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subdivision depth to determine the number of recursive 
subdivisions which may be performed on a control mesh to 
generate a plurality of finer mesh elements while preserving 
a predetermined error tolerance, and using the computed 
subdivision depth to construct an adaptively refined mesh 
that is substantially similar to the control mesh within the 
predetermined error tolerance. Limit control surfaces with 
and without extraordinary vertices may be analysed using 
the method of the invention. In another aspect, a software 
program for accomplishing the method of the present inven 
tion is provided. 
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1. 

SUBDIVISION SURFACE-BASED 
GEOMETRIC MODELING SYSTEM 

This application claims the benefit of U.S. Provisional 
Patent Application Ser. No. 60/388,637 filed Jun. 14, 2002. 
This invention was made with Government support under 
NSF Grant No. DMI-9912069. The Government may have 
certain rights in this invention. 

TECHNICAL FIELD 

The present invention relates to the art of surface mod 
eling of images to produce realistic images or to provide 
simulations with accurate surface information. More par 
ticularly, the present invention relates to a new subdivision 
depth computation technique and to an improved label 
driven adaptive subdivision technique for use in Catmull 
Clark Subdivision surface modeling systems. 

BACKGROUND OF THE INVENTION 

Subdivision surfaces have become popular recently in 
graphical modeling, animation, and CAD/CAM because of 
their stability in numerical computation, simplicity in cod 
ing, and most importantly their capability in modeling/ 
representing complex shape of arbitrary topology. Given a 
control mesh and a set of mesh refining rules, a user may 
obtain a limit surface by recursively cutting off corners of 
the control mesh. The limit surface is referred to as a 
Subdivision surface because the corner cutting/mesh refining 
process is a generalization of the uniform B-spline surface 
Subdivision technique. Subdivision surfaces include uniform 
B-spline surfaces and piecewise Bézier surfaces as special 
cases. It is also known in the art that subdivision surfaces 
may include non-uniform B-spline surfaces and NURBS 
Surfaces as special cases. Subdivision surfaces can model/ 
represent complex shape of arbitrary topology because there 
is no limit on the shape and topology of the control mesh of 
a subdivision surface. It is also known that subdivision 
surfaces cover both parametric forms and discrete forms. 
Since parametric forms are useful for design and represen 
tation and discrete forms are useful for machining and 
tessellation (including FE mesh generation), a representation 
is provided which is suitable for all graphics and CAD/CAM 
applications. 
The prior art in subdivision surfaces has focused on the 

areas of surface trimming, boolean operations, and mesh 
editing. However, there are presently few suitable methods 
for dealing with precision/error control in subdivision sur 
faces, and in “smart” tessellation of subdivision surfaces. 
Given a predetermined error tolerance, it is necessary to 
determine how many levels of recursive Catmull-Clark 
Subdivision should be performed on the initial control mesh 
Such that the distance between the resultant control mesh 
and the limit surface is less than the predetermined error 
tolerance. It is also desirable to improve efficiency of 
tessellation based applications and data communication by 
generating a refined mesh within the required approximation 
precision of the limit surface with significantly fewer faces 
than the uniformly refined mesh. To date, efforts to reduce 
the number of faces in a mesh have focused on: (1) mesh 
simplification, i.e. removing over-sampled vertices and pro 
ducing approximate meshes with various levels of detail; (2) 
approximating the limit surface by known surfaces, such as 
displaced subdivision surface or NURBS patches; and (3) 
application of adaptive refinement schemes to subdivision 
Surfaces. 
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2 
Accordingly, a need is identified for an improved method 

for subdivision surface modeling. The subdivision depth 
computation technique provided by the present invention 
provides precision/error control tools in subdivision surface 
trimming, finite element mesh generation, boolean opera 
tions, and surface tessellation for rendering processes. The 
label-driven adaptive subdivision technique of the invention 
improves efficiency of the above by generating an adaptively 
refined mesh that is within the required approximation 
precision of the limit surface, but with significantly fewer 
quadrilateral faces than prior art uniformly refined mesh 
techniques. The invention provides a subdivision depth 
computation technique for a Catmull-Clark subdivision sur 
face (CCSS) patch, and provides also a label-driven adaptive 
subdivision technique for a CCSS based on subdivision 
depths calculated for its patches. A novel greedy algorithm 
is used to eliminate illegal vertex labels in the initial mesh. 

Advantageously, the methods of the present invention 
provide a novel and efficient error control tool which is 
suitable for all tessellation-based applications of subdivision 
Surfaces, and significantly reduce the number of faces in an 
adaptively refined quadrilateral mesh in a few subdivision 
steps, thereby improving efficiency of all tessellation-based 
applications and data communication of subdivision sur 
faces. 

SUMMARY OF THE INVENTION 

In accordance with a first aspect of the invention, a 
method for modeling or representing a surface or shape 
having an arbitrary topology which may be represented by 
a control mesh comprising at least one discrete Catmull 
Clark Subdivision Surface (CCSS) patch defined by a set of 
control points is provided, comprising the steps of comput 
ing a subdivision depth determining the number of recursive 
subdivisions which may be performed on the control mesh 
to generate a plurality of finer mesh elements, whereby a 
distance between each finer mesh element and the corre 
sponding limit surface patch is less than a predetermined 
error tolerance e. Next is the step of using the computed 
Subdivision depth to construct an adaptively refined mesh 
that is substantially similar to the control mesh within the 
range of the predetermined error tolerance e. Each face of 
the recursively subdivided control mesh is a quadrilateral, 
and may contain up to one extraordinary vertex. 
The method of the present invention is suitable for 

computing the subdivision depth, or the number of recursive 
Subdivisions which may be performed on a surface patch 
while maintaining the predetermined error tolerance, for 
both surface patches which are not adjacent to an extraor 
dinary vertex, and for surface patches which are adjacent to 
an extraordinary vertex. 

For surface patches which are not adjacent to an extraor 
dinary vertex, it will be appreciated that the surface patch 
will be a uniform bicubic B-spline surface patch which may 
be designated as S(u,v). In the absence of an extraordinary 
Vertex, the next step is calculating a subdivision depth k 
defined ask levels of recursive subdivision performed on the 
control points of the surface patch S(u,v) to generate a level 
k control mesh, wherein k is defined as k2log (M/3e). 
where M' is the second order norm of S(u,v) and the distance 
between S(u,v) and the level k control mesh is less than e. 

If an extraordinary vertex is present in the patch being 
considered, the initial step is subdividing the surface patch 
at least twice to define at least one standard uniform bicubic 
B-spline surface subpatch and up to one extraordinary 
subpatch that is not a standard uniform bicubic B-spline 
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Subpatch, the extraordinary Subpatch containing a limit point 
of up to one extraordinary vertex. Next, a subdivision depth 
n for the extraordinary Subpatch is computed, defined as in 
levels of recursive subdivision performed on the extraordi 
nary Subpatch to generate a level in extraordinary Subpatch 
control mesh, wherein n is defined as 

4 
7G0 3. 

tle = |log || 0 = os 
85 

if N = 3 

if N > 5 

where G' is the first order norm of II, II is a level-0 
control point defined as V.11s is 2N+8), V, is an extraor 
dinary vertex with valence N, and the distance between the 
level in extraordinary Subpatch control mesh and a corre 
sponding bilinear plane defined in the extraordinary Sub 
patch is less than or equal to e if nen. 

For the remaining patches not containing the extraordi 
nary vertex (after the initial subdivision step described 
above), next is the step of computing a Subdivision depth D 
by performing D recursive Subdivisions on each standard 
uniform bicubic B-spline subpatch to define a level D 
control mesh, wherein D is defined as the maximum number 
of recursive subdivisions which may be performed such that 
the distance between the standard uniform bicubic B-spline 
subpatch and the level D control mesh is less than e. 

