The present invention provides novel solvated forms of darunavir and processes for their preparation. The present invention also provides novel process for preparation of darunavir amorphous form and pharmaceutical composition comprising it. Thus, for example, darunavir 2-methyl-2-butanol solvate was dissolved in methylene dichloride, distilled under vacuum at 45°C to obtain a residue, cyclohexane was added to the residue and stirred for 30 hours at 20 to 25°C, and the separated solid was filtered, washed with cyclohexane and dried under vacuum at 50°C for 12 hours to yield darunavir amorphous form.
POLYMORPHS OF DARUNAVIR

Field of the Invention
The present invention provides novel solvated forms of darunavir and processes for their preparation. The present invention also provides novel process for preparation of darunavir amorphous form and pharmaceutical composition comprising it.

Background of the Invention
Virus-encoded proteases, which are essential for viral replication, are required for the processing of viral protein precursors. Interference with the processing of protein precursors inhibits the formation of infectious virions. Accordingly, inhibitors of viral proteases may be used to prevent or treat chronic and acute viral infections. Darunavir has HIV protease inhibitory activity and is particularly well suited for inhibiting HIV-1 and HTV-2 viruses. Among them darunavir, chemically (1S,2R,3'R,3'aS,6'aR)-[3'-hexahydrofuro[2,3-b]furanyl-[3'-hexahydrofuro[2,3-b]furanyl-[3'-(4-aminobenzenesulfonyl)]isobutylamino]-l-benzyl-2-hydroxypropyl]carbamate. Darunavir is represented by the following structure:

![Darunavir structure](image)

Polymorphism is defined as "the ability of a substance to exist as two or more crystalline phases that have different arrangement and/or conformation of the molecules in the crystal lattice. Thus, in the strict sense, polymorphs are different crystalline forms of the same pure substance in which the molecules have different arrangements and/or different configurations of the molecules". Different polymorphs may differ in their physical properties such as melting point, solubility, X-ray diffraction patterns, etc. Although those differences disappear once the compound is dissolved, they can appreciably influence pharmaceutically relevant properties of the solid form, such as handling properties, dissolution rate and stability. Such properties can significantly influence the processing, shelf life, and commercial acceptance of a polymorph. It is therefore important to investigate all solid forms of a drug, including all polymorphic forms, and to determine the stability, dissolution and flow properties of each polymorphic form. Polymorphic forms of a compound can be distinguished in the laboratory by analytical methods such as X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Infrared spectrometry (IR).

Darunavir can exist in different polymorphic forms, which differ from each other in terms of stability, physical properties, spectral data and methods of preparation.

U.S. Patent Application No. 2005/0250845 described Amorphous Form, Form A (ethanolate), Form B (hydrate), Form C (methanolate), Form D (acetonate), Form E (dichloromethanate), Form F (ethylacetate solvate), Form G (1-ethoxy-2-propanolate), Form H (anisolate), Form I (tetrahydrofuranate), Form J (isopropanolate) and Form K (mesylate) of darunavir.

One object of the present invention is to provide novel solvated forms of darunavir and processes for their preparation.

Another object of the present invention is to provide a novel process for preparation of darunavir amorphous form and pharmaceutical compositions comprising them.
Summary of the Invention

In one aspect, the present invention provided darunavir C₅-C₈ alcohol solvate.

In another aspect, the present invention provides a process for preparing darunavir C₅-C₈ alcohol solvate, which comprises crystallizing darunavir C₅-C₈ alcohol solvate from a solution of darunavir in C₅-C₈ alcohol solvent.

In another aspect, the present invention provides a process for preparing darunavir amorphous form, which comprises:

a) dissolving darunavir in a solvent;
b) removing the solvent from the solution obtained in step (a) to obtain a residue;
c) slurrying the residue obtained in step (b) with aliphatic solvent or aromatic solvent; and
d) isolating darunavir amorphous form.

In yet another aspect, the present invention provides a pharmaceutical composition comprising darunavir amorphous form and a pharmaceutically acceptable excipient.

Brief Description of the Drawing

Figure 1 is X-ray powder diffraction spectrum of darunavir 2-methyl-2-butanol solvate.

