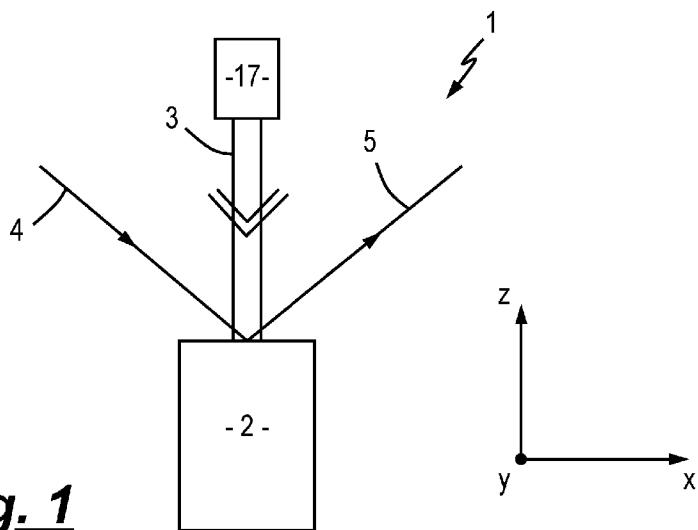


(43) International Publication Date
5 November 2015 (05.11.2015)(51) International Patent Classification:
H01S 5/04 (2006.01) *H01S 5/50* (2006.01)
H01S 5/183 (2006.01) *H01S 5/024* (2006.01)(21) International Application Number:
PCT/GB2015/051232(22) International Filing Date:
28 April 2015 (28.04.2015)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
1407462.9 28 April 2014 (28.04.2014) GB(71) Applicant: **SOLUS TECHNOLOGIES LIMITED** [GB/GB]; Venture Building, 1 Kelvin Campus, West of Scotland Science Park, Maryhill Road, Glasgow, Central Scotland G20 0SP (GB).(72) Inventors: **MALCOLM, Graeme Peter Alexander**; Venture Building, 1 Kelvin Campus, West of Scotland Science Park, Maryhill Road, Glasgow Central Scotland G20 0SP (GB). **HAMILTON, Craig James**; Venture Building, 1 Kelvin Campus, West of Scotland Science Park, Maryhill Road, Glasgow Central Scotland G20 0SP (GB).(74) Agent: **LINCOLN IP**; 9 Victoria Street, Aberdeen, Aberdeenshire AB10 1XB (GB).


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: OPTICAL AMPLIFIER

Fig. 1

(57) **Abstract:** An optical amplifier is described. The optical amplifier (1) comprises a semiconductor disk gain medium (2) including at least one quantum well layer (9) and a pump field source (17) for generating an optical pump field (3) for the semiconductor disk gain medium. The optical amplifier acts to generate an output optical field (5) from an input optical field (4) received by the optical amplifier and arranged to be incident upon the semiconductor disk gain medium. Employing a semiconductor disk gain medium within the optical amplifier allows it to be optically pumped and thus provided for increased stability and beam quality of the output optical field while allowing for the design of optical amplifiers which can operate across a broad range of wavelengths. The optical amplifier may be employed with continuous wave or pulsed input optical fields.

1 Optical Amplifier

2

3 The present invention relates to the field of optical amplifiers and in particular to an optical
4 amplifier based on a semiconductor disk gain medium.

5

6 Background to the Invention

7

8 Within the present application the term semiconductor disk gain medium refers to the gain
9 medium known in the field of Semiconductor Disk Lasers (SDLs). It is noted that SDLs are
10 also known in the art as Vertical External Cavity Emitting Lasers (VECSELs) or Optically
11 Pumped Semiconductor Lasers (OPSLs). Therefore the term semiconductor disk gain
12 medium when used throughout the present description is used also to refer to the gain
13 medium of each of these systems.

14

15 The term "ultra short" pulses as used within the following description refers to pulses
16 having a duration from about 100 picoseconds (ps) down to a few femtoseconds (fs).

17

18 An optical amplifier is a device that amplifies an input optical field directly, without the need
19 to first convert the input optical field into an electrical signal. A number of different forms of
20 optical amplifier are known in the art, some of which are described briefly below.

1

2 One form of optical amplifier known in the art is a Doped Fibre Amplifier (DFA). These
3 optical amplifiers employ a doped optical fibre as a gain medium to amplify the input
4 optical field. In practice, the optical field to be amplified and a pump field are multiplexed
5 into the doped fibre, and the optical field is then amplified through interaction with the
6 doping ions. The most common example of DFA is an Erbium Doped Fibre Amplifier
7 (EDFA) although Thulium, Praseodymium and Ytterbium doped fibre amplifiers have also
8 been successfully demonstrated. DFAs are however relatively expensive systems to
9 produce. Furthermore, due to the design restrictions it is not possible to employ a DFA to
10 amplify an input optical field having a wavelength less than 1 μm .

11

12 Alternative optical amplifiers known in the art are those based on solid state crystals.
13 Optical amplifiers based on Ti Sapphire crystals pumped with a 514 to 532 nm wavelength
14 source are capable of amplifying an input optical field having a wavelength less than 1 μm .
15 Two different designs exist for such amplifiers: regenerative amplifiers and multi-pass
16 amplifiers. In a regenerative amplifier the input optical field is amplified within a resonator.
17 However, unlike normal laser resonators that comprise a partially reflective mirror that
18 functions as an output coupler, the amplifier resonator comprises high-speed optical
19 switches that insert the optical field into the resonator and then extract the pulse out of the
20 resonator at the moment when it has been appropriately amplified. In the multi-pass
21 amplifier design, there are no optical switches. Instead, mirrors guide the input optical field
22 a fixed number of times (two or more) through the solid state crystal with slightly different
23 directions. These types of optical amplifiers generally require relatively large footprints
24 and are also relatively expensive to produce.

