发明名称
用于治疗 RNA 依赖性 RNA 病毒感染的核苷磷酸芳基酯

摘要
本发明提供 RNA 依赖性 RNA 病毒聚合酶的抑制剂的前体——核苷磷酸芳基酯。这些化合物是 RNA 依赖性 RNA 病毒复制抑制剂的前体，其用于治疗 RNA 依赖性 RNA 病毒感染。它们特别可有用作丙型肝炎病毒 (HCV)NS5B 聚合酶的抑制剂的前体、HCV 复制的抑制剂的前体，和 / 或治疗丙型肝炎感染。本发明还描述了包含单独或与其它抗 RNA 依赖性 RNA 病毒感染（特别是 HCV 感染）的活性剂联合的所述核苷磷酸芳基酯的药物组合物。还公开了使用本发明的核苷磷酸芳基酯抑制 RNA 依赖性 RNA 聚合酶、抑制 RNA 依赖性 RNA 病毒复制，和 / 或治疗 RNA 依赖性 RNA 病毒感染的方法。
1. 结构式 I 的化合物：

或其药学上可接受的盐，其中

\(Y \) 是 \(N \)；

\(Ar \) 是未取代的或被 1 ~ 3 个独立选自下列组的取代基取代的苯基：卤素、\(C_{1-4} \) 烷基、\(C_{1-4} \)烷氧基、\(C_{1-4} \) 烷硫基、氯基、硝基、氨基、羰基、三氟甲基、\(C_{1-4} \) 烷基氨基、二（\(C_{1-4} \) 烷基）氨基、\(C_{1-4} \) 烷基醚基、\(C_{1-4} \) 烷基醚基氧基和 \(C_{1-4} \) 烷基氧基醚基；

\(R^1 \) 是氢；

\(R^2 \) 和 \(R^3 \) 各自是氢；

\(R^4 \) 是氢；

\(R^5 \) 和 \(R^6 \) 各自独立地选自氢、羟基、卤素、\(C_{1-4} \) 烷氧基、氨基、\(C_{1-4} \) 烷基氨基、二（\(C_{1-4} \) 烷基）氨基；

\(R^7 \) 是氢或未取代的 \(C_{1-3} \) 烷基；

\(R^8 \) 是氢或未取代的 \(C_{1-6} \) 烷基；

\(R^{11} \) 是氢或甲基。

2. 根据权利要求 1 的化合物，其中 \(R^2 \) 和 \(R^3 \) 各自独立地选自氢、羟基和氨基。

3. 根据权利要求 2 的化合物，其中 \(R^5 \) 是羟基或氨基，\(R^6 \) 是氢或氨基。

4. 根据权利要求 1 的化合物，其中 \(Ar \) 是未取代的苯基。

5. 根据权利要求 1 的化合物，其中 \(R^{11} \) 是氢，\(R^7 \) 选自氢、甲基、乙基、正丙基、异丙基、异丁基和 2-甲基-1-丙基。

6. 根据权利要求 5 的化合物，其中 \(R^7 \) 是甲基。

7. 根据权利要求 1 的化合物，其中 \(R^8 \) 是 \(C_{1-5} \) 烷基。

8. 根据权利要求 7 的化合物，其中 \(R^8 \) 是甲基。

9. 根据权利要求 1 的化合物，其中 \(Ar \) 是未取代的苯基，\(R^7 \) 是甲基，\(R^8 \) 是甲基，\(R^{11} \) 是氢。

10. 根据权利要求 9 的化合物，其选自：
或其药学上可接受的盐。

11. 一种药物组合物，其包含权利要求1的化合物和药学上可接受的载体。

12. 权利要求1的化合物在制备用于在哺乳动物中治疗丙型肝炎病毒感染的药物中的用途。
用于治疗 RNA 依赖性 RNA 病毒感染的核苷前磷酸芳基酯

技术领域
[0001] 本发明涉及核苷前磷酸芳基酯、其合成法以及作为 RNA 依赖性 RNA 病毒聚合酶的抑制剂的前体的用途。本发明的化合物是 RNA 依赖性 RNA 病毒复制抑制剂的前体，并且用于治疗 RNA 依赖性 RNA 病毒感染。它们特别可用作丙型肝炎病毒 (HCV) NS5B 聚合酶的抑制剂的前体、HCV 复制抑制剂的前体、以及用于治疗丙型肝炎感染。

[0002] 明发背景

[0004] 目前已经采取了不同的 HCV 治疗方法，包括抑制病毒性丝氨酸蛋白酶 (NS3 蛋白酶)、解旋酶和 RNA 依赖性 RNA 聚合酶 (NS5B) 以及开发疫苗。

[0005] HCV 病毒是一种具备约 9600 个基的单个寡核酸核苷酸基因组序列（其编码约 3010 个氨基酸的多蛋白）的有包膜的正链 RNA 病毒。HCV 基因的蛋白质产物由结构性蛋白质 C, E1 和 E2, 以及非结构性蛋白质 NS2, NS3, NS4A 和 NS4B 以及 NS5A 和 NS5B 组成。据信非结构性 (NS) 蛋白为病毒复制提供了催化结构。NS3 蛋白酶从多蛋白链释放 NS5B, RNA 依赖性 RNA 聚合酶。HCV NS5B 聚合酶是含单链病毒 RNA（其作为 HCV 复制循环的模板）合成双链 RNA 所需要的。因此，NS5B 聚合酶被认为是 HCV 复制复合体中的必要成分 [参阅 K. Iishi 等 "Expression of Hepatitis C Virus NS5B Protein: Characterization of Its RNAPolymerase Activity and RNA Binding,” Hepatology, 29:1227-1235 (1999)

[0007] 现已发现本发明的核苷酯磷酸芳基酯是 RNA 依赖性 RNA 病毒复制（特别是 HCV 复制）的有效抑制剂的前体。所述核苷酯磷酸酯在体内转化为其核苷 5’-磷酸（核苷酸）衍生物，后者转化为相应的核苷 5’-三磷酸衍生物——RNA 依赖性 RNA 病毒聚合酶（特别是 HCV NS5B 聚合酶）的抑制剂。本发明的核苷磷酸芳基酯可以用于治疗 RNA 依赖性 RNA 病毒感染（特别是 HCV 感染）。

[0008] 因此，本发明的另一个目的在于提供核苷磷酸芳基酯，其被用作 RNA 依赖性 RNA 病毒聚合酶的抑制剂的前体，特别用作 HCVNS5B 聚合酶的抑制剂的前体。

[0009] 本发明的另一个目的在于提供核苷磷酸芳基酯，其被用作 RNA 依赖性 RNA 病毒复制抑制剂的前体，特别用作丙型肝炎病毒复制抑制剂的前体。

[0010] 本发明的另一个目的在于提供核苷磷酸芳基酯，其被用于治疗 RNA 依赖性 RNA 病毒感染，特别是用于治疗 HCV 感染。

[0011] 本发明的另一个目的在于提供药物组合物，其包含本发明的核苷磷酸芳基酯和药学上可接受的载体。

[0012] 本发明的另一个目的在于提供包含本发明的核苷磷酸芳基酯用作 RNA 依赖性 RNA 病毒聚合酶抑制剂的前体、特别是作为 HCVNS5B 聚合酶抑制剂的前体的药物组合物。

[0013] 本发明的另一个目的在于提供包含本发明的核苷磷酸芳基酯用作 RNA 依赖性 RNA 病毒复制抑制剂的前体、特别是作为 HCV 复制抑制剂的前体的药物组合物。

