PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/01610
GOG6F 17/60 Al

(43) International Publication Date: 12 January 1995 (12.01.95)

(21) International Application Number: PCT/US94/07170 | (81) Designated States: AU, BR, CA, JP, RU, European patent

(22) International Filing Date: 27 June 1994 (27.06.94)

(30) Priority Data:

08/084,376 29 June 1993 (29.06.93) Us

(71) Applicant: ELECTRONIC DATA SYSTEMS CORPORA-
TION [US/US]; 5400 Legacy Drive, M/S H3-3A-05, Plano,
TX 75024 (US).

(72) Inventors: KOKO, Boma, Richard; 10111 Margo Lane,
Westminster, CA 92683 (US). STEWART, Hugh, D.;
Parker's House, 46 Regent Street, Cambridge CB2 1DP
(GB).

(74) Agent: GRIEBENOW, L., Joy; Electronic Data Systems
Corporation, 5400 Legacy Drive, M/S H3-3A-05, Plano, TX
75024 (US).

(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.

(54) Title: PRODUCT STRUCTURE MANAGEMENT
(57) Abstract

An object-oriented method of using a computer to
store a model of an imprecise structure of a product.
The product’s components are modeled as items and item
revisions. Each item and item revision has a view, which
may have view revisions. Views and view revisions
of an item or item revision are related to other with
occurrences, as are views and view revisions of different
items and item revisions. Context-specific view revisions
are modeled as appearances. A user’s request for a display
of a product is received and used to invoke configuration

INPUT

¥
COMPUTER

4

outputr {110

rules that determine which view revision(s) are part of the
product. The correct view revisions are assembled with
their occurrences and appearances.

USER 1/F L-16

PMD MODULES
ERM
EPM

DATABASE PSM L~120

127

PDM PLATFORM 14

applications under the PCT.
AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzeriand

CI Cote d'Ivoire
™M Camercon

CN China

cs Czechoslovakia
cz Czech Republic
DE Germany

DK Denmark

ES Spain

FI Finland

FR France

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Gabon

GB
GE
GN
GR

SEE88<EKFRE KZREwREE

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

ltaly

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

SRESHIAJ2RRHEEERIRRZEHES

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

WO 95/01610 PCT/US94/07170

PRODUCT STRUCTURE MANAGEMENT

TECHNICAL FIELD OF THE INVENTION

This invention relates to computer-aided product
design, and more particularly to a method for managing the

structure of a product during design and manufacturing
processes.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

BACKGROUND _OF THE INVENTION

"Product data management" (PDM) is a term used to
describe computer-based methods for managing product design
and manufacture. A example of a PDM system is the
Information Manager system, sold by Electronics Data
Systems. The design of the Information Manager system is
based on the objects it manipulates. A primary focus of
the system is on representing the enterprise in terms of
its objects and operations on them. Object classes are
derived by modeling enterprise operations such as design,
manufacture, administration, project management, and cost
control.

Computer-aided design and computer-aided manufacturing
(CAD/CAM) systems are another type of computer-based
manufacturing aid. They are generally used by design
engineers to model precise geometries of product designs
and revisions.

Both PDM and CAD/CAM are helpful in today’s product
design and manufacturing environment. However, existing
CAD/CAM systems and PDM systems do not effectively
reconcile the needs of different types of potential users
who are involved in product design and manufacture. A
first type of wuser, such as a design engineer, is
interested in precise configurations of a product, as well
as accounting for revision alternatives. A second type of
user, such as a manufacturing engineer, deals with
imprecise configurations in general terms that may include
different revisions of the same product. For example, a
manufacturing engineer might wish to refer to a basic
product whose components change according to certain dates
or serial numbers.

A need exists for a computer-based manufacturing aid
that will satisfy the needs of both types of users.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 ‘ PCT/US94/07170

10

15

20

25

30

35

SUMMARY OF THE INVENTION

A computer-based product structure management (PSM)
system stores data representing an imprecise structure of
a product and presents data representing a precise
structure of that product. The PSM stores a description of
each component of the product as an object of a view data
class. It also stores a description'of a revision to a -
component as an object of a view revision data class. It
links view objects and view revision objects with
occurrence references to each other and to view objects and
view revision objects of other components. During its run-
time operation, it receives input from a user specifying a
product to be presented. If the specification is
imprecise, it applies configuration rules to determine
which view revision of each component to use. For each
component of the product, it retrieves an object of the
view data class or an object of the view revision data
class, and assembles a set of view objects and view
revision objects, by using said occurrence references. The
result is a structure list of items of the product.

An advantage of the PSM system is that it provides the
ability to model a product’s structure with a bill of
materials, which represents the product beyond simply its
geometry.

The PSM system stores data representing imprecise
assemblies of a product, but can generate precise
assemblies. This permits the creation of a "virtual
assembly" from any combination of components or revisions
to components. All revisions are interchangeable for use
in a virtual assembly.

The ability to assemble more than one view for
different versions of the same product permits concurrent
development of different aspects of the same product. For
example, the engineering and manufacturing departments of
the same enterprise can concurrently contribute to product
development.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

The PSM system can incorporate the business rules of
an enterprise to govern product assembly. This makes the
PSM system better able to accommodate the needs of a
particular user.

The PSM system maintains histories of revisions to
individual components of the product. Thus, if a change is
made to a product, and later considered incorrect, a user
can restore a previous version.

The PSM system may be integrated with a CAD/CAM system
to offer geometric models of a product. Bills of materials
may be created by the PSM system and augmented with CAD/CAM
geometries. Conversely, geometries can be created in the
CAD/CAM modeling environment and used to create of bills of
materials for use by the PSM systemn.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a computer-based PDM system, that
incorporates a PSM system in accordance with the invention.

Figure 2 provides an overview of operation of the
PSM.

Figure 3 illustrates a display of a portion of a bill
of materials (BOM) for a particular product.

Figure 4 illustrates an expanded display of a bill of
materials.

Figure 5 illustrates how PSM models different views of
the same item revision.

Figure 6 illustrates the relationships between the
data classes, item, and item revision.

Figure 7 illustrates the relationship between the data
classes, view and view revision.

Figure 8 illustrates how a configuration object (CO)
is created to manage relationships between item revisions.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 illustrates a computer system for
implementing a product data manager (PDM) system 10, with
which a product structure manager (PSM) 12 is integrated.
PSM 12 is a type of PDM module, which deals with
maintaining product revision histories and with assembling
different configurations of a product from these revisions,
in accordance with the invention described herein. As
stated in the background section, an example of a PDM
system 10, without PSM 12, is the Information Manager, a
product of Electronic Data Systems.

PSM 12 is stored in memory of, and is executed by, a
conventional computer system 11, such as a VAX/VMS pr a
UNIX system. Typically, the computer system is part of a
distributed network of workstations having a number of
computers 11. In the example of this description, the
operating system includes a windows type sub-system, which
supports various graphical user interfaces, such as dialog
boxes and selection buttons. Computer 11 is in
communication with input and output devices, which for
purposes of this description are a keyboard, pointing
device, and graphics display.

PSM 11 may be integrated with other PDM modules 12a,
which implement various PDM tasks. An advantage of
implementing PSM 12 as a part of a more comprehensive set
of PDM modules 12a is that it can then make use of data
from other program modules and deliver data to them. For
example, an enterprise process manager (EPM) module might
model the process by which products are approved for
manufacture, with data from that module being provided to
PSM 12 to indicate that a particular configuration of a
product has a "approved" status. An enterprise resource
manager (ERM) module might model how resources such as
materials and employees are allocated.

As explained below, PSM 12 stores a model of at least
one product. The computer programming used to implement

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

PSM 12 is based on object-oriented design. Thus, data is
associated with classes, which have hierarchies, and
relationships. Classes specify what data they store and
what operations can be performed on them. Instances of
data classes are objects, and are derived by modeling the
operations of various application domains. It is

‘representations of these objecté that are manipulated by

the user interface 16.

The data model stored by PSM 12 1is comprised of
objects of the data classes, item and item revision, which
refer to the data classes, view and view revision. In
essence, an item and an item revision represent a component
of a product. As will be explained below, the data
classes, view and view revision, are attributes of the item
and item revision data classes and permit each component to
have more than one version.

PDM platform 14 provides a base upon which the rest of
the‘system 10 is built. It has several modules, including
a persistent object manager (POM). The POM provides the
following services: mapping object representation to
relational representation, messaging, and concurrent access
control. In general, platform layer 14 isolates PSM 12
from the operating system and other sub-systems of computer
11.

User interface layer 16 is comprised of |user
application programming built on the underlying
architecture. Because PSM 12 is designed for customization
via user interface 16, it complies with the programming
strategy often referred to as "toolkit" design.

