


Dec. 15, 1925.

1,565,327

F. G. NIECE

APPARATUS FOR CRACKING HYDROCARBONS

Original Filed July 7, 1921

Fred. G. Niece Inventor:

his Attorney.

Patented Dec. 15, 1925.

1,565,327

UNITED STATES PATENT OFFICE.

FRED G. NIECE, OF CLEVELAND, OHIO, ASSIGNOR TO THE INTERNATIONAL HOLDING COMPANY, OF CLEVELAND, OHIO, A CORPORATION OF OHIO.

APPARATUS FOR CRACKING HYDROCARBONS.

Original application filed July 7, 1921, Serial No. 482,964. Divided and this application filed July 18, 1921. Serial No. 484,293.

To all whom it may concern:

Be it known that I, FRED G. NIECE, a citizen of the United States, residing at Cleveland, in the county of Cuyahoga and State of Ohio, have invented new and useful Improvements in Apparatus for Cracking Hydrocarbons, of which the following is a specification.

This invention relates to improvements in apparatus for cracking hydrocarbons.

The primary object of this invention is to devise highly practical apparatus for subjecting a hydrocarbon oil heavier than gasoline to such improved and novel treatment as to produce gasoline of better quality and in larger quantity per measure of heavier oil.

Another object is to render said apparatus well adapted for obtaining a remarkably high percentage of saturated hydrocarbons, after having properly started the operation of the apparatus, without resorting to a hydrogen-supply source external to the liquid hydrocarbon to be cracked during said operation.

Another object is not only to produce apparatus of the character indicated for subjecting liquid hydrocarbon to the heat of and within a molten body composed of low-melting metal or material such, for instance, as lead heated to and not vaporizable at the required hydrocarbon-cracking temperature, in a closed chamber having a vapor-outlet, but to have said apparatus comprise means whereby, during the subjection of gases and vapors issuing from heated liquid hydrocarbon to be cracked to the heat of and within said molten body, hydrocarbon vapors and gases which have passed undissolved through a condenser of the apparatus, after having been subjected to the required hydrocarbon-cracking temperature, are subjected to the heat of and within said molten body.

Another object is to have said apparatus well adapted for effecting such an extensive dissociation of the atomic constituents of molecules of hydrocarbon gases and vapors from the condenser, in such highly intimate or close association in the molten body with the cracking of the vapors and gases from heated liquid hydrocarbon heavier than gasoline, that a plentiful and economical supply of much needed free hydrogen is in-

sured without necessitating the employment of other hydrogen-supplying means. 55

Another object is to have said apparatus comprise means whereby hydrocarbon gases and vapors from the condenser, and the liquid hydrocarbon to be cracked, can be forced under a desirable pressure into the 60 molten body, and more especially to provide simple and efficient means for maintaining said vapors and gases from the condenser, gases and vapors issuing from heated liquid hydrocarbon to be cracked, and vapors and 65 gases formed during the subjection of hydrocarbons to the heat of and within said molten body, in highly intimate or close association during said subjection of said hydrocarbons to the heat of and within the 70 molten body.

With these objects in view, and to attain any other object hereinafter appearing, this invention consists in certain features of construction, and combinations and relative arrangements of parts, hereinafter described in this specification, pointed out in the claims, and illustrated in the accompanying drawings. 75

In said drawings, Figure 1 is a side elevation, largely in section and partly diagrammatic, of my improved apparatus. Fig. 2 is a horizontal section taken along the line 2-2 in Fig. 1, looking downwardly. Fig. 3 is a horizontal section taken along the line 85 3-3 in Fig. 1, looking upwardly.

Referring to said drawings, 5 indicates the casing of a heating furnace shown as comprising an oil-burner 6 arranged as required to have the flame or fire 7 issuing 90 therefrom, during the operation of the furnace, enter the combustion and heating chamber 8 through an aperture 9 in the furnace-front. The forward portion of said chamber extends rearwardly from and above the aperture 9, and the rear portion of said chamber extends farther upwardly, as at 10, and discharges at its upper end into a flue 11 communicating at its lower end, as at 12, with a stack 13. 100