[0014] 本发明的另一个目的在于提供包含本发明的核苷磷酸芳基酯用于治疗 RNA 依赖性 RNA 病毒感染，特别是用于 HCV 感染的药物组合物。

[0015] 本发明的另一个目的在于提供包含与其它抗 RNA 依赖性 RNA 病毒（特别是 HCV）的活性剂联合的本发明核苷磷酸芳基酯的药物组合物。

[0016] 本发明的另一个目的在于提供抑制 RNA 依赖性 RNA 病毒聚合酶，特别是抑制 HCV NS5B 聚合酶的方法。

[0017] 本发明的另一个目的在于提供抑制 RNA 依赖性 RNA 病毒复制，特别是抑制 HCV 复制的方法。

[0018] 本发明的另一个目的在于提供治疗 RNA 依赖性 RNA 病毒感染，特别是治疗 HCV 感
染的方法。

【0019】本发明的另一个目的在于提供与其他抗 RNA 依赖性 RNA 病毒的活性剂联合治疗 RNA 依赖性 RNA 病毒感染的方法，特别是与其他抗 HCV 活性剂联合治疗 HCV 感染的方法。

【0020】本发明的另一个目的在于提供核苷磷酸芳基酯及其药物组合物作为药物用于抑制 RNA 依赖性 RNA 病毒复制和 / 或治疗 RNA 依赖性 RNA 病毒感染，特别是用于抑制 HCV 复制和 / 或治疗 HCV 感染。

【0021】本发明的另一个目的在于提供本发明的核苷磷酸芳基酯及其药物组合物在制造用于抑制 RNA 依赖性 RNA 病毒复制和 / 或治疗 RNA 依赖性 RNA 病毒感染，特别是用于抑制 HCV 复制和 / 或治疗 HCV 感染的药物中的用途。

【0022】从上述详细说明中，上述及其他目的将变得显而易见。

【0023】发明概述

【0024】本发明涉及下面立体化学构型表示的结构式 I 的化合物；

![结构式 I](image)

【0025】或其药学上可接受的盐，其中

【0026】Y 是 CR₆ 或 N；

【0027】Ar 是未取代的或被 1 ～ 3 个独立选自下列组的取代基取代的苯基：卤素、C₃-₄ 烷基、C₃-₄ 烷氧基、C₃-₄ 烷硫基、氨基、硝基、氨基、羟基、三氟甲基、C₃-₄ 烷基氨基、二 (C₃-₄ 烷基) 氨基、C₃-₄ 烷基羧基、C₃-₄ 烷基羧基氨基和 C₃-₄ 烷基氨基羧基；

【0028】R¹ 选自氢、氟、叠氮基、氨基、羟基、C₃-₄ 烷氧基、硫基和 C₃-₄ 烷硫基；

【0029】R² 和 R³ 独立地选自氢、甲基、C₃-₄ 烷基羧基、C₂-₁₈ 烷基羧基、C₁-₁₀ 烷基氨基羧基、C₃-₆ 环烷基羧基、C₃-₆ 环烷基氨基羧基；

【0030】R⁴ 是氢、卤素、甲基、叠氮基或氨基；

【0031】R⁵ 和 R⁶ 独立地选自氢、羟基、卤素、C₃-₄ 烷氧基、氨基、C₃-₄ 烷基氨基、二 (C₃-₄ 烷基) 氨基、C₃-₆ 环烷基氨基、二 (C₃-₆ 环烷基) 氨基、苄基氨基、二苄基氨基或 C₂-₁₈ 烷基氨基，其中烷基、环烷基、苄基和杂环烷基是未取代的或被 1 ～ 5 个独立选自卤素、羟基、氨基、C₃-₄ 烷基和 C₃-₄ 烷氧基的基团取代；

【0032】R⁷ 是氢、C₃-₄ 烷基、苯基或苄基；

【0033】其中烷基是未取代的或被一个选自羟基、甲氧基、氨基、羧基、氨基甲酰基、胍基、硫基、甲硫基、1H- 呋喃基和 1H- 吡啶 -3- 基的取代基取代，其中苯基和苄基是未取代的或被 1 ～ 2 个独立选自卤素、羟基和甲氧基的取代基取代；

【0034】R⁸ 是氢、C₃-₄ 烷基、C₃-₆ 环烷基、苯基或苄基；

【0035】
其中烷基和环烷基是未取代的或被 1～3 个独立选自卤素、羟基、羧基、C_{1-4} 烷氧基的取代基取代；其中苯基和苄基是未取代的或被 1～3 个独立选自卤素、羟基、氨基、C_{1-4}烷氧基和三氟甲基的取代基取代；

R^0 选自氢、氧、氨基、C_{1-3} 烷基、NHCONH_2、CONR^{10}R^{10}、CSNR^{10}R^{10}、COOR^{10}、C\(=\text{NH}\)NH_2、羟基、C_{1-3}烷氧基、氨基、C_{1-4}烷基氨基和二 (C_{1-4}烷基) 氨基；

每个 R^{10} 独立表示氢或 C_{1-6} 烷基；

R^1 是氢或甲基。

式 I 的化合物可以用作 RNA 依赖性 RNA 病毒聚合酶（特别是 HCVNS5B 聚合酶）的抑制剂的前体。其还是 RNA 依赖性 RNA 病毒复制（特别是 HCV 复制）抑制剂的前体，并用于治疗 RNA 依赖性 RNA 病毒感染（特别是治疗 HCV 感染）。

本发明的氨基酸螺芳基酯是作为相应的核苷 5’-单磷酸酯的前药进行作用的，对于其作用机制没有限制。内源性酶将 5’-单磷酸酯转变成其 5’-三磷酸酯衍生物——RNA 依赖性 RNA 病毒聚合酶的抑制剂。因此，氨基酸螺芳基酯比核苷本身具有更有效的标靶细胞渗透，可能对代谢解析的敏感性更小，并能够靶向特定组织（例如肝脏），从而在较低的抗病毒试剂总剂量下得到更广泛的治疗指数。

本发明还包括包含单独或与其他抗 RNA 依赖性 RNA 病毒（特别是抗 HCV）的活性剂组合的该化合物的药物组合物，以及抑制 RNA 依赖性 RNA 病毒复制和治疗 RNA 依赖性 RNA 病毒感染的方法。

发明的详细说明

本发明涉及下面立体化学构型表示的结构式 I 的化合物：

![化合物结构图](attachment:image.png)

或其药学上可接受的盐，其中

Y 是 CR^6 或 N；

Ar 是未取代的或被 1～3 个独立选自下列组的取代基取代的苯基：卤素、C_{1-4}烷基、C_{1-4}烷氧基、C_{1-4}烷硫基、氰基、硝基、氨基、羧基、三氟甲基、C_{1-4}烷基氨基、二 (C_{1-4}烷基) 氨基、C_{1-4}烷基羧基、C_{1-4}烷基氨基和 C_{1-4}烷基氨基羧基；

R^1 选自氢、氧、叠氮基、羟基、C_{1-3}烷氧基、硫基和 C_{1-3}烷硫基；

R^2 和 R^3 独立地选自氢、甲基、C_{1-6}烷氧基、C_{2-18}烯基醚基、C_{1-10}烷基氧基醚基、C_{3-6}环烷基醚基、C_{3-6}环烷基氧基醚基；