In another aspect, the present invention provides a label 
driven method of subdividing a Catmull-Clark subdivision 
Surface patch derived as described above, comprising the 
steps of defining a mesh for which subdivision depths have 
been computed, the mesh comprising a plurality of quadri 
lateral faces containing up to one extraordinary vertex and 
having at least one interior face not adjacent a boundary of 
the control mesh and at least one exterior face adjacent a 
boundary of the control mesh, and defining an initial label of 
the interior face as a non-zero integer k wherein k is the 
Subdivision depth of its corresponding Surface patch with 
respect to e. The method also includes the step of defining 
an initial label of the exterior face as Zero. 

Next is the step of establishing a consistent condition for 
each face whereby no two adjacent vertices thereof have 
non-zero labels and no two adjacent vertices thereof have 
Zero labels and further wherein the number of Zero labels is 
maximized. The consistent condition is established by defin 
ing a connection Supporting graph G, whose vertices are 
those of the faces having two adjacent vertices whose labels 
are Zero, selecting a vertex from G, redefining the selected 
vertex label to 1, updating G, and repeating the process 
until the connection Supporting graph contains no further 
vertices. For any face having two or more nonzero vertex 
labels, a balanced Catmull-Clark subdivision step is per 
formed. For any face having only one vertex with Zero label, 
an unbalance Catmull-Clark subdivision step is performed. 
Last is the step of computing new vertices from the results 
of the balanced and unbalanced Catmull-Clark Subdivision 
steps to generate at least one new face defining the adap 
tively refined mesh structure. 

In another aspect of the present invention, a computer 
Software program for Subdivision Surface modeling is pro 
vided, wherein the software performs the steps as described 
above. 

BRIEF DESCRIPTION OF THE DRAWING 

FIG. 1 schematically depicts the ordering of control 
points for a CCSS patch with an extraordinary vertex; 
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4 
FIG. 2 schematically depicts a representative population 

of control point sets; 
FIG. 3 schematically depicts the subdivision of a surface 

patch having an extraordinary vertex into a plurality of 
standard uniform bicubic B-spline Surface Subpatches and a 
single extraordinary Subpatch that is not a standard uniform 
bicubic B-spline subpatch which contains the limit point of 
the extraordinary vertex; 

FIG. 4 schematically depicts FIG. 4 (a-b) schematically 
depicts the balanced Catmull-Clark subdivision of one of the 
standard uniform bicubic B-spline surface subpatches of 
FIG. 3; 

FIG. 5 schematically depicts FIG. 5 (a-c) schematically 
depicts the unbalanced Catmull-Clark subdivision of the 
extraordinary subpatch of FIG. 3; 

FIG. 6 (a-c) depicts the distance and subdivision depth 
computation for a CCSS patch having: (a) no extraordinary 
vertex; (b) an extraordinary vertex of valence 5; and (c) an 
extraordinary vertex of valence 8: 

FIG. 7 graphically depicts a rocker FIG. 7 (a-d) graphi 
cally depicts a rocker arm, showing: (a) a control mesh 
therefor; (b) a limit surface therefor; (c) the result of 
performing a conventional uniform Subdivision process; and 
(d) the result of performing the adaptive subdivision method 
of the present invention; 

FIG. 8 (a-d) depicts the distance a ventilation controller 
component, showing: (a) a control mesh therefor; (b) a limit 
Surface therefor; (c) the result of performing a conventional 
uniform subdivision process; and (d) the result of perform 
ing the adaptive Subdivision method of the present inven 
tion; and 

FIG. 9 (a-d) graphically depicts a marker cap, showing: 
(a) a control mesh therefor; (b) a limit surface therefor; (c) 
the result of performing a conventional uniform Subdivision 
process; and (d) the result of performing the adaptive 
subdivision method of the present invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

The present invention provides a method and computer 
program, which may conveniently be disposed on a com 
puter readable medium, for calculating a Subdivision depth 
for a Catmull-Clark subdivision surface (CCSS) patch, and 
provides also a label-driven adaptive Subdivision technique 
for a CCSS based on subdivision depths calculated for its 
patches. 

Subdivision Depth Computation for Patches not Near an 
Extraordinary Vertex. 
The first step is computation of a subdivision depth for a 

desired surface. Let V, V, V, and V be the control points 
of a uniform cubic B-spline curve segment C(t) whose 
parameter space is 0,1). If the middle leg of the control 
polygon is parametrized as follows: L(t)=V+(V-V)t, 
Osts 1, then the maximum of L(t)-C(t) is the distance 
between the curve segment and its control polygon. Thus: 

(1-t) (1) 
6 

3 
L(t) - C(t) = (2V - V - V.) + (2V. - V - V.) s 

1 
max|2V. - Vo - V2, 2W2 - V - V. 
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Since (2V-V-V)/6 and (2V-V-V)/6 are the values of 
L(t)-C(t) at t=0 and t=1, the following lemma results: 
Lemma 1: The maximum of L(t)-C(t) occurs at the end 
points of the curve segment and may be expressed as 

1 (2) 
max L(t) - C(t) = max{2V1 - Vo - V2, 2W2 - V - V3} 
Oetal 6 

Next is the step of defining the distance between a 
uniform bicubic B-spline surface patch and its control mesh. 
Let V, Osijs 3, be the control points of a uniform bicubic 
B-spline surface patch S(u,v) with parameter space 0.1x 
(0,1). If the central mesh face {V, V, V, V} is 
parametrized as follows: 

then the maximum of L(u,v)-S(u,v) is called the distance 
between S(u,v) and its control mesh. Defining Q, Q, 
Q, and Q, as follows: 

Q = (1 - u) V1 + u V2.k. Q = (1 - v)V.1 + wV2. 

3 3 

Q = 2. Ni3 (u) Vik. Q = 2. Ni3 (v) V,i 
f= 

where N(t) are standard uniform B-spline basis functions 
of degree 3 results in: 

L(u, v) - S(u, v) < (3) 

Application of Lemma 1 on IQ,1-Q1|, |Q,2-Q, and 
|Q-Q, , -1.2.3, and by defining M" as the maximum 
norm of the second order forward differences of the control 
points of S(u,v), we have 

M" is called the second order norm of S(u,v). From this, the 
following lemma is derived: 

Lemma 2: The maximum of L(u,v)-S(u,v) satisfies the 
following inequality 

max L(u, v) - S(u, v) < 'M' (4) 

where M is the second order norm of S(u, v). 
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6 
It should be noted that even though the maximum of 

L(t)-C(t) occurs at the end points of the curve segment 
C(t), the maximum of L(u, v)-S(u,v) for a surface patch 
usually does not occur at the corners of S(u,v). Based on the 
foregoing, the method for Subdivision depth computation for 
Surface patches not adjacent to an extraordinary vertex will 
now be presented. 

Let V, Osijs3, be the control points of a uniform 
bicubic B-spline surface patch S(u,v). We use V, Osi, 
js3+2', to represent the new control points of the surface 
patch after k levels of recursive subdivision. The indexing of 
the new control points follows the convention that Voo is 
always the face point of the mesh face {V*', vk-1 10 
V-', vk-1}. The new control points V, will be called 
the level-k control points of S(u,v) and the new control mesh 
will be called the level-k control mesh of S(u,v). 

