OFFICE DE LA PROPRIETE
INTELLECTUELLE DU CANADA

OPIC CIPO

ProrERTY OFFICE

(72) VISWANATHAN, Srinivasan, US
(72) NAZARI, Siamak, US

(72) SWAROOP, Anil, US

(72) KHALIDI, Yousef, US

(71) SUN MICROSYSTEMS, INC., US

51y Int.C1.> GO6F 17/30
(30) 1997/06/30 (08/885,149) US

(12) (19) (CA) Demande-Application

CANADIAN INTELLECTUAL

1) (A1) 2,242,006
22) 1998/06/29
43) 1998/12/30

54y SYSTEME ET METHODE UTILISANT UN SYSTEME
D’ARCHIVAGE MONDIAL POUR RENDRE LES DISPOSITIFS
D’UNE GRAPPE MONDIALEMENT VISIBLES

54y GLOBAL FILE SYSTEM-BASED SYSTEM AND METHOD FOR
RENDERING DEVICES ON A CLUSTER GLOBALLY VISIBLE

200

{ Cluster 201

Devices 106-1

Devices 106-2

Devices 106-3

HA Devices 112-1 HA Devices 112-2 HA Devices 112-3
Printers 114-1 Printers 114-2 Printers 114-3
Kernel Memory 116-1 Kernel Memory 116-2 Kernel Memory 116-3
Comm. Devices 1181 Comm. Devices 118-2 Comm. Devices 118-3
Storage Devices 120-1 Storage Devices 120-2 Storage Devices 120-3

(57) L’invention est constituée par un systeme et une
méthode servant & rendre les dispositifs d’une grappe
mondialement visibles, cette grappe comprenant une
pluralit¢ de noeuds auxquels sont connectés les
dispositifs en question. Le systéme de I’invention établit
pour chacun des dispositifs de la grappe au moins un
identificateur particulier permettant d’avoir acces au
dispositif. 11 comprend un registraire qui crée les
identificateurs, ainsi qu’un systéme d’archivage

I*I Industrie Canada Industry Canada

(57) A system and method are disclosed for rendering
devices on a cluster globally visible, wherein the cluster
includes a plurality of nodes on which the devices are
attached. The system establishes for each of the devices
in the cluster at least one globally unique identifier
enabling global access to the device. The system
includes a device registrar that creates the identifiers and
a global file system. The identifiers include a globally
unique logical name by which users of the cluster

OPIC

OFFICE DE LA PROPRIETE

CIPO

CANADIAN INTELLECTUAL

INTELLECTUELLE DU CANADA ProrERTY OFFICE

mondial. Ces identificateurs comprennent un nom
logique particulier au moyen duquel les utilisateurs de la
grappe identifient le dispositif, et un nom physique
particulier au moyen duquel le systéme d’archivage
mondial identifie le dispositif. Le registraire établit une
correspondance biunivoque entre le nom logique et le
nom physique de chacun des dispositifs. Le systeme de
I'invention comprend également une structure de
données d’information sur les dispositifs (dev_info)
tenue a4 jour par le registraire qui représente les
associations physiques des dispositifs & I'intérieur de la
grappe. Chaque association correspond au nom physique
d’un fichier de dispositif tenu & jour par le systéme
d’archivage mondial. Pour tout dispositif connecté, le
registre détermine une valeur particuliére (dev_t) de type
de dispositif, crée une entrée dans la structure de données
dev_info et un nom physique correspondant, engendre
un nom logique basé sur la valeur dev t et le nom
physique, et associe cette valeur dev_t au fichier du
dispositif connecté. Cette architecture étant ¢tablie, un
utilisateur de la grappe peut avoir acces a l'un
quelconque des dispositifs en transmettant au systéme
d’archivage mondial une demande d’acces qui identifie
le dispositif demandé par son nom logique.

I*I Industrie Canada Industry Canada

1) (A1) 2,242,006
22) 1998/06/29
43) 1998/12/30

identify the device and a globally unique physical name
by which the global file system identifies the device. The
registrar creates a one-to-one mapping between the
logical name and the physical name for each of the
devices. The system also includes a device information
(dev_info) data structure maintained by the device
registrar that represents physical associations of the
devices within the cluster. Each association corresponds
to the physical name of a device file maintained bythe
global file system. The device registrar determines for an
attached device aglobally unique, device type (dev_t)
value; creates dev_info data structure entry and a
corresponding physical name; generates a logical name
based on the dev_t value and the physical name; and
associates the dev_ t value with the device file
representing the attached device. Given this framework,
a user of the cluster can access any of the devices by
issuing the global file system an access request
identifying the device to be accessed by its logical name.

10

15

20

CA 02242006 1998-06-29

ABSTRACT

A system and method are disclosed for rendering devices on a cluster globally
visible, wherein the cluster includes a plurality of nodes on which the devices are
attached. The system establishes for each of the devices in the cluster at least one
globally unique identifier enabling global access to the device. The system includes
a device registrar that creates the identifiers and a global file system. The
identifiers include a globally unique logical name by which users of the cluster
identify the device and a globally unique physical name by which the global file
system identifies the device. The registrar creates a one-to-one mapping between
the logical name and the physical name for each of the devices. The system also
includes a device information (dev_info) data structure maintained by the device
registrar that represents physical associations of the devices within the cluster.
Each association corresponds to the physical name of a device file maintained by
the global file system. The device registrar determines for an attached device a
globally unique, device type (dev_t) value; creates dev_info data structure entry and
a corresponding physical name; generates a logical name based on the dev_t value
and the physical name; and associates the dev_t value with the device file
representing the attached device. Given this framework, a user of the cluster can
access any of the devices by issuing the global file system an access request

identifying the device to be accessed by its logical name.

CA 02242006 1998-06-29

FC-63998/GSW/DJC

Sun P1941

10

15

20

GLOBAL FILE SYSTEM-BASED SYSTEM AND METHOD
FOR RENDERING DEVICES ON A CLUSTER GLOBALLY VISIBLE

The present invention relates generally to systems and methods that provide device
access through a file system and, particularly, to systems and methods for rendering

devices on a cluster globally visible.

BACKGROUND OF THE INVENTION

It has become increasingly common for Unix-based computer applications to be
hosted on a cluster that includes a plurality of computers. [t is a goal of cluster
operating systems to render operation of the cluster as transparent to
applications/users as if it were a single computer. For example, a cluster typically
provides a global file system that enables a user to view and access all conventional
files on the cluster no matter where the files are hosted. This transparency does

not, however, extend to device access on a cluster.

Typically, device access on Unix-based systems is provided through a special file
system (e.g., SpecFS) that treats devices as files. This special file system operates
only on a single node. That is, it only allows a user of a particular node to view and
access devices on that node, which runs counter to the goal of global device
visibility on a cluster. These limitations are due to the lack of coordination between
the special file systems running on the various nodes as well as a lack of a device
naming strategy to accommodate global visibility of devices. These aspects of a

prior art device access system are now described with reference to FIGS. 1-4.

10

15

20

25

30

CA 02242006 1998-06-29

-2-

Referring to FIG. 1, there is shown a block diagram of a conventional computer
system 100 that includes a central processing unit (CPU) 102, a high speed memory
104, a plurality of physical devices 106 and a group of physical device interfaces
108 (e.g., busses or other electronic interfaces) that enable the CPU 102 to control
and exchange data with the memory 102 and the physical devices 106. The

memory 102 can be a random access memory (RAM) or a cache memory.

The physical devices 106 can include but are not limited to high availability devices
112, printers 114, kernel memory 116, communications devices 118 and storage
devices 120 (e.g., disk drives). Printers 114 and storage devices 120 are well-
known. High availability devices 112 include devices such as storage units or
printers that have associated secondary devices. Such devices are highly available
as the secondary devices can fill in for their respective primary device upon the
primary’s failure. The kernel memory 116 is a programmed region of the memory
102 that includes accumulating and reporting system performance statistics. The
communications devices 118 include modems, ISDN interface cards, network
interface cards and other types of communication devices. The devices 106 can
also include pseudo devices 122, which are software devices not associated with an

actual physical device.

The memory 104 of the computer 100 can store an operating system 130,
application programs 150 and data structures 160. The operating system 130
executes in the CPU 102 as long as the computer 100 is operational and provides
system services for the processor 102 and applications 150 being executed in the
CPU 102. The operating system 130, which is modeled on v. 2.6. of the Solaris™
operating system employed on Sun® workstations, includes a kernel 132, a file
system 134, device drivers 140 and a device driver interface (DDI) framework 142.
Solaris and Sun are trademarks and registered trademarks, respectively, of Sun
Microsystems, Inc. The kernel 116 handles system calls from the applications 150,
such as requests to access the memory 104, the file system 134 or the devices 106.
The file system 134 and its relationship to the devices 106 and the device drivers
140 is described with reference to FIGS. 2A and 2B.

