United States Patent

US007200532B1

(12) (10) Patent No.: US 7,200,532 B1
Cheng 45) Date of Patent: Apr. 3, 2007
(54) SUBDIVISION SURFACE-BASED OTHER PUBLICATIONS
GEOMETRIC MODELING SYSTEM ) o )
“Dynamic Catmull-Clark Subdivision Surface”, Qin et al, IEEE
. T ti f Visualizati dC ter Graphics, vol. 4, No. 3,
(75) Inventor: Fuhua Cheng, Lexington, KY (US) Jéfnlsgcgéof S of Visualization anc L-omputer Taphics, vo °
. “Rapid Evaluati f Catmull-Clark Subdivision Surfaces”, Bolz et
(73) Assignee: Universi.ty of Keptucky Research al, \I,;lem W(l);’ a}:lzgozoog* TR SUDCIvIsion Saifaces, Dotz e
Foundation, Lexington, KY (US) “Displaced Subdivision Surfaces”, Lee et al, SIGGRAPH 2000,
ACM 2000.*
(*) Notice: Subject to any disclaimer, the term of this “Exact Evaluation of Catmull-Clark Subdivision surfaces at Arbi-
patent is extended or adjusted under 35 trary Parameter Values”, Stam, Alias Wavefront Inc. Apr. 1998.*
U.S.C. 154(b) by 635 days. “Simple multiple B-spline surface fitting with Catmull-Clark sub-
division surface for extraordinary corner patches”, Ma et al, The
(21) Appl. No.: 10/462,297 Visual Computer, May 14, 2002.*
Towards Hardware Implementation of Loop-Subdivision, Bishoff et
p. p
(22) Filed:  Jun. 16, 2003 al, HWWS 2000, ACM 2000.*
* cited b i
Related U.S. Application Data clied by examier
. L Primary Examiner—Fred Ferris
(60) Il’ioxggi)ozr?al application No. 60/388,637, filed on Jun. (74) Aitorney, Agent, or Firm—King & Schickli, PLLC
(51) Int.CL (57) ABSTRACT
GO6F 17/10 (2006.01) . .
(52) US.CL oo, 703/2; 703/1; 703/6; 703/13; ﬁtgiﬁggegoérsgff;ﬁgi‘?ﬁﬁaﬁiﬁﬁ‘z ;%ggigii;gfe
345/419; 345/420; 345/421; 345/423 . A . .
. . . information is provided. More particularly, the present
(58) Field of Classification Search ......... s 703/1, invention relates to a new subdivision depth computation
L 703/2, 6; 34.5/ 420423 technique and to an improved label-driven adaptive subdi-
See application file for complete search history. vision technique for use in Catmull-Clark subdivision sur-
(56) References Cited face modeling systems. The method comprises computing a

U.S. PATENT DOCUMENTS

5,889,524 A * 3/1999 Sheehan et al. ............ 345/419
6,037,949 A * 3/2000 DeRoseet al. ............. 345/582
6,222,553 B1* 4/2001 DeRoseet al. ............. 345/423
6,489,960 B2* 12/2002 DeRose et al. ............. 345/423

6,587,105 B1* 7/2003 Stam ........ccccovuviiinnnns 345/423
6,603,473 B1* 82003 Litkeetal. ........c..... 345/420

6,738,062 B1* 5/2004 Moreton .........cccecounne 345/423
6,771,261 B2* 8/2004 MacPherson ............... 345/420
6,806,874 B2* 10/2004 Biermann et al. .......... 345/420
6,876,956 B1* 4/2005 Cirak et al. ............c.ee. 703/2

6,943,790 B2* 9/2005 Taubin ..........cccccnin. 345/420
7,023,435 B1* 4/2006 Litke etal. ................ 345/420

(b)

subdivision depth to determine the number of recursive
subdivisions which may be performed on a control mesh to
generate a plurality of finer mesh elements while preserving
a predetermined error tolerance, and using the computed
subdivision depth to construct an adaptively refined mesh
that is substantially similar to the control mesh within the
predetermined error tolerance. Limit control surfaces with
and without extraordinary vertices may be analysed using
the method of the invention. In another aspect, a software
program for accomplishing the method of the present inven-
tion is provided.

25 Claims, 6 Drawing Sheets




U.S. Patent

Apr. 3, 2007 Sheet 1 of 6

—
~

\.\\!\‘ ( ) ( ) (

2N¢I7 2N+l6 ZN*IS ZNOI‘
,

uoos-ooong()\) ){_)

1 N+ ZNr7 IN+6 IN+2
YN OOOO
oo 0- ° \\ 3 4 s 1N+3

OO0

,L b e 1"!.;“ g N,_\J 2N+||
) () J ) () (
T T 1::’5 IN +13 l 6 IN+4 N+ u

Tig. 2

Prior Art

US 7,200,532 B1



US 7,200,532 B1

Sheet 2 of 6

Apr. 3, 2007

U.S. Patent

8. ~
+ +
TN 3 .
z Z *
m ~ /.1 m
e /O //0
-0

m\zo/n.\ /s\o ce " //mo M\//s\o/ow
/\ e e \u

o face point
O edge point
X vertex point

\*A
Vs
VA

(2)

Va
Vi




US 7,200,532 B1

Sheet 3 of 6

Apr. 3,2007

U.S. Patent

(0)
n>l < «.\MJ Ss _>l
A A
wuiod xapaa x
jutod a8pa O
juiod 298] @
'>I\/
(9 (e)
‘, o 0=CAH 0<(Ar3
n>l\ T n>l
AL e ..
! 0=CAra
A 0=(Arg




U.S. Patent Apr. 3, 2007 Sheet 4 of 6 US 7,200,532 B1




U.S. Patent Apr. 3, 2007 Sheet 5 of 6 US 7,200,532 B1




U.S. Patent Apr. 3, 2007 Sheet 6 of 6 US 7,200,532 B1




US 7,200,532 Bl

1

SUBDIVISION SURFACE-BASED
GEOMETRIC MODELING SYSTEM

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/388,637 filed Jun. 14, 2002.
This invention was made with Government support under
NSF Grant No. DMI-9912069. The Government may have
certain rights in this invention.

TECHNICAL FIELD

The present invention relates to the art of surface mod-
eling of images to produce realistic images or to provide
simulations with accurate surface information. More par-
ticularly, the present invention relates to a new subdivision
depth computation technique and to an improved label-
driven adaptive subdivision technique for use in Catmull-
Clark subdivision surface modeling systems.

BACKGROUND OF THE INVENTION

Subdivision surfaces have become popular recently in
graphical modeling, animation, and CAD/CAM because of
their stability in numerical computation, simplicity in cod-
ing, and most importantly their capability in modeling/
representing complex shape of arbitrary topology. Given a
control mesh and a set of mesh refining rules, a user may
obtain a limit surface by recursively cutting off corners of
the control mesh. The limit surface is referred to as a
subdivision surface because the corner cutting/mesh refining
process is a generalization of the uniform B-spline surface
subdivision technique. Subdivision surfaces include uniform
B-spline surfaces and piecewise Bézier surfaces as special
cases. It is also known in the art that subdivision surfaces
may include non-uniform B-spline surfaces and NURBS
surfaces as special cases. Subdivision surfaces can model/
represent complex shape of arbitrary topology because there
is no limit on the shape and topology of the control mesh of
a subdivision surface. It is also known that subdivision
surfaces cover both parametric forms and discrete forms.
Since parametric forms are useful for design and represen-
tation and discrete forms are useful for machining and
tessellation (including FE mesh generation), a representation
is provided which is suitable for all graphics and CAD/CAM
applications.

The prior art in subdivision surfaces has focused on the
areas of surface trimming, boolean operations, and mesh
editing. However, there are presently few suitable methods
for dealing with precision/error control in subdivision sur-
faces, and in “smart” tessellation of subdivision surfaces.
Given a predetermined error tolerance, it is necessary to
determine how many levels of recursive Catmull-Clark
subdivision should be performed on the initial control mesh
such that the distance between the resultant control mesh
and the limit surface is less than the predetermined error
tolerance. It is also desirable to improve efficiency of
tessellation based applications and data communication by
generating a refined mesh within the required approximation
precision of the limit surface with significantly fewer faces
than the uniformly refined mesh. To date, efforts to reduce
the number of faces in a mesh have focused on: (1) mesh
simplification, i.e. removing over-sampled vertices and pro-
ducing approximate meshes with various levels of detail; (2)
approximating the limit surface by known surfaces, such as
displaced subdivision surface or NURBS patches; and (3)
application of adaptive refinement schemes to subdivision
surfaces.
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Accordingly, a need is identified for an improved method
for subdivision surface modeling. The subdivision depth
computation technique provided by the present invention
provides precision/error control tools in subdivision surface
trimming, finite element mesh generation, boolean opera-
tions, and surface tessellation for rendering processes. The
label-driven adaptive subdivision technique of the invention
improves efficiency of the above by generating an adaptively
refined mesh that is within the required approximation
precision of the limit surface, but with significantly fewer
quadrilateral faces than prior art uniformly refined mesh
techniques. The invention provides a subdivision depth
computation technique for a Catmull-Clark subdivision sur-
face (CCSS) patch, and provides also a label-driven adaptive
subdivision technique for a CCSS based on subdivision
depths calculated for its patches. A novel greedy algorithm
is used to eliminate illegal vertex labels in the initial mesh.