R^4 是氢、卤素、甲基、叠氮基或氨基；

R^5 和 R^6 各自独立地选自氢、羟基、卤素、C_{1-4}烷氧基、氨基、C_{1-4}烷基氨基、二 (C_{1-4}烷
基）氨基、C₃₆环烷基氨基、二（C₃₆环烷基）氨基、苄基氨基、二苄基氨基或 C₄₆杂环烷基，
其中烷基、环烷基、苄基和杂环烷基是未取代的或被 1～5 个独立选自卤素、羟基、氨基、C₁₄
烷基和 C₁₄烷氧基的基团取代；
[0053] R² 是氢、C₁₄烷基、苯基或苄基；
[0054] 其中烷基是未取代的或被一个选自羟基、甲氧基、氨基、羧基、氨基甲酰基、胍基、
硫基、甲硫基、1H- 咪唑基和 1H- 吲哚 -3- 基的取代基取代；其中苯基和苄基是未取代的或被
1～2 个独立选自卤素、羟基和甲氧基的取代基取代；
[0055] R³ 是氢、C₁₄烷基、C₃₆环烷基、苯基或苄基；
[0056] 其中烷基和环烷基是未取代的或被 1～3 个独立选自卤素、羟基、羧基、C₁₄烷氧基
的取代基取代；其中苯基和苄基是未取代的或被 1～3 个独立选自卤素、羟基、氨基、C₁₄烷
氧基和三氟甲基的取代基取代；
[0057] R⁴ 选自氢、氟、氨基、C₁₃烷基、NHCONH₂、CONR₁₀R¹⁰、CSNR₁₀R¹⁰、COOR¹⁰、C (= NH) NH₂、
羟基、C₁₃烷氧基、氨基、C₁₄烷基氨基和二（C₁₄烷基）氨基；
[0058] 每个 R⁰ 独立表示氢或 C₁₄烷基；
[0059] R¹ 是氢或甲基。
[0060] 式 I 的化合物可以用作 RNA 依赖性 RNA 病毒聚合酶的抑制剂的前体。其还是 RNA
依赖性 RNA 病毒复制抑制剂的前体，并可用于治疗 RNA 依赖性 RNA 病毒感染。
[0061] 在本发明化合物的一个实施方式中，Y 是 N，R¹ 是氢或氟，且 R² 和 R³ 是氢。在该类
实施方式中 R⁴ 是氢。
[0062] 在本发明化合物的第二个实施方式中，Y 是 CR⁰，R¹ 是氢或氟，且 R² 和 R³ 是氢。在
该类实施方式中 R⁴ 是氢或氟，在该类的子类中，R⁴ 是氢。
[0063] 在本发明化合物的第三个实施方式中，Ar 是未取代的苯基。
[0064] 在本发明化合物的第四个实施方式中，R⁴ 是氢，R² 选自氢、甲基、乙基、正丙基、异
丙基、异丁基，2- 甲基 -1- 丙基、羟基甲基、羰基甲基、羟基甲基、氨基甲酰基甲基、1- 羟基乙
基、2- 羟基乙基、2- 氨基甲酰基乙基、2- 甲硫基乙基、4- 氨基 -1- 丁基、3- 氨基 -1- 丙基、
3- 胍基 -1- 丙基、1H- 吲哚 -4- 基甲基、苯基、4- 羟基苯基和 1H- 吲哚 -3- 基甲基。在该类
实施方式中 R⁰ 是甲基或苄基。
[0065] 在本发明化合物的第五个实施方式中，R⁴ 是 C₁₃烷基、环己基、苯基或苄基。在该
类实施方式中 R⁰ 是氢。
[0066] 在本发明化合物的第六个实施方式中，Ar 是未取代的苯基、R² 是甲基或苄基、R⁴ 是
甲基、R⁴ 是氢。
[0067] 结构式 I 的本发明化合物，其用作 RNA 依赖性 RNA 病毒聚合酶的抑制剂的前体，举例
但非限制的实例如下：
[0068]

8
[0069]
[0070] 或其药学上可接受的盐。

[0071] 本发明的一个实施方式中，本发明的核苷磷酸芳基酯可以用作正义单链RNA依赖性RNA病毒聚合酶的抑制剂、正义单链RNA依赖性RNA病毒复制抑制剂，和/或用于治疗正义单链RNA依赖性RNA病毒感染。在该类实施方式中，正义单链RNA依赖性RNA病毒是黄病毒科(Flaviviridae)病毒或小核糖核酸病毒科(Picornaviridae)病毒。在该类的子类中，小核糖核酸病毒科病毒是鼻病毒、脊髓灰质炎病毒或甲型肝炎病毒。在该类的第二子类中，黄病毒科病毒包括丙型肝炎病毒、黄热病病毒、登革热病毒、西尼罗河病毒、日本脑炎病毒、Banzl病毒和牛病毒性腹泻病毒(BVDV)。在该子类的子类中，黄病毒科病毒为丙型肝炎病毒。

[0072] 本发明的另一方面涉及在哺乳动物中抑制RNA依赖性RNA病毒聚合酶的方法、抑制RNA依赖性RNA病毒复制的方法、和/或治疗RNA依赖性RNA病毒感染的方法，其包括对哺乳动物给药治疗有效量的结构式(1)的化合物。

[0073] 本发明此方面的一个实施方式中，RNA依赖性RNA病毒聚合酶是正义单链RNA依赖性RNA病毒聚合酶。在该类实施方式中，正义单链RNA依赖性RNA病毒聚合酶是黄病毒科病毒聚合酶或小核糖核酸病毒科病毒聚合酶。在该类的子类中，小核糖核酸病毒科病毒聚合酶是鼻病毒聚合酶、脊髓灰质炎病毒聚合酶或甲型肝炎病毒聚合酶。在该类的第二子类中，
黄病毒科病毒聚合酶包括丙型肝炎病毒聚合酶、黄热病病毒聚合酶、登革热病毒聚合酶、西尼罗河病毒聚合酶、日本脑炎病毒聚合酶、Banzi病毒聚合酶和牛病毒性腹泻病毒（BVDV）聚合酶。在该子类的子类中，黄病毒科病毒聚合酶为丙型肝炎病毒聚合酶。

[0074] 本发明此方面的第二个实施方式中，RNA依赖性RNA病毒复制是正义单链RNA依赖性RNA病毒复制。在该类实施方式中，正义单链RNA依赖性RNA病毒复制是黄病毒科病毒复制或小核糖核酸病毒科病毒复制。在该类的子类中，小核糖核酸病毒科病毒复制是鼻病毒复制，脊髓灰质炎病毒复制或甲型肝炎病毒复制。在该类的子类中，黄病毒科病毒复制包括丙型肝炎病毒复制、黄热病病毒复制、登革热病毒复制、西尼罗河病毒复制、日本脑炎病毒复制、Banzi病毒复制和牛病毒性腹泻病毒复制。在该子类的子类中，黄病毒科病毒复制为丙型肝炎病毒复制。

[0075] 本发明此方面的第三个实施方式中，RNA依赖性RNA病毒感染是正义单链RNA依赖性RNA病毒感染。在该类实施方式中，正义单链RNA依赖性RNA病毒感染是黄病毒科病毒感染或小核糖核酸病毒科病毒感染。在该类的子类中，小核糖核酸病毒科病毒感染是鼻病毒感染、脊髓灰质炎病毒感染或甲型肝炎病毒感染。在该类的子类中，黄病毒科病毒感染包括丙型肝炎病毒感染、黄热病病毒感染、登革热病毒感染、西尼罗河病毒感染、日本脑炎病毒感染、Banzi病毒感染和牛病毒性腹泻病毒感染。在该子类的子类中，黄病毒科病毒感染为丙型肝炎病毒感染。

[0076] 本说明书书中，下列术语具有如下的意义：

[0077] 上述烷基是指包括指定长度的直链或支链烷基。该烷基的实例是甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基、戊基、异戊基、己基、异己基等。

[0078] 术语“烯烃”是指2～6个碳原子数（或该范围内任何碳原子数）的直链或支链烯烃（例如乙烯基、丙烯基、丁烯基、戊烯基等）。

[0079] 术语“炔烃”是指2～6个碳原子数（或该范围内任何碳原子数）的直链或支链炔烃（例如乙烯基、丙炔基、丁炔基、戊炔基等）。

[0080] 术语“环烷基”是指3～8个碳原子数（或该范围内任何碳原子数）的环状烷烃（例如环丙基、环丁基、环戊基、环己基、环庚基或环辛基）。

[0081] 术语“环烷烃”包括含1～2个选自氢、氧和硫的杂原子的非芳香环。实例为4～6元环烷烃，包括氮杂环丁烷基，吡咯烷基，哌啶基，吗啉基，硫代吗啉基，咪唑烷基，四氢呋喃基，四氢吡喃基，四氢噻吩基，哌嗪基等。