25

26 Optical Parametric Amplifiers (OPAs) employ the nonlinear properties of crystal materials
27 to provide the means of amplification to an input optical field. Here, the input optical field
28 propagates through the nonlinear crystal together with a pump field of shorter wavelength.
29 Photons from pump field are then converted into (lower-energy) signal photons (which act
30 to amplify the input optical field) and the same number of so-called idler photons. The
31 photon energy of the idler wave is the difference between the photon energies of the pump
32 and signal waves. As the pump energy is fully converted into energy of signal and idler
33 beams, the crystal material is not heated by this process. OPAs are however complex
34 devices, that require relatively large footprints and are relatively expensive to produce.

35

1 A range of semiconductor based optical amplifiers (SOAs) have also been developed.
2 Examples of semiconductor optical amplifiers are those made from group III-V compound
3 semiconductors e.g. GaAs/AlGaAs, InP/InGaAs, InP/InGaAsP and InP/InAlGaAs. Other
4 direct band gap semiconductors can equally well be employed, such as group II-VI
5 compound semiconductors.

6

7 More recently, it has proved advantageous for such gain mediums to be provided with a
8 tapered profile. For example GaAs based tapered amplifiers have been used for the
9 amplification of input optical fields (15mW and 30mW and wavelengths between 755 nm
10 and 1064 nm) to provide nearly diffraction limited power values of up to 2 W.

11

12 A further addition to the SOA family is the vertical-cavity SOA (VCSOA). These devices
13 are similar in structure to, and share many features with, vertical-cavity surface-emitting
14 lasers (VCSELs). The major difference when comparing VCSOAs and VCSELs is the
15 reduced mirror reflectivity employed within the amplifier cavity. Given their vertical-cavity
16 geometry, VCSOAs have the advantage that they are resonant cavity optical amplifiers
17 that operate with the input and output optical fields entering and exiting normal to the wafer
18 surface.

19

20 The above described SOAs are all relatively compact and cheaper to produce when
21 compared with the previously described DFAs, solid state crystal amplifiers and OPAs.
22 However, with SOAs it can prove difficult to couple the signal field into the gain medium.
23 In addition, the use of electrical pumping and the inherent nonlinearity of the
24 semiconductor materials can lead to pulse distortion and even to the breakup of the output
25 field pulses. As a result the SOAs known in the art are not found to provide long term
26 stability characteristics on the amplified output field and often generate outputs that are of
27 low beam quality.

28

29 It is therefore an object of an aspect of the present invention to obviate or at least mitigate
30 the foregoing disadvantages of the optical amplifiers known in the art.

31

32 Summary of the Invention

33

34 According to a first aspect of the present invention there is provided an optical amplifier
35 comprising:

1 a semiconductor disk gain medium that includes at least one quantum well layer; and
2 a pump field source for generating an optical pump field for the semiconductor disk gain
3 medium
4 wherein
5 the optical amplifier generates an output optical field from an input optical field received by
6 the optical amplifier and arranged to be incident upon the semiconductor disk gain
7 medium.

8

9 Employing a semiconductor disk gain medium within the optical amplifier allows it to be
10 optically pumped and thus provided for increased stability of the device and for an output
11 optical field of increased beam quality. The incorporation of the semiconductor disk gain
12 medium also means that the wavelength of the input optical field that can be amplified is
13 dictated primarily by the form of the wafer structures of the semiconductor disk gain
14 medium. This allows the design of optical amplifiers across a broad range of wavelengths,
15 and in particular it allows for the amplification of wavelengths below 1 μm .

16

17 Preferably the semiconductor disk gain medium is mounted on a reflector. Most preferably
18 the reflector comprises a Distributed Bragg Reflector (DBR).

19

20 Preferably the pump field source comprises a diode laser. This is advantageous in making
21 the optical amplifiers compact and highly cost effective to produce.

22

23 The input optical field may comprise a continuous wave optical field.

24

25 Alternatively, the input optical field may comprise a pulsed optical field.

26

27 Most preferably the optical amplifier comprises one or more steering optics arranged to
28 form an input optical field resonator that provides a means for the input optical field to be
29 incident upon the semiconductor disk gain medium on two or more occasions. By
30 arranging for the input optical field to be incident upon the semiconductor disk gain
31 medium on two or more occasions increases the level of amplification experienced by the
32 input optical field.

33

34 Most preferably the input optical field resonator is arranged to ensure that the time
35 between occasions where the pulse of the incident optical field are incident upon the

1 semiconductor disk gain medium is shorter than an upper state lifetime of the gain
2 medium. This arrangement ensures that gain is efficiently extracted from the optical
3 amplifier. As the upper state lifetime of a semiconductor disk gain medium is typically
4 ~5ns the above condition is satisfied by making the overall length of the input optical field
5 resonator less than ~1.5 m e.g. 15 cm.

6

7 Optionally, gain saturation within the semiconductor disk gain medium can be employed to
8 compress the pulses of the input optical field.

9

10 The one or more steering optics may comprise a parabolic mirror. Alternatively, or in
11 addition the one or more steering optics may comprise one or more flat mirrors.
12 Alternatively, or in addition the one or more steering optics may comprise one or more
13 prisms.

14

15 According to a second aspect of the present invention there is provided a method of
16 amplifying an input optical field the method comprising:

17 -optically pumping a semiconductor disk gain medium including at least one quantum well
18 layer,

19 -arranging for the input optical field to be incident upon the optically pumped
20 semiconductor disk gain medium.

21

22 The method preferably comprises arranging for the input optical field to be incident upon
23 the optically pumped semiconductor disk gain medium on two or more occasions.

24

25 The input optical field may comprise a continuous wave optical field.

26

27 Alternatively, the input optical field may comprise a pulsed optical field.

28

29 Most preferably the time between the two or more occasions where the pulses of the input
30 optical field are incident upon the pumped semiconductor disk gain medium is shorter than
31 an upper state lifetime of the gain medium. This arrangement ensures that gain is
32 efficiently extracted from the optical amplifier.