Figure 2 is X-ray powder diffraction spectrum of darunavir n-pentanol solvate.

Figure 3 is X-ray powder diffraction spectrum of darunavir amorphous form.

X-ray powder diffraction spectrum was measured on a bruker axs D8 advance X-ray powder diffractometer having a copper-Kα radiation. Approximately 1gm of sample was gently flattered on a sample holder and scanned from 2 to 50 degrees two-theta, at 0.02 degrees to theta per step and a step of 10.4 seconds. The sample was simply placed on the sample holder. The sample was rotated at 30 rpm at a voltage 40 KV and current 35 mA.
Detailed Description of the Invention

According to one aspect of the present invention, there is provided darunavir C₅-C₈ alcohol solvate.

According to another aspect of the present invention, there is provided a process for preparing darunavir C₅-C₈ alcohol solvate, which comprises crystallizing darunavir C₅-C₈ alcohol solvate from a solution of darunavir in Cs-Cs alcohol solvent.

Solvates can occur in different ratios of solvation. The ratio of darunavir to the Cs-Cs alcohol solvent may range between 1:0.3 and 1:1.3. In particular, the ratio may range from about 0.5 to about 1 molecules of C₅-C₈ alcohol solvent per 1 molecule of darunavir, preferably the ratio is 1 molecule of C₅-C₈ alcohol solvent per 1 molecule of darunavir.

The Cs-Cs alcohol solvent is selected from 2-methyl-2-butanol or n-pentanol.

Darunavir 2-methyl-2-butanol solvate characterized by peaks in the powder x-ray diffraction spectrum having 2Θ angle positions at about 6.8, 8.8, 11.1, 13.7, 16.3, 16.7, 19.6, 20.9 and 22.3 ± 0.2 degrees. The powdered x-ray diffractogram (PXRD) of darunavir 2-methyl-2-butanol solvate is shown in figure 1.

Darunavir n-pentanol solvate characterized by peaks in the powder x-ray diffraction spectrum having 2Θ angle positions at about 6.9, 9.1, 11.2, 13.7, 16.4, 17.1, 20.3, 20.6, 21.1 and 22.6 ± 0.2 degrees. The powdered x-ray diffractogram (PXRD) of darunavir n-pentanol solvate is shown in figure 2.

The solvates of the present invention are useful intermediates for obtaining pure darunavir. The solvates of darunavir of the present invention can be used to obtain known polymorphs of darunavir.

According to another aspect of the present invention, there is provided a process for the preparation of darunavir amorphous form, which comprises:

a) dissolving darunavir in a solvent;

b) removing the solvent from the solution obtained in step (a) to obtain a residue;
c) slurrying the residue obtained in step (b) with aliphatic solvent or aromatic solvent; and

d) isolating darunavir amorphous form.

Darunavir used in step (a) is darunavir in any solvated or hydrated-or anhydrous form.

Preferably, darunavir used in step (a) is darunavir C$_5$-C$_8$ alcohol solvate such as 2-methyl-2-butanol solvate or n-pentanol solvate.

The solvent used in step (a) may be a solvent or mixture of solvents selected from the group consisting of a dichloromethane, ethylene dichloride, chloroform and ethyl acetate. Preferable solvent is dichloromethane.

The distillation of the solvent may be carried out in step (b) at atmospheric pressure or at reduced pressure. The distillation may preferably be carried out until the solvent is almost completely distilled off.

The aliphatic solvent or aromatic solvent used in step (c) may be a solvent or a mixture of solvents selected from the group consisting of a cyclohexane, hexane, n-heptane, toluene and xylene. Preferable aliphatic solvent is cyclohexane.

The isolation of darunavir amorphous form may be performed by conventional techniques such as centrifugation and filtration.

According to another aspect of the present invention, there is provided a pharmaceutical composition comprising a darunavir amorphous form and a pharmaceutically acceptable excipient.

The pharmaceutically acceptable inert carrier which can be used may be a solid dosage forms.

The solid dosage forms for oral administration may include capsules, tablets, pills, powders and granules.

The invention will now be further described by the following examples, which are illustrative rather than limiting.