10

15

20

25

30

CA 02242006 1998-06-29

-3-

Referring to FIG. 2A, there is shown a high-level representation of the file system
134 employed by v. 2.6 and previous versions of the Solaris operating system. In
Solaris, the file system 134 is the medium by which all files, devices 106 and
network interfaces (assuming the computer 100 is networked) are accessed. These
three different types of accesses are provided respectively by three components of
the file system 134: a Unix file system 138u (UFS), a special file system 138s
(SpecFS) and a network file system 138n (NFS). 7

In Solaris, an application 150 initially accesses a file, device or network interface (all
referred to herein as a target) by issuing an open request for the target to the file
system 134 via the kernel 132. The file system 134 then relays the request to the
UFS 138u, SpecFS 138s or NFS 138n, as appropriate. If the target is successfully
opened, the UFS, SpecFS or NFS returns to the file system 134 a vnode object 136
that is mapped to the requested file, device or network node. The file system 134
then maps the vnode object 136 to a file descriptor 174, which is returned to the
application 150 via the kernel 132. The requesting application subsequently uses
the file descriptor 174 to access the corresponding file, device or network node

associated with the returned vnode object 136.

The vnode objects 136 provide a generic set of file system services in accordance
with a vnode/VFS interface or layer (VFS) 172 that serves as the interface between
the kernel 132 and the file system 134. Solaris also provides inode, snode and
rnode objects 136i, 136s, 136r that inherit from the vnode objects 136 and also
include methods and data structures customized for the types of targets associated
with the UFS, SpecFS and NFS, respectively. These classes 136i, 136s and 136r
form the low level interfaces between the vnodes 136 and their respective targets.
Thus, when the UFS, SpecFS or NFS returns a vnode object, that object is
associated with a corresponding inode, snode or rnode that performs the actual
target operations. Having discussed the general nature of the Solaris file system,
the focus of the present discussion will now shift to the file-based device access

methods employed by Solaris.

10

15

20

25

30

CA 02242006 1998-06-29

-4 -

Referring to FIG. 2B, Solaris applications 150 typically issue device access requests
to the file system 134 (via the kernel 132) using the logical name 166 of the device
they need opened. For example, an application 150 might request access to a SCSI
device with the command: open(/dev/dsk/disk_logical_address).

The logical name, /dev/dsk/disk_logical_address, indicates that the device to be
opened is a disk at a particular logical address. In Solaris, the logical address for a
SCSI disk might be “c0t0d0sx”, where “c0" represents SCSI controlier O, tO
represents target 0, dO represents disk 0, and sx represents the xth slice for the
particular disk (a SCSI disk drive can have as many as eight slices).

The logical name is assigned by one of the link generators 144, which are user-
space extensions of the DDI framework 142, and is based on information supplied
by the device's driver 140 upon attachment of the device and a corresponding
physical name for the device generated by the DDI framework 142. When an
instance of a particular device driver 140 is attached to the node 100, the DDI

framework 142 calls the attach routine of that driver 140. The driver 140 then

assigns a unique local identifier to and calls the ddi_create_minor_nodes method
146 of the DDI framework 142 for each device that can be associated with that
instance. Typically, the unique local identifier constitutes a minor name (e.g., “a”)
and a minor number (e.g., “2"). Each time it is called, the ddi_create_minor_nodes
method 146 creates a leaf node in the Devinfo tree 162 that represents a given
device. For example, because a SCSI drive (i.e., instance) can have up to eight
slices (i.e., devices), the local SCSI driver 140 assigns unique local identifiers to
each of the eight slices and calls the ddi_create_minor_nodes method 146 with the
local identifiers up to eight times.

Also associated with each device 106 is a UFS file 170 that provides configuration
information for the target device 106. The name of a particular UFS file 170i is the
same as a physical name 168i derived from the physical location of the device on
the computer. For example, a SCSI device might have the following physical name
168, /devices/iommu/sbus/esp1/sd@addr:minor_name, where addr is the address of

the device driver sd and minor_name is the minor name of the device instance,

10

15

20

25

30

CA 02242006 1998-06-29

-5-

which is assigned by the device driver sd. How physical names are derived is

described below in reference to FIG. 3.

To enable it to open a target device given the target device's logical name, the file
system 134 employs a logical name space data structure 164 that maps logical file
names 166 to physical file names 168. The physical names of devices 106 are
derived from the location of the device in a device information (Devinfo) tree 140
(shown in FIG. 1), which represents the hierarchy of device types, bus connections,
controllers, drivers and devices associated with the computer system 100. Each file
170 identified by a physical name 168 includes in its attributes an identifier, or dev_t
(short for device type), which is uniquely associated with the target device. This
dev_t value is employed by the file system 134 to access the correct target device
via the SpecFS 138s. It is now described with reference to FIG. 3 how dev_t values

are assigned and the Devinfo tree 140 maintained by the DDI framework 142.

Referring to FIG. 3, there is shown an illustration of a hypothetical Devinfo tree 162
for the computer system 100. Each node of the Devlinfo tree 162 corresponds to a
physical component of the device system associated with the computer 100.
Different levels correspond to different levels of the device hierarchy. Nodes that
are directly connected to a higher node represent objects that are instances of the
higher level object. Consequently, the root node of the Devinfo tree is always the “/
node, under which the entire device hierarchy resides. The intermediate nodes (i.e.,
nodes other than the leaf and leaf-parent nodes) are referred to as nexus devices
and correspond to intermediate structures, such as controllers, busses and ports.

At the next to bottom level of the Devinfo tree are the device qrivers, each of which
can export, or manage, one or more devices. At the leaf level are the actual
devices, each of which can export a number of device instances, depending on the

device type. For example, a SCSI device can have up to seven instances.

The hypothetical Devinfo tree 162 shown in FIG. 3 represents a computer system
100 that includes an input/output (i/0) controller for memory mapped i/o devices
(lommu) at a physical address addr0. The iommu manages the CPU’s interactions

with i/o devices connected to a system bus (sbus) at address addr? and a high

10

15

20

25

30

CA 02242006 1998-06-29

-6 -

speed bus, such as a PCl bus, at address addr2. Two SCSI controllers (esp1 and
esp2) at respective addresses addr3 and addr4 are coupled to the sbus along with
an asynchronous transfer mode (ATM) controller at address addrb. The first SCSI
controller esp1 is associated with a SCSI device driver (sd) at address 0
(represented as @0) that manages four SCSI device instances (dev0, dev1, dev2,
dev3). Each of these device instances corresponds to a respective slice of a single,
physical device 106. The first SCSI controller esp1 is also associated with a SCSI
device driver (sd) at address 1 that manages plural SCSI device instances (not

shown) of another physical device 106.

Each type of device driver that can be employed with the computer system 100 is
assigned a predetermined, unique major number. For example, the SCSI device
driver sd is assigned the major number 32. Each device is associated with a minor
number that, within the group of devices managed by a single device driver, is
unique. For example, the devices dev0, dev1, dev2 and dev3 associated with the
driver sd at address 0 have minor numbers 0, 1, 2 and 3 and minor names a, b, ¢, d,
respectively. Similarly, the devices managed by the driver sd at address 1 would
have minor numbers distinct from those associated with the devices dev0-dev3
(e.g., four such might have minor numbers 4-7). The minor numbers and names are
assigned by the parent device driver 140 (FIG. 1) for each new device instance
(recall that a SCSI instance might be a particular SCSI drive and a SCSI device a
particular slice of that drive). This ensures that each device exported by a given
device driver has a unique minor number and name. That is, a driver manages a

minor number-name space.

Each minor number, when combined with the major number o% its parent driver,
forms a dev_t value that uniquely identifies each device. For example, the devices
dev0, dev1, dev2 and dev3 managed by the driver sb at address 0 have respective
dev_t values of (32,0), (32,1), (32,3) and (32,3). The SpecFS 138s maintains a
mapping of dev_t values to their corresponding devices. As a result, all device open
requests to the SpecFS identify the device to be opened using its unique dev_t

value.

10

15

20

25

30

CA 02242006 1998-06-29

-7 -

The DevTree path to a device provides that device’s physical name. For example,
the physical name of the device devO0 is given by the string:
/devices/iommu@addrO/sbus@addri1/esp1@addr3/sd@0:a, where sd@0:a refers to
the device managed by the sd driver at address 0 whose minor name is a; i.e., the
device dev0. The physical name identifies the special file 170 (shown in FIG. 2)
(corresponding to an snode) that holds all of the information necessary to access
the corresponding device. Among other things, the attributes of each sbecial file

170 hold the dev_t value associated with the corresponding device.

As mentioned above, a link_generator 144 generates a device’s logical name from
the device’s physical name according to a set of rules applicable to the devices
managed by that link generator. For example, in the case of the device dev0
managed by the driver sd at address 0, a link generator for SCSI devices could
generate the following logical name, /dev/dsk/c0t0d0s0, where cO refers to the
controller esp1@addr3, {0 refers to the target id the physical disk managed by the
sd@O driver, dO refers to the sd@0 driver and s0 designates the slice with minor
name a and minor number 0. The device dev0 associated with the sd@1 driver
could be assigned the logical name, dev/dsk/cOt1d1s4, by the same link generator
144. Note that the two devO devices have logical names distinguished by
differences in the target, disk and slice values. It is now described with reference to"
FIG. 4 how this infrastructure is presently employed in Solaris to enable an

application to open a particular device residing on the computer 100.

