery service, service for enabling cloud support, an email service, a
notification service, a file transfer service, and the like. In certain embodiments, cloud
infrastructure system 1702 may provide comprehensive management of cloud services (e.g.,

SaaS, PaaS, and IaaS services) in the cloud infrastructure system. In one embodiment, cloud

72

10

15

20

25

WO 2018/128850 PCT/US2017/067962

management functionality may include capabilities for provisioning, managing and tracking a

customer’s subscription received by cloud infrastructure system 1702, and the like.

[0224] In certain embodiments, as depicted in the figure, cloud management functionality may
be provided by one or more modules, such as an order management module 1720, an order
orchestration module 1722, an order provisioning module 1724, an order management and
monitoring module 1726, and an identity management module 1728. These modules may
include or be provided using one or more computers and/or servers, which may be general
purpose computers, specialized server computers, server farms, server clusters, or any other

appropriate arrangement and/or combination.

[0225] In exemplary operation 1734, a customer using a client device, such as client device
1704, 1706 or 1708, may interact with cloud infrastructure system 1702 by requesting one or
more services provided by cloud infrastructure system 1702 and placing an order for a
subscription for one or more services offered by cloud infrastructure system 1702. In certain
embodiments, the customer may access a cloud User Interface (UI), cloud UI 1712, cloud Ul
1714 and/or cloud UI 1716 and place a subscription order via these Uls. The order information
received by cloud infrastructure system 1702 in response to the customer placing an order may
include information identifying the customer and one or more services offered by the cloud

infrastructure system 1702 that the customer intends to subscribe to.

[0226] After an order has been placed by the customer, the order information is received via
the cloud Uls, 1712, 1714 and/or 1716. At operation 1736, the order is stored in order database
1718. Order database 1718 can be one of several databases operated by cloud infrastructure
system 1718 and operated in conjunction with other system elements. At operation 1738, the
order information is forwarded to an order management module 1720. In some instances, order
management module 1720 may be configured to perform billing and accounting functions related

to the order, such as verifying the order, and upon verification, booking the order.

[0227] At operation 1740, information regarding the order is communicated to an order
orchestration module 1722. Order orchestration module 1722 may utilize the order information

to orchestrate the provisioning of services and resources for the order placed by the customer. In

73

10

15

20

25

WO 2018/128850 PCT/US2017/067962

some instances, order orchestration module 1722 may orchestrate the provisioning of resources

to support the subscribed services using the services of order provisioning module 1724.

[0228] In certain embodiments, order orchestration module 1722 enables the management of
business processes associated with each order and applies business logic to determine whether an
order should proceed to provisioning. At operation 1742, upon receiving an order for a new
subscription, order orchestration module 1722 sends a request to order provisioning module 1724
to allocate resources and configure those resources needed to fulfill the subscription order.
Order provisioning module 1724 enables the allocation of resources for the services ordered by
the customer. Order provisioning module 1724 provides a level of abstraction between the cloud
services provided by cloud infrastructure system 1700 and the physical implementation layer that
is used to provision the resources for providing the requested services. Order orchestration
module 1722 may thus be isolated from implementation details, such as whether or not services
and resources are actually provisioned on the fly or pre-provisioned and only allocated/assigned

upon request.

[0229] At operation 1744, once the services and resources are provisioned, a notification of the
provided service may be sent to customers on client devices 1704, 1706, and/or 1708 by order
provisioning module 1724 of cloud infrastructure system 1702. At operation 1746, the
customer’s subscription order may be managed and tracked by an order management and
monitoring module 1726. In some instances, order management and monitoring module 1726
may be configured to collect usage statistics for the services in the subscription order, such as the
amount of storage used, the amount data transferred, the number of users, and the amount of

system up time and system down time.

[0230] In certain embodiments, cloud infrastructure system 1700 may include an identity
management module 1728. Identity management module 1728 may be configured to provide
identity services, such as access management and authorization services in cloud infrastructure
system 1700. In some embodiments, identity management module 1728 may control
information about customers who wish to utilize the services provided by cloud infrastructure
system 1702. Such information can include information that authenticates the identities of such

customers and information that describes which actions those customers are authorized to

74

10

15

20

25

WO 2018/128850 PCT/US2017/067962

perform relative to various system resources (e.g., files, directories, applications, communication
ports, memory segments, etc.). Identity management module 1728 may also include the
management of descriptive information about each customer and about how and by whom that

descriptive information can be accessed and modified.

[0231] FIG. 18 illustrates an exemplary computer system 1800, in which various embodiments
of the present invention may be implemented. The system 1800 may be used to implement any
of the computer systems described herein. As shown in the figure, computer system 1800
includes a processing unit 1804 that communicates with a number of peripheral subsystems via a
bus subsystem 1802. These peripheral subsystems may include a processing acceleration unit
1806, an I/O subsystem 1808, a storage subsystem 1818 and a communications subsystem 1824,
Storage subsystem 1818 includes tangible computer-readable storage media 1822 and a system

memory 1810.

[0232] Bus subsystem 1802 provides a mechanism for letting the various components and
subsystems of computer system 1800 communicate with each other as intended. Although bus
subsystem 1802 is shown schematically as a single bus, alternative embodiments of the bus
subsystem may utilize multiple buses. Bus subsystem 1802 may be any of several types of bus
structures including a memory bus or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such architectures may include an Industry
Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus, which can be implemented as a Mezzanine bus

manufactured to the IEEE P1386.1 standard.

[0233] Processing unit 1804, which can be implemented as one or more integrated circuits
(e.g., a conventional microprocessor or microcontroller), controls the operation of computer
system 1800. One or more processors may be included in processing unit 1804. These
processors may include single core or multicore processors. In certain embodiments, processing
unit 1804 may be implemented as one or more independent processing units 1832 and/or 1834

with single or multicore processors included in each processing unit. In other embodiments,

75

10

15

20

25

WO 2018/128850 PCT/US2017/067962

processing unit 1804 may also be implemented as a quad-core processing unit formed by

integrating two dual-core processors into a single chip.

[0234] In various embodiments, processing unit 1804 can execute a variety of programs in
response to program code and can maintain multiple concurrently executing programs or
processes. At any given time, some or all of the program code to be executed can be resident in
processor(s) 1804 and/or in storage subsystem 1818. Through suitable programming,
processor(s) 1804 can provide various functionalities described above. Computer system 1800
may additionally include a processing acceleration unit 1806, which can include a digital signal
processor (DSP), a special-purpose processor, and/or the like. In some embodiments, the
processing acceleration unit 1806 may include or work in conjunction with an acceleration

engine such as that disclosed herein to improve computer system functioning.