Surrounded by the portion 10 of said chamber is a hydrocarbon-cracking receptacle shown consisting of a base 15, a top section 16 and an intermediate section 17. The base 15 is secured in place in any approved manner, and the top section 16 is 105

arranged above and externally of the furnace-casing 5. The intermediate section 17 is formed by a vertical tube which is circular in cross-section and extends between the base 15 and the top section 16. Said tube may have any suitable dimensions, such for instance, as a diameter of from ten to twelve inches and a height of from eight to twelve feet. Said tube forms the surrounding wall of the main portion of the hydrocarbon-cracking chamber, and the base 15 has a cavity 18 which forms the lower end of said chamber. The tube 17 communicates at its upper end with the chamber 19 formed internally of the top section 16 and forming the upper end portion of the hydrocarbon-cracking chamber. Preferably adjacent ends of the base 15 and tube 17 are welded together, and adjacent ends of the top section 16 and tube 17 have external flanges 20 removably secured together, as at 21, by bolts and nuts. The chamber 19 of the top section is closed at its upper end by a head 22 removably secured to the body of said section by bolts and nuts, as at 23. Preferably the chamber 19 measures in diameter at its lower end substantially the same as the internal diameter of the tube 17, and is diametrically larger above its lower end portion. An outwardly and downwardly extending pipe 25, having a normally closed valve 26, communicates with the chamber 19 at the lower end portion of said chamber.

Within and centrally of the lower end portion of the hereinbefore mentioned hydrocarbon-cracking chamber is a bell-shaped baffle-member 27 of steel. Said baffle-member is rigid with an upright tubular member 28 which has its upper portion arranged internally and centrally of said baffle-member and is threaded at its lower end into the base 15. The tubular member 28 discharges into the upper portion of the chamber 29 formed internally of said baffle-member, and communicates with a bore 30 formed in the base 15.

A pipe 31 for conducting fuel oil, or other liquid hydrocarbon to be cracked, extends from above and into the portion 10 of the heating chamber to the base 15 to which said pipe is secured. Said pipe 31 discharges through the bore 30 into the tubular member 28. The pipe 31 is shown covered, from the base 15 to a point near the upper end of the portion 10 of the heating chamber, with heat-resisting material such, for instance, as asbestos 32, and said pipe therefore has uncovered the upper end of its portion which extends through said chamber, so that the liquid hydrocarbon is preparatorily heated but not overheated while being fed by said pipe. A diagrammatically illustrated oil-pump 33, arranged externally of the furnace, is interposed between the pipe 31 and a pipe 34 for supplying liquid hydrocarbon

to be cracked. Said pump is employed in forcing liquid hydrocarbon from the oil-supply pipe 34 into the pipe 31 which has a diagrammatically illustrated check-valve 35 for preventing reflux of oil in said pipe.

A vapor-conducting pipe 36, forming the vapor-outlet of the hereinbefore mentioned hydrocarbon-cracking receptacle, communicates with the diametrically larger portion of the chamber 19 in the section 16 of said receptacle and discharges into the vapor receiving upper end of the upright worm 37 of a condenser. Said condenser comprises a tank 38 containing said worm and kept supplied with cold water. The lower end of said worm forms the outlet of the condenser for the liquid or condensate resulting from condensation of vapor in said worm and discharges into the upper portion of a container or receiver 39 for receiving not only said condensate from the condenser but gases and vapors which have not been condensed in their passage through the condenser. A pipe 40, having a normally closed valve 41, is arranged to conduct gases and vapors from the upper end of and therefore forms a vapor-outlet for the receiver 39, and a diagrammatically illustrated gas-pump 42 is interposed between the pipe 40 and a pipe 44 and employed in forcing gases and vapors into the pipe 44 from the pipe 40. A pipe 45, employed in supplying external hydrocarbon gas when desired and having a normally closed valve 46, communicates with the pipe 40 at a point between the valve 41 and the gas-pump 42. The receiver 39 is provided with a drain-pipe 47 having a normally closed valve 48. The receiver 39 is provided at its upper end with a pipe 49 having a normally closed valve 50 and employed, when desired, in permitting the escape of spent or surplus gases from the receiver. The head 22 of the top section 16 of the hydrocarbon-cracking receptacle is provided centrally with a chamber 51, and the pipe 44 comprises a short pipe-section 52 discharging into said chamber and connected by a union or coupling 53 with the remainder of said pipe. Three substantially corresponding vertical pipes 55 are secured in any approved manner to the bottom of the chamber 51 and spaced circumferentially of the central portion of said bottom, as shown in Fig. 2, and communicate at their upper ends with said chamber and therefore are in communication with the pipe 44. The pipes 55 extend into the lower end portion of the hydrocarbon-cracking receptacle. The lower end portions of the pipes 55 extend through and below a perforated steel baffle-plate 56 arranged substantially horizontally over and near but spaced from the bell-shaped baffle-member 27. The baffle-plate 56 is largely spaced, at and from top to bottom of its circumferential edge, from