Referring to FIG. 4, there is shown a flow diagram of operations performed in the
memory 104 of the computer 100 by various operating system components in the
course of opening a device as requested by an application 150. The memory 104 is
divided into a user space 104U in which the applications 150 execute and a kernel
space 104K in which the operating system components execute. This diagram
shows with a set of labeled arrows the order in which the operations occur and the
devices that are the originators or targets of each operation. Where applicable,
dashed lines indicate an object to which a reference is being passed. Alongside the
representation of the memory 104, each operation associated with a labeled arrow

is defined. The operations are defined as messages, or function calls, where the

10

15

20

25

30

CA 02242006 1998-06-29

-8-

message name is followed by the data to be operated on or being returned by the
receiving entity. For example, the message (4-1), “open(logical_name),” is the
message issued by the application 150 asking the kernel 132 to open the device
represented in the user space 104U by “logical_name”. In this particular example,

the application is seeking to open the device dev2.

After receiving the open message (4-1), the kernel 132 issues the message (4-2),
“get_vnode(logical_name),” to the file system 134. This message asks the file
system 134 to return the vnode of the device dev2, which the kernel 132 needs to
complete the open operation. In response, the file system 134 converts the logical
name 166 to the corresponding physical name 168 using the logical name space
164. The file system 134 then locates the file designated by the physical name and
determines the dev_t value of the corresponding device from that file's attributes.
Once it has acquired the dev_t value, the file system 134 issues the message (4-3),
“get_vnode(dev_t),” to the SpecFS 138s. This message asks the SpecFS 138s to
return a reference to a vnode linked to the device dev2. Upon receiving the
message (4-3) the SpecFS 138s creates the requested vnode 136 and an snode
136s, which links the vnode 136 to the device dev2, and returns the reference to the
vnode 136 (4-4) to the file system 134. The file system 134 then returns the vnode

reference to the kernel (4-5).

Once it has the vnode reference, the kernel 132 issues a request (4-6) to the
SpecFS 138s to open the device dev2 associated with the vnode 136. The SpecFS
138s attempts to satisfy this request by issuing an open command (4-7) to driver 2,
which the SpecFS knows manages the device dev2. [f driver 2 is able to open the
device dev2, it returns an open_status message (4-8) indicati}wg that the open
operation was successful. Otherwise, driver 2 returns a failure indication in the
same message (4-8). The SpecFS 138s then returns a similar status message (4-9)
directly to the kernel 132. Assuming that “success” was returned in message (4-9),
the kernel 132 returns a file descriptor to the application 150 that is a user space
representation of the vnode 136 linked to the device dev2 (4-10). The application
160, once in possession of the file descriptor, can access the device dev2 via the

kernel 132 and the file system 134 using file system operations. For example, the

10

16

20

25

30

CA 02242006 1998-06-29

-9-

application 150 performs inputs data from the device dev2 by issuing read requests
directed to the returned file descriptor. These file system commands are then
transformed into actual device commands by the SpecFS 136s and the vnode and

snode objects 136, 136s that manage the device dev2.

Consequently, Solaris enables users of a computer system 100 to access devices
on that system 100 with relative ease. However, the methods employed by Solaris
do not permit users to transparently access devices across computers, even when
the different computers are configured as part of a cluster. That is, an application
running on a first computer cannot, using Solaris, transparently open a device on a

second computer.

The reason that the current version of Solaris cannot provide transparent device
access in the multi-computer situation has to do with the way the dev_t and minor
numbers are currently assigned when devices are attached. Referring again to FIG.
3, each time a device is attached to the computer 100 the device’s associated driver
assigns that device a minor number that is unique within the set of devices
controlled by that driver and therefore can be mapped to a unique dev_t value for
the computer 100 when combined with the driver's major number. However, if the
same devices and driver were provided on a second computer, the driver and i
devices would be assigned a similar, if not identical, set of major and minor numbers
and dev_t values. For example, if both computers had a SCSI driver sd (major num
= 32) and four SCSI device instances managed by the SCSI driver sd, each driver
sd would allocate the same set of minor numbers to their local set of SCSI devices

(e.g., both sets would have minor numbers between 0 and 3). Consequently,

keeping in mind that a device is accessed according to its dev_t value, if a first node

application wanted to open a SCSI disk on the second node, that application would
not be able to unambiguously identify the SCSI disk to the SpecFS on either

computer system.

Therefore, there is a need for a file-based device access system that enables
applications, wherever they are executing, to transparently access devices resident

on any node of a computer cluster.

10

15

20

25

30

CA 02242006 1998-06-29

-10 -

SUMMARY OF THE INVENTION

In summary, the present invention is a system and method for use in a cluster that
maps local device names to globally unique, logical names that enable an
application running on any of the cluster nodes to access a device located on a

different cluster node.

In particular, a preferred embodiment includes a global file system for the cluster, a
device driver interface and a device information tree. The DDI determines for at
least the instances associated with a subset of predetermined device classes
whether the local device name is globally unique. If the local device name is not
globally unique, the DDI determines a globally unique identifier for the respective
local instance. The device information tree, which is maintained by the device driver
interface, represents physical associations of the devices within the cluster. Each
path between a root node and a leaf node of the device information tree
corresponds to the physical name of a device file maintained by the global file
system that represents a respective one of the device instances. The link
generator generates for each instance a logical name based on the globally unique
identifer that is mapped to that instance’s corresponding physical name and
associates the globally unique identifier of a particular instance with the device file

representing that particular instance.

Given this framework, a user of the cluster can access any of the devices by issuing
the global file system an access request identifying the device to be accessed by its
logical name. The global file system resolves the access reql:lest by converting the
logical name to the corresponding physical name, accessing the globally unique
identifier of the device via the device file identified by the physical name, and then

accessing the device identified by its globally uniqué identifier.

In a preferred embodiment, the global file system might be hosted on only one of the
network nodes and each of the nodes hosts instances respectively of the device

driver interface and the device information tree. In this embodiment the links

10

15

20

25

30

CA 02242006 1998-06-29

-11 -

between the global file system and the respective device driver interfaces is
provided by a proxy file system. The preferred embodiment can also include a
plurality of device drivers for managing the devices, each of which can assign the
local device names to the instances. These device drivers are co-located with the -

various device driver interfaces.

A preferred set of the predetermined device classes include:

“‘dev_enumerate,” which designates devices with at least one instance
managed by a particular driver, each of the instances managed by the particular
driver on a particular node being individually enumerated;

“dev_nodespecific,” which designates devices available on each node that
are typically accessed only locally and have a 1-1 relationship with their managing
driver on each node;

“dev_global,” which designates devices that can be accessed from drivers on
any node; and

“dev_nodebound,” which designates devices that are typically accessed only

by a driver on a particular node and have a 1-1 relationship with that driver.

The present invention defines a set of rules for converting the local device names of
instances of the respective device classes to the corresponding globally unique
identifier and logical name. In particular, the local device name of a dev_enumerate
device comprises a combination of the device name and a local minor number that
is locally unique, the globally unique identifier comprises a global minor number,
and the logical name comprises a combination of the device name and the global
minor number. Similarly, each of the local device name and logical name of a
dev_nodespecific device is formed from the device name, and each of the local
device name and logical name of a dev_global device is formed from the device

name.

The present invention also incorporates a device configuration system (DCS) hosted
on one of the cluster nodes that maintains a persistent DCS database listing for
each device in the cluster the device name, a major number of the device driver that

manages the logical device, the global minor number and a hostid of the node

10

15

20

25

30

CA 02242006 1998-06-29

-12-

hosting the logical device. The DDI generates the globally unique identifier, the
logical name and the physical name for each logical device based on the assistance
of the DCS, which, using the DCS database, generates the global minor numbers for

each of the devices on behalf of the DDI.

The present invention is also a system for rendering devices on a cluster globally
visible, wherein the cluster includes a plurality of nodes on which the devices are
attached. A preferred system comprises a device registrar that establishes for each
of the devices at least one globally unique identifier enabling that device to be
accessed from any of the nodes. This system can include a global file system
running on the cluster wherein the at least one globally unique identifier includes a
globally unique logical name by which users of the cluster identify the device and a
globally unique physical name by which the global file system identifies the device.
In a preferred embodiment, there is a one-to-one mapping between the logical name
and the physical name for each of the devices, which is established by the device

registrar.

The present invention can also include a device information (dev_info) data
structure maintained by the device registrar representing physical associations of
the devices within the cluster, each of the physical associations corresponding to a -
physical name of a device file maintained by the global file system that represents a
respective one of the devices. Given this framework, a preferred embodiment of the
device registrar determines for an attached device a globally unique, device type
(dev_t) value; creates an entry in the dev_info data structure and a corresponding
physical name for the attached device; generates for the attached device a logical
name based on the dev_t value and the corresponding physiéal name; and
associates the dev_t value of the attached device with the device file representing

the attached device.