Note that if the parameter space of the surface patch is 
divided into 4 regions as follows: 

(5) in n + 1 
2. 2 - 

where 0s mns 2-1 and let the corresponding subpatches 
be denoted S(u,v), then each S,(u,v) is a uniform 
bicubic B-spline surface patch defined by the level-k control 
point set {Vlmsps m+3.ns qs n+3}. S.,(u,v) is called 
a level-k subpatch of S(u,v). One can define a level-k 
bilinear plane L, on {Vlp m+1, m+1; q n+1, n+2} 
and measure the distance between L',(u,v) and S(u,v). 
It can be said that the distance between S(u,v) and the level-k 
control mesh is smaller than e if the distance between each 
level-k subpatch S,(u, V) and the corresponding level-k 
bilinear plane L',(u,v), Osm.ns 2-1, is smaller than e. 
Next will be demonstrated how to calculate a subdivision 
depth k for a givene so that the distance between S(u,v) and 
the level-k control mesh is smaller than e after k levels of 
recursive subdivision. The following lemma is needed in the 
derivation of the computation process. If we use M, tO 
represent the second order norm of S., (u, v), i.e. the 
maximum norm of the second order forward differences of 
the control points of S., (u,v), then the lemma shows the 
second order norm of S, (u, v) converges at a rate of 1/4 
of the level-(k-1) second order norm. The proof of this 
lemma is provided in Appendix A. 
Lemma 3: If M, is the second order norm of S., (u,v), 
then we have 

(6) 
in 

where M' is the second order norm of S(u,v). 
With lemmas 2 and 3, it is easy to see that, for any 

Osmans 2', we have 

k 

lMs K () M0. DS, |L (u, v) -S (u, V) < 3-min - 3 
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Hence, if k is large enough to make the right side of (7) 
Smaller than e, we have 

for every Osmans 2''. This leads to the following: 
Theorem 4: Let V, Osijs3, be the control points of a 10 
uniform bicubic B-spline surface patch S(u,v). For any given 
ex0, if 

levels of recursive subdivision are performed on the control 
points of S(u,v), then the distance between S(u,v) and the 
level-k control mesh is smaller than e where M' is the 
second order norm of S(u,v). 

(8) 15 

Subdivision Depth Computation for Patches Near an 
Extraordinary Vertex. 
A different analysis is required for computation of Sub 

division depth for surface patches near extraordinary verti 
ces, necessitated by the fact that one does not have a uniform 
B-spline surface patch representation and cannot use the 
analysis of Theorem 4 directly. The method of the present 
invention dictates making the size of such a vicinity as Small 
as possible, thereby reducing such size to a degree that is 
tolerable (i.e., within the given error tolerance) and use the 
analysis of Theorem 4 to analyze the remaining portion of 
the Surface patch. A Subdivision depth computation based on 
this concept for a CCSS patch near an extraordinary vertex 
is presented below. It is assumed that the initial mesh has 
been subdivided at least twice such that each mesh face is a 
quadrilateral and contains at most one extraordinary vertex. 

Let II'o-V,1sis2N+8} be a level-0 control point set 
that influences the shape of a surface patch S(u,v) (=S(u, 
V). V is an extraordinary vertex with valence N. The control 
vertices are ordered following Stam's fashion (Stam, J. 
1998. Exact Evaluation of Catmull-Clark Subdivision Sur 
faces at Arbitrary Parameter Values. In Proceedings o 
SIGGRAPH 1998, 395-404, incorporated herein by refer 
ence) as schematically depicted in FIG. 1. 

Using V", to represent the level-n control vertices gener 
ated after in levels of recursive Catmull-Clark subdivision, 
and use S"o, S', S', and S", to represent the subpatches of 
S''' defined over the tiles 
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respectively, then the shape of S', S', S', and S's are 60 
influenced by the level-n control point sets II", II", II", 
and II's are depicted in FIG. 2. 

II={ V1 sis2N+8) 
65 

S', S', and S" are standard uniform bicubic B-spline 
Surface patches because their control meshes satisfy a 4-by-4 

8 
structure. Hence, the technique described in Theorem 4 can 
be used to compute a subdivision depth for each of them. So 
is not a standard uniform bicubic B-spline surface patch. 
Hence. Theorem 4 can not be used to compute a Subdivision 
depth for So directly. For convenience S" may be called a 
level-n extraordinary subpatch of S(u,v) because it contains 
the limit point of the extraordinary points (see below). Note 
that if Ho and H, are column vector representations of the 
control points of II and II", respectively, 

Ho=(Vo V1, . . . , VNs), H=(Vo", V", ..., Voys") 

where (X, X. . . . , X) represents the transpose of the row 
vector (X, X. . . . . X) then we have 

H=(T)"Ho (9) 

where T is the (2N+8)x(2N+8) (extended) subdivision 
matrix defined as follows: 

(10) 

with 

aw by CN by CN by . . . by CN (11) 
d d e e O 0 . . . e. e 

f f f f () () O O 
d e e d e e 0 0 

| f 0 o f f f 0 0 

e O O O O d e 

f f () () () () f f 

O O to to O O O (12) 

e O O e d d O O O 

b O O C b a b c 0 

T = e () () () () d d e (), 
e O O. d d e O O O 

b C b a b c 0 O 0 

e e d d O. O. O. O. O. 

c b c O (13) 
O e e 0 0 O 

O to O O O 

T = 0 () e e () () () 
O O O O e O 

O O O O 

O O O O O e e 

and 

7 3 1 9 
an = 1 - 4.N. bN = M3, CN = 4x2 . a = , 

b = i, c = ..., d = e = , f = } 32 64 8 16 4 
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Subdivision Depth Computation for a Vicinity of the 
Extraordinary Vertex. 
The goal is to find an integer n for a given ex0 so that if 

n (en) recursive subdivisions are performed on II'o, then 
the control set point of the level-n extraordinary subpatch 
S" of S(u,v), II"o-V", 1sis 2N+8}, is contained in the 
sphere B(V's, e?2) with center V"'s=(V"+V"+V"+ 
V")/4 and radius ef2. Note that if the (2N+8)-point control 
mesh is contained in the then the level-n extraordinary 
subpatch S"o is contained in the sphere B(V"'s, e?2) as well. 
This follows from the fact that So as the limit surface of 
II", is contained in the convex hull of II" and the convex 
hull of II" is contained in the sphere B(V"'s, e?2). Then, 
we have 

maxSo"(u,v)-Lo"(u,v)|<e (14) 

where L'(u,v) is a bilinear plane defined on the level-n 
mesh face {V"+V"+V"s+V"}. The construction of such 
an in depends on several properties of the (extended) 
subdivision matrix T and the control point sets II". 

First note that since all the entries of the extended 
Subdivision matrix T are non-negative and the sum of each 
row equals one, the extended Subdivision matrix is a tran 
sition probability matrix of a (2N+8)-state Markov chain. In 
particular, the (2N+1)x(2N+1) block T of T is a transition 
probability matrix of a (2N+1)-state Markov chain. The 
entries in the first row and first column of T are all 
non-zero. Therefore, the matrix T is irreducible because 
(T*) has no zero entries and, consequently, all the states are 
accessible to each other. On the other hand, since all the 
diagonal entries of T are non-zero and entries of (T)" are 
non-zero for all ne2, it follows that all the states of T are 
aperiodic and positive recurrent. Consequently, the Markov 
chain is irreducible and ergodic. By the well-known theorem 
of Markov chain, Theorem 4), (T)" converges to a limit 
matrix T whose rows are identical. More precisely 

A1 A2 
A1 A2 

A2N+1 (15) 

- & 

where A, are the unique non-negative solution of 

2N-- 

A = X. Aiii, j = 1, 2, ..., 2N + 1 
i=1 

(16) 

X, A, = 1 

with t, being the entries of T. One can easily get the 
following observations. 
The Vector (A1, A2. . . . . Avi) satisfies the following 

properties: 

A1 = N 
1 - N is 

A = A = r = Ax = - 2 = A4 = 2N = N (NS) 
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-continued 
1 

N(N +5) 

The matrix T is an idempotent matrix, i.e. TT–T*. 
Hence. T has two eigenvalues, 1 and 0 (with multi 
plicity 2N). 