the surrounding wall of the hydrocarbon-cracking chamber and (see Fig. 3) has several lugs 57 spaced circumferentially of said plate and arranged to cooperate with said wall in preventing horizontal displacement of said plate. Preferably the baffle-member 27 is smaller diametrically than the baffle-plate 56. The illustrated baffle-plate 56 has a central hole or passage 58 extending vertically through the plate and several holes or passages 59 formed in proximity to and spaced circumferentially of said central passage. The baffle-plate 56 preferably flares downwardly from its central passage 58 and is welded to the pipes 55 which are preferably in close proximity to the outer circumferential edge of said plate. The pipes 55 have their lower and discharging ends arranged under the baffle-plate 56 and 20 over the bell-shaped baffle-member 27 and bent, as at 60, inwardly and toward a point which is below said pipes but central over said baffle-member. Obviously the baffle-plate 56 connects together and braces apart 25 the lower end portions of the pipes 55, and said pipes are similarly connected together and braced apart in the upper end portion of the tube 17 by a perforated baffle-plate 61, and are furthermore connected together 30 and braced apart at a point centrally between the baffle-plates 56 and 61 by an intermediate perforated baffle-plate 62. The baffle-plates 61 and 62 are therefore rigid with the pipes 55, and substantially correspond in dimensions, contour and construction, or characteristics, with the lower baffle-plate 56. By the hereinbefore described 35 construction it will be observed that the pipes 55 are supported from the bottom of the chamber 51 in the head 22, and that the baffle-plates 56, 61 and 62 are connected together by and supported from said pipes and are instrumental in preventing lateral 40 swaying of the pipes.

45 The joints between component parts of the apparatus are rendered fluid-tight and furthermore formed in such a manner as to withstand heat and strains to which said parts may be subjected, but means for forming such joints are too well known to require description and illustration in this specification. Also, in making said component parts, such metal or material as will withstand the 50 heat and wear and tear to which said parts may be subjected is employed.

55 The hereinbefore mentioned hydrocarbon-cracking receptacle is supplied with a low-melting metal or material such, for instance, as lead which has a melting point lower than the hydrocarbon-cracking temperature required to be established and maintained in said receptacle during the operation of the apparatus and is readily penetrable, in a molten condition, by hydrocarbon fluids and not vaporizable at said temperature. 63 in-

dicates a molten column or body resulting from the melting of a mass of small pieces of solid lead supplied to the hydrocarbon-cracking receptacle preferably preparatory to the application of the head 22 of said receptacle. In applying said head 22 the pipes 55 and connected baffle-plates 56, 61 and 62 are lowered into the tube 17, and consequently into the molten body 63. Said head 22, upon being secured in place, closes the 70 upper end of the hydrocarbon-cracking chamber, and preferably such a quantity of low-melting metal is introduced into said chamber that, during the subjection of hydrocarbons to the heat of and within the molten body 63, the surface of said molten body is below the upper extremity of the tube 17 and above the upper baffle-plate 61 so that all of the baffle-plates are arranged 75 in and transversely of the molten body. By the hereinbefore described construction and relative arrangement of parts it will be observed that the pipe 40, gas-pump 42, pipe 44, pipe 52, chamber 51 and any pipe 55 constitute means whereby vapors and gases 80 accompanying the condensate passing into the receiver 39 may be supplied into the molten body 63 from the vapor-outlet of said receiver. The hereinbefore mentioned furnace is operated as required to heat the 85 hydrocarbon-cracking receptacle and contents to and maintain them at a hydrocarbon-cracking temperature varying from about four hundred to about seven hundred and fifty degrees centigrade according to the nature of the liquid hydrocarbon to be treated, and the molten body 63 is therefore maintained at said temperature during the 90 operation of the apparatus. Said apparatus is preferably started by opening the valve 46, while the valve 41 remains closed, and operating the oil-pump 33 and gas-pump 43, to force hydrocarbon gas from the pipe 45 to the pipe 44 and thence through the chamber 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10100 10105 10110 10115 10120 10125 10130 10135 10140 10145 10150 10155 10160 10165 10170 10175 10180 10185 10190 10195 10200 10205 10210 10215 10220 10225 10230 10235 10240 10245 10250 10255 10260 10265 10270 10275 10280 10285 10290 10295 10300 10305 10310 10315 10320 10325 10330 10335 10340 10345 10350 10355 10360 10365 10370 10375 10380 10385 10390 10395 10400 10405 10410 10415 10420 10425 10430 10435 10440 10445 10450 10455 10460 10465 1047