33

34 The method may further comprise employing gain saturation within the semiconductor disk
35 gain medium to compress the pulses of the input optical field.

1 Embodiments of the second aspect of the invention may comprise features to implement
2 the preferred or optional features of the first aspect of the invention or vice versa.
3

4
5 According to a third aspect of the present invention there is provided an optical amplifier
6 comprising:
7 a semiconductor disk gain medium including at least one quantum well layer; and
8 a pump field source for generating an optical pump field for the semiconductor disk gain
9 medium

10 wherein

11 the optical amplifier is arranged receive and amplify an input optical field to generate an
12 output optical field.

13

14 Embodiments of the third aspect of the invention may comprise features to implement the
15 preferred or optional features of the first or second aspects of the invention or vice versa.
16

17 Brief Description of the Drawings

18
19 There will now be described, by way of example only, various embodiments of the
20 invention with reference to the drawings, of which:

21

22 Figure 1 presents a schematic representation of an optical amplifier in accordance with an
23 embodiment of the present invention;

24

25 Figure 2 presents a schematic representation of a semiconductor disk gain medium
26 employed by the optical amplifier of Figure 1;

27

28 Figure 3 present a schematic representation of a cooling apparatus employed in
29 conjunction with the semiconductor disk gain medium of Figure 2;

30

31 Figure 4 presents a schematic representation of an optical amplifier in accordance with an
32 alternative embodiment of the present invention; and

33

34 Figure 5 presents a schematic representation of an optical amplifier in accordance with a
35 yet further alternative embodiment of the present invention.

1

2 In the description which follows, like parts are marked throughout the specification and
3 drawings with the same reference numerals. The drawings are not necessarily to scale
4 and the proportions of certain parts have been exaggerated to better illustrate details and
5 features of embodiments of the invention.

6

7 Detailed Description of Preferred Embodiments

8

9 An explanation of the present invention will now be described with reference to Figure 1.
10 In particular, Figure 1 presents a schematic representation of an optical amplifier 1 in
11 accordance with an embodiment of the present invention is shown. For clarity of
12 understanding axes are provided within this figure.

13

14 The optical amplifier 1 can be seen to comprise a semiconductor disk gain medium 2
15 further details of which are provided below with reference to Figures 2 and 3. An optical
16 pump field, depicted generally by reference numeral 3 is incident upon the semiconductor
17 disk gain medium 2. In the presently described embodiment, the optical pump field 3 is
18 substantially perpendicular to the front surface of the semiconductor disk gain medium 2.
19 An input optical field 4 is also incident upon the semiconductor disk gain medium 2. In the
20 presently described embodiment the input optical field 4 is incident upon the
21 semiconductor disk gain medium 2 at an angle of approximately -45° to the optical pump
22 field 3.

23

24 The optical pump field 3 acts to excite the gain medium 9 of the semiconductor disk gain
25 medium 2. When the input optical field 4 is incident upon the excited gain medium 9
26 stimulated emission occurs. This results in amplification of the input optical field 4 and
27 thus the generation of an output optical field 5. In the presently described embodiment the
28 output optical field 5 propagates at an angle of approximately +45° to the optical pump
29 field 3 due to reflection off of the semiconductor disk gain medium 2.

30

31 In the embodiment described with reference to Figure 1 the optical pump field 3, the input
32 optical field 4 and the output optical field 5 all propagate within the plane defined by the x
33 and z axes. It will however be appreciated by the skilled reader that one or more of these
34 optical fields may propagate in one or more alternative planes.

35

1 A schematic representation of the semiconductor disk gain medium 2 is presented in
2 Figure 2. The semiconductor disk gain medium 2 can be seen to comprise a wafer
3 structure 6 that is grown by a metal-organic chemical vapour deposition (MOCVD)
4 technique on a GaAs substrate 7. The deposition of the wafer structure may be achieved
5 by alternative techniques known in the art e.g. molecular beam epitaxy (MBE) deposition
6 techniques. The wafer structure 6 comprises a distributed Bragg reflector (DBR) region 8,
7 a gain medium 9, a carrier confinement potential barrier 10 and an oxidation prevention
8 layer 11.

9

10 As is appreciated by those skilled in the art, there are many variations of the wafer
11 structures 6 incorporated within semiconductor disk gain mediums and the present
12 invention is not limited to use with any particular DBR 8 or gain medium 9 structure. In
13 general, the gain medium 9 will comprise multiple quantum wells equally spaced between
14 half-wave structures that allow the semiconductor disk gain medium 2 to be optically
15 pumped at a convenient pump wavelength while the DBR 8 generally comprise multiple
16 pairs of quarter-wave layers that exhibit high reflectivities at the wavelength of the input
17 optical field 4.

18

19 By way of example only, the presently described embodiments comprise a gain medium 9
20 comprising InGaAs quantum wells equally spaced between half-wave GaAs structures that
21 allow the semiconductor disk gain medium 2 to be optically pumped at 808 nm while
22 generating gain at 980nm.

23

24 The first DBR region 8 comprises thirty pairs of AlAs-GaAs quarter-wave layers that
25 produce a reflectivity greater than 99.9% centred at 980 nm. The carrier confinement
26 potential barrier 10 comprises a single wavelength-thick $\text{Al}_{0.3}\text{Ga}_{0.7}\text{As}$ layer. The oxidation
27 prevention layer 11 may comprise a thin GaAs cap.

28

29 Alternative gain mediums known to those skilled in the art that may alternatively be used
30 include alternative gallium arsenide (GaAs) structures capable of gain at wavelengths
31 between 670 nm and 1300 nm; Indium Phosphide (InP) structures capable of generating
32 gain at wavelengths between 1350 nm and 1600 nm; and Gallium Antimonide (GaSb)
33 structures capable of generating gain at 1800 nm and 2700 nm. These gain mediums may
34 be based on quantum wells or quantum dots, as known to those skilled in the art.