[0235] T/O subsystem 1808 may include user interface input devices and user interface output
devices. User interface input devices may include a keyboard, pointing devices such as a mouse
or trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel,
a dial, a button, a switch, a keypad, audio input devices with voice command recognition
systems, microphones, and other types of input devices. User interface input devices may
include, for example, motion sensing and/or gesture recognition devices such as the Microsoft
Kinect® motion sensor that enables users to control and interact with an input device, such as the
Microsoft Xbox® 360 game controller, through a natural user interface using gestures and
spoken commands. User interface input devices may also include eye gesture recognition
devices such as the Google Glass® blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users and transforms the eye gestures as
input into an input device (e.g., Google Glass®). Additionally, user interface input devices may
include voice recognition sensing devices that enable users to interact with voice recognition

systems (e.g., Siri® navigator), through voice commands.

[0236] User interface input devices may also include, without limitation, three dimensional
(3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and audio/visual devices
such as speakers, digital cameras, digital camcorders, portable media players, webcams, image

scanners, fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and

76

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

eye gaze tracking devices. Additionally, user interface input devices may include, for example,
medical imaging input devices such as computed tomography, magnetic resonance imaging,
position emission tomography, medical ultrasonography devices. User interface input devices
may also include, for example, audio input devices such as MIDI keyboards, digital musical

instruments and the like.

[0237] User interface output devices may include a display subsystem, indicator lights, or non-
visual displays such as audio output devices, etc. The display subsystem may be a cathode ray
tube (CRT), a flat-panel device, such as that using a liquid crystal display (LCD) or plasma
display, a projection device, a touch screen, and the like. In general, use of the term "output
device" is intended to include all possible types of devices and mechanisms for outputting
information from computer system 1800 to a user or other computer. For example, user interface
output devices may include, without limitation, a variety of display devices that visually convey
text, graphics and audio/video information such as monitors, printers, speakers, headphones,

automotive navigation systems, plotters, voice output devices, and modems.

[0238] Computer system 1800 may comprise a storage subsystem 1818 that comprises
software elements, shown as being currently located within a system memory 1810. System
memory 1810 may store program instructions that are loadable and executable on processing unit
1804, as well as data generated during the execution of these programs. Depending on the
configuration and type of computer system 1800, system memory 1810 may be volatile (such as
random access memory (RAM)) and/or non-volatile (such as read-only memory (ROM), flash
memory, etc.) The RAM typically contains data and/or program modules that are immediately
accessible to and/or presently being operated and executed by processing unit 1804. In some
implementations, system memory 1810 may include multiple different types of memory, such as
static random access memory (SRAM) or dynamic random access memory (DRAM). In some
implementations, a basic input/output system (BIOS), containing the basic routines that help to
transfer information between elements within computer system 1800, such as during start-up,
may typically be stored in the ROM. By way of example, and not limitation, system memory
1810 also illustrates application programs 1812, which may include client applications, Web
browsers, mid-tier applications, relational database management systems (RDBMS), etc,

program data 1814, and an operating system 1816. By way of example, operating system 1816

77

10

15

20

25

WO 2018/128850 PCT/US2017/067962

may include various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux
operating systems, a variety of commercially-available UNIX® or UNIX-like operating systems
(including without limitation the variety of GNU/Linux operating systems, the Google Chrome®
OS, and the like) and/or mobile operating systems such as i10S, Windows® Phone, Android®
OS, BlackBerry® 10 OS, and Palm® OS operating systems.

[0239] Storage subsystem 1818 may also provide a tangible computer-readable storage
medium for storing the basic programming and data constructs that provide the functionality of
some embodiments. Software (programs, code modules, instructions) that when executed by a
processor provide the functionality described above may be stored in storage subsystem 1818.
These software modules or instructions may be executed by processing unit 1804. Storage
subsystem 1818 may also provide a repository for storing data used in accordance with the

present invention.

[0240] Storage subsystem 1800 may also include a computer-readable storage media reader
1820 that can further be connected to computer-readable storage media 1822. Together and,
optionally, in combination with system memory 1810, computer-readable storage media 1822
may comprehensively represent remote, local, fixed, and/or removable storage devices plus
storage media for temporarily and/or more permanently containing, storing, transmitting, and

retrieving computer-readable information.

[0241] Computer-readable storage media 1822 containing code, or portions of code, can also
include any appropriate media known or used in the art, including storage media and
communication media, such as but not limited to, volatile and non-volatile, removable and non-
removable media implemented in any method or technology for storage and/or transmission of
information. This can include tangible computer-readable storage media such as RAM, ROM,
electronically erasable programmable ROM (EEPROM), flash memory or other memory
technology, CD-ROM, digital versatile disk (DVD), or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible
computer readable media. This can also include nontangible computer-readable media, such as
data signals, data transmissions, or any other medium which can be used to transmit the desired

information and which can be accessed by computing system 1800.

78

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

[0242] By way of example, computer-readable storage media 1822 may include a hard disk
drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk
drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk
drive that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM,
DVD, and Blu-Ray® disk, or other optical media. Computer-readable storage media 1822 may
include, but is not limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash
drives, secure digital (SD) cards, DVD disks, digital video tape, and the like. Computer-readable
storage media 1822 may also include, solid-state drives (SSD) based on non-volatile memory
such as flash-memory based SSDs, enterprise flash drives, solid state ROM, and the like, SSDs
based on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magneto resistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of
DRAM and flash memory based SSDs. The disk drives and their associated computer-readable
media may provide non-volatile storage of computer-readable instructions, data structures,

program modules, and other data for computer system 1800.

[0243] Communications subsystem 1824 provides an interface to other computer systems and
networks. Communications subsystem 1824 serves as an interface for receiving data from and
transmitting data to other systems from computer system 1800. For example, communications
subsystem 1824 may enable computer system 1800 to connect to one or more devices via the
Internet. In some embodiments communications subsystem 1824 can include radio frequency
(RF) transceiver components for accessing wireless voice and/or data networks (e.g., using
cellular telephone technology, advanced data network technology, such as 18G, 4G or EDGE
(enhanced data rates for global evolution), WiFi (IEEE 802.11 family standards, or other mobile
communication technologies, or any combination thereof), global positioning system (GPS)
receiver components, and/or other components. In some embodiments communications
subsystem 1824 can provide wired network connectivity (e.g., Ethernet) in addition to or instead

of a wireless interface.