Advantageously, the methods of the present invention
provide a novel and efficient error control tool which is
suitable for all tessellation-based applications of subdivision
surfaces, and significantly reduce the number of faces in an
adaptively refined quadrilateral mesh in a few subdivision
steps, thereby improving efficiency of all tessellation-based
applications and data communication of subdivision sur-
faces.

SUMMARY OF THE INVENTION

In accordance with a first aspect of the invention, a
method for modeling or representing a surface or shape
having an arbitrary topology which may be represented by
a control mesh comprising at least one discrete Catmull-
Clark Subdivision Surface (CCSS) patch defined by a set of
control points is provided, comprising the steps of comput-
ing a subdivision depth determining the number of recursive
subdivisions which may be performed on the control mesh
to generate a plurality of finer mesh elements, whereby a
distance between each finer mesh element and the corre-
sponding limit surface patch is less than a predetermined
error tolerance e. Next is the step of using the computed
subdivision depth to construct an adaptively refined mesh
that is substantially similar to the control mesh within the
range of the predetermined error tolerance e. Each face of
the recursively subdivided control mesh is a quadrilateral,
and may contain up to one extraordinary vertex.

The method of the present invention is suitable for
computing the subdivision depth, or the number of recursive
subdivisions which may be performed on a surface patch
while maintaining the predetermined error tolerance, for
both surface patches which are not adjacent to an extraor-
dinary vertex, and for surface patches which are adjacent to
an extraordinary vertex.

For surface patches which are not adjacent to an extraor-
dinary vertex, it will be appreciated that the surface patch
will be a uniform bicubic B-spline surface patch which may
be designated as S(u,v). In the absence of an extraordinary
vertex, the next step is calculating a subdivision depth k
defined as k levels of recursive subdivision performed on the
control points of the surface patch S(u,v) to generate a level
k control mesh, wherein k is defined as k=[log, (M®/3¢) ],
where M® is the second order norm of S(u,v) and the distance
between S(u,v) and the level k control mesh is less than e.

If an extraordinary vertex is present in the patch being
considered, the initial step is subdividing the surface patch
at least twice to define at least one standard uniform bicubic
B-spline surface subpatch and up to one extraordinary
subpatch that is not a standard uniform bicubic B-spline
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subpatch, the extraordinary subpatch containing a limit point
of up to one extraordinary vertex. Next, a subdivision depth
n_ for the extraordinary subpatch is computed, defined as n
levels of recursive subdivision performed on the extraordi-
nary subpatch to generate a level n extraordinary subpatch
control mesh, wherein n_ is defined as

4
7G0 5, it N=3
e =|logs| 5 [lo 9=1 gg
5 itN>5

where G° is the first order norm of II°,, II°, is a level-0
control point defined as {V1=i=2N+8}, V, is an extraor-
dinary vertex with valence N, and the distance between the
level n extraordinary subpatch control mesh and a corre-
sponding bilinear plane defined in the extraordinary sub-
patch is less than or equal to € if n=n,.

For the remaining patches not containing the extraordi-
nary vertex (after the initial subdivision step described
above), next is the step of computing a subdivision depth D
by performing D recursive subdivisions on each standard
uniform bicubic B-spline subpatch to define a level D
control mesh, wherein D is defined as the maximum number
of recursive subdivisions which may be performed such that
the distance between the standard uniform bicubic B-spline
subpatch and the level D control mesh is less than e.

In another aspect, the present invention provides a label-
driven method of subdividing a Catmull-Clark subdivision
surface patch derived as described above, comprising the
steps of defining a mesh for which subdivision depths have
been computed, the mesh comprising a plurality of quadri-
lateral faces containing up to one extraordinary vertex and
having at least one interior face not adjacent a boundary of
the control mesh and at least one exterior face adjacent a
boundary of the control mesh, and defining an initial label of
the interior face as a non-zero integer k wherein k is the
subdivision depth of its corresponding surface patch with
respect to €. The method also includes the step of defining
an initial label of the exterior face as zero.

Next is the step of establishing a consistent condition for
each face whereby no two adjacent vertices thereof have
non-zero labels and no two adjacent vertices thereof have
zero labels and further wherein the number of zero labels is
maximized. The consistent condition is established by defin-
ing a connection supporting graph G, whose vertices are
those of the faces having two adjacent vertices whose labels
are zero, selecting a vertex from G, redefining the selected
vertex label to 1, updating G,, and repeating the process
until the connection supporting graph contains no further
vertices. For any face having two or more nonzero vertex
labels, a balanced Catmull-Clark subdivision step is per-
formed. For any face having only one vertex with zero label,
an unbalance Catmull-Clark subdivision step is performed.
Last is the step of computing new vertices from the results
of the balanced and unbalanced Catmull-Clark subdivision
steps to generate at least one new face defining the adap-
tively refined mesh structure.

In another aspect of the present invention, a computer
software program for subdivision surface modeling is pro-
vided, wherein the software performs the steps as described
above.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 schematically depicts the ordering of control
points for a CCSS patch with an extraordinary vertex;
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FIG. 2 schematically depicts a representative population
of control point sets;

FIG. 3 schematically depicts the subdivision of a surface
patch having an extraordinary vertex into a plurality of
standard uniform bicubic B-spline surface subpatches and a
single extraordinary subpatch that is not a standard uniform
bicubic B-spline subpatch which contains the limit point of
the extraordinary vertex;

FIG. 4 schematically depicts FIG. 4 (a—b) schematically
depicts the balanced Catmull-Clark subdivision of one of the
standard uniform bicubic B-spline surface subpatches of
FIG. 3,

FIG. 5 schematically depicts FIG. 5 (a—c) schematically
depicts the unbalanced Catmull-Clark subdivision of the
extraordinary subpatch of FIG. 3;

FIG. 6 (a—c) depicts the distance and subdivision depth
computation for a CCSS patch having: (a) no extraordinary
vertex; (b) an extraordinary vertex of valence 5; and (c) an
extraordinary vertex of valence 8;

FIG. 7 graphically depicts a rocker FIG. 7 (a—d) graphi-
cally depicts a rocker arm, showing: (a) a control mesh
therefor; (b) a limit surface therefor; (c) the result of
performing a conventional uniform subdivision process; and
(d) the result of performing the adaptive subdivision method
of the present invention;

FIG. 8 (a—d) depicts the distance a ventilation controller
component, showing: (a) a control mesh therefor; (b) a limit
surface therefor; (¢) the result of performing a conventional
uniform subdivision process; and (d) the result of perform-
ing the adaptive subdivision method of the present inven-
tion; and

FIG. 9 (a—d) graphically depicts a marker cap, showing:
(a) a control mesh therefor; (b) a limit surface therefor; (c)
the result of performing a conventional uniform subdivision
process; and (d) the result of performing the adaptive
subdivision method of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention provides a method and computer
program, which may conveniently be disposed on a com-
puter readable medium, for calculating a subdivision depth
for a Catmull-Clark subdivision surface (CCSS) patch, and
provides also a label-driven adaptive subdivision technique
for a CCSS based on subdivision depths calculated for its
patches.

Subdivision Depth Computation for Patches not Near an
Extraordinary Vertex.