T* has 1 as an eigenvalue and all the other 2N eigenvalues 
of T have a magnitude smaller than one. 

As is well known, the limit point of V" is 

But V* is actually the limit point of all V", j=1,2,..., 
2N+8. Therefore, the convex hull of V", V",..., V",s} 
converges to V* when n tends to infinity and, consequently, 
V*=S(0,0). The fact that V* is the limit point of {V", 
V". . . . , V", follows from (9) and (15). The fact that 
V* is also the limit point of{V"x2, V"ws. ..., V"ws} 
is demonstrated in Appendix B. 
The last observation is important because it shows that 

Vel I, 
- VI (17) 

converges. Therefore, it is possible to reduce the size of So 
to a degree that is tolerable if n is large enough. For a given 
ex0 we will find an in so that if nen then the level-n control 
point set II" is contained in the sphere B(V"'s, e?2). To do 
this, we need to know how fast (17) converges. 

Referring to FIG. 3, let d', d', d', and d', be subsets 
of II defined as follows: 

d'-(Vij=1,2,... 6.2N+6.2N+7.2N+8} (18) 

(V's in d' should be replaced with V, if N=3) and define 
Go, G, G, and G', as follows: 

Go-maxi-IV-VII, G'=maxi-IV.-VII, 
G=max Pe. IV-VII, G'=max Peps IV-VII. (19) 

G, is called the first order norm of d', i=0,1,2,3. We need 
the following lemma for the construction of n. The proof is 
shown in Appendix C. 
Lemma 5: If d', and G', are defined as above, then for i=0, 
1, 2, 3, we have 

3 Yk (20) 
(G". if N = 3 k 4 

G. s. 

(+1. i) G if N is 5 4 " 4N 2N2 W & 

where G'=max {G, G, G, G. G' is called the first 
order norm of II". 
To construct n., note that if VeTI' and Vedb", we have 
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It is easy to prove that similar inequalities hold for d' d', 
and d" as well. Hence, for each VeTI", by Lemma 5 we 
have 

73 Yn 21 
AG) G9, if N = 3 (21) 

|V* - VIIs 73 7 13 Yn 
O A(i+1, i) G'. if N is 5 

Since the maximum of 34+7AN-13/2N occurs at N=7, (21) 
can be simplified as 

7 1 Yn (22) Vg+1 - Wils A() G0 |V: ls als 

where 

4 if N = 3 (23) 
d = 3. 
T 98 

85 if N is 5 

Hence, IV"'s-VII is smaller thane/2 if n is large enough to 
make the right hand side of (22) Smaller than or equal to ef2. 
Consequently, we have the following theorem. 

Theorem 6: Let II-V, 1 sis2N+8} be a level-0 control 
point set that influences the shape of a CCSS patch S(u,v) 
(=S(u,v)). V is an extraordinary vertex with valence N. 
The control vertices are ordered following Stam's fashion. 
For a given ex0, if n is defined as follows: 

4 (24) 
7G0 3. if N = 3 

in E og (), d = 98 
85 if N is 5 

where G" is the first order norm of II", then the distance 
between the level-n extraordinary subpatch Sc(u,v) and the 
corresponding bilinear plane L'o(u,v) is Smaller than or 
equal to e if nen. Theorem 6 shows that the rate of 
convergence of the control mesh in the vicinity of an 
extraordinary vertex is fastest when valence of the extraor 
dinary vertex is three. 
Subdivision Depth Computation for the Remaining Part. 

It is desired, for each k between 1 and n, to determine a 
subdivision depth D (2n) so that if D recursive subdivi 
sions are performed on the control mesh II" of S(u,v), then 
the distance between the level-D, control mesh and the 
subpatches S, i=1, 2, 3, is smaller thane. Consequently, if 
we define D to be the maximum of these D (i.e. D-max 
{D1sks n}), then after D recursive subdivisions, the 
distance between the level-D control mesh and the sub 
patches S, i=1, 2, 3, would be smaller than e for all 
1sksn. Note that the distance between the level-D control 
mesh and the subpatches S. S., and S, for n+1sks D. 
and the distance between the level-D control mesh and the 
level-D extraordinary subpatch SP would be smaller thane 
as well. This is because these subpatches are subpatches of 
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S" and the distance between S" and the level-n control 
mesh is already smaller than e. Hence, the key here is the 
construction of D. We will show the construction of D for 
S's (u,v). This D, works for S (u,v) and S (u,v) as well. 
For Osu, vs 1, define abilinear plane L's (u, v) on the 

mesh face {V, Vs, Vaz, V} as follows: 

uVys). (25) 

Since S(u, v) is a uniform bicubic B-spline surface patch 
with control mesh II's, we have, by Lemma 2. 

where Z is the second order norm of S,(u,v). If we define 
Z to be the second order norm of Sc(u,v), we have 

2 28 
3. if N = 3 (28) 

l+ 1 -- 21 if N = 5 3 + 4N +4N2 . If N = 
3 2 21 if N > 5 
4 + y - M2 . If N > 

The proof of (27) is shown in Appendix D. Hence, by 
combining the above results, we have 
Lemma 7 The maximum distance between S, and L's 
satisfies the following inequality 

max|L“(u,v)-S,(u,v)|s'/3(W)“Z” (29) 

where W is defined in (28) and Z' is the second order norm 
of S(u,v). 

It should be pointed out that when defining Z only the 
following items are needed for second order forward differ 
ences involving V: 

|2Vi- Vi- 2012). Nilf-12 N. 

Lemma 7 shows that if/3(W) Zose then the distance 
between S. and L', is already smaller than e. However, 
since in Subdivisions have to be performed on II" to get 
S" anyway, D, for S. in this case is set to n. This 
condition holds for S', and S. as well. 

If/3(W)" Z">e, further subdivisions are needed on II", 
i=1,2,3, to make the distance between S, i=1,2,3, and the 
corresponding mesh faces smaller thane. Considering S's 
again, S', is a uniform bicubic B-spline surface patch with 
control mesh II's. Therefore, if 1 recursive subdivisions are 
performed on the control mesh II's, by Lemma 2 and 
Lemma 3 we would have 

|L'(u,v)-S(u,v)|s 1/3(A)' Z, (30) 

where L',(u,v) is a level-1 control mesh relative to II's and 
Z, is the second order norm of S,(u, v). Therefore, by 
combining the above result with 27), we have 

We get the following Lemma by setting the right hand side 
of (31) Smaller than or equal to e. 
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Lemma 8. In Lemma 7, if the distance between S, and L's 
is not smaller than e, then one needs to perform 1 

(W) Z: 4-o'- 
more recursive subdivisions on the level-k control mesh II's 
of S, to make the distance between S, and the level-(k+1) 
control mesh Smaller than e. 

This result works for for S, and S. as well. Note that the 
value of (W) Z is already computed in Lemma 7 and W 
hs to be computed only once. Therefore, the subdivision 
depth D, for S', S', and S is defined as follows: 

D = max. k+ los (8.4 } 

Consequently, we have the following main theorem: 
Theorem 9 Let II-V,1s is 2N+8} be the control mesh of 
a CCSS patch S(u,v). The control points are ordered fol 
lowing Stam's fashion with V being an extraordinary vertex 
of valence N (see FIG. 1). For a given ex0, if we compute 
in as in (24) and D as follows: 

(32) 

(33) 

D=max {D, 1sksn (34) 

where D is defined in (33) then after D recursive subdivi 
sions, the distance between S(u,v) and the level-D control 
mesh is smaller than e. 