[0244] In some embodiments, communications subsystem 1824 may also receive input
communication in the form of structured and/or unstructured data feeds 1826, event streams
1828, event updates 1830, and the like on behalf of one or more users who may use computer

system 1800. By way of example, communications subsystem 1824 may be configured to

79

10

15

20

25

WO 2018/128850 PCT/US2017/067962

receive data feeds 1826 in real-time from users of social networks and/or other communication
services such as Twitter® feeds, Facebook® updates, web feeds such as Rich Site Summary

(RSS) feeds, and/or real-time updates from one or more third party information sources.

[0245] Additionally, communications subsystem 1824 may also be configured to receive data
in the form of continuous data streams, which may include event streams 1828 of real-time
events and/or event updates 1830, that may be continuous or unbounded in nature with no
explicit end. Examples of applications that generate continuous data may include, for example,
sensor data applications, financial tickers, network performance measuring tools (e.g., network
monitoring and traffic management applications), clickstream analysis tools, automobile traffic
monitoring, and the like. Communications subsystem 1824 may also be configured to output the
structured and/or unstructured data feeds 1826, event streams 1828, event updates 1830, and the
like to one or more databases that may be in communication with one or more streaming data

source computers coupled to computer system 1800.

[0246] Computer system 1800 can be one of various types, including a handheld portable
device (e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device
(e.g., a Google Glass® head mounted display), a PC, a workstation, a mainframe, a kiosk, a
server rack, or any other data processing system. Due to the ever-changing nature of computers
and networks, the description of computer system 1800 depicted in the figure is intended only as
a specific example. Many other configurations having more or fewer components than the
system depicted in the figure are possible. For example, customized hardware might also be
used and/or particular elements might be implemented in hardware, firmware, software
(including applets), or a combination. Further, connection to other computing devices, such as
network input/output devices, may be employed. Based on the disclosure and teachings
provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to

implement the various embodiments.

[0247] In the foregoing description, for the purposes of explanation, numerous specific details
were set forth in order to provide a thorough understanding of various embodiments of the

present invention. It will be apparent, however, to one skilled in the art that embodiments of the

80

10

15

20

25

WO 2018/128850 PCT/US2017/067962

present invention may be practiced without some of these specific details. In other instances,

well-known structures and devices are shown in block diagram form.

[0248] The foregoing description provides exemplary embodiments only, and is not intended
to limit the scope, applicability, or configuration of the disclosure. Rather, the foregoing
description of the exemplary embodiments will provide those skilled in the art with an enabling
description for implementing an exemplary embodiment. It should be understood that various
changes may be made in the function and arrangement of elements without departing from the

spirit and scope of the invention as set forth in the appended claims.

[0249] Specific details are given in the foregoing description to provide a thorough
understanding of the embodiments. However, it will be understood by one of ordinary skill in
the art that the embodiments may be practiced without these specific details. For example,
circuits, systems, networks, processes, and other components may have been shown as
components in block diagram form in order not to obscure the embodiments in unnecessary
detail. In other instances, well-known circuits, processes, algorithms, structures, and techniques

may have been shown without unnecessary detail in order to avoid obscuring the embodiments.

[0250] Also, it is noted that individual embodiments may have been described as a process
which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a
block diagram. Although a flowchart may have described the operations as a sequential process,
many of the operations can be performed in parallel or concurrently. In addition, the order of the
operations may be re-arranged. A process is terminated when its operations are completed, but
could have additional steps not included in a figure. A process may correspond to a method, a
function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a
function, its termination can correspond to a return of the function to the calling function or the

main function.

[0251] The term “computer-readable medium” includes, but is not limited to portable or fixed
storage devices, optical storage devices, wireless channels and various other mediums capable of
storing, containing, or carrying instruction(s) and/or data. A code segment or machine-
executable instructions may represent a procedure, a function, a subprogram, a program, a

routine, a subroutine, a module, a software package, a class, or any combination of instructions,

81

10

15

20

25

WO 2018/128850 PCT/US2017/067962

data structures, or program statements. A code segment may be coupled to another code
segment or a hardware circuit by passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments, parameters, data, etc., may be passed,
forwarded, or transmitted via any suitable means including memory sharing, message passing,

token passing, network transmission, etc.

[0252] Furthermore, embodiments may be implemented by hardware, software, firmware,
middleware, microcode, hardware description languages, or any combination thereof. When
implemented in software, firmware, middleware or microcode, the program code or code
segments to perform the necessary tasks may be stored in a machine readable medium. A

processor(s) may perform the necessary tasks.

[0253] In the foregoing specification, aspects of the invention are described with reference to
specific embodiments thereof, but those skilled in the art will recognize that the invention is not
limited thereto. Various features and aspects of the above-described invention may be used
individually or jointly. Further, embodiments can be utilized in any number of environments and
applications beyond those described herein without departing from the broader spirit and scope
of the specification. The specification and drawings are, accordingly, to be regarded as

illustrative rather than restrictive.

[0254] Additionally, for the purposes of illustration, methods were described in a particular
order. It should be appreciated that in alternate embodiments, the methods may be performed in
a different order than that described. It should also be appreciated that the methods described
above may be performed by hardware components or may be embodied in sequences of
machine-executable instructions, which may be used to cause a machine, such as a general-
purpose or special-purpose processor or logic circuits programmed with the instructions to
perform the methods. These machine-executable instructions may be stored on one or more
machine readable mediums, such as CD-ROMSs or other type of optical disks, floppy diskettes,
ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, flash memory, or other types of
machine-readable mediums suitable for storing electronic instructions. Alternatively, the

methods may be performed by a combination of hardware and software.

82

10

WO 2018/128850 PCT/US2017/067962

[0255] Also, the terms in the claims have their plain, ordinary meaning unless otherwise
explicitly and clearly defined by the patentee. The indefinite articles “a” or “an,” as used in the
claims, are defined herein to mean one or more than one of the element that the particular article
introduces; and subsequent use of the definite article “the” is not intended to negate that

2%

meaning. Furthermore, the use of ordinal number terms, such as “first,” “second,” etc., to clarify
different elements in the claims is not intended to impart a particular position in a series, or any
other sequential character or order, to the elements to which the ordinal number terms have been

applied.