Preparative example

Preparation of darunavir
To a mixture of (3R,3aS,6aR)-hexahdrofuro [2,3-b] furan-3-ol (25 gm) and acetonitrile (180 ml) was added disuccinimidyl carbonate (56 gm) and pyridine (46 gm) at 25 to 30°C. The mixture was stirred for 1 hour at 25 to 30°C and cooled to 0°C. A solution of 4-amino-N-((2R,3S)-3-amino-2-hydroxy-4-phenylbutyl)-N-(isobutyl)benzene sulfonamide (70 gm) in acetonitrile (300 ml) was added to the reaction mass at 0 to 5°C for 30 minutes. To the reaction mass was added triethylamine (19 gm) and monomethylamine (3 gm) at 0 to 5°C, the temperature was slowly raised to 25 to 30°C and stirred for 22 hours. Distilled off the solvent completely under vacuum at 45°C to obtain a residue and to the residue was added ethyl acetate (250 ml). The ethyl acetate layer was washed with 10% sodium bicarbonate (100 ml), 2% sulfuric acid (100 ml), 10% sodium sulfate (100 ml) and 10% sodium chloride solution (100 ml). The layer was dried over sodium sulfate. The layer was treated with carbon and distilled off the solvent under vacuum at below 45°C to obtain 85 gm of darunavir.

Examples

Example 1:

Preparation of darunavir 2-methyl-2-butanol solvate

Darunavir (85 gm) as obtained in preparative example was added to 2-methyl-2-butanol (50 ml) and distilled off the solvent under vacuum at below 45°C to obtain a residue. To the residue was added 2-methyl-2-butanol (150 ml) and heated to 50°C. The reaction mass was slowly cooled to room temperature and stirred for 24 hours. The reaction mass further cooled to 0°C and stirred for 1 hour at 0 to 5°C. The separated solid was filtered, washed with 2-methyl-2-butanol and dried the solid under vacuum at 50°C to obtain 60 gm of darunavir 2-methyl-2-butanol solvate.

Example 2:

Preparation of darunavir n-pentanol solvate
Darunavir (85 gm) as obtained in preparative example was added to n-pentanol (50 ml) and distilled off the solvent under vacuum at below 45°C to obtain a residue. To the residue was added n-pentanol (150 ml) and heated to 50°C. The reaction mass was slowly cooled to room temperature and stirred for 24 hours. The reaction mass further cooled to 0°C and stirred for 1 hour at 0 to 5°C, filtered. The solid obtained was washed with n-pentanol and dried the solid under vacuum at 50°C to obtain 6.1 gm of darunavir n-pentanol solvate.

Example 3:

Preparation of darunavir amorphous form

Darunavir 2-methyl-2-butanol solvate (5 gm) as obtained in example 1 was dissolved in methylene dichloride (50 ml), methylene dichloride layer was dried over sodium sulfate. The layer was treated with carbon and distilled off the solvent under vacuum at 45°C to obtain foam like residue. Cyclohexane (2 x 25 ml) was added to the residue, distilled off the solvent and the residue was collected. To the residue obtained was added cyclohexane (50 ml), stirred for 30 hours at 20 to 25°C. The separated solid was filtered, washed with cyclohexane and then dried under vacuum at 50°C for 12 hours to obtain 4.2 gm of darunavir amorphous form.

Example 4:

Preparation of darunavir amorphous form

Darunavir n-pentanol solvate (5 gm) as obtained in example 2 was dissolved in methylene dichloride (50 ml), methylene dichloride layer was dried over sodium sulfate. The layer was treated with carbon and distilled off the solvent under vacuum at 45°C to obtain foam like residue. Cyclohexane (2 x 25 ml) was added to the residue, distilled off the solvent and the residue was collected. To the residue obtained was added cyclohexane (50 ml), stirred for 30
hours at 20 to 25°C, filtered, washed with cyclohexane and dried under vacuum at 50°C for 12 hours to obtain 4.2 gm of darunavir amorphous form.

Example 5:

Preparation of darunavir amorphous form

Example 3 was repeated using darunavir ethanolate form A instead of darunavir 2-methyl-2-butanol solvate to obtain darunavir amorphous form.