Consistent with the "toolkit" approach, PSM 12
includes a stored set of "generic" functions. The Appendix
lists various functions that can be performed on the
objects of PSM 12. More specifically, these functions are
provided within PSM 12 so that user interface 16 can pass
messages to objects.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

Figure 2 provides an overview of operation of PSM 12,
together with an example of each step. 1In essence, PSM 12
is an interactive method of using a computer to model and

| manage the structure of a product and its revisions. It

should be understood that many of the steps involve
receiving data input from a user. For purposes of this
description, the user is assumed to be a human user, but in
some cases the input could be generated by other
programming. Thus, the "user" referred to herein could be
a human or a computer user.

As indicated in steps 21 and 22, product items and
revisions to them are represented and stored as views and
view revisions. In the example of Figure 2, Product 1
(which may also be an item) has three components. Each
item is represented by a view, e.g., V-1-1, V-1-2, and V-1-
3. One view, V-1-1, has three view revisions, VR-1-1-1,
VR-1-1-2, and VR-1-1-3., As explained below in connection
with Figure 4, views and view revisions are stored in terms
of identifiers, descriptions, and any attached objects,
such as drawings.

A feature of PSM 12 is the ability to store and to
operate on data that represents imprecise configurations of
the same product. Because any item of the product may have
one or more revisions, the stored model is imprecise. As
indicated in step 23, PSM 12 permits this imprecise product
description by relating view and view revision objects with
"occurrence" objects. In general, the occurrence
relationship permits a product structure to be stored
imprecisely by storing the information that one view uses
another, without requiring references to specific view
revisions. ‘

As indicated in steps 24 and 25, if a user desires to
view a precise product, he may either specify the product
precisely or request the product imprecisely with some sort
of description of what configuration is desired. An

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

example of the latter might be a request such as, "Show me
Product 1, as approved for production".

In step 26, the imprecise request results in the
application of configuration rules to select a view
revision so that the precise product can be assembled.

Regardless of whether the request is precise or
imprecise, in step 27, PSM 12 retrieves the correct view
revision. In the example, VR-1-1-2 is either part of a
precise specification or has been selected by configuration
rules.

In step 28, PSM 12 assembles a precise version of the
product. In the example, a precise assembly of Product 1
is assembled from VR-1-1-2, V-1-2, and V-1-3. The product
is displayed as a bill of materials, which lists components
in terms of item or item revision identifiers. As
explained below in connection with Figure 4, assembly may
require PSM 12 to create "appearance" objects, which are
paths to views that are context-specific.

The ability of PSM 12 to manage imprecise assemblies
provides the user with the ability to view more than one
version of the same product. Thus, step 24 could be
repeated with a different request, resulting in application
of different configuration rules, selection of a different
view revision, and a different view of the product.

Figure 3 is an example of display generated by PSM 12,
which presents a portion of a BOM list 30 for a particular

product. Each item on a BOM may be a fundamental
component, i.e., a piece part, or an intermediate sub-
assembly. A product is also an item. In Figure 3, a

bicycle has a number of items as components. As a better
example, a carburetor can be a product in the sense that it
can be sold as a unit, but could also be an item if sold as
a component of a car.

A user can interact with the BOM 30 by selecting items
with a pointing device. The user can control the level of
abstraction displayed, such as by expanding or collapsing

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

10

selected items to show or hide additional data associated
with each item. Thus, although the BOM 30 represents a
precise product structure, any of the itéms on the BOM 30
could be expanded to show its associated view or view
revisions.

Figure 4 illustrates a product structure dialog 40,
generated by PSM 12 that is an expansion of a BOM 30. The
various columns of data available in displays such as those
of Figure 3 and 4 are a matter of user choice and
appropriate formatting by PSM 12.

Each item of dialog 40 is shown with whatever
additional data is associated with it, i.e., an identifier
of any item revisions, an identifier of its view, a view
description, an occurrence description, whether it is an
appearance, an appearance description, and its status. In
general, this additional data may be entered by any user
during any stage of product design. Thus, dialog 40 is a
data input means as well as a means of presenting a final
product structure.

In the example of Figure 4, an item, a chassis
assembly, identified as EX-125, has two items, a front axle
assembly and a rear axle assembly, which is a revision of
the front axle assembly, identified as AX-025 and AX-025-1,
respectively. Each axle assembly has two wheels, and all
four wheels are the same item, WH-56-1, a tube-less
version. However, in the context of the entire chassis,
each wheel can be described in terms of whether it is left
or right or front or rear. Thus, with respect to an axle
assembly, a wheel has a direct parent-child relationship
(an occurrence). In other words, the axle assembly has two
occurrences of a wheel. The chassis has two occurrences of
an axle assembly. However, with respect to the chassis,
each wheel has a context-specific relationship, i.e., left
front etc. (an appearance). Appearances permit PSM 12 to
determine a path of views and view revisions when a produce
has multiple components of the same view or view revision

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

11

and when these components have an indirect relationship to
other items.

Figure 5 illustrates how PSM 12 stores data entered
via dialog 40 to model an imprecise structure and to
assemble a precise one. The data classes used for this
model are described in connection with Figures 6 - 8.

More specifically, Figure 5 represents a model of an
item revision having more than one view. 1In this example,
a specified item revision has two view revisions, and the
items within each view revision are linked by occurrences
to other view revisions. Instead of an item revision, the
specified item revision could be an item having no
revisions. In this sense, items and item revisions are
used herein interchangeably.

Using concepts from graph theory, view and view
revisions are modeled as nodes, occurrences as arcs, and
appearances as paths. Data is attached to each of these
objects. Because structure descriptions, i.e., views and
view revisions, are used as nodes instead of item and item
revisions, different views of the same item or item
revision méy be attached to that item or item revision.
This permits multiple views of an item.

In the example of Figure 5, the item has two possible
structures. One structure has four components, VR-2-1, VR-
2-2-1, VR-2-3-1, and VR-2-4. The other structure has six
components, VR-2-1, VR~2-2-2, VR-2-3-2, VR-2-4, VR-2-5, and
VR-2-6. Several view revisions are common to either
structure.

A;though Figure 5 is a graph of two structures in two
dimensions, the graph can be conceptualized as a three
dimensional representation of imprecise structures. If the
user’s request is imprecise, the mechanism for determining
which view revision of an object should be retrieved is by
application of configuration rules. For example, a user
may specify that he wants a display of the latest version

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

12

of "Product A" having the status "Approved for manufacture
by X".

Starting with any node on any plane, configuration
rules permit PSM 12 to determine a precise assembly, by
traveling up and down for different view revisions of an
item, and on a plane for occurrences. A view revision of
an item will cause a change of planes, and the correct view
revision must be located to determine a precise structure.

It is possible that a user might request a product to
be displayed that 1is entirely comprised of precise
references. In that case, PSM 12 need only retrieve those
objects for assembly without relying on configuration
rules.

Figure 6 illustrates the relationship between the data
classes, item and item revision. The objects of these data
classes represent a product’s components, thus
corresponding to the items of a BOM. An item can be a
component of another item. Some objects are attached
directly to an item, whereas others are attached to an item
revision.

An item revision is distinguishable from other item
revisions, but satisfies the same form, fit and function
requirements as all other revisions of the same item. Item
revisions represent the iterative attempts by design
engineers to satisfy the design goals of the product. For
example, various revisions may reflect attempts to improve
costs or eliminate bugs. 1In general, an item revision is
considered interchangeable with other revisions of the same
itemn. In the example of Figure 6, item AX-025 has two
revisions, AX-025-A and AX-025-B.

An item or an item revision may have attributes, which
include its specifications. Some attributes of an item
specify it, while others are derived from specification
attributes. As in any object-oriented system, attributes
may themselves be objects. 1In fact, most attributes of an

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

13

item are objects which can themselves be manipulated by
application programming.

Figure 7 illustrates the relationship between the data
classes, view and item. A view is an attribute of an item
or item revision that is used to describe its structure.
Each view knows what item it is a view of. View objects
permit a user to specify an item that he desires to be
displayed on a bill of materials. A view represents part
of an imprecise structure in the sense that any view can
have a number of view revisions.

Functions associated with views are set out in the
Appendix. Attributes of the view class include an item
folder (optional parent), a configuration object (explained
below in connection with Figure 11), and a view type. View
type is a data class whose objects represent enterprise
specific classifications of views. For example, a view
might be designated as a "design" view versus an "assembly"
view. This classification can be used to differentiate
between multiple views of the same product.

Figure 7 also illustrates the relationships between
the data classes, view and view revision. A view can have
one or more view revisions. Views maintain their own
revision histories by making each view the "anchor" of its
revisions. These view revisions are a data class, view-
revision. In general, a view revision is a precise
representation that can be associated with a BOM output.
The user can specify a view revision, such that BOM 30 or
dialog 40 will display the corresponding item.