83

10

15

20

25

WO 2018/128850 PCT/US2017/067962

WHAT IS CLAIMED:

1. A method of transforming ZFS blocks on a cloud object store that is
remote from a ZFS system, the method comprising:
receiving, at an application layer of the ZFS system and through a system call
interface of an interface layer of the ZFS system, a first request to store or modify a file, the first
request including file data;
generating, at a transactional object layer of the ZFS system, a plurality of data
blocks, each data block of the plurality of data blocks corresponding to at least a portion of the
file data;
receiving, at the application layer of the ZFS system and through the system call
interface of the interface layer of the ZFS system, one or more communications that identify one
or more transformation actions to perform on the plurality of data blocks, the one or more
transformation actions including one or more of’
a compression type to compress each data block of the plurality of data
blocks by; and
an encryption type to encrypt each data block of the plurality of data
blocks, wherein an encryption key associated with the encryption type is retrieved locally
from the ZFS system;
transforming each data block of the plurality of data blocks to form a plurality of
transformed blocks by performing the one or more transformation actions on each data block of
the plurality of data blocks;
generating, at the transactional object layer of the ZFS system, a plurality of
metadata blocks corresponding to the plurality of transformed blocks, the plurality of metadata
blocks being configured to hierarchically point to lower-level blocks associated with the file and
thereby correspond to at least part of a tree hierarchy for the file, wherein:
each metadata block of the plurality of metadata blocks includes one or
more address pointers, each address pointer of the one or more address pointers being
pointed to a transformed block of the plurality of transformed blocks or to a metadata

block of the plurality of metadata blocks;

84

10

15

20

25

WO 2018/128850 PCT/US2017/067962

each transformed block of the plurality of transformed blocks being
pointed to by at least one metadata block of the plurality of metadata blocks;
the plurality of metadata blocks includes a root block that is positioned at
a top of the tree hierarchy for the file and one or more non-root metadata blocks; and
each non-root metadata block of the plurality of metadata blocks being
pointed to by at least one metadata block of the plurality of metadata blocks of the tree
hierarchy of the file;
causing a set of cloud storage objects to be stored in the cloud object store by
transmitting the plurality of transformed blocks and the plurality of metadata blocks to a hybrid
cloud storage system, the hybrid cloud storage system managing data storage in the cloud object
store;
transmitting, to the hybrid cloud storage system, one or more second requests for
a set of addresses, each address of the set of addresses corresponding to a transformed block of
the plurality of transformed blocks or a metadata block of the plurality of metadata blocks; and
receiving, from the hybrid cloud storage system, one or more responses to the one
or more second requests, each response of the one or more responses identifying an address
corresponding to a transformed block of the plurality of transformed blocks or a metadata block
of the plurality of metadata blocks, the address identifying a storage location in the cloud object

store.

2. The method of transforming ZFS blocks on a cloud object store that is
remote from a ZFS system of Claim 1, wherein the compression type includes one of: LZ4,

LZJB, GZIP, and ZLE.

3. The method of transforming ZFS blocks on a cloud object store that is
remote from a ZFS system of Claim 1, wherein the encryption type includes AES with key

lengths including 128, 192, and 256.

4. The method of transforming ZFS blocks on a cloud object store that is

remote from a ZFS system of Claim 1, wherein the encryption key is randomly generated.

85

10

15

20

25

WO 2018/128850 PCT/US2017/067962

5. The method of transforming ZFS blocks on a cloud object store that is
remote from a ZFS system of Claim 1, wherein a wrapping key is used to decrypt the encryption

key.

6. The method of transforming ZFS blocks on a cloud object store that is
remote from a ZFS system of Claim 5, wherein a wrapping key is a stored passphrase or an AES

key.

7. The method of transforming ZFS blocks on a cloud object store that is

remote from a ZFS system of Claim 1, wherein a compression ratio is 2 to 1.

8. One or more non-transitory tangible computer-readable storage media
storing computer-executable instructions for performing a computer process for transforming
ZFS blocks on a cloud object store that is remote from a ZFS system on a computing system, the
computer process comprising:

receiving, at an application layer of the ZFS system and through a system call
interface of an interface layer of the ZFS system, a first request to store or modify a file, the first
request including file data;

generating, at a transactional object layer of the ZFS system, a plurality of data
blocks, each data block of the plurality of data blocks corresponding to at least a portion of the
file data;

receiving, at the application layer of the ZFS system and through the system call
interface of the interface layer of the ZFS system, one or more communications that identify one
or more transformation actions to perform on the plurality of data blocks, the one or more
transformation actions including one or more of’

a compression type to compress each data block of the plurality of data
blocks by; and

an encryption type to encrypt each data block of the plurality of data
blocks, wherein an encryption key associated with the encryption type is retrieved locally

from the ZFS system; and

86

10

15

20

25

30

WO 2018/128850 PCT/US2017/067962

transforming each data block of the plurality of data blocks to form a plurality of
transformed blocks by performing the one or more transformation actions on each data block of
the plurality of data blocks; and
generating, at the transactional object layer of the ZFS system, a plurality of
metadata blocks corresponding to the plurality of transformed blocks, the plurality of metadata
blocks being configured to hierarchically point to lower-level blocks associated with the file and
thereby correspond to at least part of a tree hierarchy for the file, wherein:
each metadata block of the plurality of metadata blocks includes one or
more address pointers, each address pointer of the one or more address pointers being
pointed to a transformed block of the plurality of transformed blocks or to a metadata
block of the plurality of metadata blocks;
each transformed block of the plurality of transformed blocks being
pointed to by at least one metadata block of the plurality of metadata blocks;
the plurality of metadata blocks includes a root block that is positioned at
a top of the tree hierarchy for the file and one or more non-root metadata blocks; and
each non-root metadata block of the plurality of metadata blocks being
pointed to by at least one metadata block of the plurality of metadata blocks of the tree
hierarchy of the file;
causing a set of cloud storage objects to be stored in the cloud object store by
transmitting the plurality of transformed blocks and the plurality of metadata blocks to a hybrid
cloud storage system, the hybrid cloud storage system managing data storage in the cloud object
store;
transmitting, to the hybrid cloud storage system, one or more second requests for
a set of addresses, each address of the set of addresses corresponding to a transformed block of
the plurality of transformed blocks or a metadata block of the plurality of metadata blocks; and
receiving, from the hybrid cloud storage system, one or more responses to the one
or more second requests, each response of the one or more responses identifying an address
corresponding to a transformed block of the plurality of transformed blocks or a metadata block
of the plurality of metadata blocks, the address identifying a storage location in the cloud object

store.

87

10

15

20

25

WO 2018/128850 PCT/US2017/067962

9. The one or more non-transitory tangible computer-readable storage media
storing computer-executable instructions for performing a computer process for transforming
ZFS blocks on a cloud object store that is remote from a ZFS system on a computing system of

Claim 8, wherein the compression type includes one of: LZ4, LZJB, GZIP, and ZLE.

10. The one or more non-transitory tangible computer-readable storage media
storing computer-executable instructions for performing a computer process for transforming
ZFS blocks on a cloud object store that is remote from a ZFS system on a computing system of
Claim 8, wherein the encryption type includes AES with key lengths including 128, 192, and
256.

