MEANS AND METHODS FOR IMPROVED TREATMENT USING "SETRONES"

The present invention relates to the use of "setrones" for the preparation of a pharmaceutical composition for treating and/or preventing "setrone-treatable diseases" in a patient having a genotype with a first or second variant allele which comprises a polynucleotide in accordance with the present invention. Preferably, a nucleotide deletion, addition and/or substitution comprised by said polynucleotide results in an altered expression of the first and/or second variant allele compared to the corresponding wild type allele or an altered activity of the polypeptide encoded by the variant allele compared to the polypeptide encoded by the corresponding wild type allele. Finally, the present invention relates to a method for selecting a suitable therapy for a subject suffering from "setrone-treatable diseases" as well as to methods of treatment for treating and/or preventing "setrone-treatable diseases".
Means and methods for improved treatment using ‘setrones’

The present invention relates to the use of setrone drugs i.e. ondansetron (1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)methyl]-4H-carbazol-4-one) or tropisetron (1[alpha]H,5H-tropan-3-yl indole-3-carboxylate), dolasetron ((2a,6a,8a,9ab)-octahydro-3-oxo-2,6-methano-2H-quinolizin-8-yl-1H-indole-3-carboxylate monomethane-sulfonate), granisetron (endo-N-(9-methyl-9-azabicyclo [3.3.1] non-3-yl)-1-methyl-1H-indazole-3-carboxamide) for the preparation of a pharmaceutical composition for treating and/or preventing postoperative nausea and/or vomiting, or nausea and/or vomiting secondary to cancer chemotherapy, radiation therapy, migraine, acetaminophen poisoning, prostacyclin therapy, and opioid treatment, spinal or epidural opioid-related pruritus, acute levodopa-induced psychosis, bulimia nervosa, fibromyalgia, chronic fatigue syndrome, obsessive-compulsive disorders, schizophrenia, alcoholism, cocaine addiction, opioid withdrawal syndrome, drug withdrawal phenomena, anxiety disorders, cognitive disturbances, neuroleptic-induced tardive dyskinesia, tourette's syndrome, migraine, headache, and gastrointestinal motility disorders in a patient having a genotype with a first, a second or a first and a second variant allele which comprises a polynucleotide in accordance with the present invention. Preferably, a nucleotide deletion, addition and/or substitution comprised by said polynucleotide results in an altered expression of the first, a second or a first and a second variant allele compared to the corresponding wild type allele or an altered activity of the polypeptide encoded by the variant allele compared to the polypeptide encoded by the corresponding wild type allele. Finally, the present invention relates to a method for selecting a suitable therapy for a subject suffering from postoperative nausea and/or vomiting, or nausea and/or vomiting secondary to cancer chemotherapy, radiation therapy, migraine, acetaminophen poisoning, prostacyclin therapy, and opioid treatment, spinal or epidural opioid-related pruritus, acute levodopa-induced psychosis, bulimia nervosa, fibromyalgia, chronic fatigue syndrome, obsessive-
compulsive disorders, schizophrenia, alcoholism, cocaine addiction, opioid withdrawal syndrome, drug withdrawal phenomena, anxiety disorders, cognitive disturbances, neuroleptic-induced tardive dyskinesia, tourette's syndrome, migraine, headache, and gastrointestinal motility disorders as well as to methods of treatment for treating and/or preventing 'setrone-treatable diseases'.

Nausea and vomiting are severe side effects of cancer chemotherapy and the incidence of these adverse effects frequently influences the success of the individual cancer therapy (Stewart, Can J Physiol Pharmacol 68 (1990), 304-313). Three different forms of vomiting or nausea induced by cancer chemotherapy can be distinguished: the acute emesis within the first 24 hours, the delayed emesis after the first 24 hours up to 6 days and the anticipatory emesis (Andrews and Davis. In Andrews PL SG (ed): Emesis in anti-cancer therapy. London, Chapman and Hall, 1993, pp 113-161). Various mechanisms contribute to these effects, as shown by the following examples: Cisplatinum, one archetypical emetogenic drug leads to increased the release of serotonin from enterochromaffin cells of the gut, which in turn increases the number of episodes of emesis (Cubeddu, N Engl J Med 322 (1990), 810-816). This effect can partially be counteracted by interference with the serotonin system: For example, lower serotonin concentrations, and in consequence less emesis were observed when patients had been pretreated with an inhibitor of serotonin synthesis (Alfieri, Br J Cancer 71 (1995), 629-632). Metoclopramide, which shows serotonin antagonist properties at higher therapeutic doses, as well as the treatment with serotonin (5-hydroxytryptamine) receptor type 3 antagonist (5-HT₃ antagonist), can reduce emesis significantly (Cunningham, Lancet 1 (1987), 1461-1463; Kris, J Clin Oncol 6 (1988), 659-662).

The molecular mechanism of acute emesis seems to be a peripheral and/or central serotonin release with consecutive activation of 5-HT₃ receptors on peripheral vagal fibers and central regions as the area postrema and ncl. tractus solitarii (Tyers, Oncology, 49 (1992), 263-268; Miller and Leslie, Front Neuroendocrinol, 15 (1994), 301-320; Gregory, Drugs 55 (1998),173-189). This correlation between serotonin release and nausea and vomiting had also been observed during treatment with

Other anticancer drugs like cyclophosphamide may not by themselves directly increase the serotonin release in humans, but the induced emesis is still sensitive to 5-HT$_3$ receptor antagonists (Cubeddu, Br J Cancer 72 (1995), 1033-1038, Minami, Res Commun Mol Pathol Pharmacol 97 (1997), 13-24).

The prophylactic administration of 5-hydroxytryptamine (5-HT$_3$) receptor antagonists, a class of drugs with similar structural properties that can be summarized as 'setrones' (e.g. ondansetron, tropisetron, granisetron or dolasetron), plays a major role in the current antiemetic treatment (Gralla, J Clin Oncol 17 (1999), 2971-2994). The application of 'setrones' results in a significant improvement of cancer therapy, as well as quality of live in cancer patients (Cunningham, Lancet 1 (1987),1461-1463; Jantunen, Eur J Cancer 33 (1997), 66-674).

In addition to the emetogenic level of the chemotherapeutic agents, individual factors such as female sex, younger age, alcohol consumption and pre-existing nausea correlate with the individual risk of acute vomiting, which can be treated with 5-HT$_3$ receptor antagonists. While 'setrones' are effective in many patients, about 20-30% of the patients do not respond satisfactorily to 5-HT$_3$ receptor antagonists (Gregory, Drugs 55 (1998),173-189).

All currently known 5-HT$_3$ receptor antagonists are metabolized by the cytochrome P450 (CYP) enzymes: tropisetron and dolasetron predominantly by CYP2D6, ondansetron partially by CYP2D6 but also by CYP3A4, CYP2E1, or CYP1A2 and granisetron mainly by CYP3A4 (Fischer, Drug Metab Dispos 22 (1994), 269-2674, Sanwald, Drug Metab Dispos 24 (1996), 602-609, Corrigan, Drug Metab Dispos 27 (1999), 110-112, Dixon, Drug Metab Dispos 23 (1995),1225-1230, Firkusny, Biochem Pharmacol 49 (1995), 1777-1784, Bloomer, Br J Clin Pharmacol 38 (1994), 557-566). For the genetically polymorphic enzyme CYP2D6, several alleles have been detected which result in defective, qualitatively altered, diminished or enhanced activity (http://www.imm.ki.se/CYPalleles/cyp2d6.htm; Sachse, Am J Hum
Genet, 60 (1997), 284-295). About 5%-10% of Caucasians, the so-called poor metabolizers (PMs) of the model substrates debrisoquine and sparteine, completely lack CYP2D6 activity, and about 2% of Caucasians are so-called ultrarapid metabolizers with more than two active genes due to a duplication or even an amplification of the CYP2D6 gene (Johansson, Proc Natl Acad Sci U S A 90 (1993), 11825-9). The proportion of poor and ultrarapid metabolizers varies between different populations (Ingelman-Sundberg, Trends Pharmacol Sci 20 (1999), 342-349). An inverse correlation was demonstrated between CYP2D6 activity, measured by the sparteine metabolic ratio, and the bioavailability of oral tropisetron, i.e. PMs had higher tropisetron Cmax and AUC levels and showed longer halflifes (Kees, Br J Clin Pharmacol 52 (2001), 705-707). However, drug response does not necessarily correlate with pharmacokinetics. Although CYP2D6 genotypes have been shown to correlate with plasma levels of CYP2D6-metabolized anti-retroviral drugs, no association could be detected between CYP2D6 genotype and therapeutic outcome (Fellay, Lancet 359 (2002), 30-36). So far, a correlation between CYP2D6 genotype, phenotype, and antiemetic efficacy of ‘setrones’ has not been demonstrated, even though the polymorphic CYP2D6 system has been known to experts in the field for many years, and has been analyzed for a variety of drugs for many medical indications.

CYP2D6 is not the only factor which might influence the efficacy of antiemetic therapy with ‘setrones’. Other factors that could interfere with the therapeutic efficacy of antiemetic drugs which target the ‘serotonin system’ are the regulatory regions and genes that provide the molecular target for the action of ‘setrones’, as well as genes that control the uptake and distribution and excretion of ‘setrones’ and their metabolites.

The serotonin receptor (5-HT₃ receptor) might serve as one example: The 5-HT₃ receptor antagonists act through specific binding to the 5-HT₃ receptor. This receptor belongs to the family of ligand-gated ion channels, which after activation becomes permeable preferentially for monovalent cations like Na⁺, K⁺ and divalent cations like Ca²⁺ (Maricq, Science 254 (1991), 432-437; Jackson, Annu Rev Physiol 57 (1995), 447-468). Two subunits of the 5-HT₃ receptor, the 5-HT₃A, 5-HT₃B and
two human brain splice variants of the 5-HT$_{3A}$ receptor have been identified (Belelli, Mol Pharmacol 48 (1995), 1054-1062; Miyake, Mol Pharmacol 48 (1995), 407-416; Bruss, Ann N Y Acad Sci 861 (1998), 234-235; Davies, Nature 397 (1999), 359-363; Dubin, J Biol Chem 274 (1999), 30799-30810). The 5-HT$_3$ receptor channel itself is an oligomeric complex of five of these subunits (Boess and Martin, Neuropharmacology 33 (1994), 275-317; Boess, J Neurochem 64 (1995), 1401-1405). Until now, it is not finally clarified if the 5-HT$_3$ receptor is either homo- or heteropentameric in his native status (Bruss, Naunyn Schmiedebergs Arch Pharmacol 362 (2000), 392-401). The in vitro expression of a homopentameric 5-HT$_{3A}$ receptor leads to a functional ion channel, but only with small single conductance in contrast to neuronal 5-HT$_3$ receptors (Fletcher, Trends Pharmacol Sci 19 (1998), 212-215). However, heteropentameric 5-HT$_3$ receptors composed of both subunits assemble to functional 5-HT-gated channels but with a similar high single-channel conductance, low permeability to calcium ions and current-voltage relationship as the native 5-HT$_3$ channels (Davies, Nature 397 (1999), 359-363; Dubin, J Biol Chem 274 (1999), 30799-30810). Moreover, 5-HT$_{3A}$ and 5-HT$_{3B}$ receptor subunits have been detected in anatomical structures which seem to be involved in the mechanism of chemotherapy induced nausea like the area postrema, amygdala, hippocampus, and the small intestine and colon (Davies, Nature 397 (1999), 359-363; Dubin, J Biol Chem 274 (1999), 30799-30810). The 5-HT$_{3B}$ receptor (HTR3B) gene resides on the long arm of chromosome 11 at band 23.1, has nine exons, coding for a 441 amino acid residues and spans at least 55 kb (Davies, Nature 397 (1999), 359-363). So far, hereditary polymorphisms or variants of the 5-HT$_{3B}$ receptor (HTR3B) gene, which correlate with the activity or non-activity of indole-containing 5-hydroxytryptamine (5-HT$_3$) receptor antagonists (e.g. ondansetron, tropisetron, granisetron or dolasetron) have not been described.

Means and methods for improving the efficacy of the currently available antiemetic therapies and avoiding the aforementioned insufficient activity or non-activity, which are accompanied with the said therapies are not available yet but are nevertheless highly desirable. However, a correlation of genetic factors and the efficacy of antiemetic setrone therapy, or assays that predict the therapeutic efficacy of
serotonin-antagonist therapy based upon the genetic influence has not been made available yet.

Thus, the technical problem underlying the present invention is to provide improved means and methods for the efficient treatment and/or the prevention of 'setrone-treatable diseases'.

The technical problem underlying the present invention is solved by the embodiments characterized in the claims.

Accordingly, the present invention relates to the use of 'setrones' for the preparation of a pharmaceutical composition for treating and/or preventing 'setrone-treatable diseases' in a subject having in its genome less than three copies of a polynucleotide encoding a functional CYP2D6 polypeptide.

The term "setrones" as used in accordance with the present invention refers to substances characterized by the general structural formula which is based on the indole-containing chemical structure of 5-hydroxytryptamin shown below or to variants thereof (e.g. Granisetron) which are obtainable by chemical modifications. The setrones encompass ondansetron, tropisetron, dolasetron, granisetron, azasetron, itasetron, ramosetron, palonosetron, lerisetron, zatosetron, clinasetron, alosetron hydrochloride and ricasetron, which act as serotonin receptor antagonists.
Further variants and modifications of setrones are described in US patents: 4,695,578; 4,753,789; 5,578,628; 5,955,488; 6,063,802; 4,886,808; 6,294,548; 5,360,800 and 4,906,755 and are herewith incorporated by reference.

Also encompassed by the use of the present invention are derivatives of those substances which are obtainable by way of any chemical modification, wherein said derivatives are equally well therapeutically suited for the use of the present invention. To determine whether a derivative of the substances of the invention is equally well therapeutically suited for the use of the invention biological assays well known in the art can be performed. It has been shown that ondansetron, tropisetron, dolasetron, granisetron are particularly well suited for the treatment and/or prevention of 'setrone-treatable diseases'. Thus, more preferably the substances used according to the present invention are ondansetron, tropisetron, dolasetron,
granisetron, azasetron, itasetron, ramosetron, palonosetron, lerisetron, zatosetron, clinasetron, alosetron hydrochloride and ricasetron. Most preferably the substances used according to the present invention are ondansetron and tropisetron.

The term "pharmaceutical composition" as used herein comprises the substances of the present invention and optionally one or more pharmaceutically acceptable carrier. The substances of the present invention may be formulated as pharmaceutically acceptable salts. Acceptable salts comprise acetate, methylester, HCl, sulfate, chloride and the like. The pharmaceutical compositions can be conveniently administered by any of the routes conventionally used for drug administration, for instance, orally, topically, parenterally or by inhalation. The substances may be administered in conventional dosage forms prepared by combining the drugs with standard pharmaceutical carriers according to conventional procedures. These procedures may involve mixing, granulating and compressing or dissolving the ingredients as appropriate to the desired preparation.

It will be appreciated that the form and character of the pharmaceutically acceptable character or diluent is dictated by the amount of active ingredient with which it is to be combined, the route of administration and other well-known variables. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. The pharmaceutical carrier employed may be, for example, either a solid or liquid. Exemplary of solid carriers are lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like. Exemplary of liquid carriers are phosphate buffered saline solution, syrup, oil such as peanut oil and olive oil, water, emulsions, various types of wetting agents, sterile solutions and the like. Similarly, the carrier or diluent may include time delay material well known to the art, such as glyceryl mono-stearate or glyceryl distearate alone or with a wax.

The substance according to the present invention can be administered in various manners to achieve the desired effect. Said substance can be administered either alone or in the formulated as pharmaceutical preparations to the subject being treated either orally, topically, parenterally or by inhalation. Moreover, the substance can be administered in combination with other substances either in a common pharmaceutical composition or as separated pharmaceutical compositions.
The diluent is selected so as not to affect the biological activity of the combination. Examples of such diluents are distilled water, physiological saline, Ringer's solutions, dextrose solution, and Hank's solution. In addition, the pharmaceutical composition or formulation may also include other carriers, adjuvants, or nontoxic, nontherapeutic, nonimmunogenic stabilizers and the like. A therapeutically effective dose refers to that amount of the substance according to the invention which ameliorate the symptoms or condition. Therapeutic efficacy and toxicity of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population). The dose ratio between therapeutic and toxic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50.

The dosage regimen will be determined by the attending physician and other clinical factors; preferably in accordance with any one of the above described methods. As is well known in the medical arts, dosages for any one patient depends upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. Progress can be monitored by periodic assessment.

A typical dose can be, for example, in the range of 5 to 100 mg however, doses below or above this exemplary range are envisioned, especially considering the aforementioned factors. Generally, the regimen as a regular administration of the pharmaceutical composition should be in the range of 1 μg to 10 mg units per day. If the regimen is a continuous infusion, it should also be in the range of 1 μg to 10 mg units per kilogram of body weight per minute, respectively. Progress can be monitored by periodic assessment. However, depending on the subject and the mode of administration, the quantity of substance administration may vary over a wide range to provide from about 0.01 mg per kg body mass to about 10 mg per kg body mass, usually 0.1 to 1 mg per kg body mass.

The pharmaceutical compositions and formulations referred to herein are administered at least once in accordance with the use of the present invention. However, the said pharmaceutical compositions and formulations may be
administered more than one time, for example from one to four times daily up to a non-limited number of days.

Specific formulations of the substance according to the invention are prepared in a manner well known in the pharmaceutical art and usually comprise at least one active substance referred to herein above in admixture or otherwise associated with a pharmaceutically acceptable carrier or diluent thereof. For making those formulations the active substance(s) will usually be mixed with a carrier or diluted by a diluent, or enclosed or encapsulated in a capsule, sachet, cachet, paper or other suitable containers or vehicles. A carrier may be solid, semisolid, gel-based or liquid material which serves as a vehicle, excipient or medium for the active ingredients. Said suitable carriers comprise those mentioned above and others well known in the art, see, e.g., Remington’s Pharmaceutical Sciences, Mack Publishing Company, Easton, Pennsylvania. The formulations can be adopted to the mode of administration comprising the forms of tablets, capsules, suppositories, solutions, suspensions or the like.

The dosing recommendations will be indicated in product labeling by allowing the prescriber to anticipate dose adjustments depending on the considered patient group, with information that avoids prescribing the wrong drug to the wrong patients at the wrong dose.

The present invention also encompasses all embodiments described in connection with pharmaceutical compositions in US patents: 4,695,578; 4,753,789; 5,578,628; 5,955,488; 6,063,802; 4,886,808; 6,294,548; 4,906,755.

The term “treating” refers to a statistically significant (p value less than 0.05) cure or alleviation of the diseases in subjects or disease populations which have been treated. Said cure or alleviation of the diseases can be monitored by the degree of the clinical symptoms accompanied with the disease. Whether said number of subjects is significant can be determined by statistical tests such as the Student’s t-test, the chi²-test, the U-test according to Mann and Whitney, the Kruskal-Wallis-test (H-Test), Jonckheere-Terpstra-test or the Wilcoxon-test.

The term “preventing” refers to a successful prevention or alleviation of the occurrence of the diseases in a statistically significant (p value less than 0.05)
number of subjects or disease population to which the setrones have been administered. Said prevention or alleviation of the disease can be monitored by the degree of the clinical symptoms accompanied with the disease. Whether said number of subjects is significant can be determined by statistical tests such as the Student’s t-test, the chi²-test, the U-test according to Mann and Whitney, the Kruskal-Wallis-test (H-Test), Jonckheere-Terpstra-test or the Wilcoxon-test.

The term “setrone-treatable diseases” comprise diseases and dysregulations related to the central and peripheral nervous system or secondary to drug treatment. Preferred diseases encompassed by the use of the present invention are postoperative nausea and/or vomiting, or nausea and/or vomiting secondary to cancer chemotherapy, radiation therapy, migraine, acetaminophen poisoning, prostacyclin therapy, and opioid treatment, spinal or epidural opioid-related pruritus, acute levodopa-induced psychosis, bulimia nervosa, fibromyalgia, chronic fatigue syndrome, obsessive-compulsive disorders, schizophrenia, alcoholism, cocaine addiction, opioid withdrawal syndrome, drug withdrawal phenomena, anxiety disorders, cognitive disturbances, neuroleptic-induced tardive dyskinesia, tourette’s syndrome, migraine headache, and gastrointestinal motility disorders. Said diseases and dysregulations are well known in the art and the accompanied symptoms are described, e.g., in standard text books such as Stedman. Particularly preferred, the ‘setrone-treatable diseases’ are nausea and/or vomiting secondary to cancer chemotherapy, and radiation therapy.

The term “subject” as used in the sense of the present invention comprises animals, preferably those specified herein after, and humans.

In the context of the present invention the term “polynucleotides” or “polypeptides” refers to different variants of a polynucleotide or a polypeptide specified in accordance with the uses of the present invention. Said variants comprise a reference or wild type sequence of the polynucleotides or polypeptides specified herein as well as variants which differ therefrom in structure or composition. The term “polynucleotide” as used herein preferably encompasses the nucleic acid sequence specifically referred to by SEQ ID NOs and as well as polynucleotides
comprising the reverse complementary nucleic acid sequence thereto. Reference or wild type sequences for the CYP2D6 polynucleotides are Genbank accession No.: GI:181303 or Genbank accession No.: GI:181304 for the CYP2D6 polypeptide. The differences in structure or composition usually occur by way of nucleotide or amino acid substitution(s), addition(s) and/or deletion(s). Details about the differences in structure or composition of the polynucleotides and polypeptides referred to in the present invention are state of the art and are described for example for different CYP2D6 alleles at http://www.imm.ki.se/CYPalleles/cyp2D6.htm. Preferred deletions in accordance with the invention are a deletion of the whole functional CYP2D6 gene resulting in a polynucleotide comprising SEQ ID No: 47, or a T deletion at a position corresponding to position 3326 or an AG deletion at a position corresponding to position 4232 to 4234 (Genbank accession No.: GI:181303), preferred insertion is a T insertion at a position corresponding to position 1756/1757 of the CYP2D6 gene (Genbank accession No.:GI:181303). Preferably, said nucleotide substitution(s), addition(s) or deletion(s) referred to in accordance with the use of the present invention result(s) in one or more changes of the corresponding amino acid(s) of the polypeptides. The variant polynucleotides also comprise fragments of said polynucleotides or polypeptides. The present invention also encompasses all embodiments described in connection with polynucleotides in PCT/EP01/00954, PCT/EP01/01456, PCT/GB96/02360, United state patents 5,981,174; 6,183,963; 5,648,482; 5,912,120; and 5,719,026. The term “corresponding” as used herein means that a position is not only determined by the number of the preceding nucleotides and amino acids, respectively. The position of a given nucleotide or amino acid in accordance with the use of the present invention which may be deleted, substituted or comprise one or more additional nucleotide(s) may vary due to deletions or additional nucleotides or amino acids elsewhere in the gene or the polypeptide. Thus, under a “corresponding position” in accordance with the present invention it is to be understood that nucleotides or amino acids may differ in the indicated number but may still have similar neighboring nucleotides or amino acids. Said nucleotides or amino acids which may be exchanged, deleted or comprise additional nucleotides or amino acids are also comprised by the term “corresponding position”. Said nucleotides or amino acids may for instance together with their neighbors form sequences which may be involved in the regulation of
gene expression, stability of the corresponding RNA or RNA editing, as well as encode functional domains or motifs of the protein of the invention. By, e.g., "position 4232 to 4234" it is meant that said polynucleotide comprises one or more deleted nucleotides which are deleted from position 4232 to position 4234 of the corresponding wild type version of said polynucleotide. The same applies mutatis mutandis to all other position numbers referred to in the above embodiment which are drafted in the same format. By, e.g., "position 1756/1757" it is meant that said polynucleotide comprises one or more additional nucleotide(s) which are inserted from position 1756 to position 1757 of the corresponding wild type version of said polynucleotide. The same applies mutatis mutandis to all other position numbers referred to in the above embodiment which are drafted in the same format, i.e. two consecutive position numbers separated by a slash (/).

The term "functional CYP2D6 polypeptide" as used herein refers to a polypeptide with wildtype CYP2D6 activity corresponding to the polypeptide of Genbank accession No.: GI: 181304 which forms the *1 (wildtype) allele or to a polypeptide encoded by the *2 allele as depicted infra. Preferred methods for diagnosing a CYP2D6 duplication are described below in more detail. The phenotype of each subject (enzymatic CYP2D6 activity) can be determined e.g. by measuring the sparteine oxidation, the dextromethorphan and debrisoquine metabolic ratio as described in Bock, Pharmacogenetics 4 (1994), 209-218; Griese, Pharmacogenetics 8 (1998), 15-26 and Sachse, Am J Hum Genet 60 (1997), 284-295. Most preferably, the polynucleotide of the use of the present invention is the CYP2D6*1 or *2 allele referred to herein.

In accordance with the present invention, the mode and population distribution of genetic variations in the CYP2D6 gene - the different alleles of the CYP2D6 gene - have been analyzed by sequence analysis of relevant regions of the human said gene from many different individuals. It is a well known fact that genomic DNA of individuals, which harbor the individual genetic makeup of all genes, including the CYP2D6 gene, can easily be purified from individual blood samples. These individual DNA samples are then used for the analysis of the sequence composition of the alleles of the CYP2D6 gene that are present in the individual which provided
the blood sample. The sequence analysis was carried out by PCR amplification of relevant regions of said genes, subsequent purification of the PCR products, followed by automated DNA sequencing with established methods (e.g. ABI dye terminator cycle sequencing), allelic discrimination assays using Taq Man or allele specific polymerase chain reaction (AS PCR) analysis.

A preferred and convenient method to be used in order to determine the presence or absence of one or more of the above specified polynucleotides is to isolate blood cells from a subject and to perform a PCR based assay on genomic DNA isolated from those blood cells, whereby the PCR is used to determine whether said polynucleotides specified herein above or parts thereof are present or absent. Most preferably, said method for diagnosing a duplication of a functional CYP2D6 polynucleotide is by Xbal RFLP analysis, allele specific polymerase chain reaction (ASPCR) analysis as described in more detail in Bock, Pharmacogenetics 4 (1994), 209-218; Griese, Pharmacogenetics 8 (1998), 15-26; Johannsson, Proc Natl Acad Sci USA 90 (1993), 11825-11829; Johannsson, Pharmacogenetics 6 (1996), 351-355 and Sachse, Am J Hum Genet 60 (1997), 284-295 or allelic copy number determination using 5’nuclease assay technology such as the TaqMan PCR detection system, or the Invader™-Assay technology.

Furthermore, the presence of three or more copies of a polynucleotide encoding a functional CYP2D6 polypeptide is also referred to as duplication or multiplication of active CYP2D6 genes. Initially only the CYP2D6*2 allele appears to be duplicated but more recent findings indicate a duplication of CYP2D6*1 (Dahl, J Pharmacol Exp Ther 274 (1995), 516-20; Bernal, Pharmacogenetics 9 (1999), 657-60.) and *35 (http://www.imm.ki.se/CYPalleles/cyp2d6.htm). CYP2D6*35 corresponds to a polypeptide encoded by the *2 allele as depicted infra in addition to an amino acid substitution of Val to Met at a position corresponding to position 11 of the CYP2D6 polypeptide (Genbank accession No.: GI: 181304). Since the enzyme activity of CYP2D6*35 is comparable to wildtype activity it is regarded as a functional CYP2D6 polypeptide belonging to a subgroup of *2. It appears that the CYP2D6*2x2 is the most common duplication among Caucasians. Furthermore, there can be a variable number of active CYP2D6 alleles; up to 13 copies of the *2 have been described
(Johansson, Proc Nati Acad Sci U S A 90 (1993), 11825-9; Bertilsson, Br J Clin Pharmacol 53 (2002), 111-22.). Whereas the multiplication of active genes leads to an ultra-rapid metabolizer phenotype (UM phenotype), the duplication of the inactive CYP2D6*4 allele in combination with a second poor-metabolizer allele (PM allele) results in a poor-metabolizer phenotype (PM phenotype).

Moreover, the presence of three or more copies of a polynucleotide encoding a functional CYP2D6 polypeptide can be determined by determining the presence of a polynucleotide comprising SEQ ID NO: 48 in the genome of the said subject. Consequently, a subject having in its genome less than three copies of a polynucleotide encoding a functional CYP2D6 polypeptide is lacking in its genome a polynucleotide having SEQ ID NO: 48.

One important parameter that has to be considered in the attempt to determine the individual genotypes and identify novel variants of the CYP2D6 gene by direct DNA-sequencing of PCR-products from human blood genomic DNA is the fact that each human harbors (usually, with very few abnormal exceptions) two gene copies of each autosomal gene (diploidy). Because of that, great care has to be taken in the evaluation of the sequences to be able to identify unambiguously not only homozygous sequence variations but also heterozygous variations. The details of the different steps in the identification and characterization of the polymorphisms in the CYP2D6 gene (homozygous and heterozygous) are described in the Examples below.

Over the past 20 years, genetic heterogeneity has been increasingly recognized as a significant source of variation in drug response. Many scientific communications (Meyer, Ann. Rev. Pharmacol. Toxicol. 37 (1997), 269-296 and West, J. Clin. Pharmacol. 37 (1997), 635-648) have clearly shown that some drugs work better in some patients than in others or may even be highly toxic and that such variations in patients’ responses to drugs can be correlated to a molecular basis. This “pharmacogenomic” concept spots correlations between responses to drugs and genetic profiles of patient's (Marshall, Nature Biotechnology, 15 (1997), 954-957; Marshall, Nature Biotechnology, 15 (1997), 1249-1252). In this context of population
variability with regard to drug therapy, pharmacogenomics has been proposed as a tool useful in the identification and selection of patients which can respond to a particular drug without side effects. This identification/selection can be based upon molecular diagnosis of genetic polymorphisms by genotyping DNA from leukocytes in the blood of a patient, for example, and characterization of disease (Bertz, Clin. Pharmacokinet. 32 (1997), 210-256; Engel, J. Chromatogra. B. Biomed. Appl. 678 (1996), 93-103). For the founders of health care, such as health maintenance organizations in the US and government public health services in many European countries, this pharmacogenomics approach can represent a way of both improving health care and reducing costs related to health care caused by the development of unnecessary drugs, by ineffective drugs and by side effects due to drug administration.

The mutations in the variant genes of the invention sometimes result in amino acid deletion(s), insertion(s) and in particular in substitution(s) either alone or in combination. It is of course also possible to genetically engineer such mutations in wild type genes or other mutant forms. Methods for introducing such modifications in the DNA sequence of said genes are well known to the person skilled in the art; see, e.g., Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y.

Usually, said amino acid deletion, addition or substitution in the amino acid sequence of the protein encoded by the polynucleotide referred to in accordance with the use of the present invention is due to one or more nucleotide substitution(s), insertion(s) or deletion(s), or any combinations thereof. Preferably said nucleotide substitution may result in an amino acid substitution of Pro to Ser at a position corresponding to position 34 of the CYP2D6 polypeptide (Genbank accession No.: GI: 181304) and/or Gly to Arg at a position corresponding to position 42 of the CYP2D6 polypeptide (Genbank accession No.: GI: 181304) and/or His to Gly at a position corresponding to position 258 of the CYP2D6 polypeptide (Genbank accession No.: GI: 181304) and/or Arg to Cys at a position corresponding to position 296 of the CYP2D6 polypeptide (Genbank accession No.: GI: 181304) and/or His to Pro at a position corresponding to position 324 of the CYP2D6
polypeptide (Genbank accession No.: GI: 181304) and/or Ser to Thr at a position corresponding to position 486 of the CYP2D6 polypeptide (Genbank accession No.: GI: 181304). The polypeptides encoded by the polynucleotides referred to in accordance with the use described herein have altered biological properties due to the mutations referred to in accordance with the present invention. Examples for said altered properties are stability of the polypeptides which may be effected, an altered substrate specificity or substrate binding or an altered catalytic activity resulting in, e.g. an altered catalytic activity characterized by an insufficiency in drug metabolism, a complete loss of the capability to metabolize drugs or an enhanced capacity to metabolize drugs as described in the present invention.

The mutations in the CYP2D6 gene detected in accordance with the present invention are listed in Tables 1 and 2. As is evident to the person skilled in the art, the genetic knowledge of the polynucleotides specified herein above can be used to exactly and reliably characterize the genotype of a patient. An partial response or nonresponse to a treatment and/or prevention of a diseases, such as ‘setrone-treatable diseases’ referred to herein, which is associated with an enhanced CYP2D6 catalytic activity can be predicted based on the genetic knowledge.

Advantageously, preventive or therapeutical measures which are based on ‘setrones’ can be more efficiently applied when taking into consideration said genetic knowledge. Undesirable side effects of said substances can be avoided and an effective but not harmful dosage can be calculated individually due the knowledge of the genetic makeup of the subject. Moreover in accordance with the foregoing, in cases where a given drug causes an unusual effect, a suitable individual therapy can be designed based on the knowledge of the individual genetic makeup of a subject. The use of the present invention, therefore, provides an improvement of the therapeutic applications which are based on the known therapeutically desirable effects of the substances referred to herein above since it is possible to individually treat the subject with an appropriate dosage and/or an appropriate derivative of said substances. Furthermore, the use of the present invention provides an improvement of the therapeutic applications which are based on the known therapeutically desirable effects of the substances referred to herein
above since it is possible to identify those subject prior to onset of drug therapy and treat only those subjects with an appropriate dosage and/or an appropriate derivative of said substances who are most likely to benefit from therapy with said substances. Thereby, the unnecessary and potentially harmful treatment of those subjects who do not respond to the treatment with said substances (nonresponders) can be avoided. In these patients, e.g. those which are ultrarapid metabolizers, a different antiemetic approach is required.

In a preferred embodiment of the use of the present invention said subject is having in its genome at least one first variant allele which comprises a polynucleotide selected from the group consisting of: the allele CYP2D6*3, CYP2D6*4, CYP2D6*5, CYP2D6*6, CYP2D6*7, CYP2D6*8, CYP2D6*11, CYP2D6*12 and CYP2D6*15. The explanations and definitions of the terms made above apply mutates mutandis. The term "first variant allele" as used herein refers to a polynucleotide comprising one or more of the polynucleotides described herein corresponding to a CYP2D6 gene. Each individual subject carries at least two alleles of the CYP2D6 gene, wherein said alleles are distinguishable or identical. In accordance with the use of the present invention a variant allele comprises at least one or more of the polynucleotides specified herein above. Said polynucleotides may have a synergistic influence on the regulation or function of the first variant allele. Preferably, a variant allele in accordance with the use of the present invention comprises at least two of the polynucleotides specified hereinafter. Such variant alleles comprising at least two of the polynucleotides of the present invention encompass the following haplotypes which are defined by certain combinations of single nucleotide polymorphisms (SNPs):

The 4168A nucleotide deletion (SEQ ID NO 15) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *3 allele, the 3465G>A nucleotide substitution (SEQ ID NO 13) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *4 allele, the deletion of the entire coding sequence of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *5 allele (SEQ ID 47), the deletion of nucleotide T at position 3326 (SEQ ID NO 09) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *6 allele, the 4554A>C substitution (SEQ ID NO 21) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *7
allele, the 3377G>T nucleotide substitution (SEQ ID NO 11) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *8 allele, the 4469C>T nucleotide substitution (SEQ ID NO 19) of the CYP2D6 gene (Genbank accession No.: GI:181303) in combination with the nucleotide substitutions 1743G>A (SEQ ID NO 3) and 5799G>C (SEQ ID NO 23) of the CYP2D6 gene (Genbank accession No.: GI:181303) is responsible for the *12 allele, the 2502G>C nucleotide substitution (SEQ ID NO 07) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *11 allele, and the insertion of nucleotide T at position 1756/1757 (SEQ ID NO 05) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *15 allele. Furthermore, the present invention also encompasses first variant alleles which comprise polymnucleotides which are capable of hybridizing to the polymnucleotides having the above referenced SEQ ID Nos and which have a nucleotide deletion, substitution or insertion on a position corresponding to the positions referred to above. The term “hybridizing” is explained in detail below. The explanations apply mutates mutandis for the polymnucleotides referred to herein forming the CYP2D6 alleles.