Figure 7 further illustrates the relationship type,
occurrence. A view or a view revision may have occurrences
that refer to other view objects or view revision objects.
In general, an occurrence is a relationship between two
views that permits an assembly of components to be modeled.
An occurrence is a parent-child relationship, used to store
data about a referenced view in the context of the

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

14

referencing view. View revisions may have occurrences, or
reference occurrences or appearances.

The following is an example of how occurrence
relationships are modeled:

{view revision } =-> { view, item } .

When a view revision is entered, PSM 12 creates an
item revision. Then, when a product structure is
requested, it can be assembled from a user’s reference to
the associated item. Thus, view revisions are attributes
of their item revision. There may be several view
revisions per item revision.

The number of occurrences in a chain of items or item
revision determines the depth of an assembly of those
items. For example, the following item has a depth of four
occurrences:

A->B; B->C; C->D; D->E .

The child of an occurrence may be a view (imprecise)
or a view revision (precise). When assembly of an item is
requested, if a precise specification is made, the
associated view revision is retrieved. If an imprecise
specification is made, the correct view revision is
determined by applying configuration rules and then
retrieved.

Figure 7 further illustrates the relationship of the
data class, appearance, to occurrence and view revision
data classes. Appearances provide PSM 12 with a means for
identifying a context-specific occurrence. An appearance
is an attribute of a view revision. Its attributes are a
path and a parent.

Figure 8 illustrates how a configuration object (CO)
is created when a view of an item is created, to manage the
relationship between its revisions. The CO maintains two
separate revision histories: one for working revisions and
one for issued revisions. Working revisions are those that
can be edited. Each time the user saves a working
revision, he may choose whether to write over previous

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

15

revisions. It the previous revision is not overwritten the
latest revision is appended to the revision history.
Issued revisions are those that may no lbnger be altered.
Each revision history has a CO Root as its anchor. A
history appears in only one CO and contains zero or more
revisions.

When revisions are added to the CO, they are added to
a history depending on whether they are working or issued
revisions. Also, if a working revision becomes issued, a
duplicate reference to that view revision object can be
placed in the issue history object. The duplicate is kept
in the working history until a subsequent working version
is approved.

Figure 8 also illustrates how PSM 12 provides access
to revisions. Revisions are stored as a "chain" with a
pointer always pointing to the next revision in the chain.

Referring again to Figure 2, run-time operation of PSM
12 can begin with a user’s imprecise request for a product.
As an example, the user might request "product 2 as
approved by management". As another example, a user might
request "the last revision I worked on'.

PSM 12 retrieves the correct view revision by applying
configuration rules to determine which revision satisfies
the user’s request. More specifically, PSM 12 applies
configuration rules to items to determine which item
revision is in effect. Then, PSM 12 via the €O of that
item revision, determines which view revision to retrieve.

As stated above in connection with Figure 1, PSM 12
serves a user interface layer 16, such that the user does
not directly interact with PsSM 12. However, PSM 12
includes a set of functions that serve interface layer 16.
The Appendix sets out examples of such functions, including
functions for dealing with configuration rules. From data
provided as arguments to these functions, PSM 12 determines
which items to consider and which revisions to return.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

16

A precise configuration of a product or item may also
be initiated by a request for a specific view revision.
The view revision functions set out in the Appendix can be
used to operate on specific view revisions.

For assembling a structure, PSM 12 first determines
which occurrences of a view or view revision are in effect.
Then, it finds the children of the occurrences, and applies
configuration rules to decide which of that view’s
revisions should be 1loaded. The children of the
occurrences of each of these view revisions are then found,
a configuration rule applied, and so on, until the depth of
the specified item is reached.

A feature of PSM 12 is that revisions may be assigned
a status. Status is an object that defines the status type
and approval date of a revision. 1In addition, revisions
may be assigned effectivity data. In general, status is
associated with approval for manufacture, and effectivity
is associated with when to manufacture. For example, a
revision might have the status "approved for production".
This permits the user to access and work on a prévious
revision that has a specified status. Effectivity is
defined in terms of a revision being effective between
specified dates, before a specified date, after a specified
date, between specified serial numbers, before a specified
serial number, or after a specified serial number. The
status object has the attribute status type, which are the
particular status designations used by an enterprise, i.e.,
"released", "approved for manufacture", etc. The status
and effectivity designations might result in a
configuration which, in general, may not match a precise
assembly created by a design engineer.

Another feature of PSM 12 is that users may work on
"semi-precise" revisions. A substitute 1list is a data
class, whose objects provide a means to specify a list of
item revisions that should be substituted in place of other
item revisions as determined by a configuration rule. View

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

17

revisions may be placed on this list. The Appendix sets
out functions for implementing the substitute list.

A "context" object permits the user to open multiple
windows. Each window can have its own configuration rules.
Functions associated with this object are set out in the
Appendix.

A user may request appearances of different view
revisions to be equivalent in different assemblies of the
same product or in different products. To this end, an
"equivalence" data class permits nodes that appear in
separate assemblies to be declared equivalent. Functions
associated with equivalence objects are set out in the
Appendix.

Other Embodiments

Although the invention has been described with
reference to specific embodiments, this description is not
meant to be construed in a 1limiting sense. Various
modifications of the disclosed embodiments, as well as
alternative embodiments, will be apparent to persons
skilled in the art. It is, therefore, contemplated that
the appended claims will cover all modifications that fall
within the true scope of the invention.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

18
Module functions
initialize(PS)
Name: PS_init_module
Synopsis: extern int PS_init_module(
void

)

Description: Initializes the PS module, creating an initial current context with

default configuration rule, status, effectivity, substitute list and
substitution rule.

The user must already have logged into POM. This function must be
called before any other PS functions can be called.

Arguments:

none

Failures:

PS_pom_not_started POM not initialized

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

19

Name: PS_exit_module

Synopsis: extern int PS_exit_module(
void
);
Description: Called on exiting the PS module.

Arguments:

none

Failures;

PS_module_not_initialized PS not initialized

SUBSTITUTE SHEET (RULE 26)

PCT/US94/07170

WO 95/01610
20
PSObject functions
defineClientData(PSObject)
Name: PS_define_client_data
Synopsis: extern int PS_define_client_data(
int ps_class, [* <I> ¥
char * attr_name, [* <I> ¥
tag_t ref_class, [* <I> ¥
int property , [* <I> %/
);
Description: Adds an extra attribute to a PS class. This extra attribute must be a
reference to a POM object. The type of the reference is the specified

class.

The attribute may have its property set to PS_copyable, in which case
this attribute will be copied from one revision of the object to another.
For BOMViewRevision, if property PS_freezable is set, when a
BOMViewRevision is issued, the associated client data will be frozen
too.

Client data attributes may be added to the classes PS_bom_view,
PS_bom_view_revision, PS_occurrence, PS_appearance and
PS_view_type. Property PS_copyable is only applicable to
PS_bom_view_revision and PS_occurrence. Property PS_freezable is
only applicable to PS_bom_view_revision.

Arguments:
ps_class token identifying the class of PS object to
which this attribute is to be attached
attr_name name of the attribute
ref_class identifier of POM class this attribute
references
property see description above
Failures:

no such class

class already has attribute of this name
attribute name too long

invalid property

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170
21

askClientData(PSObject)

PS_ask_client_data

extern int PS_ask_client_data(

tag_t instance, [* <I> ¥
char * attr_name, [* <I> %
tag t* client_data [* <O> */

)s

Returns the client data attributed to the supplied instance for the
given attribute name. The client data will be a tag of a POM object.

Note this function is intended for enquiring client data of all PS
classes except for occurrence. As occurrences are referenced using a
parent,occurrence pairing a separate interface function
PS_ask_occurrence_client_data is provided to enquire client data of an
occurrence.

Arguments:

instance tag of an instance
attr_name name of the attribute to be retrieved
client_data tag of a POM object

Failures;

no such instance
no such attribute name
no client data stored for this attribute

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

22

PS_set_client_data

PCT/US94/07170

setClientData(PSObject)

extern int PS_set_client_data(

tag_t instance, [* <I> ¥/
char * attr_name, ¥ <I> ¥
tag t client_data [* <I> */

);

Sets the client data attributed to the supplied instance for the given
attribute name. The client data must be a tag of a POM object.

Note this function is intended for setting client data of all PS classes
except for occurrence. As occurrences are referenced using a
parent,occurrence pairing a separate interface function
PS_ask_occurrence_client_data is provided to set client data of an

occurrence.

instance

attr_name
client_data

Failures;

tag of an instance
name of the attribute to be set
tag of a POM object

no such instance
no such attribute name
no such POM object

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

23
View Type functions
create(ViewType)

Name: PS_create_view_type
Synopsis: extern int PS_create_view_type(

char * type_name, [* <I> ¥/

tag_t* view_type [* <O> ¥

)

Description: Adds a new classification of views to the list of BOM View

classifications valid for this site. A classification is a text string e.g.
“DESIGN”, “Assembly”, etc.