sure of one hundred and fifty pounds per square inch on the molten body 63 to be established, then as soon as such pressure has developed in the system comprising said apparatus the valve 46 is closed, if not already closed, and the valve 41 opened and left open for establishing a continuous circulation of hydrocarbon fluids in the system. With a gas pressure of one hundred and fifty pounds per square inch on the molten body 63, and with the exertion by said molten body per se at its base of a pressure of forty pounds per square inch, the oil-pump 33 is operated as required to effect the delivery of liquid hydrocarbon preferably under a pressure of about one hundred and ninety pounds per square inch, and the gas-pump 43 is operated as required to force hydrocarbon gases and uncondensed vapors from the condenser into the molten body, and therefore is insured an adequate continuous delivery into the molten body, of gases and uncondensed vapors from the condenser and of liquid hydrocarbon from the pipe 31. That is, during the operation of the system liquid hydrocarbon is continuously forced from the pipe 34 to the inner chamber 29 and thence downwardly through said inner chamber into the lower portion of the molten body, and while liquid hydrocarbon is being forced from said inner chamber into said portion of the molten body gases and vapors from the condenser are continuously forced into said molten body, and vapors and gases (including gasoline vapors) continuously ascend to the surface of said molten body and thence to the pipe 36 and are conducted by said pipe into the worm 37 of the condenser. Distillate or liquid resulting from condensation of vapors in the condenser and entering the receiver 39 is periodically drained through the pipe 47. Gases and uncondensed vapors discharged into said receiver from the condenser are, by and during the operation of the gas-pump 43, supplied to the pipe 44 and thence forced into and through the chamber 51 and connected pipes 55 into the lower portion of the molten body 63. It will be observed that the uncondensed gases received by the chamber 51 in the head 22 serve to positively prevent overheating of said head. The liquid hydrocarbon to be cracked, being heated in the pipe 31 where the latter extends through the portion 10 of the furnace, is obviously discharged, in a heated condition, into the inner chamber 29, and, as said inner chamber is covered and surrounded by the molten body 63, the already heated liquid hydrocarbon is still further preparatorily heated internally of said inner chamber by heat transmitted through the walls of said inner chamber from said molten body and to such an extent that the hot liquid hydrocarbon, when it passes from within said inner chamber into the molten body, has been heated substantially to or somewhat above the melting point of the lead or material composing the molten body, so that said liquid hydrocarbon is in a desirable condition for entering without chilling the molten body. Also, it will be observed that vapors passing to and uncondensed through the condenser from the hydrocarbon-cracking temperature in the molten-body-containing chamber or receptacle, and gases accompanying said vapors, are not only forced into the lower portion of the molten body 63 but heated, in their passage through the chamber 51 and pipes 55, to a temperature substantially as high as the melting point of the material composing the molten body, so that said vapors and gases are discharged in a desirably heated condition into the molten body. The heated liquid hydrocarbon forced into the inner chamber 29 is in the main still liquid while passing from said chamber into the molten body 63 and ascends externally of the baffle-member 27, and said heated liquid hydrocarbon and accompanying gases and vapors, and vapors and gases resulting from the subjection of said liquid hydrocarbon to the heat of and within the molten body, ascend under and toward the baffle-plate 56 and into intimate association with the hot hydrocarbon gases and vapors transmitted from the condenser and discharged under said baffle-plate from the pipes 55. The discharge of the liquid hydrocarbon into the molten body at a point spaced downwardly from the discharge of gases and vapors from the pipes 55 permits a greater production of newly formed vapors and gases issuing from said liquid hydrocarbon before any gases and vapors arising in the molten body from said liquid hydrocarbon have ascended far enough to become intimately associated with vapors and gases discharged into the molten body from said pipes. The inward projection 60 of the discharging ends of said pipes 55 and the downwardly flaring shape of the baffle-plate 56 are helpful in effecting an intimate association of all hydrocarbons between said baffle-plate and the baffle-member 27, and more especially is said baffle-plate 56 effective in retarding the ascent of heated liquid hydrocarbon from between said baffle-plate 56 and the baffle-member 27, and in a detention, under said plate 56, of intimately associated vapors and gases from the condenser and gases and vapors arising or issuing from said liquid hydrocarbon. Substantially all of the hydrocarbons under the baffle-plate 56 are compelled to pass from under said plate through the passages 58 and 59 in said plate into the molten mass between said plate and the intermediate baffle-plate 62. Said intermediate baffle-