In a preferred embodiment of the use of the present invention said subject is having in its genome at least one first variant allele which comprises a polymnucleotide selected from the group consisting of: the allele CYP2D6*1, CYP2D6*2, CYP2D6*9, and CYP2D6*10.

The explanations and definitions of the terms made above apply mutates mutandis.

The following haplotypes which are defined by certain combinations of single nucleotide polymorphisms (SNPs) form the aforementioned alleles:

The *1 allele of CYP2D6 has been described above and shown in SEQ ID NO: 49 and the combination of nucleotide substitutions 4469G>C (SEQ ID NO 19) with 5799G>C (SEQ ID NO 23) of the CYP2D6 gene (Genbank accession No.: GI:181303) is responsible for the *2 allele. Furthermore, the deletion of nucleotides AGA at positions 4232 to 4234 (SEQ ID NO 17) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *9 allele, and the combination of the 1719C>T (SEQ ID NO 01) with the 5799G>C (SEQ ID NO 23) nucleotide substitutions of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *10 allele.
The invention furthermore relates to the use, preferably the use as defined supra, of ‘setrones’ for the preparation of a pharmaceutical composition for treating and/or preventing ‘setrone-treatable diseases’ in a subject having in its genome a second variant allele which comprises at least one

a) polynucleotide having the nucleic acid sequence of SEQ ID NO: 026, and

b) polynucleotide capable of hybridizing to a HTR3B gene, wherein said polynucleotide is having at a position corresponding to position 36678 to 36680 of the HTR3B gene (Genbank accession No.: GI:17425234) an AAG.

The term “second variant allele” refers to an allele of a second gene being different from said first gene corresponding to the first allele described herein above. According to the present invention said second variant allele corresponds to a HTR3B gene comprising one or more of the polynucleotides specified above. Dependent on the polynucleotide specified above the individuals can be subgrouped into a non-responder group and a responder group or partial responder group. According to the present invention the subjects carrying two deletion polynucleotides (del/del) are subgrouped as non-responders and subjects carrying at least one insertion polynucleotide as responder or partial responder. More preferably, the subject has in its genome one or two second variant alleles comprising a polynucleotide having the nucleic acid sequence shown in SEQ ID NO: 26. Most preferably, the subject having in its genome one or two second variant alleles comprising a polynucleotide having the nucleic acid sequence shown in SEQ ID NO: 26 is lacking two second variant alleles comprising a polynucleotide having a nucleic acid sequence as shown in SEQ ID NO: 25.

The term “hybridizing” as used herein refers to polynucleotides which are capable of hybridizing to the above polynucleotides or parts thereof which are associated with a HT3RB dysfunction or dysregulation. Thus, said hybridizing polynucleotides are also associated with said dysfunctions and dysregulations. Preferably, said polynucleotides capable of hybridizing to the aforementioned polynucleotides or parts thereof which are associated with HT3RB dysfunctions or dysregulations are at least 70%, at least 80%, at least 95% or at least 100% identical to the polynucleotides or parts thereof which are associated with HT3RB dysfunctions or
dysregulations. Therefore, said polynucleotides may be useful as probes in Northern or Southern Blot analysis of RNA or DNA preparations, respectively, or can be used as oligonucleotide primers in PCR analysis dependent on their respective size. Also comprised in accordance with the use of the invention are hybridizing polynucleotides which are useful for analyzing DNA-Protein interactions via, e.g., electrophoretic mobility shift analysis (EMSA). Preferably, said hybridizing polynucleotides comprise at least 10, more preferably at least 15 nucleotides in length while a hybridizing polynucleotide to be used as a probe preferably comprises at least 100, more preferably at least 200, or most preferably at least 500 nucleotides in length.

It is well known in the art how to perform hybridization experiments with nucleic acid molecules, i.e. the person skilled in the art knows what hybridization conditions s/he has to use in accordance with the present invention. Such hybridization conditions are referred to in standard text books, such as Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. Preferred in accordance with the use of the present inventions are polynucleotides which are capable of hybridizing to the above polynucleotides or parts thereof which are associated with a HT3B dysfunction or dysregulation under stringent hybridization conditions, i.e. which do not cross hybridize to unrelated polynucleotides such as polynucleotides encoding a polypeptide different from the polypeptides of the invention.

Moreover, methods for determining whether a subject comprises a polynucleotide referred to herein above are well known in the art. To carry out said methods, it might be necessary to take a sample comprising biological material, such as isolated cells or tissue, from said subject. Further, the methods known in the art could comprise for example, PCR based techniques, RFLP-based techniques, DNA sequencing-based techniques, hybridization techniques, Single strand conformational polymorphism (SSCP) analysis, denaturating gradient gel electrophoresis (DGGE), mismatch cleavage detection, heteroduplex analysis, techniques based on mass spectroscopy, HPLC-based techniques, primer extension-based techniques, and 5’-nuclease assay-based techniques.

In accordance with the present invention said first variant allele corresponding to the CYP2D6 gene and a second variant allele corresponding to the HTR3B gene as
specified above, if present in combination in the genome of a subject, synergistically alter the pharmacological response of said subject to the administration of 'setrones'. Hence, in accordance with the use of the present invention the diseases and disorders referred to herein can be more efficiently treated or prevented whereby said therapies or preventive measures are more convenient for the subject. Moreover, the applicability of therapeutic measures comprising administration of the substances referred to herein above can be more efficiently predicted compared to the state of the art.

As has been found in accordance with the present invention, the pharmacokinetics of a drug which is based on 'setrones' and the pharmacological response of a subject is mainly governed by the polypeptides encoded by the CYP2D6 and HTR3B genes. Therefore, in order to increase the predictability and/or efficiency of therapeutic or preventive measures applied in accordance with the present invention, the genetic constitution of a subject as regards the present or absence of the first and second variant alleles referred to herein has to be determined and based on that knowledge an individual therapy can be developed which is therapeutically most effective. Thereby, mistreatment of patients based on wrong medications and the results thereof, such as anticipatory vomiting, insufficient compliance to chemotherapy with subsequent failure to anticancer treatment can be efficiently avoided.

In a preferred embodiment of the use of the present invention the deletion, addition and/or substitution of one or more nucleotides comprised by said polynucleotide results in an altered expression of the first variant allele compared to the corresponding wild type allele.

As discussed above, the alleles referred to in accordance with the use of the present invention correspond to the CYP2D6 and HTR3B gene. It is well known in the art that genes comprise structural elements which encode an amino acid sequence as well as regulatory elements which are involved in the regulation of the expression of said genes. Structural elements are represented by exons which may either encode an amino acid sequence or which may code for RNA which is not encoding an amino acid sequence but is nevertheless involved in RNA function, e.g.
by regulating the stability of the RNA, RNA processing, translation efficiency or the nuclear export of the RNA.

Regulatory elements of a gene may comprise promoter elements or enhancer elements both of which could be involved in transcriptional control of gene expression. It is very well known in the art that a promoter is to be found upstream of the structural elements of a gene. Regulatory elements such as enhancer elements, however, can be found distributed over the entire locus of a gene. Said elements could reside, e.g., in introns, regions of genomic DNA which separate the exons of a gene. Promoter or enhancer elements correspond to polynucleotide fragments which are capable of attracting or binding polypeptides involved in the regulation of the gene comprising said promoter or enhancer elements. For example, polypeptides involved in regulation of said gene comprise the so called transcription factors.

Said introns may comprise further regulatory elements which are required for proper gene expression. Introns are usually transcribed together with the exons of a gene resulting in a nascent RNA transcript which contains both, exon and intron sequences. The intron encoded RNA sequences are usually removed by a process known as RNA splicing. However, said process also requires regulatory sequences present on a RNA transcript. Said regulatory sequences may be encoded by the introns.

In addition, besides their function in transcriptional control and control of proper RNA processing and/or stability, regulatory elements of a gene could be also involved in the control of genetic stability of a gene locus. Said elements control, e.g., recombination events or serve to maintain a certain structure of the DNA or the arrangement of DNA in a chromosome.

Therefore, single or multiple nucleotide polymorphisms, insertions and/or deletions can occur in exons of an allele of a gene which encode an amino acid sequence as discussed supra as well as in regulatory regions which are involved in the above discussed process. The polymorphisms comprised by the polynucleotides referred to in accordance with the use of the present invention can influence the expression level of CYP2D6 protein via mechanisms involving enhanced or reduced transcription of the CYP2D6 gene, stabilization of the gene’s RNA transcripts and alteration of the processing of the primary RNA transcripts.
Methods for the determination of an altered expression of a variant allele when compared to its wild type counterpart are well known in the art and comprise inter alia those referred to herein above, e.g. Northern blot analysis, Reverse transcriptase PCR based techniques (RT-PCT), Ribonuclease protection assays, Western Blot, Dot Blot, ELISA techniques, primer extension based techniques and Real Time PCR (TaqMan) assays. It might be necessary to obtain a sample comprising biological material, such as isolated cells or tissue from the subject prior to perform said methods for determination of the expression levels of the wild type and the variant alleles, respectively. An altered expression in accordance with the use of the present invention means that the expression of the wild type allele differs significantly from the expression of the variant allele. A significant difference can be determined by standard statistical methods, such as Student’s t-test, chi2-test or the U-test according to Mann and Whitney. Moreover, the person skilled in the art can adopt these and other statistical method known in the art individually without an undue burden.

In a more preferred embodiment of the use of the invention said altered expression is decreased expression.

To determine whether the expression of an allele referred to in accordance to the present invention is increased or decreased in comparison to the corresponding wild type allele well known methods such as Northern blot analysis, Reverse transcriptase PCR based techniques (RT-PCT), Ribonuclease protection assays, Western Blot, Dot Blot, ELISA techniques, primer extension based techniques and Real Time PCR (TaqMan) assays can be applied. As discussed above, it might be necessary to obtain a sample comprising cells or tissue from the subject in order to determine the expression level of the variant allele referred to in the use of the invention. A decrease of the expression is characterized by a significant difference in the expression level of the variant versus the wild type allele in those assays. Also encompassed by decreased expression is the absence detectable expression of a variant allele.
In a furthermore preferred embodiment of the use of the present invention a deletion, addition and/or substitution of one or more nucleotides comprised by said polynucleotide results in an altered activity of the polypeptide encoded by the first variant allele compared to the polypeptide encoded by the corresponding wild type allele.

As discussed supra, the variant alleles comprising those polynucleotides specified herein which correspond to coding regions of the CYP2D6 gene effect the amino acid sequences of the polypeptides encoded by said variant alleles. The variant polypeptides, therefore, exhibit altered biological and/or immunological properties when compared to their corresponding wild type counterpart. Preferred variant polypeptides in accordance with the use of the invention are those, which exhibit an altered biological activity, i.e., an altered enzymatic function resulting in reduced, enhanced or complete loss of catalytic activity. It might be necessary to obtain a sample comprising biological material such as isolated cells or tissue from the subject prior to perform said methods for determination of the activities of the wild type and the variant polypeptides, respectively. Whether a variant polypeptide has an altered activity compared to its wild type corresponding counterpart can be determined by standard techniques well known in the art. Such standard techniques may comprise, e.g., ELISA based assays, RIA based assays, HPLC-based assays, LC/MS based assays, mass spectroscopy-based assays or assays which are known in the art and described in Brockmöller, Clin Pharmacokinet 1 27 (1994), 216-248; Mahgoub, Lancet 2 (1997), 584-586; Kutt, Neurology 14 (1964), 542-8; Scott, Diabetes 28 (1997), 41-51; Küpfer and Preisig, Eur J Clin Pharmacol 26 (1984), 753-759; Westlind, Biochem Biophys Res Commun 259 (1999), 201-205; Brockmöller, Clin Pharmacol Ther 61 (1997), 171; Chang, Pharmacogenetics 5 (1995), 358-63; Haining, Arch Biochem Biophys 333 (1996), 447-458; Takanashi, Pharmacogenetics 10 (2000), 95-104, Heils, J Neurochem 6 (1996), 2612-24; Heils, J Neural Transm 104 (1997), 1005-1014; Greenberg, Am J Med Genet 88 (1999), 83-87, Fuller, Life Sci 15 (1974), 1161-1171; Griese, Pharmacogenetics 8 (1998), 15-26 and Sachse, Am J Hum Genet 60 (1997), 284-295. An altered activity in accordance with the use of the present invention means that the activity of the wild type polypeptide differs significantly from the variant polypeptide. A significant
difference can be determined by standard statistical methods referred to herein above.

Most preferably, said altered activity is decreased activity. As discussed for the decrease of expression, a decrease of the activities is characterized by a significant difference in the activity of the variant versus the wild type polypeptide in the assays referred to herein. Also encompassed by decreased activity is the absence of activity of a variant allele.

Moreover, in a further preferred embodiment of the use of the present invention said subject is an animal. As described supra, the subject in accordance with the use of the present invention encompasses animals. The term “animal” as used herein encompasses all animals, preferably animals belonging to the vertebrate family, more preferably mammals. Moreover, the animals can be genetically engineered by well known techniques comprising transgenesis and homologous recombination in order to incorporate one or more of the polynucleotides referred to supra into the genome of said animals. Said animals comprising the genetically engineered animals can be used to study the pharmacological effects of drugs or pro-drugs which are based on the substances or derivatives thereof referred to herein, preferably ‘setrones’.

Moreover, in another preferred embodiment of the use of the present invention said subject is a human. In particular, the present invention is applicable to humans as is evident from the above. The use of the present invention is to be applied in order to treat or prevent patients which suffer from ‘setrone-treatable diseases’. The pharmacological effects of the above substances or derivatives thereof are well described in humans. However, the conventional therapies do not take into account the individual genetic makeup of the patient. Ethnical populations have different genetic backgrounds, which can also influence the function, regulation or expression of a variant allele and thereby alter the pharmacological response of a patient to a substance or derivative used as a basis for a drug or pro-drug in accordance with the invention.
In light of the foregoing, more preferably, said human is Asian, most preferably, Chinese.

The Chinese population shows compared to Caucasians a higher frequency of the CYP2D6 poor metabolizer phenotype (30% versus 9% in the Caucasian population) and are therefore more likely to respond to setrone treatment. On the other hand, the multiplication of CYP2D6 gene copies which causes the ultrarapid metabolizer phenotype is very common in Ethiopians (30% versus 2% in Caucasians and Chinese) who are therefore more likely to suffer from therapeutic failure. Thus, Ethiopians are more susceptible to insufficient treatment or non-response to setrone treatment and can particularly benefit from uncovering the genetic background (Population frequency data are from the OMIM database).

In another preferred embodiment the invention relates to the use of "setrones" for the preparation of a pharmaceutical composition for treating and/or preventing "setrone-treatable diseases" in a subject having in its genome a polynucleotide associated with an ultrarapid metabolizer phenotype of CYP2D6.

The term "associated with" in the content of the present invention means the coexistence of a polymorphism and a phenotype in a population. A polymorphism is said to be associated with a specific phenotype when its frequency is significantly higher among one phenotype group compared to its frequency in another.

The term "ultrarapid metabolizer phenotype of CYP2D6" is well known to experts in the field and further described supra and in the examples. Duplicate or multiple copies of functional active CYP2D6 genes cause the ultrarapid metabolizer phenotype of CYP2D6. The amplification of CYP2D6 copies causes the expression of an increased amount of CYP2D6 protein resulting in an increased metabolic CYP2D6 capacity as described in Johansson, Proc Natl Acad Sci U S A, 90 (1993), 11825-11829; Daly, Pharmacogenetics 6 (1996),193-201; Sachse, Am J Hum Genet 60 (1997), 284-295; Gaedigk, Pharmacogenetics 9 (1999), 669-682; and Kubota, Br J Clin Pharmacol 50 (2000), 31-34. Debrisoquine, dextromethorphan, metoprolol and sparteine are the most common probe drugs to assess CYP2D6 function in vivo. For example, using debrisoquine as a substrate a debrisoquine/4-hydroxydebrisoquine metabolic ratio (MR) of less than 0.15 defines the UM

The present invention also relates to a method for selecting a suitable therapy for a subject suffering from 'setrone-treatable diseases', wherein said method comprises:

(a) determining whether a subject is having in its genome less than three copies of a polynucleotide encoding a functional CYP2D6;

(b) optionally determining the presence or absence of a first and/or second variant allele in the genome of a subject in a sample obtained from said subject; and

(c) selecting a suitable therapy for said subject based on the results obtained in (a).

The definitions and explanations of the terms made above apply mutatis mutandis to the above method.

The term "suitable therapy" as used herein means that a substance according to the invention is selected and said substance being administered in a certain dosage to a subject, wherein said substance and said dosage are selected based on the knowledge of the presence of the numbers of the copies of a polynucleotide encoding a functional CYP2D6 and/or the presence or absence of a first and/or second variant allele referred to in accordance with the use of the invention. Said substance and said dosage of the substance are selected in a way that on one hand they are most effective in treating and/or preventing 'setrone-treatable diseases' on the other hand they do not cause toxic or undesirable side effects. Based on the knowledge of the presence of the numbers of the copies of a polynucleotide encoding a functional CYP2D6 and/or the presence or absence of a first and/or second variant allele referred to in accordance with the use of the invention the preferred suitable therapy referred to in accordance with the present invention is administration of setrones in a therapeutically effective amount.

As is evident from the above, a prerequisite for selecting a suitable therapy is the knowledge of the numbers of the copies of a polynucleotide encoding a functional CYP2D6 and/or the presence or absence of a first and/or second variant allele referred to in accordance with the use of the invention. Therefore, the method of the present invention encompasses the determination of the presence or absence of said variant alleles in a sample which has been obtained from said subject. The sample which is obtained by the subject comprises biological material which is
suitable for the determination of the presence or absence of said variant alleles, such as isolated cells or tissue. Methods for the determination of the presence or absence of the variant alleles of the method of the invention comprise those methods referred to herein above.

The present invention also relates to a method of treating and/or preventing ‘setrone-treatable diseases’ comprising:
(a) determining whether a subject is having in its genome less than three copies of a polynucleotide encoding a functional CYP2D6;
(b) optionally determining the presence or absence of a first and/or second variant allele comprising a polynucleotide referred to herein; and
(c) administering to a subject a therapeutically effective dosage of ‘setrones’.

The definitions used in accordance with the use of the present invention apply mutatis mutandis to the methods mentioned supra and infra. Further, all embodiments described in accordance with the use of the present invention can be applied mutatis mutandis to the methods of the present invention. Moreover, also encompassed by the methods of the present invention are any further developments of said methods which the person skilled in the art can make without undue burden based on its knowledge and the prior art.

It is furthermore envisaged that the present invention relates to a method for treating and/or preventing ‘setrone-treatable diseases’ in a subject which comprises:
(a) determining if the subject has one or more variant alleles of the CYP2D6 and/or 5HTR3B gene in a sample; and
(b) administering to the subject having one or more of such variant alleles an amount of setrone which is sufficient to treat a subject having such variant alleles which amount is increased or decreased in comparison to the amount that is administered without regard to the subject’s alleles in the CYP2D6 and/or 5HTR3B gene.

Additionally, the present invention also relates to a method of preventing and/or treating ‘setrone-treatable diseases’ in a subject which comprises internally administering to the subject an effective amount of ‘setrones’, wherein the treatment
regimen is modified based upon the genotype of the subject's CYP2D6 and/or HTR3B gene.

Moreover, in another embodiment the present invention relates to a method for determining whether a subject is at risk for non-response to treatment with 'setrones' which comprises determining if the subject has one or more variant alleles of the CYP2D6 and/or HTR3B gene.

In a preferred embodiment of the present invention, the methods for treating and/or preventing 'setrone-treatable diseases' are postoperative nausea and/or vomiting, or nausea and/or vomiting secondary to cancer chemotherapy, radiation therapy, migraine, acetaminophen poisoning, prostacyclin therapy, and opioid treatment, spinal or epidural opioid-related pruritus, acute levodopa-induced psychosis, bulimia nervosa, fibromyalgia, chronic fatigue syndrome, obsessive-compulsive disorders, schizophrenia, alcoholism, cocaine addiction, opioid withdrawal syndrome, drug withdrawal phenomena, anxiety disorders, cognitive disturbances, neuroleptic-induced tardive dyskinesia, tourette's syndrome, migraine headache, and gastrointestinal motility disorders.
Particularly preferred 'setrone-treatable diseases' are nausea and/or vomiting secondary to cancer chemotherapy, and radiation therapy.

In another preferred embodiment of the present invention, the 'setrones' administered in the above mentioned methods for treating and/or preventing 'setrone-treatable diseases' in a subject are ondansetron, tropisetron, dolasetron, granisetron, azasetron, itasetron, ramosetron, palonosetron, lerisetron, zatogetron, clinasetron, alosetron hydrochloride and ricasetron.
Most preferably said 'setrones' are ondansetron and tropisetron.

In a preferred embodiment of the method of the invention the subject does not have in its genome a polynucleotide associated with an ultrarapid metabolizer phenotype of CYP2D6.
In another preferred embodiment the subject has in its genome less than three copies of a polynucleotide encoding a functional CYP2D6 polypeptide.

In a furthermore preferred embodiment the subject is having in its genome a
(a) polynucleotide having the nucleic acid sequence of SEQ ID NO: 026, and
(b) polynucleotide capable of hybridizing to a HTR3B gene, wherein said polynucleotide is having at a position corresponding to position 36678 to 36680 of the HTR3B gene (Genbank accession No.: GI:17425234) an AAG.

Thanks to the method of the present invention, it is possible to identify non-responders to antiemetic therapy on a pharmacogenetic basis and to efficiently select a suitable therapy for a subject, preferably a human, suffering from 'setronetreatable diseases'. Thereby, mistreatment of patients based on wrong medications and the results thereof, such as anticipatory vomiting, insufficient compliance to chemotherapy with subsequent failure to anticancer treatment, and increased costs in health care, can be efficiently avoided. Furthermore, patients that are at high risk can be excluded from therapy prior to the first dose and/or dosage can be adjusted according to the individual’s genetic makeup prior to the onset of drug therapy. Thus, treatment failure can be avoided and the optimal drug level can be reached faster without time-consuming and expensive drug monitoring-based dose finding. This can reduce costs of medical treatment and indirect costs of disease (e.g. shorter time and less frequent hospitalization of patients).

Several documents are cited throughout the text of this specification by name. Each of the documents cited herein (including any manufacturer's specifications, instructions, etc.) are hereby incorporated by reference; however, there is no admission that any document cited is indeed prior art as to the present invention.
The Figures show

Fig. 1: Proportion of patients with nausea and vomiting as function of the emetogenic level.

Fig. 2: Serum concentrations of tropisetron as function of the number of active genes of CYP2D6 (three and six hours after administration). Given are box plots of plasma concentrations in ng/ml. The difference between concentration of poor metabolizers and all others was significant ($p<0.02$, Mann-Whitney U-test).

Fig. 3: Mean values of vomiting in as function of the number of active genes of CYP2D6. Individuals with three active genes had significant more vomiting at both observation periods than all other patients ($p<0.001$, $p<0.02$, Mann-Whitney-U test). A similar observation was made for nausea. The x-axis indicates the number of active CYP2D6 genes. The y-axis of the upper two panels indicate the mean episodes of vomiting. The y-axis of the lower two panels indicate the mean of VAS for nausea (% of scale).

Fig. 4: Intensity of vomiting or nausea as a function of the CYP2D6 genotype for patients treated with tropisetron or ondansetron between the 5 to 24 hours after administration of the chemotherapy. The x-axis indicates the number of active CYP2D6 genes. The y-axis indicates the mean episodes of vomiting.

Fig. 5: Shows the genomic structure and the polymorphisms found by sequencing of the 5-HT$_{3B}$ receptor gene in 242 cancer patients. Boxes represent the exons and numbers below, the respective number of the exon. Transmembrane domains (TM 1-4) were characterized by black boxes. All polymorphisms are indicated with their respective localization (A of ATG is +1) according to the published sequence (Genbank accession No AP001874.4 (GI: 17425234)).
Fig. 6: Mean values of vomiting with SEM 0 to 4 hours and 5 to 24 hours after administration of the chemotherapy as function of the different genotypes of the -100AAG deletion variant of the 5-HT$_{3B}$ receptor gene. Individuals homozygous for the -100AAG deletion had significant more vomiting at both observation periods than all other patients. A similar observation was made for nausea.
The present invention is illustrated by reference to the following biological Examples which are merely illustrative and are not to be constructed as a limitation of the scope of the present invention.

Example 1

The CYP2D6 polymorphisms are serving as genetic markers for the CYP2D6 metabolic capacity. Haplotypes are defined by certain combinations of SNPs, i.e. the 4168A nucleotide deletion (SEQ ID NO 15) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *3 allele, the 3465G>A nucleotide substitution (SEQ ID NO 13) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *4 allele, the deletion of the entire coding sequence of the CYP2D6 gene (SEQ ID NO 47) forms the *5 allele, the deletion of nucleotide T at position 3326 (SEQ ID NO 09) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *6 allele, the 4554A>C substitution (SEQ ID NO 21) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *7 allele, the 3377G>T nucleotide substitution (SEQ ID NO 11) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *8 allele, the 4469C>T nucleotide substitution (SEQ ID NO 19) of the CYP2D6 gene (Genbank accession No.: GI:181303) in combination with the nucleotide substitutions 1743G>A (SEQ ID NO 03) and 5799G>C (SEQ ID NO 23) of the CYP2D6 gene (Genbank accession No.: GI:181303) is responsible for the *12 allele, the 2502G>C nucleotide substitution (SEQ ID NO 07) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *11 allele, and the insertion of nucleotide T at position 1756/1757 (SEQ ID NO 05) of the CYP2D6 gene (Genbank accession No.: GI:181303) forms the *15 allele all of which are associated with a loss of CYP2D6 enzyme function. Furthermore, the deletion of nucleotides AGA at positions 4232 to 4234 (SEQ ID NO 17) of the CYP2D6 gene (Genbank accession No.: GI:181303) which forms the *9 allele, the combination of nucleotide substitutions 4469G>C (SEQ ID NO 19) with 5799G>C (SEQ ID NO 23) of the CYP2D6 gene (Genbank accession No.: GI:181303) which is responsible for the *2 allele and the combination of the 1719C>T (SEQ ID NO 01) with the 5799G>C (SEQ ID NO 23) nucleotide substitutions of the CYP2D6 gene (Genbank accession No.: GI:181303) which forms the *10 allele, are both associated with the
"intermediate metabolizer" (IM) phenotype, who shows a decreased but still detectable CYP2D6 metabolic activity. The allele lacking all these genetic markers is depicted as *1 or wildtype allele and is associated with the "extensive metabolizer" (EM) phenotype. The current state of the art suggests that EMs are homozygous carriers of *1 alleles or of the heterozygous genotypes *1/*2, *1/*9, and *1/*10. Individuals with two IM-associated alleles (*2, *9, and *10) or heterozygous genotypes consisting of one *1 and one PM-related allele (*3, *4, *5, *6, *7, *8, *11, *12, and *15) are of IM phenotype and individuals with two PM-related alleles are of the PM phenotype. Furthermore, ultrarapid metabolism phenotype (UM) is caused by duplicate or multiple copies of functional active CYP2D6 genes resulting in the presence of a polynucleotide comprising SEQ ID NO: 48 (1xN; 2xN). The amplification of CYP2D6 copies causes the expression of an increases amount of CYP2D6 protein resulting in an increased metabolic CYP2D6 capacity (Johansson, Proc Natl Acad Sci U S A, 90 (1993), 11825-11829; Daly, Pharmacogenetics 6 (1996),193-201; Sachse, Am J Hum Genet 60 (1997), 284-295; Gaedigk, Pharmacogenetics 9 (1999), 669-682; Kubota, Br J Clin Pharmacol 50 (2000), 31-34). By genetic testing prior to onset of treatment with 'setrones', the CYP2D6 metabolic activity of the patients can be predicted and the patients can be classified as either ultra rapid, extensive, intermediate (IM), or poor metabolizers. Based on pharmacokinetic data (Kees, Br J Clin Pharmacol 52 (2001), 705-707; Cox, J Pharmacokinet Biopharm 27 (1999), 625-644; Wada, Bio Pharm Bull 24 (2001), 432-435) and on the experience with other drugs (e.g. amitryptiline, clomipramine, fluvoxamine) which are substrates of CYP2D6 (Brockmöller, Pharmacogenomics 1 (2000), 125-151), the initial dose of 'setrones' for PMs of CYP2D6 should be 50 to 70%, for EMs 100 to 120%, and for UM's >120%, of the average recommended dose to achieve optimal setrone plasma level and therapeutic efficacy. This example is illustrated to merely illustrate the use of pharmacogenetic testing to improve therapeutic use of 'setrones' and are not to be constructed as a limitation of the scope of the present invention.
Example 2
Correlation of effectivity of antiemetic treatment with 5-HT₃ receptor antagonists with CYP2D6 genotypes

PATIENTS: To analyze the effect of CYP2D6 polymorphisms, a prospective non interventional cohort study was performed to analyze the impact of functional polymorphisms of CYP2D6 on the antiemetic efficacy of tropisetron or ondansetron in cancer patients. From April 1998 to September 2000 consecutive adult patients scheduled to receive moderately to highly emetogenic chemotherapy either for the first time, or the first course of a chemotherapy after relapse, were enrolled in the study. We included 270 patients (116 males, 154 females, 157 outpatients and 113 inpatients) at the Universitätsklinikum Charité and the community hospital Krankenhaus Moabit, Berlin, Germany. Mean age of the patients was 53.7 years (range from 18-83 years, standard deviation, SD 13.3). From these, 32.5% suffered from breast cancer, 15.4% from lung cancer, 14.2% from non-Hodgkin's lymphoma, 4.9% from multiple myeloma, 4.9% from Hodgkin's disease and 28.1% from miscellaneous other tumors. Patients who met one of the following criteria were excluded from participation: presence of nausea or vomiting before the chemotherapy, the use of antiemetics, benzodiazepines, neuroleptics or radiation therapy in the 24 hours before administration of the chemotherapy, use of opioids within the last two weeks, regular use of inducers of CYP2D6 (e.g. rifampicin) or inhibitors of CYP2D6 (e.g. quinidine, fluoxetine, haloperidol). We also excluded all patients with presence of concomitant diseases which might cause nausea or vomiting (e.g. severe heart failure, ulcerations or obstructions of the upper gastrointestinal system, severe hepatic or renal dysfunction, brain metastases, patients with artificial stoma or pregnancy). From 286 patients primarily enrolled in the study, 16 patients had later to be excluded for predefined reasons e.g. administration of antiemetics other than ondansetron or tropisetron, missing of antiemetic drug treatment at day one of the chemotherapy or because patients did not complete all questionnaires. Seven patients delivered incomplete data.

TREATMENT AND SIDE EFFECTS: Emetogenic level at the day of the administered anticancer drugs was calculated according to the emetogenic classification scheme of (Hesketh, J Clin Oncol, 15 (1997),103-109, Hesketh,
Oncologist, 4 (1999),191-196) and patients were grouped in five different emetogenic levels 1-5 (level 1: n= 2, level 2: n= 55, level 3: n= 22, level 4: n= 94, level 5: n= 95). Cyclophosphamide was administered to 98 patients (mean dosage 1524 mg) either alone or in combination with various other cytostatic drugs. Cisplatin (mean dosage 90 mg) and carboplatin (mean dosage 448 mg) were given to 27 patients and 29 patients, respectively. All other patients (n= 116) received miscellaneous chemotherapeutic drugs. Glucocorticoids were administered to 151 patients either as a part of the antineoplastic therapy or as additional antiemetic treatment. Tropisetron (Navoban®, Novartis, Switzerland) was given in a dosage of 5 mg once daily (n=96), ondansetron (Zofran®, GlaxoWellcome, UK) was administered in a dosage of 8 mg twice daily (n=174). Measurement of nausea and vomiting were performed immediately before the chemotherapy started, four hours after administration of chemotherapy (observation period 1) and then within the next 20 hours (5th to the 24th hour, observation period 2) at day one of the chemotherapy. The timing within the first 24 hours and number of retching and vomiting episodes were recorded by the patients on diary cards. The intensity of nausea was assessed with the help of visual analogue scales (VAS, which ranged from no nausea at 0 mm to most extensive nausea at 100 mm). An emetic episode was defined as a single vomit or retch or any number of continuous vomits or retches. Vomiting or retching had to be absent for at least one minute to calculate different episodes of emesis according to the definition of the Italian Group for Antiemetic Research (Italian Group for Antiemetic Research, J Clin Oncol, 16 (1998), 2937-42). Protection from nausea was regarded as incomplete when emetic episodes occurred or when nausea intensity was 20% above the baseline level. The study was approved by the ethic committee of the Universitätsklinikum Charité (Humboldt-Universität zu Berlin) and all patients gave written informed consent.

PHARMACOGENETIC AND PHARMAKOKINETIC ANALYSES: To determine the CYP2D6 genotype of the above mentioned study cohort, high-molecular-weight genomic DNA was prepared from venous blood using the standard phenol chloroform extraction. All laboratory staff were blind to the clinical observations. CYP2D6 genotyping was carried out according to Sachse et al. (Sachse, Am J Hum Genet, 60 (1997), 284-295). PCR-products were separated by agarose gel electrophoresis and stained with ethidium bromide for visualization. Alleles *3, *4, *5
and *6 of CYP2D6 were considered to predict the deficient (poor metabolizer, PM) phenotype, whereas the allele *1 and the duplication (2x*1 or 2x*2) of the gene are coding for the active enzyme. By definition, PMs are carriers of two of the alleles *3, *4, *5, and *6 of CYP2D6, intermediate metabolizers (IM) have one active allele *1 (wild type), extensive metabolizers (EM) have two active alleles *1 or one defective allele and one duplication allele, and ultrarapid metabolizers (UM) have one active allele *1 and one duplication allele or even two duplication alleles. Therefore, with respect to the genotype we were able to group the patients into four subgroups which we briefly termed as subjects with no active, one, two or three active genes, also termed as poor metabolizers, intermediate metabolizers, extensive metabolizers and ultrarapid metabolizers. To analyze possible correlations between CYP2D6 genotype, phenotype, and Tropisetron serum concentrations, three hours and six hours after the administration of the 5-HT₃ antagonist tropisetron blood samples were drawn at the arm that had not been used for drug administration. Tropisetron hydrochloride was provided by Novartis Pharma (Basel, Switzerland). Tropisetron was extracted with dichloromethane under alkaline conditions, separated at room temperature on a Phenomenex Luna™ C18 HPLC-column (5 μm, 250 x 4.6 mm I.D., Phenomenex, Aschaffenburg, Germany) and quantified by UV detection at 284 nm. The mobile phase consisted of 20% of acetonitrile and 80% 0.05 M sodium hydrogen phosphate buffer, pH 5.0, the flow rate was 1.5 ml/min. Intra- and inter-assay coefficients of variation ranged from 1.5 to 7.5% and from 5.3 to 13.7% respectively. The lower limit of quantification was 1.25 ng tropisetron/ml.