Can only be used by the system administrator.

Arguments;

type_name name of the new view type
view_type returns the tag of the new view type
Failures:

PS_duplicate duplicate type name
PS_invalid_string type name too long
PS_invalid_string null/empty string not allowed

user not SA

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

24
delete(ViewType)
PS_delete_view_type
extern int PS_delete_view_type(
tag_t view_type [* <I> ¥/

)s

Removes the specified view classification from the list of those valid
for this site.

Can only be used by the system administrator.

Arguments:

view_type classification to be removed from site list

Failures:

no such view type
user not SA

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

25
extent(ViewType)
Name: PS_extent_view_type
Synopsis: extern int PS_extent_view_type(
int * n_types, [* <O> %
tag t** view_types /* <OF> ¥/
)
Description: Returns the list of BOMView classifications valid for this site.
Arguments:
n_types number of view types on list
view_types returned array of tags of view types
Failures:

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

26
find (ViewType)
PS_find_view_type
extern int PS_find_view_type(
char * type_name, [* <I> %/
tag_t* view_type [* <O> */

)
Returns the tag of the view classification with the given name.

Arguments:

type_name name of the view type
view_type returns the tag of the view type

Failures:

no such view type

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

27

ask(ViewType)

PS_ask_view_type_name

extern int PS_ask_view_type_name(‘
tag t view_type, [* <I> ¥/
char ** type_name [* <OF> */

)
Returns the text string associated with a view classification.

Arguments:
view_type tag of the view type
type_name returns the name of the view type

Failures:

PS_invalid_tag no such view type

PS_instance_not_ini- instance not initialized
tialized

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

28
BOM YView functions
create(BOMView)
Name: PS create_bom_view
Synopsis: extern int PS_create_bom_view(
tag_t view_type, [* <I> ¥/
char * view_name, [* <I> ¥
char * view_desc, [* <I> ¥
tag t parent_item_folder, [* <I> %
tag_t target_folder, [*<I> %
tag_ t* bom_view [* <0> ¥
)
Description: Creates a new BOMView. No BOMViewRevisions exist yet.
The BOMView may be attached to a specific Item(Folder) or it may
be left floating.
Arguments:
view_type site—specific identifier for the type of view,
e.g. DESIGN, Assembly
view_name
view_desc

parent_item_folder sets the parent ItemFolder of the
BOMView. If null the BOMView has no
parent and is left “floating”.

target_folder the new BOMView is placed in this folder.
If null the BOMView is placed in the
parent ItemFolder

bom_view tag of new BOMView
Failures:
PS_invalid_view_type invalid view type

view name too long
description too long

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

29

delete(BOMView)

PS_delete_bom_view

extern int PS_delete_bom_view(
tag t bom_view

)

Deletes a BOMView, and all its BOMViewRevisions, provided none
of them is referenced.

Arguments:
bom_view tag of the view to be deleted
PS_invalid_bom_view no such view
PS_inst_referenced a revision of the view is

referenced

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

30
listWorkingBOMViewRevisions(BOMView)
Name: PS_list_working_bvrs
Synopsis: extern int PS_list_working_bvrs(
tag t borm_view, ¥ <I> ¥
int * n_revisions, /* <O0> ¥
tag t** bvrs /* <OF> %/
)
Description: Lists all working revisions of the given BOMView.
Arguments:
bom_view tag of the BOMView
n_revisions number of revisions returned
bvrs array of tags of BOMViewRevisions
Eailures:
PS_invalid_bom_view no such view

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

31

listIssuedBOMViewRevisions(BOMView)

PS_list_issued_bvrs

extern int PS_list_issued_bvrs(

tag_t bom_view, [* <I> ¥
int * n_revisions, /* <0> ¥
tag t** bvrs /* <OF> ¥/

);

Lists all issued revisions of the given BOMView.

Arguments:

bom_view tag of the BOM View

n_revisions number of revisions returned

bvrs array of tags of BOMViewRevisions
Failures:

PS_invalid_bom_view no such view

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

32

askConfiguredRevision(BOMView)

PS_ask_configured_revision

extern int PS_ask_configured_revision(
tag_t bom_view, [*<I> ¥
tag t* configured_bvr [* <O> ¥
)

Given the tag of a BOMView, this function returns the tag of the
revision of this view selected by the current configuration rule.

Arguments:

bom_view tag of the BOMView

configured_bvr tag of the BOM ViewRevision (a revision of
bom_view) selected by the current
configuration rule

ailu

PS_invalid_bom_view no such view

PS_no_configured_revision unable to configure revision

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

33
askitemFolder(BOMView)
Name: PS_ask_item_folder_of_bom_view
Synopsis: extern int PS_ask_item_folder_of bom_view(
tag_t bom_view, /* <I> %/
tag t* item_folder /* <O> %
)
Description: Returns the tag of the item folder of which the BOMView is an
attribute.
Arguments:
bom_view tag of the view
item_folder tag of the item folder of which the view is
an attribute
Failures:
PS_invalid_bom_view no such view

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

34

setltemFolder(BOMView)

PS_set_item_folder_of_bom_view

extern int PS_set_item_folder_of_bom_view(
tag_t bom_view, [* <I> */
tag_t item_folder [* <I> */
)

Records the item folder of which the BOMView is an attribute.

Functionality not currently implemented:
This function may only be used if the item folder attribute of this
BOMView is currently null.

Arguments:
bom_view tag of the view
item_folder tag of the item folder of which the view is to
be an attribute
Failures:
PS_invalid_bom_view no such view

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

35
asklype(BOMView)
PS_ask_bom_view_type
extern int PS_ask_bom_view_type(
tag_t bom_view, [* <I> ¥/
tag t* view_type /* <OF> ¥/

)

Enquire the value of the site—specific type of a BOMView, e.g.
DESIGN, ASSEMBLY, BUCKET etc.

Arguments:

bom_view tag of BOMView

view_type site—specific identifier for the type of view,
e.g. DESIGN, ASSEMBLY, BUCKET

Failures:

PS_invalid_bom_view no such view

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

36
setType(BOMView)
Name: PS_set_bom_view_type
Synopsis: extern int PS_set_bom_view_type(
tag t bom_view, [* <I> */
tag t view_type [* <I> ¥
)
Description: Set the value of the site—specific type of a BOMView, e.g. DESIGN,
ASSEMBLY, BUCKET etc.
Arguments:
bom_view tag of BOMView
view_type site—specific identifier for the type of view,
e.g. DESIGN, ASSEMBLY, BUCKET
Failures:
PS_invalid_bom_view no such view
PS_invalid_view_type invalid view type

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

PCT/US94/07170

37
BOMYViewRevision functions
create(BOMViewRevision)
Name: PS_create_bvr
Synopsis: extern int PS_create_bvr(
tag t bom_view, [* <I> */
char * revision_name, [* <I> */
char * revision_desc, [* <I> */
tag t parent_irf, _ [* <I> %/
tag t target_folder, [* <I> %
tag t* bwr /* <0> ¥/
);
Description: Creates an initial working revision of this BOM View.
Arguments:
bom_view tag of the view for which the first revision is

revision_name
revision_desc
parent_irf

target_folder

bvr

Failures:

PS_invalid_bom_view

to be created

sets the parent ItemRevisionFolder of the
BOMYViewRevision. If null the

BOM ViewRevision has no parent and is
left “floating”.

the new BOM ViewRevision is placed in this
folder.

If null the BOMViewRevision is placed in
the parent ItemRevisionFolder

returns tag of the revision created

no such view

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

38
revise(BOMYViewRevision)
Name: PS_revise_bvr
Synopsis: extern int PS_revise_bvr(.
tag_t source_bvr, [* <I> */
tag_t parent_ivf, [* <I> */
tag t* new_bvr [* <O> */ .
); ‘
Description: Produces a new working BOM ViewRevision based on the source

BOMViewRevision. This new revision is appended to the working
history of the same BOMView as the source BOMViewRevision. The
source BOMViewRevision may be a working or an issued revision.

Failures:
Arguments:
source_bvr BOMYViewRevision to copy from
parent_ivf tag of the item revision folder of which this
new BOMViewRevision is to be an
attribute. If null the parent ivf of the source
revision is used
new_bvr tag of new BOMViewRevision
Faijlures:
PS_invalid_bvr no such source bvr

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

39
copy(BOMYViewRevision)
PS_copy_bvr
extern int PS_copy_bvr(
tag_t source_bvr, [* <I> %
tag t bom_view, [* <I> */
tag_t parent_ivf, [* <I> */
tag t* new_bwr [* <O> ¥/

);

Produces a new working BOMViewRevision based on the source
BOM ViewRevision. This new revision is appended to the working
history of a different BOMView from the root BOMView of the
source BOM ViewRevision. The source BOM ViewRevision may be a
working or an issued revision.