11. The one or more non-transitory tangible computer-readable storage media
storing computer-executable instructions for performing a computer process for transforming
ZFS blocks on a cloud object store that is remote from a ZFS system on a computing system of

Claim 8, wherein the encryption key is randomly generated.

12. The one or more non-transitory tangible computer-readable storage media
storing computer-executable instructions for performing a computer process for transforming
ZFS blocks on a cloud object store that is remote from a ZFS system on a computing system of

Claim 8, wherein a wrapping key is used to decrypt the encryption key.

13. The one or more non-transitory tangible computer-readable storage media
storing computer-executable instructions for performing a computer process for transforming
ZFS blocks on a cloud object store that is remote from a ZFS system on a computing system of

Claim 12, wherein a wrapping key is a stored passphrase or an AES key.

14. The one or more non-transitory tangible computer-readable storage media
storing computer-executable instructions for performing a computer process for transforming
ZFS blocks on a cloud object store that is remote from a ZFS system on a computing system of

Claim 8, wherein a compression ratio is 2to 1.

88

10

15

20

25

WO 2018/128850 PCT/US2017/067962

15. A processor-based system for transforming ZFS blocks on a cloud object
store that is remote from a ZFS system, the processor-based system performing operations
including:

receiving, at an application layer of the ZFS system and through a system call
interface of an interface layer of the ZFS system, a first request to store or modify a file, the first
request including file data;

generating, at a transactional object layer of the ZFS system, a plurality of data
blocks, each data block of the plurality of data blocks corresponding to at least a portion of the
file data;

receiving, at the application layer of the ZFS system and through the system call
interface of the interface layer of the ZFS system, one or more communications that identify one
or more transformation actions to perform on the plurality of data blocks, the one or more
transformation actions including one or more of’

a compression type to compress each data block of the plurality of data
blocks by; and

an encryption type to encrypt each data block of the plurality of data
blocks, wherein an encryption key associated with the encryption type is retrieved locally
from the ZFS system; and

transforming each data block of the plurality of data blocks to form a plurality of
transformed blocks by performing the one or more transformation actions on each data block of
the plurality of data blocks;

generating, at the transactional object layer of the ZFS system, a plurality of
metadata blocks corresponding to the plurality of transformed blocks, the plurality of metadata
blocks being configured to hierarchically point to lower-level blocks associated with the file and
thereby correspond to at least part of a tree hierarchy for the file, wherein:

each metadata block of the plurality of metadata blocks includes one or
more address pointers, each address pointer of the one or more address pointers being
pointed to a transformed block of the plurality of transformed blocks or to a metadata

block of the plurality of metadata blocks;

89

10

15

20

25

WO 2018/128850 PCT/US2017/067962

each transformed block of the plurality of transformed blocks being
pointed to by at least one metadata block of the plurality of metadata blocks;
the plurality of metadata blocks includes a root block that is positioned at
a top of the tree hierarchy for the file and one or more non-root metadata blocks; and
each non-root metadata block of the plurality of metadata blocks being
pointed to by at least one metadata block of the plurality of metadata blocks of the tree
hierarchy of the file;
causing a set of cloud storage objects to be stored in the cloud object store by
transmitting the plurality of transformed blocks and the plurality of metadata blocks to a hybrid
cloud storage system, the hybrid cloud storage system managing data storage in the cloud object
store;
transmitting, to the hybrid cloud storage system, one or more second requests for
a set of addresses, each address of the set of addresses corresponding to a transformed block of
the plurality of transformed blocks or a metadata block of the plurality of metadata blocks; and
receiving, from the hybrid cloud storage system, one or more responses to the one
or more second requests, each response of the one or more responses identifying an address
corresponding to a transformed block of the plurality of transformed blocks or a metadata block
of the plurality of metadata blocks, the address identifying a storage location in the cloud object

store.

16. The processor-based system for transforming ZFS blocks on a cloud
object store that is remote from a ZFS system of Claim 15, wherein the compression type

includes one of: LZ4, LZJB, GZIP, and ZLE.

17. The processor-based system for transforming ZFS blocks on a cloud
object store that is remote from a ZFS system of Claim 15, wherein the encryption type includes

AES with key lengths including 128, 192, and 256.

18. The processor-based system for transforming ZFS blocks on a cloud
object store that is remote from a ZFS system of Claim 15, wherein the encryption key is

randomly generated.

90

WO 2018/128850 PCT/US2017/067962

19. The processor-based system for transforming ZFS blocks on a cloud
object store that is remote from a ZFS system of Claim 15, wherein a wrapping key 1s used to

decrypt the encryption key.

20. The processor-based system for transforming ZFS blocks on a cloud
object store that is remote from a ZFS system of Claim 19, wherein a wrapping key is a stored

passphrase or an AES key.

91

PCT/US2017/067962

WO 2018/128850

1/25

u-gol c-moFVc-voFVc-Nov F .Gﬁh\ 1-901 F-moFVTvovVTNov
w507 S 5 2| |3 78015 5 2| |2
[YY) wm .% ...GH S ﬁ ooe W w nﬂ_uu m m.“.
sl (2] |8 2] |2 AREIREIREIRE:
Q
C-OFP.N vuOvFIN
T T T T coe T T T T T
pJeog Jojesjuasuo)) pleog J0jeljuasuo))
ayoe) ysejd/Nvda 8yoe) yse|4/Nvyd A~|
L T B IAY b-ock
T 810D T 810D
vl 20.1d J0Jd
wodon b o7 W Hod Ol 177
aouelddy abeioig u-0ct souelddy abeio)g
L _
| [_
vzl ouceduoms || eee o_hnmﬂ_ TSIV | -~ | ouges _cs_sm 1,
_
| |
u-gz1 Ky Jg|jjonuo) abeio)g ejeq 19)j05u0)) abelojs eleq 2171
19pPIAOId 80BUBU| [BUIBIX I3pIAOId 9oBUBU| |BUIS)X
u-9z1 piAGid HBU] | X3 o000 PIACIH HOU | X3 ulv-mwv
SHOd 1SO Spod 1s0
-zl S H n_ﬂ H ¥ a_y H FI&F
u-gg; S I _ 1 LI
walsAs Bunndwo)
10M})
pnod ey HOMON Reze [Bo07 Rogy ﬂ
00}