CYP2D6 GENOTYPE CORRELATION WITH DRUG EFFICACY: Within the first 24 hours after administration of the chemotherapy, vomiting was observed in 58 out of 270 patients (22.1%) and nausea in 94 out of 270 patients (35.9%). The mean number of vomiting episodes and the mean degree of nausea were compared with the Kruskal-Wallis or with the Mann-Whitney-U-tests. The pairwise comparison between groups was performed with the Wilcoxon rank-sum test (SPSS version 8.01). The limit of significance was set to 0.05.

The mean number of vomiting episodes of all 270 patients was 1.0 (range from 0 to 22) and the mean percentages of the VAS for nausea was 15.6% (range from 0.0% to 98%). Fig. 1 shows the data on acute nausea and vomiting stratified for the different emetogenic levels of chemotherapy as classified according to (Hesketh, J
Clin Oncol 15 (1997), 103-109; Hesketh, Oncologist 4 (1999): 191-196). The percentage of patients with incomplete protection from nausea or vomiting appeared to be independent of the respective emetogenic level of the chemotherapy: vomiting (≥ 1 episode) was observed in 19.1% of the patients treated with anticancer drugs of the high-emetogenic level five and in 18.9% of the patients treated with the low emetogenic level two (Hesketh, J Clin Oncol 15 (1997), 103-109; Hesketh, Oncologist 4 (1999): 191-196). Nausea occurred in 40.4% of the patients treated with high-emetogenic drugs (level four) and in 37.7% of the patients receiving a low-emetogenic therapy (level two). The results were similar in in- and outpatients. Patients treated with glucocorticoids either as part of their therapeutic regime or as additional antiemetic therapy had a better protection from nausea than patients without glucocorticoids (73.6% versus 51.8%, $p<0.001$, chi-square test). A similar trend was observed for vomiting and for the combined event of nausea and vomiting (detailed data not shown). When stratifying the patients for the emetogenic levels (Table 1), patients treated with a high-emetogenic level 4 chemotherapy without glucocorticoids experienced a two-fold higher intensity of nausea in observation period 1 (mean value 12.8% versus 6.8%, $p<0.02$, Mann-Whitney-U-test) and in observation period 2 (mean value 23.1%, versus 11.9%, $p=0.01$, Mann-Whitney-U-test), than patients with glucocorticoid treatment. A similar trend was observed for vomiting. As shown in Fig. 2, patients deficient for CYP2D6 activity had significantly higher serum concentrations of tropisetron six hours after the administration compared to patients with one or more active alleles (median of the concentration 15.3 ng/ml versus 4.9 ng/ml, $p<0.03$, Mann-Whitney-U-test). The result was similar three hours after the administration (median of concentration of 13.5 ng/ml versus 8.0 ng/ml).

Genotyping for CYP2D6 revealed that 7.8% of the 270 patients were deficient for the CYP2D6 gene (poor metabolizers), 32.6% had one active allele, 58.1% had two active alleles (extensive metabolizers) and 1.5% had three active genes (ultrarapid metabolizers). As shown in Fig. 3, patients with three active CYP2D6 genes (ultrarapid metabolizers) had a significantly higher mean number of vomiting episodes than all other patients in observation period 1 (mean value of episodes of vomiting of 2.3, SD: 2.5 versus 0.2, SD: 1.0, $p<0.001$, Mann-Whitney-U-test) and in observation period 2 (mean value of episodes of vomiting of 3.3, SD 3.5 versus 0.8,
SD: 2.4, p<0.03). A similar trend was observed for nausea: ultrarapid metabolizers had more severe nausea in the two study periods (mean value of nausea 22.3%, SD: 25.9 versus 9.6%, SD: 16.4 and 46.8%, SD: 44.9 versus 15.1%, SD: 22.2, respectively) than all other patients. These results were similar for vomiting and emesis in the group of patients receiving glucocorticoids at both observation periods and in the group of patients who did not receive glucocorticoids.

The effects of the CYP2D6 polymorphisms seen in the whole group of patients were similar in tropisetron treatment and after treatment with ondansetron (Fig. 4), extensive metabolizers had the highest intensity of vomiting or nausea in both groups and observation periods and poor metabolizers showed the lowest intensity of vomiting and emesis during the first observation period. None of the PMs in the tropisetron group showed vomiting, indicating that the diagnosis of CYP2D6 can be utilized to predict together with other genetic factors- the efficacy of antiemetic therapy with Serotonin antagonists. Poor CYP2D6 metabolizers have the highest concentration of 5-HT₃ receptor antagonists in blood and, consequently, the best protection from nausea and vomiting, whereas ultrarapid metabolizers have worse protection from nausea and vomiting when given the standard dose. Because of the observed association between CYP2D6 genotype and nausea and vomiting, CYP2D6 genotyping before starting the chemotherapy provides an improvement over the current therapeutic applications of these antagonists.

Example 3
Correlation of effectiveness of antiemetic treatment with 5-HT₃ receptor antagonists with polymorphisms in the gene encoding the human 5-HT₃B receptor

PATIENTS, STUDY COHORT: We conducted a prospective non interventional cohort study to analyze the impact of genetic polymorphisms on the antiemetic efficacy of the 5-HT₃ receptor antagonists tropisetron and ondansetron in cancer patients. From April 1998 to September 2000 consecutive adult patients scheduled to receive moderately to highly emetogenic chemotherapy either for the first time or the first course of a chemotherapy after relapse were enrolled in the study. We
included 242 patients (105 males, 137 females, 145 outpatients and 97 inpatients) at the Universitätsklinikum Charité and the community hospital Krankenhaus Moabit. Mean age of the patients was 53.3 years (range from 18-83 years, standard deviation, SD 13.6). From these, 32.0% suffered from breast cancer, 16.0% from lung cancer, 15.1% from non-Hodgkin's lymphoma, 5.5% from Hodgkin's disease, 4.6% from multiple myeloma, 4.1% from ovarian carcinoma and 22.7% from miscellaneous other tumors. Patients who met one of the following criteria were excluded from participation: presence of nausea or vomiting within 24 hours prior to chemotherapy, the use of antiemetics, benzodiazepines, neuroleptics or radiation therapy in the 24 hours prior to administration of the chemotherapy, use of opioids within the last two weeks, use of inducers of CYP2D6 (e.g. rifampicin) or inhibitors of CYP2D6 (e.g. quinidine, fluoxetine, haloperidol) which modify the pharmacokinetics of the 5-HT₃ antagonists. We also excluded all patients with presence of concomitant diseases which might cause nausea or vomiting (e.g. severe heart failure, ulcerations or obstructions of the upper gastrointestinal system, severe hepatic or renal dysfunction, brain metastases, patients with artificial stoma or pregnancy). From 258 patients primarily enrolled in the study, 16 patients had later to be excluded for predefined reasons e.g. administration of antiemetics other than ondansetron or tropisetron, missing of antiemetic drug treatment at day one of the chemotherapy or that patients did not completed all questionnaires.

TREATMENT AND SIDE EFFECTS: Emetogenic level at the day of the administered anticancer drugs was calculated according to the emetogenic classification scheme (Hesketh, J Clin Oncol 15 (1997), 103-109; Hesketh, Oncologist 4 (1999): 191-196) and patients were grouped in five different emetogenic levels 1-5 (level 1: n= 1, level 2: n= 50, level 3: n= 17, level 4: n= 83, level 5: n= 91). Cyclophosphamide was administered to 91 patients (mean dosage 1554 mg) either alone or in combination with various other cytostatic drugs. Cisplatin (mean dosage 88 mg) and carboplatin (mean dosage 424 mg) were given to 25 patients and 27 patients, respectively. All other patients (n= 99) received miscellaneous chemotherapeutic drugs. Glucocorticoids were administered to 141 patients either as a part of the antineoplastic therapy or as additional antiemetic treatment. Tropisetron (Navoban®, Novartis, Switzerland) was given in a dosage of 5 mg once daily (n= 84), ondansetron (Zofran®, GlaxoWellcome, UK) was
administered in a dosage of 8 mg twice daily (n= 158). Measurement of nausea and vomiting were performed immediately before administration of the chemotherapeutic agents, four hours after administration of chemotherapy (observation period 1) and then within the next 20 hours (5th to the 24th hour, observation period 2) at day one of the first course of chemotherapy. The timing within the first 24 hours and number of retching and vomiting episodes were recorded by the patients on diary cards. The intensity of nausea was assessed with the help of visual analogue scales (VAS, which ranged from no nausea at 0 mm to most extensive nausea at 100 mm). An emetic episode was defined as a single vomit or retch or any number of continuous vomits or retches. Vomiting or retching had to be absent for at least one minute to calculate different episodes of emesis. Protection from nausea was regarded as incomplete when emetic episodes occurred or when nausea intensity was 20% above the baseline level. Nine patients delivered incomplete data, so that the efficiency of the antiemetic treatment could be analyzed in 233 patients. The study was approved by the ethic committee of the Universitätsklinikum Charité (Humboldt-Universität zu Berlin) and all patients gave written informed consent.

POLYMORPHISMS IN THE 5-HT3B RECEPTOR GENE: High-molecular-weight genomic DNA was prepared from venous blood using the standard phenol chloroform extraction. All laboratory staff were blind to the clinical observations. All sequencing analysis were performed with PCR technology, as is known in the art, from genomic DNA amplification reactions. As shown in Fig. 1, we first amplified exons 1-2, exons 3-6 and exons 7-9. A total number of 242 unrelated subjects were screened for genomic DNA polymorphisms of the 5-HT3B receptor gene by sequencing of the protein coding exons including the exon-intron junctions. This revealed an extensive genetic variation in the 5-HT3B receptor gene (Fig. 1, Table 1, 2). A total number of 13 variations was found and confirmed by repeated analysis. Genotype frequency of the variations varied between 0.4 % and 47.6%. All except for one polymorphism were found in several unrelated subjects. Two of the mutations were amino acid exchanges located in exon five (Tyr129Ser) and in exon six (Ala223Thr). Moreover, two deletion variations, a 3-bp deletion variant (-100AAG deletion) in the promoter region and a 2-bp deletion in intron 5, were found. Particularly frequent were the 26946A>G and the 27721CA insertion/deletion polymorphism with an allele frequency of the more rare allele of 0.4. The Tyr129Ser
polymorphism had a respective allele frequency of 0.3, the 28671A>G of 0.2 and the
-100AAG deletion allele of 0.1. In contrast, the Ala154Ala and the Ala223Thr were less
frequent and were not found in any subject in the homozygous combination.

GENOTYPE_PHENOTYPE CORRELATION: Vomiting, vomiting episodes, and the
degree of side effects were determined for the individuals of the study cohort and
these data were correlated to the identified 5-HT3 receptor genotypes. The
significance of frequency differences of the different genotypes was assessed by
Pearson’s χ² test or, if any cell count was less than 5, by Fisher’s exact test. The
limit of significance was set to 0.05. The mean number of vomiting episodes and the
mean degree of nausea were compared with the Kruskal-Wallis or with the Mann-
Whitney-U-tests. Linkage disequilibrium and estimated haplotypes were assessed
using the linkage utility program Equilibrium HaploType (EH) (Terwilliger and Ott,
Handbook of human genetic linkage. The Johns Hopkins University Press, Baltimore
and London, 1994). The statistical analyses regarding potential genotype-phenotype
associations based on the data that vomiting was observed in 55 out of 233 patients
(22.7%) and nausea in 84 out of 233 patients (35.9%) within the first 24 hours after
administration of the chemotherapy. The mean number of vomiting episodes of all
233 patients in the first and in the second observation period was 0.2 (range from
0.0 to 10) and 0.9 (range from 0.0 to 22). The mean percentages of the VAS for
nausea in the first and in the second observation period was 9.5% (range from 0.0% to
74.0%) and 15.9% (range from 0.0 to 98.0%). Table 3 presents the genotypes
found and relates them with the observed nausea and vomiting during
chemotherapy. Increasing nausea and vomiting was observed with increasing
number of variant alleles for the -100AAG deletion variant and for the 26945 T
variant. The association with the -100AAG deletion variant was clearly statistically
significant.

Patients homozygous for the -100AAG deletion variant showed significantly more
episodes of vomiting than all other patients in the first observation period (mean
value of episodes of vomiting of 1.0, SEM: 0.58 versus 0.23, SEM: 0.07, p< 0.001,
Mann-Whitney-U-test). The same was seen in the second observation period (mean
value of episodes of vomiting of 4.0, SEM: 2.3 versus 0.83, SEM: 0.2, p< 0.04,
Mann-Whitney-U-test). A similar but statistically not significant trend was observed
for nausea in the first observation period: patients homozygous for the deletion
variant suffered from more severe nausea than all other patients (mean value of nausea 42.6%, SEM: 21.3 versus 9.1%, SEM: 1.0). These findings could be observed in patients treated with ondansetron and in patients treated with tropisetron.

ADDITIVE TREATMENT WITH GLUCOCORTICOIDS: Glucocorticoids are a frequent co-medication during antiemetic and cancer therapy. Therefore, it is important to know, whether the function of the -100AAG deletion variant of the 5-HT₃B receptor gene might have an influence on the therapeutic effect of an additive treatment with glucocorticoids: the mean episodes of vomiting increased from patients homozygous for the insertion variant over heterozygous patients to patients which were homozygous for the deletion variant at observation period 1 (0.2, SD: 0.8; 0.3, SD: 1.2; 1.0, SD: 1.0, p< 0.001, Kruskal Wallis-test) and at observation period 2 (0.5, SD: 1.5; 1.3, SD: 3.1; 4.0 SD: 5.3, p < 0.03, Kruskal Wallis-Test, Table 4). Table 4 also illustrates, that the association of the -100AAG deletion variant with the antiemetic outcome is not the result of differences in the emetogenic level of the chemotherapy: only patients homozygous for the deletion variant had the highest scores of vomiting or nausea when receiving a combined chemotherapy of the emetogenic level of four or five. All other patients with the same emetogenic level showed had lower intensities of vomiting and nausea. In conclusion of table 4, the effect of the -100AAG deletion variant is not due to confounding influences by drug metabolism, steroid medication or emetogenic potential.

HAPLOTYPE ANALYSES: Not only single functional polymorphisms, but also the pattern of linkage of polymorphisms, represented in individual haplotypes (known to experts in the field) can be important in determining the activity or inactivity of medications. For the haplotype analyses of the 5-HT₃B receptor gene, we included only those variants in the linkage analysis with a frequency higher than 1% for the heterozygous genotype. These eleven polymorphisms within or near the 5-HT₃B receptor gene are partially linked. The Tyr₁₂₉Ser variant was in strong linkage disequilibrium with all other mutations except the Ala₁₅₄Ala, 27978A>T and the 37912C>T variation. The -100AAG deletion variant however was only linked with the 26946A>G, Tyr₁₂₉Ser, 27721CA deletion and the 27978A>T polymorphism.
Table 1

<table>
<thead>
<tr>
<th>Gene</th>
<th>Variation</th>
<th>SNP Position</th>
<th>Genbank Accession No.</th>
<th>SEQ ID No</th>
<th>Variant Sequence Forward</th>
<th>SEQ ID NO</th>
<th>WT Sequence Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2D6</td>
<td>C>T</td>
<td>1719</td>
<td>GI:181303</td>
<td>001</td>
<td>TGCAGCTACTCACCCAGGC</td>
<td>002</td>
<td>TGCAGCTACCACCCAGGCC</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>G>A</td>
<td>1743</td>
<td>GI:181303</td>
<td>003</td>
<td>GCCAGCTGCCGGGTCGGG</td>
<td>004</td>
<td>GCCAGCTGCCTGGGTCGGG</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>insT</td>
<td>1756/1757</td>
<td>GI:181303</td>
<td>005</td>
<td>CTGGGCAACCCTGCTGAT</td>
<td>006</td>
<td>CTGGGCAACCCTGCTGAT</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>G>C</td>
<td>2502</td>
<td>GI:181303</td>
<td>007</td>
<td>CCCCCCTGCACTCCGTGG</td>
<td>008</td>
<td>CCCCCCTGCACTCCGTGG</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>delT</td>
<td>3326</td>
<td>GI:181303</td>
<td>009</td>
<td>GCCTGGAGCTGGGGTGAC</td>
<td>010</td>
<td>GCCTGGAGCTGGGGTGAC</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>G>T</td>
<td>3377</td>
<td>GI:181303</td>
<td>011</td>
<td>CAACCACTCCGTGCCGAT</td>
<td>012</td>
<td>CAACCACTCCGTGCCGAT</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>G>A</td>
<td>3465</td>
<td>GI:181303</td>
<td>013</td>
<td>CCCACCCCAAGACGGCCC</td>
<td>014</td>
<td>CCCACCCCAAGACGGCCC</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>delA</td>
<td>4168</td>
<td>GI:181303</td>
<td>015</td>
<td>AACTGAGAGAGAAGCTC</td>
<td>016</td>
<td>AACTGAGAGAGAAGCTC</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>delAGA</td>
<td>4232 to 4234</td>
<td>GI:181303</td>
<td>017</td>
<td>GCAGAGATGAGGAGTGAG</td>
<td>018</td>
<td>GCAGAGATGAGGAGTGAG</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>C>T</td>
<td>4469</td>
<td>GI:181303</td>
<td>019</td>
<td>TGAGAACCCTGGCATAGT</td>
<td>020</td>
<td>TGAGAACCCTGGCATAGT</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>A>C</td>
<td>4554</td>
<td>GI:181303</td>
<td>021</td>
<td>ATGATCTCACTCCGGGAT</td>
<td>022</td>
<td>ATGATCTCACTCCGGGAT</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>G>C</td>
<td>5799</td>
<td>GI:181303</td>
<td>023</td>
<td>TTCTGGTGAGCCATGC</td>
<td>024</td>
<td>TTCTGGTGAGCCATGC</td>
</tr>
<tr>
<td>HTR3B</td>
<td>AAGdel</td>
<td>36678 to 36680</td>
<td>GI:17425234</td>
<td>025</td>
<td>GCAACGAGAGAGAGAACA</td>
<td>026</td>
<td>GCAACGAGAGAGAGAACA</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Gene</th>
<th>Amino Acid Change</th>
<th>Genbank Accession No</th>
<th>SEQ ID NO</th>
<th>Variant Protein</th>
<th>SEQ ID NO</th>
<th>Wildtype Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2D6</td>
<td>P34S</td>
<td>GI:181304</td>
<td>27</td>
<td>WAARYSPGGLP</td>
<td>28</td>
<td>WAARYSPGGLP</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>G42R</td>
<td>GI:181304</td>
<td>29</td>
<td>PLPLPRLGNL</td>
<td>30</td>
<td>PLPLPRLGNL</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>L48Lframeshift</td>
<td>GI:181304</td>
<td>31</td>
<td>PGLGNLLAACGL</td>
<td>32</td>
<td>PGLGNLLHVDF</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>W152Gframeshift</td>
<td>GI:181304</td>
<td>33</td>
<td>KSLEOG</td>
<td>34</td>
<td>KSLEQGWTEEA</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>G169stop</td>
<td>GI:181304</td>
<td>35</td>
<td>FANHS,</td>
<td>36</td>
<td>FANHS,</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>H258G</td>
<td>GI:181304</td>
<td>37</td>
<td>ELLTEG,</td>
<td>38</td>
<td>ELLTEHRMTWDP</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>281Kdel</td>
<td>GI:181304</td>
<td>39</td>
<td>LAEMEAKGNP</td>
<td>40</td>
<td>LAEMEAKGNP</td>
</tr>
</tbody>
</table>
Table 3. Polymorphisms genotype frequency in all patients and efficacy of the antiemetic treatment as function of the 5-HT\textsubscript{3} polymorphisms at both observation periods (0-4 and 5-24 hours). Given are the mean value and standard deviation (SD).

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>All patients</th>
<th>Mean episodes of vomiting</th>
<th>Mean of VAS value for nausea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of n= 242</td>
<td>0-4 h</td>
<td>5-24h</td>
</tr>
<tr>
<td>-100AAG_del</td>
<td>ins/ins</td>
<td>78.1</td>
<td>0.2 (0.8)</td>
</tr>
<tr>
<td></td>
<td>ins/del</td>
<td>20.7</td>
<td>0.4 (1.7)</td>
</tr>
<tr>
<td></td>
<td>del/del</td>
<td>1.2</td>
<td>1.0 (1.0)</td>
</tr>
<tr>
<td>-3G>A</td>
<td>G/G</td>
<td>96.3</td>
<td>0.3 (1.1)</td>
</tr>
<tr>
<td></td>
<td>A/A</td>
<td>3.7</td>
<td>0.0 (0.0)</td>
</tr>
<tr>
<td>26945C>T</td>
<td>C/C</td>
<td>87.4</td>
<td>0.2 (1.1)</td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>12.1</td>
<td>0.3 (1.1)</td>
</tr>
<tr>
<td></td>
<td>T/T</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>26946A>G</td>
<td>G/G</td>
<td>37.2</td>
<td>0.2 (0.9)</td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>47.7</td>
<td>0.3 (1.2)</td>
</tr>
<tr>
<td></td>
<td>A/A</td>
<td>15.1</td>
<td>0.2 (1.1)</td>
</tr>
<tr>
<td>Tyr\textsubscript{125}Ser</td>
<td>Tyr/Tyr</td>
<td>53.6</td>
<td>0.4 (1.3)</td>
</tr>
<tr>
<td></td>
<td>Tyr/Ser</td>
<td>36.0</td>
<td>0.1 (0.7)</td>
</tr>
<tr>
<td></td>
<td>Ser/Ser</td>
<td>10.5</td>
<td>0.0 (0.2)</td>
</tr>
<tr>
<td>Ala\textsubscript{154}Ala</td>
<td>G/G</td>
<td>98.3</td>
<td>0.3 (1.1)</td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>1.7</td>
<td>0.3 (0.5)</td>
</tr>
<tr>
<td>27721CA_del</td>
<td>ins/ins</td>
<td>39.1</td>
<td>0.2 (0.9)</td>
</tr>
<tr>
<td></td>
<td>ins/del</td>
<td>44.2</td>
<td>0.3 (1.2)</td>
</tr>
<tr>
<td></td>
<td>del/del</td>
<td>16.7</td>
<td>0.2 (1.0)</td>
</tr>
<tr>
<td>27978A>T</td>
<td>A/A</td>
<td>99.2</td>
<td>0.3 (1.1)</td>
</tr>
<tr>
<td></td>
<td>A/T</td>
<td>0.8</td>
<td>0.5 (0.7)</td>
</tr>
<tr>
<td>Ala\textsubscript{223}Thr</td>
<td>Ala/Ala</td>
<td>99.6</td>
<td>0.3 (1.1)</td>
</tr>
<tr>
<td></td>
<td>Ala/Thr</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>28232A>G</td>
<td>A/A</td>
<td>63.2</td>
<td>0.3 (1.2)</td>
</tr>
<tr>
<td></td>
<td>A/G</td>
<td>31.4</td>
<td>0.0 (0.3)</td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>5.4</td>
<td>0.4 (1.4)</td>
</tr>
<tr>
<td>37912C>T</td>
<td>C/C</td>
<td>94.6</td>
<td>0.2 (1.1)</td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>5.4</td>
<td>0.5 (1.5)</td>
</tr>
<tr>
<td>37958T>A</td>
<td>T/T</td>
<td>93.3</td>
<td>0.2 (1.1)</td>
</tr>
<tr>
<td></td>
<td>T/A</td>
<td>4.8</td>
<td>0.6 (1.6)</td>
</tr>
<tr>
<td></td>
<td>A/A</td>
<td>1.9</td>
<td>0.0 (0.0)</td>
</tr>
<tr>
<td>38029G>T</td>
<td>G/G</td>
<td>99.0</td>
<td>0.3 (1.1)</td>
</tr>
<tr>
<td></td>
<td>G/T</td>
<td>1.0</td>
<td>0.0 (0.0)</td>
</tr>
</tbody>
</table>

Ins., insertion; del., deletion.
Table 4. Confounding effect of CYP2D6 genotypes, administration of glucocorticoids and emetogenic level of the chemotherapy. Given are the mean value and standard deviation (SD).

<table>
<thead>
<tr>
<th>.100 AAG<sub>del</sub></th>
<th>CYP2D6<sup>*</sup></th>
<th>n</th>
<th>Mean episodes of vomiting</th>
<th>Mean of VAS value for nausea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-4 h</td>
<td>5-24 h</td>
</tr>
<tr>
<td>Ins/Ins</td>
<td>0</td>
<td>18</td>
<td>0.0 (0.2)</td>
<td>0.2 (0.6)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>58</td>
<td>0.3 (1.0)</td>
<td>0.8 (2.0)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>104</td>
<td>0.1 (0.7)</td>
<td>0.8 (2.7)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Ins/Del</td>
<td>0</td>
<td>2</td>
<td>0.0 (0.0)</td>
<td>2.5 (3.5)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>17</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.3)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>28</td>
<td>0.5 (2.0)</td>
<td>1.4 (3.3)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>2.5 (3.5)</td>
<td>3.5 (4.9)</td>
</tr>
<tr>
<td>Del/Del</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>1.0 (1.0)</td>
<td>5.0 (5.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>.100 AAG<sub>del</sub></th>
<th>Glucocorticoids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ins/Ins</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Ins/Del</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Del/Del</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>.100 AAG<sub>del</sub></th>
<th>Emetogenic** level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ins/Ins</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Ins/Del</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Del/Del</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

0= no active CYP2D6 gene, 1 = one active-, 2 = two active-, 3 = three active CYP2D6 gene. **Emetogenic level of the combined chemotherapy according to Hesketh, J Clin Oncol 15 (1997), 105-109 and Hesketh, Oncologist 4 (1999), 191-196. Ins., insertion; del., deletion.
49

Claims

1. Use of 'setrones' for the preparation of a pharmaceutical composition for treating and/or preventing 'setrone-treatable diseases' in a subject having in its genome less than three copies of a polynucleotide encoding a functional CYP2D6 polypeptide.

2. The use of claim 1, wherein said subject is having in its genome at least one first variant allele selected from a group consisting of: the allele CYP2D6*3, CYP2D6*4, CYP2D6*5, CYP2D6*6, CYP2D6*7, CYP2D6*8, CYP2D6*11, CYP2D6*12 and CYP2D6*15.

3. The use of claim 1 or 2, wherein said subject is having in its genome at least one first variant allele selected from a group consisting of: the allele CYP2D6*1, CYP2D6*2, CYP2D6*9 and CYP2D6*10.

4. Use, preferably of any one of claims 1 to 3, of 'setrones' for the preparation of a pharmaceutical composition for treating and/or preventing 'setrone-treatable diseases' in a subject having in its genome a second variant allele which comprises at least one
 a) polynucleotide having the nucleic acid sequence of SEQ ID NO: 026, and
 b) polynucleotide capable of hybridizing to a HTR3B gene, wherein said polynucleotide is having at a position corresponding to position 36678 to 36680 of the HTR3B gene (Genbank accession No.: GI:17425234) an AAG.

5. The use of any one of claims 1 to 3, wherein a nucleotide deletion, addition and/or substitution comprised by said polynucleotide results in an altered expression of the first variant allele compared to the corresponding wild type alleles.

6. The use of claim 5, wherein said altered expression is decreased expression.
7. The use of any one of claims 1 to 3, wherein a nucleotide deletion, addition and/or substitution comprised by said polynucleotide results in an altered activity of the polypeptide encoded by the first variant allele compared to the polypeptide encoded by the corresponding wild type allele.

8. The use of claim 7, wherein said altered activity is decreased activity.

9. The use of any one of claims 1 to 8, wherein said subject is an animal.

10. The use of any one of claims 1 to 8, wherein said subject is a human.

11. The use of claim 10, wherein said human is Asian.

12. The use of claim 11, wherein said Asian is Chinese.

13. Use of ‘setrones’ for the preparation of a pharmaceutical composition for treating and/or preventing ‘setrone-treatable diseases’ in a subject not having in its genome a polynucleotide associated with an ultrarapid metabolizer phenotype of CYP2D6.

14. A method for selecting a suitable therapy for a subject suffering from ‘setrone-treatable diseases’, wherein said method comprises:
 (a) determining whether a subject is having in its genome less than three copies of a polynucleotide encoding a functional CYP2D6;
 (b) determining the presence or absence of a first and/or second variant allele in the genome of a subject in a sample obtained from said subject; and
 (c) selecting a suitable therapy for said subject based on the results obtained in (a).

15. A method of treating and/or preventing ‘setrone-treatable diseases’ comprising:
 (a) determining whether a subject is having in its genome less than three copies of a polynucleotide encoding a functional CYP2D6;
(b) optionally determining the presence or absence of a first and/or second variant allele comprising a polynucleotide referred to herein; and

(c) administering to a subject a therapeutically effective dosage of 'setrones'.

16. A method of preventing and/or treating 'setrone-treatable diseases' in a subject which comprises internally administering to the subject an effective amount of 'setrones', wherein the treatment regimen is modified based upon the genotype of the subject's CYP2D6 and/or HTR3B gene.

17. A method for determining whether a subject is at risk for non-response to treatment with 'setrones' which comprises determining if the subject has one or more variant alleles of the CYP2D6 and/or HTR3B gene.

18. The method of any one of claims 15 to 17 wherein treating and/or preventing 'setrone-treatable diseases' are postoperative nausea and/or vomiting, or nausea and/or vomiting secondary to cancer chemotherapy, radiation therapy, migraine, acetaminophen poisoning, prostacyclin therapy, and opioid treatment, spinal or epidural opioid-related pruritus, acute levodopa-induced psychosis, bulimia nervosa, fibromyalgia, chronic fatigue syndrome, obsessive-compulsive disorders, schizophrenia, alcoholism, cocaine addiction, opioid withdrawal syndrome, drug withdrawal phenomena, anxiety disorders, cognitive disturbances, neuroleptic-induced tardive dyskinesia, tourette's syndrome, migraine headache, and gastrointestinal motility disorders.

19. The method of any one of claims 15 to 17 wherein 'setrones' are ondansetron, tropisetron, dolasetron, granisetron, azasetron, itasetron, ramosetron, palonosetron, lerisetron, zatosetron, clinasetron, alosetron hydrochloride and ricasetron.

20. The method of any one of claims 15 to 17 wherein the subject does not have in its genome a polynucleotide associated with an ultrarapid metabolizer phenotype of CYP2D6.
21. The method of any one of claims 15 to 17 wherein the subject has in its genome less than three copies of a polynucleotide encoding a functional CYP2D6 polypeptide.