Arguments:

source_bvr BOMYViewRevision to copy from

bom_view target BOMView

parent_ivf tag of the item revision folder of which this
new BOMViewRevision is to be an
attribute

new_bvr tag of new BOMViewRevision

Failures:

PS_invalid_bvr no such view revision

PS_invalid_bom_view no such view

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name;

Synopsis:

Description:

PCT/US94/07170

40

delete(BOMViewRevision)
PS_delete_bvr
extern int PS_delete_bvr(

tag_t bvr [* <I> %/
)5

Deletes the specified BOMViewRevision, provided it is not
referenced.

If it is issued it may only be deleted by SA.

Arguments:

bvr tag of the revision to be deleted

Failures:

no such revision
revision is issued (if not SA)

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

41

issue(BOMViewRevision)
PS_issue_bvr
extern int PS_issue_bvr(
tag t bvr [* <I> %/

);

Freezes the given working revision and appends a reference to it to
the issue history. :

Arguments:
bvr tag of the revision to be issued
ajlu
PS_invalid_bvr . no such revision
revision already issued
PS_inst_modifiable cannot issue if loaded for modify
PS_child_not_issued cannot issue a bvr until its

children are issued

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

42

remove(BOMViewRevision)

PS_remove_bvr

extern int PS_remove_bvr(
tagt bvr [* <I> %
)

When a BOMViewRevision is issued to the issue history, a reference
to that BOMViewRevision remains on the working history from which
it came. This reference can be removed using this function.

Arguments:

bvr tag of the BOM ViewRevision referenced
Failures:

PS_invalid_bvr no such revision
PS_bvr_not_issued revision is not issued
PS_not_on_working_history revision not referenced by

working history

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

43

askBOMYView(BOMViewRevision)
PS_ask_bom_view_of_bvr
extern int PS_ask_bom_view_of_bvr(
tag t bvr, [* <I> #

tag t* bom_view /* <O0> %/
)s

Returns the tag of the BOM View of which this is a revision.

Arguments:

bvr tag of a BOMViewRevision
bom_view returns tag of the root BOMView
Faijlures: \

PS_invalid_bvr no such BOMViewRevision

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

44

askItemRevisionFolder(BOMViewRevision)

PS_ask_ivf_of_bvr

extern int PS_ask_ivf_of_bvr(
tag_t bvr, ' [* <I> *
tag_t* vl /* <0> ¥/
)

Returns the tag of the item revision folder of which this
BOMYViewRevision is an attribute.

Arguments:
bvr tag of the BOMViewRevision
ivf tag of item revision folder of which this
BOMYViewRevision is an attribute
Eaijlures:
PS_invalid_bvr no such BOMViewRevision

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

45

setItemRevisionFolder(BOMYViewRevision)

PS_set_ivf_of_bvr

extern int PS_set_ivl_of_bvr(|
tag_t bvr, [* <I> */
tag t ivf : [* <I> ¥/
);

Sets the tag of the item revision folder of which this
BOMViewRevision is an attribute.

This functionality not currently implemented:

Only works if this BOMViewRevision was created with parent item
revision folder null when its parent BOMView had parent item folder
null. The parent item folder attribute of the parent BOM View must
since have been set, and the item revision folder specified here must
be a revision of that item folder.

bvr tag of the BOM ViewRevision

ivf tag of item revision folder of which this
BOMViewRevision is to be an attribute

Failures:

PS_invalid_bvr no such BOMViewRevision

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name;

Synopsis:

Description:

PCT/US94/07170

46

ask_is_issued(BOMViewRevision)

PS_ask_is_issued_bvr

extern int PS_ask_is_issued_bvr(
tag_t bvr, [* <I> ¥/
logical * is_issued [* <O> ¥/

)

Returns true if the BOMViewRevision is issued, i.e. if it is referenced
from the issue history.

Arguments:

bvr tag of the revision

is_issued returns true if the revision is issued
Failures:

PS_invalid_bvr no such BOMViewRevision

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

47

listOccurrences(BOMViewRevision)

PS_list_occurrences_of bvr

extern int PS_list_occurrences_of_bvr(

tag_t bvr, [* <I> */
int * n_occurrences, [* <O>¥
tag_t** occurrences [* <OF> */

)

List all the occurrences of the given BOMViewRevision.

Arguments:
bvr tag of the parent BOMViewRevision
n_occurrences number of occurrences returned
occurrences returned array of the tags of the
occurrences
Failures;
PS_invalid_bvr no such revision

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

48

listAppearances (BOMViewRevision)

Name: PS_list_appearances_of_bvr

Synopsis: extern int PS_list_appearances_of_bvr(
tag_t bvr, [* <I> ¥
int * n_appearances, [* <O>%
tag_t** appearances [* <OF> */
)

Description: List all the appearances of the given BOMViewRevision.

Arguments:
bvr tag of the parent BOMViewRevision

n_appearances number of appearances returned

appearances returned array of the tags of the
appearances

Fajlures:

PS_invalid_bvr no such revision

SUBSTITUTE SHEET (RULE 26)

PCT/US94/07170

WO 95/01610
49
listStatus(BOMViewRevision)
Name: PS_list_status_of_bvr
Synopsis: extern int PS_list_status_of_bvr(
tag t bvr, [*<I> ¥
int * n_statuses, [* <0> %
tag t** statuses [* <OF> ¥/
); ~
Description: Lists all the status objects attributed to the given BOMViewRevision.
Arguments:
bvr tag of the BOMViewRevision whose
statuses are to be listed
n_statuses number of statuses found
statuses returns an array of tags of statuses
Failures:
no such BOMViewRevision

SUBSTITUTE SHEET (RULE 26)

PCT/US94/07170

WO 95/01610
50
Occurrence functions |
create(Occurrence)
Name: PS_create_occurrences
Synopsis: extern int PS_create_occurrences(
tag_t parent, [* <I> */
tag_t child, [* <I> */
int n_occurrences [* <I> %/
tag_t** occurrences [* <OF> */
)
Description: Creates a number of occurrences linking the specified parent and
child BOMViewRevisions.
Arguments:
parent tag of the parent BOMViewRevision
child tag of the child BOMView
n_occurrences number of occurrences to be created
occurrences returns an array of the tags of the
occurrences created
Failures;
PS_invalid_bvr no such parent
PS_invalid_child no such child
PS_invalid_bvr cannot link revisions of same
view
PS_invalid_value n_occurrences < 1

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

51
delete(Occurrence)
Name; PS_delete_occurrence
Synopsis: extern int PS_delete_occurrence(
tag t parent, [* <I> %/
tag_t occurrence /* <I> %/
)
Description: Deletes the occurrence from its parent.
Parent must be loaded for modify.
Arguments:
parent tag of the occurrence’s parent
BOM ViewRevision
occurrence tag of the occurrence
Failures:
PS_invalid_bvr no such parent
BOMYViewRevision
PS_invalid_occurrence no such occurrence in this parent
PS_inst_locked parent is locked

Implementation Note: This is actually deleting an instance of occurrence data. If that is the last
occurrence data object of that occurrence delete the occurrence too.

SUBSTITUTE SHEET (RULE 26)

PCT/US94/07170

WO 95/01610
52
ask_child(Occurrence)
Name: PS_ask_occurrence_child
Synopsis: extern int PS_ask_occurrence_child(
tag_t parent, [* <I> */
tag t occurrence, [* <I> %
tag_t* child [* <O> ¥/
)
Description: Enquires the child BOM ViewRevision of an occurrence.
Arguments:
parent tag of the occurrence’s parent
BOMViewRevision
occurrence tag of the occurrence
child returns tag of child BOMView
Failures:
PS_invalid_bvr no such parent
BOMViewRevision
PS_invalid_occurrence no such occurrence in this parent

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

53
set_child(Occurrence)
Name: PS_set_occurrence_child
Synopsis: extern int PS_set_occurrence_child(
tag_t parent, /¥ <I> %
tag t occurrence, /¥ <I> */
tag_t child /¥ <I> %
);
Description: Sets the child BOM ViewRevision of an occurrence.
Parent must be loaded for modify. Child must be loaded for read or
modify.
Arguments:
parent tag of the occurrence’s parent
BOMViewRevision
occurrence tag of the occurrence
child tag of child BOMView
Failures:
PS_invalid_child no such child
PS_inst_locked parent locked

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

54
ask_seq_no(Occurrence)
Name: PS_ask_seq no
Synopsis: extern int PS_ask_seq_no('
tag t parent, /* <I> ¥/
tag t occurrence, [* <I> %
int * seq_no ' [* <O> */
);
Description: Enquires the sequence number of an occurrence, which determines
the ordering of occurrences within their parent BOM ViewRevision.
Arguments:
parent tag of the occurrence’s parent
BOMYViewRevision
occurrence tag of the occurrence
seq_no returns sequence number within parent
Failures:
PS_invalid_bvr no such parent
PS_invalid_occurrence no such occurrence in this parent

SUBSTITUTE SHEET (RULE 26)

PCT/US94/07170

WO 95/01610
55
set_seq_no(Occurrence)
Name: PS_set_seq_no
Synopsis: extern int PS_set_seq_no(
tag_t parent, ' [* <I> ¥/
tag_t occurrence, [* <I> */
int seq_no [* <I> %/
)
Description: Sets the sequence number of an occurrence, which determines the

ordering of occurrences within their parent BOM ViewRevision.