10

15

20

25

30

CA 02242006 1998-06-29

-13 -
BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention will be more readily apparent from
the following detailed description and appended claims when taken in conjunction

with the drawings, in which:

FIG. 1 is a block diagram of a prior art computer system showing components used

to provide access to devices on a single computer,

FIG. 2 is a block diagram showing the relationships in the prior art between

applications, the operating system kernel, the file system and the devices;

FIG. 2B is a block diagram showing the relationships in the prior art between device
logical names, physical names, the file system, device type identifiers (dev_t) and

devices.

FIG. 3 is a diagram of an exemplary device information tree (Devinfo Tree)

consistent with those employed in the prior art.

FIG. 4 is a flow diagram of operations performed in the memory 104 of the prior art -
computer system 100 in the course of opening a device as requested by an

application 150;

FIG. 5 is a block diagram of a computer cluster in which the present invention can

be implemented;

FIG. 6 is a block diagram of memory programs and data structures composing the
present invention as implemented in representative nodes 202 and 204 of the
cluster of FIG. 5;

FIG. 7A is a flow diagram that illustrates the operations by which the device driver

interface (DDI) Framework and the device configuration system (DCS) establish an

10

15

20

25

30

CA 02242006 1998-06-29

-14 -

appropriate dev_t value, logical name and physical name for a device being
attached to the node 202;

FIG. 7B illustrates the relationship between the local minor name/number, physical

name and logical name established by the present invention; and

FIGS. 8A and 8B are flow diagrams that illustrate the steps performed by the
present invention in response to a request from an application 150 executing on a

node 202-1 to access (open) a device that resides on a node 202-3.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to Figure 5, there is shown a block diagram of a computer cluster 210 in
which the present invention can be implemented. The cluster 201 includes a
plurality of nodes 202 with associated devices 106 and applications 150. As in FIG.
1, the devices 106 can include high availability devices 112, printers 114, kernel
memory 116, communication devices 118 and storage devices 120. For the
purposes of the present discussion a global file system 206, which maintains a
single, global file space for all files stored on the cluster 201, runs on one of the
nodes 202. The global file system 206 supports at least two representations of the
devices 106. The physical name space (PNS) representation 305 is accessible from
kernel space and corresponds to the physical arrangement of the device 106 on the
respective nodes 202. The logical name space (LNS) representation 304 is a user
space version of the physical name space 305; i.e., each entry in the logical name
space 304 maps to a corresponding entry in the physical name space 305. The
present invention modifies many aspects of this global file system 206 to allow
transparent, global access to the devices 106 by the applications 150. The cluster
201 also includes a node 204 that hosts a device configuration system (DCS) 208

that is a key component of the present invention.

In other embodiments there might be any number of global file systems 206, each of

which maintains its own physical and logical name spaces. In such an environment

10

15

20

25

30

CA 02242006 1998-06-29

-15 -

a particular device is accessed through only of the global file systems 206 and its

associated physical and logical name spaces.

As described above in reference to FIGS. 1-4, the prior Solaris device access
system allows transparent device access only within a single computer system.
Certain aspects of the way in which the prior art generates the logical names that
are mapped by the file system to the dev_t value of the device to be accessed are
not compatible with extending the current device access system to a cluster. For
example, assuming that the sets of devices 106-1, 106-2 each included four SCSI
disk drives, the logical naming system presently employed would result in different
drives on the different nodes 106-1, 106-2 having the same dev_t value. This would
make it impossible for an application 150-1 to access transparently a specific one of
the disk drives on the node 202-2. It is now described how the present invention

provides such transparent, global device access.

Referring to FIG. 6, there are shown additional details of a representative one of the
nodes 202 and the node 204, which hosts the DCS 208. The file system 206 is not
shown in this figure as it resides only on one particular node 202-2. Each node 202
includes a memory 230 in which operating system (OS) routines/objects 240 and
data structures 300 are defined. The OS routines 240 include an operating system -
kernel 242, a proxy file system (PxFS) 244, a special file system 258, a device driver
framework (DDI) 270, a set of device server objects (DSO) and device drivers 280.

As described above, the kernel 242 handles system calls from the applications 150,
such as requests to access the memory 230, the file system 206 or the devices 106.
The kernel 242 differs from the kernel 132 (FIG. 1) as it has Been modified by the
present invention to support global device access. The proxy file system (PxFS)
244 is based on the Solaris PxFS file system but, like the kernel 242, is modified
herein to support global device access. The PxFS 244 includes a collection of
objects that enable an application 150-i in one node 202-i to interact seamlessly
with the file system 206 across different nodes 202. The PxFS objects include PxFS
clients 246, PxFS servers 248, f_objs (file objects) 250, vnodes (virtual file nodes)
252, snodes (special file nodes) 254 and px_vnodes (proxy vnodes) 256. Each of

10

15

20

25

30

CA 02242006 1998-06-29

-16 -

these objects is labeled in FIG. 6 as optional (opt) as they are created as needed by

the PxFS 244 in response to operations of the file system 206.

The DDI framework 270 (hereinafter referred to as the DDI) is also similar to the DDI
framework 142 described in reference to the prior art (FIG. 1). However, the DDI
framework 270 is modified in the present invention to interact with the DCS 360 and
to generate physical and logical names that are compatible with devices 106 that
can be accessed on and from different nodes 202. The DDI 270 includes an attach
method 272 that is called every time a new device is attached to the local node 202.
In contrast to the prior attach method, the attach method 272 is configured to
employ the services of the DCS 360 to create a globally consistent physical name
for each and every attached device. The DDI framework 270 also includes a
collection of link generators 274 that generate unique logical names from
corresponding the physical names. There is different type of link generator for each
different type of device 106. Thus, the attach routine 272 and the link generators
274 respectively build the physical and logical name spaces that render the devices

106 globally visible at the kernel and user levels, respectively.

The present invention includes a set of DSOs 290 on each node of the cluster 200,
each of which manages a particular class 312 of devices 106. The respective -
device classes are a new aspect of the present invention that capture the
particularity with which a user’s request to open a particular device 106 must be
satisfied by the transparent, global device access system, generally, and the DCS
372, in particular. In the preferred embodiment there are four device classes:
dev_enumerate 314, dev_node_specific 316, dev_global 318 and dev_nodebound
320; and four corresponding DSOs 290: DSO_enum 292, DSb_nodespec 294,
DSO_global 296 and DSO_nodebound 298. "

The dev_enumerate class 314 is associated with devices 106 that can have multiple
instances at a particular node 202 that are enumerated by their associated driver
280 when each device is attached (e.g., multiple storage devices 120). The
dev_nodespecific class 316 is associated with devices 106 of which there is only

one instance per node (e.g., the kernel memory 116) and, as a result, are not

10

15

20

25

30

CA 02242006 1998-06-29

-17 -

enumerated by their drivers 280. The dev_global class 318 is for those devices 106
that can be accessed either locally or remotely using a driver that is resident on
each node (e.g., communication devices 118). The dev_nodebound class is used
for devices that can only be accessed using a driver on a particular node (e.g., HA

devices 112).

The drivers 280 are similar to the drivers 140 except they report additional
configuration information including, when available, the device class information 312

for each object being attached.

The data structures 300 include a Devinfo tree 302 and a ddi_minor_nodes table
306. Like many of the OS routines 240, the data structures 300 are similar to like-
named data structures 160 used by the prior art (FIG. 1). Each, however, embodies
important differences over the prior art that enable operation of the present
invention. In particular, the Devinfo tree 302 includes additional intermediate nodes
required to locate devices of selected classes within the cluster 200. As a result of
changes to the physical name space 305, which is represented by the Devinfo tree,
the logical name space 304 is also different from the prior art logical name space
164. Finally, the ddi_minor_nodes table 306 includes additional fields as compared
to the ddi_minor_nodes table employed by the prior art. For example, the present -
ddi_minor nodes table includes global_minor_number, local_minor_number and
(device) class fields 308, 310 and 312 (described above); the prior art

ddi_minor_nodes table did not include either of the fields 308 or 312.

The node 204 includes a memory 330 in which are defined OS routines/objects 340
and data structures 370. The OS routines/objects 340 include the device
configuration system (DCS) 360, a map_minor method 362 on the DCS and a set of
DSOs 290 identical to those already described. The data structures 370 include a
DCS database 372.

The DCS 360, for which there is no analog in the prior art, serves at least two
important functions. First, the DCS 360 works with the DDls 270 to assign global

minor numbers to newly attached devices that allow those devices to be globally

10

15

20

25

30

CA 02242006 1998-06-29

-18 -

and transparently accessible. Second, the DCS 360 works with the file system 206
and PxFS 244 to enable applications 150 to access transparently the attached
devices 106. The DCS_database 372 holds in persistent storage all important
results generated by the DCS 372. The two aspects of the DCS 360 are now
described below in reference to FIGS. 7A-B and 8A-B, respectively.