The first step is computation of a subdivision depth for a
desired surface. Let V,, V|, V,, and V; be the control points
of a uniform cubic B-spline curve segment C(t) whose
parameter space is [0,1]. If the middle leg of the control
polygon is parametrized as follows: L(H)=V,+(V,-V ),
0=t=1, then the maximum of |L()-C(t)| is the distance
between the curve segment and its control polygon. Thus:

(1-» M

6

)3
(2V1 —Vo— V2)+ g(ZVz -V - V3) <

lL) - C@ll = H

1
gmaX{HZVi Vo= Vall. 112V2 = Vi = V3|1
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Since (2V,-V,-V,)/6 and (2V,-V,-V,)/6 are the values of
L(t)-C(t) at t=0 and t=1, the following lemma results:

Lemma 1: The maximum of ||[L(t)-C(t)|| occurs at the end-
points of the curve segment and may be expressed as

1 2
max ||L(5) - COIl = zmax{||2Vy — Vo - V2|, [I12V2 - V1 - V3]l}
0<r<l 6

Next is the step of defining the distance between a
uniform bicubic B-spline surface patch and its control mesh.
LetV,,, 0=1,) =3, be the control points of a uniform bicubic
B-spline surface patch S(u,v) with parameter space [0,1]x
[0,1]. If the central mesh face {V,,, V,,, V,,, V,,} is

parametrized as follows:

Luv)=(1-)[(1-u) Vitu V271]+v[(1—u) Vio+uVy 5],
0=uv=1

then the maximum of ||L{(u,v)-S(u,v)| is called the distance
between S(u,v) and its control mesh. Defining Q, ;, Q,
Q... and Q,, as follows:

Qui=1—wVig+uVay Ou=l-v)V +vVi

3 3
Qi = Z(; Niz@)Vig, Q= Z(; Nis@)\Vy
p =

where N, 5(t) are standard uniform B-spline basis functions
of degree 3 results in:

LG, v) — S(u, )| < 3)

3
=0t = Q1+ U012 = Call + > Nis@ll Qs = 0, 1l

i=0

Application of Lemma 1 on ||Q, ,-Q, |, 1Q,.-Q, .l and
IQ,,~Q,.ll, =1,2,3, and by defining M° as the maximum
norm of the second order forward differences of the control
points of S(u,v), we have

1 3 1
IILGxt, v) = S(ut, V)| < z 1 -M° +uM® + Z NisM®| < §MO.

i=0

M is called the second order norm of S(u,v). From this, the
following lemma is derived:

Lemma 2: The maximum of ||L{(u,v)-S(u,v)| satisfies the
following inequality

@

1
max ||L(, v) — S(u, v)|| < = M°
O<uu<l 3

where M° is the second order norm of S(u, v).
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It should be noted that even though the maximum of
IL(t)-C(t)|| occurs at the end points of the curve segment
C(t), the maximum of |L(u, v)-S(u,v)| for a surface patch
usually does not occur at the corners of S(u,v). Based on the
foregoing, the method for subdivision depth computation for
surface patches not adjacent to an extraordinary vertex will
now be presented.

Let V,, 0=1,j=3, be the control points of a uniform
bicubic B-spline surface patch S(u,v). We use VkiJ, 0=,
j=3+251, to represent the new control points of the surface
patch after k levels of recursive subdivision. The indexing of
the new control points follows the convention that V"O,0 is
always the face point of the mesh face {Vk"lo,o, e 1,05
Vk"lo,l, Vk"ll,l}. The new control points V¥, , will be called
the level-k control points of S(u,v) and the new control mesh
will be called the level-k control mesh of S(u,v).

Note that if the parameter space of the surface patch is
divided into 4* regions as follows:

o ®

m,n

m m+1 n n+l
=[z_k’ 7 ]X[z_k 7 ]

where 0=m,n=2*-1 and let the corresponding subpatches
be denoted Skm,n(u,v), then each Skm,n(u,v) is a uniform
bicubic B-spline surface patch defined by the level-k control
point set {V¥, ImSp=m+3.n=q=n+3}. S, (u,v)is called
a level-k subpatch of S(u,v). One can define a level-k
bilinear plane L*,,,, on {V*, Ip=m+1, m+1; g=n+1, n+2}
and measure the distance between Lkm,n(u,v) and Skm,n(u,v).
It can be said that the distance between S(u,v) and the level-k
control mesh is smaller than e if the distance between each
level-k subpatch Skm,n(u, v) and the corresponding level-k
bilinear plane Lkm,n(u,v), 0=m,n=2*-1, is smaller than €.
Next will be demonstrated how to calculate a subdivision
depth k for a given e so that the distance between S(u,v) and
the level-k control mesh is smaller than e after k levels of
recursive subdivision. The following lemma is needed in the
derivation of the computation process. If we use Mkm,n to
represent the second order norm of Skm,n (u, v), i.e. the
maximum norm of the second order forward differences of
the control points of Skm,n (u,v), then the lemma shows the
second order norm of Skm,n (u, v) converges at a rate of 1/4
of the level-(k-1) second order norm. The proof of this
lemma is provided in Appendix A.

Lemma 3: If Mkm,n is the second order norm of Skm,n (u,v),
then we have

©

where M° is the second order norm of S(u,v).

With lemmas 2 and 3, it is easy to see that, for any
0=m,n=2%"!, we have

L 0 v) = S 0, V) < & b <1(1]kM°
oguer o T St VS 3 = 3 g )
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Hence, if k is large enough to make the right side of (7)
smaller than €, we have

max [|LE, (e, v) = S5, )| < €
O=u,v=1 ” 7

for every 0Sm,n=2*"'. This leads to the following:

Theorem 4: Let V, , 051j=3, be the control points of a
uniform bicubic B-spline surface patch S(u,v). For any given

e>0, if

o]

levels of recursive subdivision are performed on the control
points of S(u,v), then the distance between S(u,v) and the
level-k control mesh is smaller than € where M° is the
second order norm of S(u,v).

®

Subdivision Depth Computation for Patches Near an
Extraordinary Vertex.

A different analysis is required for computation of sub-
division depth for surface patches near extraordinary verti-
ces, necessitated by the fact that one does not have a uniform
B-spline surface patch representation and cannot use the
analysis of Theorem 4 directly. The method of the present
invention dictates making the size of such a vicinity as small
as possible, thereby reducing such size to a degree that is
tolerable (i.e., within the given error tolerance) and use the
analysis of Theorem 4 to analyze the remaining portion of
the surface patch. A subdivision depth computation based on
this concept for a CCSS patch near an extraordinary vertex
is presented below. It is assumed that the initial mesh has
been subdivided at least twice such that each mesh face is a
quadrilateral and contains at most one extraordinary vertex.

Let II°,={V,1 =i=2N+8} be a level-0 control point set
that influences the shape of a surface patch S(u,v) (=S°(u,
v). V, is an extraordinary vertex with valence N. The control
vertices are ordered following Stam’s fashion (Stam, J.
1998. Exact Evaluation of Catmull-Clark Subdivision Sur-
faces at Arbitrary Parameter Values. In Proceedings of
SIGGRAPH 1998, 395404, incorporated herein by refer-
ence) as schematically depicted in FIG. 1.

Using V”, to represent the level-n control vertices gener-
ated after n levels of recursive Catmull-Clark subdivision,
and use 8", S”;, §”, and S”; to represent the subpatches of
S»=!, defined over the tiles

5

[—

11 1 1 o 01 1 1
[z—lez—F] 3—[’ﬁ]x[ﬁ’ﬁ

respectively, then the shape of S”,, S”,, S”, and S”; are
influenced by the level-n control point sets IT”7,, IT”,, IT",,
and IT"; are depicted in FIG. 2.

I ={ VIl <i<2N+8}

S”,, 87, and S”; are standard uniform bicubic B-spline
surface patches because their control meshes satisfy a 4-by-4
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structure. Hence, the technique described in Theorem 4 can
be used to compute a subdivision depth for each of them. S,
is not a standard uniform bicubic B-spline surface patch.
Hence, Theorem 4 can not be used to compute a subdivision
depth for S”; directly. For convenience S”, may be called a
level-n extraordinary subpatch of S(u,v) because it contains
the limit point of the extraordinary points (see below). Note
that if H, and H,, are column vector representations of the
control points of TI°, and IT”,, respectively,

Hy=(Vo,Vy, - .., Vowas) H=(V5" V", . . ., Vonvag™)
where (X, X, . .., X)* represents the transpose of the row
vector (X, X, . . ., X) then we have

H,=(T)"H, ©

where T is the (2N+8)x(2N+8) (extended) subdivision
matrix defined as follows:

(10)

with

ay by cy by cy by - by cn (11)
d d e e 0 0 e e
f f f f 0 0 0 0

_ d e e d e e 0 0

™=y 005 5 7 o o
d e 0 0 0 0 d e
f f 0 0 0 0 f f

¢ 00bab00O0 (12)
e 00 edd0O00
b 00 c¢cbabcl
Tiy=[e 0000 dde0]
e 00dde000
b ¢ babc000
e edd 00000
c bc0bc0 (13)
0 ee 0000
0 c¢cbc 00O
Tiz=[0 0 e e 000
0000 ee0
0000 c¢bec
00000 ee
and
7 3 1 9
av=l-gg.bv =gz v = gxEa= g
o3 L3 L1
32 64 8 16 4
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Subdivision Depth Computation for a Vicinity of the
Extraordinary Vertex.