Arguments;

parent tag of the occurrence’s parent
BOMViewRevision

occurrence tag of the occurrence

seq_no sequence number within parent

Failures:

PS_invalid_bvr no such parent

PS_invalid_occurrence no such occurrence in this parent

SUBSTITUTE SHEET (RULE 26)

PCT/US94/07170

WO 95/01610
56
ask_transform(QOccurrence)
Name: PS_ask_transform
Synepsis: extern int PS_ask_transform(
tag_t parent, [*<I>*
tag t occurrence, [* <I>*
double ** transform /* <OF> ¥/
);
Description: Returns the transform of the given occurrence.
Arguments:
parent tag of the occurrence’s parent
BOMYViewRevision
occurrence tag of the occurrence
transform returns a pointer to some SM allocated
space holding a 4x4 transform
Failures:
PS_invalid_bvr no such parent
PS_invalid_occurrence no such occurrence in this parent
PS_no_transform no transform set

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

57
set_transform(QOccurrence)
Name: PS_set_transform
Synopsis: extern int PS_set_transform(
tag_t parent, [* <I> ¥
tag_t occurrence, [* <I> %
double * transform [* <I> */
)
Description: Sets a transform for the given occurrence.
Arguments;
parent tag of the occurrence’s parent
BOMViewRevision
occurrence tag of the occurrence
transform a pointer to 16 doubles — a 4x4 transform
with no perspective and unit scale
Failures:
PS_invalid_bvr no such parent
PS_invalid_occurrence no such occurrence in this parent

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

58

askClientData(Occurrence)

PS_ask_occurrence_client_data

extern int PS_ask_occurrence_client_data(

tag_t parent, [* <I> %/
tag t occurrence, [* <I> ¥/
char * attr_name, [* <I> %/

tag t* client_data /* <O> ¥
); :

Returns the client data attributed to the supplied occurrence for the
given attribute name. The client data will be a tag of a POM object.

Arguments:
parent tag of the occurrence’s parent
BOM ViewRevision
occurrence tag of the occurrence
attr_name name of the attribute to be retrieved
client_data tag of a POM object
Failures:

no such BOMViewRevision

no such occurrence in parent
BOMViewRevision

no such attribute name
no client data stored for this attribute

SUBSTITUTE SHEET (RULE 26)

PCT/US94/07170

WO 95/01610
59
setClientData(Occurrence)
Name: PS_set_occurrence_client_data
Synopsis: extern int PS_set_occurrence_client_data(
tag_t parent, [*<I> %
tag_t occurrence, [* <I> */
char * attr_name, [* <I> ¥
tag_t client_data /* <I> ¥
) -
Description: Sets the client data attributed to the supplied occurrence for the given

attribute name. The client data must be a tag of a POM object.

Arguments:
parent tag of the occurrence’s parent
BOMViewRevision
occurrence tag of the occurrence
attr_name name of the attribute to be set
client_data tag of a POM object
Failures:

no such parent BOMViewRevision
no such occurrence in parent

no such attribute name

no such POM object

SUBSTITUTE SHEET (RULE 26)

PCT/US94/07170

WO 95/01610
60
Appearance functions
create(Appearance)
Name: PS_create_appearance
Synopsis: extern int PS_create_appearance(
tag_t bvr, [* <I> ¥/
int path_length, [* <I> %
tag_t* path, _ [* <I> %/
tag t* appearance /* <O> %/
);
Description: Creates a new appearance. The appearance contains a path of

occurrences starting with an occurrence of the BOMViewRevision
which owns the appearance.

Note that the appearance stores a path of BOMViewRevision
independent occurrence ‘threads’, so it is not necessary to qualify the
occurrences on the path with parent BVRs.

Note that the parent BOMViewRevision is not itself modified by the
addition of appearance data. This allows appearances to be created in
the context of frozen issued revisions.

Arguments:
bvr tag of the revision in whose context the
appearance is being created
path_length number of occurrences in the path
path array of tags of occurrences forming a path
through the structure below bvr
appearance returns tag of the newly created appearance
Failures:

no such revision

revision is not loaded

invalid path

appearance of this path already exists

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name;

Synopsis:

Description:

PCT/US94/07170

61

delete(Appearance)
PS_delete_appearance
extern int PS_delete_appearance(
tag t appearance, [* <I> ¥
tag_t bvr [* <I> %

);

Removes the specified appearance from the context of a given
BOMViewRevision. Only if this is the only place that this appearance
is referenced will the appearance object itself be deleted. In that case
if this appearance is referenced by any equivalence set then that
reference will be removed.

Arguments:
appearance tag of the appearance to be removed from
the context of a BOMViewRevision
bvr tag of the BOM ViewRevision from whose
context the appearance is to be removed
Failures:

no such appearance

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

62
askParent(Appearance)
PS_ask_appearance_parent
extern int PS_ask_appearance_parent(
tag t appearance, [* <I> %/
tag t* parent /* <0> %/

)s

Returns the tag of the BOM ViewRevision which ‘owns’ this
appearance.

Arguments;
appearance tag of the appearance
parent returns tag of the parent
BOMViewRevision
Failures:

no such appearance

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

63

askPath(Appearance)
PS_ask_appearance_path
extern int PS_ask_appearance_path(
tag t appearance, ’ [* <I> %/
int * path_length, [* <O0> %/
/* <OF> */

tag t** path
) :

Returns the occurrence path of the given appearance.

Arguments:

appearance
path_length
path

Failures:

tag of the appearance
returns number of occurrences in the path

returns an array of tags of occurrences
forming the path

no such appearance

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

64
Equivalence functions
create(Equivalence)

Name: PS_create_equivalence
Synopsis: extern int PS_create_equivalence(

tag_t appearancel, [* <I> ¥/

tag_t appearance2 [* <I> ¥

)

Description: Register the two appearances as equivalent.

If appearance2 and appearance3 have already been registered as
equivalent, and we now say that appearancel and appearance?2 are
equivalent, this means that appearances 1,2 and 3 are all equivalent.

Restriction not presently implemented:
You cannot create an equivalence between two appearances of the
same BOMViewRevision.

Arguments:

appearancel
appearance2

Failures:;

PS_invalid_appearance no such appearancel/2

PS_aiready_equivalent the two appearances are already
equivalent

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

65
delete(Equivalence)
PS_delete_equivalence
extern int PS_delete_equivalence(
tag t appearance [* <I> ¥

);

Remove the specified appearance from an equivalence set. This
means that this appearance is now deemed not to be equivalent to any
other appearance.

Arguments:

appearance tag of the appearance

Failures;

PS_invalid_appearance no such appearance

PS_not_equivalent appearance not in any
equivalence set

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

66

ask(Equivalent)
PS_ask_if_equivalent
extern int PS_ask_if_equivalent(
tag_t appearancel, [*<I> %
tag_t appearance2, [* <I> %
logical * equivalent /* <0> %
);
Asks if the two appearances are equivalent.
Arguments:
appearancel
appearance?2
equivalent returns true if the two appearances are
equivalent
Failures:
PS_invalid_appearance no such appearancel/2

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

67
ask(Equivalent)
PS_ask_equivalent_in_bvr
extern int PS_ask_equivalent_in_bvr(
tag_t appearance, [* <I> ¥
tag_t bvr, [* <I> ¥
tag t* equivalent [* <O> ¥

)

Returns the appearance of a given BOMViewRevision which is
equivalent to a specified appearance of a different

BOMViewRevision.
Arguments:

appearance

bvr tag of the revision in which an equivalent is

sought

equivalent equivalent appearance found
Failures:

PS_invalid_appearance no such appearance
PS_invalid_bvr no such revision
PS_not_equivalent no equivalent found

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

68
list(Equivalents)
Name: PS_list_equivalents_of_app
Synopsis: extern int PS_list_equivalents_of_app(
tag_t appearance, [* <I> ¥
int * n_equivalents, [* <O> ¥/
tag_t** equivalents /* <OF> ¥/
);
Description: List all those appearances deemed to be equivalent to the given
appearance.
Arguments:
appearance tag of the appearance
n_equivalents returns number of equivalents found
equivalents returns array of tags of equivalent
appearances
Failures:
PS_invalid_appearance no such appearance

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

69

PS_list_equivalent

extern int PS_list_equivalent(

tag_t bvrl,
tag t bvr2,
int * n_appearances,

tag t** appearances

);

PCT/US94/07170

list(Equivalents)

[* <I> %
[* <I> %
/* <O> */
/* <OF> */

Compares bvrl and bvr2, returning a list of all the appearances of
bvrl which have an equivalent in bvr2.

