Abstract: The present invention pertains to a cell culture medium comprising dextran sulfate or a mixture of dextran sulfate and ferric citrate, and methods of using thereof. The present invention further pertains to a method of producing a protein of interest in a large scale cell culture, comprising supplementing the cell culture with dextran sulfate or a mixture of dextran sulfate and ferric citrate.
Published: with international search report (Art. 21(3))
BACKGROUND OF THE INVENTION

Field of the Invention

The present invention pertains to a cell culture medium comprising dextran sulfate or a mixture of dextran sulfate and ferric citrate, and methods of using thereof. The present invention further pertains to a method of producing a protein of interest in a large scale cell culture, comprising supplementing the cell culture with dextran sulfate or a mixture of dextran sulfate and ferric citrate.

Background Art

Over the last few decades, much research has focused on the production of recombinant proteins, e.g., monoclonal antibodies, and the work has taken a variety of angles. While much work in the literature has utilized media containing sera or hydrolysates, chemically defined media were also developed in order to eliminate the problematic lot-to-lot variation of complex components (Luo and Chen, *Biotechnology and Bioengineering* 97(6):1654-1659 (2007)). An improved understanding of the cell culture has permitted a shift to chemically defined medium without compromising on growth, viability, titer, etc. To date optimized chemically defined processes have been reported with titers as high as 7.5-10 g/L (Huang et al, *Biotechnology Progress* 26(5):1400-1410 (2010); Ma et al, *Biotechnology Progress* 25(5):1353-1363 (2009); Yu et al, *Biotechnology and Bioengineering* 108(5):1078-1088 (2011)). In general, the high titer chemically defined processes are fed batch processes with cultivation times of 11-18 days. The process intensification has been achieved without compromising product quality while maintaining relatively high viabilities.

Achievement of a robust, scalable production process includes more than increasing the product titer while maintaining high product quality. The process must also predictably require the main carbohydrate source such that the feeding strategy does not need to change across scales. As many processes use glucose as the main carbohydrate, and have lactate and ammonium as the main byproducts, the time course of these three critical chemicals should also scale.
A recent metabolomics study performed by Ma and coworkers (Ma et al. Biotechnology Progress 25(5): 1353-1363 (2009)) suggested a blockage in the TCA cycle, resulting in an early phase secretion of citrate and later citrate consumption. The process used by Ma may also have subsequently resulted in high LPR if the viability permitted further extension of the process. The feeding of pyruvate (0.02 M) was shown to increase antibody production by 43% in a continuous culture of a hybridoma cell (Omasa et al, Bioprocess and Biosystems Engineering 33(1): 117-125 (2010)). The feeding of citrate (0.05 M and 0.01 M) in the same culture system resulted only in a -5-1 0% increase in antibody production. Bai recently reported increased antibody production in a chemically defined CHO cell culture supplemented with a combination of high concentrations of chemically defined iron and high concentrations of citrate (Bai et al, Biotechnology Progress 27(1):209-219 (2011)). Citrate supplementation alone, however, could not support stable cell growth at all.

There is a need in the art to further improve recombinant protein production processes to eliminate lot-to-lot metabolic variability. Provided herein are compositions and methods to prevent or reduce metabolic variability encountered in recombinant protein producing cell cultures.

BRIEF SUMMARY OF THE INVENTION

The present invention pertains to a method of culturing cells in a medium comprising supplementing the medium with a feed comprising sufficient amount of dextran sulfate. The present invention also pertains to a method of culturing cells in a medium comprising or supplementing the medium with a feed comprising a mixture of dextran sulfate and ferric citrate. In one embodiment, the medium and/or feed comprise dextran sulfate in an amount sufficient to increase the dextran sulfate concentration in the medium by between about 0.1 g/L and about 5 g/L. In another embodiment, the medium and/or feed comprise ferric citrate in an amount sufficient to raise the ferric citrate concentration in the medium by between about 1 mM and about 50 mM.

The present invention also pertains to a cell culture medium comprising dextran sulfate or a mixture of dextran sulfate and ferric citrate.
The present invention further provides a cell culture composition comprising cells capable of expressing a polypeptide of interest and a medium comprising dextran sulfate or a mixture of dextran sulfate and ferric citrate. The present invention further pertains to a conditioned cell culture medium produced by a method disclosed herein. In one embodiment, the conditioned medium comprises a polypeptide of interest produced by a method disclosed herein. In a specific embodiment, a conditioned medium according to the present invention comprises an antibody. In another specific embodiment, a conditioned medium according to the present invention comprises a Transforming Growth Factor (TGF) beta superfamily signaling molecule. In yet another specific embodiment, a conditioned medium according to the present invention comprises a blood clotting factor.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

- **Figure 1.** Addition of ferric citrate and dextran sulfate maintains lactate levels and decreases ammonium production.
- **Figure 2.** Addition of dextran sulfate stabilizes viability of shake flask maintenance culture.
- **Figure 3.** Addition of dextran sulfate stabilizes viability of bioreactor inoculum train culture.
- **Figure 4.** Production bioreactors inoculated using dextran sulfate containing inoculum was enough to stabilize early stage culture viability.

DETAILED DESCRIPTION OF THE INVENTION

i. **DEFINITIONS**

The term "antibody" is used to mean an immunoglobulin molecule that recognizes and specifically binds to a target, such as a protein, polypeptide, peptide, carbohydrate, polynucleotide, lipid, or combinations of the foregoing etc., through at least one antigen recognition site within the variable region of the immunoglobulin molecule. As used herein, the term encompasses intact polyclonal antibodies, intact monoclonal antibodies, antibody fragments (such as Fab, Fab', F(ab')2, and Fv fragments), single chain Fv (scFv) mutants, multispecific antibodies such as bispecific antibodies generated from at least two
intact antibodies, monovalent or monospecific antibodies, chimeric antibodies, humanized antibodies, human antibodies, fusion proteins comprising an antigen determination portion of an antibody, and any other modified immunoglobulin molecule comprising an antigen recognition site so long as the antibodies exhibit the desired biological activity. An antibody can be any of the five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, or subclasses (isotypes) thereof (e.g., IgG1, IgG2, IgG3, IgG4, IgAl and IgA2), based on the identity of their heavy-chain constant domains referred to as alpha, delta, epsilon, gamma, and mu, respectively.

As used herein, the term "antibody fragment" refers to a portion of an intact antibody and refers to the antigenic determining variable regions of an intact antibody. Examples of antibody fragments include, but are not limited to Fab, Fab', F(ab')2, and Fv fragments, linear antibodies, single chain antibodies, and multispecific antibodies formed from antibody fragments.

The term "basal media formulation" or "basal media" as used herein refers to any cell culture media used to culture cells that has not been modified either by supplementation, or by selective removal of a certain component.

The term "batch culture" as used herein refers to a method of culturing cells in which all the components that will ultimately be used in culturing the cells, including the medium (see definition of "medium" below) as well as the cells themselves, are provided at the beginning of the culturing process. A batch culture is typically stopped at some point and the cells and/or components in the medium are harvested and optionally purified.

The term "bioreactor" as used herein refers to any vessel used for the growth of a mammalian cell culture. The bioreactor can be of any size so long as it is useful for the culturing of mammalian cells. Typically, the bioreactor will be at least 1 liter and can be 10, 50, 100, 250, 500, 1000, 2000, 2500, 3000, 5000, 8000, 10,000, 12,000, 15,000, 20,000, 30,000 liters or more, or any volume in between. For example, a bioreactor will be 10 to 5,000 liters, 10 to 10,000 liters, 10 to 15,000 liters, 10 to 20,000 liters, 10 to 30,000 liters, 50 to 5,000 liters, 50 to 10,000 liters, 50 to 15,000 liters, 50 to 20,000 liters, 50 to 30,000 liters, 1,000 to 5,000 liters, or 1,000 to 3,000 liters. The internal conditions of the bioreactor, including, but not limited to pH and temperature, are typically controlled during the culturing period. The bioreactor can be composed of any material
that is suitable for holding mammalian cell cultures suspended in media under the culture conditions of the present invention, including glass, plastic or metal. The term "production bioreactor" as used herein refers to the final bioreactor used in the production of the polypeptide or protein of interest. The volume of the large-scale cell culture production bioreactor is typically at least 500 liters and can be 1000, 2000, 2500, 5000, 8000, 10,000, 12,0000, 15,000 liters or more, or any volume in between. For example, the large scale cell culture reactor will be between about 500 liters and about 20,000 liters, about 500 liters and about 10,000 liters, about 500 liters and about 5,000 liters, about 1,000 liters and about 30,000 liters, about 2,000 liters and about 30,000 liters, about 3,000 liters and about 30,000 liters, about 5,000 liters and about 30,000 liters, or about 10,000 liters and about 30,000 liters, or a large scale cell culture reactor will be at least about 500 liters, at least about 1,000 liters, at least about 2,000 liters, at least about 3,000 liters, at least about 5,000 liters, at least about 10,000 liters, at least about 15,000 liters, or at least about 20,000 liters. One of ordinary skill in the art will be aware of and will be able to choose suitable bioreactors for use in practicing the present invention.

[0019] The term "cell density" as used herein refers to that number of cells present in a given volume of medium.

[0020] The terms "culture", "cell culture" and "eukaryotic cell culture" as used herein refer to a eukaryotic cell population that is suspended in a medium (see definition of "medium" below) under conditions suitable to survival and/or growth of the cell population. As will be clear to those of ordinary skill in the art, these terms as used herein can refer to the combination comprising the mammalian cell population and the medium in which the population is suspended.

[0021] The term "fed-batch culture" as used herein refers to a method of culturing cells in which additional components are provided to the culture at some time subsequent to the beginning of the culture process. A fed-batch culture can be started using a basal medium. The culture medium with which additional components are provided to the culture at some time subsequent to the beginning of the culture process is a feed medium. The provided components typically comprise nutritional supplements for the cells which have been depleted during the culturing process. In one embodiment, a feed medium described herein comprises dextran sulfate or a mixture of dextran sulfate and ferric citrate. In another embodiment, a feed medium described herein consists of dextran sulfate or a
mixture of dextran sulfate and ferric citrate. A fed-batch culture is typically stopped at some point and the cells and/or components in the medium are harvested and optionally purified.