plate is helpful in producing and maintaining an intimate association of vapors and gases from the condenser and gases and vapors arising from liquid hydrocarbon in the molten body between said plate and the lower baffle-plate 56 and in retarding the ascent of said liquid hydrocarbon from between said plates. Hydrocarbons between the baffle-plates 56 and 62 ascend to and through the holes or passages in the intermediate baffle-plate 62. The upper baffle-plate 61 operates substantially the same as the intermediate baffle-plate 62 and is helpful in producing and maintaining an intimate association of hydrocarbons ascending toward said upper baffle-plate from the intermediate baffle-plate. Obviously the baffle-plates 56, 61, and 62 constitute means whereby is effected a baffling, at different heights in the molten body and above all discharges of hydrocarbons into the molten body, of ascending hydrocarbons, because each baffle-plate is instrumental in temporarily obstructing movement of ascending hydrocarbons in the molten body. Hence by the baffling means comprising the baffle-plates 56, 61 and 62 is insured a highly intimate and close association of hydrocarbons between adjacent baffle-plates and between the lower baffle-plate and the baffle-member 27 while said hydrocarbons are subjected to the heat of and within the molten body. The hereinbefore described apparatus has been found highly practical for the economical production of gasoline of better quality and in larger quantity per measure of liquid hydrocarbon to be cracked, with no appreciable loss of material, and with little or no appreciable formation or accumulation of carbon in any portion of the apparatus. Furthermore, were an undesirable accumulation of carbon to occur in treating some hydrocarbons after operating the apparatus continuously for many days, said carbon will be found in a finely divided state and mainly, if not entirely, in the top section 16 of the hydrocarbon-cracking receptacle. The pipe 25 can be employed as an outlet for carbon in case of an undesirable accumulation of carbon in said section 16. The base 15 of the hydrocarbon-cracking chamber is shown provided with a drain-pipe 65 through which, upon opening a normally closed valve 66 with which said pipe is provided, the molten metal may be drained from said chamber. Obviously upon stopping the operation of the apparatus and removing the molten metal 63 through the pipe 65, only detachment of the pipe 36 from the section 16, and the required manipulation of the coupling 53 as required to separate the pipe-section 52 from the remainder of the pipe 44, are required to render said section 16 free to be hoisted and removed, for cleaning or other purposes,

upon detaching said section 16 from the tube 17. Also, only said manipulation of said coupling and detachment of the head 22 are required to render said head and connected pipes 55 and baffle-plates 56, 61 and 62 free to be hoisted and removed. 70

Of considerable importance to the most highly successful operation of the hereinbefore described apparatus are the hereinbefore described means for temporarily obstructing movement of ascending hydrocarbons in the molten body 63 and thereby effecting such a thorough and extensive cracking of gases and vapors from the condenser, in such intimate association in the molten body with other hydrocarbon vapors and gases being cracked in the molten body, that an adequate supply of much needed free hydrogen for producing saturated hydrocarbons without resorting to a hydrogen-supply source external to the liquid hydrocarbon to be cracked, and a larger production of high grade gasoline than heretofore per measure of heavier liquid hydrocarbon to be cracked, are insured. Important to the efficiency of said apparatus is its suitability for an expeditious establishment, in the system and without the necessity of introducing an external pressure medium into the system, of a gas pressure considerably greater than the pressure exerted at its base by the molten body 63 per se, and to force the hydrocarbons to be cracked into the molten body under a pressure as great as the sum of the two pressures already mentioned in this sentence. Also meritorious is the hereinbefore described means of transmitting vapors and gases from the condenser to the molten body 63 independently of the heated liquid hydrocarbon to be cracked, and the means whereby said liquid hydrocarbon is forced into an inner chamber 29 formed at the lower portion of and covered by and discharging into the molten body. Essential to said apparatus is its suitability for practising a hydrocarbon-cracking process in which, while the molten body 63 heated to the required hydrocarbon-cracking temperature is being penetrated by vapors and gases issuing from heated liquid hydrocarbon heavier than gasoline, is effected the penetration of said molten body by hydrocarbon gases and vapors which have passed into and uncondensed through a condenser of said apparatus after having been subjected to said temperature. 110

The condensate accumulating in the condensate-collecting chamber formed by the receiver 39 of the hereinbefore described apparatus is a remarkably clean-appearing and at least translucent and sometimes transparent liquid which, with great facility and at a remarkably low cost, is chemically treatable in any approved manner and sometimes requires only distillation and filtering 120 125 130

to produce a clean and transparent high-grade gasoline.