Label-Driven Adaptive Subdivision 
Given a control mesh of arbitrary topology and an error 

tolerance ex0, the next step is to construct an adaptively 
refined mesh that is close to within e to the CCSS of the 
given control mesh, but with significantly fewer faces than 
are derived from the traditional Catmull-Clark Subdivision 
process. The mesh refining process is driven by labels of 
mesh vertices. 
The given control mesh will be referred to as X" with the 

assumption that all the faces are quadrilaterals and each face 
contains at most one extraordinary vertex (as described 
supra). The limit surface of X" will be referred to as F. For 
each positive integerk, X" refers to the result of applying k 
levels of recursive Catmull-Clark subdivision on X". A face 
of X* is called an interior face if it is not adjacent to the 
boundary of the mesh. Otherwise, it is called an exterior 
face. All the faces of a closed control mesh are interior faces. 
Each interior face f of X" has a corresponding surface patch 
in F, denoted S. The interior faces and their corresponding 
Surface patches are parametrized using the techniques pre 
sented by Stam. The distance between f and the limit surface 
F is defined as the distance between f and the corresponding 
surface patch S. 
The initial label of an interior face fin X", denoted L(f), 

is set to k if k is the subdivision depth of the corresponding 
surface patch S, with respect to e. The label of an exterior 
face is set to zero. The label of a vertex V in X" is defined 
as the maximum of labels of adjacent faces, i.e., 

L(V)=max {L(f) fex and V is a vertex off. (35) 
The adaptive refinement procedure requires vertex labels 

of X" to satisfy the consistent condition (Cheng, F. et al., 
1989. A Parallel Mesh Generation Algorithm Based on the 
Vertex Label Assignment Scheme. International Journal for 
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14 
Numerical Methods in Engineering 28, 1429-1448, incor 
porated herein by reference). A face of X" is said to be an 
illegal face if two adjacent vertices have non-zero labels and 
two adjacent vertices have Zero labels. The vertex labels of 
X" are said to satisfy the consistent condition if X contains 
no illegal faces. The consistent condition ensures that the 
adaptively refined meshes are crack-free. Usually, X" does 
not satisfy the consistent condition. The easiest way to make 
X' satisfy the consistent condition is to set all the Zero labels 
to 1. However, this would unnecessarily increase the number 
of faces generated in the resulting meshes since the number 
of faces in the refined meshes is determined by the labels of 
the vertices. A better way is to construct an extension 
function E(V) of L(V), 

L. (V), if L(V) > 0; 
0 or 1, if L(V) = 0, 

{ (36) E(V) = 

which satisfies the consistent condition but with as many 
Zero labels as possible. 
A greedy algorithm for the construction of E(V) via a 

connection Supporting graph G, is therefore presented 
herein. The vertices of G, are those of the illegal faces whose 
labels are zero. The edges of G, are those of X" that connect 
vertices of G. The extension function E(V) is constructed 
by repeatedly selecting a vertex from G, changing its label 
to 1 and then updating G, accordingly. This process contin 
ues until G, is empty. The complexity of this process is that 
changing the label of a vertex from 0 to 1 changes the status 
of adjacent faces: an illegal face might become legal and a 
legal face might become illegal. Therefore, after changing 
the label of a selected vertex from 0 to 1, one needs to 
remove Some old vertices and edges from G, while adding 
some new vertices and edges into G. Obviously, the greedy 
algorithm should remove as many old vertices from G, and 
add as few new vertices into G, as possible during each 
selection and changing cycle. This is achieved by using the 
following rule in selecting a vertex from G, to change label. 
Let D(V) denote the degree of V in G, and let N(V) be the 
number of new vertices introduced into G if the label of V 
is changed from 0 to 1. If the number of D(V)=1 vertices is 
not Zero then, in the pool of Vertices which are adjacent to 
a D(V)=1 vertex, select any one with a minimum N(V) 
among those with a maximum D(V). Otherwise, select any 
vertex with a minimum N(V) among the vertices of G, with 
a maximum D(V). 
The adaptive subdivision process is driven by vertex 

labels and is performed on individual mesh faces indepen 
dently. After each Subdivision step, labels are assigned to the 
newly generated vertices so they can drive the next Subdi 
vision step. The resulting meshes are crack free. The 
assumption is made that labels of the vertices of X" are 
defined by an extension function E. even though the exten 
sion function might be the same as the original label function 
L. In the following, X", k=1, 2, . . . . stand for the meshes 
generated by the adaptive refinement process. Also, vari 
ables without a bar refer to elements in X'', and variables 
with a bar refer to elements in X*. 
The adaptive subdivision of X", k21, is performed as 

follows. If a face has two or more nonzero vertex labels, a 
balanced Catmull-Clark subdivision is performed on that 
face (see FIG. 4). A balanced Catmull-Clark subdivision is 
a standard Catmull-Clark subdivision. However, coordinates 
of the new vertices are not yet computed. The new vertices 
are marked for updating. Labels of the new vertices are 
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defined as follows. For each new vertex point, E(V)=max 
{0, E(V)-1}, i=1, 2, 3, 4. For each new edge point, E(V) 
is the minimum of labels of the new vertex points adjacent 
to V, i=5, 6, 7, 8. For the new face point, 

(), if E(V) = E,(V) = E,(V) = E,(Vs) = 0; 
1, if some but not all of {E (Vs), E, (V6), E. (W7), E, (Vs)}are Zero; 

If a face has only one vertex with nonzero label, an 
unbalanced Catmull-Clark subdivision with respect to that 
vertex is performed (see FIG. 5). An unbalanced Catmull 
Clark Subdivision generates three new faces only, as shown 
in FIG. 5c. However, Vs, V and the auxiliary structure 
shown in FIG. 5b are computed and recorded for use in the 
computation of the vertices of X*. Again, coordinates of 
the new vertices are not computed until a later point. The 
vertices, except Vs, are marked for updating and later 
evaluation. The labels of the new points are set to zero 
except V which is defined as E(V)=E (V)-1. The faces 
without non-zero vertex labels are not further adaptively 
subdivided, but are inherited topologically. 

After all the faces of X" are processed, vertices marked 
for updating in X" are computed using the Catmull-Clark 
subdivision scheme to find their coordinates in X". Note that 
the vertices of X" required in the computation process for 
the new vertices are available because they were stored with 
the auxiliary structure (see FIG. 5b) even though not output. 
Other vertices (vertices marked for updating) of X" are 
inherited from X'' directly. Keeping an “update” status for 
Some of the vertices in the adaptive Subdivision process is 
necessary because whether a vertex should be inherited or 
updated depends on its adjacent faces. The adaptive refine 
ment process stops when labels of all the new vertices are 
ZO. 

Other aspects of the present invention will become appar 
ent to those skilled in this art from the following description 
wherein there is shown and described a preferred embodi 
ment of this invention, simply by way of illustration of one 
of the modes best suited to carry out the invention. As it will 
be realized, this invention is capable of other different 
embodiments and its several details are capable of modifi 
cation in various, obvious aspects all without departing from 
the intended scope of the invention. Accordingly, the 
descriptions and examples herein will be regarded as illus 
trative in nature and not as restrictive. 

EXAMPLE 1. 