[0082] 术语“烷氧基”是指规定碳原子数（例如C_{1-4}烷氧基）或该范围内任何碳原子数（例如甲氧基（MeO-）、乙氧基、异丙氧基等）的直链或支链烃氧化物。

[0083] 术语“烷硫基”是指规定碳原子数（例如C_{1-4}烷硫基）或该范围内任何碳原子数（例如甲硫基（MeS-）、乙硫基、异丙硫基等）的直链或支链烷基硫。

[0084] 术语“烷基氨基”是指规定碳原子数（例如C_{1-4}烷基氨基）或该范围内任何碳原子数（例如甲氨基、乙氨基、异丙氨基、叔丁氨基等）的直链或支链烷基胺。

[0085] 术语“烷基磺酰”是指规定碳原子数（例如C_{1-4}烷基磺酰）或该范围内任何碳原子数（例如甲磺酰（MeSO_{2}-）、乙磺酰、异丙磺酰等）的直链或支链烷基砜。

[0086] 术语“烷基氨基羰基”是指规定碳原子数（例如C_{1-4}烷基氨基羰基）或该范围内任何碳原子数（例如甲基氨基羰基（MeOCO-）、乙基氨基羰基、丁基氨基羰基）的本发明羧酸衍
生物的直链或支链酯。

[0087] 术语“卤素”是指氟、氯、溴和碘。

[0088] 术语“磷酰基”是指$-\text{P(0)(OH)}_2$。

[0089] 术语“二磷酰基”是指具有下列结构的基团:

![二磷酰基结构](image)

[0090] 术语“三磷酰基”是指具有下列结构的基团:

![三磷酰基结构](image)

[0091] 术语“取代”应当认为包括被给定的取代基多重取代。在说明书或权利要求所述的多重取代基残基中，取代化合物可以独立地被一个或多个说明书的或权利要求所述的取代基残基一次或多次取代。

[0092] 术语“5'-三磷酸酯”是指本发明的核苷化合物的5'-羟基的三磷酸酯衍生物，其具有下列结构通式 II:

![5'-三磷酸酯结构](image)

[0093] 其中 Y 和 $R^1 \sim R^6$ 定义如上。

[0094] 术语“组合物”，例如在“药物组合物”中，包括含活性成分的产物和形成载体的惰性成分的产物，以及通过组合、络合或聚集任何两种或多种所述成分或解离一种或多种所述成分、或经一种或多种所述成分的其他类型反应直接或间接得到的其他产物。因此，本发明的药物组合物包含本发明的化合物与药学上可接受的载体混合制得的任何组合物。

[0095] 术语“化合物的‘给药’和‘用药’”应当理解为向所需个体提供本发明的化合物或本发明化合物的前药。

[0096] 本发明的另一方面涉及联合一种或多种可用于治疗 HCV 感染的药剂使用本发明的化合物抑制 HCV NS5B 聚合酶的方法、联合一种或多种可用于治疗 HCV 感染的药剂使用本发明的化合物抑制 HCV 复制的方法，或联合一种或多种可用于治疗 HCV 感染的药剂使用本发明的化合物治疗 HCV 感染的方法。这种抗 HCV 的活性剂包括但不限于：病毒唑、左旋韦
林 (levovirin)、viramidine、胸腺素 α-1、干扰素-β、干扰素-α、PEG 化 (pegylated) 干扰素-α (PEG 干扰素-α)、干扰素-α 和病毒唑的组合、PEG 干扰素-α 和病毒唑的组合、干扰素-α 和左旋韦林的组合、PEG 干扰素-α 和左旋韦林的组合。干扰素-α 包括但不限于重组干扰素-α 2a（例如从 Hoffmann-LaRoche, Nutley, NJ 购得的 Roferon 干扰素）、PEG 化干扰素-α 2a (Pegasys®)、干扰素-α 2b（例如从 ScheringCorp.，Kenilworth, NJ 购得的 Intron-A 干扰素）、PEG 化干扰素-α 2b (PegIntron®)、重组共有序列干扰素 (consensus interferon)（例如干扰素 alphanco-1）和纯化干扰素-α 产品。Ang′ s 重组共有序列干扰素的的商品名是Infergen®。左旋韦林是病毒唑的 L-对映异构体，其具有类似或病毒唑的免疫调节活性。Viramidine 表示 WO 01/60379（转让给 ICN Pharmaceuticals）中公开的病毒唑的类似物。根据本发明的方法，该组合的单独成分可以在治疗的不同时期分别给药或以分开的或单一的组合的形式同时给药。因此本发明应理解为包含这种同时或交替治疗的全部方案，且术语“给药”应做相应的解释。很明显，本发明的化合物与用于治疗 HCV 感染的其他药剂组合在原则上包括与用于治疗 HCV 感染的药物组合的任何组合。当本发明的化合物或其药学上可接受的盐与第二抗 HCV 的活性治疗剂联合使用时，每种化合物的剂量既可以与其单独使用时的剂量相同，也可以不同。

[0101] 病毒唑、左旋韦林和 viramidine 可以通过抑制细胞内核苷酸生物合成途径的底端酶。IMPDH 由发现细胞内嘌呤核苷酸库，从而发挥它们的抗 HCV 效果。IMPDH 是从头鸟嘌呤核苷酸生物合成途经线的限速酶。病毒唑很容易细胞内磷酸化，且该单磷酸酯衍生物是 IMPDH 的抑制剂。因此，抑制 IMPDH 代表了发现 HCV 复制抑制剂的另一个有用标靶。因此，本发明的化合物也可以与以下物质联合给药：IMP DH 抑制剂，例如 VX-497，如 WO 97/41211 和 WO 01/00622（转让给 Vertex) 所述；另一种 IMP DH 抑制剂，如 WO 00/25780（转让给 Bristol-Myers Squibb）；或 mycophenolate mofetil (参阅 A.C. Allison 和 E.M. Eukui, Agents Action, 44(Suppl.) :165(1993) 所述。

请 W004/002999(8 January 2004); 国际专利申请 W0 04/003000(8 January 2004); 国际专利申请 W0 04/002422(8 January 2004) 所述，其全文在此引为参考。该 2’-C- 分支核糖核苷包括但不限于 2’-C- 甲基胞苷、2’-C- 甲基尿苷、2’-C- 甲基腺苷、2’-C- 甲基鸟苷和 9-(2-C- 甲基-β-D- 脱氧核苷基)-2,6- 二氨基嘌呤以及核苷 C-2’、C-3’、C-5’ 部分的相应氨基酸酯和 5’- 磷酸酯衍生物相应的任选取代的环状 1,3- 丙二醇酯。

[0106] “药学上可接受的”是指载体、稀释剂或赋形剂必须与制剂的其他成分相容，且对接受者无害。

[0107] 含本发明的核苷氨基磷酸芳基酯与药学上可接受的载体的药物组合物包括在本发明内。本发明的另一个实例是通过将任何上述化合物与药学上可接受的载体组合制得的药物组合物。本发明的另一个实例是制备药物组合物的方法，包括将任何上述化合物与药学上可接受的载体结合。

[0110] 本发明的药物组合物包含作为活性成分的结构式 I 的化合物或其药学上可接受的盐，并可还包含药学上可接受的载体和任选地其他治疗成分。

[0111] 所述组合物包括如下组合物，其适合于口服、直肠、局部、肠胃外（包括皮下、肌肉内和静脉内）、眼（眼用）、肺部（鼻或口腔吸入）或鼻给药，在任何给出的情形中最合适的途径取决于所需治疗的状况的性质和严重程度，以及活性成分的特征。它们可以方便地以单元剂量形式存在，并且可以通过药学领域熟知的任何方法制备。