"Growth phase" of the cell culture refers to the period of exponential cell growth (the log phase) where cells are generally rapidly dividing. During this phase, cells are cultured for a period of time, usually between 1-4 days, and under such conditions that cell growth is maximized. The determination of the growth cycle for the host cell can be determined for the particular host cell envisioned without undue experimentation. "Period of time and under such conditions that cell growth is maximized" and the like, refer to those culture conditions that, for a particular cell line, are determined to be optimal for cell growth and division. During the growth phase, cells are cultured in nutrient medium containing the necessary additives generally at about 25°-40°C, in a humidified, controlled atmosphere, such that optimal growth is achieved for the particular cell line. Cells are maintained in the growth phase for a period of about between one and four days, usually between two to three days. The length of the growth phase for the particular cells can be determined without undue experimentation. For example, the length of the growth phase will be the period of time sufficient to allow the particular cells to reproduce to a viable cell density within a range of about 20% -80% of the maximal possible viable cell density if the culture was maintained under the growth conditions.

"Production phase" of the cell culture refers to the period of time during which cell growth has plateaued. During the production phase, logarithmic cell growth has ended and protein production is primary. During this period of time the medium is generally supplemented to support continued protein production and to achieve the desired glycoprotein product.

The term "expression" or "expresses" are used herein to refer to transcription and translation occurring within a host cell. The level of expression of a product gene in a host cell can be determined on the basis of either the amount of corresponding mRNA that is present in the cell or the amount of the protein encoded by the product gene that is produced by the cell. For example, mRNA transcribed from a product gene is desirably quantitated by northern hybridization. Sambrook et al, Molecular Cloning: A Laboratory Manual, pp. 7.3-7.57 (Cold Spring Harbor Laboratory Press, 1989). Protein encoded by a product gene can be quantitated either by assaying for the biological activity of the
protein or by employing assays that are independent of such activity, such as western blotting or radioimmunoassay using antibodies that are capable of reacting with the protein. Sambrook et al, Molecular Cloning: A Laboratory Manual, pp. 18.1-18.88 (Cold Spring Harbor Laboratory Press, 1989).

The term "hybridoma" as used herein refers to a cell created by fusion of an immortalized cell derived from an immunologic source and an antibody-producing cell. The resulting hybridoma is an immortalized cell that produces antibodies. The individual cells used to create the hybridoma can be from any mammalian source, including, but not limited to, rat, pig, rabbit, sheep, pig, goat, and human. The term also encompasses trioma cell lines, which result when progeny of heterohybrid myeloma fusions, which are the product of a fusion between human cells and a murine myeloma cell line, are subsequently fused with a plasma cell. Furthermore, the term is meant to include any immortalized hybrid cell line that produces antibodies such as, for example, quadromas (See, e.g., Milstein et al, Nature, 537:3053 (1983)).

The terms "medium", "cell culture medium", "culture medium", and "growth medium" as used herein refer to a solution containing nutrients which nourish growing eukaryotic cells. Typically, these solutions provide essential and not-essential amino acids, vitamins, energy sources, lipids, and trace elements required by the cell for minimal growth and/or survival. The solution can also contain components that enhance growth and/or survival above the minimal rate, including hormones and growth factors. The solution is formulated to a pH and salt concentration optimal for cell survival and proliferation. The medium can also be a "defined medium" or "chemically defined medium"—a serum-free medium that contains no proteins, hydrolysates or components of unknown composition. Defined media are free of animal-derived components and all components have a known chemical structure. One of skill in the art understands a defined medium can comprise recombinant polypeptides or proteins, for example, but not limited to, hormones, cytokines, interleukins and other signaling molecules.

The term "perfusion culture" as used herein refers to a method of culturing cells in which additional components are provided continuously or semi-continuously to the culture subsequent to the beginning of the culture process. The provided components typically comprise nutritional supplements for the cells which have been depleted during
the culturing process. A portion of the cells and/or components in the medium are typically harvested on a continuous or semi-continuous basis and are optionally purified.

The terms "polypeptide" or "protein" as used herein refers a sequential chain of amino acids linked together via peptide bonds. The term is used to refer to an amino acid chain of any length, but one of ordinary skill in the art will understand that the term is not limited to lengthy chains and can refer to a minimal chain comprising two amino acids linked together via a peptide bond. If a single polypeptide is the discrete functioning unit and does require permanent physical association with other polypeptides in order to form the discrete functioning unit, the terms "polypeptide" and "protein" as used herein are used interchangeably. If discrete functional unit is comprised of more than one polypeptide that physically associate with one another, the term "protein" as used herein refers to the multiple polypeptides that are physically coupled and function together as the discrete unit.

"Recombinantly expressed polypeptide" and "recombinant polypeptide" as used herein refer to a polypeptide expressed from a host cell that has been genetically engineered to express that polypeptide. The recombinantly expressed polypeptide can be identical or similar to polypeptides that are normally expressed in the mammalian host cell. The recombinantly expressed polypeptide can also foreign to the host cell, i.e. heterologous to peptides normally expressed in the mammalian host cell. Alternatively, the recombinantly expressed polypeptide can be chimeric in that portions of the polypeptide contain amino acid sequences that are identical or similar to polypeptides normally expressed in the mammalian host cell, while other portions are foreign to the host cell. As used herein, the terms "recombinantly expressed polypeptide" and "recombinant polypeptide" also encompasses an antibody produced by a hybridoma.

The term "seeding" as used herein refers to the process of providing a cell culture to a bioreactor or another vessel. In one embodiment, the cells have been propagated previously in another bioreactor or vessel. In another embodiment, the cells have been frozen and thawed immediately prior to providing them to the bioreactor or vessel. The term refers to any number of cells, including a single cell.

The term "titer" as used herein refers to the total amount of recombinantly expressed polypeptide or protein produced by a cell culture divided by a given amount of medium volume. Titer is typically expressed in units of milligrams of polypeptide or
protein per milliliter of medium or in units of grams of polypeptide or protein per liter of medium.

[0032] As used in the present disclosure and claims, the singular forms "a", "an", and "the" include plural forms unless the context clearly dictates otherwise.

[0033] It is understood that whenever embodiments are described herein with the language "comprising" otherwise analogous embodiments described in terms of "consisting" and/or "consisting essentially of" are also provided.

II. Cell culture medium and methods of using thereof

[0034] The present invention relates to cell culture media and methods of use thereof. The media of the invention reduces lot-to-lot metabolic variability associated with a metabolic shift to lactate production. A medium according to the invention can be used in a batch culture, fed-batch culture or a perfusion culture. In one embodiment, a medium of the invention is a basal medium. In another embodiment, a medium of the invention is a feed medium.

[0035] In one embodiment, a medium according to the present invention comprises dextran sulfate. A medium can comprise sufficient amount of dextran sulfate to increase the dextran sulfate concentration in the culture by between about 0.01 g/L and about 5 g/L. In one embodiment, a feed medium described herein comprises sufficient amount of dextran sulfate to increase the dextran sulfate concentration in the culture by between about 0.01 g/L and about 5 g/L, about 0.01 g/L and about 4 g/L, about 0.01 g/L and about 3 g/L, about 0.01 g/L and about 2 g/L, about 0.01 g/L and about 1 g/L, about 0.01 g/L and about 0.5 g/L, about 0.01 g/L and about 0.25 g/L, about 0.05 g/L and about 0.25 g/L, about 0.05 g/L and about 4 g/L, about 0.05 g/L and about 3 g/L, about 0.05 g/L and about 2 g/L, about 0.05 g/L and about 1 g/L, about 0.05 g/L and about 0.5 g/L, about 0.05 g/L and about 0.25 g/L, about 0.1 g/L and about 5 g/L, about 0.1 g/L and about 4 g/L, about 0.1 g/L and about 3 g/L, about 0.1 g/L and about 2 g/L, about 0.1 g/L and about 1 g/L, about 0.1 g/L and about 0.5 g/L, about 0.1 g/L and about 0.25 g/L, about 0.2 g/L and about 4 g/L, about 0.2 g/L and about 3 g/L, about 0.2 g/L and about 2 g/L, about 0.2 g/L and about 1 g/L, about 0.2 g/L and about 0.5 g/L, about 0.2 g/L and about 0.25 g/L, about 0.25 g/L and about 5 g/L, about 0.25 g/L and about 4 g/L, about 0.25 g/L and about 3 g/L, about 0.25 g/L and about 2 g/L, about 0.25 g/L and about 1 g/L, or about 0.25 g/L and about 0.5 g/L. In another embodiment, a feed medium described
herein comprises sufficient amount of dextran sulfate to increase the dextran sulfate concentration in the culture by about 0.01 g/L, about 0.02 g/L, about 0.03 g/L, about 0.04 g/L, about 0.05 g/L, about 0.06 g/L, about 0.07 g/L, about 0.08 g/L, about 0.09 g/L, about 0.1 g/L, about 0.15 g/L, about 0.2 g/L, about 0.25 g/L, about 0.5 g/L, about 0.6 g/L, about 0.7 g/L, about 0.8 g/L, about 0.9 g/L, about 1 g/L, about 1.5 g/L, about 2 g/L, about 2.5 g/L, about 3 g/L, about 3.5 g/L, about 4 g/L, about 4.5 g/L, or about 5 g/L. A skilled artisan readily understands that the absolute amount of dextran sulfate supplemented by a feed medium to a cell culture can be calculated from the volume of feed medium added to the culture and the dextran sulfate concentration of the feed medium.