I would also remark that of vast importance to a highly successful operation of my improved apparatus is the condensate-collecting chamber having a vapor-outlet and arranged to receive the condensate and accompanying vapors and gases from the condenser, that from ten to fifteen per cent, 5 or more, of the vapors and gases passing into said condensate-collecting chamber with the condensate consists of illuminants or unsaturated compounds (C_nH_2n), that of vast importance therefore to a highly successful 10 operation of my improved apparatus is any means whereby vapors and gases which have passed from the condenser into the condensate-collecting chamber may be fed or supplied from the vapor-outlet of 15 said chamber into a molten body within and to the heat of which other hydrocarbon is to be subjected, so that during the subjection of the last-mentioned hydrocarbon to the heat of and within said molten body vapors 20 and gases from the vapor-outlet of the condensate-collecting chamber may be subjected to the heat of and within said molten body, and that therefore the vapors and gases fed 25 from the condensate-collecting chamber into the molten body and newly produced hydrocarbon gases and vapors which have issued from liquid hydrocarbon fed into the molten body become intimately associated within the 30 molten body, and enough hydrogen is liberated 35 during the operation of and within my improved hydrocarbon-cracking system without necessitating any resort to a hydrogen-supplying means external to the liquid hydrocarbon to be treated.

It will be observed that the hereinbefore described apparatus is more especially designed both for the subjection of newly produced gases and vapors which have issued 40 from heated liquid hydrocarbon to the heat of and within a molten body and for the subjection, to the heat of and within said molten body, of the hereinbefore mentioned vapors and gases from the aforesaid condensate-collecting chamber, and the operation of 45 said apparatus as hereinbefore described results in a highly economical production of gasoline in larger quantity and of higher saturation than heretofore.

Not unimportant also is the spacing of 50 each baffle-plate of the vertically spaced baffle-plates 56, 61 and 62 in the main from the outer circumference of the molten body to permit surging or movement of molten metal up and down between the surrounding 55 wall of the molten-body-containing chamber and the outer circumferential edges of the baffle-plates during ascent of hydrocarbons between adjacent baffle-plates and through 60 the passages 58 and 59 in the said baffle-plates, and more especially to permit molten 65

metal to descend at the outer circumference of each baffle-plate so that there is no liability of molten metal being driven or carried or caused to pass to the vapor-outlet 70 of said chamber during an unduly vigorous ascent of molten-body-penetrating hydrocarbons.

As hereinbefore indicated, my improved hydrocarbon-cracking apparatus more especially comprises a relatively tall hydrocarbon-cracking receptacle, a relatively high column of the molten lead or contact substance composing the molten body 63 contained in said receptacle, means whereby fresh hydrocarbons may be delivered into the lower portion of and in contact with said molten column, and means whereby non-condensable hydrocarbon gases already subjected to a hydrocarbon-cracking temperature of a former hydrocarbon-cracking treatment may be fed into the lower portion of and into contact with said column, and therefore said non-condensable gases and the aforesaid fresh hydrocarbons are caused to ascend a relatively long distance in contact with and within said column during the travel of said fresh hydrocarbons and said non-condensable gases through said column so as to afford ample opportunity for intimate association of atoms and compounds, resulting from the cracking of said fresh hydrocarbons, with atoms and compounds resulting from the cracking of the aforesaid non-condensable gases, and so as to result in an appreciable increase, within 100 said column, in the production of hydrocarbon compounds capable of yielding, by subsequent condensation, an increased measure of motor fuel or low boiling hydrocarbons. I would also remark that by the provision of means for feeding the uncondensed gases into the molten body from the condensate-collecting chamber the yield of gasoline is from three to ten per cent greater than it would be were uncondensed gases only fed into said molten body from a point in advance of said chamber.

The hydrocarbon-treating process disclosed in this specification is claimed in a divisional application, Serial Number 482, 115 964, for United States Letters Patent, the date of filing said application being July 7, 1921.