[0112] 在实际使用中，结构式 I 的化合物可作为活性成分根据常规的药物混配技术与药物载体紧密混合。该载体可以是各种形式，取决于希望给药的制剂形式，例如口服或肠胃外（包括静脉内）。在制备组合物的口服剂量形式时，可以使用任何常见的药物介质，例如在口服液体制剂例如悬浮液、酏剂和溶液情况下，水、二醇、油、醇、调味剂、防腐剂、着色剂等；或在口服固体制剂例如粉末、硬和软胶囊和片剂情况下，载体比如淀粉、糖、微晶纤维素、稀释剂、成粒剂、润滑剂、粘合剂、崩解剂等，其中相对于液体制剂更优选固体口服制剂。

[0113] 由于易于给药，片剂和胶囊代表最有利的口服剂量单元形式，在此时显然是使用固体药物载体。如果需要，可以通过标准的灌水或非水工艺对片剂进行包衣。这种组合物和制剂应包含至少 0.1%的活性化合物。这些组合物中活性化合物的百分比当然可以改变，可适宜地在约 2%〜60%单剂重量。在这一治疗中可用组合物中的活性化合物的量使得得到有效的剂量。该活性化合物还可以鼻内给药，例如以液体滴剂或喷雾剂的形式存在。

[0114] 片剂、丸、胶囊等还可以包含粘合剂，例如黄蓍胶、阿拉伯胶、玉米淀粉或明胶，赋形剂比如磷酸二钙；崩解剂比如玉米淀粉、马铃薯淀粉、藻酸；润滑剂比如硬脂酸镁和甜味剂比如蔗糖、乳糖或糖精。当剂量单元形式为胶囊时，它除上述类型的材料外还可以包含液体载体，例如油脂。

[0115] 多种其他材料可以作为包衣存在或用来改进剂量单元的物理形式。例如片剂可以涂有虫胶、糖或两者皆有。糖浆或酏剂，除活性成分外，还可以包含蔗糖作为甜味剂，对羟基苯甲酸甲酯和对羟基苯甲酸丙酯作为防腐剂，染料，和调味剂例如樱桃或橙味香料。

[0116] 结构式 I 的化合物还可以肠胃外给药。可以在与表面活性剂（例如羟基-丙基纤维素）适当混合的水中制备这些活性化合物的溶液或悬浮液。可以在甘油、液体聚乙二醇及其在油中的混合物中制备分散体。在普通储存条件和使用下，这些制剂含有防腐剂以防止微生物生长。

[0117] 适合注射用的药物形式包括无菌水溶液或分散液，以及用于临时制备无菌注射溶液或分散体的无菌粉末。在所有的状况下，药物形式都必须是无菌的，且必须呈流动态达到容易注射的程度。它在制备和储存条件下中必须稳定，并且必须在防止抗微生物（例如细菌和真菌）污染作用的条件下保存。载体可以是溶剂或分散介质，其中包含例如水、乙醇、多元醇（例如甘油、丙二醇和液体聚乙二醇），其适当的混合物和植物油。

[0118] 可以采用任何适当的给药途径对哺乳动物（尤其是人类）使用有效剂量的本发明
化合物。例如可以采用口服、直肠、局部、肠胃外、眼、肺部、鼻等途径。剂量形式包括片剂、锭剂、分散体、悬浮液、溶液、胶囊、乳剂、软膏剂、气雾剂等。优选结构式 I 的化合物以口服给药。

对于向人类口服给药，在分剂量 (divided doses) 中，剂量范围为 0.01～1000mg/kg 体重。在一个实施方式中，在分剂量中，剂量范围是 0.1～100mg/kg 体重。在另一个实施方式中，在剂量中，剂量范围是 0.5～20mg/kg 体重。对于口服给药，组合物优选形式为片剂或胶囊，包含 1.0～1000 毫克的活性成分，特别是 1,5,10,15,20,25,50,75,100,150,200,250,300,400,500,600,750,800,900 和 1000 毫克的活性成分，以根据需治疗的患者的症状调整剂量。

使用的活性成分的有效剂量可以变化，其取决于使用的具体化合物、给药模式、被治疗的状况和被治疗的状况的程度。本领域技术人员可以很容易确定这样的剂量。可以调整该剂量方案以提供最佳的治疗反应。

本发明的化合物包含一个或多个不对称中心，因此可以以外消旋物和外消旋混合物，单个对映异构体和非对映异构体混合物和单个非对映异构体存在。当 R^{11} 是氢且与结构式 I 中磷原子连接的氨基酸残基基团中 R' 在下式中不是氢时，

\[R^7 \]

\[\text{CO}_2 \text{R}^8 \]

所述氨基酸残基包含不对称中心，并且意图包括单独的 R- 和 S- 立体异构体以及 RS- 立体异构体混合物。在一个实施方式中，在产生立体化学的 (stereogenic) 碳原子上的立体化学对应于 S- 氨基酸的立体化学，即天然存在的 α- 氨基酸的立体化学。

结构式 I 的化合物中四取代的磷构成另一不对称中心，并且本发明的化合物意图包括该磷原子上的所有两种立体化学构型。

本发明意在包括，具有下述结构式所示的五- 吲哚糖环 β-D 立体化学构型的核苷酸磷酸芳基酯，即这样的核苷酸磷酸芳基酯，其中五- 吲哚糖环的 C-1 和 C-4 取代基具有 β- 立体化学构型（粗线表示“向上”的立体取向）。

本文描述的某些化合物含有烯属双键，除非另外特别说明，意在包括 E 和 Z 两种几何异构体。

本文描述的某些化合物可以以互异构体存在，例如酮- 烯醇互异构体。
互变异构体及其混合物包括在结构式 I 的化合物中。意图包括在本发明化合物中的酮－烯醇互变异构体的实例举例说明如下：

[0129]

结构式 I 的化合物可以分离成单个的非对映异构体，通过例如从适的溶剂中（例如甲醇、乙酸乙酯或其混合物）分级结晶进行，或通过使用旋光固定相经手性色谱法进行。另外，结构式 I 的化合物的任何立体异构体也可以使用已知构型的光学纯起始原料或试剂通过立体专一性合成得到。

[0130] 本发明的化合物可以以药学上可接受的盐的形式给药。术语“药学上可接受的盐”是指从药学上可接受的无毒碱或酸（包括无机或有机碱和无机或有机酸）制备的盐。包含在术语“药学上可接受的盐”中的碱性化合物的盐指通常由游离碱与适当的有机或无机酸反应制备的本发明化合物的无毒盐。本发明的碱性化合物的代表性盐，包括但不限于：乙酸盐、苯磺酸盐、苯甲酸盐、碳酸氢盐、硫酸氢盐、酒石酸氢盐、硼酸盐、溴酸盐、氯酸盐、氯化物、克拉维酸盐、柠檬酸盐、二盐酸化物、乙二胺四乙酸盐、乙二磺酸盐（edisylate）、丙酸酯月桂磺酸盐（estolate）、乙磺酸盐（esylate）、富马酸盐、葡庚糖酸盐、葡萄糖酸盐、谷氨酸盐、甘草酸盐（glycollylarsanilate）、hexylresorcinate、哈胺、溴氨酸、盐酸盐、羟基羧酸盐、碘化物、isothionate、乳酸盐、乳糖酸盐（lactobionate）、月桂酸盐、苹果酸盐、马来酸盐、扁桃酸盐、甲磺酸盐、甲基溴化物、甲基砜酸盐、甲基磺酸盐、结核酸盐、溴磺酸盐（napsylate）、硝酸盐、N-甲基葡萄糖胺盐、油酸盐、乙二胺盐、双羟基酸盐、环己酸盐、泛酸盐、磷酸盐/磷酸氢盐、多聚半乳糖醛酸盐（polygalacturonate）、水杨酸盐、硬脂酸盐、硫酸盐、糖式酸盐、琥珀酸盐、丹宁酸盐、酒石酸盐、8-氨基碱盐、甲苯磺酸盐、三乙基磺化物和戊酸盐。此外，当本发明的化合物带有酸性结构部分时，其适当的药学上可接受的盐，包括但不局限于，来自无机碱（包括铝、铵、钙、铜、铁、亚铁、锂、镁、锰、亚锰、钾、钠、锌等）的盐。特别优选铵、钙、镁、钾、钠盐。来自药学上可接受的有机无毒碱的盐包括伯胺、仲胺、叔胺、环胺和碱离子交换树脂例如精氨酸、甜菜碱、咖啡因、胆碱、N、N-二甲基乙二胺、乙胺、2-二乙氨基乙醇、2-二甲氨基乙醇、乙醇胺、乙二胺、N-乙基吗啉、N-乙基哌啶、葡萄糖胺（glucamine）、葡糖胺（glucosamine）、组氨酸、哈胺、异丙胺、赖氨酸、甲基葡萄糖胺、咪唑、哌嗪、哌啶、多胺树脂、普鲁卡因、嘌呤类、可可碱、三乙胺、三甲胺、三丙胺、缓血酸胺等的盐。