[0036] In one embodiment, a medium according to the present invention comprises a mixture of dextran sulfate and ferric citrate. A medium can comprise sufficient amount of ferric citrate to increase the ferric citrate concentration in the culture by between about 1 mM and about 50 mM. In one embodiment, a feed medium described herein comprises sufficient amount of ferric citrate to increase the ferric citrate concentration in the culture by between about 1 mM and about 50 mM, about 1 mM and about 40 mM, about 1 mM and about 35 mM, about 1 mM and about 30 mM, about 1 mM and about 25 mM, about 1 mM and about 20 mM, about 1 mM and about 15 mM, about 1 mM and about 14 mM, about 1 mM and about 13 mM, about 1 mM and about 12 mM, about 1 mM and about 11 mM, about 1 mM and about 10 mM, about 2 mM and about 50 mM, about 3 mM and about 50 mM, about 4 mM and about 50 mM, about 5 mM and about 50 mM, about 5 mM and about 50 mM, or about 30 mM and about 50 mM. In another embodiment, a feed medium described herein comprises sufficient amount of ferric citrate to increase the ferric citrate concentration in the culture by about 1 mM, about 2 mM, about 3 mM, about 4 mM, about 5 mM, about 6 mM, about 7 mM, about 8 mM, about 9 mM, about 10 mM, about 11 mM, about 12 mM, about 13 mM, about 14 mM, about 15 mM, about 16 mM, about 17 mM, about 18 mM, about 19 mM, about 20 mM, about 21 mM, about 22 mM, about 23 mM, about 24 mM, about 25 mM, about 30 mM, about 35 mM, about 40, about 45 mM or about 50 mM. A skilled artisan readily understands that the absolute amount of ferric citrate supplemented by a feed medium to a cell culture can be calculated from the volume of feed medium added to the culture and the ferric citrate concentration of the feed medium.
In one embodiment, a medium described herein is a serum-free medium, animal protein-free medium or a chemically-defined medium. In a specific embodiment, a medium described herein is a chemically-defined medium.

The present invention further provides a cell culture composition comprising a medium described herein and cells.

In one embodiment, a cell culture composition according to the invention can be a batch culture, fed-batch culture or a perfusion culture. In a specific embodiment, a cell culture composition of the invention is a fed batch culture.

In one embodiment, a cell culture composition described herein comprises mammalian cells selected from the group consisting of CHO cells, HEK cells, NSO cells, PER.C6 cells, 293 cells, HeLa cells, and MDCK cells. In a specific embodiment, a cell culture composition described herein comprises CHO cells. In another specific embodiment, a cell culture composition described herein comprises HEK cells. In another specific embodiment, a cell culture composition described herein comprises hybridoma cells.

A cell culture composition described herein can comprise cells that have been adapted to grow in serum free medium, animal protein free medium or chemically defined medium. Or it can comprise cells that have been genetically modified to increase their life-span in culture. In one embodiment, the cells have been modified to express an anti-apoptotic gene. In a specific embodiment, the cells have been modified to express the bcl-xL antiapoptotic gene. Additional anti-apoptotic genes that can be used in accordance with the present invention include, but are not limited to, E1B-9K, Aven, Mcl.

The present invention provides a method of culturing cells, comprising contacting the cells with a medium disclosed herein.

Cell cultures can be cultured in a batch culture, fed batch culture or a perfusion culture. In one embodiment, a cell culture according to a method of the present invention is a batch culture. In another embodiment, a cell culture according to a method of the present invention is a fed batch culture. In a further embodiment, a cell culture according to a method of the present invention is a perfusion culture.

In one embodiment, a cell culture according to a method of the present invention is a serum-free culture. In another embodiment, a cell culture according to a method of
the present invention is a chemically defined culture. In a further embodiment, a cell culture according to a method of the present invention is an animal protein free culture.

In one embodiment, a cell culture is contacted with a medium described herein during the growth phase of the culture. In another embodiment, a cell culture is contacted with a medium described herein during the production phase of the culture.

In one embodiment, a cell culture according to the invention is contacted with a feed medium described herein during the production phase of the culture. In one embodiment, the culture is supplemented with the feed medium between about 1 and about 25 times during the second time period. In another embodiment, a culture is supplemented with the feed medium between about 1 and about 20 times, between about 1 and about 15 times, or between about 1 and about 10 times during the first time period. In a further embodiment, a culture is supplemented with the feed medium at least once, at least twice, at least three times, at least four times, at least five times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, at least 10 times, at least 1 times, at least 12 times, at least 13 times, at least 14 times, at least 15 times, at least 20 times, at least 25 times. In a specific embodiment, the culture is a fed batch culture. In another specific embodiment, the culture is a perfusion culture.

A culture according to the invention can be contacted with a feed medium described herein at regular intervals. In one embodiment, the regular interval is about once a day, about once every two days, about once every three days, about once every 4 days, or about once every 5 days. In a specific embodiment, the culture is a fed batch culture. In another specific embodiment, the culture is a perfusion culture.

A culture according to the invention can be contacted with a feed medium described herein on an as needed basis based on the metabolic status of the culture. In one embodiment, a metabolic marker of a fed batch culture is measured prior to supplementing the culture with a feed medium described herein. In one embodiment, the metabolic marker is selected from the group consisting of: lactate concentration, ammonium concentration, alanine concentration, glutamine concentration, glutamate concentration, cell specific lactate production rate to the cell specific glucose uptake rate ratio (LPR/GUR ratio), and Rhodamine 123 specific cell fluorescence. In one embodiment, an LPR/GUR value of >0.1 indicates the need to supplement the culture with a feed medium described herein. In a further specific embodiment, a lactate
concentration of >3g/L indicates the need to supplement the culture with a feed medium described herein. In another embodiment, a culture according to the present invention is supplemented with a feed medium described herein when the LPR/GUR value of the culture is >0.1 or when the lactate concentration of the culture is >3g/L. In a specific embodiment, the culture is a fed batch culture. In another specific embodiment, the culture is a perfusion culture.

[0049] In one embodiment, a medium described herein is a feed medium for a fed batch cell culture. A skilled artisan understands that a fed batch cell culture can be contacted with a feed medium more than once. In one embodiment, a fed batch cell culture is contacted with a medium described herein only once. In another embodiment, a fed batch cell culture is contacted with a medium described herein more than once, for example, at least twice, at least three times, at least four times, at least five times, at least six times, at least seven times, or at least ten times.

[0050] In accordance with the present invention, the total volume of feed medium added to a cell culture should optimally be kept to a minimal amount. For example, the total volume of the feed medium added to the cell culture can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 or 50% of the volume of the cell culture prior to adding the feed medium.

[0051] Cell cultures can be grown to achieve a particular cell density, depending on the needs of the practitioner and the requirement of the cells themselves, prior to being contacted with a medium described herein. In one embodiment, the cell culture is contacted with a medium described herein at a viable cell density of 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 99 percent of maximal viable cell density. In a specific embodiment, the medium is a feed medium.

[0052] Cell cultures can be allowed to grow for a defined period of time before they are contacted with a medium described herein. In one embodiment, the cell culture is contacted with a medium described herein at day 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the cell culture. In another embodiment, the cell culture is contacted with a medium described herein at week 1, 2, 3, 4, 5, 6, 7, or 8 of the cell culture. In a specific embodiment, the medium is a feed medium.
Cell cultures can be cultured in the production phase for a defined period of time. In one embodiment, the cell culture is contacted with a feed medium described herein at day 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the production phase.

A culture according to the invention can be maintained in production phase for between about 1 day and about 30 days. In one embodiment, a culture is maintained in production phase for between about 1 day and about 30 days, between about 1 day and about 25 days, between about 1 day and about 20 days, about 1 day and about 15 days, about 1 day and about 14 days, about 1 day and about 13 days, about 1 day and about 12 days, about 1 day and about 11 days, about 1 day and about 10 days, about 1 day and about 9 days, about 1 day and about 8 days, about 1 day and about 7 days, about 1 day and about 6 days, about 1 day and about 5 days, about 1 day and about 4 days, about 1 day and about 3 days, about 2 days and about 25 days, about 3 days and about 25 days, about 4 days and about 25 days, about 5 days and about 25 days, about 6 days and about 25 days, about 7 days and about 25 days, about 8 days and about 25 days, about 9 days and about 25 days, about 10 days and about 25 days, about 15 days and about 25 days, about 20 days and about 25 days, about 2 days and about 30 days, about 3 days and about 30 days, about 4 days and about 30 days, about 5 days and about 30 days, about 6 days and about 30 days, about 7 days and about 30 days, about 8 days and about 30 days, about 9 days and about 30 days, about 10 days and about 30 days, about 15 days and about 30 days, about 20 days and about 30 days, or about 25 days and about 30 days. In another embodiment, a culture is maintained in production phase for at least about 1 day, at least about 2 days, at least about 3 days, at least about 4 days, at least about 5 days, at least about 6 days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 11 days, at least about 12 days, at least about 15 days, at least about 20 days, at least about 25 days, or at least about 30 days. In a further embodiment, a culture is maintained in production phase for about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 7 days, about 8 days, about 9 days, about 10 days, about 11 days, about 12 days, about 15 days, about 20 days, about 25 days, or about 30 days.

The present invention further provides a method of preventing or reducing metabolic imbalance in a cell culture. Metabolic imbalance can be monitored by
measuring the levels of metabolites in the cell culture. For example, metabolic imbalance can be detected by monitoring lactate production, ammonium production, the ratio of cell specific lactate production rate (LPR) to cell specific glucose uptake rate (GUR), alanine consumption, or glutamine consumption in a cell culture. In one embodiment, metabolic imbalance is signaled by increased lactate production, increased ammonium production or an increase in the cell specific lactate production rate to cell specific glucose uptake rate ratio ("LPR/GUR ratio"). In another embodiment, metabolic imbalance is signaled by an increase in alanine consumption or by an increase in glutamine consumption.

[0056] In one embodiment, a method of culturing cells according to the present invention prevents or reduces mitochondrial dysfunction or metabolic imbalance during the exponential growth phase. In another embodiment, a method of culturing cells according to the present invention prevents or reduces mitochondrial dysfunction or metabolic imbalance after the cells passed the exponential growth phase. In a further embodiment, a method of culturing cells according to the present invention prevents or reduces mitochondrial dysfunction or metabolic imbalance during the production phase.