Restriction not currently implemented:
The two BOMViewRevisions must NOT be revisions of the same

BOMView.

Arguments:
bvrl
bvr2

n_appearances number of equivalent appearances found

appearances array of tags of appearances of bvr1 with an
equivalent in bvr2.

Failures:

PS_invalid_bvr

no such revision 1/2

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

list(Equivalents)
PS_list_not_equivaient
extern int PS_list_not_equivalent(
tag t bvrl, [* <I> %
tag_t bvr2, [* <I> ¥
int* n_appearances, [* <O> ¥/
tag_t ** appearances /* <OF> ¥/

)s

Compares bvrl and bvr2, returning a list of all the appearances of
bvrl which DO NOT have an equivalent in bvr2.

Restriction not currently implemented:
The two BOMViewRevisions must NOT be revisions of the same

BOMView.

Arguments:

bvrl
bvr2
n_appearances

appearances

Failures:
PS_invalid_bvr

number of non—equivalent appearances
found

array of tags of appearances of bvrl with no
equivalent in bvr2.

no such revision 1/2

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

71
Configuration functions
ask(Configuration)
Name: PS_ask_config_rule
Synopsis: extern int PS_ask_config_rule(
int * rule [* <O> %/
);
Description: Returns the current configuration rule for use in building
configurations.
Arguments:
rule configuration rule, which may be one of the
following tokens:
PS_specific finds the specified revision
PS_latest finds the latest issued revision
PS_latest_status finds the latest issued revision with the

currently configured status

PS_latest_date_effective finds the latest issued revision with the
currently configured status which is
effective for the specified date

PS_latest_num_effective finds the latest issued revision with the
currently configured status which is
effective for the specified serial number

PS_substitute if a revision of the view exists in the
substitute list this will be substituted.

This rule must be used in conjunction
(bitwise OR) with one of the other
rules '

Some users may wish to load the major items of their structure by
serial number, but select basic components like screws, washers etc.
by effectivity dates. Therefore it is possible to OR the two effectivity
rules together “PS_latest_date_effective | PS_latest_num_effective” to
give the desired functionality. Any item whose range of serial numbers
and range of effective dates spans those currently set with the
configuration rule will be selectable. In practice, on any one item, one
of the effectivity attributes (date or serial number) will have
open—ended limits set, so selection will be done on the basis of one
effectivity attribute only.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

72
ask(Configuration)
PS_ask_config_status
extern int PS_ask_config_status(
tag t* status_type [* <0> ¥/

)

Returns the status for use with the configuration rule.
The status is of the status types allowed for this site.

Arguments:

status_type returns the tag of the status type

Failures:

no status configured

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name;

Synopsis:

Description:

PCT/US94/07170

73

ask(Configuration)
PS_ask_config_date_effective
extern int PS_ask_config_date_effective(
date_t* date [* <O> */

)

Returns the effectivity date associated with the current configuration
rule. :

Arguments:
date

Failures:

no effectivity date set

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

74

ask(Configuration)
PS_ask_config_num_effective
extern int PS_ask_config_num_effective(
int* effective_num [* <0O> */

);

Returns the effective serial number used with the current
configuration rule.

Arguments:

effective_num

Failures;

no effective serial number set

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name;

Synopsis:

Description:

PCT/US94/07170

75

set(Configuration)
PS_set_config_rule
extern'int PS_set_config_rule(

int rule [* <I> %
); :

Sets the current configuration rule for use in building configurations.

Arguments;

rule configuration rule, which may be taken
from the following tokens:

PS_specific finds the specified revision

PS_latest finds the latest issued revision

PS_latest_status finds the latest issued revision with the

currently configured status

PS_latest_date_effective finds the latest issued revision with the
currently configured status which is
effective for the specified date

PS_latest_num_effective finds the latest issued revision with the
currently configured status which is
effective for the specified serial number

PS_substitute if a revision of the view exists in the
working substitute list this will be
substituted.

This rule must be used in conjunction
(bitwise OR) with one of the other
rules

Some users may wish to load the major items of their structure by
serial number, but select basic components like screws, washers etc.
by effectivity dates. Therefore it is possible to OR the two effectivity
rules together “PS_latest_date_effective | PS_latest_num_effective” to
give the desired functionality. Any item whose range of serial numbers
and range of effective dates spans those currently set with the
configuration rule will be selectable. In practice, on any one item, one
of the effectivity attributes (date or serial number) will have
open—ended limits set, so selection will be done on the basis of one
effectivity attribute only.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

76
set(Configuration)
PS_set_config_status
extern int PS_set_config_status(
tag t status_type [* <I> ¥

);

Sets the status for use with the configuration rule.
The status set is chosen from the status types allowed for this site.

Arguments:
status_type tag of the status type to be set

Failures:

invalid status type

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

77

set(Configuration)
PS_set_config_date_effective
extern int PS_set_config_date_effective(
date_t date [* <I> %

);

Sets the effectivity date associated with the current configuration rule.

invalid date

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

78
set(Configuration)
Name: PS_set_config_num_effective
Synopsis: extern int PS_set_config_num_effective(
int effective_num [* <I> ¥/

)
Description: Sets the effective serial number for use with the current configuration

rule.

Arguments:

effective_num

Failures:

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

79
Substitute List functions
list(SubstituteList)

Name: PS_list_substitutes
Synopsis: extern int PS_list_substitutes(

int * n_substitutes, /* <O> ¥/

tag_t** substitutes /* <OF> ¥/

)5

Description: Lists the BOM ViewRevisions on the SubstituteList. It is these

revisions which may be substituted into configurations if the
configuration rule PS_substitute is set.

Arguments:
n_substitutes number of BOM ViewRevisions on the list
substitutes array of tags of BOMViewRevisions on the
list
Failures:

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

80
set(SubstituteList)
PS_set_substitutes
extern int PS_set_substitutes(
int n_substitutes, [* <I> */
tag_t* substitutes [* <I> ¥/

)5

Sets the BOMViewRevisions on the SubstituteList. It is these
revisions which may be substituted into configurations if the
configuration rule PS_substitute is set.

If the current substitution rule is PS_substitute_specific then the exact
revisions supplied are placed on the SubstituteList. If the current
substitution rule is PS_substitute_latest the latest revision from the
same ChangeHistory is put on the substitution list in place of each
revision on the input list.

Arguments:
n_substitutes number of BOM ViewRevisions on the list
substitutes array of tags of BOMViewRevisions on the
list
Failures:

invalid tag of BOMViewRevision in
substitutes array

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

81

ask(SubstitutionRule)

PS_ask_substitution_rule

extern int PS_ask_substitution_rule(
int * substitution_rule [* <O> */

);

Returns the substitution rule currently set for use when setting the
Substitution List.

Arguments:

substitution_rule PS_substitute_specific or PS_substitute_latest

Failures:

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

82
set(SubstitutionRule)
Name: PS_set_substitution_rule
Synopsis: extern int PS_set_substitution_rule(
int substitution_rule [* <I> */

);
Description: Sets the substitution rule for use when setting the Substitution List.

Arguments:

substitution_rule PS_substitute_specific or PS_substitute_latest
Failures:

no such substitution rule

SUBSTITUTE SHEET (RULE 26)

PCT/US94/07170

WO 95/01610
83
Context functions
create(Context)
Name: PS_create_context
Synopsis: extern int PS_create_context(
tag t* context [* <O> ¥/
);
Description: Creates a new context, making it the current context.

Its attributes are set to default values, with configuration rule
PS_latest, no status or effectivity, an empty substitute list and
substitution rule PS_substitute_specific.

Arguments:

context returns tag of the new context

Failures:

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

84
copy(Context)
PS_copy_context
extern int PS_copy_context(
tag_t source_context, [* <I> ¥/
tag_ t* new_context [* <0> ¥

)

Creates a new context, copying attributes from the given source
context. The new context 1s made the current context.

Arguments:
source_context tag of an existing context whose attributes
are to be copied to the new context
new_context tag of the newly created context
Failures;

no such source context

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

85
delete(Context)
PS_delete_context
extern int PS_delete_context(
tag t context ’ [* <I> %

)s

Deletes the given context.

The current context cannot be deleted, another context must be made
current first.