35

1 Figure 3 presents further detail of a cooling apparatus 12 employed in order to improve the
2 operating characteristics of the semiconductor disk gain medium 2. In particular, the
3 cooling apparatus 12 comprises a heat spreader 13 and a standard thermoelectric or
4 water cooler 14. The heat spreader 13 comprises a single diamond crystal that comprises
5 an external, wedged face 15. A high performance anti-reflection coating may be deposited
6 on the surface of the wedged face 15.

7

8 The single diamond crystal heat spreader 13 is bonded by optical contacting with the wafer
9 structure 6 so that the gain medium 9 is located between the heat spreader 13 and the
10 DBR 8. The wafer structure 6 and heat spreader 13 are then fixed on top of a layer of
11 indium foil 16 onto the thermoelectric or water cooler 14.

12

13 The optical pump field 3 for pumping the semiconductor disk gain medium 2 may be
14 provided by a fibre coupled laser diode system 17. In the presently described embodiment
15 the fibre coupled laser diode system 17 is configured to generate the CW optical pumping
16 field 3 at 808 nm. A DILAS® M1F4S22-808 30C-SS2.1 is an example of one such suitable
17 fibre coupled laser diode system 17. Pump optics may be employed so as to provide a
18 means for controlling the size of the optical pump field 3 on the front surface of the
19 semiconductor disk gain medium 2.

20

21 As can be seen from Figure 1, the fibre coupled laser diode system 17 is arranged to
22 pump the gain medium 9 at an angle suitable for providing a circular pump spot at the
23 surface of the gain medium 9. It will be appreciated by the skilled reader that the present
24 invention is not so limited and that the fibre coupled laser diode system 17 could provide
25 an optical pump field 3 that is non-perpendicular to the semiconductor disk gain medium 2
26 so as to provide an elliptical pump spot at the surface of the gain medium 9.

27

28 Figure 4 presents a schematic representation of an optical amplifier 18 in accordance with
29 an alternative embodiment of the present invention. This embodiment shares a number of
30 features in common with the optical amplifier described with reference to Figure 1 and so
31 like parts have been allocated common reference numerals accordingly. The optical
32 amplifier 18 can again be seen to comprise a semiconductor disk gain medium 2 that is
33 perpendicularly pumped by an optical pump field 3. In the presently described
34 embodiment the optical pump field 3 propagates through a parabolic mirror 19 before
35 arriving at the semiconductor disk gain medium 2.

1
2 The parabolic mirror 19 and a first steering mirror 20 act in combination to form a
3 resonator for the input optical field 4. As can be seen from Figure 4, the optical amplifier
4 18 receives the input optical field 4 via the parabolic mirror 19 which is arranged to reflect
5 the input optical field 4 onto the front surface of the semiconductor disk gain medium 2. It
6 is preferable for the parabolic mirror 19 to be arranged to provide good mode matching
7 between the area of the optical pump field 3 and the input optical field 4 at the front
8 surface of the semiconductor disk gain medium 2. With this configuration the input optical
9 field 4 is then amplified by the gain medium 9 of the semiconductor disk gain medium 2, in
10 a similar manner to that described above, and reflected back towards the parabolic mirror
11 19. The input optical field 4 is then reflected again by the parabolic mirror 19, this time
12 towards the first steering mirror 20. The first steering mirror 20 is arranged to reflect the
13 input optical field 4 back through the optical amplifier 18 such that the further amplification
14 of the input optical field 4 takes place. In this way the optical amplifier generates an output
15 optical field 5 from the input optical field 4 that has been amplified twice by the
16 semiconductor disk gain medium 2.

17
18 It will be appreciated by the skilled reader that by increasing the number of times the input
19 optical field 4 propagates through the optical amplifier then the levels of amplification
20 provided are also increased. For example, Figure 5 presents a schematic representation
21 of an optical amplifier 21 in accordance with a yet alternative embodiment of the present
22 invention. The optical amplifier 21 can be seen to be similar to that described above with
23 reference to Figure 4. However, the presently described embodiment comprises a
24 resonator for the input optical field 4 that includes a second steering mirror 22 arranged so
25 as to pass the input optical field 4 back through the optical amplifier 21 for a third time.

26
27 In the embodiments described with reference to Figures 4 and 5 the optical pump field 3,
28 the input optical field 4 and the output optical field 5 all propagate within the plane defined
29 by the x and z axes. It will however be appreciated by the skilled reader that one or more
30 of these optical fields may propagate in one or more alternative planes.

31
32 It will be appreciated that in further alternative embodiments alternative beam steering
33 arrangements and thus resonator for the input optical field may be adopted in order to
34 increase the number of times the input optical field passes through the optical amplifiers
35 described herein e.g. additional steering mirrors may be incorporated; the arrangement of

1 the steering mirrors may be altered such that the input optical field is reflected more than
2 once from a beam steering mirror; and or the arrangement of the steering mirrors may be
3 altered such that the input optical field propagates out of the plane defined by the x and y
4 axis.

5

6 The above described optical amplifiers are capable of amplifying an input optical field
7 output generated by a Ti:Sapphire laser, and having a power level of ~10mW at
8 wavelengths between 700nm and 1 μ m, to power levels over 2 W. It is anticipated that
9 with further refinement of the configuration of the semiconductor disk gain medium power
10 levels as high as 10 W may be achieved.