[0057] The present invention also provides a method of decreasing lactate production by a cell culture, comprising contacting the cell culture with a medium described herein. In one embodiment, the lactate production of cells maintained in a culture medium described herein is between about 5% and about 90%, between about 5%, and about 80%, between about 5%, and about 70%, between about 5%, and about 50%, between about 5%, and about 40%, between about 5%, and about 30%, between about 5%, and about 20%, between about 10%, and about 90%, between about 20%, and about 90%, between about 30%, and about 90%, or between about 50%, and about 90%, or at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 50%, or at least about 90%, or about 5%, about 10%, about 20%, about 30%, about 50%, or about 90% lower than the lactate production of cells maintained in a culture medium that is substantially free from dextran sulfate or ferric citrate. In one embodiment, a cell culture described herein comprises between about 0.1 g/L and about 6 g/L, between about 0.1 g/L and about 5 g/L, between about 0.1 g/L and about 4 g/L, or between about 0.1 g/L and about 3 g/L of lactate. In another embodiment, a cell culture described herein comprises less than about 6 g/L, about 5 g/L, about 4 g/L, about 3 g/L, about 2 g/L or about 1 g/L lactate.
The present invention also provides a method of decreasing ammonium production by a cell culture, comprising contacting the cell culture with a medium described herein. In one embodiment, the ammonium production of cells maintained in a culture medium described herein is between about 5% and about 90%, between about 5%, and about 80%, between about 5%, and about 70%, between about 5%, and about 50%, between about 5%, and about 40%, between about 5%, and about 30%, between about 5%, and about 20%, between about 10%, and about 90%, between about 20%, and about 90%, between about 30%, and about 90%, or between about 50%, and about 90%, or at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 50%, or at least about 90%, or about 5%, about 10%, about 20%, about 30%, about 50%, or about 90% lower than the ammonium production of cells maintained in a culture medium that is substantially free from dextran sulfate or ferric citrate. In one embodiment, a cell culture described herein comprises between about 0.1 mM and about 20 mM, about 0.1 mM and about 15 mM, about 0.1 mM and about 14 mM, about 0.1 mM and about 13 mM, about 0.1 mM and about 12 mM, about 0.1 mM and about 11 mM, about 0.1 mM and about 10 mM, about 0.1 mM and about 9 mM, about 0.1 mM and about 8 mM, about 0.1 mM and about 7 mM, about 0.1 mM and about 6 mM, about 0.1 mM and about 5 mM, about 0.1 mM and about 4 mM, about 0.1 mM and about 3 mM, about 0.1 mM and about 2 mM, about 0.1 mM and about 1 mM, about 0.5 mM and about 20 mM, about 0.5 mM and about 15 mM, about 0.5 mM and about 14 mM, about 0.5 mM and about 13 mM, about 0.5 mM and about 12 mM, about 0.5 mM and about 11 mM, about 0.5 mM and about 10 mM, about 0.5 mM and about 9 mM, about 0.5 mM and about 8 mM, about 0.5 mM and about 7 mM, about 0.5 mM and about 6 mM, about 0.5 mM and about 5 mM, about 0.5 mM and about 4 mM, about 0.5 mM and about 3 mM, about 0.5 mM and about 2 mM, about 0.5 mM and about 1 mM, about 1 mM and about 20 mM, about 1 mM and about 15 mM, about 1 mM and about 14 mM, about 1 mM and about 13 mM, about 1 mM and about 12 mM, about 1 mM and about 11 mM, about 1 mM and about 10 mM, about 1 mM and about 9 mM, about 1 mM and about 8 mM, about 1 mM and about 7 mM, about 1 mM and about 6 mM, about 1 mM and about 5 mM, about 1 mM and about 4 mM, about 1 mM and about 3 mM, about 1 mM and about 2 mM, about 1 mM and about 1 mM, and about 1 mM ammonium. In another embodiment, a cell culture described herein comprises less than about 20 mM, about 19 mM, about 18 mM, about 17 mM, about 16
mM, about 15 mM, about 14 mM, about 13 mM, about 12 mM, about 11 mM, about 10 mM, about 9 mM, about 8 mM, about 7 mM, about 6 mM, about 5 mM, about 4 mM, about 3 mM, about 2 mM, about 1 mM, or about 0.5 mM ammonium.

The present invention further provides a method of producing a protein or polypeptide of interest, comprising culturing cells capable of producing the protein or polypeptide of interest in a culture comprising a medium described herein; and isolating the protein or polypeptide from the culture. In one embodiment, the protein or polypeptide of interest is a recombinant protein or polypeptide. In one embodiment, the protein or polypeptide of interest is an enzyme, receptor, antibody, hormone, regulatory factor, antigen, or binding agent. In a specific embodiment, the protein is an antibody.

In one embodiment of the present invention, a cell culture comprising a medium described herein can be maintained in production phase longer than a cell culture that does not comprise exogenous dextran sulfate. A skilled artisan readily understands that an extended production phase can lead to an increase in the total amount of polypeptide produce by the cell culture. In one embodiment, a method of producing a polypeptide of interest according to the present invention produces more polypeptide than the amount produced by a method that does not comprise maintaining cells capable of producing the polypeptide in a culture comprising exogenous dextran sulfate. In one embodiment, a method according to the present invention produces between about 5% and about 500%, about 5% and about 250%, about 5% and about 100%, about 5% and about 80%, about 5% and about 50%, about 5% and about 30%, about 10% and about 500%, about 20% and about 500%, about 30% and about 500%, about 50% and about 500%, or about 100% and about 500% more protein or polypeptide. In another embodiment, a method according to the present invention produces at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 70%, at least about 90%, or at least about 100% more protein or polypeptide. In another embodiment, a method according to the present invention produces at least about 2 times, three times, four times, five times or ten times more protein or polypeptide. In a specific embodiment, the protein or polypeptide is an antibody.

In one embodiment, a method of producing a polypeptide of interest according to the present invention produces a higher titer of the polypeptide in the cell culture than the
titer produced by a method that does not comprise maintaining the cells in a culture comprising dextran sulfate. In one embodiment, a method according to the present invention produces between about 5% and about 500%, about 5% and about 250%, about 5% and about 100%, about 5% and about 80%, about 5% and about 50%, about 5% and about 30%, about 10% and about 500%, about 20% and about 500%, about 30% and about 500%, about 50% and about 500%, or about 100% and about 500% higher titer. In another embodiment, a method according to the present invention produces at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 70%, at least about 90%, or at least about 100% higher titer. In another embodiment, a method according to the present invention produces at least about 2 times, three times, four times, five times or ten times higher titer. In a specific embodiment, the protein or polypeptide is an antibody.

[0062] In a specific embodiment, a method of producing a polypeptide of interest according to the present invention produces a maximum protein or polypeptide titer of at least about 2 g/liter, at least about 2.5 g/liter, at least about 3 g/liter, at least about 3.5 g/liter, at least about 4 g/liter, at least about 4.5 g/liter, at least about 5 g/liter, at least about 6 g/liter, at least about 7 g/liter, at least about 8 g/liter, at least about 9 g/liter, or at least about 10 g/liter. In another embodiment, the method according to the present invention produces a maximum protein or polypeptide titer of between about 1 g/liter and about 10 g/liter, about 1.5 g/liter and about 10 g/liter, about 2 g/liter and about 10 g/liter, about 2.5 g/liter and about 10 g/liter, about 3 g/liter and about 10 g/liter, about 4 g/liter and about 10 g/liter, about 5 g/liter and about 10 g/liter, about 1 g/liter and about 5 g/liter, about 1 g/liter and about 4.5 g/liter, or about 1 g/liter and about 4 g/liter. In a specific embodiment, the protein or polypeptide is an antibody. In another embodiment, the protein or polypeptide is a blood clotting factor.

[0063] The invention further provides a conditioned cell culture medium produced by a method described herein.

[0064] In one embodiment, a conditioned cell culture medium according to the invention comprises a recombinant protein or polypeptide. In a specific embodiment, a conditioned cell culture medium according to the invention comprises a recombinant protein or polypeptide at a titer of at least about 2 g/liter, at least about 2.5 g/liter, at least about 3 g/liter, at least about 3.5 g/liter, at least about 4 g/liter, at least about 4.5 g/liter, at least
about 5 g/liter, at least about 6 g/liter, at least about 7 g/liter, at least about 8 g/liter, at
least about 9 g/liter, or at least about 10 g/liter, or a titer of between about 1 g/liter and
about 10 g/liter, about 1.5 g/liter and about 10 g/liter. about 2 g/liter and about 10 g/liter.
about 2.5 g/liter and about 10 g/liter, about 3 g/liter and about 10 g/liter, about 4 g/liter
and about 10 g/liter, about 5 g/liter and about, 10 g/liter, about 1 g/liter and about 5 g/liter,
about 4.5 g/liter and about 4.5 g/liter, or about 1 g/liter and about 4 g/liter. In another
embodiment, a conditioned cell culture medium according to the invention comprises a
recombinant protein or polypeptide at a higher titer than the titer obtained without the use
of a medium described herein. In a specific embodiment, the protein or polypeptide is an
antibody.

Polypeptides

[0065] Any polypeptide that is expressible in a host cell can be produced in accordance
with the present invention. The polypeptide can be expressed from a gene that is
endogenous to the host cell, or from a gene that is introduced into the host cell through
genetic engineering. The polypeptide can be one that occurs in nature, or can alternatively
have a sequence that was engineered or selected by the hand of man. An engineered
polypeptide can be assembled from other polypeptide segments that individually occur in
nature, or can include one or more segments that are not naturally occurring.

[0066] Polypeptides that can desirably be expressed in accordance with the present
invention will often be selected on the basis of an interesting biological or chemical
activity. For example, the present invention can be employed to express any
pharmacologically or commercially relevant enzyme, receptor, antibody, hormone,
regulatory factor, antigen, binding agent, etc.

[0067] Particularly useful polypeptides are those that are highly negatively charged.
Examples of highly negatively charged polypeptides include, but are not limited to,
neublastin and Factor VIII.

Antibodies

[0068] Given the large number of antibodies currently in use or under investigation as
pharmaceutical or other commercial agents, production of antibodies is of particular
interest in accordance with the present invention. Antibodies are proteins that have the
ability to specifically bind a particular antigen. Any antibody that can be expressed in a
kost cell can be used in accordance with the present invention. In one embodiment, the
antibody to be expressed is a monoclonal antibody.

Particular antibodies can be made, for example, by preparing and expressing
synthetic genes that encode the recited amino acid sequences or by mutating human
germline genes to provide a gene that encodes the recited amino acid sequences.
Moreover, these antibodies can be produced, *e.g.*, using one or more of the following
methods.