[0132] 此外，如果本发明的化合物中存在羧酸（-COOH）或羟基团时，可以采用药学上可接受的羧酸衍生物的前药酯类（例如甲酯、乙酯或特戊酰氧甲酯）或核糖 C-2'、C-3' 和 C-5' 羟基的前药酯基衍生物（例如 0-乙酰基、0-特戊酰基、0-苯甲酰基、0-氨酰基）。包括本领域已知的用于改进生物利用率、组织分布、溶解度和水解特征的那些酯和酰基，用

[0134] 本发明氨基磷酸芳基酯的制备

[0136] 下列实施例用于举例说明制备本发明化合物的条件。这些实施例并非意图以任何方式限制本发明的范围，不应对其作这种解释。核苷和核苷酸合成领域的技术人员很容易理解，可以使用已知的对下列制备工序条件和过程的变形来制备本发明的这些化合物和其他化合物。除非另作说明，所有的温度规定是摄氏度。

[0137] 实施例 1 和 2

[0138] 2’-C- 甲基腺苷 5’-[(甲氧基)-(S)- 丙氨酰基磷酰苯基酯]

[0139]

[0140] 在室温下将 2’-C- 甲基腺苷 (500mg), 甲氧基-(S)- 丙氨酰基氯化磷酰苯基酯 [1.3g, 根据 J. Med. Chem., 36:1048 (1993) 制备], N- 甲基咪唑 (0.8mL) 和 1,4- 二氧六环 (10mL) 的溶液搅拌 18 小时。浓缩该反应化合物, 放入饱和的碳酸氢钠水溶液中, 并用氯仿萃取三次。该氯仿萃取物在无水硫酸镁上干燥, 过滤, 浓缩得到棕色固体。所需的产物在硅胶上使用色谱法使用 10% 甲醇 / 二氧甲烷作为洗脱液纯化, 然后冻干得到无色固体——为磷原子上非对映异构体的混合物。使用反相液相色谱 (Kromasil C8, 4.6 × 250mm, 梯度 20% ~ 50% 乙腈溶于 0.1% 三氟乙酸水溶液, 历时 15 分钟, 1.5mL/ 分钟) 分离所述非对映
异数体，得到呈无色固体的每个非对映异构体。各异数体的质谱 $m/z = 523$。

[0141] 实施例 3 和 4

[0142] 2′-C- 甲基鸟苷 5′-[(甲氧基)-(S)-丙氨酰基磷酸苯基酯]

[0143]

在室温下将 2′-C- 甲基鸟苷 (40mg)，1,4-二氧六环 (2mL)，N- 甲基咪唑 (70μL) 和所述氯化磷酸酯 (73mg) 的溶液搅拌一整夜。浓缩混合物除去二氧六环，混合物在饱和的
碳酸氢钠水溶液和氯仿之间分配。所取的产物留在含水的级分中。非对映异构体混合物的
水溶液经过反相液体色谱 (Kromasil C8，4.6 × 250mm, 梯度 20%～50% 乙腈溶于 0.1% 三
氯乙酸水溶液, 流速 15 分钟, 1.5mL/分钟) 得到呈无色固体的各非对映异构体。各异数体
的质谱 $m/z = 539$。

[0145] 实施例 5 和 6

[0146] 4- 氨基-7-(2-C- 甲基-β-D- 呋喃核糖基)-7H- 啶啶 [2,3-d] 喹啶 5′-[(甲氧
基)-(S)-丙氨酰基磷酸苯基酯]

[0147]
[0148] 以 4-氨基-7-(2-C-甲基-β-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶为起始原料，按照实施例1和2相同方法制备实施例5和6，得到非对映异构体混合物，非对映异构体混合物使用实施例1和2的条件通过反相液相色谱分。各异构体的质谱：m/z = 522。

[0149] 1H NMR (CD3OD, 500MHz)：异构体 A: δ 0.80 (s, 3H), 1.30 (d, 3H), 3.66 (s, 3H) 和 6.30 (s, 1H); 异构体 B: δ 0.84 (s, 3H), 1.34 (d, 3H), 3.62 (s, 3H) 和 6.28 (s, 1H)。

[0150] 实施例7和8

[0151] 2-氨基-7-(2-C-甲基-β-D-呋喃核糖基)-7H-吡咯并[2,3-d]嘧啶-4(3H)-酮 5’-[甲氧基-(S)-丙氨酰基磷酸苯基酯]

[0152]
[0154] 1H NMR (CD$_3$OD, 500MHz): 异构体 A: δ 0.85 (s, 3H), 1.31 (d, 3H), 3.67 (s, 3H) 和 6.10 (s, 1H); 异构体 B: δ 0.87 (s, 3H), 1.35 (d, 3H), 3.63 (s, 3H) 和 6.05 (s, 1H)。

[0155] 实施例 9 和 10

[0156] 2,4-二氨基-7-(2-C-甲基-β-D-呋喃核糖基)-7H-哒啶并[2,3-d]哒啶 5’-[甲氧基-(S)-丙氨酰基磷酸苯基酯]

[0157]

[0158] 以 2,4-二氨基-7-(2-C-甲基-β-D-呋喃核糖基)-7H-哒啶并[2,3-d]哒啶为起始原料，按照实施例 1 和 2 相同方法制备实施例 9 和 10，得到非对映异构体混合物。非对映异构体混合物使用实施例 1 和 2 的条件通过反相液相色谱分。各异构体的质谱：(M+1) m/z = 537。

[0159] 1H NMR (CD$_3$OD, 500MHz): 异构体 A: δ 0.89 (s, 3H), 1.32 (d, 3H), 3.64 (s, 3H) 和 6.12 (s, 1H); 异构体 B: δ 0.91 (s, 3H), 1.35 (d, 3H), 3.62 (s, 3H) 和 6.10 (s, 1H)。

[0160] 生物试验

[0161] 用于测量 HCV NS5B 聚合酶和 HCV 复制的抑制的试验描述如下。

[0162] 下列试验用于测量本发明的化合物作为 HCV NS5B RNA 依赖性 RNA 聚合酶 (RdRp) 的抑制剂的有效性。

[0163] A. HCV NS5B 聚合酶的抑制试验；

[0164] 该试验用于测量本发明的核苷酸磷酸芳基酯在杂聚 RNA 模板上抑制 HCV RNA 依赖性 RNA 聚合酶 (NS5B) 的酶活性的能力。

[0165] 程序：

[0166] 试验缓冲液条件：(50 μL 总量 / 反应)