11

12 It will be appreciated by the skilled reader that gain within a semiconductor disk gain
13 medium is achieved via the population inversion of the semiconductor carriers present
14 within the gain medium. The inversion level is primarily set by the design of the
15 semiconductor disk gain medium, the power and wavelength of the optical pump field, and
16 the power of the input optical field. As the power of the input optical field increases or the
17 power of the optical pump field decreases, the inversion level will reduce thereby causing
18 gain saturation within the optical amplifier. Advantage can be taken of the effect of gain
19 saturation in order to provide pulse compression, as well as amplification, of the input
20 optical field.

21

22 The above described optical amplifiers are suitable for use with continuous wave or pulsed
23 input optical fields. When employed with a pulsed input optical field it is preferable for the
24 repetition rate of the input optical field through the optical amplifier to be below the upper-
25 state lifetime of the semiconductor carriers located within the gain medium of the
26 semiconductor disk gain medium (typically around 5 ns). This condition can be satisfied
27 by making the overall length of the input optical field resonator less than ~1.5 m e.g.
28 15 cm. This arrangement ensures that amplification of the pulsed input optical field is
29 achieved by the efficient extraction of energy from the gain medium.

30

31 The presently described optical amplifiers exhibit several advantages over those systems
32 known in the art. In particular the optical systems can be diode pumped making them
33 compact and highly cost effective. Since the optical amplifiers are optically pumped rather
34 than electrically pumped, the associated output field exhibits increased stability and beam
35 quality when compared with those from SOAs known in the art.

1

2 The incorporation of a semiconductor disk gain medium means that the wavelengths of the
3 input optical field that can be amplified is simply dictated by the form of the wafer
4 structures. This has resulted in the described optical amplifiers being able to be designed
5 to amplify a broad range of wavelengths, and in particular allows for amplification of
6 wavelengths below 1 μ m.

7

8 It will be appreciated that a number of alternatives may be incorporated into the above
9 described embodiments. For example the structure of the semiconductor disk gain
10 medium 2 may be varied so as to provide amplification at alternative wavelengths as
11 required by the particular application.

12

13 The heat spreader may alternatively comprise materials other than single diamond crystal
14 as long as the material employed exhibits the required heat spreading properties.
15 Sapphire (Al_2O_3) and silicon carbide (SiC) are examples of alternative materials that may
16 be employed to produce the heat spreader.

17

18 An optical amplifier is described. The optical amplifier comprises a semiconductor disk
19 gain medium including at least one quantum well layer and a pump field source for
20 generating an optical pump field for the semiconductor disk gain medium. The optical
21 amplifier acts to generate an output optical field from an input optical field received by the
22 optical amplifier and arranged to be incident upon the semiconductor disk gain medium.
23 Employing a semiconductor disk gain medium within the optical amplifier allows it to be
24 optically pumped and thus provided for increased stability and beam quality of the output
25 optical field while allowing for the design of optical amplifiers which can operate across a
26 broad range of wavelengths. The optical amplifier may be employed with continuous wave
27 or pulsed input optical fields.

28

29 Throughout the specification, unless the context demands otherwise, the terms "comprise"
30 or "include", or variations such as "comprises" or "comprising", "includes" or "including" will
31 be understood to imply the inclusion of a stated integer or group of integers, but not the
32 exclusion of any other integer or group of integers.

33

34 Furthermore, reference to any prior art in the description should not be taken as an
35 indication that the prior art forms part of the common general knowledge.

36

1 The foregoing description of the invention has been presented for purposes of illustration
2 and description and is not intended to be exhaustive or to limit the invention to the precise
3 form disclosed. The described embodiments were chosen and described in order to best
4 explain the principles of the invention and its practical application to thereby enable others
5 skilled in the art to best utilise the invention in various embodiments and with various
6 modifications as are suited to the particular use contemplated. Therefore, further
7 modifications or improvements may be incorporated without departing from the scope of
8 the invention as defined by the appended claims.

9

1 Claims

2

3 1) An optical amplifier comprising a semiconductor disk gain medium that includes at
4 least one quantum well layer; and a pump field source for generating an optical
5 pump field for the semiconductor disk gain medium wherein the optical amplifier
6 generates an output optical field from an input optical field received by the optical
7 amplifier and arranged to be incident upon the semiconductor disk gain medium.

8

9 2) An optical amplifier as claimed in claim 1 wherein the semiconductor disk gain
10 medium is mounted on a reflector.

11

12 3) An optical amplifier as claimed in either of claims 1 or 2 wherein the reflector
13 comprises a Distributed Bragg Reflector (DBR).

14

15 4) An optical amplifier as claimed in any of the preceding claims wherein the pump field
16 source comprises a diode laser.

17

18 5) An optical amplifier as claimed in any of the preceding claims wherein the input
19 optical field comprises a continuous wave optical field.

20

21 6) An optical amplifier as claimed in any of claims 1 to 4 wherein the input optical field
22 comprises a pulsed optical field.

23

24 7) An optical amplifier as claimed in any of the preceding claims further comprising one
25 or more steering optics arranged to form an input optical field resonator that provides
26 a means for the input optical field to be incident upon the semiconductor disk gain
27 medium on two or more occasions.

28

29 8) An optical amplifier as claimed in claim 7, when dependent on claim 6, wherein the
30 input optical field resonator is arranged to ensure that the time between occasions
31 where the pulse of the incident optical field are incident upon the semiconductor disk
32 gain medium is shorter than an upper state lifetime of the gain medium.