22. The method of any one of claims 15 to 17 wherein the subject having in its genome a
(a) polynucleotide having the nucleic acid sequence of SEQ ID NO: 026, and
(b) polynucleotide capable of hybridizing to a HTR3B gene, wherein said polynucleotide is having at a position corresponding to position 36678 to 36680 of the HTR3B gene (Genbank accession No.: GI:17425234) an AAG.
Fig. 1

Nausea

- All patients

Vomiting

- All patients

Emetogenic level

% of patients with nausea
Fig. 2

3 hours after administration

Tropisetron serum conc., µg/l

Number of active CYP2D6 genes

6 hours after administration

p < 0.03

Number of active CYP2D6 genes
Fig. 6

0-4 hours after chemotherapy

5-24 hours after chemotherapy
EPIDAUROS Biotechnologie AG

Means and methods for improved treatment using 'setrones'

G1818PCT

EP 02011491.4
2002-05-24

52

PatentIn version 3.1

1
21
DNA
Homo sapiens

tgcacgctac tcaccaggcc c

2
21
DNA
Homo sapiens

tgcacgctac ccaccaggcc c

3
21
DNA
Homo sapiens

gccactgccc aggctggca a

4
21
DNA
Homo sapiens

gccactgccc gggctggca a

5
23
DNA
Homo sapiens

cctggcacc ttgctgcag tgg

6
<211> 22
<212> DNA
<213> Homo sapiens

<400> 6
ctgggcacc tgtgcattgt gg

<210> 7
<211> 21
<212> DNA
<213> Homo sapiens

<400> 7
cctctgcac tgtccgccc g

<210> 8
<211> 21
<212> DNA
<213> Homo sapiens

<400> 8
cctctgcag tgtccgccc g

<210> 9
<211> 20
<212> DNA
<213> Homo sapiens

<400> 9
gctggagcag gggtgaccga

<210> 10
<211> 21
<212> DNA
<213> Homo sapiens

<400> 10
gctggagcag tgtgggcacc a

<210> 11
<211> 21
<212> DNA
<213> Homo sapiens

<400> 11
caccacctcc tgtgggtgat g

<210> 12
<211> 21
<212> DNA
<213> Homo sapiens

<400> 12
caccacctcc ggtgggtgat g
<210> 13
<211> 21
<212> DNA
<213> Homo sapiens
<400> 13
ccccacccccca agacgccct t 21

<210> 14
<211> 21
<212> DNA
<213> Homo sapiens
<400> 14
ccccacccccca ggacgccct t 21

<210> 15
<211> 20
<212> DNA
<213> Homo sapiens
<400> 15
aactgacgcg gatgacctg 20

<210> 16
<211> 21
<212> DNA
<213> Homo sapiens
<400> 16
aactgacgcg aggtgacct g 21

<210> 17
<211> 20
<212> DNA
<213> Homo sapiens
<400> 17
gcagagatgg aggtgagagt 20

<210> 18
<211> 23
<212> DNA
<213> Homo sapiens
<400> 18
gcagagatgg agaaaaaggtgag a 23

<210> 19
<211> 21
<212> DNA
<213> Homo sapiens
<400> 19
<210> 20
<211> 21
<212> DNA
<213> Homo sapiens

<400> 20
tgagaacctg tgcatagtgg t 21

<210> 21
<211> 21
<212> DNA
<213> Homo sapiens

<400> 21
tgatacctac ctccgatgt g 21

<210> 22
<211> 21
<212> DNA
<213> Homo sapiens

<400> 22
tgatacctac atccgatgt g 21

<210> 23
<211> 21
<212> DNA
<213> Homo sapiens

<400> 23
ttcctgtgta ccccatcccc c 21

<210> 24
<211> 21
<212> DNA
<213> Homo sapiens

<400> 24
ttcctgtgta gccccatcccc c 21

<210> 25
<211> 20
<212> DNA
<213> Homo sapiens

<400> 25
gcaaacggag gaggagaaca 20

<210> 26
<211> 23
<212> DNA
<213> Homo sapiens
<400> 26
gcaaacgag aaggaggaga aca

23

<210> 27
<211> 11
<212> PRT
<213> Homo sapiens

<400> 27
Trp Ala Ala Arg Tyr Ser Pro Gly Pro Leu Pro
1 5 10

<210> 28
<211> 11
<212> PRT
<213> Homo sapiens

<400> 28
Trp Ala Ala Arg Tyr Pro Pro Gly Pro Leu Pro
1 5 10

<210> 29
<211> 11
<212> PRT
<213> Homo sapiens

<400> 29
Pro Leu Pro Leu Pro Arg Leu Gly Asn Leu Leu
1 5 10

<210> 30
<211> 11
<212> PRT
<213> Homo sapiens

<400> 30
Pro Leu Pro Leu Pro Gly Leu Gly Asn Leu Leu
1 5 10

<210> 31
<211> 12
<212> PRT
<213> Homo sapiens

<400> 31
Pro Gly Leu Gly Asn Leu Leu Ala Ala Cys Gly Leu
1 5 10

<210> 32
<table>
<thead>
<tr>
<th>No.</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Pro Gly Leu Gly Asn Leu Leu His Val Asp Phe</td>
</tr>
<tr>
<td>33</td>
<td>Lys Ser Leu Glu Gln Gly</td>
</tr>
<tr>
<td>34</td>
<td>Lys Ser Leu Glu Gln Trp Val Thr Glu Glu Ala</td>
</tr>
<tr>
<td>35</td>
<td>Phe Ala Asn His Ser</td>
</tr>
<tr>
<td>36</td>
<td>Phe Ala Asn His Ser Gly Arg Pro Phe Arg Pro</td>
</tr>
</tbody>
</table>

Homo sapiens
<table>
<thead>
<tr>
<th>210</th>
<th>211</th>
<th>212</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td><210></td>
<td>38</td>
<td>12</td>
<td>PRT</td>
</tr>
<tr>
<td><400></td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu Leu Leu Thr Glu Gly</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>210</th>
<th>211</th>
<th>212</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td><210></td>
<td>39</td>
<td>10</td>
<td>PRT</td>
</tr>
<tr>
<td><400></td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu Leu Leu Thr Glu His Arg Met Thr Trp Asp Pro</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>210</th>
<th>211</th>
<th>212</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td><210></td>
<td>40</td>
<td>12</td>
<td>PRT</td>
</tr>
<tr>
<td><400></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu Ala Glu Met Glu Ala Lys Gly Asn Pro</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>210</th>
<th>211</th>
<th>212</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td><210></td>
<td>41</td>
<td>11</td>
<td>PRT</td>
</tr>
<tr>
<td><400></td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn Asp Glu Asn Leu Cys Ile Val Val Ala Asp</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>210</th>
<th>211</th>
<th>212</th>
<th>213</th>
</tr>
</thead>
<tbody>
<tr>
<td><210></td>
<td>42</td>
<td>11</td>
<td>PRT</td>
</tr>
<tr>
<td><400></td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn Asp Glu Asn Leu Arg Ile Val Val Ala Asp</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
<212> PRT
<213> Homo sapiens

<400> 43

Leu Leu Met Ile Leu Pro Pro Asp Val Gln Arg
1 5 10

Leu Leu Met Ile Leu His Pro Asp Val Gln Arg
1 5 10

Leu Leu Met Ile Leu His Pro Asp Val Gln Arg
1 5 10

Phe Ala Phe Leu Val Thr Pro Ser Pro Tyr Glu
1 5 10

Phe Ala Phe Leu Val Ser Pro Ser Pro Tyr Glu
1 5 10

Phe Ala Phe Leu Val Ser Pro Ser Pro Tyr Glu
1 5 10

<210> 46
<211> 11
<212> PRT
<213> Homo sapiens

<400> 46

Phe Ala Phe Leu Val Ser Pro Ser Pro Tyr Glu
1 5 10

<210> 47
<211> 2665
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Misc_feature: CYP2D6 deletion

<400> 47

acccctgacc agtgaagagtt tcgcactcag ggcagggcag gcggctgagg aggacacttg
60
tttgcttcca acctaggta ccacctccag agtgggatcc aggcaggccc cagcggccctg
120
ccctagggac aggctcaac ctggacccc taaggcactg ggccgggcag agsagggga
180
gtgccatgg gcagcgtgaga ggcagagacc ctgaccctag tccttctct gcctatcc
240
gaggttggtct tctttctact cttgacttttg cgtctcttgca gagggagggt tgagggtggtga
2160
cacaacccctg acacccacac tgtagtaggtac tagtctctct gcccgacttg gcccatctcttt
2220
tccaggtgca gtcctccctta ctggtctgcc caagggtggcc agcaacagcc gccacactcca
2280
ggggaagagg agtgccagcgc cttaacacat cacctgggcaag agtgtagcatt ttagctcaatt
2340
gcccccacac tgggctggacc atctccccctg tgggtctgcat gacaagaga gagaacagggc
2400
tgaggtgaga gctaactgtcga acacctaaac cttataaaatct tataattgag ctgmggagg
2460
tggctcagcg ctgtaaatccc agcaacctggg gaggccgaga tgggtgggact acctgagggtc
2520
agatgttgga gaccagcctg gccacagtgg tgaaccccccct ctctctactaa aataacaaaaa
2580
aattagctgg gcggtggtggt tgggtgctctgt aatcccaagct actcaggaga gagaagagggg
2640
aattgcttga accctgggagg cagag
2665

<210> 48
<211> 2788
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Misc_feature: CYP2D6 amplification

<400> 48
cagcctcgttc acctcaccac aggactgtgct acctctctgg gccctcaggg atgctgtgctg
60
acagaacctgt gacagttgag cacagttgcc ctaggccagag gtgggtgtcttg gaggaggaca
120
ctggctttggc tccaaacctta ggtccatcct tccccagtagg gatcaggcgc gggccacagg
180
ccttgccctag ggcagattg ccaacctttga ccctattaga ccattaggcc actggtgaggc gcagagaggg
240
aggaggctggc atggagctgt gcagagcgaga gaccctgtacc ctgtctcttg tctgtccatt
300
accctgttg acgccggtgc cacccccttttc cacccctgggg tctgtgctttc
360
ctgctcagcag gagaatgctgc cttcatctgcc cccagttctct gttttctctgc tctgccttctt
420
ggggctgtggt cccttgctggt cctgagcccg ccaacaaggg cagagagtctc ctgctcctacg
480
ggtcgctcct acgcagcatga tgggcttcggt tcggccacca gcagatgctcgc aagagtcttctg
540
aatgagcata tgtattacct agtgcttcgggc agacccctcttct agggaacagc tgggacagag
600
gaaccacag cactctggag acgcacccgtg aggccctcttt tcggccagaga ccctacaagccc
660
tccctgctgg aggregttct ggctacattc taatatgcctc actgcaggcc tccggcccg
720
cctgccagcag gaccttggcc tccatagctg tcggccaccc gactagtctgc gaaaggtgctc
780
cagggccccct cggggtccct ccagagacaa ccctactctgg tccacagcggct ccggcttggcagg
840
aagtgctgttt cctgcagcgtg tggggacagg gagtgtggtat gaagccaggg tgggtttttc 900
ngaagacgga ggcgccacaaaa ggtggcagcc tggcccatag caccacagcaac ctctgagttt 960
attggaaaga tttctctcag ggtttcttgat ttgggggggtg ttaggggtctc agaaccagtc 1020
cagccagagg ctcttgctaggg gcacagtacg cccgccagcct gggctttttct ctttggctgc 1080
ctcagaggcc tctgcaaaagt agaaccagcc agctcttctga gttccctctct cgggagcaca 1140
aaccctccct ctctagatgcc cccgggcccag gccagcttctg gtgaaggtga gggatgcagc 1200
cagctcaggg agtggccccag atgtctctgcc acaccaagga ggtctcccaagg aaggtcaggg 1260
cacctgactc ctggggtcct gcctccctcc cccctcccccacctcagagga gttgggaaggg 1320
gctggggtgtt ctgtaggctct gcagctgact cggacgtagag gggagactgta gttccctgca 1380
ccagctcgggt cagccggtgct acacagtgga taagcgagcca ctctctctttt gcacacacag 1440
ctttcttgag cggagaagaga ggagttcagcc agttgagatca ggcaggttcct gttgctgaca 1500
gacaggggaa caggtctctgt cccacaaagg tctggttgccc caggtttgaggg ctcgctctgt 1560
tcacacagtg ccctggctgcc cctccagctcc ttaggtctgc acacccggtcc tccaagcgcc 1620
cyttggccctgc ttgtctttggg gttggaccag ccctccagca acggctctctg tcggctgtgc 1680
tccacactctg caggtctcctgc ttgctgctca gttggaccca cctgggttagg gtctgctgca 1740
agcccgcccgggtgccgtctcagg tccagtctctg acacctctct gcctttctgc agcggagggg 1800
tgggcttagg tgtcctcctc cctgggacct tcacatctcct tccccctcctgc gataagacgg 1860
cagctccctc cttggggcagc cagccattta gtcctccagg ctctctgctgg gttgtgacct 1920
caggggggaa taaggccagca gactgccccg aagggctttg agacacacct aacccctctg 1980
tccacacactg ggtgcctcaca gcctgggagag gttcctctctt ttcaggttag ctgtggtaac 2040
cyttgtatgg tcctgggacc gcggctccac taccccttggg acctccctgcc tctgtgctgg 2100
gtctactctg cctctggagag gtagagacag gtcgctgggg cctccaggag gaagcctttgc 2160
tcggaggttt ggcgcctctcc tacctctgctg cttggctccttc tgcagagggg ggtggggaggg 2220
gtgggagcag accaggtggcc acagttagag gcagtcggct gactagccag gcctgtggtag 2280
cctttccagg ctgagtctgctc ttaaactttgactgccttgg acgtgctggagg 2340
tccagggag aagagcagctt cccggttacc acctgcttg cttgagacag gcagctgataa caggccac 2400
attagcccc acactggacct gcacatatcc cctctgggct gcagagacag gacagagagc 2460
aggtgaggt gaggagcactg tcaacacactt aacactaaaa aacttataat tgggttggcgc 2520
agggggctc tcagtcgttaa tccacagcact ttggagggcc gagagggttg gtcacacattg 2580
gtgactagtct cggagacacag cctgggagaa acgtgtgaacc ccgcctcctctc ataaaattt 2640
aaaaatagag atggccggcttg tggggtttggc cttgtaatccag agctactcatg gagagagaga 2700
ggagaattgc ttgaaccttg ggagcagagg ttgcagtgag cccgagatcac accattgac 2760

tccagtctgg gtgataagta gataagta 2788

\(<210>\) 49
\(<211>\) 1493
\(<212>\) DNA
\(<213>\) Homo sapiens

\(<220>\)
\(<221>\) misc_feature
\(<223>\) Misc._feature: CYP2D6 cDNA (CYP2D6+1)

\(<400>\) 49
atggggtcatg aagcacttgtt gcccctggcc ttgtagtggt gcctcttggtg 60
gacctgatgc aacgggccca aagcctggcg gatgtgattc accggctacc cctagccactg 120
cccgggtcttg gcaactgtgt gcctggtgac ttccgagaga caccatactg ttccgaccag 180
ttgcggcccg gtctcggggga gctgtccagcg ctgcaagctg cctggaagcc ggtgtctgtg 240
tcaattggcc tggcggccctg gcgcggcagcg ctggtgacac ccggcgagga caccggccac 300
cgcccggctgt gcctccatcac ccagattgtg gtttttcgggc gcgcgtccca ccgggtgttc 360
tgcgcgctgt atgggctgccg ttgggccgag cagagccgtct ttcgcgtgttc cacctggcgc 420
aacttgggcc tgggccagaa gttcgctggtg ccagtggtga cccggagggc cgcctgtcct 480
tgtgcgctct tggccaaacca cttcggagcg cccttttcgcc ccaacggtct ccctggacaa 540
gccgtgacca acgtgatgcgc ctcctccacc tggggccgcc gttgcagaat cagacgcctt 600
cgctctctca ggctctgtgg ctctgctcag gaggagctga aggagagtcc ggcttttctg 660
cgcggagttgc tgtgatctgtg ccctgtccctg ccctgatac cagcgctgcc tggagaagtc 720
tcagctctcc aaaaaagtttt cctgcacagcg ccctcgtgac ccggccatag agagagagag 780
acgctgggcc gagcccgccgc cccggcagac cgctgctgag cccttccgtgc cccttccagc 840
agggccaag ggaaacctgtg gagcgctccc aatgtgagaa acctgcgcat aagtggtggtg 900
gactgttct tcgcgggggt ggtgaccaccat cggcccactc gcccgggctc ccccctctc 960
atgatcctac atcgggtgtg gaccgcggct ccgcaacagg agatgacaga cggatgaggg 1020
caggtgggg gcaccgagat gggtgacagc gctcatactgc ccctacacacc ggctgtgatt 1080
cattgggtgc accggttggc gacacgctgc ccctgtgggtg tggaccatgc gcacagccgt 1140
gcacatgaag caacggtttc ccgcaatactc aaggggaacga cactcatcag caacccgtca 1200
tcggtcgctga aggatgaggc ggtctgggaag gcccttcccct gctttccacc cgaacacttc 1260
ctggatggc cccagccacct tgtgaagcgc gggctctccc tggcttttcct gcacagccgc 1320
cgtgcatgcc tcggggagccc cctggcgcgc atggagctct tctctctctt cactccctcg 1380
ctgcaagcact tcagccttccc ggtgccccact ggcacagccc ggcacagccca ccatgggtgc 1440
tttggctttccc tggtgagccc atccccctat gaccttttgg ctgtgcccccg cta 1493

<210> 50
<211> 9432
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Misc_feature: CYP2D6 Genbank accession no. 181303

<400> 50
gaattcaaga ccagctggga caactttgga gaaccocggtc tctacaaaaa atacaaaatt 60
agctggatt ggttgccgggt gctcatgacct ataatccccag cacctttggga gcctgaggtg 120
ggtgatcac ctgaaagctgg gatgtgctagga atgcgttcatg agccgagatt 180
tctactgaa acatcaaaaaa ctagaagcgtt ggccacacac ctagaatctc agctaacttag 240
gaggtctagg cagagagaatt gctttgagcc tagaggtgaa gttgtgtgtg agcgcagatt 300
gcatcattgc acaatggagg ggagccacca gctgtgggcca caagagggaa tctccgttctc 360
caaaaaaaaaaaa aaaaaaaaaa aaagaattag gctgggtgtgt gcttgagttc ccagctactt 420
gggaggccagg ggtgctcactt gatgctcaga ctcgacgtcag ccatgcatct gccactcgac 480
tccggtcctgg gcaacagagt gagacccctgt ctaagaagaa aaaaaaataa ccaacatatc 540
cgaaacaag gatcctcccat aacgtccccc ccagatttctc atacgaaaca atggaggcca 600
gaagcttgt gaggaggagc accctccaggg agcccggggg gattgtgctg caggtctggg 660
caggcccttt cccgctacca actgggagct ctgggaacag ccctgtgtca aacagaagcc 720
catgcgcccgg ccagagggca gaaatgttgg ctggctgggt agcagctctc ggacaggggt 780
ggtcccatcgg aggaaaccctc cggcatggtgt ggaaggtggt gcattttggt cggctcctgt 840
atgtgttgtt gactgtgttg tgtgagagag aatgtgtgcc ttaagttgta gttgttgtctc 900
gtttattttct ttcgggtggc ttaattttgc cttggctaat ctggtccccccgt 960
cagggtgata cagttggagc atggcttggc agttgacagag agatctgctc accataaggtt 1020
gttgaatttg gttgctgtgca ttgcaaatgat gcaagttgaa gttgaagggac gaggccccatg 1080
atgcctccca tctcagggag cttcaagggcc ccaagtaagt gccaagttgca gata aggregtg 1140
caggtcggc ctctggagtt ggcaagttgg gttaggggaa gggcaaggcc attgttcggtga 1200
ggaggaggttg tgacttacct aggaggtagt acgcttgcttg aggagtctgtt ggcggcggctgc 1260
actggaaacc tggcttcacc cagaggcttt gcagccttta ggaagttgga gttgaggagag 1320
ctcacccag ccagcaca caacgcgggt atagccccag catggtctact gcaggtgggg
cccactctag gaaacctggc cacactagtc tcatagcac cacactgact gtcctcactt
gggtggggt tccagagtat aggcaaggtct gccctgtcct cccagagccc cctgctagtg
ggagacaaaa ccaagcagct ccagatgttt ggggacccaa acgcctgcag gaggaggggg
cagtgtgggt gcctcttgaa ggttgtagct gcgcccctgtg tggggctgga gagggtactg
tggagctcct cggtgcgcagg actatgtgac agagtccagc tgtggtgcag gcaggtggtg
ccccctgtgt gttggtgtgg gagggtcctca gcacctctga gtcctgcctt cccttcacc
ctgcactctcc tggcgagga cagacactca tcacacacct gtcactcggtg ctgagagagt
tagccggtcttg ggagagccggc cttccctttc acacccgacc attcctagat gcacagggcc
tttttgtgaa gccggagggc ttctctgcttt ttctagcagc tgccgttggg gaggccggct
ccccctcccc ctcgggtggg ctctccggtt ggcacctggt ggcacctggt cactgaagcg
cctccccctc cccacagccc gggctgcatg cgctggggag cccctgggcc gcaggtggtc
cctccccctt tccacctcgc tggcgtcagc cttccacctc tgggtgcctca ctcgacaggc
cggccagcg caccatggtg ctttgtgttt ccttgtgagc ccatccccct atagctcttg
ctggtggccc cgtatgaatg gggatcctag ctcgggtcct gcctcctagc gacggctctc
avgtacaatt aagactgtt ggttagtctca actccggtcct cctgctcagc cctctgtcgg
agtactcctc ttcagggcag ccagcccaac gcctttcacc tgcctacccc acgcctgggc
cgctttttag acaggggtac gttgaggctg agcagatgtc agttacccct gcaccataac
catgtctcc cactgaccca acctgtgctg cccagatggg tgcacaagag tacattgccc
tggcatgtcc ggaggggcc aagaagtggt gactagaggt gtcagtcagc cctggatgtg
gttggaggg caggactcag ccggagggc cattatccag gcctactcaa gcccaccccc
catcagggag acgagtctgt gcagcaccat cacaacagtc acctccccct atatatgaca
cccacaaacg gaagacaaaat cagtggtgta ggggactata tgccaggctg acctacccct
cacgctctg cgtgcaggtg ccagaaagtt cccctgggag gccccatgga agcccaggag
tgacccacca cccctcagct gcctactcct cccacagagg ggtcaacctc ctgggcccctc
daggatcctg cttgacagac ccctgaccag tgcagagtcc gcacctggag ccaggtgcgg
gctggaggag gacaaatttt tggctctcaac cctaggttcc atccctccag tggggatcag
gcagggccca caggctgcc tctagggcgaga cgtcaccct gggaccata aggcacctgg
gccggcagag aaggaggagg tggcattggc gcgtgagagc cagacacct gcacctagtc
cctgcctcgc cctacccecg tggaccccg gcacccaccc ttcacccccc ctcaccccct
gggctcttcgt ttccttttgc caacgagaa gctgccttcac ctgcccccgag tcctgtcttc

ctgctctgccc ttcttgggctt tgtggccttgg ctggccttggga gcccccaacca aggccaggga

ctgctgtcct ccaagctctgt cctcaccggac ataattgggtct gggctgggca cacaggcagtt

gccccagagt ttctaatgag cattatgatta cctgagttacct ggccgacacct tctttagggaa

cagccctggga cagagacacc cagacactct gaggacaccac ccttgagacct ctttttggccag

aggacccctac agcctcccttg gccacgattc gccaccagattcctgtgtaagtc ccctcaggtcc

agggtgcggcg cccgtcgctca gcagcagagg gacgttggttc tgtccctgtg gacccagattca

gtcagaaggg tggccagggcg ccccttgggc cccctccagag acaatccactgtggtcacac

ggctcggttgg caggaagtcg tgttcttgca gctgtggggga cagggagtgt ggatggaagcc

aggctgggttt tgtctgagga cggagcccgc gaaaggttggc agcctggcct atagcagcag

caacctctgg ggattattgga aagattttct ctcagcgttct ggtctcggg ggtgttagag

gtccagaaacc agtcacagcca gacgtctgtcc atgggcaagt agacccggtg cccaggccct

tgctttttgc tgtctcagaga ggcctctgcc aagtgaacac aggccagccct gtgagttccoc

tcttggggac cagcaacccct ccctctgaga tgcocccgggg ccaagttcacgtgtgtgtaaa

ggtagggtagt cacccagcct agggagttgg ccagagtttcc tgcoccaacca aggaggtcct

cagaaaagtc ccaaccactg atcctgtgga tcctttccccct ccctttccccct ccacaggtcag

gaaggtagga aagggcctgg gggtcgttggag cccttgccagtt cactgagaag caggggtgaa

gcacccccct gcagcaacgt ggtcgtctgg ttctttccaggt ttctgaacca gccaaaccttct

tttgaaccttt tttatcccc tgcagggag aagaggggtc gcagccggtcc atcagggcgg

ttctggttgg cagacagcc gaaacaggtt gttgctggtta cccttgccagtt cactgagaag caggggtgaa

gggcccaagt ctgcttcacac atgggctcgtg cctctcccagct gtctcacacag gtctctggtc

ccttgtggag cagcctgggc ctgctgtggtct tggggtgag ccaacctccag ccactggtcct

cctggccctgc tcgctccagct tccacgtaggc tctctgggtc cctgggtgag cccacgcctgg

gacaagttcag tcggagcccag gggctctgcct tacacccagag cttgggtgcct ctggccacctc

tgcgccagca ggaatggggcg tagggttccct ctccccctggg gacttccacct tgtctctcctc

tgaggaactgg aacggcagcct cctctttgggg gcagccagccat ttctagccct caggtttcct

gggggtcgttg acctgcagga ggaataaagag gcagactgg gcacagaggg gcttcagagca

cctcatcctc ctggtcttac cactgggtgt cacagtcctgt ggaagttcct ctcttttcgat

tgagctgggtg taaccccctgg agttttccggg aaggggcttg ccactacccct tggggacctcc

tgctgggtgtgt ccaggcttaaa ctgactccgt aagggaggaga gcocccagccc tggggcttcc

aggggagacc ttacccctaga gtttgtggttc ttctctactct gtaaccttgcc tctctgcaga
ggagggtggg aggggtgaca caacccgtgac acccaacaacta tgagtgatga gtgtcctgc
8700
cccgacgctgc ccactcccttc caggtgcagt ccctcttact gtgtctgcct aagttgcctag
8760
cacagccgccc cacactccaggg ggaagaggg gtcgagccct taccacctgga gtgggcacag
8820
tgtagcatttt attcattacgc cccacactct gcctgaccctt cccctccttgag ctgcctgatca
8880
caggagaga caacaggtgct aagtgagagcg tactgtcaac acctaaacct aaaaaatctaatat
8940
taatgggtct gggcaggtct gcctcagcct gtatcccccag cactttggga ggcggagatgtg
9000
gtgggatcac ctgggtcag aatgttgcaga ccaagcctggc caacatgggtg aaaccccgctca
9060
tctactaaaa atacaaaaaa tagctgggct gtgggtggtgg gtcctctgtaa tcccccgtac
9120
tcaggaggtct gcctggagag aatgtctgtaa aacctggggag cagggctgctc agtgagccgaa
9180
gatgctatca ttggactcctg gcctggtcct caagaggtga actgtctctta aaaaaaaaaatac
9240
tataattgttatcttttaga aagataaaact ttgctattcat gaaataagaa taggagggtctc
9300	taaaataaataagtctcaaatc acccaccacc actaattgttc gaaaaaata tagtcttggtt
9360
gcctagggtct atggcctgtaa tccccgcttt cttggagggct cagggcaggag attgttttgt
9420
gcctaggaat tc
9432

<210> 51
<211> 497
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<223> Misc_feature: CYP2D6 Genbank Accession No GI:181304

<400> 51

Met Gly Leu Glu Ala Leu Val Pro Leu Ala Val Ile Val Ala Ile Phe
1 5 10 15

Leu Leu Leu Val Asp Leu Met His Arg Arg Gln Arg Trp Ala Ala Arg
20 25 30

Tyr Pro Pro Gly Pro Leu Pro Leu Pro Gly Leu Gly Asn Leu Leu His
35 40 45

Val Asp Phe Gln Asn Thr Pro Tyr Cys Phe Asp Gln Leu Arg Arg Arg
50 55 60

Phe Gly Asp Val Phe Ser Leu Gln Leu Ala Trp Thr Thr Pro Val Val Val
65 70 75 80
Leu Asn Gly Leu Ala Ala Val Arg Glu Ala Leu Val Thr His Gly Glu

85 90 95

Asp Thr Ala Asp Arg Pro Pro Val Pro Ile Thr Gln Ile Leu Gly Phe

100 105 110

Gly Pro Arg Ser Gln Gly Val Phe Leu Ala Arg Tyr Gly Pro Ala Trp

115 120 125

Arg Glu Gln Arg Arg Phe Ser Val Ser Thr Leu Arg Asn Leu Gly Leu

130 135 140

Gly Lys Lys Ser Leu Glu Gln Trp Val Thr Glu Glu Ala Ala Cys Leu

145 150 155 160

Cys Ala Ala Phe Ala Asn His Ser Gly Arg Pro Phe Arg Pro Asn Gly

165 170 175

Leu Leu Asp Lys Ala Val Ser Asn Val Ile Ala Ser Leu Thr Cys Gly

180 185 190

Arg Arg Phe Glu Tyr Asp Asp Pro Arg Phe Leu Arg Leu Leu Asp Leu

195 200 205

Ala Gln Glu Gly Leu Lys Glu Glu Gly Ser Gly Phe Leu Arg Glu Val Leu

210 215 220

Asn Ala Val Pro Val Leu Leu His Ile Pro Ala Leu Ala Gly Lys Val

225 230 235 240

Leu Arg Phe Gln Lys Ala Phe Leu Thr Gln Leu Asp Glu Leu Leu Thr

245 250 255

Glu His Arg Met Thr Trp Asp Pro Ala Gln Pro Pro Arg Asp Leu Thr

260 265 270

Glu Ala Phe Leu Ala Glu Met Glu Lys Ala Lys Gly Asn Pro Glu Ser

275 280 285

Ser Phe Asn Asp Glu Asn Leu Arg Ile Val Val Ala Asp Leu Phe Ser

290 295 300

Ala Gly Met Val Thr Ser Thr Thr Leu Ala Trp Gly Leu Leu Leu

305 310 315 320
Met Ile Leu His Pro Asp Val Gln Arg Arg Val Gln Gln Glu Ile Asp
 325 330 335

Asp Val Ile Gly Gln Val Arg Arg Pro Glu Met Gly Asp Gln Ala His
 340 345 350

Met Pro Tyr Thr Thr Ala Val Ile His Glu Val Gln Arg Phe Gly Asp
 355 360 365

Ile Val Pro Leu Gly Val Thr His Met Thr Ser Arg Asp Ile Glu Val
 370 375 380

Gln Gly Phe Arg Ile Pro Lys Gly Thr Thr Leu Ile Thr Asn Leu Ser
 385 390 395 400

Ser Val Leu Lys Asp Glu Ala Val Trp Glu Lys Pro Phe Arg Phe His
 405 410 415

Pro Glu His Phe Leu Asp Ala Gln Gly His Phe Val Lys Pro Glu Ala
 420 425 430

Phe Leu Pro Phe Ser Ala Gly Arg Arg Ala Cys Leu Gly Glu Pro Leu
 435 440 445

Ala Arg Met Glu Leu Phe Leu Phe Phe Thr Ser Leu Leu Gln His Phe
 450 455 460

Ser Phe Ser Val Pro Thr Gly Gln Pro Arg Pro Ser His His Gly Val
 465 470 475 480

Phe Ala Phe Leu Val Ser Pro Ser Pro Tyr Glu Leu Cys Ala Val Pro
 485 490 495

Arg

<210> 52
<211> 124167
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> misc_feature: HTR3B Genbank Accession No GI:17425234