PCT/US2017/067962

WO 2018/128850

2/28

¢ 9Old

-
— O >
,m 3. [soAuq 1221SAu] V_m_o xw_o xw_o xm_o v_w_o v_m_o v_m_o
=8 / ﬁ \ e S
NV NV K N Y ¥ &
u-9zz -S| A3IAA e o0 |(Aeuyqaivy) A3aA (Aileuy Qivy) AJaA
%)
S A/N%NNM ¥ 1-922-5
«Q
°2 22| auljadid O/l
o 2 0
3
222 (Dyv) syoen juswaoejdey anydepy
1
+
JoAen joysdeug
.nmu.. Wv_ pue ElEq > (NING) hun juswsbeuepy ejeq
g B) AN 3
23 6o Juaul
S 3 9123 Josse001d SINqUNY
- [=)
3 1 ¢
~ Y ¥ 3 ~ ¥
- aoepaU| (19he XISOd)
23 10JBINUIZ SWNIOA welsAS ali4 paINquIsia ooepelu] [|BD WaISAS
= 0
© T e 1 Loz 1 Lgoz 19U
¥ ¥ ¥ oS
(s1swnsuoy aone(Q) (s;ownsuog
\ 553007 MEY M PNOIO/31SNID wasAg aji4) N _\
90z Mvom uopealiddy 202

00¢

PCT/US2017/067962

WO 2018/128850

3/28

o 22E

ae ‘oid

< 02€ 9ce

[Ceea] [C=ead]

b o f
wnsyosy) | wnsyoay) wnsyosyy wWnsyosyy
Ssalppy ssalppy SS3ippy SSa.ppy
pieS
wnsy2ayn wnsy29yd
SSalppy SSaIppy
ot 2
9ce 1 £A%
< 2CE - 02€
[eiea] [=ea |
) e |
wnsyoay) | wnsyday) WNsS}o8yy WnNsyo9yj g
SsaIppy SSalppy SSAIPPY SSAIPPY
pieS

WNS}93yy WS}y
ssalppy Ssalppy

g€ ‘Old

9ce yece
5 CCE 5-0C€E
eled eleq
wnsyoay) | wnsyoayn wnsyoay) | wnsyosyn
SsaIppy SSaIppY SSaIppy SSalppy
p1e-S /PNS Smu\ 280¢
wnsyosy) | wnsydayd
90¢ SSaIppy ssalppy | po¢
F.Iuoom ﬂ
20¢e _
¢-00¢
5-CCE <-02¢ 5 8lE sIIE
ejeq | eleq | | =g | L_eeag |
wnsyoay) | wnsyoey) wnsyo8y) | wns)oay)
ssalppy SSaIppy SSaIppY SSalppy
preS /PNS Smuw\ 2.80¢
wnsyo8y) | wnsyoayn
90¢ SSaIppY ssaippy [¢-voge
ooy R0
AV 00€

PCT/US2017/067962

WO 2018/128850

4/25

3¢ "9Old

9¢e ZAS

[AAN YAS
2)

eleg eleqg

0

[43>
lp

wns}a3y) wnsy23y)

wns}o8yo Wnsyo8yD

S$salppy ssalppy

$SaIppy SSaIppY

1443 IN 80¢
wns)a3yy wnsy2ay9d -
Ssalppyv sSalppy
o0gS /r
¥0¢
\vj
100 IAIT 9ee 1004 LOHSJVYNS
\—zo¢
v-00€

PCT/US2017/067962

WO 2018/128850

5/28

4€ "Old

6}

5 / 028

1423

— 7
Siniige i 8le
\ A
R 81¢ 0ce ac L€ —pgc
O e 6IE OIE ._ N-gz¢
S 80¢
aL6 61 I
e I
908 Jog—s—1 L€ INILHLIMIG
2ue—| It V& ggg—1 52 I Hidig.

1004 LOHSAYNS

G-00¢

PCT/US2017/067962

WO 2018/128850

6/25

(spm/pesy
SNOUOJYOUASY)

SdllH
Jano s109lq0

v "OId

(elumypesy
SNOUOJYIUAG)
[] e 'ans
@I rl .*S4N Jano saji
- >
Loy .
aouelddy 0Ly
\ adeau| pnoiD

4414

00€
| waysAg i (|e007) SHOMSN |

Y

1-00C

004

PCT/US2017/067962

WO 2018/128850

7/28

G 'Ol

o) asiwald 30O
b s108lqQ 96e10}S PnojD [seAuq teoishudl E E E E
23 ‘ e | e | e) s
- 1401 -
Rk, A I N ¥ ¥ i
EhllTg|
205 aoepaIU| PNOID u-922-5 A3AA e ¢ o | (lieuy QIVYH) A3AA
w
« O
° 3 vzz-S auliedid 0/)
o o
5 ;
B 227 (0yvy) ayoe) Juswaoeiday sandepy
1
vy
Jake joysdeug
o m pueeeg €7 (Na) nun wswaebeuep ejeq
g 8
g8 02z 81z 3)
= =
o 5 . 607 juaqu
,m m mrmh 10S$3001d SINQURY e
B Lylg
X)
B v v L2 v 7
c 3 JO)EINWS SWN|OA aoepBlU| (19Ae7 XISOd)
S 2 wa)sAg 3l panguisiq doepalU| |[eD WelsAS
S0
® RER 1 Loz 1 “Lgog 1BWIAN
v v y 13s()
(s18wNsuoy 901A8Qg) (s:8wnsuog
\ 55000y MEY pnojo/RIsnID woysAg 9j14) N ._‘
Mmom MSN uoneolddy 202

1-00¢

PCT/US2017/067962

WO 2018/128850

8/25

9 "OId

L

aoepa)u|
jusid pPNOID

Put

UM
pesy

Get

uowse(q
adepsju| pnojD

_
_
_
-809 _
_
Rl —

9suodsoy ’

1esn

¥09

(Ao

EIEN

aoueyddy aoepsju| pnojD

9

ayoen
d-zez
6o e
-CvLe
=Ry
aodep8ul pnojD
-20S
j00dZ

w

JM L-20v

R

L-00v

WO 2018/128850

710

~ T Proceed with COW ~
I procedure with respect to |
| system (local) storage pool
L. _(seeFIGS. 3A3D)

My

9/25

Receive POSIX-compliant
request(s) from application
to perform operation(s)

704 g 1

Forward POSIX-compliant
request(s) from OS, via
system call interface, to

DMU

706

¥

Translate, with DMU,
request(s) into write
request(s) and forward to
SPA

708k I

Initiate, with SPA, writing of
data objects using COW
procedure

: L

Y

714—a —
~ Create new leaf nodes

~ Create new root node

Identify, by the cloud interface
appliance, incremental
modifications to logical tree

| Create new non-leaf nodes H

b e e e =

e — — — — v e —

sescoansconsad

FIG. 7A

PCT/US2017/067962

720—3 J

724

Cause storage in cloud object
store of data objects & metadata
corresponding to incremental
modifications

722k

| Send request(s) from cloud |
| interface device to cloud |
daemon |

—

lTranslate request(s) into putl
request(s), if necessary

Lo __

| C—om_mlﬁicateWith_clEGd_l
object store to cause storagel
| of incremental modifications

Update mapping in view of
the data objects & metadata
corresponding to incremental

modifications

729

Data Services?