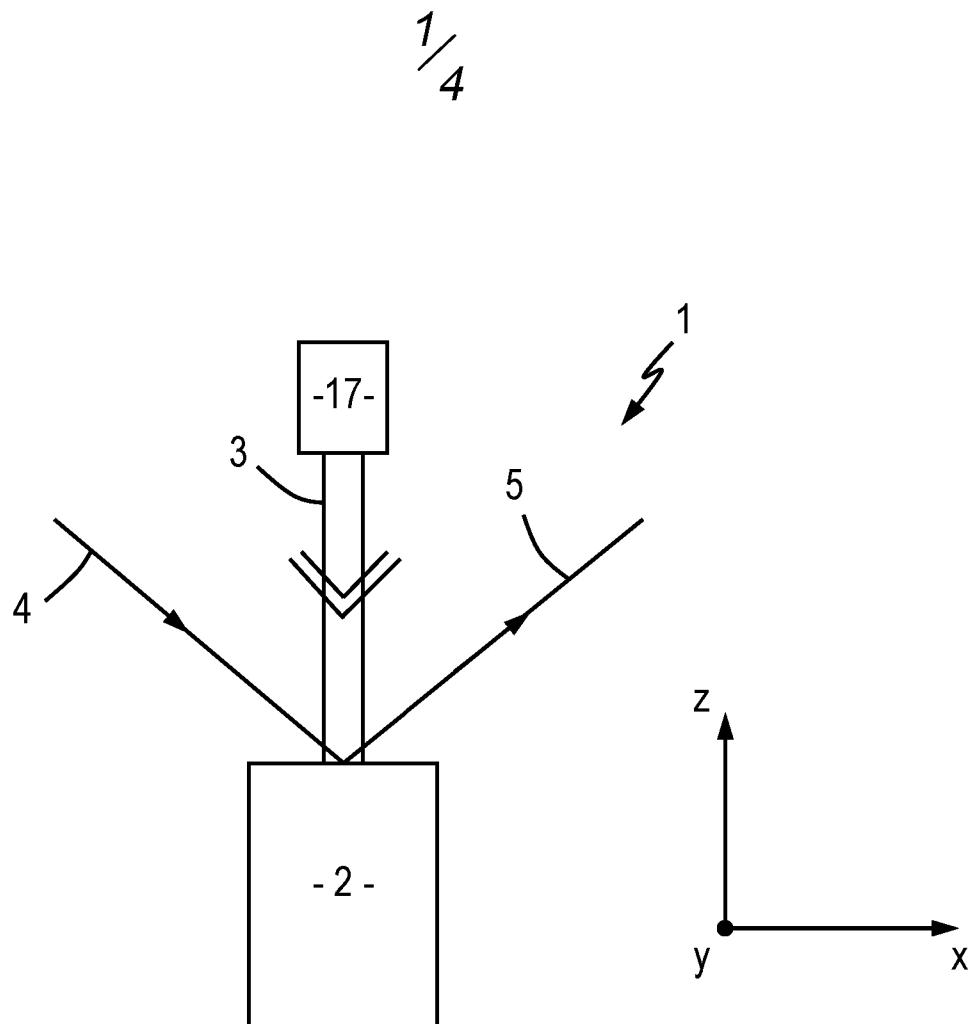
33

- 1 9) An optical amplifier as claimed in any of claims 6 to 8 wherein gain saturation within
2 the semiconductor disk gain medium is employed to compress the pulses of the
3 input optical field.
- 4
- 5 10) An optical amplifier as claimed in any of claims 7 to 9 wherein the one or more
6 steering optics comprise a parabolic mirror.
- 7
- 8 11) An optical amplifier as claimed in any of claims 7 to 10 wherein the one or more
9 steering optics comprise one or more flat mirrors.
- 10
- 11 12) An optical amplifier as claimed in any of claims 7 to 11 wherein the one or more
12 steering optics comprise one or more prisms.
- 13
- 14 13) A method of amplifying an input optical field the method comprising:
15 -optically pumping a semiconductor disk gain medium including at least one quantum
16 well layer,
17 -arranging for the input optical field to be incident upon the optically pumped
18 semiconductor disk gain medium.
- 19
- 20 14) A method of amplifying an input optical field as claimed in claim 13 wherein the
21 method further comprises arranging for the input optical field to be incident upon the
22 optically pumped semiconductor disk gain medium on two or more occasions.
- 23
- 24 15) A method of amplifying an input optical field as claimed in either of claims 13 or 14
25 wherein the input optical field comprises a continuous wave optical field.
- 26
- 27 16) A method of amplifying an input optical field as claimed in either of claims 13 or 14
28 wherein the input optical field comprises a pulsed optical field.
- 29
- 30 17) A method of amplifying an input optical field as claimed in claim 16, when dependent
31 on claim 14, wherein the time between the two or more occasions where the pulses
32 of the input optical field are incident upon the pumped semiconductor disk gain
33 medium is shorter than an upper state lifetime of the gain medium.
- 34

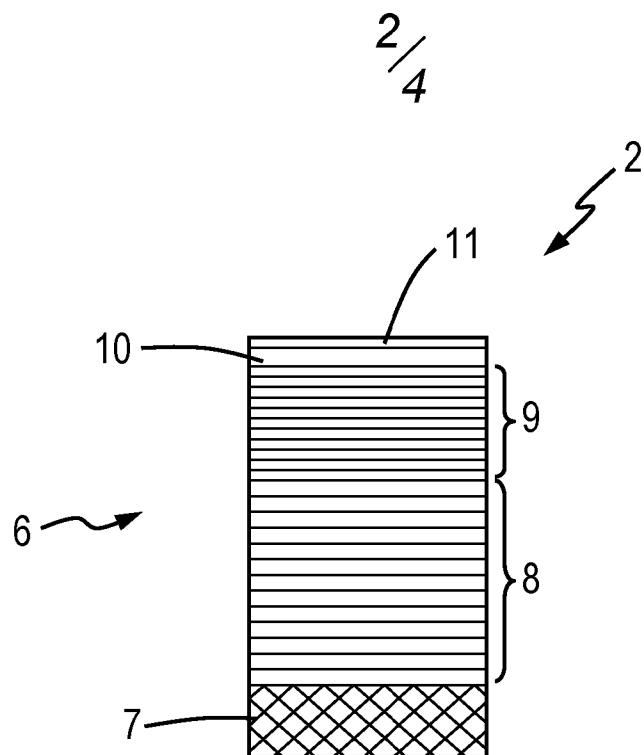
1 18) A method of amplifying an input optical field as claimed in either of claims 16 or 17
2 wherein gain saturation within the semiconductor disk gain medium is employed to
3 compress the pulses of the input optical field.