The goal is to find an integer n_ for a given €>0 so that if
n (2n,) recursive subdivisions are performed on I1°, then
the control set point of the level-n extraordinary subpatch
S", of S(u,v), ", ={V" 1 Si=2N+8}, is contained in the
sphere B(V™*',, €/2) with center V"*' =(V" +V" +V" s+
V" ¢)/4 and radius €/2. Note that if the (2N+8)-point control
mesh is contained in the then the level-n extraordinary
subpatch S, is contained in the sphere B(V™*', €/2) as well.
This follows from the fact that S”, as the limit surface of
I1”,, is contained in the convex hull of IT”; and the convex
hull of I1”, is contained in the sphere B(V"*'5, €/2). Then,
we have

max||Se"(u,v)-Lo" (u,v)|<e 14)
where L”,(u,v) is a bilinear plane defined on the level-n
mesh face {V" +V",+V"+V" }. The construction of such
an n. depends on several properties of the (extended)
subdivision matrix T and the control point sets {IT7,}.
First note that since all the entries of the extended
subdivision matrix T are non-negative and the sum of each
row equals one, the extended subdivision matrix is a tran-
sition probability matrix of a (2N+8)-state Markov chain. In
particular, the (2N+1)x(2N+1) block T* of T is a transition
probability matrix of a (2N+1)-state Markov chain. The
entries in the first row and first column of T* are all
non-zero. Therefore, the matrix T* is irreducible because
(T*)? has no zero entries and, consequently, all the states are
accessible to each other. On the other hand, since all the
diagonal entries of T* are non-zero and entries of (T*)” are
non-zero for all n=2, it follows that all the states of T* are
aperiodic and positive recurrent. Consequently, the Markov
chain is irreducible and ergodic. By the well-known theorem
of Markov chain, Theorem 4), (T*)" converges to a limit
matrix T* whose rows are identical. More precisely

Ap Ay o Ay (15)
o A A Mgy
im(T) =T =| . . .

Ap Ay o Ay

where A, are the unique non-negative solution of

2N+1
Aj= Z Afij j=1,2, 2N +1
i=1

(16)

2N+1

3=l

J=1

with t,; being the entries of T*. One can easily get the
following observations.

The vector (A}, A,, . .., A,y,,) satisfies the following

properties:

A= N

'TN+S

Mp=Ay= = A= —
2=M == NE NN
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-continued

Az = As == Apyi =

NN +5)

The matrix T* is an idempotent matrix, i.e. T* T*=T*,
Hence, T* has two eigenvalues, 1 and 0 (with multi-
plicity 2N).

T* has 1 as an eigenvalue and all the other 2N eigenvalues
of T* have a magnitude smaller than one.

As is well known, the limit point of {V”} is

VE=A V14 Vo+ .o Aoy Vo

But V*, is actually the limit point of all V", j=1, 2, . . .,
2N+8. Therefore, the convex hull of {V” V", ... V", .}
converges to V¥, when n tends to infinity and, consequently,
V* =8(0,0). The fact that V¥, is the limit point of {V”,
Vs, o Vet follows from (9) and (15). The fact that
V*, is also the limit point of {V",x,5, V'ons, - - -
is demonstrated in Appendix B.

The last observation is important because it shows that

bl Vn2N+8}

max ||V - V|| (17
Vel'lg

converges. Therefore, it is possible to reduce the size of S”
to a degree that is tolerable if n is large enough. For a given
>0 we will find an n_ so that if n=n, then the level-n control
point set IT%, is contained in the sphere B(V™*'5, €/2). To do
this, we need to know how fast (17) converges.

Referring to FIG. 3, let @, ®*, &, and &, be subsets
of 1%, defined as follows:

@ ={VHi=1,2, .. . 2N+1},
@ F={V}j=1,45, . .. 82N+32N+4,2N+5},
@, F={V}j=1,4,5,6,2N+2,2N+3,2N+4,2N+6,2N+7},

O ={V}j=1,2, ... 6, 2N+6,2N+7,2N+8} (18)

(V% in ®*, should be replaced with VX, if N=3) and define
G*,, G*,, G*,, and G*, as follows:

Gok:maXVE%kHVlk—VH, le:maXVeq)lkHVsk—VHa

G, :maXVE”kHVf—VH, Gy :maxVEmkHVf—VH. 19

G*, is called the first order norm of ®*,, i=0, 1, 2, 3. We need
the following lemma for the construction of n_. The proof is
shown in Appendix C.

Lemma 5: If @, and G*, are defined as above, then for i=0,
1, 2, 3, we have

(20)

where G°=max {G°;, G°, G°,, G°,}. G° is called the first
order norm of I1°,.
To construct n_, note that if Vell”; and Ve®”,, we have

[P = P < Yal| 7y =7 YAl 75— 7y vl =7+
V"= MI=74G,™
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It is easy to prove that similar inequalities hold for ®” |, ®”,,
and @”, as well. Hence, for each Vell”,, by Lemma 5 we
have

T3\ 21

z(z) G, ifN=3 ey
g — vl < 73 7 13w

— - —_— — 0 1

4(4+4N 2N2]G’ it N=5

Since the maximum of 34+74N-134N? occurs at N=7, (21)
can be simplified as

701V 22)
Vn+1 V| < _(_] GO
1% =335
where
4—1 if N=3 @3
6= 3’ B
=108 .
55 iftN=5

Hence, |[V™*'5=V|| is smaller than /2 if n is large enough to
make the right hand side of (22) smaller than or equal to €/2.
Consequently, we have the following theorem.

Theorem 6: Let 11°,={V |1 £i=2N+8} be a level-0 control
point set that influences the shape of a CCSS patch S(u,v)
(=S°%,(u,v)). V, is an extraordinary vertex with valence N.
The control vertices are ordered following Stam’s fashion.
For a given €>0, if n_ is defined as follows:

4 24)
7G0 § it N=3
SR
5 it N=5

where G° is the first order norm of II°,, then the distance
between the level-n extraordinary subpatch S”,(u,v) and the
corresponding bilinear plane L”,(u,v) is smaller than or
equal to € if n=n_. Theorem 6 shows that the rate of
convergence of the control mesh in the vicinity of an
extraordinary vertex is fastest when valence of the extraor-
dinary vertex is three.

Subdivision Depth Computation for the Remaining Part.

It is desired, for each k between 1 and n_, to determine a
subdivision depth D, (Z2n,) so that if D, recursive subdivi-
sions are performed on the control mesh I1°, of S(u,v), then
the distance between the level-D, control mesh and the
subpatches S, i=1, 2, 3, is smaller than . Consequently, if
we define D to be the maximum of these D,(i.e. D=max
{DJ1=k=n,}), then after D recursive subdivisions, the
distance between the level-D control mesh and the sub-
patches S*, i=1, 2, 3, would be smaller than e for all
1=k=n,. Note that the distance between the level-D control
mesh and the subpatches S¥,, S, and S%; for n_+1=k=D,
and the distance between the level-D control mesh and the
level-D extraordinary subpatch S, would be smaller than €
as well. This is because these subpatches are subpatches of
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S"¢, and the distance between S"¢, and the level-n_ control
mesh is already smaller than e. Hence, the key here is the
construction of D,. We will show the construction of D, for
S, (u,v). This D, works for S, (u,v) and S%, (u,v) as well.

For 0=u, v=1, define a bilinear plane L%, (u, v) on the
mesh face {V%,, V&, V5, V& .} as follows:

L%, v)=(1-W[(1=a) V541V [ (1-2) Vopr, 7+

UVone |- (25)

Since S*,(u, v) is a uniform bicubic B-spline surface patch
with control mesh IT%,, we have, by Lemma 2,

IL3 ()-S5 @ v)lI= Y25* 26)

where 7, is the second order norm of S*,(u,v). If we define
7!, to be the second order norm of S,(u,v), we have

ZFEWZ I = (WY Z,° 27
where
2 28
3 if N=3 28
I S
it tae N0
3 2 21 |
YN e it N>5

The proof of (27) is shown in Appendix D. Hence, by
combining the above results, we have

Lemma 7 The maximum distance between S*, and L%,
satisfies the following inequality

max|L3 )-S5 )| SYa(W) 2’ (29
where W is defined in (28) and Z°, is the second order norm
of S(u,v).

It should be pointed out that when defining Z’,, only the
following items are needed for second order forward differ-
ences involving V7}:

Hlei— szi— V2[(/+2)%N]Hx/.:1>2 ----- N.

Lemma 7 shows that if 143(W)* Z° =e then the distance
between S*; and L%, is already smaller than e. However,
since n_ subdivisions have to be performed on II°, to get
S*<, anyway, D, for S%; in this case is set to n_. This
condition holds for 8%, and S*, as well.

If 15(W)* Z°,>¢, further subdivisions are needed on IT%,
i=1, 2, 3, to make the distance between $¥,, i=1, 2, 3, and the
corresponding mesh faces smaller than e. Considering S*,
again, S*, is a uniform bicubic B-spline surface patch with
control mesh IT%,. Therefore, if I, recursive subdivisions are
performed on the control mesh IT,, by Lemma 2 and
Lemma 3 we would have

IL3™(ev)-S5 )l S Yy zsF (30)
where L, (u,v) is a level-1, control mesh relative to IT*; and
7%, is the second order norm of S*,(u, v). Therefore, by
combining the above result with 27), we have

IZ5™ (et V=S5 (V| S Y5 (0 ) 2 Gy

We get the following Lemma by setting the right hand side
of (31) smaller than or equal to €.
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Lemma 8 In Lemma 7, if the distance between S*, and L%,
is not smaller than €, then one needs to perform 1,

W)z
o)

more recursive subdivisions on the level-k control mesh IT%,
of S%, to make the distance between S*; and the level-(k+1,)
control mesh smaller than e.