Numerous methods are available for obtaining antibodies, particularly human
antibodies. One exemplary method includes screening protein expression libraries, *e.g.*, phage or ribosome display libraries. Phage display is described, for example, U.S. Pat.
92/20791; WO 92/15679; WO 93/01288; WO 92/01047; WO 92/09690; and WO
90/02809. The display of Fab's on phage is described, *e.g.*, in U.S. Pat. Nos. 5,658,727;
5,667,988; and 5,885,793.

In addition to the use of display libraries, other methods can be used to obtain an
antibody. For example, a protein or a peptide thereof can be used as an antigen in a non-
human animal, *e.g.*, a rodent, *e.g.*, a mouse, hamster, or rat.

In one embodiment, the non-human animal includes at least a part of a human
immunoglobulin gene. For example, it is possible to engineer mouse strains deficient in
mouse antibody production with large fragments of the human Ig loci. Using the
hybridoma technology, antigen-specific monoclonal antibodies derived from the genes
with the desired specificity can be produced and selected. See, *e.g.*, XENOMOUSE™,
WO 96/33735.

In another embodiment, a monoclonal antibody is obtained from the non-human
animal, and then modified, *e.g.*, humanized or deimmunized. Winter describes an
exemplary CDR-grafting method that can be used to prepare humanized antibodies
described herein (U.S. Pat. No. 5,225,539). All or some of the CDRs of a particular
human antibody can be replaced with at least a portion of a non-human antibody. In one
embodiment, it is only necessary to replace the CDRs required for binding or binding
determinants of such CDRs to arrive at a useful humanized antibody that binds to an
antigen.
Humanized antibodies can be generated by replacing sequences of the Fv variable region that are not directly involved in antigen binding with equivalent sequences from human Fv variable regions. General methods for generating humanized antibodies are provided by Morrison, S. L. (1985) *Science* 229:1202-1207, by Oi et al. (1986) *BioTechniques* 4:214, and by U.S. Pat. No. 5,585,089; U.S. Pat. No. 5,693,761; U.S. Pat. No. 5,693,762; U.S. Pat. No. 5,859,205; and U.S. Pat. No. 6,407,213. Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobin Fv variable regions from at least one of a heavy or light chain. Sources of such nucleic acid are well known to those skilled in the art and, for example, can be obtained from a hybridoma producing an antibody against a predetermined target, as described above, from germline immunoglobin genes, or from synthetic constructs. The recombinant DNA encoding the humanized antibody can then be cloned into an appropriate expression vector. In one embodiment, the expression vector comprises a polynucleotide encoding a glutamine synthetase polypeptide. *(See, e.g., Porter et al, Biotechnol Prog 26(5): 1446-54 (2010).)*

The antibody can include a human Fc region, *e.g.*, a wild-type Fc region or an Fc region that includes one or more alterations. In one embodiment, the constant region is altered, *e.g.*, mutated, to modify the properties of the antibody *(e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, or complement function).* For example, the human IgGl constant region can be mutated at one or more residues, *e.g.*, one or more of residues 234 and 237. Antibodies can have mutations in the CH2 region of the heavy chain that reduce or alter effector function, *e.g.*, Fc receptor binding and complement activation. For example, antibodies can have mutations such as those described in U.S. Pat. Nos. 5,624,823 and 5,648,260. Antibodies can also have mutations that stabilize the disulfide bond between the two heavy chains of an immunoglobin, such as mutations in the hinge region of IgG4, as disclosed in the art *(e.g., Angai et al. (1993) Mo!. Immunol. 30: 105-08).* See also, *e.g.*, U.S. 2005-0037000.

In other embodiments, the antibody can be modified to have an altered glycosylation pattern *(i.e., altered from the original or native glycosylation pattern).* As used in this context, "altered" means having one or more carbohydrate moieties deleted, and/or having one or more glycosylation sites added to the original antibody. Addition of
glycosylation sites to the presently disclosed antibodies can be accomplished by altering the amino acid sequence to contain glycosylation site consensus sequences; such techniques are well known in the art. Another means of increasing the number of carbohydrate moieties on the antibodies is by chemical or enzymatic coupling of glycosides to the amino acid residues of the antibody. These methods are described in, e.g., WO 87/05330, and Aplin and Wriston (1981) CRC Crit. Rev. Biochem. 22:259-306. Removal of any carbohydrate moieties present on the antibodies can be accomplished chemically or enzymatically as described in the art (Hakimuddin et al. (1987) Arch. Biochem. Biophys. 259:52; Edge et al. (1981) Anal. Biochem. 118:131; and Thotakura et al. (1987) Meth. Enzymol. 138:350). See, e.g., U.S. Pat. No. 5,869,046 for a modification that increases in vivo half-life by providing a salvage receptor binding epitope.

[0077] The antibodies can be in the form of full length antibodies, or in the form of fragments of antibodies, e.g., Fab, F(ab')2, Fd, dAb, and scFv fragments. Additional forms include a protein that includes a single variable domain, e.g., a camel or camelized domain. See, e.g., U.S. 2005-0079574 and Davies et al. (1996) Protein Eng. 9(6):531-7.

[0078] In one embodiment, the antibody is an antigen-binding fragment of a full length antibody, e.g., a Fab, F(ab')2, Fv or a single chain Fv fragment. Typically, the antibody is a full length antibody. The antibody can be a monoclonal antibody or a mono-specific antibody.

[0079] In another embodiment, the antibody can be a human, humanized, CDR-grafted, chimeric, mutated, affinity matured, deimmunized, synthetic or otherwise in vitro-generated antibody, and combinations thereof.

[0080] The heavy and light chains of the antibody can be substantially full-length. The protein can include at least one, and preferably two, complete heavy chains, and at least one, and preferably two, complete light chains) or can include an antigen-binding fragment (e.g., a Fab, F(ab')2, Fv or a single chain Fv fragment). In yet other embodiments, the antibody has a heavy chain constant region chosen from, e.g., IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, and IgE; particularly, chosen from, e.g., IgG1, IgG2, IgG3, and IgG4, more particularly, IgG1 (e.g., human IgG1). Typically, the heavy chain constant region is human or a modified form of a human constant region. In another embodiment, the antibody has a light chain constant region chosen from, e.g., kappa or lambda, particularly, kappa (e.g., human kappa).
Receptors

Another class of polypeptides that have been shown to be effective as pharmaceutical and/or commercial agents includes receptors. Receptors are typically trans-membrane glycoproteins that function by recognizing an extra-cellular signaling ligand. Receptors typically have a protein kinase domain in addition to the ligand recognizing domain, which initiates a signaling pathway by phosphorylating target intracellular molecules upon binding the ligand, leading to developmental or metabolic changes within the cell. In one embodiment, the receptors of interest are modified so as to remove the transmembrane and/or intracellular domain(s), in place of which there can optionally be attached an Ig-domain. In one embodiment, receptors to be produced in accordance with the present invention are receptor tyrosine kinases (RTKs). The RTK family includes receptors that are crucial for a variety of functions numerous cell types (see, e.g., Yarden and Ullrich, Ann. Rev. Biochem. 57:433-478, 1988; Ullrich and Schlessinger, Cell 61:243-254, 1990, incorporated herein by reference). Non-limiting examples of RTKs include members of the fibroblast growth factor (FGF) receptor family, members of the epidermal growth factor receptor (EGF) family, platelet derived growth factor (PDGF) receptor, tyrosine kinase with immunoglobulin and EGF homology domains-1 (TIE-1) and TIE-2 receptors (Sato et al, Nature 376(6535):70-74 (1995), incorporated herein by reference) and c-Met receptor, some of which have been suggested to promote angiogenesis, directly or indirectly (Mustonen and Alitalo, J Cell Biol. 129:895-898, 1995). Other non-limiting examples of RTK's include fetal liver kinase 1 (FLK-1) (sometimes referred to as kinase insert domain-containing receptor (KDR) (Terman et al, Oncogene 6:1677-83, 1991) or vascular endothelial cell growth factor receptor 2 (VEGFR-2), fins-like tyrosine kinase-1 (Flt-1) (DeVries et al. Science 255:989-991, 1992; Shibuya et al, Oncogene 5:519-524, 1990), sometimes referred to as vascular endothelial cell growth factor receptor 1 (VEGFR-1), neuropilin-1, endoglin, endosialin, and Axl. Those of ordinary skill in the art will be aware of other receptors that can be expressed in accordance with the present invention.

Growth Factors and Other Signaling Molecules

Another class of polypeptides that have been shown to be effective as pharmaceutical and/or commercial agents includes growth factors and other signaling
molecules. Growth factors are typically glycoproteins that are secreted by cells and bind to and activate receptors on other cells, initiating a metabolic or developmental change in the receptor cell.

[0083] Non-limiting examples of mammalian growth factors and other signaling molecules include cytokines; epidermal growth factor (EGF); platelet-derived growth factor (PDGF); fibroblast growth factors (FGFs) such as aFGF and bFGF; transforming growth factors (TGFs) such as TGF-alpha and TGF-beta, including TGF-beta 1, TGF-beta 2, TGF-beta 3, TGF-beta 4, or TGF-beta 5; insulin-like growth factor-1 and -II (IGF-I and IGF-II); des(3-3)-IGF-I (brain IGF-I), insulin-like growth factor binding proteins; CD proteins such as CD-3, CD-4, CD-8, and CD-19; erythropoietin; osteoinductive factors; immunotoxins; a bone morphogenetic protein (BMP); an interferon such as interferon-alpha, -beta, and -gamma; colony stimulating factors (CSFs), e.g., M-CSF, GM-CSF, and G-CSF; interleukins (TLs), e.g., IL-1 to IL-10; tumor necrosis factor (TNF) alpha and beta; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin, hemopoietic growth factor; enkephalinase; RANTES (regulated on activation normally T-cell expressed and secreted); human macrophage inflammatory protein (MIP-1-alpha); mullerian-inhibiting substance; relaxin A-chain; relaxin B-chain; prorelaxin; mouse gonadotropin-associated peptide; neurotrophic factors such as bone-derived neurotrophic factor (BDNF), neurotrophin-3, -4, -5, or -6 (NT-3, NT-4, NT-5, or NT-6), or a nerve growth factor such as NGF-beta. One of ordinary skill in the art will be aware of other growth factors or signaling molecules that can be expressed in accordance with the present invention.