4

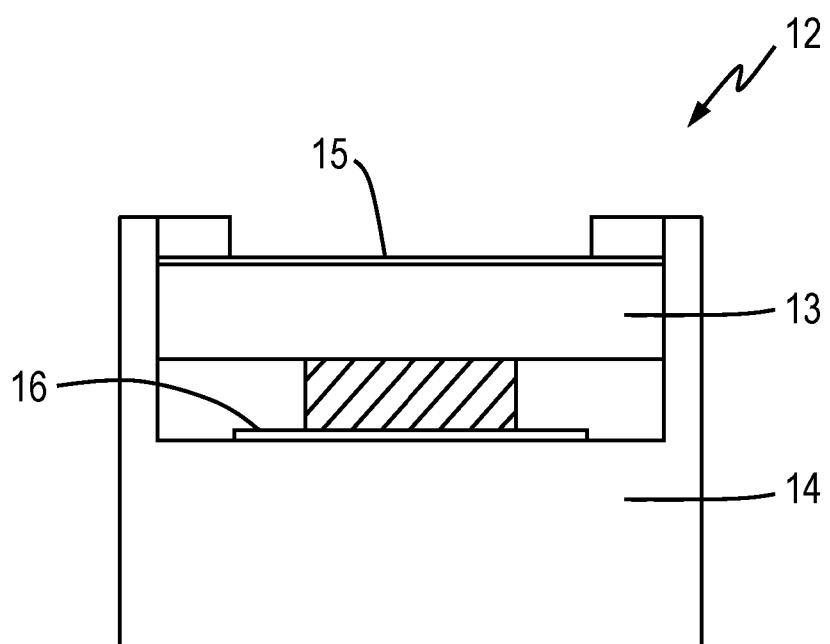
5 19) An optical amplifier as herein described and illustrated in Figure 1.

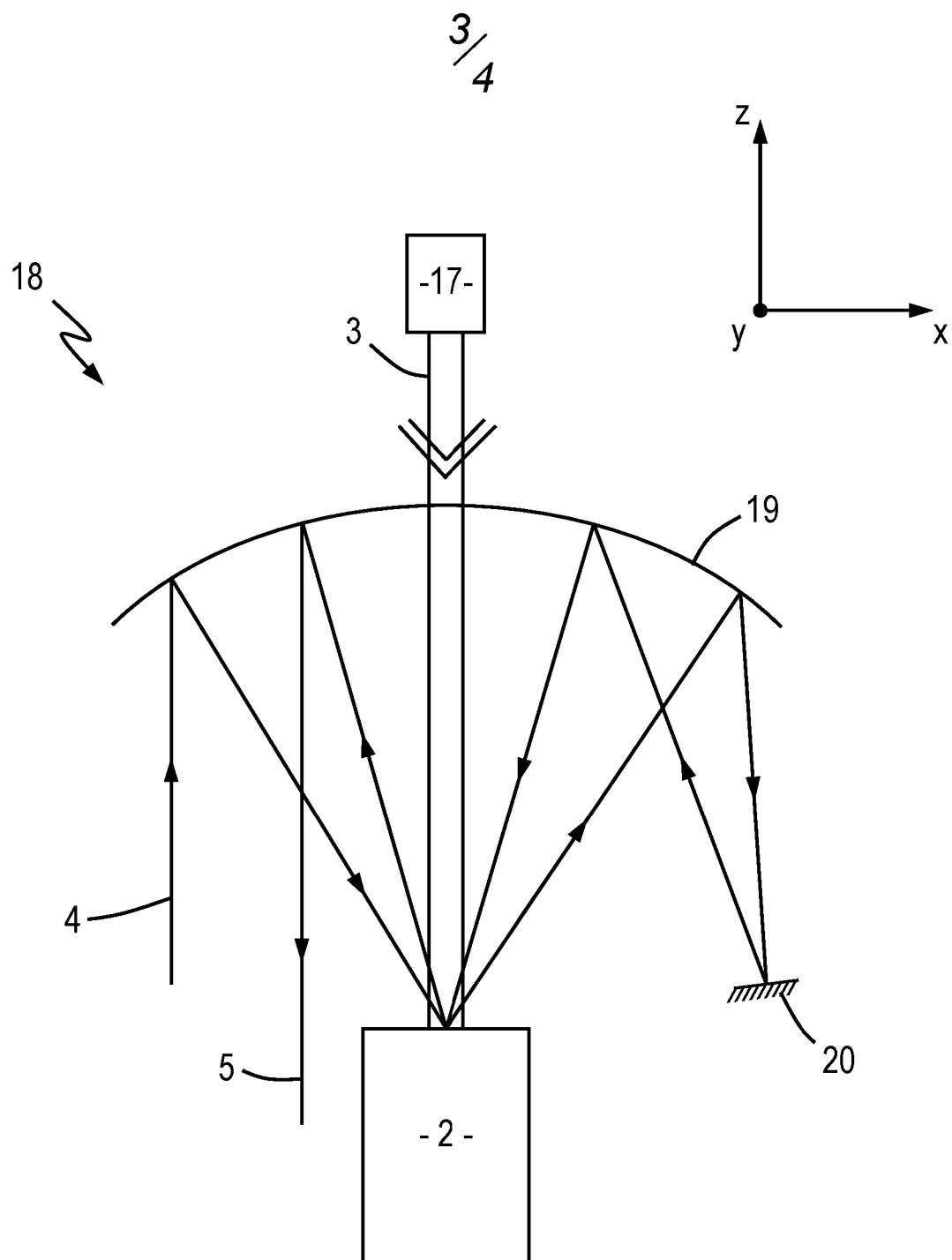

6

7 20) An optical amplifier as herein described and illustrated in Figure 4.