[0167] 20mM Tris, pH 7.5

[0168] 50 μM EDTA

[0169] 5mM DTT
说明书

[0170] 2 mM MgCl₂
[0171] 80 mM KCl
[0172] 0.4 U/μL RNAsin (Promega,原液为 40 单元/μL)
[0173] 0.75 μg t500 (500-nt RNA,其来源自型肝炎基因组的NS2/3 区序列使用 T7 失控转录制得)
[0174] 1.6 μg 纯化丙型肝炎 NS5B (21 个氨基酸 C 端截短修剪)
[0175] 1 μM A、C、U、GTP (核苷三磷酸酯混合物)
[0176] [α-32P]-GTP 或 [α-32P]-GTP
[0177] 化合物在多种浓度下测试, 最多达 100 μM 终浓度。
[0178] 制备适量的包括酶和模板 t500 的反应缓冲液。将本发明的核苷衍生物移液入 96 孔板的孔中。制备核苷三磷酸酯 (NTP' s) 混合物, 包括放射性标记的 GTP 在内, 并移液入 96 孔板的孔中。加入酶 - 模板反应溶液后开始反应, 并在室温下进行 10 分钟。反应在 80 °C 下进行 2 小时。
[0179] 加入 20 μL 0.5M EDTA, pH 8.0 残灭反应。包括空白反应 (其中, 在加入反应缓冲剂之前向 NTP' s 中加入残灭溶液)。
[0180] 50 μL 残灭的反应物点到 DE81 滤纸 (Whatman) 上, 并干燥 30 分钟。使用 0.3M 甲酸铵, pH 8.0 (150mL/ 每次洗涤, 直到 1mL 洗涤液的 cpm 小于 100, 通常为 6 次洗涤) 洗涤过过滤在 5mL 闪烁流体中使用闪烁计数器对过滤器进行计数。
[0181] 根据下列等式计算抑制百分比：
抑制 % = [(测试反应中 cpm - 空白中 cpm)/(对照反应中 cpm - 空白中 cpm)] × 100。
[0182] 在 HCV NS5B 聚合酶中进行的代表性化合物显示 IC₅₀ 小于 100 微摩尔。
[0183] B. HCV RNA 复制的抑制试验：
[0185] 方案
[0186] 该试验是原位核糖核酸酶保护, 基于闪烁亲近的分子试验 (SPA)。将 10000～40000 个细胞置于 96 孔 cytostar 板 (Amersham) 中 100～200 μL 含 0.8mg/mL G418 的培养基中。在 0～18 小时内向细胞加入各种终浓度 (最多达 100 μM 孤立于 1% DMSO) 的化合物, 然后培养 24～96 小时。使细胞固定 (20 分钟, 10% 福尔马林), 可渗透 (20 分钟, 0.25% TritonX-100/ PBS) 并使用与 RNA 病毒基因组中所含的 (+) 链 NS5B (或其他基因) 互补的单链 32P RNA 探针交杂 (整夜, 50 °C)。洗涤细胞, 用 RNase 处理, 洗涤, 加热至 65 °C, 并在 Top-Count 中计数。复制的抑制读取为每分钟计数 (cpm) 的减少。
[0187] 被选择含有亚基因组复制子的细胞 Huh-7 肝瘤细胞携带一胞质 RNA, 其中 HCV 5’ 非翻译区 (NTR)、新霉素可选标记、EMCV IRES（内部核糖体进入部位）和 HCV 非结构蛋白 NS3 至 NS5B, 随后是 3’ NTR 组成。
[0188] 在复制试验中测试的代表性化合物显示 EC₅₀ 小于 100 微摩尔。
C. 细胞内代谢试验

还评价本发明的化合物进入人类肝瘤细胞系并在细胞内转化成相应的核苷
5’－单、二、三磷酸酯的能力。

HuH-7 和 HBI10A 两个细胞系用于本发明化合物的细胞内代谢研究。HuH-7 是人类
肝瘤细胞系，HBI10A 表示衍生自携带 HCV 双顺反子复制子的 HuH-7 细胞的克隆系。HuH-7
细胞置于含 10%胎牛血清的完全 Dulbecco 氏改良 Eagle 氏培养基中，HBI10A 细胞置于含
G418（0.8mg/ml）的同样培养基中，1.5×10^6 细胞/mL，“以至于在加入化合物时有 80%
的细胞汇合。氯化物以 2 μM 在细胞培养基中培养 3 或 23 小时。收集细胞，用磷酸盐缓冲
的盐水洗涤并计数。然后在 70%甲醇、20mM EDTA、20mM EGTA 中提取细胞，并离心。干燥该
胞溶产物，在连接至在位 β-RAM 闪烁探测器（IN/US Systems）的 Waters Millenium 系统
上使用离子对反相 (C-18)HPLC 分析放射性标记的核苷酸。HPLC 流动相由 (a) 含 2mM 四丁
铵氢氧化物的 10mM 磷酸钾和 (b) 含 10mM 磷酸钾和 2mM 四丁铵氢氧化物的 50%甲醇组成。
通过和标准比较保留时间进行峰鉴别。活性表达为在 10^6 HuH-7 或 HBI10A 细胞中检测的核
苷酸的皮摩尔数。

还在下列的反筛选中评价本发明的核苷磷酸芳基酯的细胞毒性和抗病毒特
异性。

C. 反筛选

在下列试验中测量本发明核苷磷酸芳基酯抑制人类 DNA 聚合酶的能力。

a. 人类 DNA 聚合酶 α 和 β 的抑制;