This result works for for §¥, and S*, as well. Note that the
value of (W)* Z°, is already computed in Lemma 7 and W
hs to be computed only once. Therefore, the subdivision
depth D, for S*,, 8%,, and S, is defined as follows:

Dy = max{ne, k+ {10&[ (W3)I;Zg ﬂ}

Consequently, we have the following main theorem:

Theorem 9 Let IT°,={V |1 £i=2N+8} be the control mesh of
a CCSS patch S(u,v). The control points are ordered fol-
lowing Stam’s fashion with V, being an extraordinary vertex
of valence N (see FIG. 1). For a given €>0, if we compute
n, as in (24) and D as follows:

(32)

(33)

D-max {D;1=k=n,, (34)
where D, is defined in (33) then after D recursive subdivi-
sions, the distance between S(u,v) and the level-D control
mesh is smaller than e.

Label-Driven Adaptive Subdivision

Given a control mesh of arbitrary topology and an error
tolerance €>0, the next step is to construct an adaptively
refined mesh that is close to within € to the CCSS of the
given control mesh, but with significantly fewer faces than
are derived from the traditional Catmull-Clark subdivision
process. The mesh refining process is driven by labels of
mesh vertices.

The given control mesh will be referred to as 2° with the
assumption that all the faces are quadrilaterals and each face
contains at most one extraordinary vertex (as described
supra). The limit surface of 2° will be referred to as F. For
each positive integer k, Z* refers to the result of applying k
levels of recursive Catmull-Clark subdivision on 2°. A face
of 2* is called an interior face if it is not adjacent to the
boundary of the mesh. Otherwise, it is called an exterior
face. All the faces of a closed control mesh are interior faces.
Each interior face f of * has a corresponding surface patch
in F, denoted S, The interior faces and their corresponding
surface patches are parametrized using the techniques pre-
sented by Stam. The distance between f and the limit surface
F is defined as the distance between f and the corresponding
surface patch S,

The initial label of an interior face fin =°, denoted LD,
is set to k if k is the subdivision depth of the corresponding
surface patch S, with respect to €. The label of an exterior
face is set to zero. The label of a vertex V in 2° is defined
as the maximum of labels of adjacent faces, i.e.,

L,(V)=max {L{e=° and V is a vertex of f}. (33)

The adaptive refinement procedure requires vertex labels
of 2° to satisfy the consistent condition (Cheng, F. et al.,
1989. A Parallel Mesh Generation Algorithm Based on the
Vertex Label Assignment Scheme. International Journal for
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Numerical Methods in Engineering 28, 1429-1448, incor-
porated herein by reference). A face of Z° is said to be an
illegal face if two adjacent vertices have non-zero labels and
two adjacent vertices have zero labels. The vertex labels of
>° are said to satisfy the consistent condition if Z° contains
no illegal faces. The consistent condition ensures that the
adaptively refined meshes are crack-free. Usually, 2° does
not satisty the consistent condition. The easiest way to make
>° satisfy the consistent condition is to set all the zero labels
to 1. However, this would unnecessarily increase the number
of faces generated in the resulting meshes since the number
of faces in the refined meshes is determined by the labels of
the vertices. A better way is to construct an extension
function E, (V) of L (V),

Ly(V), if Ly(V)>0;
Oorl, if L,(V)=0,

{ (36)
E(V)=

which satisfies the consistent condition but with as many
zero labels as possible.

A greedy algorithm for the construction of E (V) via a
connection supporting graph G, is therefore presented
herein. The vertices of G, are those of the illegal faces whose
labels are zero. The edges of G, are those of X° that connect
vertices of G,. The extension function E (V) is constructed
by repeatedly selecting a vertex from G,, changing its label
to 1 and then updating G, accordingly. This process contin-
ues until G, is empty. The complexity of this process is that
changing the label of a vertex from 0 to 1 changes the status
of adjacent faces: an illegal face might become legal and a
legal face might become illegal. Therefore, after changing
the label of a selected vertex from O to 1, one needs to
remove some old vertices and edges from G, while adding
some new vertices and edges into G,. Obviously, the greedy
algorithm should remove as many old vertices from G, and
add as few new vertices into G, as possible during each
selection and changing cycle. This is achieved by using the
following rule in selecting a vertex from G,, to change label.
Let D(V) denote the degree of V in G, and let N(V) be the
number of new vertices introduced into G, if the label of V
is changed from O to 1. If the number of D(V)=1 vertices is
not zero then, in the pool of vertices which are adjacent to
a D(V)=1 vertex, select any one with a minimum N(V)
among those with a maximum D(V). Otherwise, select any
vertex with a minimum N(V) among the vertices of G, with
a maximum D(V).

The adaptive subdivision process is driven by vertex
labels and is performed on individual mesh faces indepen-
dently. After each subdivision step, labels are assigned to the
newly generated vertices so they can drive the next subdi-
vision step. The resulting meshes are crack free. The
assumption is made that labels of the vertices of X° are
defined by an extension function E, even though the exten-
sion function might be the same as the original label function
L,. In the following, £, k=1, 2, . . ., stand for the meshes
generated by the adaptive refinement process. Also, vari-
ables without a bar refer to elements in ¥, and variables
with a bar refer to elements in >,

The adaptive subdivision of ¥*!, k=1, is performed as
follows. If a face has two or more nonzero vertex labels, a
balanced Catmull-Clark subdivision is performed on that
face (see FIG. 4). A balanced Catmull-Clark subdivision is
a standard Catmull-Clark subdivision. However, coordinates
of the new vertices are not yet computed. The new vertices
are marked for updating. Labels of the new vertices are
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defined as follows. For each new vertex point, E (V,)=max
{0, B(V,)-1}, i=1, 2, 3, 4. For each new edge point, E (V)
is the minimum of labels of the new vertex points adjacent
to V,, i=5, 6, 7, 8. For the new face point,

Fu(v)g =
0, if E,(V)s =Ey(Ve) = E,(V); = E,(Vg) = 0;
1, if some but not all of {E,(V's), E,(V), E,(V7), E,(Vg)lare zero;

min{E, (V)| VelVs, Ve, V7, Vg}l, otherwise

If a face has only one vertex with nonzero label, an
unbalanced Catmull-Clark subdivision with respect to that
vertex is performed (see FIG. 5). An unbalanced Catmull-
Clark subdivision generates three new faces only, as shown
in FIG. 5c. However, Vg, V, and the auxiliary structure
shown in FIG. 55 are computed and recorded for use in the
computation of the vertices of **!. Again, coordinates of
the new vertices are not computed until a later point. The
vertices, except V;, are marked for updating and later
evaluation. The labels of the new points are set to zero
except V, which is defined as E (V,)=E (V,)-1. The faces
without non-zero vertex labels are not further adaptively
subdivided, but are inherited topologically.

After all the faces of ! are processed, vertices marked
for updating in X* are computed using the Catmull-Clark
subdivision scheme to find their coordinates in =*. Note that
the vertices of %! required in the computation process for
the new vertices are available because they were stored with
the auxiliary structure (see FIG. 55) even though not output.
Other vertices (vertices marked for updating) of =* are
inherited from ! directly. Keeping an “update” status for
some of the vertices in the adaptive subdivision process is
necessary because whether a vertex should be inherited or
updated depends on its adjacent faces. The adaptive refine-
ment process stops when labels of all the new vertices are
Zero.

Other aspects of the present invention will become appar-
ent to those skilled in this art from the following description
wherein there is shown and described a preferred embodi-
ment of this invention, simply by way of illustration of one
of'the modes best suited to carry out the invention. As it will
be realized, this invention is capable of other different
embodiments and its several details are capable of modifi-
cation in various, obvious aspects all without departing from
the intended scope of the invention. Accordingly, the
descriptions and examples herein will be regarded as illus-
trative in nature and not as restrictive.

EXAMPLE 1

Referring to FIG. 6, distance and subdivision depth com-
putation for a CCSS patch was calculated for several sur-
faces. The distances between the faces of the control meshes
and the corresponding limit surface patches for each mesh
face were 0.034 (FIG. 6a), 0.25 (FIG. 6b), and 0.15 (FIG.
6¢). For an error tolerance of 0.01, the subdivision depths
computed for each mesh face was 1 (FIG. 6a), 24 (FIG. 6b),
and 22 (FIG. 6c). The calculated subdivision depths for the
mesh faces shown in FIGS. 65 and 6¢ were greater because
each surface has an extraordinary vertex. For the mesh face
shown in FIG. 64, subdivision depths for error tolerances
0.25,0.2, 0.1, 0.01, 0.001, and 0.0001 were 1, 3, 9, 24, 40,
and 56, respectively.