Clotting Factors

[0084] In some embodiments, the protein of interest comprises a clotting factor. Clotting factor, as used herein, means any molecule, or analog thereof, which prevents or decreases the duration of a bleeding episode in a subject with a hemostatic disorder. For example, a clotting factor for the invention can be a full-length clotting factor, a mature clotting factor, or a chimeric clotting factor. In other words, it means any molecule having clotting activity. Clotting activity, as used herein, means the ability to participate
in a cascade of biochemical reactions that culminates in the formation of a fibrin clot and/or reduces the severity, duration or frequency of hemorrhage or bleeding episode. Examples of clotting factors can be found in U.S. Pat. No. 7,404,956, which is herein incorporated by reference.

[0085] In one embodiment, the clotting factor is Factor VIII, Factor IX, Factor XI, Factor XII, fibrinogen, prothrombin, Factor V, Factor VII, Factor X, Factor XIII or von Willebrand Factor. The clotting factor can be a factor that participates in the extrinsic pathway. The clotting factor can be a factor that participates in the intrinsic pathway. Alternatively, the clotting factor can be a factor that participates in both the extrinsic and intrinsic pathway.

[0086] In one embodiment, the clotting factor can be a human clotting factor or a non-human clotting factor, e.g., derived from a non-human primate, a pig or any mammal. The clotting factor can be chimeric clotting factor, e.g., the clotting factor can comprise a portion of a human clotting factor and a portion of a porcine clotting factor or a portion of a first non-human clotting factor and a portion of a second non-human clotting factor.

[0087] In another embodiment, the clotting factor can be an activated clotting factor. Alternatively, the clotting factor can be an inactive form of a clotting factor, e.g., a zymogen. The inactive clotting factor can undergo activation subsequent to being linked to at least a portion of an immunoglobulin constant region. The inactive clotting factor can be activated subsequent to administration to a subject. Alternatively, the inactive clotting factor can be activated prior to administration.

[0088] In certain embodiments, the clotting factor is a Factor VIII protein. "Factor VIII protein" or "FVIII protein" as used herein, means functional Factor VIII protein in its normal role in coagulation, unless otherwise specified. Thus, the term FVIII includes variant proteins that are functional. In one embodiment, the FVIII protein is the human, porcine, canine, rat, or murine FVIII protein. A functional FVIII protein can be a fusion protein, such as, but not limited to, a fusion protein comprising a fully or partially B-domain deleted FVIII, at least a portion of an immunoglobulin constant region, e.g., an Fc domain, or both. Myriad functional FVIII variants have been constructed and can be used as recombinant FVIII proteins as described herein. See PCT Publication Nos. WO 2011/069164 A2, WO 2012/006623 A2, WO 2012/006635 A2, or WO 2012/006633 A2, all of which are incorporated herein by reference in their entireties.
[0089] A great many functional FVIII variants are known. In addition, hundreds of nonfunctional mutations in FVIII have been identified in hemophilia patients. See, e.g., Cutler et al., Hum. Mutat. 19:274-8 (2002), incorporated herein by reference in its entirety. In addition, comparisons between FVIII from humans and other species have identified conserved residues that are likely to be required for function. See, e.g., Cameron et al., Thromb. Haemost. 79:3 17-22 (1998) and US 6,251,632, incorporated herein by reference in their entireties.

[0090] In certain aspects, a recombinant FVIII protein of the invention is chimeric. A "chimeric protein," or "chimeric polypeptide" as used herein, means a protein or polypeptide that includes within it at least two stretches of amino acids from different sources, e.g., a FVIII protein comprising a heterologous moiety. In one embodiment, the heterologous moiety can be a half-life extending moiety. Examples of the heterologous moieties include, but are not limited to, an immunoglobulin constant region or a fragment thereof, e.g., an Fc region or an FcRn binding partner, a VWF molecule, or a fragment thereof, albumin, albumin binding polypeptide, Fc, PAS, the β subunit of the C-terminal peptide (CTP) of human chorionic gonadotropin, polyethylene glycol (PEG), hydroxyethyl starch (HES), albumin-binding small molecules, or combinations thereof. In some embodiments, the chimeric protein is a FVIII monomer dimer hybrid.

[0091] A long-acting or long-lasting FIX polypeptide useful for the invention is a chimeric polypeptide comprising a FIX polypeptide and an FcRn binding partner. The FIX polypeptide of the invention comprises a functional Factor IX polypeptide in its normal role in coagulation, unless otherwise specified. Thus, the FIX polypeptide includes variant polypeptides that are functional and the polynucleotides that encode such functional variant polypeptides. In one embodiment, the FIX polypeptides are the human, bovine, porcine, canine, feline, and murine FIX polypeptides. The full length polypeptide and polynucleotide sequences of FIX are known, as are many functional variants, e.g., fragments, mutants and modified versions. FIX polypeptides include full-length FIX, full-length FIX minus Met at the N-terminus, full-length FIX minus the signal sequence, mature FIX (minus the signal sequence and propeptide), and mature FIX with an additional Met at the N-terminus. FIX can be made by recombinant means ("recombinant Factor IX" or "rFIX"), i.e., it is not naturally occurring or derived from plasma.
The clotting factor can also include a FIX protein or any variant, analog, or functional fragments thereof. A great many functional FIX variants are known. International publication number WO 02/040544 A3, which is herein incorporated by reference in its entirety, discloses mutants that exhibit increased resistance to inhibition by heparin at page 4, lines 9-30 and page 15, lines 6-31. International publication number WO 03/020764 A2, which is herein incorporated by reference in its entirety, discloses FIX mutants with reduced T cell immunogenicity in Tables 2 and 3 (on pages 14-24), and at page 12, lines 1-27. International publication number WO 2007/149406 A2, which is herein incorporated by reference in its entirety, discloses functional mutant FIX molecules that exhibit increased protein stability, increased in vivo and in vitro half-life, and increased resistance to proteases at page 4, line 1 to page 19, line 11. WO 2007/149406 A2 also discloses chimeric and other variant FIX molecules at page 19, line 12 to page 20, line 9. International publication number WO 08/118507 A2, which is herein incorporated by reference in its entirety, discloses FIX mutants that exhibit increased clotting activity at page 5, line 14 to page 6, line 5. International publication number WO 09/051717 A2, which is herein incorporated by reference in its entirety, discloses FIX mutants having an increased number of N-linked and/or O-linked glycosylation sites, which results in an increased half-life and/or recovery at page 9, line 11 to page 20, line 2. International publication number WO 09/137254 A2, which is herein incorporated by reference in its entirety, also discloses Factor IX mutants with increased numbers of glycosylation sites at page 2, paragraph [006] to page 5, paragraph [011] and page 16, paragraph [044] to page 24, paragraph [057]. International publication number WO 09/130198 A2, which is herein incorporated by reference in its entirety, discloses functional mutant FIX molecules that have an increased number of glycosylation sites, which result in an increased half-life, at page 4, line 26 to page 12, line 6. International publication number WO 09/140015 A2, which is herein incorporated by reference in its entirety, discloses functional FIX mutants that an increased number of Cys residues, which may be used for polymer (e.g., PEG) conjugation, at page 11, paragraph [0043] to page 13, paragraph [0053]. The FIX polypeptides described in International Application No. PCT/US201 1/043569 filed July 11, 2011 and published as WO 2012/006624 on January 12, 2012 are also incorporated herein by reference in its entirety.
In addition, hundreds of non-functional mutations in FIX have been identified in hemophilia patients, many of which are disclosed in Table 1, at pages 11-14 of International publication number WO 09/137254 A2, which is herein incorporated by reference in its entirety. Such non-functional mutations are not included in the invention, but provide additional guidance for which mutations are more or less likely to result in a functional FIX polypeptide.

In some embodiments, the chimeric protein of the invention is a FIX monomer dimer hybrid. Monomer-dimer hybrid can comprise two polypeptide chains, one chain comprising a FIX polypeptide and a first Fc region, and another chain comprising, consisting essentially of, or consisting of a second Fc region. In certain aspects, a FIX monomer dimer hybrid consists essentially of or consists of two polypeptide chains, a first chain consisting essentially of or consisting of a FIX polypeptide and a second chain consisting essentially of or consisting of a second Fc region.

In some embodiments, a clotting factor is a mature form of Factor VII or a variant thereof. Factor VII (FVII, F7; also referred to as Factor 7, coagulation factor VII, serum factor VII, serum prothrombin conversion accelerator, SPCA, proconvertin and eptacog alpha) is a serine protease that is part of the coagulation cascade. FVII includes a Gla domain, two EGF domains (EGF-1 and EGF-2), and a serine protease domain (or peptidase SI domain) that is highly conserved among all members of the peptidase SI family of serine proteases, such as for example with chymotrypsin. FVII occurs as a single chain zymogen, an activated zymogen-like two-chain polypeptide and a fully activated two-chain form.

Exemplary FVII variants include those with increased specific activity, e.g., mutations that increase the activity of FVII by increasing its enzymatic activity (Kcat or Km). Such variants have been described in the art and include, e.g., mutant forms of the molecule as described for example in Persson et al. 2001. PNAS 98:13583; Petrovan and Ruf. 2001. J. Biol. Chem. 276:6616; Persson et al. 2001 J. Biol. Chem. 276:29195; Soejima et al. 2001. J. Biol. Chem. 276:17229; Soejima et al. 2002. J. Biol. Chem. 247:49027.

In one embodiment, a variant form of FVII includes the mutations. Exemplary mutations include V158D-E296V-M298Q. In another embodiment, a variant form of FVII includes a replacement of amino acids 608-619 (LQQSRKVGDSPN, corresponding

Full activation, which occurs upon conformational change from a zymogen-like form, occurs upon binding to its co-factor tissue factor. Also, mutations can be introduced that result in the conformation change in the absence of tissue factor. Hence, reference to FVIIa includes both two-chain forms thereof: the zymogen-like form (e.g., activatable FVII), and the fully activated two-chain form.

Various patents or applications disclosing examples of the clotting factors useful for the invention are incorporated herein by reference. For example, various monomer dimer hybrid constructs comprising clotting factors (FVII, FIX, and FVIII) are disclosed in US 7,404,945; US 7,348,004; US 7,862,820; US 8,329,182; and US 7,820,162, incorporated herein by reference in their entireties. Examples of FVIII chimeric protein are additionally disclosed in US Appl. Nos. 61/734,954 or 61/670,553, incorporated by reference in its entirety. Examples of FVII chimeric protein are disclosed in US Appl. No. 61/657,688, incorporated herein by reference in its entirety.