Referring to FIG. 6, distance and subdivision depth com 
putation for a CCSS patch was calculated for several Sur 
faces. The distances between the faces of the control meshes 
and the corresponding limit Surface patches for each mesh 
face were 0.034 (FIG. 6a), 0.25 (FIG. 6b), and 0.15 (FIG. 
6c). For an error tolerance of 0.01, the subdivision depths 
computed for each mesh face was 1 (FIG. 6a), 24 (FIG. 6b). 
and 22 (FIG. 6c). The calculated subdivision depths for the 
mesh faces shown in FIGS. 6b and 6c were greater because 
each surface has an extraordinary vertex. For the mesh face 
shown in FIG. 6b, Subdivision depths for error tolerances 
0.25, 0.2, 0.1, 0.01, 0.001, and 0.0001 were 1, 3, 9, 24, 40, 
and 56, respectively. 
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EXAMPLE 2 

FIGS. 7, 8, and 9 compare conventional uniform Catmull 
Clark subdivision with the adaptive subdivision method of 
the present invention. Referring to FIG. 7 showing a rocker 
arm, uniform Catmull-Clark Subdivision resulted in 22,656 
vertices, 45.312 edges, and 22,656 faces (FIG. 7c) for an 
error of 0.25. In contrast, the adaptive subdivision method of 
the present invention (FIG. 7d) generated 2,706 vertices, 
5,412 edges, and 2.706 faces, i.e. only 3/25 of the total 
vertices, edges, and faces required for conventional Catmull 
Clark subdivision. Lowering the error tolerance to 0.2 
resulted in a maximum subdivision depth of 4. In this latter 
case, uniform Catmull-Clark subdivision generated 362.496 
vertices, 724,992 edges, and 362.496 faces. In comparison, 
the label-driven adaptive subdivision method of this inven 
tion generated only 9,022 vertices, 18,044 edges, and 9,022 
faces, or a 40x improvement on the total number of vertices, 
faces, and edges. 

FIG. 8 depicts a ventilation controller component. For an 
error tolerance of 0.15, the maximum subdivision depth of 
the mesh faces in the input control mesh was 3. Uniform 
Catmull-Clark subdivision (FIG. 8c) generated 388,068 ver 
tices, 776, 192 edges, and 388,096 faces. In contrast, the 
method of the present invention required only 9814 vertices, 
19,684 edges, and 9,842 faces. The reason that adaptive 
subdivision was performed in some of the flatter regions was 
that those regions contained extraordinary vertices. 
A marker cap is depicted in FIG. 9. For an error tolerance 

of 0.1, the maximum subdivision depth of the mesh faces 
was 3. Uniform Catmull-Clark subdivision generated 273, 
398 vertices, 546,816 edges, and 273,408 faces (FIG. 9c). 
FIG. 9d shows that the label-driven adaptive subdivision 
method of the present invention generated only 15,086 
vertices, 30,192 edges, and 15096 faces, an 18x improve 
ment over the conventional method. Because the control 
mesh of the marker cap included more extraordinary verti 
ces, and therefore required additional subdivision in the 
regions containing the extraordinary vertices, the savings 
was less than that shown in FIGS. 7 and 8. Notwithstanding, 
the present method represents an extraordinary savings in 
the number of vertices, edges, and faces required (compared 
to conventional Catmull-Clark subdivision) regardless of the 
complexity of the Surface. 

Accordingly, the present invention provides a significant 
improvement over conventional Subdivision Surface meth 
odology. The Subdivision depth computation step provides a 
precision/error control tool for all tessellation-based appli 
cations of subdivision surfaces. The label-driven adaptive 
subdivision step improves efficiency of all tessellation-based 
applications and data communication by significantly reduc 
ing the number of faces in the resultant mesh while satis 
fying the desired precision requirement. 
Appendix A: Proof of Lemma 3 

It is sufficient to show that, for each positive integeri, one 
has 

Moo's 'AMoo. (37) 

The sixteen second order forward differences involved in 
M' can be classified into four categories: (C-1) F-E-F, 
(C-2) E-F-E, (C-3) E-V-E, and (C-4) V-E-V, based on the 
type of the vertices. For instance, a second order forward 
difference is said to be in the first category if an edge vertex 
is sandwiched by two face vertices, such as 2V'o- 
V"oo-V'o. Each category consists of four second order 
forward differences. We need to show that all these catego 
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ries satisfy (37). In the following, we prove (37) for one item 
of each category. The proof of the other items is similar. 

(F - E - F): consider 2V - V - V. (38) 

i-l i-l i-l 1 i i i |2V - V - Vol = s (2V6. - V - Vo) + 
1 i i i 
s (2V. - VI - Vo)|s 

i , , , , ,i 
M60 + 3 M60 = M60. 

Case 1 

(E - F - E): consider 2V - V - V'. (39) 

i-l i-l i-l 1 i i i i i i |2V5 - Vis' – VI"|| = (2V6.2 - V3 - V1 + 2V - V - Vo + 

2V – V.3 - V. +2VE - V - Vio)|s 
1 i 1 i 1 i 1 i 1 i 

M60 + M60 + M60 + M60 = Mao. 

Case 2 

(E - V - E): consider 2VE - V - V. (40) 

2 i-l i-l i-Fli- 1 2 i i i |2VE - V - VIII = 3. V - V - Vo) + 
3 i i i 
s (2V. - VI - Vio) + 
1 i i i 
s (2V3. - V.2 - Vio)|s 

i , , , , ri ri 
as M60 + M60 + 35 M60 = M60. 

Case 3 

(V - E - V): consider 2V - V - V. (41) 

i-l i-l i-l 1 i i i i i |2V - V - V'I = (2V6.2 - V3 - V1 + 2V1 - V - 
3 i i i i 

Woo) + 35 (2V12 - V.3 - V. +2V. - 
1 

V2 - Vio) + (2V3.2 - Vis - V: + 
i i i 1 1 3 

2V: - V: - Vio)||s (i. + 4 + 2 + 

* + 1 + M = Mi 3. "4" (40.0 - "00: 

Case 4 

This completes the proof of the lemma. 
Appendix B: Convergence of V'v2. . . . . V's 
Note that if one can prove that 

T O Y T* () (42) 
lim (T) = lim = T = . 
- & - & T1. T12 T. O 
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18 
where T is defined in (15) and T* is a 7x(2N+1) version 
of T', i.e. 

AI A2 A2N+1 (43) 
3k AI A2 A2N+1 

T. = : .. : 

AI A2 A2N+1 )7.2N1) 

then, by (9) we have 

for j=2N+2, 2N+3, . . . , 2N--8. Hence, to prove that 
V'. . . . , V's converge to V, it is Sufficient to show 
that (42) is true, or, equivalently, to show that (i) (T,)" 
converges to a 7x7 Zero matrix when n tends to infinity, and 
(ii) the lower-left 7x(2N+1) block of (T)” converges to 
T*. (I) is obvious because To contains non-negative 
entries and the Sum of each row is Smaller than one. To prove 
(ii), note that the sum of each row of (7)" is one and, from 
(i), 

Therefore, for each of the last 7 rows of (T)", the sum of the 
first 2N-1 entries is close to one when n is large. On the 
other hand, when n is large, (15) is true, i.e. each column of 
(T)" has almost identical entries. Hence, computing an entry 
of the lower-left 7x(2N+1) block of (T)'=(T)"(T)" is like 
multiplying 2N-1 almost identical entries (in the same 
column of the upper-left (2N+1)x(2N+1) block of the sec 
ond (T)" by 2N-1 non-negative numbers whose sum is close 
to one (in the same row of the lower-left 7x(2N+1) block of 
the first (T)". Consequently the value of that entry in the 
lower-left 7x(2N+1) block of (T) =(T)” (T)" is close to the 
first 2N-1 almost identical entries in the same column of the 
second (T)" and this completes the proof of (ii). 
Appendix C: Rate of Convergence of d', 

In this appendix we prove Lemma 5. Since p', is sym 
metric to d's, we only need to consider Go G', and G's 
for the lemma. 