10
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EXAMPLE 2

FIGS. 7, 8, and 9 compare conventional uniform Catmull-
Clark subdivision with the adaptive subdivision method of
the present invention. Referring to FIG. 7 showing a rocker
arm, uniform Catmull-Clark subdivision resulted in 22,656
vertices, 45,312 edges, and 22,656 faces (FIG. 7¢) for an
error of 0.25. In contrast, the adaptive subdivision method of
the present invention (FIG. 7d) generated 2,706 vertices,
5,412 edges, and 2,706 faces, i.e. only ¥:s of the total
vertices, edges, and faces required for conventional Catmull-
Clark subdivision. Lowering the error tolerance to 0.2
resulted in a maximum subdivision depth of 4. In this latter
case, uniform Catmull-Clark subdivision generated 362,496
vertices, 724,992 edges, and 362,496 faces. In comparison,
the label-driven adaptive subdivision method of this inven-
tion generated only 9,022 vertices, 18,044 edges, and 9,022
faces, or a 40x improvement on the total number of vertices,
faces, and edges.

FIG. 8 depicts a ventilation controller component. For an
error tolerance of 0.15, the maximum subdivision depth of
the mesh faces in the input control mesh was 3. Uniform
Catmull-Clark subdivision (FIG. 8¢) generated 388,068 ver-
tices, 776,192 edges, and 388,096 faces. In contrast, the
method of the present invention required only 9814 vertices,
19,684 edges, and 9,842 faces. The reason that adaptive
subdivision was performed in some of the flatter regions was
that those regions contained extraordinary vertices.

A marker cap is depicted in FIG. 9. For an error tolerance
of 0.1, the maximum subdivision depth of the mesh faces
was 3. Uniform Catmull-Clark subdivision generated 273,
308 vertices, 546,816 edges, and 273,408 faces (FIG. 9¢).
FIG. 9d shows that the label-driven adaptive subdivision
method of the present invention generated only 15,086

5 vertices, 30,192 edges, and 15096 faces, an 18x improve-

40

65

ment over the conventional method. Because the control
mesh of the marker cap included more extraordinary verti-
ces, and therefore required additional subdivision in the
regions containing the extraordinary vertices, the savings
was less than that shown in FIGS. 7 and 8. Notwithstanding,
the present method represents an extraordinary savings in
the number of vertices, edges, and faces required (compared
to conventional Catmull-Clark subdivision) regardless of the
complexity of the surface.

Accordingly, the present invention provides a significant
improvement over conventional subdivision surface meth-
odology. The subdivision depth computation step provides a
precision/error control tool for all tessellation-based appli-
cations of subdivision surfaces. The label-driven adaptive
subdivision step improves efficiency of all tessellation-based
applications and data communication by significantly reduc-
ing the number of faces in the resultant mesh while satis-
fying the desired precision requirement.

Appendix A: Proof of Lemma 3
It is sufficient to show that, for each positive integer i, one
has

Moo SVaM . @37
The sixteen second order forward differences involved in
Mi"lo,O can be classified into four categories: (C-1) F-E-F,
(C-2) E-F-E, (C-3) E-V-E, and (C-4) V-E-V, based on the
type of the vertices. For instance, a second order forward
difference is said to be in the first category if an edge vertex
is sandwiched by two face vertices, such as 2Vi+11,0—
Vi 0=V, . Bach category consists of four second order
forward differences. We need to show that all these catego-
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ries satisfy (37). In the following, we prove (37) for one item where T* is defined in (15) and T*, | is a 7x(2N+1) version
of each category. The proof of the other items is similar. of T*, i.e.

(F — E — F): consider ZVéfll - Véle -
il _ oyl _ yitl Loui ; ;
I2Ver = Vo = Voo ll = §(2V0,1 - Vo2 Vool +

Lo i
§(2V1,1 -Via-

1 1 1
Moo+ Moo = 7 Mo

g 8

Case 1

(E-F - E):consider 2V§5' — vish — il

2Vi+1 _ Vi+l _yitl = H
2o = Vo3 = Varll = 1g

2V1,2 - Vli,3 - Vli,l + 2Vli,l - Vli,z -

1
M00+

16 16

Case 2

(E-V - E):consider 2V{i! - V{35! -

2Vi+1 _ Vi+l _ Vi+l — H
” L1 12 Lo ” 32

3 i
E(Zvl,l -

1 . .
ﬁ(zvﬁ,l -Vip-

M00+

Case 3

(V — E-V):consider ZV‘+1 V{jgl—

vzt - Vi - Vit = H—(zvoz Vis = Vi +2V, ~Via -
Vo 0) + —(ZVI 2~

Vi,—Vig+ —

12— V1,0 a

W = Vi = Vil = (@ tegtypt

3,1,
ntE”

Case 4

This completes the proof of the lemma.

Appendix B: Convergence of V"5, . . .

Note that if one can prove that

T 0Y
lim (T)" = hm =T
Ty, 2

n—oo 00

(@Vis = Vis = Vi, +2Vh, —Via -

1 1 1
M00+ Moo—

1 i
—v, -

- V{,l + zvli,l -

(38) s A Ay o Mgy (43)
. Ay Ay e Aoy
Tii=| . L : >
Ar A2 - Monsd Do
10
then, by (9) we have
VIV =M V i+ A Vot - Ao Vo
15 for j=2N+2, 2N+3, , 2N+8. Hence, to prove that

V' onaas o3 Vg converge to V*,, it is sufficient to show
39 that (42) is true, or, equivalently, to show that (i) (T, )"
converges to a 7x7 zero matrix when n tends to infinity, and
(ii) the lower-left 7x(2N+1) block of (T)*" converges to

Vig+
o0 20 T*, ;. (I) is obvious because T, , contains non-negative
Violl = entries and the sum of each row is smaller than one. To prove
. (i1), note that the sum of each row of (7)” is one and, from
M o- .
47 (l)s

(lez)"—>0.
25

Therefore, for each of the last 7 rows of (T)”, the sum of the
first 2N+1 entries is close to one when n is large. On the
other hand, when n is large, (15) is true, i.e. each column of
(40) (T)” has almost identical entries. Hence, computing an entry
30 of the lower-left 7x(2N+1) block of (T)*"=(T)"(T)" is like
multiplying 2N+1 almost identical entries (in the same
column of the upper-left 2N+1)x(2N+1) block of the sec-
ond (T)"” by 2N+1 non-negative numbers whose sum is close
to one (in the same row of the lower-left 7x(2N+1) block of
5 the first (T)”. Consequently the value of that entry in the
lower-left 7x(2N+1) block of (T)*"=(T)" (T)" is close to the
Lo first 2N+1 almost identical entries in the same column of the

Taee second (T)” and this completes the proof of (ii).

]

40 Appendix C: Rate of Convergence of CI)k
In this appendlx we prove Lemma 5. Slnce CI) is sym-
metric to ®*,, we only need to consider G*,, G~,, and G*,
for the lemma.

C3Y)
(i) G*,. For an edge point such as V**!,, we have
45
o RERCES T 4
v = vyt = =D+ Vi -
=3
- Vis-Vii+ 50 301y, 1
237 "2l V1)+(2N2 ](Vz V1)+(4N2—
3
1 3003y
E](Vs V1)+(2N2 g)(v4_vl)+
U R SN B
55 (W_E](S_ 1)+(W_E](6_
N N
. 3 1 3
vil= X o+ 2 e +Plawe
= =3
v o+ (- ) e e
s 2N+8 60 — - — — !
" )38 )t A6~ a2 )|
(3 ! 4](;" if N=3
_ grtay T aE)te BV S
“lys 7 10y
42 s+—-— |G, f N=5
e (8+4N N2] o BAE

where G, is defined in (20).
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For a face point such as V*';, we have

. . 3 . .
Vit - vitt| = sz (Vi - VD +
N 3 o
> Vi =D+ (57 - 3 )i -V
=3
11v"v+31v"v"<N3+
(W_Z]( 3=V (ZNZ _4_1]( 41—V = JZ:; N2

21 3 1 1
4Nz+(z‘m]+1‘m

1=

P

(3+7 13
474N T oN?

The other cases are similar to (44) or (45). Hence, we have

the following inequality for N=3 or N=5:

e e(Pel B (2,8 i+l
Bl (2,13
(4 w 2N2] 0= (4 t N 2N2]
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45)

]G‘O, N=3or Nz5.

(46)

(ii) G%,. For an edge point such as V'*',, ., we have

. . 1 . . . . 5 . .
1V = Vil = | 1o Vhves + Vivar = V= Vi s mvi = v <

1 . . 1 . . 1 . .
| 75 Vs - vire LoV - Vi Vi - i+

Lo .5
EVi-Vh+ vi-v| =

where G, and G'; are defined in (20).