<400> 52
aagctttgac agccctgtat gactatcaaa ggaagtactg caaataaatt gttagcaaa
tgaagaaatg caatagaaat gaaaaatctc ggagacctgc ctgttcaacta aaccttcctca 120
agtattacag taaaaatactc gatactcctgt tttatatgtt ttgttttactc acttacttgc 180
tgtgtcacttc ttcacaattct ctctctcctgt catatcaaat tttatatcat agatgacatc 240
tgagggatcata atgaaagttatttaattatta attaatgctt acatagctaa gttgtaagttc 300
agaaccttct gtttttagaaa gcctgttacta aagagcggaga aaattgttatt ctccataatc 360
gaatggtcttg aaggtacagct gttctcactct ataatattcat ctccataatctagctgcatctt 420
cctcatctgta agatagaaac aacagactt ccagtttataa ttcctatcata ataagaaaa 480
aaagagatggt gcaggccccgt ttacagcctg ataaccctaaa ctggggaggt ctcagggcggg 540
aggatcactg gcagccgggga gttcggaaacc gcctggcagaa accataagag acacccatac 600
tccacaataa ccataaatat tagctaggca tgtggcaccac tgtctgtagt tccagctact 660
ctgtaggcttg aggtaggaga attccttgaggg cccagaggttt tgaggctgca cttcagctg 720
ataagacctc tgcaactctc gagccatctc gagtaggataa gagccatgctc cccaaatc 780
aaaaaaagac aaaaagatggtaa aataaatattata ttcctatataagccttaata 840
agggctgagc caggtagactc tgttcctcaaa ttggtggaacct acacgtgcca accagagcag 900
accccattgc taaaaaaact tttttataata acacagggct gtgggccggtgacctagcct 960
ataatcccgcc ccattttggga gcacagggca gaaggactac gtcagggctac gttgtaagg 1020
cacgcctgtgc cacactggtg cttcatctgca tccatctaatg gacccctgctta 1080
gccatgttgcctgtatccca gctactttggg aggacagagc agaagaatcata atagaaaccg 1140
gagggcgggg gttcagcgtg gctgtatcctag gcaccagctg tccatcatgcggcagatac 1200
tgctgcgtcgt ccataaaaaat aaaaaaattc ggagtagacct acgtggtggtggtgcctatct 1260
gtgggtgcag cacactagactgtc ctcggtgggtgc gtttgtgctcagctgcagctgid 1320
gacacggagc ggtgtcaccac cactccagtgtc gttgtacacag agtgaaatctcactccta 1380
aacaccaaga ccacactcgtg ttctcctcata gtaatagggtg gatgtctcctgtgctacagc 1440
gtttttgtaaa ataaaaatgtc atgaaaagttc ctgattaggtg gtcatatagctctgccgac 1500
agagaataat cagaggtcata ctccctagcc tgcagtcataa aacccctggaga aataagtattg 1560
aaggcaagct gttataagcat gttgacttcgt gcaccagctg tctactatgctc agaagcacttg 1620
gaaacagcagct ataggaagtcct tttggcataac gaggattgaggt gatgtagcttcatgtctcc 1680
gtcagcctc gttatcccaag cactttggtg ggtcgaggtgccagagctgctcagctc 1740
ggtctcagg gaaaccgccgcac cacttgggga ggtcgaggtg ggtgcagctcgctggtctcag 1800
aggtctcagcgc ccaacccgtgc aacacgtgctg aacccctgtcct ctcactaatac atacaaattt 1860
agcagcggttgcagtcagcactcgggctgctagctgcaccgagctgggccgacaagagaggag
tcacttgaac ccaggagggc gaggtgctcg tgagccaaga tcgtgcgaat gcactccacc 1980
cctggcaaca agagcgaaac tccgtctcaa aaaacaaaaa aagaaaaaac taacagcaaa 2040
aaaatggttaa tgaggttacta taaagaccata aataataaaa agtataggg ggccagggtt 2100
gtgggtctct gctgcgttaac ccaacacctt ggaggccaa ggcaaggaga ctgtcgtgac 2160
caggagttc aagacaggcc tcggcaacat agcaagacct cgtctctata aaataatta 2220
aaacagccca agtgccgtga tcgcagcctg tgggcccacg tactcaggag gtggaggtgg 2280
gagatctgct tggagctagg aggtcagagc ccaagtgcag tataatcaca tcgtgcacc 2340
ccagtcgggg tgcagaggg agagatctctg ccttggccaa gtaggtctct gacgcatacc 2400
tgattacata aaccaactca ccgcctctca acctacgcctgt cttgtgcctca gtcagctcct 2460
crgagggctct ctaaaactac agcctattgc tggaggccac acgtgtccac acggcactct 2520
cattatgctg tttttgcaga agctgtatat gcacottaa gcctgtgagc agaatctcgg 2580
aaccaacctcc ccgcaaatct ccgtagccta agagttagct ttgctcaagt ctgtcttttc 2640
cagtttttgc atatgtagtc tgaataacatt gcacagctgaa aatgtttaaa gaaatgaaac 2700
aggtgggttt agaaactttg ttccaaagag aacaaagag aggaggttgg agacaaaccg 2760
tggactgggc aatagacact ttgggttggg ttattttttg tcaagataga ggcaagtgcc 2820
acgtagaat ggaataagca aatctcaaat gtaatatgca aatgaatcc acaagatct 2880
tgtcaacagg cagaaactga ttgaaatggt cttagagttgg ggtacagggcagtcttatt 2940
agattgcagt gtatgtctcttg ttcgttggta taaatattcc cacgcggccaca ggttatcaaa 3000
ccagaggtcca tgggaccaag acgtgaggaag agatttgacat aatcagtggtt gaggagcacag 3060
caagctggct ctacgcaacct caaccttcctg catgtctaaa tcctagggga tgtgaaagtct 3120
gcttgctctgt ggacataaat tgtgagtaag ccggagagaag cagtgaagtt gtctgggggt 3180
tagagtagga ctaagagagag gggacataat agaagagagag gaggagacac atctagatca 3240
gatttttgtca agctcgacac tatattatac aatattaca aaccaactgg ttagagggct 3300	 tactctgtca cactgcagga gttggtacag ccctggcgcc ttctagccac tcatcccaag 3360
tagcatcatc tccctcagag tcaaatcaaa gtcttccagac attgccaaatt gttcctcta 3420
tacataatact tctctctagt taaaaccatt aatctaggttt tatctctaaag aatgaaaggg 3480
gggaaaaag aagagcaacc ttcttcacgt aataagagaa aagagatgag atggcgtagg 3540
gagagggggca aaccaagaga ggcagggagg ctttttttaga catgagcaggt ctcagttcag 3600
tagaaaaagaca gattatctat ttgaggaagac tgtaggaggg actggaaggt ttaaaaatcatta 3660
ggagagttct aagaaagggca tataagagtt agtggaaggt ctgtgcaccc gggcaatggg 3720
acatttcataa aggcactgtt gaacatctaa caataattcc attagaagtc agtgcagat
actttcttgtt ccggacgccag gacctggaag tatttttttc tacatgagt tttaaaagcc
catcaggcat ggcggcgagccttgacgctt gtaatcccgag cactttggaga ggccgagggcg
ggcgtcatat gaggctacaagac cUGCgacacc atcccagcagac acaacagtga atccccagctt
tactaaaagt actaaatatt gctggggtctggt tgtgacgccc ctgctagttc cacatctgctg
gcgggtagag gcaggagaat cgcgtgagcac cgggagacgg aagttgcaatg gagccgagat
cgcggcgactg aaccccagcc tggccgacaa agttgagagt cgtctgaaaa aaaaaaa
aaaaaagtgc gtccagacgt cgacgccccgcttttgcacgtaa tttttccagc actctggaag
gccgaggccgc gcgaatccac ttaagctggg agtttggagac cgcctctgacc aatatggtaa
aaccccccccctctactaatgg taaacaaaaat gcaggggccccg tgtgcaagcc cctgtaataac
cagctactca gcggggtagag gcggggagtg tagtgcagcc gacgctgcc acagccactcc
agcctagggca aacaggggacactctgacgaa aaaaaaagaaaaa aaaaagttc
ctctgcatac atacacttggc ctctccgacac aaaaagttaa aagggtaaa aagagttgcc
acctggaggt actctgctgac cagcttttga gcagcaaatat agttttctcat ctccaaactcc
gttttgaaac aaactgcaccc gattccccgt ttttcttttga aaaaagtcag tacttgaggg
agtggagggt gtgtgttaagt tataacatcc cgaagtaaca ctagaagaca tgtcacaatt
gccctctctcc caagttttttcatc atacagaaaa tcagtttttt tcttaaaccag gttttttctt
tctctcacta gattccttacag gttatatttac ttaaagcttttgccttctttaaagagccg
ggtgggaggag gaggtaagtgtggttttctggtgccgctgcc tttttgtaa gaaggtgtatc
aatccgggct ttaagttgagt aataactctgggt ctctctctttaa aatctggaaatccccctaca acttcagcttgc
acccacccggc accggggccc agggaggcttc ttcctcctgacc cgcggcgcac ccgccgccttag
acgtccagcc ccgggagagc ctcggcggcc ccagccccccc ccagccccctg cccccgcttgc
cccccagcccc cgcagggact gcgtcctctct gccggccgggt ccgcctttttcttg gagcgggcccctc
ccagctcgcgg ctggagctggt gcacggccca cacgctcttc ccagctcgtccg tctttggttg ccagctttttg
ccgcccgcagc cgcggcgccgc ccaaccttcct aagactaggc cccgcctcccc ccctccaccc 7440
ccgtcgcgctc cgcggccggc gcgagcgccgc ggcggaggct tggcccaaat ggcggccggc 7500
cggactgcgcg gcgcagccca gggcggcggc ccggccgcca aagctttctgc tgtgtctccgc 7560
gccgcccggg ctggcagcggc ggtggctgctg tgggccgcgc cgggcccctg ggttttgccgg 7620
agctctcagg cggggtggagc ctggcgccgct gcgtgctacgt gcgctggagacc tgggttttcg 7680
aatcctggga cggccgtctgc tgagttttctc ccgctctctg cccctcaaaac tccatctgta 7740
gcaagtgcact cccgcctcaac cctcccacgg ggccgatatt aaactgtccct ccggcgtggg 7800
aaactgcccga atggcctggg aataaaggatt tttccatcag gctttgtagc catttccaac 7860
tcgaaggtgct ttcacactct ttaaagggag aagggaggtg aatgcagcagc 7920
cgttcctaaa gcaacacaaag ggcggcccag ctcgtcttca tgggtgtccc gctttgtgacc 7980
cttacccttg atgtctcttaa cctgggcatg ataagggaa ttcgagtttt ttccatttcgg 8040
attttcagaa gtctaaacta aatattttgtg ttaccttttttg acgttttgac cagatatttt 8100
cgatttctag tttaaagacc agtgtgcctct attgaattgt ttttttgggt gtttttttgcg 8160
gttgttttttttttttttttga gagggatct cactctgtcc cctcaagcgtg 8220
gagtgcagcc gcacgggttct gcgtcactgc aacctccggcc tctgtggttc aagcgattct 8280
cctggattac gcggctctg accacgctgtg accacacca gaatttttacc atgtgtccca 8340
ggtggccttc gaatctctgtg cctcaaggtg aagccgcttcct gcgctctctcc ataattgtcg 8400
gattaggg gcgtgacgcc gcgacctgccg tgaattgtat ttctcaacac tgcgttggaa 8460
tttgtgattac tgaaccactgt ttcacatttta agatacaaat gtgtttgtgat ggcacaacc 8520
cctggacaggg gcgtggttgtg ccccaatcttg ctgtagaggtct ggtttggaga gcgcgtcttt 8580
taagagtga gcctacccaa ttggctctgtg tgggtgtgac ttcctgca tcactaattg 8640
tgtgaaattta acatggaggg tggcccttttc tatactcttg gcgttggtgt gcgttggtgatt 8700
gttagtgggtc acgtgcaggc cccctctact gcgtgacgcc gcatttttttc gacacaagg 8760
aacaggtaca gtgcaggtgc agctccctgaa agagccgagc aatttatgctg aagccgctgaac 8820
taggtctcct gcacatcctc cccacccgtgg atacaggat cccctctccc tgggtcagata 8880
actggcagat ttggacgtgtc gcgggtcata taacccgaa cttctcacat tcaacaggtt 8940
gactgtttttt tggctgtgttg ggtgttggac aatttatgtg tgggtgtgtg ccttttttttc 9000
tttccccctag agtctggtgtg tttgatgcc cccccctgtgc gtcaccctgaa aacaggttga 9060
tttctgagcgtt ctttttttttttttttttttttttttttttg tgggatacgg ggtgtgtactc 9120
ttgccacaag actgaaatac agtagtgaga tctggtgcata ctgcagcctt catttctcgg 9180
gctcaagcagt tccaacctgc tcagccctcttg aacgcagcagg gcacatgtgtg aagtggcagt 9240
aattggccaa aacaaagggg ttacaagggc caaggaagtc caaaatccag cggagccgtc 11100
aaattgtaaa gcctcaaatat gatctcctttt gactccagct ctcacatcca ggtcacactg 11160
atgcacaaagg tgggttccca tggcttttggg cagctctgcc cctgtggctt tcgaggtgac 11220
agctcctctc tgggtccttt ttcatgggctg gcattgagtg tcctgcagttt ttcgggacac 11280
acagtgcaag ctgctggcgttg accaccacatt ctggtgctctg gaggacagtg accctctttct 11340
ccacagtccca ctaggcaagtg ccacattagg gactctgtgt ggggctcccg accccacatt 11400
tccctcccat gcctgcctag tagaggtttct ccattgagggc cccacccccag cggaacattt 11460
ttgccctggc aacctggtgct ttcactcatc ttctcgaat ttagacagag gcctccaacac 11520
ctaaatctct gactctctgtg cacctgcaga ttcacacttg aagctgcccc aatccttgggc 11580
ttcacctcttt tgaagcccaa gcgccccagtc tcgattggttc ccttctcagct atgtctggag 11640
catcgggacc acagggcacc aagtctcttag gcgtgcacact gcattggggc cctggtgctg 11700
gccacaaaa ccaccttttttc tctcgggccc tcgggaactgt gcattggggc ggtctgtttgtg 11760
aaggtctctgg acatgagcctg gaggctctttg tccctggtgct ttggtgattt aacattgagat 11820
ccctgtcatct taagcataatt tctacagctg gcgtgaattt cttccccagaa aatgggttttt 11880
tctctctctttttttttttttttttttt gaggcgggtc ctggctccctc cctgtgttaacc 11940
ccaggctggac tgccagtgggt caatctggcg cctcgccaaac cccctgcacc caggttccaa 12000
ccattctcct gtctctcgcc ctcaagttgc tccgactaca ggcccccggc accacgcctg 12060
gctaatttttt gatattttttgg tagagagggg gtccctcactt gttgaccagg atgtctttgta 12120
tctcttgacc tgcgtactca ccacccctgg cctccccgaag tgtgggattt acagggctga 12180
gccaccgtgc ccagccagtt gtttttttttttttttttt tttatcactat tgcctaggtg caaaaaaacc 12240
aaatatttct ccctgttcttt tttttttttt taaacaggtt taaacaggtg caaatttttttc 12300
ttggagtctt tgcagttgctt gaaatattttt ccacccgata cctttaattt tttcttttttt 12360
gtccaaagtt ccacacagtct ctgagggggg gcgaacactgc caccagtctc tttgctaaaa 12420
ccacccgtct ccagttccca acaattttct cctctgcact taagaccacc tcaaccttga 12480
ctattttgct ctacatcact caagcagattt cttccagacc attcacaaag tgaggtttggg 12540
tgaaggcaca gcacaacggct gttccaaatatt tagccagggtg cagttggctt tgtcctgtattg 12600
ccgagctact tggggagcgtg aggccccggg atcactcggag ccagggacgt taaggtcgca 12660
gtgcagcacc atagccacac tctactccag cctgggtgtat ggagtgacac cctgtcctca 12720
aaaaaaaaga gaaaaagaga gcaccacaga cctctctatac ccttatctct gaaagagatg 12780
tgtagcaggccctttggtaaa ttagaggccct gtgagtttttat taaacctttct tttgctgtgat 12840
gtttctaaac aggctgcgac atctaaataa tataattaat ttggtgactg atgtggtaaa 12900
tcctgtttagc ctctcttaac ttccaactcgg tgcgtgccat ggtaatcagc tagacacacc 12960
tgtctctacc acagcaattta atgaccaagt ctacatcagt gcttggccat cagttggcaa 13020
gtctcagagt gatcatgatat caaaaagtgga tatacagggaa catgtgctgt caccacagaa 13080
aatcccatct cattctctac aagggtttat acatgaaggc tcctgaataa tctcttattt 13140
agtcataaat catttcaaga gtaaccagg gagaagataaa tatttgaag aagcaataat 13200
aataattgga ttgtttaaaa cagggataaa tttgcagcgt attttccag agaggaattt 13260
gatttttttt tctttttttc tttttctgga aaaaaaaattttg tccaaatgtct aagtttatttt 13320	tatatatataaa ttttttttttct gagagggagt ctgcgcctgt tggccagagc tgaagtgcag 13380
tgggtgatc tcaagtcact gcacacctcga cctcccgggt tcacagcaagt ctctctgctc 13440
agccctccga gtagctgagga ttcatagccat gcggccacac gtctggtcata tttttgtatt 13500	tttagttag acaagggtcctt accatgtttgg ccaggctgtct tttgaaactcc cggccctcgtt 13560
cctccaaagtt gcgggtgattta cagggcagag cccacgctgcc cagccctataa gttttttct 13620
gagtcataatg atttcctcttt tcgatttacgc caaaaaaaatataatatta tatttataaa 13680
tgtctcttgtt tgaatgtagtt aatctctttgt tggattttgag gcctagaagta caatagaggg 13740
aaaatgtttgg gaaaaagata gaaaaagagaa gaaattaaag aacatgcaact tattttttctt 13800
cctctcttca ctctctttaa tttttttttcgc cagttgcttc tcgagcagtc gttttgaag 13860
ccgaggctta tggctgtatta acaggttgtga ctggctttta agctatggtat tctttttccag 13920
gaatgattag tcaagaaatgt ccttaagggc cagctctctca gcagctagagga aatggccttt 13980	tggaggataaa aacacagata tttctgataa aacccctaga ttAAAAAGt cccctaaaaa 14040
aggtttaaa acaagggttta aaaaaaagtta tcgaaaaagg ataattaatgg tattttggaaa 14100
taaatgattgg ccaaacctgc gtaaatattgt tgaatgcaggc aatgtagtgtgt gtggagaatt 14160
gaatagcatt ttggttaaatg ttatgagttt cttttttagaag tacatgtaac tagggccggc 14220
tgggtgccat cgcctgtaat cccacgacct tggagggcga agggtggtttg atacaaggtt 14280
caggagcagc agaccatcct ggcacaacagtg gtaaaactcct atctctacta aaataacat 14340
aattagtgcc tgggtggttgg gttggcttta tagttccagc tcacggggaa gtaggagccag 14400
gagaatgcgt tgaacccctgg agggggcaggt ttgaatgtgagc caagatcgcgc tcaactgcact 14460
ccagctttgg tgcgcaggcga agactatgct tcaaaaaagaa aaaaaaaaaa agaaaaaaca 14520
agaagagaag tgcacggctata tattttaacat caggggatgg atctccagagc cccccatgtga 14580
cctctactata acaaaagtctg cacataactta aatgtgaag tttgcacccagc agaaccacag 14640	tataagaaaa gtcagccctct tacatactcg gttttccataa tctttagtaat cttttttttt 14700
gttttgttgt ttttgagaca gggttctttct cctgtgccca ggtctagagtg caatggcggg 14760
atcagagtct actgcagctt cgaattcttg agctcaagcgg atctctccaa cttggeccctc 14820
caaaatgttg ggattacaag tctgagccct tgcaccccagc ttaataacag tattttttgat 14880
ccatgtgtgt aatattgatct gcataataag ggattcacact ttggattggct gcataatgtg actttccagca 14940
catttggct tgtttattcca gaatataagca tctcctgtggc tgcactatgt actttccagca 15000
ccattgggg ggtgaggtgg ggaggtactt tgtggtctgg agttctcagac cagtccaggg 15060
aatatatgg gatggccactt ctacaaccac tacaagaaatc agctgggttac tgtgcgtgtca 15120
ccacacttac cccaaactcact ccagagggctg aagcagggag aatacattgag cccggaaatct 15180
aaggccagcag tgcagctatga ttatgccact gcaccccagct gtggccagca ggttggagcc 15240
ctgtctctaa aaaaagaaaaa ataataatta tgtgctgttt actttaactct gagaagaaag 15300
agaaactata ttattttatttt tttttatttt ttgtgagatt agtttccgctc ttgtgccca 15360
ggctgaagtt cagttgggccc atctcagctc actgcaacag ccgccctctcg ggtgcagcca 15420
atacttctgc cttgagctcact agatagctgg ggatataggg tatttgccac cagccgcccag 15480
tataattgtta tttttatagt agacaggggt tctccatgttt ggccaggttg gtctcgaact 15540
ccgtacccca ggtgattcgc ccccccacca cccgcctcagc ttccccaaagt ggttggattta 15600
ccattgtgg cacccgcgcgc cagcctcaga ctatattttt atttgggaagc tgaagtcccg 15660
ggatcaacctg aaaccgggag tcacagggctg cagttgggcc agatttgggcc actgcaactcc 15720
acgcctgagtg acagagacag accccaatctta taaaagttaa taaaataaata tagaacaattt 15780
attagaggaag taataatcgta caatttggctc agttgtttttt cttgagacttt 15840
tgcgcataagg aactgtaccttt attctccaaac taccctataa atgatagtct gttgtatta 15900
ccaggtgtacc tctcttccaa cgtgagaaac caccacagac agatctgaga atttgccaaa 15960
ccattttctta aaacagcact ctaaatcagc atctaatgcct ctttacgttt tgcagcccaag 16020
ggcttaaagata agtaggatcca ggtttcagaca aacccataatt gggaagatag aataatttga 16080
gagaaaaactg cctgcaagaaga tattaatggcc cagttggcaca ggttggctcaca gttgcaactc 16140
ccagcaacct agaaggtgta ggtgggtgcta tcaacactgc agctgaaggctt gacaactgcc 16200
tggctaacat ggttaaaacc tcgtctctct taaaataaca aataagtgaag ggttggtgctg 16260
cgggggcaata taatccagact tactcagggag cctgagccaat gagctactgtg tcaacccaag 16320
agacggaggt tgcaagtggc caaagattgca ttactgcatt ccagctcgagc aaacagacgg 16380
agactcctgg ggttggccact gcagctgtgt catccaaagat agggaaagct gagggggaaa 16440
atgggagattt tagcaacgtct aagtttacgt ttaagctggcc ttcattacata ctttaagtttgc 16500
agccccaaagg tttcttcctata ccagcatgac ctaacatcatc tggatatagta ataggtgctg 16560
ttagatcca gccaaaaatgc aatattgtgac ccaagtctgac gaataatagtct ttataaaaca 18420
gcatctgttta atctgtttttct aagagccaca gatgagaaac agagggccacc tccttgagag 18480
tggagtgggat catttatagtgc caatactttc attttctttaa agaactgcag ctctttctact 18540
rttggtaaagg atttgaaacc aacaactatt ggcaatttaag attaggattt aaggtagcaca 18600
gattgcccatc ccttgaggaga tagagatgtg gttggagttgg aagagaagac agatatttgat 18660
ggcctcgcct cagagggctta aatgtcaagg actgaagttg agttggcttt tcctttttttcc 18720
atttggtgagg aggttccaga atttctgacct tggagatggcc gttgaagaacac tctgagttcc 18780
tggataaatc ttctttttttg ttgatattttgt agtctctcat actttctcag gatgtaatcaca 18840
tagcagagaa ctttctaaaaa cagaagacaggg gttgatataa taagaactgtg ttgagcttttt 18900
ccacatattt ttggtgtagag aggggtctcag ttgctcataag gagaacagaattggaatct 18960
ggagccagca gatcgagaa ttagctctatg caaatgaaga ctttctggttaga acaaaagaata 19020
aaaagcttta gaaaaagact tcaagggcagg ggcagcctggc tcacggtctgt aatocaacacc 19080
ttttggagg cagagggcagg ttgatctcact gaggtagaag agatcaagac cagcctgacc 19140
aacatgggtgaaa caccctgctct cacttaaaaa taaaaaaat tcttggaat gttggcgggtt 19200
gcttttaatct cagctatcatt gggaggtgta ggcagggaga tgcggtaagc ctggaggggtt 19260
agttttgcag ttagctgtgaga tcaagccatt gccaacctcagc atggttgaca gaatgagact 19320
tgtctctcaaa aataaaaaac aaaaaatacaataaataaat aataaaataataaaagaaca 19380
gtactctccgc ttgaaatggtgc tagccataagg cgggcaacag tgactctcagc tgcgggtcag 19440
gatggtcaga ccagccctagc caagtagagc cccacctgttgct tctggttaaaa aacaaaaaaa 19500
attagggttgg ctg tgtgcgggc attgctctgta atcccaagctca tccggggaggt gtaggtgagta 19560
gaatccacttg aaccctggag agccagatg tgcacgcacc aggtgcgcgcc atggcactcc 19620
agccctggca acaagacaag gcactctcacc ctaaataaat aataaataaaaa taataaatatc 19680
aaattgtcatt ccatgggcca acagcctgtg gaaacatagtc aacacccatctc tctgagttaaa 19740
gccaggcctcg tgaacccagga cccagcctgtg caacatagtg aaacctctatc ttactaaaataa 19800
ataaaatat ataatcagcgc ttgggtgtgca tgcgtctaat ccacgcactct ctcgggtgctg 19860
agccatgaga attgctgtaa cccagccagg gggaggtcaca gttgactgc acatagccac 19920
tgcactctcg cccttggtgac agagtacac ccctgtcctaa aaaaaaaa aataatgtagc 19980
ccatgttatt taagagggag ggcctcacc tttatattttc tgcgcttggtg gaaagatgtaa 20040
atgtattac cacaactcttct tctatttataa taatatatttct tattttcattg ccaagcagcata 20100
gaacgtaatg atggccaaaa cccacccatat ctcgacattgtag catgtgatga ctcgatagtct 20160
tagtttagg ccattaattg aaaaatatttt gaaacgttcttg gttgactctc 20220
gtggtcaaga taggaacat gtgactcttg taaaaatag gcacaagtcat caacaatatg 23940
tttgggaag agctttttcc agagggcgtta atatattttt tcctttcttg agatggagtc 24000
ttgaacctgtt ccgccagctgt tagtatagtg tggccagatcc ggcctacacgc aacctccacc 24060
tacctgggttt aatgtattct ccggcctcag cctcccaagt agcttgagct acaggccaggc 24120
gccaccatgc cccgtaaatt tttgtatatt taagtagagat ggggtttccc cagttgcccc 24180
aggctggatat cgaattcctg acctcaagtg accggcctgcc ctcagtcgcc caaagctgctg 24240
ggattacagg tgtgagccac cgtacctggc caggaggaga aatattaact tgaaaaaagc 24300
aatgcgggtt ccgggtcctcc acggagctcg gaattccgaga ccacctgcac ccacattggtg 24360
aaaccccgct gcctcactcc caataaaaaat tagccagcgc ttggtgccac caccctgtaat 24420
ccaggctact ttggaggggtt ggccagggag atcggctgaa cctgggagtg ggagttgcga 24480
gtgagccggag atcgtgccttt tccagctgac agagcgagag ttcatcttttt 24540
aaaaaaaaaa aaaaagcataa aacccagcct gcgcaacaatg acgaacaccatatctctctcta 24600
aaaaatacaca aaatagccca gtagttgatgg ttatgtatccc aaggtgcttt gtgaacaccag 24660
gtactcagga ggctgagcca ggagatacacc ttgatcccaa gcagggcagg gttccagttg 24720
ccagctgctgc accactgcac ttcaaaactgg ttaagagacc gagacgtcgtg ctaaaaaaaa 24780
agttataaagg aacacaacaac ataatagccc aggggtgattg gcatgtcttg taatccccagc 24840
accttggggag gctgaggggtg gaggactctt tgaggttagg attggaacac tagctctggcc 24900
aacgatgtga aaccccatct ctacgaaaaa tacaataatt acccaggtat ggtggtggttt 24960
gcctgtaatg ccagctactcc agaggctaa gcgccgaaat gctgaaaaac gggagacgga 25020
gttgcagttg agctgagatt ggcacaacct actccaaacct ggtgacagaga ttgagactctt 25080	tttttgtgtg ttggtttgag atggagctcc actctgtgctg cgaggtcggg gtggcagttg 25140
gcgtctcag ctcactgcaaa cctctgctcc ccgggtttctc gccaattcttc tcctcagctt 25200
ccgcagttgc tgggactaca ggcacccgcg accacgcaca gtaaatatatttt tttgtatatattt 25260
agtagacgc gggttttacc actccagcca ggattgtctc cacttggtgat tacaggccgtg 25320
agccacggcg gcgcggcagg atgtagactc ttgtctcaaa aaagaaaaaaa aaagtgaatt 25380
attgtattcc tgtatggttg ggcctctgcaaa aagtatacat caggtacttg gaattataat 25440
tgcctctttt taaaattatt ttatatatttt tattatatttt ttgtagatgg 25500
gtcctcctct gcaccccaag cggaggtgca gttgccatgct ctcggcttcac tcacctccg 25560
accccgaggg ttaagccgat ttcctgctcc cagactcaca agtagctggg actacagcga 25620
cagtccacat gccgcgctaa tttgattttt taaaagctag acagagttrtc accatgtttg 25680
ccaggcttggt ctcttgacct cgtgatcgcg cagcctcagc ctcctaaaagtc gcttggatta 25740
ccaggctgag ccaccgctcc tggccctattt ttatatggtgg gggcacaagt ttgctcttgttt 25800
gccagggctg gagttggagtgc gcaaatctctg tggctactgcg acctcccgggcc cccctgctgcc 25860
aatgttgtctt tggctctttagc aggcttgttgg atccctctt cacaactacg ccaggctgctgctgctg 25920
cagctactccc gcacagctgg ggggctggagc ccagctgtt gcttggtgg atcttgctgcc 25980
tgtactcttcc gcacgtctttg ggggctggagc ccagctgtt gcttggtgg atcttgctgcc 26040
acagctctgg ccagacagac aaacccctacgt ctcttgacaa ataaaaaaat tagcgggggca 26100
tgggagcagg gcgcctgtaatt cccagctact caggagcttg acgtttggaga atcgcttgga 26160
tccaggaggt cagggctgca ggtagcttgg aagttgcttg cactctctacg ccctgggtgact 26220
agagcaagac ctcctgatcc aaaaaaaag aacaaagaaag aaagaaagaa agaagaaagaa 26280
gggcaggggt tccggccacgt tgggacccttc gctgcacgtg gcttgagaggct gcccttcttaa 26340
cgcccctcgt tctcccaaac tggctttgatt ataggcgtgta tctagactgtgc ctctggtctttgctca 26400
atttgctcttg gaaggaataa gaaactcttc ggctccgttg tgcctgtgtct tgtctctggaat 26460
cagaaactgta taggttgtctt tctagatctt tccagaccttc gttctcttttt ctgccactccc 26520
tctcttggtct ctcctgacat cgtgcttccag gggcaccacac ttagaccttttgt gttttgtggct 26580
tgttctctgg tctacaagac tttgtgctgcc caggggaaagc ccaggggaata tctctgtgattt 26640
caacctctctgt tccctctatgc ccacagctgta caggttggagc tgtgagttgtg ccagccagct 26700
tccctgtgttg gtttctttctt gctcaagtctt cctgtttcctt cagctgtgaa ccacgcctcttc 26760
cttcccctttc ctcatttggtg agtatatttcta aaatgtagttt ctctgtacaca aagcctttttc 26820
ataagttatgt ttgccgggaa aatctatctca gacagtgctgc gttacgagtct ttttctccttc 26880
ctgtaattat aaaaaatttg tatggtttttt aaaaaaaaaat aaatttttat 26940
ttgaccaagaa gaaactgtgc ttagaattgc tggacatttta aatccacatca aacaagcag 27000
attaccactct tcaagcatca caatatttca cctagataagaa ctcttggatg aacatcttccc 27060
tcatttttattt agggagaataa aaaatactac gacaagacaca aacaaaaacttttat 27120
attaaaaaat tctcattcct caaatacataat gaacactctc ataagacactg ctggtaatcactg 27180
sggagcaggtag tgtatcctgaag cccatcgctgc cttgcaaacctt gctgataaatc ctcttttgtgaa 27240
aaacttaagg gctctctagcg cattataaggtgcttgctctccttgcaactgcg ctgtatgcag 27300
atgcaagcag ggggttccttgg ctctcatatct tctaaaaata tgcacagtagg aaagcgactgc 27360
ctcgtgttttt taagagtcct atatacactct gacgcttgctcctc ttcggtggtct gttcgctgaaagc 27420
tcgataacctag tgcggctctga ccagcagactg tgtttactgg cccgcttggttg ccagcagagc 27480
agccttttact ctactagaag acgcagtagtc tctctctgggt gttctctacatt ctagttaaat 27540
agtgtaggg gtaagactgt ctgtcgtata ttgtagtctc actaagcgggt ttcttggaat 29400
tgatgctatt gggacgctaa acagaagcag caagctcttg tggctttccca agttctctcc 29460
acctctcatt ttccctcagc ttttgggtta cacctttacc ccaaggaactg taataatctct 29520
gaacctggag taacactctga gtgaagttccta gggactcagt atctgctctgc acgggtgtct 29580
catgtggtgc ttttgcacta attgctccct gtgtctggag caaaccacat aaaggcaact 29640
ttgcttcgaga accaaggttg tcatctcacc cactcctttg gaaatgggtg gtgaaggtgtat 29700
ctcatctctgg atgtgggtat gaaagggctg gatcctcttt gcagtcatctt ttctggcata 29760
agccgagaatt cttttgtcgtt cattggttata ctcttcttcccc ctcagttttct tcccacctttt 29820
cgggaactc caatgaacac ttactagttg gcaagcctca cgtagtggag tataagctga 29880
ataacacaac atgtcctccag cttcaaggtta ttcaccaaat tctagactga cagaaagcta 29940
acaacatcct tataacacac ctgaatgagtt acgtataagt aggaataatg gagggcctgt 30000
agactcaagg gatgctgtcag agcattgtag tagatgtttt gaaacacagct ggtgggaggg 30060
gtcctgtggc gtagttggtgc tgattctccat tggcaaaatt ttggtcattt gacctttcctc 30120
cttcctctct ctctctctcct ctctctcttct ctctctctttt cttctctcttct 30180
ttcctctctct ctctctctctt ctctctctctt ctctctctctt ctctctctcttt 30240
tctctctctct ctctctctctt ctctctctctt ctctctctctt ctctctctcttt 30300
ttgagggcaga gcctcactct tggctcgaag gtagatcata gttgcacact cagagtctac 30360
tgcagcccttg acctccacca gctcaggtga tcttccccac tccagctctcc acgtagctgg 30420
ggcctacagc acgcaccacg ataccacgca atttttttgt atgtttctga caagacaggt 30480
tctcactacgt tagccaggtct ggcttggacrt tctgccctcc aagtgatcttg cctgaaggtag 30540
cctctcaaat gcgcttcagac ggtgtgaacca ctggcctgct gcggctgtat tcaattttac 30600
aactgatatc actgggaaca aatgaaaaaa caagttcttt ttgtgattcg gaggctctgg 30660
tcagcagct gaccatgatt tcagctctgtt gagacccctg gcagcatctt gcctttctgtt 30720
cctggacttt tgcacctcac gactgtaagc tagatghtag tctgttttacg cccataaatt 30780
tggtgttaatt ttaatgcag ccgtagaaaa ctaacctcaat gcgtttttaaa cccctttttaa 30840
ggtgtgaac aactagcctt aagagcagta aaggtttgtg ccaagggcat gacagtctag 30900
cacccgatga agctaggatg cacacattag tagttctgac cggagggctt ggacctttat 30960
atcttatgcgt ctatgcacct ccatagaaaa ccatgacaca aaaaacacga aagggcagaa 31020
ccatgagggg ctcacattccc tggccccctt gctttacttt ctaaggacgt aaatatgtca 31080
tttatatat aaataagatt caagctagca gcagaaatcga atgcgtggtg cgctttttgg 31140
cctgaggtgc cttcctcttg gcggctttga tatggttctc agagaaaaac acttgtggagt 31200
aacagaaatt tcataatggga ctctactcatt taaatgttttg aacttttgctgg gaatgtccatt 31260
ttctgttcttt tcctctccgag ctgaccagat gtgtctcgaa aatattttcct cccgaataatg 31320
tcatacctgta aaattctcagt taatttttag ctagactgcc aagggagtga acaaaagagag 31380
ttagcgatgta accttcaaaag acattttggg agagaaataaa agatatattaa ggccttatttt 31440
ttgcaactcatt tgcatttgca ttattttagg attttaattgt atagcagtaa tttaaaacta 31500
tttagtagttc ttaaaggagag ctaaactcag ttgctgttttg ctaaataaac acttcctattt 31560	
tatggttggca taataaaacc ctcctcctttg cttctctccaa aagacatcgcc tctgatcttaa 31620
aggtggcata tctactctgga aaatatattga gaaacagagat gcacaaggctc atggggatgt 31680
gaattgacacc tctctaaagag aaatatatttt tcaaggtactt tcttaatgtat ggcttctggcc 31740
tgaacctttcgg taagagaactc gcgatttcaac atcctagatt tgaattttttgt tttttttttc 31800
cagtatagac cacttaaaaaa gtttctggtaa gtttggtttac attgtaacc 31860
tttaaaaccttt gggagggcgcgg gcaggtgagga tcacctctaggg tcagaggcttc gaggacagcc 31920
tgggtgaaacc cttatattcatt taacaaatcata aaattattgctt ggggttggttgt gcactgaccc 31980
gtagtttcctg ctactctgggg gcgcctggac ggaagatcac ttgaactttgg ggggcagagg 32040
ttgccatgag cccagatccac accactctcact cccagtctgg gaaacagttg cacactccctt 32100
cctcaaaaaaa agaaagaagt ccaatgctgct acgttattttgc atgctctccgct 32160
atatactgtat cttgctggaaa gcgtgaaagt agacttaccc ccacactcata cctctccagg 32220
agtatgtctgt gggaattagc agaaacattg cagataaaaaag gcttttctttg ggtgggtgta 32280
ttagttctatt cctacaactgct tatacaggca taccctgaac cttggtttattt attttattttt 32340
atattttgatt atggagttttc gctcttttctgcc cagggctgga gcggctatacctat 32400
gcaatctcggg cttacctgcaaat ctctctcttt cttggtttcag gccatttatttc cttctccagg 32460
tctcttagtgc cttgggataac aggcatgggac caccatgcctg actataatttt aaatattttttt 32520
tagagattgg gttccacatt gtgggtcagg ctggtctcga acctcctgacc tcaaggtgatct 32580
cagacactgcattc taaatatatttt ctttaatgga cccatagtttc tgcagttggtcg 32640
gggagacctcc aggaacttta caactagtgt ggaaggggaaa gggggagcctt ggcacacatct 32700
tccatagtgg gtaggagacga agaggggaga agcgacacactc ttttaaaacta tcaaggtctca 32760
ttgggaacctga cttactgctg aggcaactgag ggtaatttttttt ccctcattgac caataacctc 32820
tccacccagcc cccttccctct acacatcgggg atggaaatttt gatagagagtt tgggttgggg 32880
acatacaccc aaacaattt atgtgcattag aataagtcga tgaatagagtt tgggagagag 32940
ccatattttttg gaaaaactga agggagggga gagagagata accaaacacta aaagaactgaga 33000
gtatgagctg ggtgtagtgg tgcatgccta tattctctgc tachtgaggg gccaggcgg
aaggatacct tgacgtcagg agatcaagac cagcctgggc aacataacaa cacctcatct
ctactaaaaa gagaagaaat tagccagggt ttggaggacca cacaataacct ccacagtctg
agaggctggg atggaggagat gctgtggagc tgggagatgg agggctacagt gagccatgat
cacaccactg cattcagcc tgggagcagc agtgaanactc tgctcttttag ggaaaaaaa
aaaaaaagtct aaagtaactg agtaacaaaa gccagcagcag gacactacaag tagaaaagag
aaagacttaa gcagcagcag agtgctgtca aggaaagac aggaagcatt
gtatatcaac taacttggaag acaagtcact cataacaaaa atggcctccttt gacagattat
tcatcagccaa ataaaggcct ctagaatagct actgtgtgtta agttctgcat
tgaaagtgtg aatgtcactg tagtacatatt cattagtaata ggccctccagc taacagatgg
gcatactaga aagtggcagag aaaggscagg gaagcagctc cccaagaggt ttgacattgga
gtcataagct tcaacaatgc atggccgaaga tgcataagctc atctctgctct caattaacc
tttgcatataa agggattttc tcattcgtctc tccctataaa actgtcatac ctatagctat
attgtctcta gttgctctctt ctctgtctct aatatcatcccc ataagtagaa gtcgacaatt
caaagaactg ataggaagag ctagaagcctt gaggccagca tcaagctctct atgatctctcc
tctttgatga agcggcatct ctcctcctaa cagttatttc cagataaacc
ttccataacg gtgtccacaa gttccctcacc caagttcatt ttaaatattcct cttctctctct
aaatatttct aatgtagtag cagaatgagc tggatatagc aaagaatccc ctagaccccc
ccacaacctt tgagacaata ctgatccatt ctagaactgtg atggtccccggtttttttttt
gtggtctgtct cggcctcagt ccaacctctgc ctactgggttt cacaaggtccc tcatgctctca
gctttctctag tagtcttgagat cagccacagt tcggcctgtg ccggtgcaat tttttttttt
ctctagaag cacgggttcc ccatgtgggc caggctgggc tggaaactct gatcctcaggt
gatctcacc gctaggtcttc cttaaggtct gggattacag gcgtgaccca ctggtgtgcga
ttcacctca cttcctgtaata tagattgtgc ccctctctctct cttttttggca
aatatctctat acattAAAA ccaggaaccc acactctcact cattgacca gccatttccat
ctaatccaca tacccatttc aggtttctca tttctctctct atgtctttat taacaacaggg
attccattca gaatcgataa tttgtcttgtct gcaccttttag agttctcttatt cctctgactt
tttcatctat tttataaccttg ccctcctctt ccctctctcttttttttttt
 tgttctctcag cttctctctt ttcctctcatt cccctctctt ctttttttttt