(i) Go. For an edge point such as V'', we have 

(44) 
|V - VI = 

3 . . Y. 1 . 
X. as (V3 - Vi)+X 4N2 (Viji 
i=4 i=3 

1 3 V-V)+(5- - V - Vi)+ 
1 V - V. W (as - i.) s - i)+(3–1) 6 

W W 3 1 3 VIIs 2. N. “X, IN (N - 
1 2- - -li i? --- lo +(5–3)+2(t–1). 
3 7 4 ) (+1 – G. if N = 3 

(5 7 10 ) . (+1 – c. if N is 5 

where Go is defined in (20). 
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In the second case, we have 

i{ay - V - Vils) + N2V: - Viv - Vi)+ 

6N° (2V - V - Vivia) + 
W 

8X, (2Vic.N- I - V - Vijc.N. 1) + 
i=l 

N-1 

56X (2VI - V3-16...N-1- viol s 
i=3 

14, N = 3 or N is 5 

where Zo is the second order norm of So. In the above 
derivation, V's should be replaced with V' when N=3. 

In the first case, when N25, we have 

W 

X. 4(V: 1 – 2V: + Vill) + N°(2V: - Viv - V3) + 
i=l 

N° (2V-V: - V5) + (N'-28)(2V - V - Vi) + 

28(2V – Viv - Viv)-28(2V – Viv - Vi)+ 
1, 1 21 ) . 2 (+I, + i. z. if N = 5 

8N-28)(2W - W - WE)'s ( )(2V 2 ) is 3 2 21 i : 

(+ -iz, if N is 5. 

In the first summation, one should use V for V" when 
j=1. The difference between the case N=5 and Ne6 comes 
from the fact that (N-28) is negative when N=5. When 
N=3, we have 

19(2VE - V - Vi) - 19(2V - V - V) + 
2 . 

44(2V - V - V)||s 54. when N = 3 

Consequently, from the above results we have the first part 
of (27). The second part of (27) follows from the observation 
that the norms of second order forward differences similar to 
2V'-V'-V's dominates the other second order for 
ward differences in all Subsequent norm computation. 

The foregoing description is presented for purposes of 
illustration and description of the various aspects of the 
invention. The descriptions are not intended to be exhaustive 
or to limit the invention to the precise form disclosed. The 
embodiments described above were chosen to provide the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
best illustration of the principles of the invention and its 
practical application to thereby enable one of ordinary skill 
in the art to utilize the invention in various embodiments and 
with various modifications as are Suited to the particular use 
contemplated. All Such modifications and variations are 
within the scope of the invention as determined by the 
appended claims when interpreted in accordance with the 
breadth to which they are fairly, legally and equitably 
entitled. 

What is claimed is: 
1. A method for modeling or representing a surface or 

shape having an arbitrary topology which may be repre 
sented by a control mesh comprising at least one discrete 
Catmull-Clark Subdivision Surface (CCSS) patch defined 
by a set of control points, comprising the steps of 

computing a Subdivision depth determining the number of 
recursive subdivisions which may be performed on the 
control mesh to generate a plurality of finer mesh 
elements, whereby a distance between each finer mesh 
element and a corresponding limit surface patch is less 
than a predetermined error tolerance e, and 

using the computed Subdivision depth to construct an 
adaptively refined mesh that is substantially similar to 
the control mesh within the range of said predetermined 
error tolerance e: 

wherein each face of the recursively subdivided control 
mesh is a quadrilateral and contains up to one extraor 
dinary vertex. 

2. The method of claim 1, wherein the limit surface patch 
is not adjacent to an extraordinary vertex. 

3. The method of claim 1, wherein the limit surface patch 
is adjacent to an extraordinary vertex. 

4. The method of claim 2, wherein the limit surface patch 
is a uniform bicubic B-spline Surface patch designated 
S(u,v). 

5. The method of claim 4, including the step of calculating 
a subdivision depth k defined as k levels of recursive 
subdivision performed on the control points of the limit 
Surface patch S(u, v) to generate a level k control mesh, 
wherein k is defined as k2 log (M/3e), where M' is the 
second order norm of S(u,v) and the distance between S(u,v) 
and the level k control mesh is less than e. 

6. The method of claim 3, including the initial step of 
subdividing the limit surface patch at least twice to define at 
least one standard uniform bicubic B-spline surface sub 
patch and up to one extraordinary Subpatch that is not a 
standard uniform bicubic B-spline subpatch, said extraordi 
nary Subpatch containing a limit point of up to one extraor 
dinary vertex. 

7. The method of claim 6, further including the step of 
computing a subdivision depth n for the extraordinary 
subpatch, defined as n levels of recursive subdivision per 
formed on the extraordinary Subpatch to generate a level in 
extraordinary subpatch control mesh, wherein n is defined 
aS 

4 
7G0 3. if N = 3 

, -log() d = 98 
85 if N is 5 

where G' is the first order norm of II, II is a level-0 
control point defined as V.1 sis2N+8), V, is an extraor 
dinary vertex with valence N, and the distance between the 
level in extraordinary Subpatch control mesh and a corre 
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sponding bilinear plane defined in the extraordinary Sub 
patch is less than or equal to e if nen. 

8. The method of claim 7, further including the step of 
computing a Subdivision depth D by performing D recursive 
subdivisions on each standard uniform bicubic B-spline 
subpatch to define a level D control mesh, wherein D is 
defined as the maximum number of recursive subdivisions 
which may be performed such that the distance between the 
standard uniform bicubic B-spline subpatch and the level D 
control mesh is less than e. 

9. The method of claim 1, wherein the step of constructing 
an adaptively refined mesh comprises the steps of 

defining a mesh for which subdivision depths have been 
computed, said mesh comprising a plurality of quad 
rilateral faces containing up to one extraordinary vertex 
and having at least one interior face not adjacent a 
boundary of the control mesh and at least one exterior 
face adjacent a boundary of the control mesh; 

defining an initial label of the interior face as a non-Zero 
integer k wherein k is the subdivision depth of its 
corresponding Surface patch with respect to e. 

defining an initial label of the exterior face as Zero; 
establishing a consistent condition for each face whereby 

no two adjacent vertices thereof have non-zero labels 
and no two adjacent vertices thereof have Zero labels 
and further wherein the number of Zero labels is 
maximized, the consistent condition being established 
by defining a connection Supporting graph G, whose 
vertices are those of the faces having two adjacent 
vertices whose labels are Zero, selecting a vertex from 
G, redefining the selected vertex label to 1, updating 
G, and repeating the process until the connection 
Supporting graph contains no further vertices; 

performing a balanced Catmull-Clark Subdivision step on 
any face having two or more nonzero vertex labels; 

performing an unbalanced Catmull-Clark Subdivision step 
on any face having only one vertex with Zero label; and 

computing new vertices from the results of the balanced 
and unbalanced Catmull-Clark subdivision steps to 
generate at least one new face defining the adaptively 
refined mesh structure. 

10. A computer-readable medium having computer-ex 
ecutable instructions for modeling or representing a surface 
or shape having an arbitrary topology which may be repre 
sented by a control mesh comprising at least one discrete 
Catmull-Clark Subdivision Surface (CCSS) patch defined 
by a set of control points, by the steps of: 

computing a Subdivision depth determining the number of 
recursive subdivisions which may be performed on the 
control mesh to generate a plurality of finer mesh 
elements, whereby a distance between each finer mesh 
element and a corresponding limit surface patch is less 
than a predetermined error tolerance e; and 

using the computed Subdivision depth to construct an 
adaptively refined mesh that is substantially similar to 
the control mesh within the range of said predetermined 
error tolerance e: 

wherein each face of the recursively subdivided control 
mesh is a quadrilateral and contains up to one extraor 
dinary vertex. 