Referring to FIG. 7A, there is shown a flow diagram that illustrates the operations by
which the DDI Framework in a node 202 and the DCS 360 in the node 204 establish
an appropriate dev_t value, logical name and physical name for a device 380 being
attached to the node 202. Collectively, the DDIs 270, the link generators 274, the
DCS 360, and extensions thereof act as a device registrar for the cluster 200. The
operations and messages are indicated in the same manner as in FIG. 4A. Before
describing the operations represented in the flow diagram, the relationship between
some of the name spaces managed by the present invention are is described with

reference to FIG. 7B.

Referring to FIG. 7B, there is shown a conceptual diagram of the minor
name/number space 307, physical name space 305 and logical name space 304
employed in the present invention for an exemplary cluster including two nodes 202-
1, 202-2. As is described below, each time a device 106 is attached to a node 202 -
its driver assigns it a local minor number 307_num and name 307_name. The DDI
270 uses this information to generate a globally unique minor number and to form a
globally unique physical name 305_name for the device 106. The physical name
305_name locates the device in the cluster’'s device hierarchy. The link generators
274 then map the physical name 305_name to a globally unique logical name
304_name. Note that the DDIs 270-1, 270-2 and the link geﬁerators 274-1, 274-2
jointly generate common global physical and logical name spaces 305, 304,
respectively. In contrast, each driver generates a minor name/number space only
for its node 202. Thus, the present invention maps local minor names/numbers to
global physical and logical names. These global name spaces are a part of the file
system 206. Consequently, an application 150 on any node 202 can employ the file

system 206 to view and access all of the devices 106 on the cluster 200 as if they

10

15

20

25

30

CA 02242006 1998-06-29

-19-

were situated on a single computer. Having described the name spaces that form

its framework, the present invention is now described with reference to FIG. 7B.

Referring to FIG. 7B, when the device 106 is attached to the node 202 the DDI 270
issues an attach message (7-1a) to the driver 280. In return the driver 280 issues a
create_ddi_minor_nodes message (7-1b) to the DDI 270 for each device associated
with the just attached instance. The create_ddi_minor_nodes message (7-1b)
indicates the configuration of the device 380, including a local minor number
(minor_num) 382 and minor_name 384 assigned by the appropriate device driver
280 and a device_class 386 selected from one of the classes 312. For example, if
the device were the third SCSI disk drive attached to the node 202, the minor_num,
minor_name and class might be “3", , “a” (indicating that it is the first slice on that

device) and “dev_enumerate”, respectively.

In response to the create_minor_nodes message (7-1b) the DDI 270 updates the
ddi_minor_nodes table 380 by setting the local_minor_num field 310 equal to the
minor_num value 382 (7-2). The DDI 270 then issues a dc_map_minor message (7-
3) to the DCS 360 asking the DCS 360 to return an appropriate global minor number
388 for the device 380. What is meant in the previous sentence by “appropriate”
depends on the device class. That is, dev_enumerate and dev_nodebound devices-
require unique global minor numbers 388 and dev_global and dev_nodespecific
devices do not. The dc_map_minor message (7-3) has three fields: (1) “gminor”,
which is a return field for the global minor number 388 generated by the DCS 360;
(2) “Iminor”, which holds the local minor number 384 generated by the device driver
280; and (3) “class”, which holds the device class 386 generated by the device
driver 280. In response to the map_minor message (7-3) the DCS 360 issues a
similar ds_map_minor message (7-4) to the local DSO 290 for the class identified in
the message (7-3).

The DSO 290, among other things, determines the global minor (gmin) number 388
that should be assigned to the device being attached. How the gmin number is
assigned depends on the class 386 of the device. For example, the DSO 292 for

the dev_enumerate class 314 assigns each dev_enumerate device a gmin number

10

15

20

CA 02242006 1998-06-29

-20 -

388 that is unique across the cluster because each enumerated device must be
accessed at a specific node. In contrast, the DSO 296 for the dev_global class 318
assigns each dev_global device the same gmin number as it is immaterial at which
node such devices are accessed. As for the other classes; the DSO 294 for the
dev_node specific class 316 assigns each device of that class the same, non-null
gmin number and the DSO 298 for the dev_nodebound class 320 assigns each

device of that class a gmin number that is unique across the cluster.

The DSOs 292, 298 assign global minor numbers by first consulting the DCS

database 372 to determine which global minor numbers are still available.

The DCS database 372 is held in persistent storage and includes, for all devices

106 in the cluster 200, fields for major number 390, global minor number 388,
internal (or local) minor number 382 and device server id 392 (comprising server
class 386 and numerical value 394). The minor name, major number, global minor
number and local minor number have already been described. The numerical value
394 identifies the node 202 that is the server for the device being attached. This
information is optional for dev_global and dev_nodespecific devices as the identity
of a server for the first class is irrelevant and, for the second case, is the same as
the location of whatever node wishes to access the device. An example of the DCS -

database 272 is shown in Table 1.

10

15

20

25

CA 02242006 1998-06-29

-21 -
TABLE 1
device major global internal device server id 392:
(not a field) 390 minor 388 | minor 382 server numerical
| class 386 | value 394
tcp 42 0 0 dev_global |0
kmem 13 12 12 dev_node_ |0
spec
disk 32 24 24 dev_enum | node id
c2t0d0s0
kmem 13 1 12 dev_enum |[nodeOid
kmem 13 2 12 dev_enum | node 1 id
kmem 13 3 12 dev_enum | node 2 id
kmem 13 4 12 dev_enum | node 3id
HA devices |M X1 X1 dev_nodeb |id
ound

The first line of Table 1 shows an entry for a tcp interface. A tcp interface is a
dev_global device as it can be accessed from every node 202 in the cluster 200.
The tcp device has a major number of 42, which is the value associated with all tcp
drivers. Note that its global and local minimum values 388, 382 and server
numerical value 394 (i.e., node_id) are set to 0. This is because it is immaterial
from what node the tcp interface is accessed. Consequently, there is only one tcp
entry in the DCS database for the entire cluster 200. The second entry in Table 1 is
for a kernel memory device, which, by default, is accessed locally. For this reason,
it is of the dev_nodespecific class. The major number 13 is associated with the
kmem device driver. The kmem device has a null numerical value 394 as kmem
devices are not accessed at any particular server and identical, non-null global and
local minimum numbers (12). This is the case as, for dev_nodespecific devices the
DCS 360 simply assigns a global minor number that is identical to the local minor

number. In the present example, there is only one kmem entry of the

10

15

20

25

30

CA 02242006 1998-06-29

-22-

dev_nodespecific variety in the DCS database 372 as there is no need to

distinguish between the kmem devices located on respective nodes 202.

The third entry is for a SCSI disk cOt0d0t0 whose SCSI driver has major number 32.
The DCS 360 has assigned the SCSI device a global minor number 388 that is
identical to its local minor number 382 (24) as there are no other SCSI devices
represented in the DCS database 372. However, if another SCSI device c0t0dOt0
were registered at a different node with the same local number (24), the DCS 360
would assign that SCSI a different global number, perhaps 25. To distinguish SCSI
devices with the same local numbers, the DCS database 372 includes complete
server information. In this case the numerical value 394 is set to the hostid of the

server 202.

Entries four through seven are for four kernel memory devices that are registered as
dev_enumerate devices. Inthe preferred embodiment, each time a
dev_nodespecific device is registered, additional entries can be created in the DCS
database 372 for all of the nodes 202 in the kernel, which allows a user to access a
dev_nodespecific device on other than the local node. Consequently, assuming
there are four nodes 202-1, 202-2, 202-3 and 202-4 , the DCS 260 can register a
kernel memory device of the dev_enumerate class for each of those nodes. As with -
other dev_enumerate devices, each kmem device is assigned a unique global
number. The dev_enumerate information would not be used when a user issues a
generic request to open a kernel memory device (e.g., open(/devices/kmem)). The
dev_enumerate information would be used when a user issues a specific request to
open a kernel memory device. For example, the request open(/devices/kmemoO)

allows a user to open the kmem device on node 0.

The final entry shows how a generic high availability (HA) device is represented in
the DCS database 372. The major number 390, global minor number, and local
minor number are taken from the values M, X1 and X1 provided in the map_minor
nodes message. The numerical value 394 is set to the id of the device, which is
bound to a particular node. This “id” is not a node id. Rather, the id is created

uniquely for the cluster 200 for each HA service.

10

15

20

25

30

CA 02242006 1998-06-29

-23-

Once the global minor number 388 is determined for the device 380, the appropriate
DSO 290 updates the DCS database 372 with the new information (7-5) and returns
the global minor number 388 to the DCS 360 (7-6). The DCS 372 then returns the
global minor number 388 to the DDI 270 (7-7), which updates the ddi_minor_nodes
table 306 (7-9), the logical name space 304, the physical name space 305 and the
dev_info tree 302 (7-9). The DDI 270 updates the ddi_minor nodes table 306 by
writing therein the new global minor number 388. The update to the name spaces

304/305 is more complex and is now described.