Yes

719

WO 2018/128850 PCT/US2017/067962
10/25

700-2

3,

730

736
Y‘
N 737
732
Yl

N 738
733
Deduplicaiton? Y

731

FIG. 7B

WO 2018/128850
11/28

700-3

740

742~\

Receive Compression Type

744 i

> Compress Block

More Blocks?

No

748

PCT/US2017/067962

FIG. 7C

WO 2018/128850
12/25

700-4

=

750

752K

Retrieve passphrase or
AES key

!

Randomly generate
encryption key

756 *

> Encrypt Block

More Blocks?

No

759

PCT/US2017/067962

FIG. 7D

WO 2018/128850 PCT/US2017/067962
13/25

700-5

760

Generate a name for a data
> block

enerated Name =
Existing Name?

764

Identify data block with
same name as existing No
block

770

More Blocks? 774

N

Y
Use existing block
addresses and remaining |

data blocks to generate
768/ metadata blocks
772 }_ 7732

To720 <N Snapshot?

FIG. 7E

WO 2018/128850

14/25

700-6

775
From 739

or774

PCT/US2017/067962

Create new metadata

blocks
718 \ l

]

Create new root block

Store a clone reference to
the root block

780—3\ v

Yes YSBL l

Store a snapshot reference
to the root block

782

Link clone reference to
snapshot reference such
that the snapshot reference
cannot be deleted before

the clone reference

Mark all data blocks
accessible from snapshot
reference as “do not free”
until snapshot is deleted

7901 l

Make data blocks
accessible from the clone

784

No
799

reference COW

FIG. 7F

PCT/US2017/067962

WO 2018/128850

15/25

8 ‘OlId

y0€

=TT TTITT

=

aouelddy abelols pnojD

oy

\.

|ood abei0}g walsAg

oy

-92¢ m 1-ved
R
-0E€ 1-82¢
—

-veg S bcee

L-9gE
€0¢e 00€

wajsAg aji4 (je207) yomeN |

Jl 1-00¢

1-007¥

WO 2018/128850

900

9021 ‘

16/25

PCT/US2017/067962

Receive POSIX-compliant
request(s) from application
to perform operation(s)

916

9041 J

9181

[Forward POSIX-compliant

request(s) from OS, via

system call interface, to
DMU

Validate? No

9061 l

Proceed with reading and/
or further processing by the

system

Translate, with DMU,
request(s) into read
request(s) and forward to
SPA

:920 #

9081 J

Initiate, with SPA, reading
of data objects

9101 l

Send object interface
requests to cloud object
store

Initiate remediation processes

j—922
Reissue object interface
requests
] :
:)—924

— — c— —

I Request from second cloud |
object store, if applicable

L‘_T ______

9121 l

Receive object(s)
responsive to the object
interface requests

fomcecmeacheccmcccaccncccaas

% data from second object

Having received correct

store, write correct data to
first cloud object store

914 J

Calculate checksum of
object(s) and compare to
checksums of parent
node(s)

|

FIG. 9

¥ 5o

| Return error message and |
| most recent version of |
data, If avallable I

e

PCT/US2017/067962

WO 2018/128850

17/28

(R 4% C1-vEe

0} "OId

@&

2-9¢¢ Im

wnsyoay) | wnsyosyn

ssalppy ssalppy

zvee, N

wnsyo8y)

Ssalppy

Ssaimy] (&)

4

9¢e

A

oo = (v)

aouelddy abeio)g pnojD

cvee

L-00v

PCT/US2017/067962

WO 2018/128850

18/25

LL "OId

(pnojD esiwaid-H0)
sjoalqo abelois pnoin

(syooig QaH)
$)00|g abe10)S Wa)sAg

suoljeoi|ddy

[AVr4

_ VIVS/SVS
(aaH 10 ass) _ (ass)
odvel OHVZ1
.P §7¢CC] (agH 40 ass) | (ass) Lg-222
607 jusju _ 607 Jusyu| b
(Wvda) _ (WvdQ)
oMV 3 oY\
.D. Speay 7 ¢ce .D. SOl L ¥-¥12 d SOIIM &C-b 1.2 ﬁ. m#_.mmmNN-NNN
pnofgz [eoo
F-Noolw\ [00d abelois pugiAH k3 -9y |
T oo

¢-00v

PCT/US2017/067962

WO 2018/128850

19/25

AN

(Pno|Q esiwaid-y0)
sjo9lqo abeioys pno|n

>

¢l "Old

pajoIng
4
| P
JunoY ‘jal + peay <ejep pjo,
ol
———) o — NN)
ulm-NNN) |
uspumjpeas Ajusoay NN 'JoI1 10N
JAHU naw N
Mii (QaH 10 ass) Bubeis O/l oandepy L-G-z2Z
607 juau)
SOIIM VE;N

€-00v

WO 2018/128850

1300

=

1310

20/25

1302L £

Receive POSIX-compliant
request(s) from application to
perform operation(s)

1304L 1

Forward POSIX-compliant
request(s) from OS, via system
call interface, to DMU

13061 L

Translate, with DMU, request(s
into /0 request(s) and forward
to SPA

13081 i

Initiate, with SPA, performing
of 1/O operations

1312—k\L

FIG. 13

For write, proceed with
COW procedure with

respect
store

to cloud object
(see FIG. 7)

For read, check ARC for
requested object(s)

1316'7\

Proceed with reading
and/or further
processing by the

system

b ey

Yes .~ Validated ~ NO |
~ N _object found? _ ~
~ _ -~
N -

Validated
object found?

L——_I_—__
_ \)—1320
-~ ~

| Initiate, with SPA, reading l
' of object from local storage, |
if applicable

PCT/US2017/067962

i)—1322

Initiate, with SPA, reading
of data object from cloud
object storage

* 1324

Validated data No
object found?