8

9 21) An optical amplifier as herein described and illustrated in Figure 5.


10


Fig. 1

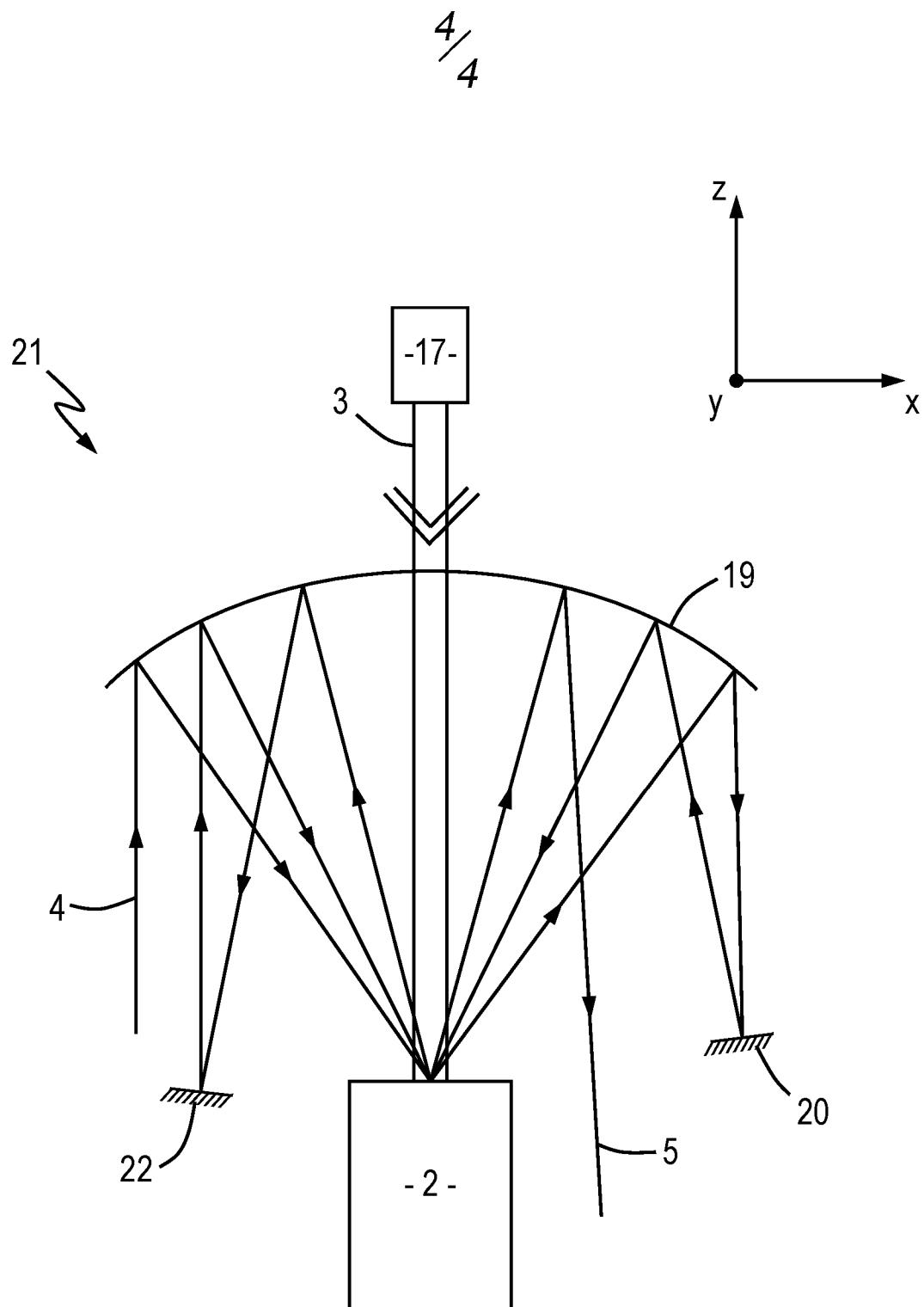

Fig. 2

Fig. 3

Fig. 4

Fig. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2015/051232

A. CLASSIFICATION OF SUBJECT MATTER

INV. H01S5/04 H01S5/183 H01S5/50
ADD. H01S5/024

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01S

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2013/152447 A2 (TIME BANDWIDTH PRODUCTS AG [CH]) 17 October 2013 (2013-10-17)	1-8, 10-17, 19-21
Y	page 9, line 4 - page 12, line 20 page 15, line 2 - page 22, line 4; figures 1-5 -----	9,18
X	RAJ R: "NOVEL APPLICATION OF OPTICALLY PUMPED VERTICAL CAVITY SURFACE EMMITTING LASER : FAST AMPLIFYING OPTICAL SWITCH", JOURNAL DE PHYSIQUE III, EDITIONS DE PHYSIQUE, PARIS, FR, vol. 4, no. 12, 1 December 1994 (1994-12-01), pages 2371-2378, XP000491698, ISSN: 1155-4320, DOI: 10.1051/jp3:1994283	1-4,6,9, 13,16, 18,19
Y	page 2373, paragraph 2 - page 2375, paragraph 1; figures 1,4 ----- -/-	9,18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

16 September 2015

29/09/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Laenen, Robert

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2015/051232

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CALVEZ S ET AL: "1.3 m GaInNAs optically-pumped vertical cavity semiconductor optical amplifier", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 39, no. 1, 9 January 2003 (2003-01-09), pages 100-102, XP006019586, ISSN: 0013-5194, DOI: 10.1049/EL:20030119 page 100 - page 102; figures 1,3 -----	1-6,13, 15,16

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/GB2015/051232

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 2013152447	A2	17-10-2013	NONE