First, the DDI 270 adds a new leaf node to the Devinfo tree 302, the structure of
which is changed from that previously described in reference to FIG. 3 to include,
just below the “/devices” node, an additional level of “/hostid” nodes to represent
the cluster sites where dev_enumerate are attached. Note that each node 202 has
its own Devlinfo tree 270 that represents the devices on that node. However, as
represented by the physical name space the collection of Devinfo trees is merged
into a single representation with the additional /hostid nodes. (e.g., a typical
physical name might stért out with the string, /devices/hostid/. . .). Each device is
also associated at the leaf level with its global minor number 388, not its local minor
number 382. Where relevant (i.e., for dev_enumerate devices) the dev_t value of
each leaf node of the Devinfo tree 302 is derived from the corresponding device’s
global minor number 388 and its driver's major number 390. For example, the
physical path to a SCS! disk on a node 202-x with a global minor number GN, minor
name MN, and driver sd@addry is represented in the present invention as:
/devices/node_202-xflommu@addr/sbus@addr/esp@addr/sd@add/y:MN.

This physical name corresponds to the physical name of the UFS file 170 (FIG. 2B)
that includes configuration information for the given device including, in its

attributes, the dev_t value derived from the major and global minor numbers.

The link generators 274 of the present invention derive a logical name for the device
(and for the corresponding UFS) from at least a portion of the Devinfo path and the
minor name provided by the driver modified in accordance with the global minor

number returned by the DCS.

10

15

20

25

30

CA 02242006 1998-06-29

-24 -

For example, assume that the node 202-1 has one SCSI disk with four slices
originally assigned by its driver minor names a-d and minor numbers 0-3 and the
node 202-2 has one SCSI disk with six slices assigned the minor names a-f and
minor numbers 0-5. Assume that, when these devices are attached, the DCS 360
returns for the first SCSI disk global minor numbers of 0-3 and for the second SCSI
disk global minor numbers of 4-9. Using these global minor numbers, the DDIs 270
create physical names (described below) and the link generators 274 use the DDlIs

270 to create logical names that map to the physical names as follows::

minor name from driver 280 logical name from link generators 274
a (node 202-1) /dev/dsk/c0t0d0s0O
b “ /dev/dsk/c0t0d0s1
c ¢ /dev/dsk/c0t0d0s2
d “ /dev/dsk/c0t0d0s3
a (node 202-2) /dev/dsk/c1t0d0s0
b “ /dev/dsk/c1t0d0s1
f ¢ /dev/dsk/c1t0d0sS

The logical names assigned to the node 202-1 and 202-2 devices have different
cluster values (the cx part of the logical name string cxt0dOsy, where “x” and ‘y" are -
variables). This is because the logical names map to device physical names and, in
a cluster, devices on different nodes are associated with different controllers. For
example, the node 202-1 controller is represented as c0 and the node 202-2

controller as c1.

The DDIs 270 generate the physical name space 305 using the same gmin
information and produce a map between logical names and physical names
identifying files whose attributes contain the dev_t values for the corresponding
devices. For the above example, the logical name space 304 and the logical name
space to physical name space map is updated as follows (note that addr substitutes

for any address):

logical name physical name from Devinfo tree 302

10

15

20

25

30

CA 02242006 1998-06-29

-25-

/dev/dsk/c0t0d0s0O /devices/node_202-1/iommu@addr/sbus@addr/es
p1@addr/sd@0:a

/dev/dsk/c0t0dOs1 “ /esp1@addr/sd@0:b

/dev/dsk/c0t0d0s2 “ /esp1@addr/sd@0:c

/dev/dsk/c0t0d0s3 “ /esp1@addr/sd@0:d

/dev/dsk/c1t0d0s0O /devices/node_202-2/iommu@addr/sbus@addr/es
p1@addr/sd@0:minor

/dev/dsk/c1t0d0s1 “ lesp1@addr/sd@0:e

/dev/dsk/c1t0d0s2 “ lesp1@addr/sd@0:f

/dev/dsk/c0t0d0s5 “ /esp1@addr/sd@0:i

The example just presented shows the DDls 270 generate logical and physical
names for dev_enumerate devices, of which class SCSI devices are a member.
Briefly summarized, the rules for naming dev_enumerate devices require that each
instance enumerated by a particular driver (e.g., sd) must have a unique global
minor number, which, when combined with its driver's major number forms a
corresponding, unique dev_t value. These rules also specify that the physical name
associated with each instance must include the hostid of that instance and the
instance’s global minor number in addition to other traditional physical path
information. The rules for naming the other devices from the other classes are

similar to those described above for the dev_enumerate class.

In particular, the DD 270 assigns a dev_nodespecific device a logical name of the
form /dev/device_name and physical name of the form:
/devices/pseudo/driver@gmin:device_narhe,
where device_name is the name 384, pseudo indicates that devices of this type are
pseudo devices, driver is the id of the corresponding driver and
@gmin:device_name indicates the global number 388 and device name 384 of the
dev_nodespecific device. For example, the logical and physical names of a kernel
memory device could be /dev/kmem and devices/pseudo/mm@12:kmem,
respectively. As mentioned above, a kmem device can also be given a logical name

that enables it to be accessed on a specific node. For example, the DDI 270 can

10

15

20

25

30

CA 02242006 1998-06-29

-26 -

map the logical name /dev/kmem0 to the physical name
/devices/hostid0/pseudo/mm@0:kmem.

For the dev_global class each logical name generated by the DDI identifies a
common physical path that will be resolved to any device in the cluster 200 by the
file system. Logical names for these devices are of the form /dev/device_name and
are mapped to physical names of the form:
/devices/pseudo/clone@gmin.device_name,
where device_name is the name 384, which is specific to the driver, pseudo
indicates that devices of this type are pseudo devices, clone indicates that the
device is cloneable and @gmin:device_name indicates the global number 388 and
device name 384 of the dev_global device. For example, the tcp device from Table
1 might have a logical name of /dev/cp and a physical name of
/devices/pseudo/clone@0:tcp. Note that the present invention does not allow any of
dev_global devices to be made distinguishable, as in the case of the kmem devices,

described above. That is, all dev_global devices are indistinguishable.

An advantage of fhe class-based naming system of the present invention is that it is
compatible with legacy software designed for prior versions of Solaris. For example,
a legacy program might issue an open(/dev/kmem) request, in which case a version-
of Solaris embodying the present invention returns a handle to the local kmem
device. The present invention provides similar results for dev_global and
dev_enumerate devices. There was no conception in the prior art for

dev_nodebound devices.

Having described how the DDI 270 and the DCS 360 form a éonsistent global name
space in which different classes of devices can be accessed on different nodes of
the cluster 200, the steps employed by the present invention to respond to an open
request for a device on another node is now described in reference to FIGS. 8A and

8B

Referring to FIGS. 8A and 8B, there are shown flow diagrams of the steps

performed by the present invention in response to a request (8-1) from an

10

15

20

25

30

CA 02242006 1998-06-29

.97 -

application 150 executing on a node 202-1 to access (open) a device 106-2 (FIG.
3p) that resides on a node 202-3. In this example, the file system 206 and the DCS
360 reside on the nodes 202-2 and 204, respectively. The application 150 issues
the open request to the local 242 on the device’s logical name. The kernel 242 then
queries the file system 206 to determine the device’s dev_t value. Because the file
system is on a different node from the kernel 242, this is a multistep process that
involves the use of a proxy file system PxFS, most aspects of which are already
defined by current versions of Solaris. However, the present invention modifies
such proxy file system elements as PxFS clients 246 and PxFS servers 248 to
support interactions with the DCS 360, for which there is no analog in prior versions
of Solaris. The interactions between the PxFS client 246, PxFS server 248 and the

file system 206 are now briefly described.

An object such as the kernel 242 that needs to access the file system 206 first
issues the access request to its local PxFS client 246. The PxFS client holds a
reference to the PxFS server 248 co-located with the file system 206. This
reference enables the PxFS client 246 to communicate the kernel’s request to the
file system 206 via the PxFS server 248. The file system 206 performs the
requested access, creates a vnode object 252 representing the requested file and
returns a reference to vnode object 252 to the PxFS server 248. Because the nodes
202-1 and 202-2 are different address spaces, the reference to the vnode 252 is
useless to the PxFS client 246 and kernel 242 in the node 202-1. Consequently, the
PxFS server 248 creates a file transport object (f_obj) 250 linked to the vnode 252
and returns a reference to the f_obj 150 to the PxFS client 246. Upon receiving the
f_obj reference the PxFS client 246 creates a proxy vnode (px_vnode) 256 that is
linked to the f_obj 250. The kernel 242 can then access the ﬁle information

represented by the vnode 252 by simply accessing the local px_vnode 256.