Example 6:

Preparation of darunavir amorphous form

Example 3 was repeated using darunavir hydrated form B instead of darunavir 2-methyl-2-butanol solvate to obtain darunavir amorphous form.
We claim:
1. A darunavir C₅-C₈ alcohol solvate.
2. A process for the preparation of darunavir C₅-C₈ alcohol solvate as defined in claim 1, which comprises crystallizing darunavir C₅-C₈ alcohol solvate from a solution of darunavir in Cs-Cs alcohol solvent.
3. The solvate according to claim 1, wherein the ratio of darunavir to Cs-Cs alcohol solvent ranges between 1:0.3 and 1:1.3.
4. The solvate according to claim 3, wherein the ratio of darunavir to Cs-Cs alcohol solvent is about 1:1.
5. The process according to claim 2, wherein the Cs-C₈ alcohol solvent is selected from 2-methyl-2-butanol or n-pentanol.
6. A process for the preparation of darunavir amorphous form, which comprises:
 a. dissolving darunavir in a solvent;
 b. removing the solvent from the solution obtained in step (a) to obtain a residue;
 c. slurrying the residue obtained in step (b) with aliphatic solvent or aromatic solvent; and
 d. isolating darunavir amorphous form.
7. The process according to claim 6, wherein the darunavir used in step (a) is darunavir in any solvated or hydrated or anhydrous form.
8. The process according to claim 7, wherein the darunavir used in step (a) is darunavir C₅-C₈ alcohol solvate such as 2-methyl-2-butanol solvate or n-pentanol solvate.
9. The process according to claim 6, wherein the solvent used in step (a) is a solvent or mixture of solvents selected from dichloromethane, ethylene dichloride, chloroform and ethyl acetate.
10. The process according to claim 9, wherein the solvent is dichloromethane.
11. The process according to claim 6, wherein the aliphatic solvent or aromatic solvent used in step (c) is a solvent or mixture of solvents selected from cyclohexane, hexane, n-heptane, toluene or xylene.
12. The process according to claim 11, wherein the aliphatic solvent is cyclohexane.

13. A pharmaceutical composition comprising a darunavir amorphous form and a pharmaceutically acceptable excipient.

14. The pharmaceutical composition as claimed in claim 13, wherein the pharmaceutical composition is used in a solid dosage forms.

15. The pharmaceutical composition as claimed in claim 14, wherein the solid dosage forms for oral administration is include capsules, tablets, pills, powders and granules.
INTERNATIONAL SEARCH REPORT

International application No. PCT/IN 2009/000724

A. CLASSIFICATION OF SUBJECT MATTER

| IPC® | C07D 493/04 (2006.01) |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC® | C07D |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Wpi, Epodoc, Pubchem

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

D. Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

See patent family annex.

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search: 20 December 2010 (20.12.2010)

Date of mailing of the international search report: 3 January 2011 (03.01.2011)

Name and mailing address of the ISA/AT

Austrian Patent Office

Dresdner Straße 87, A-1200 Vienna

Facsimile No. +43 / 1 / 534 24 / 535

Authorized officer: GORNERW.

Telephone No. +43 / 1 / 534 24 / 558

Form PCT/ISA/210 (second sheet) (January 2004)
This International Searching Authority found multiple inventions in this international application, as follows:

Claim group I: Claims 1-5. Darunavir C5-C8 alcohol solvate form.
Claim group II: Claims 6-12. Method for the preparation of amorphous darunavir.
Claim group III: Pharmaceutical composition using darunavir amorphous form.

Darunvair and darunavir amorphous form are known from the state of the art and are therefore not novel (e.g. D1) and alcohol solvates of darunavir and a method for the preparation of amorphous darunavir as well as pharmaceutical use of a known amorphous form of darunavir do not provide the subject matters of claim groups I, II and III with a common essential technical feature. Therefore, in accordance with Rule 13.2 PCT, claim groups I, II and III lack unity.

No additional effort.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 2003106461</td>
<td></td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/IS A/2 10 (patent family annex) (July 1998; reprint January 2004)