What I claim is—

1. Apparatus of the character indicated comprising a hydrocarbon-cracking receptacle which has a vapor-outlet and comprises an interiorly chambered head arranged to form a closure for the upper end of said receptacle, a molten column contained in said receptacle and penetrable by hydrocarbons and not vaporizable at the desired hydrocarbon-cracking temperature, a condenser means for feeding hydrocarbon gases and vapors to said condenser from the aforesaid

- vapor-outlet, means whereby gases which have passed uncondensed through the condenser may be supplied to the interior chamber in the aforesaid head, an upright pipe 5 placed in communication with said chamber and extending into the aforesaid molten column and communicating at its lower end with said molten column, and means for delivering fresh hydrocarbons into contact 10 with and interiorly of said column at a point below said lower end of said pipe.
2. Apparatus of the character indicated comprising a closed receptacle which has a vapor-outlet and an interiorly chambered head and contains a molten body penetrable by hydrocarbons and not vaporizable at the required hydrocarbon-cracking temperature, a condenser for receiving hydrocarbon gases and vapors from said vapor-outlet, means 15 whereby vapors and gases which have passed uncondensed through the condenser may be supplied to the interior chamber of the aforesaid head, pipes communicating with said chamber and spaced circumferentially 20 of the central portion of and rigid with the bottom of said chamber and extending and discharging into the lower portion of the aforesaid molten body, and means whereby other hydrocarbon to the cracked may be supplied to said lower portion of the molten body.
3. Apparatus of the character indicated comprising a closed receptacle which has a vapor-outlet and contains a molten body 25 penetrable by hydrocarbons under pressure and heated to but not vaporizable at the required hydrocarbon-cracking temperature, means for supplying hydrocarbons to said molten body, and a downwardly flaring 30 baffle-plate arranged in and transversely of the molten body and over the discharge of hydrocarbons into the molten body and having a central hole or passage adapted to permit hydrocarbons to pass upwardly 35 through the plate.
4. Apparatus of the character indicated comprising a closed receptacle which has a vapor-outlet and contains a molten body penetrable by hydrocarbons under pressure 40 and heated to but not vaporizable at the required hydrocarbon-cracking temperature, means for supplying hydrocarbons to said molten body, and a perforated baffle-plate 45 arranged in and transversely of said molten body and over the discharge of hydrocarbons into the molten body, said plate being spaced, at and from top to bottom of its circumferential edge, from the outer circumference of the molten body.
5. Apparatus of the character indicated comprising a closed receptacle which has a vapor-outlet and contains a molten body penetrable by hydrocarbons and not vaporizable at the required hydrocarbon-cracking temperature, a condenser, means for feeding 50
- hydrocarbon gases and vapors to said condenser from the aforesaid vapor-outlet, means for temporarily obstructing movement of ascending hydrocarbons in the aforesaid molten body at a point spaced upwardly 70 from the bottom of the molten body, means for injecting hydrocarbon oil into said molten body at a point spaced downwardly from said obstructing means, and means for feeding uncondensed gases from the condenser 75 into the molten body between said obstructing means and the discharge from the oil-injecting means.
6. Apparatus of the character indicated comprising a closed receptacle which has a vapor-outlet and contains a molten body penetrable by hydrocarbons under pressure and heated to but not vaporizable at the required hydrocarbon-cracking temperature, a condenser for receiving hydrocarbon gases 80 and vapors which have been subjected to said temperature, means whereby other hydrocarbon to be cracked may be supplied to the lower portion of the aforesaid molten body, a perforated baffle-plate arranged in and 85 transversely of said molten body and above the point at which the last-mentioned hydrocarbon is discharged into said molten body, a pipe rigid with said baffle-plate and discharging into the molten body under said 90 plate and supported from the aforesaid receptacle, and means whereby vapors and 95 gases which have passed uncondensed through the condenser may be supplied through said pipe to the molten body.
- 100
7. Apparatus of the character indicated comprising a closed receptacle which is provided at its upper end with a head and has a vapor-outlet and contains a molten body penetrable by hydrocarbons under 105 pressure and heated to but not vaporizable at the required hydrocarbon-cracking temperature, a condenser for receiving hydrocarbon gases and vapors which have been subjected to said temperature, means whereby other hydrocarbon to be cracked may be supplied to the lower portion of the aforesaid molten body, a perforated baffle-plate arranged in and transversely of said molten body and above the point at which the last- 110 mentioned hydrocarbon is discharged into the molten body, a pipe connected to the aforesaid head and extending through and supporting said baffle-plate and discharging at its lower end into said molten body, and means whereby vapors and gases which have passed uncondensed through the condenser may be supplied through said pipe to said molten body.
- 115
8. Apparatus of the character indicated comprising a closed receptacle which has a vapor-outlet and contains a molten body penetrable by hydrocarbons under pressure and heated to but not vaporizable at the required hydrocarbon-cracking temperature, a 120
- 125
- 130