11. The computer-readable medium of claim 10, wherein 
the limit Surface patch is not adjacent to an extraordinary 
Vertex. 
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12. The computer-readable medium of claim 10, wherein 

the limit Surface patch is adjacent to an extraordinary vertex. 
13. The computer-readable medium of claim 11, wherein 

the limit surface patch is a uniform bicubic B-spline surface 
patch designated S(u,v). 

14. The computer-readable medium of claim 13, wherein 
the computer-readable medium performs the further step of 
calculating a subdivision depth k defined as k levels of 
recursive subdivision performed on the control points of the 
limit Surface patch S(u, v) to generate a levelk control mesh, 
wherein k is defined as k2 log (M"/3e), where M' is the 
second order norm of S(u,v) and the distance between S(u,v) 
and the level k control mesh is less than e. 

15. The computer-readable medium of claim 12, wherein 
the computer-readable medium performs the initial step of 
subdividing the limit surface patch at least twice to define at 
least one standard uniform bicubic B-spline surface sub 
patch and up to one extraordinary Subpatch that is not a 
standard uniform bicubic B-spline subpatch, said extraordi 
nary Subpatch containing a limit point of up to one extraor 
dinary vertex. 

16. The computer-readable medium of claim 15, wherein 
the computer-readable medium performs the further step of 
computing a Subdivision depth n for the extraordinary 
subpatch, defined as n levels of recursive subdivision per 
formed on the extraordinary Subpatch to generate a level in 
extraordinary Subpatch control mesh, wherein n is defined 
aS 

if N = 3 i 
, if N > 5 

where G is the first order norm of II, II is a level-0 
control point defined as V.1 sis2N+8), V, is an extraor 
dinary vertex with valence N, and the distance between the 
level in extraordinary Subpatch control mesh and a corre 
sponding bilinear plane defined in the extraordinary Sub 
patch is less than or equal to e if nen. 

17. The computer-readable medium of claim 16, wherein 
the computer-readable medium further performs the step of 
computing a Subdivision depth D by performing D recursive 
subdivisions on each standard uniform bicubic B-spline 
subpatch to define a level D control mesh, wherein D is 
defined as the maximum number of recursive subdivisions 
which may be performed such that the distance between the 
standard uniform bicubic B-spline subpatch and the level D 
control mesh is less than e. 

18. The computer-readable medium of claim 10, wherein 
the computer-readable medium constructs an adaptively 
refined mesh by performing the steps of: 

defining a mesh for which subdivision depths have been 
computed, said mesh comprising a plurality of quad 
rilateral faces containing up to one extraordinary vertex 
and having at least one interior face not adjacent a 
boundary of the control mesh and at least one exterior 
face adjacent a boundary of the control mesh; 

defining an initial label of the interior face as a non-zero 
integer k wherein k is the subdivision depth of its 
corresponding Surface patch with respect to e. 

defining an initial label of the exterior face as Zero; 
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establishing a consistent condition for each face whereby 
no two adjacent vertices thereof have non-zero labels 
and no two adjacent vertices thereof have Zero labels 
and further wherein the number of Zero labels is 
maximized, the consistent condition being established 
by defining a connection Supporting graph G, whose 
vertices are those of the faces having two adjacent 
vertices whose labels are Zero, selecting a vertex from 
G, redefining the selected vertex label to 1, updating 
G, and repeating the process until the connection 
Supporting graph contains no further vertices; 

performing a balanced Catmull-Clark Subdivision step on 
any face having two or more nonzero vertex labels; 

performing an unbalanced Catmull-Clark Subdivision step 
on any face having only one vertex with Zero label; and 

computing new vertices from the results of the balanced 
and unbalanced Catmull-Clark subdivision steps to 
generate at least one new face defining the adaptively 
refined mesh structure. 

19. A method for modeling or representing a surface or 
shape having an arbitrary topology which may be repre 
sented by a control mesh comprising at least one discrete 
Catmull-Clark Subdivision Surface (CCSS) patch defined 
by a set of control points, comprising the steps of 

computing a Subdivision depth determining the number of 
recursive subdivisions which may be performed on the 
control mesh to generate a plurality of finer mesh 
elements, whereby a distance between each finer mesh 
element and a corresponding limit surface patch that is 
a uniform bicubic B-spline surface patch S(u,v) is less 
than a predetermined error tolerance e: 

wherein the subdivision depth is calculated as subdivision 
depth k defined as k levels of recursive subdivision 
performed on the control points of the limit surface 
patch S(u,v) to generate a levelk control mesh, wherein 
k is defined as k2 log (M"/3e), where M' is the 
second order norm of S(u,v) and the distance between 
S(u,v) and the level k control mesh is less than e, and 

using the computed Subdivision depth to construct an 
adaptively refined mesh that is substantially similar to 
the control mesh within the range of said predetermined 
error tolerance e: 

wherein each face of the recursively subdivided control 
mesh is a quadrilateral and contains up to one extraor 
dinary vertex. 

20. The method of claim 19, wherein the limit surface 
patch is not adjacent to an extraordinary vertex. 

21. The method of claim 19, wherein the limit surface 
patch is adjacent to an extraordinary vertex. 

22. The method of claim 21, including the initial step of 
subdividing the limit surface patch at least twice to define at 
least one standard uniform bicubic B-spline surface sub 
patch and up to one extraordinary Subpatch that is not a 
standard uniform bicubic B-spline subpatch, said extraordi 
nary Subpatch containing a limit point of up to one extraor 
dinary vertex. 

23. The method of claim 22, further including the step of 
computing a Subdivision depth n for the extraordinary 
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subpatch, defined as n levels of recursive subdivision per 
formed on the extraordinary Subpatch to generate a level in 
extraordinary Subpatch control mesh, wherein n is defined 
aS 

if N = 3 

: , if N > 5 

where G' is the first order norm of II, II is a level-0 
control point defined as V.1 sis2N+8), V, is an extraor 
dinary vertex with valence N, and the distance between the 
level in extraordinary Subpatch control mesh and a corre 
sponding bilinear plane defined in the extraordinary Sub 
patch is less than or equal to e if nen. 

24. The method of claim 23, further including the step of 
computing a Subdivision depth D by performing D recursive 
subdivisions on each standard uniform bicubic B-spline 
subpatch to define a level D control mesh, wherein D is 
defined as the maximum number of recursive subdivisions 
which may be performed such that the distance between the 
standard uniform bicubic B-spline subpatch and the level D 
control mesh is less than e. 

25. The method of claim 19, wherein the step of con 
structing an adaptively refined mesh comprises the steps of 

defining a mesh for which subdivision depths have been 
computed, said mesh comprising a plurality of quad 
rilateral faces containing up to one extraordinary vertex 
and having at least one interior face not adjacent a 
boundary of the control mesh and at least one exterior 
face adjacent a boundary of the control mesh; 

defining an initial label of the interior face as a non-zero 
integer k wherein k is the subdivision depth of its 
corresponding Surface patch with respect to e. 

defining an initial label of the exterior face as Zero; 
establishing a consistent condition for each face whereby 

no two adjacent vertices thereof have non-zero labels 
and no two adjacent vertices thereof have Zero labels 
and further wherein the number of Zero labels is 
maximized, the consistent condition being established 
by defining a connection supporting graph G, whose 
Vertices are those of the faces having two adjacent 
vertices whose labels are Zero, selecting a vertex from 
G, redefining the selected vertex label to 1, updating 
G, and repeating the process until the connection 
Supporting graph contains no further vertices; 

performing a balanced Catmull-Clark Subdivision step on 
any face having two or more nonzero vertex labels; 

performing an unbalanced Catmull-Clark Subdivision step 
on any face having only one vertex with Zero label; and 

computing new vertices from the results of the balanced 
and unbalanced Catmull-Clark subdivision steps to 
generate at least one new face defining the adaptively 
refined mesh structure. 

k k k k k 