Using this mechanism, the kernel 242 issues a lookup message (8-2) on the logical
name of the device to be opened to the PxFS client 246, which relays a similar
lookup message (8-3) to the PxFS sever 248. The PxFS server 248 issues the file

system 206 a lookup(logical_name), get_vnode message (8-4), which asks

10

15

20

25

30

CA 02242006 1998-06-29

-28 -

the file system 206 to map the logical_name to the corresponding physical_name
via a logical symbolic link return a reference to a v_node 252 representing the UFS
file identified by that physical_name. When the physical_name refers to a device as
in the present example, the attributes of the device include the unique dev_t of the
device. As described above, the file system 206 then returns the vnode to the PxFS
server 248 (8-5) and the PxFS server 248 creates a corresponding f_obj 250 and
returns the f_obj 250 reference to the PxFS client 246 (8-6). The PxFS client 246
then creates a px_vnode 256 whose attributes include the dev_t information for the
requested device and passes the px_vnode 256 reference to the kernel 242 (8-7).
At this point, the kernel 242 issues an open message (8-8) to the PxFS client 246
for the px_vnode 246. Upon receiving this message, the PxFS client 246
determines from the px_vnode's attributes, which include a dev_t value, that the
corresponding vnode 252 represents a device and therefore the open message
must be handled by the DCS 360. If the px_vnode 256 did not contain a dev_t
value, the PxFS client 246 would satisfy the open request (8-8) through other
channels. As implemented in prior versions of Solaris, the PxFS client does not

perform any testing for dev_t values as devices are only locally accessible.

Because the px_vnode 256 includes a dev_t value 430, the PxFS client 246 issues
a resolve message (8-9) to the DCS 360 for the device corresponding to the dev_t. -

How the DCS 360 handles this request is now described in reference to FIG. 3B

Referring to FIG. 8B, in response to the resolve(dev_t) message (8-9) the DCS 360
performs a lookup in the DCS database 372 to determine the location and identity of
the device that corresponds to that dev_t value. Consistent with the preceding
discussions of the device classes 312, devices of the dev_enhmerate or
dev_nodebound classes are accessed on a particular node whose location is
specified in the numerical value field 394 of the DCS database 372. In contrast,
devices of the dev_global or dev_nodespecific classes are accessed on the local
node of the requesting application. Once it has determined the location of the
device to be opened, the DCS 360 returns (8-10) to the PxFS client 246 a reference
(DSO_ref) to the DSO 290 that manages the device class to which the requested

device belongs and is local to the node that hosts the requested object. Inthe

10

15

20

25

30

CA 02242006 1998-06-29

-29-

present example, assuming that the requested device 106-2 is of the
dev_enumerate class and is hosted on the node 202-3, the returned DSO_ref would
be to the DSO_enum object 292 on the node 202-3.

After receiving the message (8-10) the PxFS client 246 issues a get_device_fobj
request for the device 106-2 to the referenced DSO 292 (8-11). In response, the
DSO 292 issues a create_specvp() message (8-12) asking the SpecFS 410 on the
node 202-3 to create and return (8-13) the snode for the device 106-2. The DSO
292 then requests (8-14a) the f_obj reference to the snode from the PxFS server
248-2, which returns the requested f_obj (8-14b). The DSO 292 then returns the
fobj reference to the snode to the PxFS client 246 (8-15). The client 246 then
issues an open request (8-16) on this fobj that goes to the SpecFS 410 via the PxFS
server 248-2 (8-17).

The SpecFS 410 then attempts to open the device 106-2. Depending on the
outcome of the open operation the SpecFS 410 returns a status message (8-18)
indicating either success or failure. If the open was successful, the status message
(8-18) also includes a reference to the opened snode 432. Upon receiving
“success” in the status message (8-18) the PxFS server 248-2 creates the f_obj
250-2 for the opened v_node 252-2 and returns it back to the PxFS client 246 (8-
19), which creates a px_vnode 256-2 that is linked across nodes to the f_obj 250-2.
As the final step in the device open operation the PxFS client returns the px_vnode
256-2 to the kernel 242 (8-20), which creates a corresponding user space file
descriptor (fd) 434. The kernel 242 returns this file descriptor to the application
150-1 (8-21), which can then use the file descriptor 434 to interact directly (i.e., via
the kernel 242, PxFS client 246 and px_vnode) with the deviée 106-2.

While the present invention has been described with reference to a few specific
embodimenté, the description is illustrative of the invention and is not to be
construed as limiting the invention. Various modifications may occur to those skilled
in the art without departing from the true spirit and scope of the invention as defined

by the appended claims.

10

15

20

25

30

CA 02242006 1998-06-29

-30-
WHAT IS CLAIMED IS:

1. A system for rendering devices on a cluster globally visible, wherein the
- cluster includes a plurality of nodes on which the devices are attached, the
system comprising a device registrar configured to establish for each of the

devices at least one globally unique identifier enabling that device to be

accessed from any of the nodes.

2, The system of claim 1, further comprising:
a global file system running on the cluster;
wherein the at least one globally unique identifier comprises:
a globally unique logical name by which users of the cluster identify
the device; and
a globally unique physical name by which the global file system

identifies the device.

3. The system of claim 1, further comprising:
a global file system running on the cluster; and

a device information (dev_info) data structure maintained by the device

registrar representing physical associations of the devices within the cluster, each of

the physical associations corresponding to a physical name of a device file
maintained by the global file system that represents a respective one of the devices:
wherein the device registrar is configured to:

determine for an attached device a globally unique, device type
(dev_t) value;

create an entry in the dev_info data structure and a corresponding
physical name for the attached device;

generate for the attached device a logical name based on the dev_t
value and the corresponding physical name; and

associate the dev_t value of the attached device with the device file

representing the attached device.

10

15

20

25

30

CA 02242006 1998-06-29

-31-

4, The system of claim 3, further comprising a plurality of device drivers for
managing the devices, each driver being configured to assign to each attached,
local device it manages a local minor number, each of the drivers being associated

with a globally unique, major number.

5. The system of claim 4, wherein the device registrar comprises a device driver
interface (DDI) configured to determine whether the local minor number is globally

unique.

6. The system of claim 3, wherein the device registrar comprises:
a device driver interface configured to map the globally unique dev_t values
to the physical names; and

a link generator configured to map the physical names to the logical names.

7. The system of claim 6, wherein the devices are classified in predetermined
device classes that include at least one of:

“dev_enumerate,” for designating devices with at least one occurrence
managed by a particular driver, each of the occurrence managed by the particular
driver on a node being individually enumerated;

“dev_nodespecific,” for designating devices available on each node that are -
accessed locally and have a one-to-one relationship with the managing driver on
each node;

“dev_global,” for designating devices for access from drivers on any such
node; and

“dev_nodebound,” for designating devices for access by a driver on a

particular node and having a one-to-one relationship with the driver.

8. The system of claim 7, further comprising a device configuration system
(DCS) hosted on one of the cluster nodes that maintains a persistent DCS database
comprising for each device in the cluster a major number of the device driver that
manages the device, the local minor number, the global minor number and an id of

the node hosting the device;

10

15

20

25

30

CA 02242006 1998-06-29

-32-

wherein the DDI generates the globally unique identifier by request to the
DCS and the DCS database.

9. A method for use in a cluster including a plurality of nodes, at least a subset
of which have associated devices, for converting a local device name associated
with a device instance on a particular node to an object handle that allows a user of

any of the nodes to access the device instance.

10. The method of claim 9, comprising the steps of.

determining for at least the instances associated with a subset of
predetermined device classes whether the local device name is globally unique and,
if not, to determine a globally unique identifier for the respective local instance;

forming a device information tree representing physical associations of the
devices within the cluster, each path between a root node and a leaf node of the
tree corresponding to a physical name of a device file maintained by a global file
system that represents a respective one of the device instances;

generating for each instance a logical name based on the globally unique
identifer that is mapped to that instance’s corresponding physical name; and

associating the globally unique identifier of a particular instance with the
device file representing that particular instance;

such that a user of the cluster can access any the devices by issuing the

global file system a request to access the device identified by its logical name.