tgccacacca catttaacta atcttttatt tttttgtgtg gagacagggg atccctattg 34920
agcttaggct ggttctcaaat tctgtgggctc aagcagtcct cttacttcaaa ccccccaaga 34980
tacctgggatt acaggatgta gccatgcac ctggccacc ctggcacttt tgaagatgcc 35040
tgcatttttg ttgtcccccac agtattgcac tgtctcatct ggtttttctt cctgaataga 35100
ttcaagtttat gaatattttg gcaagactata ccggagaagc tattggaagct aagtgtcctt 35160
gttactattg gggtgtcatt ctcttcagcct gcataagggag cagagtctga gaatatatgc 35220
atgtatgaac atgtgcaacac acacattaca ttggtatatta ttttctttctt ttttcttttt 35280
tttttttttt ttggaggggg agttctccctc tgtctcccaag gctggagtgc agtggggcga 35340
tcttggctca tggcaacctc caacactcga ttcaaaacatt tccctctgct cagctccgg 35400
agtagctgggg attacaggca tgtgcaccaac gctctgaacta attttttagt tttcagtaga 35460
gatgggggtc catctgtttgg tcagctgtgtc cttaaactcc taacctcaag tggattcactg 35520
gctccgggct cccaaagtgc tgggattaca gctgtggagcc accacgcgca gttatattgc 35580
aatttttatt atatattagca aatgtactga aaaccatgga ttcaacactga tactctccaa 35640
accaagtccaa ccccaaatgg tttatctttgt tttcctccttc tctgtgtata caactccttt 35700
ccaccaagtt aagagaccaaa ttaggtcaca tttaactattg agatggaata taggtgtgga 35760
acctcaagga tcctaaacaa cggcaagtga tgcattggag aataggaatc aaataataac 35820	ttttccccct tcggttggct ctgtagaaat ttatatcaca aatgctctt tataatctcat 35880
tttaataaa aaacccagca gatgtgtaga atgggtattg tttttttttt ctgaggcatc 35940
tggggttgtc tagaaatgga aaatagtgtt attgtatatg aatagcactc aatggggttta 36000
gtaatgaaaa atgaatgcgt attcataact caaagtcgaa ccacataaattt attaaatgat 36060
gttgaccttt ttttccatct ctaaagcgc tagaagcactc ctttcattaa ggttacacct 36120
tgaatgttgga gcaagtaaaaa ttttcagagct cctctctattt atcaaaactc aatgtttttc 36180
ttaatattaa gcacctttagg aaaaacaaaa gcacaaaaac attgcatttg ttcaggttgt 36240
tcttcattag acaattaccag gtctccattt gccttggcta attcaagacg ccagaaccac 36300
cgctcaaatg gtagaatgttg tacatcataa gtctgtattcga gaaagcttata tggatattca 36360
attattatag aaattagtgt cttcgaagtc agcaagagta cttgctttagg taaaagggtg 36420
aagagcaact atattaggtg gaaatttcctt ctcctcagggt gcctctctta gattacatta 36480
ttcaacttagc tatctctgttt caggaaaatg gaaatgattg ccaaggtcctg atcttgtggg 36540
agacccaaag ggaaaattta cccatggccatc aatcacaaca catttgcatg 36600
gtggagtgtat tgccttttgg ccacagtgtt gtttaaaaa tagcaccagtt aagagatagca 36660
aggctgagct cagctccag accagctgtg tgtaaatatc actcccttcg cttgcaagct 38580
tcattgaccc gggcagtctg aagctcacta tcgccaatagct cccctcattg caggaatagt 38640
gcacctccca cagagctgtg gagtaacctt ccctacaaagtt ttgctgggaac ttggagggag 38700
atcatccttg tagaggactta ggcctggtgcc tggcacatag tcagcattca attagtgtaa 38760
ggaattcaat acataaattct caattctcctt taaacctctca gatatatgtg taacactctct 38820
ataatccctac agatacatag tgactaagcc aagaatagtg ctccctacatca aagtgcctctg 38880
aacaccaata gataggtgca tgggagagta agtcattaata acaaggaataa cacaggaata 38940
atattacgtg ggctttctctt tctcttctctcttc caatctctctt tcacctgcaat tggcttcctcata 39000
gctcagctccc taacacaccac taccttccag aaatactctaag tggaaactcat ttggaagctga 39060
ttttagcatt tcaagaaggc agttttggscc aggaattttct ccggtggtctg tttgatagcct 39120
ccatcaggtct ctgttgaaaac atcaactgaaat gtcgagctt catgtagttttg tttggaatttc 39180
aacatagatt tcaaggggca taattctagt ttaattaatag gtcaccttaaa tctttaatct 39240
cctccctgtta attagcttctt ccctctcgcc aaatttgcct tcatagttga aatgtaatattt 39300
attattttcct cccatcttaaa acaaggaactt cttctccctctct tgggtttatt taagcataattt 39360
tcaatttgcct tattttttct cttcttccag gcgtttgacttc ccctttgggct tattctgttag 39420
ccccacaacc tttctctcctt taaccaagat tttgaccctt cttagaaacc attaggtttcat 39480
ccatagggga atattggcatt gcctctctagaa caagatgcac caggggaatt ttagtgcctgtt 39540
tgacagacagat gcgcgagaaa cacatattca tttttcagaa ttatatttta atgctgtcttc 39600
gggttaattttc cttgtaaattt cacaactcat tcggtggtttt ccccaactga gacttgaatt 39660
gggacgaatcc aagcgagggta aacgtagaaag tgcgcccagac aagtggtgca ggagagagac 39720
tgggacaggct ttggcctttgt ccctctgctttt cttttcatgc ggttgacaca gcggagaggatg 39780
tttcaaggtta gagagattc caagacaccct tttgacaata acgatctaca aaaaaccctac 39840
aatgatgccc ttagcagagcc cacacaccctt agtcctgcac gcctgaatag ctaacgccata 39900
tttaggcatt cttctgggtgt tattgttagg gattaaatct gcctctagaa cttcgacgttc 39960
cgacggtaaat gaaagttgtat atgggactgcc ccacagagagcg ctgctggcattc taacactcgc 40020
attggtagta ggttttttgtt cacactgaca ttgtaaatct atsgaaatttg ctgcctgttag 40080
cggcaagagta cagcatacct tccataaagga aatggttata aacaggattg ctgcacaggg 40140
agagcgagttt catttacag tttctgcttg gattcctctcat acctttggagctg tacattcataa 40200
ataacattca aaaccacttg cagcccaaggc aaattcacaac gcagagactca acagagagat 40260
ttcactccacg cactttgtgc ggaggtgtgc aattgttcgtt gcctccatga cttgagtgaga 40320
tcaacaagtga atgacctctga tggttagaac ctcttctctct tctctctctcttt tctcaatttac
aaagcttggg atttcataattg gttccacagagtt tatatttgatt tctctctctctt
cagctccttg agctgagact ttcagagacc cagagcgttg aaaaaatatat tttttttttt 45900
tttataaat ccacagcttc agtttttcag atacaggaca aaaaaacgga ctaagacaaa 45960
gtccatttca atgacacgtt ttttttaatt tttaaaagat tttaaaaaatg tttaaaaaat 46020
taaatataat tggctgaggc cagttgctca gctcctgtaat cccaggcttt ccgaggccgc 46080
agccaggtgg atacacctgag gtcaggagtt tgagacccag ctcaaaccttg agaaccccgc 46140
tctctactaa aataacaaaa tccagcaggtg tggcctgtac atgcctgtaa tccagcctac 46200
tcagagggct gaggcagagc aattgcttga aacctgggagg cggaggtgac agtgagccga 46260
gatcagcaca ttcagctcaca gcctagggca caagacgcgt actccaaacgt aaaaaaaaaa 46320
aatataatata aatataatatt ttttttttgga gacagttcttg ctctggttcc caggctgagg 46380
tcagggacaa caatctccacc tcactgcacac ccctcagcttc tagcttcaag caattctcgt 46440
gcctcagcct cccaaagtgc ttgagattca gttggtgtacc accacaccta gctaattttt 46500
gatttgaatt tttttttttta attaataata atataagcttt ttttgagttga aggccagata 46560
tctagtcttt ctctacgctgg tttggatctca ggattggtttt ggccttataaa aacagaattg 46620
ttaggaattg ttttctttttcc agtttttgtga aggctgttgta taattgtaaat ttttttttct 46680
ccctactgctc ttagatatag tacacgggaa actataaggg gttggtggct ttttgttggg 46740
aaggttaatc aaggcaatcc caactttaatt tacacatatct cagtttttttc ttgtgtcgat 46800
ttttgctaatgg tttttttttta aagaaatttgt ctcttttcagt cagttttgca aattttatgt 46860
ctttgatttt cattatatttt ttttctattat tttcagccccc ataagatctc tagtgatagt 46920
gtttttttgt ctcataattgg taattttttgt ttctctcatat ttctccccgtga ccacatcttt 46980
ccattaataa ccaatttttt tttttttttta gaggcaacct tggtttttttt aatttttttt 47040
tttttcttttg tttttttttg tttgcttttgag acaggtcttc actctgttagc tttagcttga 47100
gtgcagtgcc gtgtatcaaggt cttactgcaag cctcaacaccc ccatggctttc tagatatttt 47160
tacatatcttt ttccctctca ctcaccttttt ttggtttttt gagatagaggg caagagacag 47220
acaggtcttc tggacaccat aatctgtatttt ttttttcccc tagtttttttgc ttataacaa 47280	tattatatag atgatatattt accttttttg catggctttc ttcacttagc 47340
ataatgcttt ttagatatttt ccatatgttt gcataaactca gttagttagat tttattgtac 47400
agatgacta caatttattct tttaaccaggt ttggtggacac attgattttg ttcattttgg 47460
gcactattag aataagcaca ctataacact ttcgcatagtt ttctttctct ctggataaa 47520
tgcattagta tagattttttt ggaggttgatag atggtgtctat gtttaatttt ataagaact 47580
gtccagcttt tttccaaagt ggctggttata atttggcgct tcacacataaa tgggttgagag 47640
cagtggaatca gaggcttttgca ttttgggga ctgagaatta gccatattaa tcaatgaaa 51360
aattaatttg aacatcttgaag ttaaaggttt taggcatggcct gctgtggtgcc acgcctgttaa 51420
tccagcact ttgggagggc gagggcagggt gcattacccgtagtggct gctgagcagt tccagcttgaag 51480
ttttcatag cagaaaccgcc tgcctttcatc aaaaaaatac aaaaatagcc gggcatggtgg 51540
gcaacctgct gcattcccag cactttggga gacgccagcc gagaattgcc ttgaaacccttg 51600
gaggcggaggg tgtcggtagac cccagattcag acacagtagc cccagctctgt gcacaacacag 51660
caaaaactccaa tctcacaaca aacaaccaca acaacaacac aacaaaaaagag 51720
tcaaaagttt aaatatttttt ttttcttattc tggctcaggt tatctttgttg tctattttccc 51780
caaactttaga taacaactcct ataataatttt tcatccttgaaga gagaattttc taatagttac 51840
ccctaaaaat tctcttatta gtttttttttt ttacttttattg cagatgagaga 51900
tttctatcttt gttgccaggg ctgggggtgca atggcagtgt cttggctcacc cacaaccctcc 51960
gccctccggg ttccaggatg tctctgctct cagctcctcc gatctgtggag attacaagcact 52020
tgtgccccca gggccaggtcct atttggttatt tttgtattcg agtgggttgc actctgttgg 52080
ccatctctgtg cctgaactcc gcagctggcg tgtatctgcccc gctctcagcct cccaaagttgc 52140
tgggattcgg ggcgtgagcct acggcgcttg gccgcaattt ccccttcctttt aaaacccaaat 52200
tgtaacttctt cacagtttttc gttttgttttg tgtttttttgt gatgagagac tacctctttg 52260
acctggttacct tagtgcagtg gcctgacatc gcctcatacg actctcagcact cccggcgtttc 52320
acacgatatttc cctctctctcct cactttttta acctctctg aacggcactct ccccgtttcc 52380
ccagctaatc tgtatttttt cagacgacgg gtttacacta tgtggccgac actctgctttc 52440
acactcttgc aattgggtgta ccacccacct tggccctctca aagtgctgggg attacaggca 52500
tgagtacttg tgcctagccct tatattttttc cattattttt aataagttag actcttagct aaaaatattttt 52560
aagattcatttt aagaaa gtagattttt tttaatttt attttttttattt gtttgagaga 52620
gtcttaaaca gcttgatagc aaaaaaaaaa cagttacatattt ttttttttttt tttttttttttta 52680
ccagcttctt ctctgtcgcg cagctgtagag tgtcactgttga cctactttga cactgtcagca 52740
tctctcctcc tggcgctca gctttttttt cccgctcttgc cccagatcgc tgtggattacct 52800
aggtcggcagc accacactgtg gctattttttt gtttttttttt gtttgagagac ttctctcaga 52860
agtgttgggag ttcagagatc cagccacacc gcgcctccct aggctccagcct cccgctcaggc 52920
agtggtggaga ttcacagacc gccaagatcgc cccgctctcc cttcttttctc tttcagccttc 52980
ctattttatt ttttttttttt gttgtaggttt cttctctgct gcctctctctt gctcttggctt 53040
agttgtgaggag gctctctctct cccagctctgc cccactttttc tggagatcagc gcctctctct 53100
ctctctcag cctcccaagt agctgggatt atagggccact cccacaccgc cctggctaatatt 53160
tttgtaacctt tagtagagac gggtttcacc catgtgggcc aggctggtct tgaacctctg 53220
acctcgtagt ctggccgctt eacgcctccc aagtgcgtag ggattcaagt ggagccactg 53280
caccggcccc ctctgtaatt attaagatta aagaaatgct tggcggggcg tgggtggtgg 53340
caacctgtagt cccagatggg agggctgaggg agggagaatcg cttggaccca ggagggagag 53400
attgcagtgga gtcgagatcg ctcacaactgca ctcacaacttg ggcacagaga gagaacctcg 53460
cctcccccccc aaaaaaaaaa tgcctaggct ttctcttaga ggtttatttg gagaataagt 53520
gaaaaaggtgt aaagtaatatt tattaatatt ttcccctgga acaagtagtat cgaattgaaa 53580
atatatatct taatctttctct ttctactcctg acaaaagga aaaaatcag attctttatg 53640
gtagttaga aggaaacacat taataattta aagatgtggg atttcocctac cagaattgta 53700
gaatatatct ttggtcattt agaactatgtt agacatgtca tcataatgaa ttgggcaaat 53760
tttctcagta aatactgaaa aatatctata ttcgctgctc tctagttttt attgatgtct 53820
catctcattatatactt ctctctcccg gctgctctca tccaacacctg agcctggacc ctatggggtt 53880
tctctgctgt aagtcattca ttctgctatt tccctctaca aatgtctttc tctctattctt 53940
ccatctgcaaa aatatgttag ctcctcaaat ctcagctcttt aaaaaaatat ttcctcatttt 54000
cctccaggga aggacacttc ctttaaatcc acttaagctct gttggtgattt tctttttcttt 54060
tctttctcttt ctctctttgt tttatatttt tatattttta tttgagatat ggtctcactc 54120
tatcatccag ctggagatag agtggcggtga ctcgccctca ctcacaacctc ccaggctcag 54180
gtagtctccc cacctcagcc tcctcaagtag ctgtgtactat aggtgtatac caccatactg 54240
ggcataattt tgtatatattt tgtagagatct aatattgcca tgtgcccaag gctggctctg 54300
aacctcggcc ctcgaagtgat cacactcaacct cagctcctca aagtgtggtg ggatacaggca 54360
tgacggggcg ggtgctgcca aagctgtgttt tttatatttt tttatatttt tttctgcacg 54420
agacgcctgac tcgctcttgtc gcggcggctgt ggtgcaggt gcaagatcctg ggcctcactc 54480
aagctccccgg ctctccggttc acggccattct cctgcctcag ctcctcgagt ggtgaggact 54540
acagggcgcc ggcactacgc cggctaatttt tttttgatatt ttagtagaga cgggttttca 54600
ccatcttagc gggaggtgttc tcaaatctct cacctcggtga tcgctgctcc tggcctcctc 54660
aaagtgttgg gattataaaggg gattagctacc gccggccggca agttcggtgta ttctttatag 54720
cacaatttatt tgttaaaatgt ttaaattatg ccaattgtta ggtgagttca tttggagggaa 54780
ggacatctct actcataattc aatatattcc taacagctcag cactatgtat tgtgttccca 54840
agatatggga ttgataaattc tccaatgaaat gaataatta aaaaaataaa ggtcaatcctc 54900
tagattatttc tttcaaatag gctacctctca aatagtctctg taatgctcct tattgcactgt 54960
aggtgggata agccctaaggt tagttccagcag gcacagggcag tttctgaaggg acttgataaa 55020
aatcactcac agattctgca cagacaagaga cactccacac gtaaatgatat aacttgtggg 55080
atgcacatgc cagcatctgga actgtctggcag actctttggatt aagaatgaaga gctttcagcc 55140
cagcacctcg cctctcaattag ttaattttttc cttctgcttttt gtttatattaa aagactacag 55200
tcattttttta gaattttctgg ggattttaggg aatctgtatt atagagataaa 55260
tctactcaac agtgaagaggt ttcaatttgt ttttattttag ttttttctcaat ttgcaatacc 55320
agataccttt gtatctccagt ccactgtgacag gcagctccag gcacagcggtt gaggcatctg 55380
tttcttatagt ctcgggaact gaaaaagata aataagaatg taggggaatt atctgtatat 55440
ttgcttaacca ccaattttaga tctcaataag cctccctctgt taggaaagact aatgaatccc 55500
aatcctctga aatatctcttt gcttttatca agcaagatgg aaggtatctca aagaaaaaaa 55560
acagggcag atacacagag ggaaaaagtg tgaataaatc caccagagaa ccaattatgt 55620
tcacccagctg gcattgagaa actgtttttcc tttgacaaaaa aaagatttaa gttttagcct 55680
caaaatcttt gtgtcagattg ttttctctccag ggtcagtaatg cgaatccctc caaccacccc 55740
cataaagagt ttagaaaaaa ttcttatcatc attttttataa tgaatttgga caagcaagt 55800
ggcaagaaga ggaaaaaaca ctaggcctcg tttattgctact ttaagaagaa caaacatgtaat 55860
aaatgtatgg tgaaatgaaaa catgaaaaca gagaacctcc tccctgagccag atgacatgg 55920
caatgacgca ccatacgaggg gtatgacagt gataaaacca cttggaagaaa catcgaatag 55980
atgtaaaaat gtattttcttg gtaaagcata gctaacctact atatatctca gttgatataaa 56040
ctgcatatttg aactttttttt ttttctattt gtttgggaacc tcatgatgctt ccaaccaacc 56100
tagaatggaa ctttttttgcct gttgatggttt gacataaatat cttttttctag tctctctcag 56160
tggtttaaat ttgcaagaag gcttgggcag ccgttgctcaac cctgaatccact tgaacttttg 56220
gagggcagag tatttggagggcag cttgagccag ttagaagggcag ttcaatccag ggctttggag 56280
gcaccacccc cttcttacaa aataataata taataataa attagctgag caggggtttg 56340
acactcttt tccttcgctag cttggggcagc gtaaatggga ggtacacacct ggttttggag 56400
gttggaggtc cagtgagcga ttagttgtgcc actgcaccccc actggggcag acaagagcaag 56460
accttgcttc aaaaaaaaaaaaaaaaaaaaaaaaaaa aagcccaagga agtggtgaca ccttaatctcg 56520
agctctcatt agaagcttttt ttctatttctacc caggaactccc gttgagccag tccttgctgg 56580
gattccctgg tggtctcaatt gttccacacc cttcttggtgg gaaatacttgg tgaatccaag 56640
gttttccatt ttttataact ttttaaacttt gccttttcccag agtatctatt taaatttcat 56700
taattactggt agaacsaggttt cactccagaco agggttttgtt ggacctacaa agcgagggcga 56760
catgtttttt tgaagccttgcga aatcgctttct tttctctcaaa gagaaaaaa aatgtttaatt 56820
tgcctcagcc ttccaaagtg ctgggattac aggcgtgagc aacgagcccc agccccagact
58680

ggtttttcag ccgtactgact cactaatata ctctgcccagc aatgtttgag ggctccaaact
58740
tctctcatct ttggccaaata ttggtttatg tcttatctttta taaattttag tggcctttag
58800

aggatatatt gtgtatctgt cgtggtttttg atttgcaatt cccctggtac ccataatagtt
58860
gaggtctttt tctatggtcttt atctggcatt tgcctatcct tctagagaaa ccataataactc
58920

aatctcctta ccaacttttg attatccatt tatactgtca taaaatacac aacataaaat
58980

tttcctcttc gcccttttttta aagctcatac ctcggatgca ttaagttcatt tccacattttc
59040
gtttgaccat caccgtgatt cagctctcag aactccttttc atctttgcagaa aactgaactc
59100

ctctctttttg ttgacatttc ttctcaacctt ttatttacac tgagttaaat attttcctgt
59160

tgattattct gcattctatatt ctctctgtgg gcagcttgg tacacttaaa aataactaat
59220

gttttttccgt attataatac atacctagat atgtagaaaa tacagaagaa tataataacta
59280

tagagagaaa aatccagcta atctcaattaa aaaaagcacactgcagtctgtc atatttttact
59340

tttcctggca cattttttttt atataagttg atattctgga caaatgtttt ttgagtaata
59400

tgatgttttt ttcttttttttt ggttttgagc cagagttcctg cttttgtgcc caggttggag
59460

agctggttgc ccattcctcg tcaactaaac tctgtccttctc tgggtttcaag ccatttctctt
59520

accttgcct tctcggtcag tcagagtgaca gcagaggtgcct gtaaagcccc ctaataattttt
59580

gtatttttag ttgcagaggg gttctcatggtt caggtttggtt ttcagcactcc tagsatcagt
59640

tgatctccc acctgggacct ccacaaagtcgc tgggaattact aaggttgtgac cccggcaccct
59700

ggcctgttttt tctcttctttt gccattttttg aataatatta aagttccagg atacatatgtc
59760

aggatgtgca gttttgtttt caagtttaaac gtgggtccatg ttttggttgc aactaatacacc
59820

catccacctgt gattataacg cagcatgtgt ctagctttttt tctctgacgct ctctctctcc
59880

aaaaaccacc cctgacaggg cccagtgtgt gtgggtttccgt tttctcttttctcctctgtc
59940

cattgctcag ctctcactctta tgagtggagcc ctattggtttc ttggtttttt tctctcatgt
60000

itagttgtcg aggataatgg ctcctcgctcct ctcctcggcc cctggcaagag ctagatctcc
60060

attttttttttt tttaggttgcc acggatttccc cttcttttata gttcaccttt ttttttttct
60120

cagtgtatca ttgttgggcca tttggggtttt ttcctatggtt tgtctattgct gcacaggtgaa
60180

aactgaaacct gtttacccat tcaacgataa ctttctcttc tctcactccca gcaaccctatt
60240

cgttttttcag cttctctagaa tttcagttact ctaggtcatct catttaagtt gaatcaggggca
60300

gtattttgtcc ttctgtgacct gctggattttc aacctcctttg ctttttctaaa gtttcactcc
60360

ttgtgtacac ctgtgcagaa tttgcttccttt cttttttttt ttgagacgagc tttactttcgt
60420

tttccccaggc cggagtgcag tggcacaactc ttggctcaact gcaacccgca cctcttggtgat
60480
caagcaatcc tcctgcctca gcctccccctg tagctgggat tacagggttg cgctaccact 60540
cctggcataat tttgtatatt taagttagaga cgcccccttta ccagatggtg caagctgggtc 60600
tcaacacctg gccctcagtt gctacaccacca cctgggcccctt ccaaaatgtct cggattcacg 60660
gggtgacccc cggccgcccag ctgtttagatt ctctctcttat ctaaggtgta aataatattct 60720
aatattagta tagtcccaact tttgctttatc tatctaccttg tgcagttggca cttggggttga 60780
ttctaccctt tgtgtatattg gaaatagctg gctatggaaca tgggttgtata aataccttgctc 60840
cagccccctcg ctttcagggct tttggtgtgtg tgtacccagaa gttgaaatggc tggattatatat 60900
ggtaatttcg ttttatctttt tttatgaaag gcctctaatgg ttttccacag cagctgccacc 60960
atttaccatt tccaccaaca gtcgacaaggg gttccaatatttt ctccctcatttc tccaccaacac 61020
tttgtattttt cgctttttaaaaaacagtc gccccttcttaa tgggtgtgag ttgtgtactctc 61080
atgtgtggttt tgatgtgtttg cattttcctta atgattaattg attgtatttag gaattttggg 61140
cgccgtaac aaataccaca gactagggtg ccaaaacacc agaaatatttat ttctccacact 61200
tctggaggct gggagttccaa cattcagggc ttgctgtattt ggttctttgtg gaggccccac 61260
tttctgactt tcagatgtttc acctttttctac tgatatactca catggtagag agagttttttt 61320
ctctctctct tgcttttataa gggcaccacat cctatgagat tagggctccta tccccattac 61380
atcatatatc cttattactt ccctataagt ccgtctctca aatatgaaaca ccttggaatg 61440
tagggtttca acaataggggt tttggtggga catacgtagg ccctatagcag tgcactcgag 61500
ctotcaccac attttttttt ttatatattt ttttttagaga gggagtctca cttctgcttcc 61560
cagcggtagag tgcaattcaca gatctgcccc tcattcgcaag cttgctcctc tggggtctact 61620
ccattctcct gcctcagccgc cccagagtgc tgggactaca gggccccccac accagcccg 61680
goattaatttt gtatttttttt gaagagacgg ggttttgccg tgttagccag gatggtcttc 61740
atctctctgtc cttgtagctcc accacgcagc ctcagctctcc ccaactgtgc ggattacagg 61800
tgcagccac gcacccgccgct cttggcctatt taaaaacagg gctgttgtgtc ttttgtgtgtc 61860
gttgaggggtt gggagttcttt tagttctctgg atacaagcct ccattagatg atgtgatttg 61920
ccaaatatttt ctcctctcttt goaggggtgtc ttctttctttt ccgtatggtgc ttcttttaag 61980
ccacaaaagtt ttaaatggttg gtaagttcctc atttatatatt cttttgtggtt ctagctcaag 62040
aaacctgtgcc ataacttctga gttcagaggata ttaacattct cctagtggttcct tttttaagag 62100
tttttaggta tagctctatta ctttgggttg tagattcact tttggttcaa tggattatat 62160
cggtgtgagc tttctctttt taaaaacatt tctagaacat ctgtgcttca gatgtttctct 62220
55/88

tactagatta gatatgaaa aatattgtga ggagggtttt tttttttttt ctctttttttt 62340
ttttttttttt ttgagacaga gtcctcctcct gtcaccctgg gcgggtgtaa ggggcaaa 62400
catgggccac cgctaatcttg acctctcggg ctcaagcata ccctccacct cagactccca 62460
agtagctggg accatcaggt gtggcaccgc aacactggct aatatttaac tttttttag 62520
agacagaactc tacgctgttt gcccaggggtg gctgccaaact cccgggtgca ggcctcatcc 62580
ctgctctggc cctcacaattt gttgaatcac agggcagcag cactgtgccc agggcagggg 62640
gtgggggggg ggggggtctt ttaaaaaatt tattgacctc ttgacagact 62700
ggggaatcac gctctattata tctatttttaat tatttctatct tattataaat ctcttctcag 62760
cgctttttata aacgagagaa cccaaacag cctgtaactta acaggaatgg cggccataaa 62820
cagttgagct cactctcattc gaaagattaa gaataaatatat tcgttacaca atcaaagcctt 62880
ggtctctcatc ttttagcgcct aaaaacctaa gcaacgttaa catttttttag tcgttatatt 62940
ggttaggtaat ctaatttacgg tggagaaagag attagcaaat tattcagatta gtcagggcga 63000
ggccttagtcgatgataatttttctgg tgaattttcttc tattctctgg gaagagctttg 63180
atttttctgac attctcaagat tgcattgtgcg taggtagtag ttaatgttttt taatatccag 63120
attttttaggc attcgtctgac ggggtgctttt gctttttttt gattcagcag atgtagaggaa 63240
tcaaatatta agacaaagtg tagggtagcag tagaggctaatt aattattttt tccttctaat 63300
atatgtgcct cgctgtctgcatctgcatta ratattatgtt atttatatatat ttttttaaat 63360
cttcttattt atgtctcttt aatagtgctag cagacccctat gttttattatct tatattcata 63420
tgtatgtggcg ctttttttttttt gtttaggactatt ctattcttatt gattcagatgg gaagagctttt 63480
cctctcaacag gtagaaccaca gagggtgata aattggaata ttaatccccaa tggctctctat 63540
gcttttttagc gaagatgtagt cttgccacat tctggataatt tttttttttttt tctactaa 63600
ccggggggtg cattgagatcatt tttccctgg aatctccaga gtgttgagaga gttgctattct 63660
attcctctac ctcttaaggtgct catctggggcc cccgatactca tcaataatgg atgtagatgt 63720
tgctcatgtg tattctctgtg gggttggaag ccgttctgtat agttgggctt ccctctctttct 63780
actctctctc actgtgtgctat actttttgctttt ctcagacttgag agggagcat atgtagggg 63840
gttatccaggt tagaggtgcc atgtgggctg gatttattaag atacagactt gtttactaat 63900
gtttagtagt cttcatatgtt atggttgaat aatcgagcag aatgatattta ttacgaggct 63960
gctcactgaa acgcacctggt tggcaggtct aatcatctca tgtcaattagc gtttttatttt 64020
tgccaggctc cttccccctatt gccctcataag gtcaactcaca tgtcctcaact acgctatatt 64080
ttgaaaatgac caacactccgct ttttgagcag aatttttctt ttgtgtttcag atagttgagc 64140
cattgaagaa taccctgacc ttccctatgt ttatgtaaac tcattctgga ccattgagaa 64200
cataagccc atccaggttg gtcctggtgt ciagattgag acatgtgttt ttcctagtta 64260
tgtcaggtat tgcagagctga ctttcaagag cattctgcct acaggtaaacc catgagagat 64320
accattaata gctaggtttgg tgcacatagg tgaatagtaa ttatactatc cttcaggttct 64380
aattnattct tgtcagataat tggcatttta aaaaattgga aacattcttg cagtttttttg 64440
gctctctgtg taatccagac caagtatgat gctgtaggcc cccatagtgg ttctggaaac 64500
agtgttaggc ctctactgccc atggataata ttatagaaat gccagggcaag cttcatcatt 64560
ctacagagag tgtatcttca gccataattt cacagttggtt gtttttttat gactagaaag 64620
attttatccc acatccctac cccctaattc aaataaggcc aagagacaagt gccttatgagg 64680
gcagcaggaa cgagagggga ttccaattggt gactggtgaaa agtggttgaga tgtttgcaca 64740
tctctctcttc tggcggagttc aatgtttttgt gttgctgtca gtggagagaag tagacctggc 64800
tctctctgagg agcgcacaga acatcagcga tgacaaaaag gcggtttttga atgacagttg 64860
gtgggaacctt ctcagtgtgt ccctccacata cacacacttg cagacagcgg ctggagagatt 64920
tgcacagatt cagttaaatgt taggtcctttt actacctgctc cccgtttgccc gttctctccc 64980
agcctttggg cttctctttc gcggcagaga atttgctcttc tattgcatgtg ttctcactat 65040	
tatcaccaca gacacggacc ttgacggtgc tctgtagcga cactgctagct caagcttccc 65100
acagacagga cggatgtcgtg gagatggtcc gcacctccag aagataacag acacacaggg 65160
ctctgtatcc agacacagga ggcctgaagc atgccctgca gcaggaattc ttacaatcttt 65220
ccacacacac ttactattag gctttctatt gcctaccaaa aaaaaacag acacaccacc 65280
acacaacacc aacaaatttg gaagacttttc tcataaaccat tatgtgctta tttttttttt 65340
attgagtaaa ttatacaacta atttccagatg cagatgcata atacgataat attattaact 65400
tgaatatctt cagggattag ccaataagac ccacagagac cactggtgac ttctggatca 65460
gagggacaa ttaacccccct cacaattatg atgggaaccct acactcctcc gcgtacagccc 65520
ttggtctgat tgtctcaagg gaatttggtc gcggatgaaa ctaggggtgt gttgggtaca 65580
ggacagtgaag gccctggtct tgtacttcca ggcagcagga ttgctcctcct tttggccccc 65640
tggagaaacctgt tggctgcaaa ctatctccat ccactgtgtaa actacatcat 65700
tagattcag caggtcacttc ttctttttgc caaaaagctca gctaggtggtt gttgtgtagta 65760
gggaattggtg gttctctcag tcagatattg gattcagttg aaaaaataaga acacacaggca 65820
gttcaggact gcacacacag tgaattatcc taaaaataa cctttggaat aagaagggaa 65880
acttagacta gacaaggtg ctcttggatac atggatagct aagggggagtt gaaagagata 65940
tagctgcgcga ctctgggaca caaatttgttt atcagaggac accacgggtata ctttggagtct 67860
aggtctcatt ccacagggg gcccagagct agggacttct ccctcaaaag atgtcttggt 67920
acagcctgag ccgccgccc acagccatg gggggggagt ttctctcaaat atattattgg 67980
aggtgtcctgg tcccaagaac acaggggtga gacgatttgga ttttgcatgg cagttgggtttt 68040
tttttttttt ttcttttaag actgagggta gaagtgggag gaggttagga taacaatttag 68100
gaatctctgt tgttagggaa agggggcaca gctgtggaaa cttaaccgag cccaaaccaca 68160
gatatcctca cacaagttaa agtgttttat ggggcaagga ttgggggtgcg cacaggggtg 68220
cctagaaat gcacacgggg catttgggaa agaaggggtgc ttcatttttc tctttttttc 68280
gttataattt ttttttctaga ttaggttagag taacttttgtt gagatactta ttgaatgcag 68340
cattaataacct tgtagaaaaa tcaagatccc tctaaagtct agcagacat atagagagaga 68400
gagagagaaaa gagagagaga atttagagcc ctggtatatcc ttctctgggtc actcaagtga 68460
tgtgggaatcc acagactgac tttctgtcaa tccagagcga cccatagctt atgatccaaatg 68520
aactctgact ccggtgtcatt aattggcagca accttctctgt tcttttctag tttgggatgcc 68580
tggggggggc ttttgagaggg agggaaatgg gttctttctgt atgaaagcggag tcttaggcgt 68640
caaaaatccaa actgtgtcatc aacagcggtc atgcaaaaa gactactgtgt ggggtctcacc 68700
atcaaggagg caattacagg tcaacccctgg ggccatatcc atcttcacagg acgtctccac 68760
acacacatcc ggaattagat tgatctcctt cattaaccttc aatagacctt caaaaatcttt 68820
gtgtacttat tattacctgg ctttaatgga ataagaaatt tgtggcataat attgctaaaca 68880
cctggaagggt gctcataatgg gaacatggac tgaactaaa tgtgctttttc ttcccctttct 68940
gtggaaattta aagggcaccag cttccccagt ccattagaaaa tgtgagactg taggttaggg 69000
cagtttttgcg gagagcagtg ttcactcctag cagttgacat gctttctctc cagcacaaggc 69060
aggagtcatc gttcttcctca tgatctgcag agaggctggc tcaggaagaag tggacgctcag 69120
gaggataggcc tccacctcagg ctaacccacg accttcacgt taattggaact aaaaaatgtg 69180
catacactac aactccagtt aatcaatata acatcttttg agttcctacc atgtggcagg 69240
cttcctgttg aacactttagg acataaagat gaaaaatga aggtcctggc ctattatcacc 69300
agatccccaa aacctgcccc gggagacata atagcaataa cccaaagct gagcaatttag 69360
cttatgcaca gcacatatgtt aaagttgtta cctataatac tcaacatctt aggagatgag 69420
tgatccagtt atctcacttt tttacaataaa atggaattgg tgtcagagaaa gtttaagtaac 69480
ttcagggagg ctgcaaggttg aactgggtgag cctggacactt aaccaggca actggacctcc 69540
agaaacttattg tgcctaatcc catatcatgc tgacacacaaa cttaagggaag tgtcgctatat 69600
ctggcctcgtt cccagacata gattgctcgt ctgtgcagcc tgtggtgtaa gagggtgctat
ctcagctttgt tttttttaca tagggaagtg ctgtagqagag cacagctgtct catctctcgttt
gtacccagaag ttgttgttccaa ggcaaaagta aactgcctttt tgaaagga ggaatcaag
gcagagggaggtggtcatt ttaaaatcag gactcccccttac gacacccagag cttaaatagc
cataaaggg ttccttcgcgtt cgctcgagctt tttttttttttt ggggtttggag gggggttgggt
tattgagctt caaagctctct gagacatanag ccccagagctt cttttttttttt ccctttttttt
tttttag tcttttgcgcgttt acttttttttac ttttttttttttt ttttttttttttt ctaaacttttaa
catactttttcccagcttacag cgggttttttttt tttttttttttttttttttttttttttttc
caaacagctcaccagctcagcagctt gactgccacgacagcttactttttactttttttttttttttttttt
ctgtgaccttctgccctgt gacagcttccagcttttcttactt
gccccgtaata tcagcacttt gggaggccaa ggtgaggagga ccaacctcag tcagggatgc 75180
aagaccagcc taggcaacat aagtgaactt tactaaaat tttaaaaatac aacaggcgca 75240
tcagtcata ctcactacaa cctctgcotc ctgggtctca gcaatttccc tcggctcagcc 75300
tcctgagtgc ctggggtattt aggcacacac cactacacct ggctaatattg ttgtatatttt 75360
agtagagacc ggggttccagc atgtgtgtaa ggtgtgcttt gaactctctga ctctaggtgg 75420
tccgcccccag tcagccttcg agaggtgtgg gattacagcgc attggcccoac tgggtcctggc 75480
cgcctttgttt gtttttatcc ccaatttcca ccaatttccc aagagtgaatg agccatattg 75540
ttcagctatt caggaagctgt aggcagaggg attggcttgag tcattaaattg tgagtctgca 75600
gtgagctatgc atccacccac tcagacttcag cctggtggtac agagcaagaa cggaaggga 75660
gggaggggga ggggaagggg agaaagaga gaaaaagaaaa gagaagaaga gagaaaaaga 75720
ggaagggaag aaggaagaggg aaaaaacaga agagcaagac agatgtacgtg gctcacaacct 75780
atatacacaat cattttggga gcgctaggtgc ggaggtgtgc tgtgggccaa ggttccaga 75840
cacatagtgc aggacgtgtgc tcctctctct ttttttttttt ttttggagatg ggtctcttgct 75900
gtgctcctgc gctggaggtgc agtggtggtga tcctcgcttc ctcgcaaaccg cogctctctgg 75960
gtccccgcctc tcagccttccag agtagctgg gcacataggg gcgggccacc 76020
atgctctggctaatattttgt atttttagtat agacggggtt tcacatattt ggccagagtg 76080
gtctcgtatct cgtagatccttg tagctacccac gcctagccctt cccaaagtgt ggggattaca 76140
gcctgtgagcc accaatgtcgg gacgtgtgggcc ctgtgtcttcata cccaaatatct aaaaaaata 76200
gctcttggtgt gcgtgttgggt tgtctagctcc gctgtgttcca ggagggtggag gagggagaat 76260
cactcagcctc caatacgatta aggtcaagct gcacacagtc gtcacaccct cactccagcct 76320
tggggcaatag aggcaaggcc tgtctcctaa gaaaaacaaa aatatctagt gctcgatttca 76380
gactcggaggc taactgacacc ttcctctggct ttcctctcaggg cactcctccaa ccaattgcat 76440
ggcctttcttg gttctcagct tagataagtc tacgctgttgt gctcaatctcc tcctatgtga 76500
gcagctgttgc ggcagcggagc acgctctctctgt gctgtctcccag ggggacaccc agtctgacag 76560
gctctagagtc gcacccaggg cccaaagttgc tgtgtgtaaca ggttgttgag aagcgctttgt 76620
cccccctctctc gtctgtgatgg atccaccctaa aatctcattcc cgggtagata tgtaactagtt 76680
attctcaatt cccttggtgaa aacactcaca caactgcttc ttagctcggg tgtggcatttt 76740
tatattatct ctctggagac tcaggggtgc tcgttcctggg ctctctagaa aagtctctttt 76800
tgtggttttt ctgttgggttt tttttgtgaca gggggttgcc gtgtgctggca 76860
gctggtcttc gaactctcag tcgcagggcga tccttcctccct ttggccctccac aagtctgctga 76920
65/88