G-Protein Coupled Receptors

Another class of polypeptides that have been shown to be effective as pharmaceutical and/or commercial agents includes growth factors and other signaling molecules. G-protein coupled receptors (GPCRs) are proteins that have seven transmembrane domains. Upon binding of a ligand to a GPCR, a signal is transduced within the cell which results in a change in a biological or physiological property of the cell.

GPCRs, along with G-proteins and effectors (intracellular enzymes and channels which are modulated by G-proteins), are the components of a modular signaling system that connects the state of intracellular second messengers to extracellular inputs. These genes and gene-products are potential causative agents of disease.
The GPCR protein superfamily now contains over 250 types of paralogues, receptors that represent variants generated by gene duplications (or other processes), as opposed to orthologues, the same receptor from different species. The superfamily can be broken down into five families: Family I, receptors typified by rhodopsin and the beta2-adrenergic receptor and currently represented by over 200 unique members; Family II, the recently characterized parathyroid hormone/calcitonin/secretin receptor family; Family III, the metabotropic glutamate receptor family in mammals; Family IV, the cAMP receptor family, important in the chemotaxis and development of D. discoideum; and Family V, the fungal mating pheromone receptors such as STE2.

Viruses

Additionally, the present invention also provides methods for the production of viruses using a cell culture according to methods known to those of skill in the field of virology. The viruses to be produced in accordance with the present invention can be chosen from the range of viruses known to infect the cultured cell type. For instance, when utilizing a mammalian cell culture, viruses can be chosen from the genera of orthomyxoviruses, paramyxoviruses, reoviruses, picornaviruses, flaviviruses, arenaviruses, herpesviruses, poxviruses, coronavirus and adenoviruses. The virus used can be a wild-type virus, an attenuated virus, a reassortant virus, or a recombinant virus. In addition, instead of actual virions being used to infect the cells with a virus, an infectious nucleic acid clone can be utilized according to infectious clone transfection methods known to those of skill in the field of virology. In one embodiment, the virus produced is an influenza virus.

Cells

Any eukaryotic cell or cell type susceptible to cell culture can be utilized in accordance with the present invention. For example, plant cells, yeast cells, animal cells, insect cells, avian cells or mammalian cells can be utilized in accordance with the present invention. In one embodiment, the eukaryotic cells are capable of expressing a recombinant protein or are capable of producing a recombinant or reassortant virus.

Non-limiting examples of mammalian cells that can be used in accordance with the present invention include BALB/c mouse myeloma line (NSO/1, ECACC No: 85110503): human retinoblasts (PER.C6 (CruCell, Leiden, The Netherlands)); monkey
kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic
kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al.,
J. Gen Virol., 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese
hamster ovary cells ±DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA,
monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-
76, ATCC CRL-1 587); human cervical carcinoma cells (HeLa, ATCC CCL 2); canine
kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL
1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065);
mouse mammary tumor (MMT 060562, ATCC CCL5 1); TRI cells (Mather et al, Annals
N.Y. Acad. Sci., 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line
(Hep G2). In one embodiment, the present invention is used in the culturing of and
expression of polypeptides from CHO cell lines. In a specific embodiment, the CHO cell
line is the DG44 CHO cell line. In a specific embodiment, the CHO cell line comprises a
vector comprising a polynucleotide encoding a glutamine synthetase polypeptide. In a
further specific embodiment, the CHO cell line expresses an exogenous glutamine
synthetase gene. (See, e.g., Porter et al., Biotechnol Prog 26(5): 1446-54 (2010).)

Additionally, any number of commercially and non-commercially available
hybridoma cell lines that express polypeptides or proteins can be utilized in accordance
with the present invention. One skilled in the art will appreciate that hybridoma cell lines
might have different nutrition requirements and/or might require different culture
conditions for optimal growth and polypeptide or protein expression, and will be able to
modify conditions as needed.

The eukaryotic cells according to the present invention can be selected or
engineered to produce high levels of protein or polypeptide, or to produce large quantities
of virus. Often, cells are genetically engineered to produce high levels of protein, for
example by introduction of a gene encoding the protein or polypeptide of interest and/or
by introduction of control elements that regulate expression of the gene (whether
endogenous or introduced) encoding the polypeptide of interest.

The eukaryotic cells can also be selected or engineered to survive in culture for
extended periods of time. For example, the cells can be genetically engineered to express
a polypeptide or polypeptides that confer extended survival on the cells. In one
embodiment, the eukaryotic cells comprise a transgene encoding the Bcl-2 polypeptide or a variant thereof. See, e.g., US 7,785,880. In a specific embodiment, the cells comprise a polynucleotide encoding the bcl-xL polypeptide. See, e.g., Chiang GG, Sisk WP. 2005. Biotechnology and Bioengineering 91(7):779-792.

[0109] The eukaryotic cells can also be selected or engineered to modify its posttranslational modification pathways. In one embodiment, the cells are selected or engineered to modify a protein glycosylation pathway. In a specific embodiment, the cells are selected or engineered to express an aglycosylated protein, e.g., an aglycosylated recombinant antibody. In another specific embodiment, the cells are selected or engineered to express an afucosylated protein, e.g., an afucosylated recombinant antibody.

[0110] The eukaryotic cells can also be selected or engineered to allow culturing in serum free medium.

Media

[0111] The cell culture of the present invention is prepared in any medium suitable for the particular cell being cultured. In some embodiments, the medium contains e.g., inorganic salts, carbohydrates (e.g., sugars such as glucose, galactose, maltose or fructose), amino acids, vitamins (e.g., B group vitamins (e.g., B12), vitamin A vitamin E, riboflavin, thiamine and biotin), fatty acids and lipids (e.g., cholesterol and steroids), proteins and peptides (e.g., albumin, transferrin, fibronectin and fetuin), serum (e.g., compositions comprising albumins, growth factors and growth inhibitors, such as, fetal bovine serum, newborn calf serum and horse serum), trace elements (e.g., zinc, copper, selenium and tricarboxylic acid intermediates), hydrolysates (hydrolyzed proteins derived from plant or animal sources), and combinations thereof. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ([MEM], Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ([DMEM], Sigma) are exemplary nutrient solutions. In addition, any of the media described in Ham and Wallace/ 1979) Meth. Era., 58:44; Barnes and Sato,(1980) Anal. Biochem., 102:255; U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 5,122,469 or 4,560,655; International Publication Nos. WO 90/03430; and WO 87/00195; the disclosures of all of which are incorporated herein by reference, can be used as culture media. Any of these media can be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or
epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as gentamycin), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range) lipids (such as linoleic or other fatty acids) and their suitable carriers, and glucose or an equivalent energy source. In some embodiments the nutrient media is serum-free media, a protein-free media, or a chemically defined media. Any other necessary supplements can also be included at appropriate concentrations that would be known to those skilled in the art.

In one embodiment, the mammalian host cell is a CHO cell and a suitable medium contains a basal medium component such as a DMEM/HAM F-12 based formulation (for composition of DMEM and HAM F12 media, see culture media formulations in American Type Culture Collection Catalogue of Cell Lines and Hybridomas, Sixth Edition, 1988, pages 346-349) with modified concentrations of some components such as amino acids, salts, sugar, and vitamins, and optionally containing glycine, hypoxanthine, and thymidine; recombinant human insulin, hydrolyzed peptone, such as Primatone HS or Primatone RL (Sheffield, England), or the equivalent; a cell protective agent, such as Pluronic F68 or the equivalent pluronic polyol; gentamycin; and trace elements.

The present invention provides a variety of media formulations that, when used in accordance with other culturing steps described herein, minimize, prevent or reverse metabolic imbalances in the culture that would lead to increased lactate and ammonium production.

A media formulation of the present invention that have been shown to have beneficial effects on metabolic balance, cell growth and/or viability or on expression of polypeptide or protein comprise dextran sulfate. One of ordinary skill in the art will understand that the media formulations of the present invention encompass both defined and non-defined media.

Cell Culture Processes

Various methods of preparing mammalian cells for production of proteins or polypeptides by batch and fed-batch culture are well known in the art. A nucleic acid sufficient to achieve expression (typically a vector containing the gene encoding the polypeptide or protein of interest and any operably linked genetic control elements) can be introduced into the host cell line by any number of well-known techniques. Typically,
cells are screened to determine which of the host cells have actually taken up the vector and express the polypeptide or protein of interest. Traditional methods of detecting a particular polypeptide or protein of interest expressed by mammalian cells include but are not limited to immunohistochemistry, immunoprecipitation, flow cytometry, immunofluorescence microscopy, SDS-PAGE, Western blots, enzyme-linked immunosorbent assay (ELISA), high performance liquid chromatography (HPLC) techniques, biological activity assays and affinity chromatography. One of ordinary skill in the art will be aware of other appropriate techniques for detecting expressed polypeptides or proteins. If multiple host cells express the polypeptide or protein of interest, some or all of the listed techniques can be used to determine which of the cells expresses that polypeptide or protein at the highest levels.

[0116] Once a cell that expresses the polypeptide or protein of interest has been identified, the cell is propagated in culture by any of the variety of methods well-known to one of ordinary skill in the art. The cell expressing the polypeptide of interest is typically propagated by growing it at a temperature and in a medium that is conducive to the survival, growth and viability of the cell. The initial culture volume can be of any size, but is often smaller than the culture volume of the production bioreactor used in the final production of the polypeptide or protein of interest, and frequently cells are passaged several times in bioreactors of increasing volume prior to seeding the production bioreactor. The cell culture can be agitated or shaken to increase oxygenation of the medium and dispersion of nutrients to the cells. Alternatively or additionally, special sparging devices that are well known in the art can be used to increase and control oxygenation of the culture. In accordance with the present invention, one of ordinary skill in the art will understand that it can be beneficial to control or regulate certain internal conditions of the bioreactor, including but not limited to pH, temperature, oxygenation, etc.