反应条件；

50 μL 反应体积

反应缓冲组分；

20mM Tris-HCl, pH 7.5

200 μg/ml 浓血清蛋白

100mM KCl

2mM β-巯基乙醇

10mM MgCl_2

1.6 μM dA, dG, dC, dTTP

α-32P-dATP

酶和模板；

0.05mg/ml 缺口的 (gapped) 鱼精 (fish sperm)DNA 模板

0.01U/μL DNA 聚合酶 α 或 β

缺口鱼精 DNA 模板的制备

5 μL 1M MgCl_2 加入 500 μL 活化的鱼精 DNA (USB 70076)；

升温至 37℃，并加入 30 μL 65U/μL 的核酸外切酶 III (GibcoBRL18013-011)；

在 37℃下培养 5 分钟；

通过加热至 65℃ 10 分钟终止反应；

取 50 至 100 μL 等份装载到用 20mM Tris-HCl, pH 7.5 平衡的 Bio-spin 6 色谱柱
(Bio-Rad 732-6002) 上；
[0216] 通过在 1000Xg 下离心洗脱 4 分钟；
[0217] 收集洗脱物，并在 260nm 下测定吸光度用来测定浓度。
[0218] DNA 模板稀释入适量的 20mM Tris-HCl, pH7.5, 酶稀释入适量的 20mM Tris-HCl（含 2mM β-巯基乙醇）和 100mM KCl。模板和酶移液入微量离心管或 96 孔板中。还分别使用酶稀释缓冲剂和测试化合物溶剂准备消除酶的空白反应和消除测试化合物的对照反应。使用含上文所列组分的反应缓冲剂启动反应。该反应在 37°C 下温育 1 小时。加入 20μL 0.5mM EDTA 灭火反应。50μL 灭火的反应物点到 WhatmanDE81 滤纸并风干。用 150mL 0.3M 甲酸铵, pH 8, 反复洗涤滤纸, 直到 1mL 洗涤液 < 100cpm。用 150mL 绝对乙醇洗涤两次, 用 150mL 无水乙醇洗涤一次, 干燥, 在 5mL 闪烁流体中计数。
[0219] 根据下列等式计算抑制百分比；
[0220] 抑制% = [1- (测试反应中 cpm - 空白中 cpm) / (对照反应中 cpm - 空白中 cpm)] × 100。
[0221] b. 人类 DNA 聚合酶 γ 的抑制；
[0222] 测量对人类 DNA 聚合酶 γ 的抑制的效力, 反应物包括: 0.5ng/μL 酶, 10μM dATP, dGTP, dCTP 和 TTP; 2μCi/反应 [α-32P]-dATP, 0.4μg/μL 活化的鱼精 DNA（从 US Biochemical 购得）于含 20mM Trisph 8.2mM β-巯基乙醇, 50mM KCl, 10mM MgCl2 和 0.1μg/mL BSA 的缓冲剂中。该反应在 37°C 下温育 1 小时, 通过加入 0.5mM EDTA 至终浓度为 142mM 灭火反应。通过阴离子交换滤器结合和闪烁计数量化产物的形成。在最高达 50μM 测试化合物。
[0223] 根据下列等式计算抑制百分比；
[0224] 抑制% = [1- (测试反应中 cpm - 空白中 cpm) / (对照反应中 cpm - 空白中 cpm)] × 100。
[0225] 在下列试验中测量本发明的核苷磷酸芳基酯抑制 HIV 感染能力和 HIV 传播的能力。
[0226] c. HIV 感染性试验
[0227] 使用表达 CXCR4 和 CCR5 二者（选择用于低背景 β-半乳糖苷酶（β-gal）表达）的 HeLa Magi 细胞变体进行反应。细胞感染 48 小时，使用化学发光底物（Galactolight Plus, Tropix, Bedford, MA）量化自整合的 HIV-1LTR 启动子产生的 β-gal。在始于 100μM 连续两倍稀释液中进行抑制剂滴定（平行两份）; 相对对照感染计数每个浓度的抑制百分比。
[0228] d. HIV 传播的抑制
[0231] e. 细胞毒性试验；
[0232] 细胞培养物在适当的培养基中制得, 对悬浮培养物, 浓度约 1.5 × 10^6 细胞/mL, 温
育3天，对附着培养物，浓度在5.0 × 10^4细胞/mL，温育3天。99 μL细胞培养物转入96孔组织培养物处理的板中，加入1 μL 100倍终浓度的溶于DMSO的测试化合物。该板在37℃下5% CO₂中温育一指定时间段。温育期过后，向每个孔中加入20 μL CellTiter 96Aqueous One Solution Cell Proliferation Assay试剂（MTS）（Promega），该板在37℃下5% CO₂中再温育一段时间，最多3小时。振荡该板以充分混合，使用板读取器在490nm下读取吸光度。在加入MTS试剂前准备已知细胞数的悬浮培养细胞的标准曲线。代谢活性细胞还原MTS为甲蓝。甲蓝在490nm吸收。比较在490nm下有化合物存在的吸光度和没有加入任何化合物的细胞中的吸光度。

[0234] 采用下列试验测量本发明的化合物抗其他RNA依赖性RNA病毒的活性。

[0235] a. 化合物体外抗鼻病毒的抗病毒活性测定（细胞病变效果抑制试验）

[0237] 病毒：

[0238] 如Sidwell和Huffman参考文献中所述，鼻病毒2型（RV-2），HGP株，与KB细胞和培养基（0.1% NaHCO₃，不含抗生素）一起使用。从ATCC获得的病毒，来自于患轻度急性发热性上呼吸道疾病的成年男性的咽喉拭子。

[0239] 鼻病毒9型（RV-9），211株，和鼻病毒14型（RV-14），Tow株，也从Rockville, MD的美国典型培养物保藏中心（ATCC）获得。RV-9来自人类咽喉洗涤物，并且RV-14来自患上呼吸道疾病的年轻成人的咽喉拭子。这两种病毒与HeLa Ohio-1细胞（Dr. Fred Hayden, Univ. ofVA）（为人类颈上皮样癌细胞）一起使用。含5%胎牛血清（FBS）和0.1% NaHCO₃的MEM（Eagle氏极限必需培养基）作为生长培养基。

[0240] 所述三种病毒的抗病毒测试培养基是含5% FBS、0.1% NaHCO₃、50 μg庆大霉素/mL和10mM MgCl₂的MEM。

[0241] 用于试验本发明化合物的最大浓度为2000 μg/mL。加入测试化合物后，大约5分钟后，向试验板中加入病毒。适当的对照也进行。试验板在37℃下，湿润空气和5% CO₂中温育。通过在显微镜下观察形态变化，监测对照细胞的细胞毒性。病毒CPE数据和毒性对照数据的回归分析得出ED50（50%有效剂量）和CC50（50%细胞毒浓度）。通过如下公式计算选择指数（SI）：SI = CC50/ED50。

[0242] b. 化合物体外抗登革热和Banzi和黄热病的抗病毒活性的测定（CPE抑制试验）

[0243] 上述Sidwell和Huffman参考文献提供了试验的详情。

[0244] 病毒：

[0245] 从疾病控制中心获得登革热病毒2型，新几内亚株。两个非洲绿猴肾细胞系用于培养该病毒（Vero），并进行抗病毒测试（MA-104）。由感染的小鼠脑制备的黄热病病毒，17D株，和从南非发热男孩的血清分离的Banzi病毒，H336株，均得自ATCC。Vero细胞被用于这两种病毒和试验。

[0246] 细胞和培养基；
[0247] MA-104 细胞 (BioWhittaker, Inc., Walkersville, MD) 和 Vero 细胞 (ATCC) 用于培养基 199（含 5% FBS 和 0.1% NaHCO₃, 不含抗生素）。

[0248] 用于登革热、黄热病和 Banzi 病毒的试验培养基是 MEM, 含 2% FBS, 0.18% NaHCO₃, 50 μg 庆大霉素 /mL。

[0249] 根据 Sidwell 和 Huffman 参考文献和类似上述病毒抗病毒测试的方式进行本发明的化合物的抗病毒测试。对于每种所述病毒, 在 5 ～ 6 天后达到足够的细胞病变效应 (CPE) 读数。

[0250] e. 化合物在体外抗西尼罗河病毒的抗病毒活性的测定 (CPE 抑制试验)

[0251] 上述 Sidwell 和 Huffman 参考文献提供了试验的详情。西尼罗河病毒, 来源于乌鸦脑的纽约分离物, 从疾病控制中心获得。Vero 细胞如上生长和使用。试验培养基是 MEM, 含 1% FBS, 0.1% NaHCO₃, 50 μg 庆大霉素 /mL。

[0252] 根据类似于用于鼻病毒活性试验的方式的 Sidwell 和 Huffman 方法进行本发明化合物的抗病毒测试。在 5 ～ 6 天后达到足够的细胞病变效应 (CPE) 读数。

[0253] d. 化合物在体外抗鼻病毒、黄热病病毒、登革热病毒、Banzi 病毒和西尼罗河病毒的抗病毒活性测定（中性红摄取试验）

[0255] 药物制剂的实例

[0256] 作为本发明化合物的口服组合物的一个具体实施方式, 将 50mg 实施例 1 或实施例 2 的化合物与充分细碎的乳糖配制, 总量为 580 ～ 590mg, 并填充 0 号硬明胶囊中。

[0257] 已经参照具体实施方式描述并举例说明了本发明, 但本领域技术人员应该理解, 其中可进行各种变化、改进和替换而不脱离本发明的精神和范围。例如, 由于针对 HCV 感染程度, 被治病人的响应度不同, 结果, 除上文所述的优选剂量外的有效剂量可能是适用的。同样, 观察到的药理学反应可能根据和依赖于所选特定活性化合物或是否存在药物载体以及制剂类型和使用的用药模式而变化, 且遵循本发明目的和实践考虑了这样的预期变化或结果差异。因此, 本发明仅仅被权利要求范围限制, 且权利要求在合理情况下尽可能广泛地进行解释。