For a face point such as V*';, we have

. . 3 . 1 . .
Vit = Vit = v+ v - v v -

3 . 3 . 1 . .
| Z0d-vie i -vir povi-vip+

) S
g(v; +V))| =

1 . .
E(Vi -V9)l =

47N

9
< —max{GO, G‘}

(48)

1 o
zmax{G‘O, G3}).

For a vertex point such as V***

i+l |
Vi = vidkall =

3 9 3
HE( 32 (V3 +V)+ = % Vinar =

1 . .
a(vﬁms +Vawse)|| =

1 . . 3 . 1 . .
| 52 Vhs = Vire 5V =i+ 5 Vhves - i+

9 i i 3 i i 3 i i
ﬁ(V4—V1)+a(V1—V6)+a(V1—V2)+

ana7s We have

(49)

<Vé +Vi)+

—_
w
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-continued

Lo i 1 9 i
i(v_“)_vl)"'ﬁ(vs V1)< maX{GOaG}

The other cases are similar to these cases. Hence, by
combining the results of (47), (48), and (49), we have

) 9 o
G < Emax{G‘o, Gyl <

2( 7 13 (50)

6\7 "2y ZNZ]maX{Gg’GO}

The second inequality of (50) follows from (46). (50) works
for N=3 or N=5.

(iii) G*,. For an edge point such as V'**

samgs We have

IVifhe = Vil = (51)
3 i i 1 i i 1 i i
H_E(Vl +Ve)+ g(V4 +V)+ E(V2N+7 +Vanssl|| =
3 i i 3 i i 1 i i
HE(W -VD+ E(VS - Vo) + E(VZNH -Vo+
1 i i i J i
E(Vzms = V3| = smax{G}, G, Gsh
For a vertex point such as V**1,,, ,, we have
Vit = 52

i+1
IVakz =

3 . . . . 3 . .
Hi(vﬁNﬂs -V - @(Vztmz -V - ﬁ(VZ‘Nﬁ +V9)+

9
64(V2N+4 V6)+64(V2N+7 V4)+64(

V6) +

a(vs‘—v;n@(v;—v;) s Jmax(Gl. G}, Gi).

The other cases are similar to these two cases. Hence, by
combining the results of (51), (52), (46), and (50), we have

Gx+l

(98]

P (53)
Zmax (G}, Gy, G5}
x+l

if N=3

3N2+7N 26
]GO, ifN=S§

where G%=max {G%, G°,, G°,, G%}. The lemma now
follows from (46), (50), and (53).

Appendix D: Proof of (27)

The proof of Lemma 3 shows that the norms of most of
the second order forward differences of the control points of
IT*, satisfy the inequality

24-B-C||SVaz F!

except 2VF VA _VF, ovF _vE _VE . and 2VF,-VF -
V¥, s The last two cases are similar. Hence, we only need
consider the first two cases.
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In the second case, we have

l2vs™ = Vit = Vil =

64N2{N2(2v7" — Vi = Vi )+ N2QVE- Vi, -V +

E6N2QVE - Vi Viy) +

N
82 QVapanet) = Vaju1 = Vapan+1) +
=
(SN2 —56)(—2Vi + Vi+ VD) +

N+1

562 @V} = Varonaon+1y = V2‘[(j+1)%N+1])}H <
=

(1 ! 7]2" N=3or N=5
it Tae e Mo e

where 77, is ‘the second order norm of Sio. In the above
derivation, V' should be replaced with V', when N=3.
In the first case, when N25, we have

vt =it - vt =

N
Z AV =2V + Vo) +N2QV] - Vin, - Vi) +

2
16N7 | &

N2QVi - Vi—VH + (N2 =28)2Vi - Vi - Vi) +

N-1
(N?=28)2Vi - Vi - Vi - Z 28Q2V] = Vj; - Vii0) -
J=5

282V = Viyy— Viy) = 2802V] = Viy_, - Vi) +

(1+ L, 2 ]z" if N=5
2 aw e fe B
AN

—]z;), if N>S.

SN2 —28)2Vi - Vi - Vi
( )( 1 2 6) 3 )
(4 4N 2N2

<

In the first summation, one should use V7, , for V.., when
j=1. The difference between the case N=5 and N=6 comes
from the fact that (N*>-28) is negative when N=5. When
N=3, we have

vt - vyt - vt =
TaglP@V2 = V3= V) +502Ve — V7 = V5) -4V - V5 = V5) —
192V - Vi — v —19QV] Vi -V +

. . . 2.
4402V -V, - Vil = 526, when N =3

Consequently, from the above results we have the first part
of'(27). The second part of (27) follows from the observation
that the norms of second order forward differences similar to
v+t vl v dominates the other second order for-
ward differences in all subsequent norm computation.

The foregoing description is presented for purposes of
illustration and description of the various aspects of the
invention. The descriptions are not intended to be exhaustive
or to limit the invention to the precise form disclosed. The
embodiments described above were chosen to provide the
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best illustration of the principles of the invention and its
practical application to thereby enable one of ordinary skill
in the art to utilize the invention in various embodiments and
with various modifications as are suited to the particular use
contemplated. All such modifications and variations are
within the scope of the invention as determined by the
appended claims when interpreted in accordance with the
breadth to which they are fairly, legally and equitably
entitled.

What is claimed is:

1. A method for modeling or representing a surface or
shape having an arbitrary topology which may be repre-
sented by a control mesh comprising at least one discrete
Catmull-Clark Subdivision Surface (CCSS) patch defined
by a set of control points, comprising the steps of:

computing a subdivision depth determining the number of

recursive subdivisions which may be performed on the
control mesh to generate a plurality of finer mesh
elements, whereby a distance between each finer mesh
element and a corresponding limit surface patch is less
than a predetermined error tolerance €; and

using the computed subdivision depth to construct an

adaptively refined mesh that is substantially similar to
the control mesh within the range of said predetermined
error tolerance ¢;

wherein each face of the recursively subdivided control

mesh is a quadrilateral and contains up to one extraor-
dinary vertex.

2. The method of claim 1, wherein the limit surface patch
is not adjacent to an extraordinary vertex.

3. The method of claim 1, wherein the limit surface patch
is adjacent to an extraordinary vertex.

4. The method of claim 2, wherein the limit surface patch
is a uniform bicubic B-spline surface patch designated
S(u,v).

5. The method of claim 4, including the step of calculating
a subdivision depth k defined as k levels of recursive
subdivision performed on the control points of the limit
surface patch S(u, v) to generate a level k control mesh,
wherein k is defined as k=[ log, (M°/3¢)], where M° is the
second order norm of S(u,v) and the distance between S(u,v)
and the level k control mesh is less than e.

6. The method of claim 3, including the initial step of
subdividing the limit surface patch at least twice to define at
least one standard uniform bicubic B-spline surface sub-
patch and up to one extraordinary subpatch that is not a
standard uniform bicubic B-spline subpatch, said extraordi-
nary subpatch containing a limit point of up to one extraor-
dinary vertex.

7. The method of claim 6, further including the step of
computing a subdivision depth n_ for the extraordinary
subpatch, defined as n levels of recursive subdivision per-
formed on the extraordinary subpatch to generate a level n
extraordinary subpatch control mesh, wherein n_ is defined
as

4 .
7G0 5, if N=3
nes{loga[fﬂ, 6= 08
55 if N=5

where G° is the first order norm of I1°,, II%, is a level-0
control point defined as {V|1=i=2N+8}, V, is an extraor-
dinary vertex with valence N, and the distance between the
level n extraordinary subpatch control mesh and a corre-
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sponding bilinear plane defined in the extraordinary sub-
patch is less than or equal to € if n=n_.

8. The method of claim 7, further including the step of
computing a subdivision depth D by performing D recursive
subdivisions on each standard uniform bicubic B-spline
subpatch to define a level D control mesh, wherein D is
defined as the maximum number of recursive subdivisions
which may be performed such that the distance between the
standard uniform bicubic B-spline subpatch and the level D
control mesh is less than e.

9. The method of claim 1, wherein the step of constructing
an adaptively refined mesh comprises the steps of:

defining a mesh for which subdivision depths have been
computed, said mesh comprising a plurality of quad-
rilateral faces containing up to one extraordinary vertex
and having at least one interior face not adjacent a
boundary of the control mesh and at least one exterior
face adjacent a boundary of the control mesh;

defining an initial label of the interior face as a non-zero
integer k wherein k is the subdivision depth of its
corresponding surface patch with respect to €,

defining an initial label of the exterior face as zero;

establishing a consistent condition for each face whereby
no two adjacent vertices thereof have non-zero labels
and no two adjacent vertices thereof have zero labels
and further wherein the number of zero labels is
maximized, the consistent condition being established
by defining a connection supporting graph G, whose
vertices are those of the faces having two adjacent
vertices whose labels are zero, selecting a vertex from
G, redefining the selected vertex label to 1, updating
G,, and repeating the process until the connection
supporting graph contains no further vertices;

performing a balanced Catmull-Clark subdivision step on
any face having two or more nonzero vertex labels;

performing an unbalanced Catmull-Clark subdivision step
on any face having only one vertex with zero label; and

computing new vertices from the results of the balanced
and unbalanced Catmull-Clark subdivision steps to
generate at least one new face defining the adaptively
refined mesh structure.