- condenser for receiving hydrocarbon gases and vapors which have been subjected to said temperature, means whereby other hydrocarbon to be cracked may be supplied to the lower portion of the aforesaid molten body, vertically spaced perforated baffle-plates arranged in and transversely of said molten body and above the point at which the last-mentioned hydrocarbon is discharged into the molten body, pipes extending through the baffle-plates at points spaced circumferentially of the central portions of the plates and having their lower ends turned inwardly and discharging into the lower portion of the said molten body, and means whereby vapors and gases which have passed uncondensed through the condenser may be supplied through said pipes to said molten body.
9. Apparatus of the character indicated comprising a hydrocarbon-cracking receptacle which has a vapor-outlet and contains a molten body penetrable by hydrocarbons and not vaporizable at the required hydrocarbon-cracking temperature, a condenser, means for feeding hydrocarbon gases and vapors to the condenser from the aforesaid vapor-outlet, an inner chamber formed within and discharging into said molten body, means for feeding hydrocarbon into the molten body through said inner chamber, and means for feeding, into said molten body and externally of said inner chamber, gases and vapors which have passed uncondensed through the condenser.
10. Apparatus of the character indicated comprising a hydrocarbon-cracking receptacle which has a vapor-outlet and contains a molten body penetrable by hydrocarbons and not vaporizable at the required hydrocarbon-cracking temperature, a condenser, means for feeding hydrocarbon gases and vapors to the condenser from the aforesaid vapor-outlet, a condensate-collecting chamber arranged to receive condensate and accompanying vapors and gases from the condenser and having a vapor-outlet, an inner chamber formed at the lower portion of and discharging into the aforesaid molten body, means for supplying a hydrocarbon to said inner chamber, and means for feeding, into said molten body and externally of said inner chamber, vapors and gases from the aforesaid vapor-outlet of the condensate-collecting chamber.
11. In apparatus of the character indicated, the combination, with a closed receptacle having a vapor-outlet and containing a molten body which is penetrable by hydrocarbons and not vaporizable at the required hydrocarbon-cracking temperature, said receptacle having a closed chamber which is spaced upwardly from said molten body and also having a chamber which is formed at the lower end portion of and discharges into said molten body, of means for supplying gases under pressure into the first-mentioned chamber, means for feeding gases from said first-mentioned chamber into the aforesaid molten body, and means whereby a hydrocarbon may be delivered through the second-mentioned chamber into said molten body.
12. Apparatus of the character indicated comprising a hydrocarbon-cracking receptacle which has a vapor-outlet and contains a molten body penetrable by hydrocarbons and not vaporizable at the required hydrocarbon-cracking temperature, an inner chamber within the lower portion of said molten body and discharging at its lower end into the molten body, means for forcing liquid hydrocarbon into said chamber, an upright hydrocarbon-feeding pipe externally of said inner chamber and internally of the hydrocarbon-cracking receptacle and discharging into the lower portion of and extending above said molten body, and a perforated baffle-plate connected to said pipe at a height above the discharge from said pipe into the molten body and arranged in and transversely of the molten body and spaced in the main from the outer circumference of the molten body.
13. Apparatus of the character indicated comprising a hydrocarbon-cracking receptacle which has a vapor outlet and comprises an interiorly chambered head arranged to form a closure for the upper end of said receptacle, a molten column contained in said receptacle and penetrable by hydrocarbons and not vaporizable at the desired hydrocarbon-cracking temperature, a condenser, means for feeding hydrocarbon gases and vapors to the condenser from the aforesaid vapor-outlet, a condensate-collecting chamber for receiving condensate and accompanying vapors and gases from the condenser, means for feeding gases from said condensate-collecting chamber to the interior chamber of the aforesaid head, means for supplying gases from the last-mentioned chamber to the interior of and into contact with the aforesaid molten column, and means for delivering fresh hydrocarbons into contact with and interiorly of the lower portion of said molten column.
- In testimony whereof, I sign the foregoing specification, this 11th day of July, 1921.

FRED G. NIECE.