tgctgtaat cccacctact cggggggctg aggcaggaga atcgcttgaa cccaggaggt 80640
gaggttggcg tgtgacccgag atctgcccat tgcactccag cccgggccaa aagagctaaa 80700
ccttatctca aaaaaaaaaa aaagttaataa tgtcttttggg aagggggagg gatagcattta 80760
gagatataac ctaatgtttaa tgggtgcacg acagcaacgt ggcacggtga tacatagctga 80820
acacacctgc acgtgttgca cactatccct aaaaacctaa gttataattta aaaaaagta 80880
aatatgtcat cacaacatat aagataagcc tgtcttgctat caacagatgg actccagctct 80940
tgatgttttgt gttggtggatc tgttctccag ctcctctctat cagaatccag tcatggtttc 81000
tggtacttctt ctctcagttgt tcctactatta tagagatccaa aggcacaggg cttgaagtcat 81060
ccacgccttc cttacagaga aacctgtgtg gcaggggggtc ccaaggggcc tttccagtcct 81120
atctcactag aagctccctgt ctttctccatt gcagcatgac attgccaggg tcttttacatt 81180
cagcctctaa caagcaagcgc ttttacagtg aagctcggcc gcaccaactgg tcccccggtac 81240
actctcttcg tgtctgtgca aggcgctctta atcacaactg cagccccagaa ctcattcaaa 81300
gccccagagt cggcgcctgca tctctcaaggt aagctcattt aaacccaaaa taatatctta 81360
agggcccccc accatcctga atggactcct ctctctcatgt gaggacatac ccaagactgg 81420
gttcaggcc atgatgggcc gcgggggtgc gaaatgtcctt atgtgcctct cctctcttttc 81480
gaaatcagg aaaaatgtgac cagaccaagc attaacatca atacagatct taaatgtgat 81540
aagaaaaatt tacaatcctg ctgggccccg ctggctctatg ctgtataatct agcaccttgg 81600
aggccaggag cgggggtgtctc acttgagggc aggaattaac gcagcccttg gcaccaataaa 81660
tgaaacccca tctctactaa aataacaaaa attagctggtg catggccgca catgctctgta 81720
atccacgcta ctttggaaagc tggggcagaa gaattggcttg aacctgggag tgggaggggtg 81780
cggtgacttg agatgcacc tgcacactcc agcgctgggc acagagtgag acctctgttctc 81840
aaaaaaaaaa aaaaaaaaaa agaacaattt acaatctattt cctctctggt gctcctgtcct 81900
 ggacgtttca tctgcatgat aaaaaattgg ttctctcaac cactattacat aatccagaca 81960
 ttccttttctt ttgacaataa ctcttttttaa caatagccaa tcacaaaaaa tttaaatcata 82020
 cttagcatct gaaaaaccctt gcoccaactgg tttaagggtt tcctctctttt ctggagcgaa 82080
tcaatatgtta cttttaattgt atttggattga tgtctcattgt ctcctctaaa cgtacaacaac 82140
 caagcggtgc cctggccacc tctggccaggt ttctctcaggg ttccttttggg gtctgtgtaac 82200
tggccgtttg cacacacattt tggctcgagaa taatatcttt ccaatatattt acagagtttg 82260
actctcttctt cggacacacat tggcacaaaa tggcactaca gatctctccc tgggaattagtg 82320
tcctctgttg tgtggagggaa tatttttggtgc cagcagcccc tatattgcaaa gacgcttttag 82380
ctcagccccct ccaaatg tgttctccat tgcattcctg ttcattagaga aaggaactg 82440
aaggccaaac gatcaggaga caattgtcggg aaaaagatagt ttatatttcc tagttcccaa 86160
ccaggggagca tagacccaaac ttcacgctggg gaagttgggga agtcgaagcag aaaaacacca 86220
gttgattac agggtagggg ggtggggagg cacattgtaggg aagacccata atttggttctg 86280
cgggaagggg cagtaagggc agggtaagca gactttagggc gggctagcgt gaacattttc 86340
agggactgct ggccccaggtgc agctctctct agttgcttga aattccgctc tgcagatgtt 86400
agggcatgtg gatagtgggcc tggagtatga gaaactgtata aaaaaggtta cttgggagatg 86460
gggcactgga ttgttttctgt tttgaagaagt ttggttttgt ggcagttggt ggctatctct 86520
aggactggg gatactgtgg gaagggcagtc tgcgcaaggt gaccaagggc ccagatgtca 86580
aagcaacga atataaaaat taaaagacaa ggttaataca gcccctctgtag gattccagtc 86640
aggacgttct cttttctctct ggtttttcgg tagtttagcg agaataagggc acacgaacctg 86700
aaagactgtt gatattaggt gaaaaatgtgg gattattgtg ccagcatgca ggaaaaaatgta 86760
tttggagaaa gcaataacctg ggcaagacat attcattcct gcatatcatgc actcaaccccac 86820
tcatttggta gtagtagttt gacacattgc tcttgtctag gggcctggcc aggtgcacaga 86880
atagcacctt gaatagggaca ctggagtttt gcggcatcggga aggacccattt aatccacagc 86940
aagtgggtca tttaataaaa tagagttttg gaggctagaa atagcgcatctt aagtcttcatc 87000
acagcaccgt taatctacaag tcgacattgt ttcctctcgg taagaaacctg aatggtttggc 87060
agaagtcgac tggagtattt tctggagata gatatttttgg ccaccagttg ggtccccgtgg 87120
aaagcatgtg ctaatgaatt gccgtgtcgg gaacagcagtg acattctggg agggataactg 87180
agaccaagcc atgtgcccaag caactgtggtc atgtctgtgg gggcagttatc atgacaccatt 87240
agaatattctc tcggtaggtt ggtggtaggt gcaggtacgtc tgggacattgt ctgacccattg 87300
atatctattc tagatagata gatagataga tggatttaga atacttagggg ttgtatgaaa 87360
attatattata tgaagataata tataagcatc ttcctataata tgtataattc tcaataataac 87420
cttagataa ttaggggaattg cctctgtcgtt cttggcagttc gttgttttgac cttgttctta 87480
aaattgccca agattaattg gtagaagact gcacacacagc cagatttagt 87540
tggggtctcg cttcct tgtggagctgt gccatctgtg cttgctttctg acacactgct cttgccttcac 87600
ctctctctct taaatagaga caggtgctca cttctgcacc caggtcttagag tgggtgcca 87660
caatccacc ctcactgtgaacc ctaacccctg tgggtctcaag gcgtacctcc acctccagtct 87720
tccaggttaac tgggcatcaca cgcacgcccc acatactggca cttatatatctgttatatatgtt 87780
tagagatggg ggtctcacta tgggttccgag tggaggttctt aactctctga ctaagggcat 87840
ccaccaacct cagcctcacc aagttgtgaa atacagcccct gtagccatttg gcttcctggc 87900
agctttactt cttaaagcc actcatattt gcacaacttta tatgtaagag ggaggaggctc 87960
atgttataat aaattaattt catttccaac cccaccacctc aatggggttg tgaactctggg 88020
caaagttacct caactatcta gaatctcgggt tctttttccat ctggaaatct tagaagagag 88080
tggggttttct tgtttttttt tgtttttttgt tgtgagacagt ctcaacctgtg cacccaggct 88140
ggagtgcaagt ggcagctatct ggcgtcacttg caacactctgc ttggtctctggg tccaagccag 88200
tgttctgcct cacgctctgct atagacgctgg attacagggca cccacccatca ggcgcgggta 88260
atttttctat tttttgtaag gcacaggttt caccttggta gtcagctggg tctcaacactc 88320
cgtacccgaa gtaatctgccc cacctcggcc tcccaaatg ctgggattac agaggtgacg 88380
cacctgccacc agccctgagaa ggggtttttt gctgaggtat tgagagcatg gataaggata 88440
gatttttcat tcagttcctca gggaggtgggg aggagatagt ttagagacac tacctaagtgt 88500	taaatgacga tgtgcagcaca ccaacatggc acatgtgaac atatgttaact aacctgcagc 88560
tttgctcactat taccctaaac acttaagta taataaaaaa aaaaaagaaaa gataaggattt 88620
attaaagtctg gagccacagt gctttgcactc accattgagaa aagtgattag tcttttttca 88680
tccaccacctt accacagggc tgtttatgaga gcccagggag atcacataag aagcgccttt 88740
gtaaactcgc ggggtttgct cccctagagtg tgaatccagg accacagca aacagttgccc ttagcacagc 88800
cggagacttt taggaaacag cagaatttca ggtcctcctca gacctcctga aagcctgtct 88860
gattttcgaag tgttttctcct ggggagttgt gtgcacatttg tctttttgga aggagggagt 88920
gaaagacagt gagaggttaaaa gttgagagcc cagactcagg gagggctgag gagctgtgggt 88980
tccaggggca gcocagcgtt acatgcagcc cacccctcgcct ggcagaggac cttgcgcacc 89040
gggccacctg ccaatcaactg tgtgcacacac ggtaaatcctc cccgcctcaca aacagagacc 89100
tcaacactct agcagacgtgc ggaggtgaaagg tgttagggtg cagggctgag acagagatgg 89160
ccttcgttgt gcggcctcagc ggagagtgta gtgagggcga aagaggcctt ctgccacactc 89220
ccccctcccc tcgagtgaac accctttttt cttggaacaa agactgcgggt gcagcgcacc 89280
gcagtcaggt ggcgcgcctgt ttccagagac tcaccttgctg cccctggcga gcctccgggct 89340
cctctgtcct gcggcattttag gcaggtgtga ccttaagggg ccatctgcct cggcgcctta 89400
gtttgtgtag tcctctctcc tggggagaga gttttttttt aaggtgactc tcctcagacg 89460
tgcaaccttt tgtgttagcct aaatgcttcc cttctctccgg agcgtgaacc ataagacact 89520
aggtggaggt aggcccgtgaga ccagaggtac catgcgggttg tcatctctctt gtttttcgcag 89580	tttctaccac aaaggtcgcc acagggcaga ggcactggaga gtctctgcttg aaggaacactc 89640
cagccccattt tgtgccggag gtaggcagct gggctgcagcaggaggaagtg cctggcacc 89700
atctctctac aggcccctgg tgtgtagagtag tgatggggaa aagatccaccag gtcagcagggg 89760
aggttgtgtc gctgccacagt ctccttccct ttcctcccaag aggtgccagt gcttgccgga 89820
ggcatcactc ttgtgactgt gatgctctgttctctcttcct ctggccccagg ctgccccagtg 89880
gcctgttctc ctgctgccca cctggtctca gccccgttccc ctgggagggga tggagctctct 89940
tcctgtctct cctgatcttcc ttcctctgttg atatttcaaa caccctttag gttttaacagg 90000
gtattgttct caagggctaca ggagatggct ctcgggtctgc actccagccga cttagtgccc 90060
cctgagcctg ttgacaattc tgcacacgcag cctgtctctcc cttacacccc taccctcttg 90120
cgcctcagcc accacatccc tctccctgcc atctctgagtt tgacacagag ggcacactgga 90180
agagcccaag cttgtcactg tcgcctttata gcgcctggggt ccctctactct gcctctcttg 90240
gcagcaggaga gagagttgtgt gtacatgtgt ctgaggcagt aaccttgaagtt tggaggagaa 90300
tctagaccaa ctcattgcaaa gcttctcattc tgcagatgag gcctgagagaa aataaaaaaa 90360	tacccaagat aacactaag acaatgtaaa tggattactga tagctactga aatgggaagac 90420
gtgatatgtgt catgcactggt atggagacct tccatgtggt gcacataattt gcccaacatga 90480
ccatcttcca tggattgatta catttgataa tacagaaact caagctcagc cagtttaaga 90540
aacctgctca ccacacacaca atgagttgagt gaaagagcag aattttgtat tagattattt 90600
tgcttgaaca tcaagcagct tttagagctt cctctgaaat gccaaagttggt gagaatgtaaga 90660
gccacgcct ccctcaccccc agggagctgt ggaggctcct ggggtgaaga ctgcaaggtt 90720
gagggattatat catccccatgt cagtgattata cccagctgggg gaagagccc gcccctcaca 90780
agagaagatg cacacattgc cttgggtagt aatctctgagg cctccacgagg gcctcccttg 90840
cccaggttaa agaatttgtta atgggaaggg aagtggggaa gggagagttt tcggaaatgg 90900
ggcctgggctga gttcgacagtg ggctcgctcg cctgtaatcc cacccacrttg ggagactgag 90960
gccagggtgga tattctggag tcagaggttc gagacaaaccc tggcccaact gatgcaaccc 91020
catctttact aaaaaacgga aaattaccca ggcatgtggtt gaacacctgt aatctcagct 91080
actcaggagg ctgaggcaggg agaatcacttt gaacctggga ggcggagatt gcagtgtagct 91140
gagatcatgc cactgcacct gcgcctgggg gcacagagoa gacatcatatt caaaaaaaa 91200
aaaagaactct tattccagatc acctcattaa gctctccccca aactctgagggt gtaggtgaca 91260
gtatcacttc ctctctcagaa gagttgactg aacctgctca aggcatgtgg ctaggaatgg 91320
gcagagtgggt catttggaatg gttgctaggo aggctagggt attctgctggt taacacatga 91380
tcccaaaatct tctgctggttt acgcagccaa gcttctgtgcc cacagaggtcc agcgtccagct 91440
gctatcttta tgcctccccc tcagaccagg cgccgctcgag cctccattgc gaacatcacc 91500
agtcacccaca gcacagaaaag atacacatgt ggtgcgggttgt gttgacactac gcctgtaatc 91560
acccagtaca acctctcatc ttaagatccc taatattaatc acatctgtaa ttttcccttt
93480
tgccgtctaa ggtaagagct atagtgcccc gagattagga cctgggttac ttgggggca
93540
ttatcaggga tacacacaag acgttttggag atggtttgaa tagcacaaggg gcaacaattg
93600
tctttaggcca tctttgcattg cctcaaaagga ataactcaagg ctggataat ctaaarataa
93660
agtitttttg cctcatgggt ctgcaagact taccagaagc atagtgccag catctgcttc
93720
tggtaagggc ttccaggaaac ttccacgtat ggtggagggt gaaggggagc agggcttcaac
93780
tggtgagaga agaggaagaag aagagagggc aagcagacta ggctctgcaaa caaccctgctc
93840
ttgtagaac acatgcaagca gaagactcact catcaccatag gggagggcag caagccacttc
93890
aagagggact caccccccatg acacaaacctc tctgccactag gccttacotc caacccctgag
93960
agctcatcctt gattgagggc ggacaacacag ccaacaaaaata ctaacccgtga
94020
acccactgca atccgagatg cctcaccatg ggcctgggggt aggagaaggc ctgcaaggtct
94080
agcttgtat ggaacctgtg tattgacccc cagcaagccct ctctcacaat ctcctctcag
94140
ccatgctgccc atggcctcatc agacactgtat acagagagctt aaccaatgtc aatttactgt
94200
catgtagacca acctattgat cagactrattg acttcaagacag acatgctcagt gaataaccaac
94260
attcatttgc agctcggattt taggagctcct cgttcctgtgg ctgtccagtatc agacctgggg
94320
ccctggcatat tctctgagga ggagatccag tcaacaaacta tttatgcagg cctctactatg
94380
ttgtagggcac tatctccaggc accttgggata gatacactcag tgaacaaagc acacagaggt
94440
ccctgcttct atggcgcctaag atttccatcag ttagagacag acagtaaaaga atcaatttga
94500
gtcacaaagaa gttacactgtg tagaatgtta ggtacactatg gggctatgga aaatagaaa
94560
aagttaggca ggaggagagg gatgcaagct gagagggtgg gatggggcgag atgagggtat
94620
tatatgctgt agccagggga ggcctcaactc agcaggaggg agttatagttg acttgaagga
94680
ggagtatttt gcacacttggaa cacaagtgcg tctggatagct cacaaagggc ggcagcggag
94740
gcagacgtgt taagggagag cacacctgtgt ccttcgacgc acacaagagc gcccaatcag
94800
gttgagctgg gacagactgt gagaagagtc acacgcagcc ggtgttgtgtg gctcatgctt
94860
gtaattccag cacattggaa gctaaagggc ggtggagctac tgttagcatgc gatgtccaga
94920
ccatctgggc caacacttggg aacacctgtt cctattacac ataaaaaat tagccaggca
94980
tggtgcaggg caccaggttat cccagctacc aggaggcttg agggtggaga atggcttga
95040
ccaggaggt ggaggctgtg gttgatcag atcacaaccct tgtcaaacag ccctggggctg
95100
actctgtagc gacctttcata tgtcggaggg ggggggaag aagttcatac cggagaaga
95160
caaagaggtca acagggggca catgacgctat gagggtctct tgtgaactaa ccagggccaa
95220
ctgctgagcg cattcccaaga atataggagag gcagccaaag atccagctc cagggctgtt 97140
ggccatccccttcccctcgatt gactggccctc tgaggagcat gggagagccc cagaggacag 97200
gtgtatttgg ccagatcccccttctaatcctctgctatcagctgaa ctttctattc caacaaatatt 97260
tttgtgagca ttctactatgtt acaggacact cttcaggatt cttgatattgg aaccacaaaa 97320
ttatataaaa atatctgctct atgtgagcct atctctctagtt ggaggcgaggg gcagagagag 97380
actataagcc agaaaaataac ccatactacata catgtgttatc gttagatgtt gacaagtgct 97440
atggagaaggaccttagaga gtattagggg gtataatttcc actataaaaa tacgggtgttg 97500
gatggagaag gtctcactga gaaagtgtact ttgaggagag ttgatgtgctc attgggtctac 97560
acctaggctta ttgttttcttcc atctctctctt ccagatgtcgct ccctcaggctt tgagagaag 97620
tgctccagaa taattcctctct tatgtttatac tgctgttatatt aactctttta acgtgtttcat 97680
gacccattcata taatatttatt aatctctctcata atctctctcttat ttgttaataa aaagggacat 97740
atggttgatt acgggtttata taattctcata gttgtgctag tatagctac atatgctgag 97800
ataactttatc actaacaactc atttactttttc cacagcaacg tataggagataaatagccca 97860
tggcccaatattt atttattttc attcatttttacttccatcc tacccctttatcattt 97920
ttgaggacaggt tctctgtctcct gcactgctagctc tagaggtgtc ggttgtctact catagctcact 97980
tacagcttcgc aaccttttgggt ccaagagcat tctctgtctcagctctgttcttg tgtagctgga 98040
attacaggtg catgccaccactgacgtggctat atttttttctt tcatagaggt gaggctctgc 98100
catgttgacoggctgtgtctc tgaacctctct gaactcagcata tctcctcctgt gctgtcctcc 98160
caagatgttctg gattagccag gctgagctaatcttgtgcccggc ctatgcacaa aattagacatg 98220
agaaaaactgagttgtgagegtt gggccaggagttgcagactgttatccagcagcacttttgga 98280
aactgaggccgcgagacatcaccttgagggcagaggtcgcgtgg cactcagtgtg tcaacaacagt 98340
gaacccccttctctactaaa atataaaaaat agctctatgggctttggtcgctgtggtttat 98400
ccccagctactc caagaggtgct gcagagagaga atctgtgctaaa ccctagaggtc ccaggttgca 98460
gtgagcccgag acagactccacg caggactcac agagtgagac tcatcatccaa 98520
aaaaaaaaaaa aaaaaataaa gaaaaagaacaactagatgttgataggttggga ccgttcagtt 98580
actgttattagc tctgacCCCCa cagccatttactgttttaac ccacacaactacatgtaaactagt 98640
atgtatgtattaggagggtt gggcctttgt ggggggtgattg agttggcctta taaggagatgt 98700
ccagacaggg tggagtgcctcg tggggtttag tttttagatc tttgtgttag ggggaagaga 98760
gagttgatct cgaatattct gcggagaggg gcagtcataa ttggagccag gtgtgtgtag 98820
tatggtgcttta cccatccccag attaataatt gtcagaactat aataacccaa aaaggtctgg 98880
tgaattcgtg aggtgaattt agtagggcag gcaattttttt ctctatcccc aataatattg 98940
tgatgaaatt gatagcgcct ttaaagactgt ttagtgggtt tgcccaagat catagatttc 99000
acatggaac caggacttgg gcagggctct tttccatattt cctcggtttt eatttttaaa 99060
actacacttc atatatatatg aataaaacc tcaatatata aaataaatt taaaagcataa 99120
gacggtggag agtgaaaaat gactttcctc ctaccctgctg tgcagcagat acattctacc 99180
tgaagggcct acaaccattta caattttgtt attttctttc tggtaaatt tttccctcagt 99240
agaaagggcc agacagcagaa tcagatcttt aagggcgctgc tcttagcttg gcgtgagggtt 99300
ctataacagg tttggctcata ctagctgcag tgcactttgg caagttgtaga aatctctcag 99360
agtttttagtt cctcatgtat aaaaataaggg taatgtacaat gataggttta gcatatattgt 99420
cctccacaaa gcattgtagt cttagttgact cacagtgtaa gaggcggggc cttagttggag 99480
gttgttggct cagcgggtgca gatcctctcat gaatggtcgg ggcccatgcct atagtaaatga 99540
gtgaagttctt gcttttagta ttcacaaataacctgattta ttataatattt atatcctcag 99600
ctgaagctctg ctctgtggcc caggctggag tgtcagttgg gcagctcggc tcactgcaag 99660
tccgcctctct tgtggctcacgc cattctctct gcctcagccc cccagtcgag cggagctaca 99720
ccgcccggcc accacccttc ggatataatt tggatatttta atgagatgcttt gtttcacctg 99780
tttagccacag gatgtgctcct atctctgtagc ctcgtgaccc accacccctt gcctccaaaa 99840
gtgcctggagt tacaagcggtg agcaccgccc cccctgcaga acctgttatct tctaattgctc 99900
tcggaatctcgc tctctctctct cttgtgctccc tctccagcct ctggacatgct ctgcctcccg 99960
ctctgttccc accatgagta gaagctttctc gaagttcctc acgaaagaca gatgctggaca 100020
ccatgttttc tatactagtt gcagatccac gccaccaaaa aatctcttttt ctttattataa 100080
ttccagcctt caggtatatttt ttaatatag ctaaaatgga tcaacatcgt cactgccttc 100140
agagtgttag aatgagttcca tggtaagagag aacatgcgtg aagcatgttt gaacatactg 100200
catggccacata ccaagatggtg tcaatgtcgt attttctcttc ctggtttttt ttttttatct 100260
ctctggagagctcagattg gaccattagt ttttccaccc ttctctagact tctgaagaga 100320
tggactggag atgggcactca ttttccacagg atgaagagat attgattcata atttagtaaa 100380
gtgcacaattaa agttagatct tagaagacac ttggttttag aatcccaaaa ggttttttga 100440
gttctcttcg aaatttctct agaaataact aataataaatg taaagcatctg ttttttcccag 100500
aaacagagag atggattagta tagctctctct atcctctctct ttctagagat tcttttagaaat 100560
tcaagtaaga gggaatattc aaccccaacc cttctctgcc caggtccagt tcaggggctg 100620
ccgaatgaggc aatggcctac tgcgtcatgaa tagtagatcc tcttggctcc tttctctctt 100680
taagtttttactcctcttg ggttagagag aatctcataac caaatgaccc tctgcctcccc 100740
ggtctagctc tggtggtaa aataggctga tgatcaatca ctatcctaat taagccttag 100800
cctttgctac cagcttgcta attttagata caattccag ggtgacctac cctgaagagc 100860
acgctgagtt gtagtggtt gtttggggaa cagaaaaag cttccacacc caaagtgatg 100920
aaaagctag aatatagggg aatgtttcat tttcttagaa ggagagatag 100980
tcaagatgtct agaacaatttc catcttgacac acctgtaaga actggagttg gaccatcttt 101040
ccttgccagaa aagggagttga aaggaagaa aaggaagaag atccctgctgt ctttgccttt 101100
tctcattacc atcatctcct gatggtttgt atgaagatt acctctccttc ttataggtgt 101160
aagtgccgag aatctgcagag tttagcaacca ggaagatcct cagccgacca gagcaagaa 101220
caagacgca catgaagggtc tttgcgtcttc agccttactct ggtgcttcttc tccctcatcc 101280
aggttgtgcg gccaacacgc cggcctaacc aggaacaaag aacccttcctt tctcttccac 101340
tcattgagga gccatgacag ttgaaattcc agtagaata cattaaagga agagacaggg 101400
gcagtaagca aaggggtatt gtagagattg aactatgaac ttgtaaccacc cagggttttc 101460
agtctttttta gacgctgctc attttcttag aattaatgaa taagagtctca aaagtacagt 101520
gccacttcca cagggcccattt gggtttttta atttctcttt cttttttttt ttttgagaca 101580
ggggtttcact cttttccacca gccctggagtg ctaggggtg acctcgactc actacaacct 101640
tgctgctccgg gtctgcagcg ttctctatgc ctcaggcttc tgcgctacgg ggattatagg 101700
tgaccaccc cccacccctc taattttttgt attttttaga aagcagcagt tcctccatgt 101760
tggcgaccac gcagcttctcct tgcgtaaccct caccatcagcct ccctgaaa 101820
gctggtgatta gagatgtgag ccacgcaccag cagccagttt tcataatcttc taattctttcg 101880
tcgtaaccat gtagaagatg gcataacaca caccaaccata ttagagcaca cctccatcct 101940
atctgacctt tggaggtcct aatcgaagaat aaaaaatctt actgcggctcc tacttttaaa 102000
cttcctccct gtcgctctgg agatctgaga gagaccccttt cccctctcttc agtcatgggg 102060
gacagggaccc cccacccatcc cagagagccc caaccccatgg ccctcagacc 102120
ccacataata ataataacact cccaaactct tagaatctctt cccctccacat gaggagggct 102180
gcagacagct cacgtcagcc tccaaaccct cagagctcag ggctccttcct ccctctactt 102240
cctgtgtgcg tggaggtgtg ggcattgcgc aacatagttt gctaatatgtc atgttctttg 102300
tagaggcttc acatgttgcc caaggtttgt ctcataattcc ggcctcaagt gatccactctg 102360
ccttgccctc ccaaggtgtct gaggtaccag gtctgagcct gcggctggcttg ccactttact 102420
tcaagttttttt catctgcaatt atgaggttaa taaacatata tcctctctatg gaaataaaga 102480
ttaataaga taaagagctgg cgcagagctg tggccacata gattatgtgcg gtaagaatgag 102540
ggctactggtt ggtggagtgg tgtcagaacag ggcattcaca aggacccaggg gcttttggttg 102600
aggaagactc tgagtcatac atgataggac agcaggccaa aagaagaccag gaaggaaggt 102660
gctcttctat gtcgctggaa gacactgctg tgcctctctc cttcctatca tgcceactgc 102720
tgccctctca gcagagggtta ctgggaaact tgaatcagggc attttgccat cctgctggtc 102780
tccaccocct ccagtgaagct acagccgcgct aatcttccgc cctccatacc aggatgggtc 102840
aagtctctgg aacctgtagt taggaaaggt gcctcttatac tgacccctag cacagagaga 102900
ggtaggtct gcaggggcaac tgtatgacca agtgccacag atgggtgcce aaccaaaagg 102960
gcgcataagg gcagaggggg caaatcttccc ctttacgcct gtcgataaca accttaagcc 103020	
tcccacgggc cttttctcgc agggtgggtc ctatggtgcc cagatgtaac taagggtcga 103080
agatttttgg tacatattct ggttttaaa ggtcaggtctc tttgtgtgtga aagattttac 103140
agactagtta aatatttactgc cagaagatgg gaaacacacgc tgaatagaga aaggtgtggag 103200
ccaagagtct ggaagatctc agttcctgtct ccaaatagct gttgaggaata agcagatgtca 103260
tggaggtctc cggggtgcctc tggaaaaatgg gagcaagaaa agcaatcagg 103320
ggtaggacaa ggggaaaccc catccagcgcag tagatggaag gttgaggccc acatgtgattc 103380
acataccttc ctctgcagtg tctaggccgc ggcacaacac ggggagggag gctcaggcct 103440
gtgggtctctg cagttcttggtg gttttccatt acccagactg gatgctcgccc atctgtgtgt 103500
cggcctctat tcctttggga gacgctgggcc gtctgcagggc agagctcaagc aatcaaatct 103560
gcccaggtcgc tgcctctccc tcatcccccag cagccacaagc gatgtctccta cggccctgca 103620
taattcttta tcttatattaa aagggccaa aagtgcactca cagttttctc tggaggaatt 103680	
tacacccgccc cactggccac acgggcctcag cttcccccctg tcgtggtgtgc cattcaatcc 103740
attaatagga cattttcttca ggggaacact gatggcgcct ccatcagaaa ggcacacagg 103800
catacatct ccattcaggg ccatggccctg cccggctccc tctaatcttg ttaccaagg 103860
agctaattct ctaatgcagc cactgtgcag aggacactct ctttccccctc taacacatt 103920
ggacacgccc agaggacctc agagctcaca tcgccaaatg aagggctggg gcggatggga 103980
caggatcctc tagatttttc agggctcttg gagggtgttg aacaagctct cagtggcttc 104040
accccactccc gcctgctgca gcagctgttt ctcagagctc taactctggga agggtggtgc 104100
cacccaccaac ccacctggcc ttctagtttc acgccaccttc tgctctgctt tcctctctcc 104160
tccgctcct cttttctccttt ttttccttct tcatctctcc tctttttttt ctccttctctc 104220
tctttgcctt tcgccgctgt ctccccctctt ccctctcttt ccctctctctt tcctctctctt 104280
gctggtcttc cttttttctc tgtttgctct ttttttatct ttccccctct tctctctctct 104340
ccagatccca caacactgtaa aataattggt ttcctcttccat cttttttttt gctccatctc 104400
ctcccgcttt ggtgcgtgcc tttcagaaca agttcaattttctaattgcccttccagctg 104460
tctccaaattg ttcagctct cttggaggaa cggcccccag ggcataccag cctagggttg 104520
gagcaagagg tagggaggcc cctcgtgata tacaaaaaca ccccaaatac aaataggaga 104580
attttgttag tgtttaggt ggctcaggag agcaatattg ttctatgcccttctcaatat 104640
ggaatgattatatggcaagc ccccaaatgg gtttgttact gctaagggcc aaacccttgc 104700
tatatgcttg atgaagggac cccatcaaca aatgggtcata tgctctatgctgat ttctcaata 104760
atgacataaa acaggagga aagcgtcctct agaaatcttc agaatttctaa tggcaatag 104820
ccacttagac gtaagtggga gcttaaatatc tttggtggcc agggcaatgt ggctctgctct 104880
gtaatcccaag cactctggga gcggagggcc ggcagatgtg gccagccccag gaaatttgaga 104940
ccagcctgggg caacatggcaca acacctgtgc tctactaataa atacaaaaat ctcggagggc 105000
tgatatgcag ccctctgtag ttcagctctct tagggaggtg aggtggaggg attcacttaag 105060
ccaggagagt tggagtgcata ggtagctcgtg atcagctctac tcagcactctc cctgggtgatc 105120
ggagtgaat cctgtttcaa aaaaaaaaaa aaaaagaaaa aagatcctttg tgggccttg 105180
agatgcattt aggaatctat agtggttgtc gttgagcccca ttcaagaacct cacgcttggtg 105240
gctaggagg cagcctggttt cttcttgctt tgcttttatcc tgctgtcaaa cctcagggctc 105300
aggacatctt atcttggaat tccggagggac ttggtgcttaaaa attttcttct aaaaaatttg 105360
ggcoctcttt ttattcaatg ccccctatata cattccccctg aggggaatgtg ggagctaa 105420
igtgctcatgt ttctctggat tggcaggtga tgaagcgacat gacctaaagag aagatgacct 105480
caggctccct gaacctgact gcagctggca gaaccaccac cccgtaacgg cccacaggaa 105540
ggaccccaaat ggtgaatggtt ataattcccc atggcagattt cataatgcac aggaataagaa 105600
actgaaagga tcgacgccttg accaaagttg ttttttttttt ttttttttttttttttatc 105660
acctacaatt cagaaaaatc cccccttactgc caggttctct agcctaatcacc atcattagag 105720
tcaagtggaa aataaaatata aagggagaa aatgttttgc tgtggataact taacctgatt 105780
ctctggggga catctaccaaa aatgggtgac tagggtagga cttctctaaataaaaaatgc 105840
cagtaattct tctgccaggc acacttaggg gtagcagctg aggcccttgag ggtagatata 105900
tgtctatttt aacttgcatt gaagaagaga ccaaccttttt ccaagaaagag cttccctattt 105960
aatggagagc tattgaatat gtctcgcggg cccaggttgtga ttgtctcatgc cttctagcccc 106020
tttgggggac tacaaaaat ccacaaaaatt gccaggtatg gctgcctattt ttgtctccag 106080
ctctccaga ggtcagtgtg ggggctcagc tgcagagcgggg gggggttggg ggtgcgtgata 106140
gcagtgatttg cgccagctgca ctcctagcttg ggtgcagagc cagagactctgc ttcctaaataaa 106200
gtgggtttaag caaacgcaag ctgtaagtga tgtactgtggt cgaggcttcc cttgactgag 108120
aagaaactct gtccctctcta gcattaaggcc tttgccccgg gccgctgtggg atgagttcag 108180
tgtctcccaa gtggctcagg atcccaagcct ataggaccc caaccttctctt gttgctagaa 108240
agacgcacac gggctctgcttg tggaatctca gttcctccaa ttgcaagcagc agttgctcac 108300
cctttcttctg cttgccccgtc aataagccact ctgggtgacct gttctaaagt 108360
taaatgaaga atagttttat tgaatgtttt ccaagaggaa cacatccaaat atagtuttgtg 108420
ttggtgtgttg tgtgctgtgtc tgttgctgtc tggctctctct gttcctctct gcctttcttg 108480
gggagccag tagcttatca gggaaaaagg ggtgaaaggg gggggaactc gcagaggttg 108540
tttgtttgtac aggttgtcaata ttagattgaa gaagacacac cttgtgtttgga caaagccag 108600
gcttgcaccag cacctggtta gtgaagacc cttgctactct gcaggtccaa tctcccccttt 108660
gctgcgcgtta tgcctgctcct ctaggttgta ctcctcctcag gtctccatga attttcatct 108720
ttgcagtgca gggcacccctt ctggaaggtgc tccctgctgtc tccagtgtga aaccctgacg 108780
gtgcagtgaa cttaatgactga acagccacca ggtccagggag ctgggtgtgc tcaattcagt 108840
yttttctccca tagggccaccct acccggagag tgcgtgtgtatt tcttctcact ccctccacac 108900
cctggccccaa ccacccttct aagcccaatca ttgctgcacc caaagccact tctttcggtg 108960
gactgggcag gccctctccac catagctgtgt ggtgtgcttgg gcagggtggtc gggagacttc 109020
ttgggggtggc ttttgcagga tgtgaagggag atgtgcattt ctaccgagttg cccacacttc 109080
cctccttctct tactgttaaa aagggattgt gttgtgcagat gctgaggttt tcctttcttt 109140
gacccctggtc gagaaaccct ctagttgaca ccccttggtct tagaatttgt gcacttgggg 109200
tcatgccttttc ttgcaacctt cttgcttttt ttaatcaccct ctgaagccca gccctctttgt 109260
tgtctccccag aggcccttgag ttgggccccg tggggccacct gctcctccagc cctccttttgc 109320
ctcaacctga tttgacatca actgtctttt gcacctggtgc tctctccaaagc gagttctctgt 109380
cctctgtttc aatgaatgca ttaggtccttt ctaccaagtta atacatgttg aataatgttg 109440
aactctccttc agacaaatgt cctctagtggt gagaatatca gttctgtttt gagaatggtt 109500
gaggtggggga tggtggggtat acgtcttttt taaacaggtta caaaccagga caagagacac 109560
gggggagtc ttgggggtcggt gtgtgtctact ttaactggttt cttctctccca gcacaggagga 109620
gccgaacac caccagcccg gctcctgtgta gccgctgtgga ttacttcttg accaactaca 109680
ggaaggggttg gcgcctctgctg aggactgtag ggaagccacac caccgtctctc attcaggtca 109740
ttggtctatgc cttctctcaac tgtggtggagc tcagccccag gctgcaacac gcagacacct 109800
tttgggggtgg gagaagggcct cttggaactg atgctgtggtg ttaggcaattt 109860
gagaacccat aagacctagc gtctgacc acacgctcag atggattgta gcatacatctg 109920
cacagctgccc caaaccagaa acctgggtgcc accttggtgc tgctgctccc acaccacatac 109980
aggtgggggg tcaacctcccc caatgtggttc ttctatacact gcataatgat aaccacatctct 110040
catagctcgc taagttgacct tctatggcttt gccaatgctt ccagctgcttt aacaccta 110100
cacacatcccc ttgtaacctgg ccaggagtgctt ctctcataatgc cagccagaca 110160
tcaatttttc tctcatactct tcacctacaat cccagctgtgc gttgggtgct ctaactcagaa 110220
gaggtggttca gacatttgctgc agagataaaac aagaggccaa ttggcagagat gcagtggtctc 110280
tggtggggtt tcagtttaagc aagacccaaacct cctacagttg ctaactaattt tagtgctgtta 110340
aaattacctc accaaaaatata gcacccctct cctgactaattt ttgtaatatttt tagtagagac 110400
agggtttttt ctaattggccc aggagagctct cgaacaacgat cccgccagcc aatccacccctc 110460
tcagccctcc ccaaaaagctt ggggtactca gtaagacac gcgtccggcgg ccattatatgt 110520
tattagacgt gaaacataat atctcaaggttt ttccttgacttttt cattagagac 110530
ccaccccttc ggacacccagc ctggtggctc ccagaggaatcg cagaggtgtc agagccagctc 110640
ggacacacatat gcacgtgcaat ccttactaataaac tttgccaaaaa tagtgccagtg atcgttggcc 110700
acacactgtag ccctggtcaga gctggtcggct ggtacctgga actctgtgacagg 110760
tgaggtttgac aataggtcaag gattgtgccttc gcacagctca gctgctggcc caagacgacac 110820
aagactgtct ccaaaaataat ttaaaaatgtag atccattttcta cctggtcgcttctctg 110880
agtgaacaaat accaaatctct cttcctgccttt ggggctccacgcttt ctatggcttc 110940
cggcgcctctg cttctccact ctacctctccac aaccaatgaa gacaagagcgaccccttctgt 111000
ttagggtgctgg gatgtgacag gttggccctct cacatcggtgat ggtactctcag gacctttcc 111060
cttcctccct caggtgaagttgagatcgg gcgtgcaacat ctcacgctct gatggttgtaga 111120
ggcagagcc gcccctccct gcggcgcgattt cccatctctct gggagaggatcg ggggcaatttc 111180
ggggttcgctatt gcccgagaga tgccgtgggacc ggtgctgggctt cctgggcttt 111240
gtggatatca ggtgcttggg atctctctca cctcagtgctg gatggataaacg 111300
gatatggagagacaccccct ctctgcttcctt gaagtcctacg aagacaccccttcagctc 111360
aaactattgg gatgctccacag ctctgtggttt caggaactacg cccagccctct 111420
agccagctct tgtggtcagta ccaattttttttt cccatgcttgc ccaaatgagta aacgccccaa 111480
agtgggtgatg tgaacagaggc tggcctgtcga cccgacatcct gccgctccctctgctgcc 111540
tccctctctt tttaggttccc tcatagtttttc gtggctggccttc gtagggctcttg 111600
aggtgtgaca ggaattatgg ctgggtgtgctg ggggtgggtaag gaaaaagatag ggaggtccactt 111660
atccaggggt cctgctctttg gggccctttgg ggtggttgatg aaggagagccagagaa 111720
ctaaagtgcg tgaacacagc gaggcagaag catgaggaca gtctcacagag gtcagtgccc 111780
agaggctctg gggcatctgt tgggataggt ggtttcctgt gattcccccc catggctcat 111840
ggccatcaca tcaccacacc cagacattgg acagggcggtg gggtagagga agaagctaga 111900
atgtgctggc ctggacgtgtg tctctctgccc tcctctcgcag agggatccct tactacagtg 111960	
tccaaagggg agggaccacaa acaagtacag gcggcctggga gccctctccc caggacactc 112020
gtctgagctc tcacctctgg agctctaggg ccacatgtct gtcccaagtta cttgcatacg 112080
cagtgagggg atgacagtctt acatgcacca gcaactgtgc taagagactg gaattagaga 112140
cacgaactag atcgagcccc tggcccacact gacgtcacag accagataca ggtactgaca 112200
actgaaatgc aacaagacag ccactcccaac gtggcagagg caaggtgcta actatgagg 112260
cacagagagg acgcagttca cccagccttg ggtggtgaggg tcaatggacsaa ttgctcggag 112320
aagggacag acagatgcct tggccaagcc cagaaagctg aggaaatgtt acctgggttaa 112380
agaagatagg ggaggaggagg caggatacgg agagacatgg aggctccagc aggttttctat 112440
tgcatcaggg tcagctgtag aagttcacaac gaggcatggc caaaaatagc ggcttagagg 112500
ataccggagg tacagattata tcagccttggg tcgggtgttgga agttttaaattt tattctaaaag 112560
gcaatggggg aaccctcgaag aattaaagag aagggagttg gatggtgcgaa ttcatatatg 112620
agaactgcca tctgcgcttgt aaaaattgaa atatatataa gaaatactaa caagacgcgt 112680
ccccacccctg tgaaggagat gtttatgctt ccataataat atgtttgagac cagactccaa 112740
gaggatatgg gtctgagatt ttcagctggc ggaggggggaa ctcacagcat tgaataagc 112800
tgaccttttt cctggggcaca ggcattcactg agocgaagttg ttatgtgtgg agccagatgt 112860
tgaatgaaga ggtgggggga cttccactta ctgcgtgaggg aattgtggcc caacgtgacc 112920
agctttccca aggaagatgc ccacctgttg cctgggcact gagggtgaag tcgtgcctgag 112980
sctcgagaga ccttccttctg agatggaggg ggtgctcctgt gaccctccct gctcctccccc 113040
tagatcggga ctgtagagtt ttcctcagtg gaccccttagg acctgtgcaaa atctcacaag 113100
eltgtcactcc ccaagggcac agctcatggc cccagacattc tcatcaatag atgtgtgagta 113160
cccagtttca ccagttgatag gtcggtgagtc ctagatgtgc gagacagcgc gggacagaga 113220
gacaagagtg tctcgttggc atttgtgatc tccccacagg aattgcgacag tcgcagataa 113280
gtgggtgtga gtccaaatgc ctttttatot ccccccccac ctttttctgt ctttttttttt 113340
ttgaaactc ctttttttcc gttctgtgatc ttgaaatctc atactcgatg atccaggggc 113400
ccccacacaa gggagagaga ccaagtttag aattaacact gagtttatata aaccttaatgg 113460
gacagctgca cttataagg gagacataaa tgtattatata aaaaaaatgg agcacttgagg 113520
cagactcagt ggctcacacc tgtaatcaca gcaacctgga ggccgagggc ggttagatcac 113580
cagaggtcag gaggtcagaa ctggccgtgc caacatgttg aaaaaaaacta tctactaaaaa 113640
atacaaaat tagcgcagcgc tgggtgccgat cactactgtc cccagctact gggcgacgctg 113700
agccaggaga attgtgcgtgaa cttgggggaggt ggaggttgct gtgaagccggag atcacacatc 113760
tacacctcag ccctgtgccc gcaacagcga caactctgtc cccccaaa aaaaaaacaacaa 113820
aacagaaacc tagatatgtg ctgccacttc tggcccgcaaa agagatttgg gactgtggggg 113880
acagtttccag acctccacagg ttacacatct actctgccagg ccacagatgg ttctccacat 113940
agaagctgaggg ttccaccagg ctttactcct ggcagccaaa caggtgceca tttgcccaca 114000
gacaacatc ctctctccccca tcctgcaggt tcatactcggg cccacacactt gggatccaga 114060
atcagagggc agggagatagc gctgaggggaga cggagaaaa ggaaggtgca caggtgggat 114120
cagccatactct ccatccccata cccacagcatg tgcctcaactc caggggtgac cactgacatt 114180
tttcgaaggag attgttgtag ccctgagact acacatctct atcacatgt caggtgggag 114240
gaggctgaggg aatcactagtct atcctcggtct ctccagtttcc aacagtgaag tgggctattgt 114300
cggactcctcct cattctctcag ctgaaactca cagaggtgca cgggttcgac ctactccatg 114360
ccacagtgggt caactcaagag ggctctacac tggacatcag cggatgagagag tggaatgagg 114420
tctggagggg ctttcctgggc ttctcccaact tcttatcatct tctctttatc ctctctctac 114480
cagagatgtat ttttcttatt toaagagcact tcaggggggt ggagagacag aagacacgga 114540
gtgagagattt cacaacaagat cttgctcttctt cacaagcct gcctgtgcccc gcaagacttg 114600
cggctctggag gcacaggactt tgcgccagcc caggctggga caggtggggg ccaagtggca 114660
gcttctctacct gcctcagtgcc ttttgggccc atgggttttcct cctctctgctg tgggtgcca 114720
gggacagggg gaaaaagag gaaatgcaca gcactgtctgt ttaactagcc ttgacaacgg 114780
caggtcagga agccttaagat aggaaggttg gaagaaaccga ggccagggca aacacatcagg 114840
ttactccggt gcctataacc cccgcagact tcaacctcct ccaggtgttt caaagatctt 114900
caggccacca gacctggccc tgccttcctgaa gcctccaaatc tacccttctc ttccgccgcca 114960
gctggtggtg gggagaattct ccaaatatcc cgtaggtgta tattcggcat caaggcgaag 115020
tcctacaact caagccctct caggtgtggt cctcggctac tccaacttcc tcaacactcc 115080
cctctgtgtct ccagactgcc gcggcgtgact gcctactggt tcagactcct gcctgacact agtggatagt 115140
tggccctgg gggacagggg ggattggggtt gggacccca gggacacccg agggaggtcg 115200
gctcccccagg gcgtctttct ctgacatcgc gctctactaatg cccctttgcct gctccttcg 115260
atcctgtgca tggagttagat gtgtgctctct gctgcacccg acgtaagag ttaaaacactt 115320
tttcacagag aacactcata tagaagtatttttttttcattt cctgccttctc ttcacatttta 115380
cattcaacaca ttcatgttgtg cattatatata cacacataca catctatatga aagtacatggt 115440
aaattgcttt ataggtttctt attttacatt aatatatcag tattcaatga ggtgtggaacct 115500
tgagggcaag aagctctcagta agggacattt ttttttcaca atcttcaaca ggtatctggca 115560
ctagcatcct ctcagatccaa tttttttcaca ttcaccctcaca tgaaaccacc cctctgtctcct 115620
tgactagttt tgcgcttttag ctctctagcttg gtttctccca ttgacttctgtg ttcctcttcaaa 115680
tttgcattcc tcacaggaagc cagtgagatt ttagtaaaat gcgaatctgta cctgtctcact 115740
taaaaacccct caatgggatcc ccaagatacc tgggaacacc tccaccctctc tgagctctcact 115800
gccacagccc gctgctccag gctctctgcac ctctctgtgc ctcctctcccac ccacggctgcc 115860
ttcttttcta gcctctacaacc cctctgctctt cacatgtggtg ttacctctccctcct 115920
atgctcaactgt gcctcttctct cccctctccca aacttggcctca cagctgtgcc ccccaaccac 115980
acactagcctg gccaccccctc ctcctcaccac tcctctgtgcag acatctagttg tcaagctctcctc 116040
agtttacccct ctcatccctcc agactagggcc atcctctgtgc cccatatttat acagatgctgg 116100
tctctctccct acctctgtctca ccccttgtgaag taccctttcctc atgtgctcttccctctcttctcag 116160
tataaaactta aaaaaggggccc ggtgctgattgct ctcacaaatgt tagtccacggc agtttgggag 116220
gccacagggc cagaggtcgtct gcctgccaggcg cgttccgacgc cacataatctg 116280
gacccttataa aataaaaaaag taaaaaaacc ttggaagggc caggacatgc agttgctctgccc 116340
ccaccttaga tccacacgac acggccttgcc acagaggaagc gctcctagcagca aatgttacctg 116400
agcagatgaa aagttctcagta gggcttctgcac cagggctgtgt gaaatgcaca ccacccctgttt 116460
gaaagagaagc atccccccagg ccgggcggcgg cgtgctacgc ctgtaatccac acgacttccgg 116520
laggcctagg cagctggatcc acagagttcat gaggctttgaga cccttcgtgcc caacatggttg 116580
aaaaagccgct cctctatattca atacaaaaaaa ttagccaggt gcagtggccag gcgctttgaa 116640
aaccagctac ccagagacgt gaggcttgagc aattcaatccct acctgaggcgg ggaggtgtgctcg 116700
agtgagccga gggtccaccc ctgcacctcca gctggggttag cagacttgac ctctctctctc 116760
aaaaagaaaa aaaaaagggc atcccccaact cttgatctgca tgtaactaggct accttaacctg 116820
laggtagctg gcgtgatgca tgactctgctt gacccaaaaac aagactacag atagggctaa 116880
cgtctcgtt tattctaccc atctccatacc aaacacacag aacaacagag tttaacaccttc 116940
ctctagttgt ttagctccag tggagacgta atggaaattg gttattcttact gtatatatta 117000
cataacasea ctacacatcta tggaaactac atggaaattg ctttattatgt gttatatatta 117060
gagtaataa tcagttatac tattattata tattactact aggttccttctt taccccaactac 117120
tagttctttgg acatttttttt gaggctctgc acatttaggt ctctctcaca aatattcatgc 117180
gctataaat agctcatgat tttggaaggg agctgtgtgct accaactacca caaatgcaaa 117240
catctaatga ttttgggtgcc atctctgctt attaagcatt ttctgtatgaa tggatatttc 117300
agtatatttccc aatatttggc tgcaaatgat acttctgtcg tttctgtgtac atatgtctct 117360
agtgcagatc ttggagaagtg gaatataaat ctataagtga ggatttttctt tatattttctt 117420
attcactcttt aaagataaggc agttcctacca aggggaaggt gaagaatgct gactttttgct 117480
cattgtgcca atgggcaatt ctaaacagggg aagctagaaat gctg tgttcggag aaggtgtgtg 117540
gtgtgtgtgt gttttgtctgt gttgtgctgtg aagagagaga gcgctttctta atgaatgggt 117600
tgcagtttgttc tttgcaacgt gcatttttctat taggaacttc atctgccccctc agtgccggcc 117660
tgtgagatag gtatctgtgac tacctttatt tatagctgag gacactgagg cttgaaggtga 117720
tgtgctgagg ttgagggttgt gcactccgatt atccgctccc cttataattct tgcaccctgt 117780
gtccacatcat caccaggtcct agccagctct cggattcagat cttccaaagct ggtctttgtt 117840
attctccttc agtccaggac atcaacactt ctttgtgcccc ctgcccaagaa aagttgaatat 117900
ccgacagggag tgcctcctctg aaccagggag agttggaggtt gctgggggggt ctgcgctcatct 117960
tttggggatt tagccagttgag aacgcatgag atactatcgag aatgagaattt tattgaggtg 118020
ggagtgaatttgtggagatta attgtagaatag tggtaaattt aacccaccatt cagactagact tca 118080
tactggaggt ctctctatat ctccctctcc aaccaggggt tgtccacaccg tggaccacttca 118140
gtgaagtaga gtcgagaaatc caaatagatgt cccctactaata ttctcatcag ccataagcct 118200
ggatttggag gcagcgtatgc ggggctctgtc tttttctcttc tctgagcaat ccaggctggtt 118260
agcccaataag aacagagatgt tggaaactgtt ggggtggtgcc tgggagacag agcctgtggtt 118320
ccccaggttt cccacaaagt cttcccgggt cccaggggtt catccgcgact gggccctctt 118380
tctatctgtgt cagcctgctca tgcgccagca tctctctcat ggtcatgagac atcgctgggtct 118440	tctacccgcc ccacagagtt ggcagagggg tttctctcag accatcactc ctcctgggtcct 118500
actcggcttt cctctgtcata cttgctgtca gcctgcgcgc cactgcactc ggcacaactct 118560
tcatggttaac ggcctctctct ggcagcagac ctgagttcttg tgtgagaaccgt gccgccctcc 118620
acctctgaca tgttgctctct cctcctgcgg tgtggctgac aggtgctctac tttttggtgtt 118680
gcatgctct gcctgccgagata attgggcccc cattgctgagg agaaccacttt cattgctgagg 118740
agcaagacct gcagcagccc gttgctgtctt ggtgctgctca cctgtttcttg gagagaatcgc 118800
cctgtgtact cttgctgaggagactgaatgca tctccggcag gcctgccagcc acctcccaagc 118860
ccaccaagagc tgtagactgc tgcaggctgac aacagaaaggg aagagatccat acagaggggc 118920
tgctctgccc ttttgttgtgtg tgtgaaagctct ctggagggcgg tgtgctgctca aggaggtgct 118980
gtactgocaca tggccattcc caatcctgcct cttgaggggt gcccgcccccttt ccagccaaa 119040
87/88