11. The method of claim 10, further comprising the steps of:

maintaining a persistent database comprising for each logical device in the
cluster the local device name, a major number of a device dri;/er that manages the
logical device, a local minor number assigned by the device driver to the logical
device, a global minor number corresponding to the local minor number and a hostid
of the node hosting the logical device; and '

generating the globally unique identifier, the logical name and the physical

name for the logical device using the persistent database.
smart & Biggar

Ottawa, Canada
patent Agents

02242006 1998-06-29

CA

¢9l 93l] ojujas(q

091 ~ sainjoni)s ejeq
051 suojjeolddy
of Lepou” Joulw~9)ealo” 1pp (31v 0114)
144" slojelsus9 Ju |) K|
A4 Yiomeweld |ad
ovi SJaAl(g 901N .
Gol ooedg swe) [edisAyd
91 9oedg aweN |ediboT
sgel - Sdoads
ugel . S4N
ngel S4N
cll SdO SPOUA
Sogl sapous
oel SOPOUA —
1 el wa)sAs o)1 col
oL | 2el LI Ndd
AowsiN | pgl wasAg Buneladp
801 ~/
saoeuaU| 4R S80IA9(J Opnasd
=h]) ETg| 0YA) S90INa(] 9bel0)g
gLl S90IAS(Q "WIWO0YD e~
~1 9Ll Aowep joulay 001
90L | ¥L1 slajuud
S0 | CLI $90IN8Q VH

02242006 1998-06-29

CA

(Gav Jo11Q) (1 J011g)
a7 'Ol VT 'OlA
901
s90INe(]
aoea)U| soli4
—~—— _ >}OMBN
5 .
(¥Asp)senqupe T—~_ 01 | | x ‘
| L __
" | v__! Yy
| S8EL [| TsET |\ | nger |!
| S4oadg SAN |\ | s4n |
I
- o021 ! \ v !
sall4 S4N (Sapous) (Sapour’ @
sogl \~~| /19SH - aggy
__ 7oL (sapouny
dweu |eoisAyd fe— vel - ooeds ol
. waysAsaig swepN !
- [eo1607 ¢t
891 Jahe g4A/apouA
v N bl
aweu |ed1boj 7C]
oo b/} J0yduosap ayy oUIaY

C udde™

0s1—

02242006 1998-06-29

CA

(¥'ze)

(RTINS | R | o (p=u)
¢ oLl (e'ze) (z'ze) (1'2¢) (0'ze) =1 Asp
0@
ps
(e=uiw) (z=uiw) (=uiw) (o=uiw) (ze=lew) (ze=lew)
GIppe pippe® cippe®@
N1V Ldso Ldso
2ippe® LIPPE®
10d sngs
0JppeEQ@
NWwiwol

¢9l

02242006 1998-06-29

CA

(G1v Jo1)
b -OId

((epoun)ioyduosap aj)uinial (0L-p)
‘(smejs uado)uinial (6-v)
(snyeys”uado)uinal (g-v)

‘(cnep)uado (2-)
‘(epoun)uado (9-)
‘(spoun)uinial (5-v)
‘{(spoun)uinial (y-+)
:(”Aep)apoun3eb (g-p)
‘(sweu|ed1bo))epoun3eb (zZ-v)
‘(aweujeaiboj)uado (L-¥)

701 90eds [ouldy]

C1 9311 ojujae(

A e LIaALQ

\ x

USUMS 3dineQ

¥€1 @oeds sweN [ed1607

cel

EIEY

N0l 90eds 1osn

oV)

oSt
uddy

02242006 1998-06-29

CA

S O

€-0¢l
e-8lLl
€9Ll
eyl
A

$90IN8(abelols
$30IN9(QQ ‘WWO0D
Aowsy jauiay
sJajuld
S30INQ VYH

¢-0cl
¢8lLl
¢9ll
cvil
ATANS

S901A8(] 9beI0)S
S30IAS(] "WWO0D
Aowap jouioy
s19uld

$90IA9QJ VH

_

.

€-901 mmo_>®®

ﬁ ¢-901 savned

H

Y

L0C J93SN|D

L-0¢l
1-811
L-9L1
vl
AN

$82iA8(] abelo)s
$301A8(Q "WWO09
Aowaj [pule)y
slajuld

$821A8J YH

ﬁ 1-901 sadiAeQ

00¢

9 "OId

02242006 1998-06-29

CA

901 S82lA8g
| 0Z€ punogapou”Asp L -
‘91¢ [eqojbASp ‘9lLg OHI0adsSapou ASp ‘g Sjelawnua ASp 90¢€ S3pou Jouiw Ipp
, YA 93l ojujARQ
00¢ sainonisS ejeq
082 . SJIBANQ 821A(Q
86¢ punogspou 0Osd
962 leqol6”0sa
62 oadsapou 0Sq
N CUE _ _ 018 _ _ 80¢ Z262 wnua—0sa
SSEJ0 "ASp) JaquunuTioulw [Bo0]| Jaquinu” Jouiw _mno_m 062 sOSsq
,)2 siojesausb yul| .
— c/lc yoene
AR aseqelep SOd 0.2 yomsuweld |aq
0.€ Salnonils ejeq 86z S4oads
_ 062 (3do) sapoun xd
v9¢e Joujw dew $62Z (3do) sepous
062 __sosd YATA (1do) sapoua
z9¢e Jouiwdew | ose (3do) slqo~}
09¢ Sod 8yZ (1do) sianies S4Xd
ove syafqo/seunnoy SO | ovz (1do) syua1P S4Xd
oee Aows|y vz S4Xd
cve _lsuisy
- 70z 8poN 0vZ ~ s}09[qO/Saunnoy SO
0¢e AOWS

\- 20z 9PON

02242006 1998-06-29

CA

00Z

‘wioysAsaly ayepdn (g-2)

‘(louiwb) winyas (2-2)

‘(leA”wnu—sQq ‘adAy s ‘Jouiwb ‘Jouiwy ‘Jofew) aseqeyep SOQ eyepdn (9-2)

‘(Jounwb) uinyal (g-2)

, ‘(Jourwb ‘souw) ‘Jofew) Jouiw—dew™sp (-2)
V. ‘OLd ‘(ssejo Jouiwb ‘Joujwy ‘sofews) Joulw—dew op (g-2)
‘(ssejo ‘Joulwy ‘Jouiwb) sepoutouiw”1pp ajepdn (6-2)'(z-2)

:(98¢€ sseo ‘P8¢ aweu Joujw ‘Z8E wnu Joulw) sapou”Jouiw ayeald 1pp (qL-2)

:Oyoeype (e}-2)

~
sooedg sweN
3 98¢ z8¢ 88¢ 06€ [eo1skyd/ieoibo /~90€
aNjeA "wny SSe|0 JaAISg ulW™ [eulsjul uiw™ |eqo|b|sofew . _ _
- G0c/voe Sopou Joulw 1pp
Z26¢ > \ cle _

i [
53
asegejed SOd

_
b0z~ 20z

02242006 1998-06-29

CA

q.L "OId

G0¢ 9oeds ->07 3pou
Z2-10¢ @oeds aweu [eoisAyd N\ cog op 0¢ mom%w
laquinu/aweu Joulw ; 7 aweu |e2160)
—
¢-0L¢ vl .
ZIoAUP > 1aqa \ / *| Joyesausb yuy g
O P
—
1-0.2 L-v.C
LISAP g iaa / g Jojesauab yuj| >
aweu 6o¢
\\\\
1-/0¢ @oeds / aweu $0¢
laquinu/aweu Jouiw whu™;0¢ 1-20Z 5poU

aweu /0¢

02242006 1998-06-29

CA

V8 "Old

cle
oseqejed SOJ

(6)

N\~ y0Z 3pON /

_ 0ty
‘(4 Aop) anjosal (6-g)
‘(epoun~xd) uado (g-g)
(" nep=me)apourxd) unjai (2-g)
‘()a17 1q0™}) uinyai (9-g)
‘(epoun) uinjas (g-g)
:(sweu|eoisAyd) spounT3ab ‘()dnyoo] (4-g)
‘(sweujeoiboj) dnyooj (g-g)
‘(eweueoib0]) dnyoo) (z-g)

~ ¢-¢0C 9PON

(€)

) o

sl

1057 ddy

‘(sweujeoiboy) uado (1-g)

N\~ |-20Z apoN

02242006 1998-06-29

CA

a8 "OId

(ps) winyay (0zZ-8)

'[qo™} pauado uinyal (g 1-8)

‘apous pauado uinjai (81-8)

‘() uado™oads (/1-8)

'(Igo™3) uado (91-8)

((fgo™)) wmei (g1-8)

{(lgo™y) winjeu (ay1L-8)

‘(spoun) [qo™y 106 (ey1-g)
]

€-¢0Z °PON

clE
oseqejeq SOd

09¢ (o) A - 2-962
$0Q oV
JusiD
(6) S4Xd
\~ 10z apoN

:(epous) uinjal (g1-8)
‘(dnoads ayeal0 (Z1-9)

-("Aep) [qoy eo1nep 186 (L 1-8)

(02)
}-0G 1 ddy
4o~ 0sa) wnal (01-8)

{(4"Aap) onjosai (5-g) N\~ |-20Z 9PON

200

Cluster 201

HA Devices
Printers

Kernel Memory
Comm. Devices
Storage Devices

112-1
114-1
116-1
118-1
120-1

HA Devices
Printers

Kernel Memory
Comm. Devices
Storage Devices

112-2
114-2
116-2
118-2
120-2

HA Devices
Printers

Kernel Memory
Comm. Devices
Storage Devices

112-3
114-3
116-3
1183
120-3

	Page 1 - COVER_PAGE
	Page 2 - COVER_PAGE
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - DRAWINGS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - REPRESENTATIVE_DRAWING