Arguments:

context tag of the context to be deleted

Failures;

no such context
cannot delete current context

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 ' PCT/US94/07170

86
extent(Context)
Name: PS_extent_context
Synopsis: extern int PS_extent_context(
int * n_contexts, [* <O> %
tag_t** contexts /* <OF> %/
)
Description: Returns a list of all contexts configured in this PS session.
Arguments:
n_contexts number of contexts found
contexts returns array of tags of contexts

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

87

askCurrent(Context)

Name: PS_ask_current_context

‘Synopsis: extern int PS_ask_current_context(
tag t* current_context /* <O> ¥/
);
Description: Returns the tag of the current context.
Arguments:

current_context returns tag of the current context

SUBSTITUTE SHEET (RULE 26)

WO 95/01610

Name:

Synopsis:

Description:

PCT/US94/07170

88
setCurrent(Context)
PS_set_current_context
extern int PS_set_current_context(
tag t context [* <I> */

)

Makes the given context the current context.

The configuration rule, status, effectivity, substitute list and
substitution rule of the given context become those used in loading
configurations.

Arguments:
context tag of the context to be made the current
context

Failures:

no such context

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

35

89
WHAT IS CLAIMED IS:
1. A method of using a computer to store data

representing an imprecise structure of a product and to
present data representing a precise structure of that
product, comprising the steps of:

storing a description of each component of a product
as a view object of a view data class;

storing a description of each revision to a component
of a product as a view revision object of a view revision
data class;

linking view objects and view revision objects of
different components with references to occurrence objects
of an occurrence data class;

receiving input from a user precisely specifying a
product to be viewed;

retrieving at least one view object or view revision
object for each component of said product, by using said
occurrence objects; and

associating each view object and view revision object
with a component of said product to create a bill of
materials.

2. The method of Claim 1, further comprising the
step of linking view revision objects of the same component
with references to a view object associated with that
component.

3. The method of Claim 1, wherein said product has
multiple components of the same type, further comprising
the step of storing context-specific descriptions of such
components as appearance objects.

4, The method of Claim 1, further comprising the

step of using an object of a configuration object data
class to store histories of view revisions.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

90

5. The method of Claim 1, further comprising the
step of using a configuration rule to determine which view
revision object of a component is to be retrieved during
said retrieving step.

6. The method of Claim 1, wherein said components
are represented by item objects of item and item revision
data classes, and wherein said view objects said view
revision objects are attributes of corresponding item

10 objects.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

91

7. A method of using a computer to store data
representing an imprecise structure of a product and to
present data representing a precise structure of that
product, comprising the steps of:

storing a description of each component of a product
as a new object of a view data class;

storing a description of a revision to a component as
a view revision object of a view revision data class;

linking view objects and view revision objects of
different components with references to occurrence objects
of an occurrence data class;

storing a set of configuration rules for determining
how a precise version of said product is to be assembled;

receiving input from a user imprecisely specifying a
product to be viewed and at least one condition associated
with said product;

using at least one of said configuration rules to
determine a view revision of a component of said product
that satisfies said at least one condition;

retrieving a set of view objects and view revision
objects, representing each component of said product, by
using said occurrence references; and

associating each view object and each view revision
object with a component of said product to create a bill of
materials.

8. The method of Claim 7, further comprising the
step of linking view revision objects of the same component
with references to a view object associated with that
component.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

10

15

20

25

30

92

9. The method of Claim 7, wherein said step of
receiving input is comprised of a receiving data
representing a status condition and said step of using said
configuration rules determines a view revision having said
status.

10. The method of Claim 7, wherein said step of
receiving input is comprised of receiving data representing
an effectivity condition and said step of using said
configuration rules determines a view revision having said
effectivity.

11. The method of Claim 7, wherein said product has
multiple components of the same type, further comprising
the step of storing context-specific descriptions of such
components as appearance objects.

12. The method of Claim 7, further comprising the
step of using an object of a configuration object data
class to store histories of view revisions.

13. The method of Claim 7, wherein said components
are represented by item objects of item and item revision
data classes, and wherein said view objects said view
revision objects are attributes of corresponding item
objects.

14. The method of Claim 7, further comprising the
step of displaying said bill of materials, and receiving
data from a user to add, modify, or delete data attached to
said view objects.

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170
1/3
11a
N INPUT FIC. 1
11 . '
~
COMPUTER |- qutpur b-11b
g J
1\.3 USER IF |16
PMD MODULES
DATABASE PSM ERM L-120
12/ EPM
PDM PLATFORM [~-14
91 V-1-1
™ STORE VIEWS V-1-2
V-1-3
22 VR-1-1-1
™ STORE VIEW REVISIONS VR=1-1-2
VR-1-1=3
y
23~ STORE OCCURRENCES .
!
24~ RECEIVE USER REQUEST | "PRODUCT 1 ..
PRECISE
REQUEST FIG. 2
f)
APPLY ' 25
26— CONFIG RuLEs | YES
1
\
27-- RETREIVE REVISION VR=1-1-2
98 —~| ASSEMBLE PRODUCT BOM VRV“;‘Q“Z
V=1-3

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170
2/3
_ BILL OF MATERIALS: 456330C BICYCLE A1
FILE DISPLAY EDIT FIND CONTROL HELP
- [TEM D DESCRIPTION SEQUENCE | QTY | BOM NOTE
+456330C BICYCLE ‘
+4562858 FRAME ASSEMBLY - COMPLETE 10 1
+835669D FRAME ASSEMBLY - WELDMENT 10 1
~998350E BEARING - STEM 20 2
+8356688 FRONT FORK ASSEMBLY - WELDMENT| 3p |
-395769C FORK X 10 1
~3957708 FLANGE - FRONT 20 | 2
~395771A STEM TUBE 30 1
~99B355F BEARING - CRANK 40 1| YEs
~5551280 CRANK 50 1
~5551326 SPROCKET, LARGE 60 1
+8356678 HANDLEBAR AND STEM ASSEMBLY 70 1| ¥
~998344A BOLT 80 1| YES
~555124D EXPANSION NUT %0 1
+4562860 FRONT WHEEL ASSEMBLY 20 1
+456871F REAR WHEEL ASSEMBLY 30 1
FIG. 3
’/40

STRUCTURE EDITOR

[TEM ID IR-ID VIEW V-DESC 0-DESC APPEARANCE A-DESC STATUS
EX-125 DELUXE

AX-025 A | AX-025

WH-56-1 TUBE-LESS Y LFW

WH-36-1

AX-025~1

WH-56-1

WH-36-1

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 95/01610 PCT/US94/07170

3/3

VR-2-1 VR-2-1
ITEM
REVISION

VR-2-3-1

VR-2-2-1
VR-2-6
FIG. & |
- VR-2-4 VR-2-4
FIG. 6
: VIEW
7w
TEM | AX-025 FIG :
|
§ ¥
ITEM ITEM ITEM VIEW
REVISION REVISION
A B
ITEM VIEW
REVISION REVISION
— — —1
VIEW
: OCCURRENCE‘»—u APPEARANCE
co
FIG. 8
SSUED REVISION HISTORY
________________________ -
|
REVISION REVISION REVISION | |
|
_______________________ |

LATEST ISSUED
WORKING REVISION HISTORY ___ ™ ReviSION

1
Y REVISION REVISION | |
|

LATEST WORKING
REVISION

SUBSTITUTE SHEET {RULE 26)

INTERNATIONAL SEARCH REPORT Int:. dnal Application No
PCT/US 94/07170

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F17/60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages

A COMPUTERS IN INDUSTRY, 1-3
vo1.19, no.3, June 1992, AMSTERDAM NL 1
pages 257 - 270

CHUNG ET AL 'illustration of
object~oriented databases for the
structure of a bill of materials'

see page 262, column 2, line 17 - page
268, column 2, line 3; figures 3-9

A EP,A,0 483 039 (IBM CORP) 29 April 1992 1,7
see page 3, column 3, line 9 - Tline 54
see page 5, column 5, Tine 16 - Tine 43;

Relevant to claim No.

figure 1

/...

m Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

°E" carlier document but published on or after the international
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0" document referring to an oral disclosure, use, exhibition or
other means

*P" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
_me&ts, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

6 October 1994

Date of mailing of the international search report

1910, 9%

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Guingale, A

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inte onal Application No

PCT/US 94/07170

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

EP,A,0 520 923 (IBM CORP) 30 December
1992

see page 2, column 2, Tine 43 - page 3,
column 3, line 3

see page 3, column 4, Tine 28 - line 41;
figure 1

1,7

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

Ink .onal Application No

INTERNATIONAL SEARCH REPORT PCT/US 94/07170

Patent document) Publication Patent family Publication
cited in search report date member(s) date
EP-A-0483039 29-04-92 Us-A- 5317729 31-05-94

JP-A- 4289920 14-10-92

EP-A-0520923 30-12-92 UsS-A- 5311424 10-05-94
JP-A- 5189445 30-07-93

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