ttcataattta aatttgatgg tgtgatgtgca ggtatgtgtaa ttactctttta tacttttttat 120900
gtctaaagtt gttctctgcccc attdaacagtt gtctaacacct gtaatccccg gccaacgga 120960
ggcacacatgg ggcgagtacu ttgaggctaa gagttcagga cccagtggggt ccacagtttgt 121020
aatccagatt tctattggaa aaaaaaaaaa attagccagg tgtatgtggca cgtgctctgtta 121080
atcccaagct ctttggaggt gtggcgaggag gatattgccttg aactcgaggg gcggaggttgt 121140
cagtgaagtt agatcaacacc actgcccctcctgc acgctggggt acctagttag aaaaaaagag 121200
ttattcccaaa caaaaaattta caggcatatat aagcaataag aaccatgttc aagtcaccac 121260
cggggtctcg ccttcccttgc caatgccccg ccccttctttcc aagccatgtg aaccactgca 121320
gcgcactgggg aggacccagag acacttcgaga agacgcccgag ggacaggttg agccaccttcc 121380
ccccactcgg gggcgctcgtg cttgcgcgttgct gttggttccttg gaggaggttg tccctccatcc 121440
gcgcattcct gaaaaagcgg gatgagatcc gaggctggc ggcagacggt ccctgcccgttg 121500
gctcgcgtct ggcacaagctg ctattccaca tttactgtgc gcgctgtgct gcctacagca 121560
tccacctcg agatagctgt gtcagctcttg agttgggtatt ccccgctgtac gcacgtgga 121620
ggagggggtta cagctcgggt gtagttgggg gaagagattt ctgcctaggc ccctctaggga 121680
ccagggagtg ccagggcatg ttccaaagaca cagacaaagt cccgtgcctt gtttccatag 121740
ccatatca ctgcaataca caagcccaaggg tctgaacccct tccacaaaaa actggttggt 121800
ccaggcccccc ccaacottgtt cccacccccac gcgctcacc aggtctttia aacatgctct 121860
cttagatcag gagaaactcga ggcaaatcctct aacagacttcc tagttgtgga cttttccccca 121920
ttgacccctca cctgaataag ggacttttggg aatctctcttc tctttccaaac cccttttttt 121980
aggttagag cccaggccac cttcatcaac acagggcctg aacactctgtg cagagctctct 122040
ctaacccctta gttgcttttttt ttttctccac ttctgctggt gccagtcaccc aacactcatt 122100
ccccactcag atgagtggag gggaagagaa aaattgcagt gaaaaccctca actctctctat 122160
ttttttttttt tttttttgtta tttattcatc tttgcttttttttttttta aatatatttatt 122220
attattatac tttaatttattt agggtacagt tgcagacgact gcaggtttttt tacatatgta 122280
tacatggccc atgcttgtat gctgaccccc ttaacttcact atttacctcat agttatattt 122340
ccataagcta cttgctctctcg cttttccccga aactttttttttt ttaaccatggt gcagccagct 122400
cttgagagagaggtgttgat gttcagagag gatttaaagt tagttacattg cacaaccttttg 122460
gagagttcag acaggccagat cacttgaggg caggagtctcag agacccagct ggcacacatg 122520
gtgaacccct cctttcaca aaggaagcca aaaaataaaaaa aatagccag gcatgtgttgtg 122580
gcagcttgctt aaccccgact gactggaggg gtttgagagct gaaaaaagag aagtcacattt 122640
ggcagaggttg gcaagtctagct gagatctacc acactgacccc cactctatgtg gacagacgcta 122700
INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/05366

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C12O1/68</td>
<td>A61K31/4178 A61K31/404 A61K31/46 A61P1/08 A61P25/00</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbol)

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C12O A61K</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

| EPO-Internal, WPI Data, PAJ |

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 952 340 A (DOTT CHRISTOPHER STUART ET AL) 14 September 1999 (1999-09-14) claims 1-8</td>
<td>1-22</td>
</tr>
<tr>
<td>X</td>
<td>WO 95 27490 A (SANODZ AG ; SANDOZ LTD (CH); MUELLER WOLFGANG (CH); SANDOZ AG (DE);) 19 October 1995 (1995-10-19) claims 1-7</td>
<td>1-22</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

Special categories of cited documents:

- **A** - document defining the general state of the art which is not considered to be of particular relevance
- **E** - earlier document but published on or after the international filing date
- **L** - document which may throw doubts on priority claims or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** - document referring to an oral disclosure, use, exhibition or other means
- **P** - document published prior to the international filing date but later than the priority date claimed

Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Document member of the same patent family

Date of the actual completion of the international search

24 September 2003

Date of mailing of the international search report

08/10/2003

Name and mailing address of the ISA

European Patent Office, P.O. Box 5000 2280 AG, NL-2280 HU, The Hague

Tel. (+31-70) 940-2400, Fax. (+31-70) 940-2016

Authorized officer

Stienon, P

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 064 939 A (NOVOSIS PHARMA AG) 3 January 2001 (2001-01-03) claims 1-19</td>
<td>1-22</td>
</tr>
<tr>
<td>X</td>
<td>WO 01 87305 A (GLAXO GROUP LTD ;MANGEL ALLEN WAYNE (US)) 22 November 2001 (2001-11-22) claims 1-10</td>
<td>1-22</td>
</tr>
<tr>
<td>X</td>
<td>WO 01 74338 A (LOHMANN THERAPIE SYST LTS ;HOFFMANN GERD (DE); BOTZEM PETRA (DE)) 11 October 2001 (2001-10-11) claims 1-21</td>
<td>1-22</td>
</tr>
<tr>
<td>X</td>
<td>WO 99 64046 A (ADVANCED MEDICINE INC ;MEIER DAVIS SUSAN (US); GRIFFIN JOHN H (US)) 16 December 1999 (1999-12-16) claims 1-57</td>
<td>1-22</td>
</tr>
<tr>
<td>X</td>
<td>WO 02 20841 A (GLAXO GROUP LTD ;STUBBINS MICHAEL JAMES (GB); MANASCO PENELope KUP) 14 March 2002 (2002-03-14) claims 1-41</td>
<td>1-22</td>
</tr>
<tr>
<td>X</td>
<td>WO 97 10823 A (GLAXO WELLCOME INC ;RICE GEORGE PETER ARTHUR (CA)) 27 March 1997 (1997-03-27) claims 1-10</td>
<td>1-22</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>X</td>
<td>WO 02 12434 A (ALLAN CLAIRE JUDITH; POLLETT DIRK ERIK (GB); GLAXO GROUP LTD (GB)) 14 February 2002 (2002-02-14) claims 1-11</td>
<td>1-22</td>
</tr>
<tr>
<td>X</td>
<td>WO 01 61039 A (GLAXO GROUP LTD; KONG NING STEVEN (US); MANASCO PENELope K (US); M) 23 August 2001 (2001-08-23) claims 1-39</td>
<td>1-22</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 2295792 A</td>
<td>25-01-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3675299 A</td>
<td>19-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7039896 A</td>
<td>09-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2112487 A1</td>
<td>07-01-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6508836 T</td>
<td>06-10-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5962494 A</td>
<td>05-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9300074 A1</td>
<td>07-01-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5470868 A</td>
<td>28-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5629333 A</td>
<td>13-05-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5712302 A</td>
<td>27-01-1998</td>
</tr>
</tbody>
</table>

		AU 676032 B2	27-02-1997
		AU 6377494 A	11-10-1994
		DE 69431986 D1	13-02-2003
		DK 689437 T3	28-04-2003
		EP 0689437 A1	03-01-1996
		JP 8507774 T	20-08-1996
		AP 511 A	26-07-1996
		CA 2158354 A1	29-09-1994
		CN 1122570 A,B	15-05-1996
		WO 9421257 A1	29-09-1994
		ES 2188611 T3	01-07-2003
		HU 73502 A2	28-08-1996
		IL 109059 A	14-11-1996
		SG 46724 A1	20-02-1998
		ZA 9401844 A	18-09-1995

| WO 9853815 | 03-12-1998 | WO 9853815 A1 | 03-12-1998 |
| | | AU 3107697 A | 30-12-1998 |

<p>| | | AU 706279 B2 | 10-06-1999 |
| | | AU 2305295 A | 30-10-1995 |
| | | CA 2186844 A1 | 19-10-1995 |
| | | CN 1147767 A,B | 16-04-1997 |
| | | CZ 9602915 A3 | 12-03-1997 |
| | | DE 69528475 D1 | 07-11-2002 |
| | | DE 69528475 T2 | 20-02-2003 |
| | | DK 804196 T3 | 27-01-2003 |
| | | WO 9527490 A1 | 19-10-1995 |
| | | ES 2184797 T3 | 16-04-2003 |
| | | FI 964004 A | 29-11-1996 |
| | | HU 74992 A2 | 28-03-1997 |
| | | JP 2818303 B2 | 30-10-1998 |
| | | JP 9511739 T | 25-11-1997 |
| | | NO 964236 A | 04-10-1996 |
| | | PL 316668 A1 | 03-02-1997 |
| | | PT 804196 T | 31-01-2003 |
| | | RU 2165760 C2 | 27-04-2001 |
| | | SI 804196 T1 | 28-02-2003 |
| | | SK 127896 A3 | 10-12-1997 |
| | | US 5985866 A | 16-11-1999 |
| | | US 5773436 A | 30-06-1998 |</p>
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 7928401 A</td>
<td>14-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0202081 A1</td>
<td>10-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002187188 A1</td>
<td>12-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7604801 A1</td>
<td>14-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0202080 A1</td>
<td>10-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002004071 A1</td>
<td>10-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1284732 A2</td>
<td>26-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0187305 A2</td>
<td>22-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6210701 A</td>
<td>15-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0109893 A</td>
<td>01-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2403949 A1</td>
<td>26-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0174338 A1</td>
<td>11-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1267846 A1</td>
<td>02-01-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0204448 A2</td>
<td>28-05-2003</td>
</tr>
<tr>
<td>WO 9964046 A</td>
<td>16-12-1999</td>
<td>AU 4335299 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4335899 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4337699 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4423499 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4425399 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4426599 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4543599 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4543799 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4543999 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4549199 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 763638 B2</td>
<td>31-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4550899 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4551499 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4551599 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4552099 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4557099 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4672799 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4674799 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4675199 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4675299 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4675399 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4675499 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4677699 A</td>
<td>10-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4818199 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5203999 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9910832 A</td>
<td>16-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2315883 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2318055 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2318192 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2318286 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2318547 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2318894 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319068 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319159 A1</td>
<td>16-12-1999</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9964046 A</td>
<td></td>
<td>CA 2319174 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319175 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319496 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319497 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319643 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319650 A1</td>
<td>29-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319651 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319730 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319751 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2319756 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2320926 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2321120 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2321152 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2321170 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2321191 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td>US 5756514 A</td>
<td>26-05-1998</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 0220841 A</td>
<td>14-03-2002</td>
<td>AU 8856401 A1</td>
<td>22-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1315837 A2</td>
<td>04-06-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0220841 A2</td>
<td>14-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6921196 A</td>
<td>09-04-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9610526 A</td>
<td>06-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9710823 A1</td>
<td>27-03-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1201390 A</td>
<td>09-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9800826 A3</td>
<td>12-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69625819 D1</td>
<td>20-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 980204 A1</td>
<td>29-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0851756 A1</td>
<td>08-07-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 9900666 A2</td>
<td>28-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10511986 T</td>
<td>17-11-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 981188 A</td>
<td>13-05-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 325560 A1</td>
<td>03-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 9800488 T1</td>
<td>21-05-1998</td>
</tr>
<tr>
<td>WO 0212434 A</td>
<td>14-02-2002</td>
<td>AU 7859901 A1</td>
<td>18-02-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0212434 A2</td>
<td>14-02-2002</td>
</tr>
<tr>
<td>WO 0161039 A</td>
<td>23-08-2001</td>
<td>AU 4315301 A</td>
<td>27-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1255870 A2</td>
<td>12-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0161039 A2</td>
<td>23-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003124566 A1</td>
<td>03-07-2003</td>
</tr>
</tbody>
</table>