Initiate remediation
processes

21328

Adjust cache staging
1330

| Cache object(s) as MRU _]
| object(s), if not previously
cached

1332
______ S

' Transition object(s) to other |
stages, if applicable |

_s5 1336
—————— — -
l Update frequency |
[attribute(s) |
U —
5 1338
—————— i |
| Specify other staging |
| attribute(s) |
T
1340
______ S

l Transition to a different |

| caching mode if applicable |
e o o —— e —

PCT/US2017/067962

WO 2018/128850

21/25

vL "Old

-3 asiwaid YO
8 Y e
3 14014 87z
80IAeQ
7)) J
8 A 4 |-9zzS
&3 (speay (speay /
® 9o \ pue) selum pue) saup [
L& \ S 10141 /
D sPeay covi—=p AJAAIOUIN / speay
e suliedid O/
oe 9 da de
2229 (0dv) ayoep r»cwom_ ¥ aandepy
L 2
Jaken joysdeug

Q w oueeeq [€ (NWQ) 1un Juswebeuen ejeq
g g 0223 81z 3
™ =
0 35 607 Jusiu
,m m 91z-5| 10sse0014 a)nqUIY Tiusdl

- Lylg

I il

_ L 2 L 2 vy 2 2
=2 JOjEINWS SWNIOA aoepaU| (1947 X1SOd)
< & wajsAs |14 painquisiy soepalU| ||BD Wa)SAS ﬂ
=0

4]

Jlmrw Jfovw leom 2-002

WO 2018/128850

1500

22/25

FIG. 15
5021 i

k1

Receive POSIX-compliant
request(s) from application to
perform operation(s)

-_—

5041 I

Forward POSIX-compliant
request(s) from OS, via
system call interface, to DMU

=N

5061 l

Translate, with DMU,
request(s) into write
request(s) and forward to SPA

-—

5081

Initiate, with mirror of SPA,
writing of data object with
synchronous data replication

on per-1/O basis

PCT/US2017/067962

15107 / 15121\
Send first instance of end §econd m_stance
. . of write operation to
write operation to local cloud interface
storage VDEV(s) .
appliance
15141 1516—(
- Proceed with COW Proceed with COW
procedure with respect procedure with respect
to system (local) storage to cloud object store
pool (see FIGS. 3A-3D) (see FIG. 7)

1 5201

Tisos |]

Receive POSIX-compliant
request(s) from application
to perform operation(s)

Forward POSIX-compliant
request(s) from OS, via
system call interface, to

DI\I/IU

5 1522
Translate, with DMU,
request(s) into read

request(s) and forward to
SPA

+ 1524

Initiate, with SPA, reading
of data object from local
storage

Validated data
object found?

15281

Proceed with reading and/
or further processing by the
system

A 1530 v

Initiate, with SPA, reading
of data object from cloud
object storage

1532

Validated data
object found?

No

1534 v

“Having received correct
data from second object
store, write correct data to
local storage

15361 '

Initiate remediation
processes

!

WO 2018/128850 PCT/US2017/067962
23/25

DATABASE
1616

DATABASE
1614

COMPONENT COMPONENT
1618 1620

COMPONENT
1622

SERVER
1600

NETWORK(S)
1610

FIG. 16

PCT/US2017/067962

WO 2018/128850

24/25

Ll "Old

yvil

cell
SIDINYIS AFHVYHS TYNEILN|

oesl
S30UNOSIY FHNLINYLSVHIN]

8Lt
ANIWIOVNYIA ALILN3A)

9c/l
ONIHJOLINOI ANV
ININIOVYNVYIA ¥3QH0

9vL r\%

vell

Zelh
NOILVE1S3HOY0O
¥30H0 ONINOISINOYd ¥3A40

oL L cvll

ﬁ

8Ll
3svav.LvQ ¥3ad0

0cLL
ANIW3IOVYNVIN ¥30J0

8ELL

91/l viLiL
1IN anod 1N Ano1D

[4y1A
IN ano1)

W3LSAS IINLONAJLSYHANI ANOTD

30IANIS
omo_>oxn_/
301A3Q
« AN3D
N~pg /) 153n03Y
30IAN3S
oLLL
(S)»domLIN
1271"
301AN3S
a3aIn0ad S0IT
A 301A3Q
IN3MD
- e/l 1303y
30IA¥3S
1474}
30IA¥3S
a3aInoud —
| 301A3Q
T ssmom somems N3O

PCT/US2017/067962

WO 2018/128850

25/25

8L "OId

8181

W31SASANS IOVHOLS

Z2est
— VIG3W 3OVHOLS
318vav3y
- — — vy
0e8lL 828l 9¢8l rllllls_mhgm ONLL mn_ol - -43LNdWOD
s3wvadn | fswvadig| | sa3=4 vigt
IN3AZ IN3AZ vivQg V1V WYHS0¥d
0z8l
+ Zi8r y3avIy VIoaw
SWYHO0Hd NOLLYOITdaY 39VHOLS
OIst I1avavay
[Z4:]" H3LNdWO!
u W31SASSNS SNOILYIINNWWOY) AHIOVIN WAISAS 2
081 —
3081 7e8l 2e8l
50T 1IN LINN LINN
N3LSASENS O/l NOILVH3 1300V ONISSIOO0Nd 8N ONISSID0Hd ang
ONISS300¥d —r mroe—
T 3HOVD IHOVD 3HOVYD
9 _—
ces 340D 3H0D EXlolg)
0081 v081
e LINN ONISS3D0¥Y

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/067962

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/06 HO4L29/08
ADD.

GO6F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOA4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 2 615 566 A2 (NEXENTA SYSTEMS INC [US]) 1-20
17 July 2013 (2013-07-17)
abstract
paragraphs [0037], [0052] - paragraph
[0071]
paragraph [0091] - paragraph [0109]
paragraph [0143] - paragraphs [0151],
[0161]
paragraph [0179] - paragraphs [0193],
[0215]
X US 20137110779 Al (TAYLOR JOHN RICHARD 1-20
[US] ET AL) 2 May 2013 (2013-05-02)
abstract
paragraphs [0008], [0052], [0055] -
paragraph [0080]
paragraphs [0097], [0108], [0131],
[0142], [0197]; figures 3-5
_/ -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 March 2018

Date of mailing of the international search report

06/04/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Coenen, Jean Pierre

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/067962

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2011/283113 Al (MOFFAT DARREN J [GB] ET 1-20
AL) 17 November 2011 (2011-11-17)
the whole document

A US 2011/022566 Al (BEAVERSON ARTHUR J [US] 1-20
ET AL) 27 January 2011 (2011-01-27)
abstract

paragraphs [0068], [0071] - paragraph
[0100]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/067962
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 2615566 A2 17-07-2013 EP 2615566 A2 17-07-2013
US 2013185258 Al 18-07-2013
US 2013110779 Al 02-05-2013 NONE
US 2011283113 Al 17-11-2011 NONE
US 2011022566 Al 27-01-2011 US 2011022566 Al 27-01-2011
US 2013290263 Al 31-10-2013
US 2016283498 Al 29-09-2016
US 2017235749 Al 17-08-2017

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - wo-search-report
	Page 120 - wo-search-report
	Page 121 - wo-search-report