10. A computer-readable medium having computer-ex-
ecutable instructions for modeling or representing a surface
or shape having an arbitrary topology which may be repre-
sented by a control mesh comprising at least one discrete
Catmull-Clark Subdivision Surface (CCSS) patch defined
by a set of control points, by the steps of:

computing a subdivision depth determining the number of
recursive subdivisions which may be performed on the
control mesh to generate a plurality of finer mesh
elements, whereby a distance between each finer mesh
element and a corresponding limit surface patch is less
than a predetermined error tolerance €; and

using the computed subdivision depth to construct an
adaptively refined mesh that is substantially similar to
the control mesh within the range of said predetermined
error tolerance €;
wherein each face of the recursively subdivided control
mesh is a quadrilateral and contains up to one extraor-
dinary vertex.
11. The computer-readable medium of claim 10, wherein
the limit surface patch is not adjacent to an extraordinary
vertex.
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12. The computer-readable medium of claim 10, wherein
the limit surface patch is adjacent to an extraordinary vertex.

13. The computer-readable medium of claim 11, wherein
the limit surface patch is a uniform bicubic B-spline surface
patch designated S(u,v).

14. The computer-readable medium of claim 13, wherein
the computer-readable medium performs the further step of
calculating a subdivision depth k defined as k levels of
recursive subdivision performed on the control points of the
limit surface patch S(u, v) to generate a level k control mesh,
wherein k is defined as k=[ log, (M°/3¢) ], where M® is the
second order norm of S(u,v) and the distance between S(u,v)
and the level k control mesh is less than e.

15. The computer-readable medium of claim 12, wherein
the computer-readable medium performs the initial step of
subdividing the limit surface patch at least twice to define at
least one standard uniform bicubic B-spline surface sub-
patch and up to one extraordinary subpatch that is not a
standard uniform bicubic B-spline subpatch, said extraordi-
nary subpatch containing a limit point of up to one extraor-
dinary vertex.

16. The computer-readable medium of claim 15, wherein
the computer-readable medium performs the further step of
computing a subdivision depth n_ for the extraordinary
subpatch, defined as n levels of recursive subdivision per-
formed on the extraordinary subpatch to generate a level n
extraordinary subpatch control mesh, wherein n_ is defined
as

if N=3

o) -

ool\.o Wl
Gloo ™5

, if Nz5

where G is the first order norm of T1°,, 1%, is a level-0
control point defined as {V|1=i=2N+8}, V, is an extraor-
dinary vertex with valence N, and the distance between the
level n extraordinary subpatch control mesh and a corre-
sponding bilinear plane defined in the extraordinary sub-
patch is less than or equal to € if n=n,.

17. The computer-readable medium of claim 16, wherein
the computer-readable medium further performs the step of
computing a subdivision depth D by performing D recursive
subdivisions on each standard uniform bicubic B-spline
subpatch to define a level D control mesh, wherein D is
defined as the maximum number of recursive subdivisions
which may be performed such that the distance between the
standard uniform bicubic B-spline subpatch and the level D
control mesh is less than e.

18. The computer-readable medium of claim 10, wherein
the computer-readable medium constructs an adaptively
refined mesh by performing the steps of:

defining a mesh for which subdivision depths have been
computed, said mesh comprising a plurality of quad-
rilateral faces containing up to one extraordinary vertex
and having at least one interior face not adjacent a
boundary of the control mesh and at least one exterior
face adjacent a boundary of the control mesh;

defining an initial label of the interior face as a non-zero
integer k wherein k is the subdivision depth of its
corresponding surface patch with respect to €,

defining an initial label of the exterior face as zero;
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establishing a consistent condition for each face whereby
no two adjacent vertices thereof have non-zero labels
and no two adjacent vertices thereof have zero labels
and further wherein the number of zero labels is
maximized, the consistent condition being established
by defining a connection supporting graph G, whose
vertices are those of the faces having two adjacent
vertices whose labels are zero, selecting a vertex from
G,, redefining the selected vertex label to 1, updating
G,, and repeating the process until the connection
supporting graph contains no further vertices;

performing a balanced Catmull-Clark subdivision step on
any face having two or more nonzero vertex labels;

performing an unbalanced Catmull-Clark subdivision step
on any face having only one vertex with zero label; and

computing new vertices from the results of the balanced
and unbalanced Catmull-Clark subdivision steps to
generate at least one new face defining the adaptively
refined mesh structure.
19. A method for modeling or representing a surface or
shape having an arbitrary topology which may be repre-
sented by a control mesh comprising at least one discrete
Catmull-Clark Subdivision Surface (CCSS) patch defined
by a set of control points, comprising the steps of:
computing a subdivision depth determining the number of
recursive subdivisions which may be performed on the
control mesh to generate a plurality of finer mesh
elements, whereby a distance between each finer mesh
element and a corresponding limit surface patch that is
a uniform bicubic B-spline surface patch S(u,v) is less
than a predetermined error tolerance «;
wherein the subdivision depth is calculated as subdivision
depth k defined as k levels of recursive subdivision
performed on the control points of the limit surface
patch S(u,v) to generate a level k control mesh, wherein
k is defined as k=[ log, (M°/3¢) ], where M° is the
second order norm of S(u,v) and the distance between
S(u,v) and the level k control mesh is less than €; and

using the computed subdivision depth to construct an
adaptively refined mesh that is substantially similar to
the control mesh within the range of said predetermined
error tolerance ¢;

wherein each face of the recursively subdivided control

mesh is a quadrilateral and contains up to one extraor-
dinary vertex.

20. The method of claim 19, wherein the limit surface
patch is not adjacent to an extraordinary vertex.

21. The method of claim 19, wherein the limit surface
patch is adjacent to an extraordinary vertex.

22. The method of claim 21, including the initial step of
subdividing the limit surface patch at least twice to define at
least one standard uniform bicubic B-spline surface sub-
patch and up to one extraordinary subpatch that is not a
standard uniform bicubic B-spline subpatch, said extraordi-
nary subpatch containing a limit point of up to one extraor-
dinary vertex.

23. The method of claim 22, further including the step of
computing a subdivision depth n_ for the extraordinary
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subpatch, defined as n levels of recursive subdivision per-
formed on the extraordinary subpatch to generate a level n
extraordinary subpatch control mesh, wherein n_ is defined
as

if N=3

o) -

where G° is the first order norm of I1°,, II%, is a level-0
control point defined as {V /1 £i£2N+8}, V, is an extraor-
dinary vertex with valence N, and the distance between the
level n extraordinary subpatch control mesh and a corre-
sponding bilinear plane defined in the extraordinary sub-
patch is less than or equal to € if n=n,.

24. The method of claim 23, further including the step of
computing a subdivision depth D by performing D recursive
subdivisions on each standard uniform bicubic B-spline
subpatch to define a level D control mesh, wherein D is
defined as the maximum number of recursive subdivisions
which may be performed such that the distance between the
standard uniform bicubic B-spline subpatch and the level D
control mesh is less than e.

25. The method of claim 19, wherein the step of con-
structing an adaptively refined mesh comprises the steps of:

defining a mesh for which subdivision depths have been

computed, said mesh comprising a plurality of quad-
rilateral faces containing up to one extraordinary vertex
and having at least one interior face not adjacent a
boundary of the control mesh and at least one exterior
face adjacent a boundary of the control mesh;
defining an initial label of the interior face as a non-zero
integer k wherein k is the subdivision depth of its
corresponding surface patch with respect to €,
defining an initial label of the exterior face as zero;
establishing a consistent condition for each face whereby
no two adjacent vertices thereof have non-zero labels
and no two adjacent vertices thereof have zero labels
and further wherein the number of zero labels is
maximized, the consistent condition being established
by defining a connection supporting graph G, whose
vertices are those of the faces having two adjacent
vertices whose labels are zero, selecting a vertex from
G,, redefining the selected vertex label to 1, updating
G,, and repeating the process until the connection
supporting graph contains no further vertices;
performing a balanced Catmull-Clark subdivision step on
any face having two or more nonzero vertex labels;
performing an unbalanced Catmull-Clark subdivision step
on any face having only one vertex with zero label; and
computing new vertices from the results of the balanced
and unbalanced Catmull-Clark subdivision steps to
generate at least one new face defining the adaptively
refined mesh structure.

ool\owl-b
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