[0117] The cell density useful in the methods of the present invention can be chosen by one of ordinary skill in the art. In accordance with the present invention, the cell density can be as low as a single cell per culture volume. In some embodiments of the present invention, starting cell densities can range from about 2x10^2 viable cells per mL to about 2x10^3, 2x10^4, 2x10^5, 2x10^6, 5x10^6 or 10x10^6 viable cells per mL and higher.
In accordance with the present invention, a cell culture size can be any volume that is appropriate for production of polypeptides. In one embodiment, the volume of the cell culture is at least 500 liters. In other embodiments, the volume of the production cell culture is 10, 50, 100, 250, 1000, 2000, 2500, 5000, 8000, 10,000, 12,000 liters or more, or any volume in between. For example, a cell culture will be 10 to 5,000 liters, 10 to 10,000 liters, 10 to 15,000 liters, 50 to 5,000 liters, 50 to 10,000 liters, or 50 to 15,000 liters, 100 to 5,000 liters, 100 to 10,000 liters, 100 to 15,000 liters, 500 to 5,000 liters, 500 to 10,000 liters, 500 to 15,000 liters, 1,000 to 5,000 liters, 1,000 to 10,000 liters, or 1,000 to 15,000 liters. Or a cell culture will be between about 500 liters and about 30,000 liters, about 500 liters and about 20,000 liters, about 500 liters and about 10,000 liters, about 500 liters and about 5,000 liters, about 1,000 liters and about 30,000 liters, about 2,000 liters and about 30,000 liters, about 3,000 liters and about 30,000 liters, about 5,000 liters and about 30,000 liters, or about 10,000 liters and about 30,000 liters, or a cell culture will be at least about 500 liters, at least about 1,000 liters, at least about 2,000 liters, at least about 3,000 liters, at least about 5,000 liters, at least about 10,000 liters, at least about 15,000 liters, or at least about 20,000 liters.

One of ordinary skill in the art will be aware of and will be able to choose a suitable culture size for use in practicing the present invention. The production bioreactor for the culture can be constructed of any material that is conducive to cell growth and viability that does not interfere with expression or stability of the produced polypeptide or protein.

The temperature of the cell culture will be selected based primarily on the range of temperatures at which the cell culture remains viable. For example, during the initial growth phase, CHO cells grow well at 37°C. In general, most mammalian cells grow well within a range of about 25°C to 42°C.

In one embodiment of the present invention, the temperature of the initial growth phase is maintained at a single, constant temperature. In another embodiment, the temperature of the initial growth phase is maintained within a range of temperatures. For example, the temperature can be steadily increased or decreased during the initial growth phase. Alternatively, the temperature can be increased or decreased by discrete amounts at various times during the initial growth phase. One of ordinary skill in the art will be
able to determine whether a single or multiple temperatures should be used, and whether the temperature should be adjusted steadily or by discrete amounts.

[0122] The cells can be grown during the initial growth phase for a greater or lesser amount of time, depending on the needs of the practitioner and the requirement of the cells themselves. In one embodiment, the cells are grown for a period of time sufficient to achieve a viable cell density that is a given percentage of the maximal viable cell density that the cells would eventually reach if allowed to grow undisturbed. For example, the cells can be grown for a period of time sufficient to achieve a desired viable cell density of 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 99 percent of maximal viable cell density.

[0123] In another embodiment the cells are allowed to grow for a defined period of time. For example, depending on the starting concentration of the cell culture, the temperature at which the cells are grown, and the intrinsic growth rate of the cells, the cells can be grown for 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more days. In some cases, the cells can be allowed to grow for a month or more. In one embodiment, the growth phase is between about 1 day and about 20 days, about 1 day and about 15 days, about 1 day and about 14 days, about 1 day and about 13 days, about 1 day and about 12 days, about 1 day and about 11 days, about 1 day and about 10 days, about 1 day and about 9 days, about 1 day and about 8 days, about 1 day and about 7 days, about 1 day and about 6 days, about 1 day and about 5 days, about 1 day and about 4 days, about 1 day and about 3 days, about 2 days and about 15 days, about 3 days and about 15 days, about 4 days and about 15 days, about 5 days and about 15 days, about 6 days and about 15 days, about 7 days and about 15 days, about 8 days and about 15 days, about 9 days and about 15 days, about 10 days and about 15 days, about 2 days and about 20 days, about 3 days and about 20 days, about 4 days and about 20 days, about 5 days and about 20 days, about 6 days and about 20 days, about 7 days and about 20 days, about 8 days and about 20 days, about 9 days and about 20 days, or about 10 days and about 20 days. In another embodiment, the growth phase is at least about 1 day, at least about 2 days, at least about 3 days, at least about 4 days, at least about 5 days, at least about 6 days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 11 days, at least about 12 days, at least about 15 days, or at least about 20 days. In a further embodiment, the growth phase is
about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 7 days, about 8 days, about 9 days, about 10 days, about 11 days, about 12 days, about 15 days, or about 20 days.

The cells would be grown for 0 days in the production bioreactor if their growth in a seed bioreactor, at the initial growth phase temperature, was sufficient that the viable cell density in the production bioreactor at the time of its inoculation is already at the desired percentage of the maximal viable cell density. The practitioner of the present invention will be able to choose the duration of the initial growth phase depending on polypeptide or protein production requirements and the needs of the cells themselves.

The cell culture can be agitated or shaken during the initial culture phase in order to increase oxygenation and dispersion of nutrients to the cells. In accordance with the present invention, one of ordinary skill in the art will understand that it can be beneficial to control or regulate certain internal conditions of the bioreactor during the initial growth phase, including but not limited to pH, temperature, oxygenation, etc. For example, pH can be controlled by supplying an appropriate amount of acid or base and oxygenation can be controlled with sparging devices that are well known in the art.

In one embodiment, at the end of the initial growth phase, at least one of the culture conditions is shifted so that a second set of culture conditions is applied. The shift in culture conditions can be accomplished by a change in the temperature, pH, osmolality or chemical inductant level of the cell culture. In one embodiment, the culture conditions are shifted by shifting the temperature of the culture.

When shifting the temperature of the culture, the temperature shift can be relatively gradual. For example, it can take several hours or days to complete the temperature change. Alternatively, the temperature shift can be relatively abrupt. For example, the temperature change can be complete in less than several hours. Given the appropriate production and control equipment, such as is standard in the commercial large-scale production of polypeptides or proteins, the temperature change can even be complete within less than an hour.

The temperature of the cell culture in the subsequent growth phase will be selected based primarily on the range of temperatures at which the cell culture remains viable and expresses recombinant polypeptides or proteins at commercially adequate levels. In general, most mammalian cells remain viable and express recombinant
polypeptides or proteins at commercially adequate levels within a range of about 25°C to 42°C. In one embodiment, mammalian cells remain viable and express recombinant polypeptides or proteins at commercially adequate levels within a range of about 25°C to 35°C. Those of ordinary skill in the art will be able to select appropriate temperature or temperatures in which to grow cells, depending on the needs of the cells and the production requirements of the practitioner.

[0129] In accordance with the present invention, once the conditions of the cell culture have been shifted as discussed above, the cell culture is maintained for a subsequent production phase under a second set of culture conditions conducive to the survival and viability of the cell culture and appropriate for expression of the desired polypeptide or protein at commercially adequate levels.

[0130] As discussed above, the culture can be shifted by shifting one or more of a number of culture conditions including, but not limited to, temperature, pH, osmolality, and sodium butyrate levels. In one embodiment, the temperature of the culture is shifted. According to this embodiment, during the subsequent production phase, the culture is maintained at a temperature or temperature range that is lower than the temperature or temperature range of the initial growth phase. For example, during the subsequent production phase, CHO cells express recombinant polypeptides and proteins well within a range of 25°C to 35°C.

[0131] In accordance with the present invention, the cells can be maintained in the subsequent production phase until a desired cell density or production titer is reached. In one embodiment, the cells are maintained in the subsequent production phase until the titer to the recombinant polypeptide or protein reaches a maximum. In other embodiments, the culture can be harvested prior to this point, depending on the production requirement of the practitioner or the needs of the cells themselves. For example, the cells can be maintained for a period of time sufficient to achieve a viable cell density of 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 99 percent of maximal viable cell density. In some cases, it is desirable to allow the viable cell density to reach a maximum, and then allow the viable cell density to decline to some level before harvesting the culture. In an extreme example, it can be desirable to allow the viable cell density to approach or reach zero before harvesting the culture.
In another embodiment of the present invention, the cells are allowed to grow for a defined period of time during the subsequent production phase. For example, depending on the concentration of the cell culture at the start of the subsequent growth phase, the temperature at which the cells are grown, and the intrinsic growth rate of the cells, the cells can be grown for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more days. In some cases, the cells can be allowed to grow for a month or more. The practitioner of the present invention will be able to choose the duration of the subsequent production phase depending on polypeptide or protein production requirements and the needs of the cells themselves.

In certain cases, it can be beneficial or necessary to supplement the cell culture during the growth and/or subsequent production phase with nutrients or other medium components that have been depleted or metabolized by the cells. For example, it might be advantageous to supplement the cell culture with nutrients or other medium components observed to have been depleted. Alternatively or additionally, it can be beneficial or necessary to supplement the cell culture prior to the subsequent production phase. As non-limiting examples, it can be beneficial or necessary to supplement the cell culture with hormones and/or other growth factors, particular ions (such as sodium, chloride, calcium, magnesium, and phosphate), buffers, vitamins, nucleosides or nucleotides, trace elements (inorganic compounds usually present at very low final concentrations), amino acids, lipids, or glucose or other energy source.

These supplementary components, including the amino acids, can all be added to the cell culture at one time, or they can be provided to the cell culture in a series of additions. In one embodiment of the present invention, the supplementary components are provided to the cell culture at multiple times in proportional amounts. In another embodiment, it can be desirable to provide only certain of the supplementary components initially, and provide the remaining components at a later time. In yet another embodiment of the present invention, the cell culture is fed continually with these supplementary components.

In accordance with the present invention, the total volume added to the cell culture should optimally be kept to a minimal amount. For example, the total volume of the medium or solution containing the supplementary components added to the cell culture
can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 or 50% of the volume of the cell culture prior to providing the supplementary components.

[0136] The cell culture can be agitated or shaken during the subsequent production phase in order to increase oxygenation and dispersion of nutrients to the cells. In accordance with the present invention, one of ordinary skill in the art will understand that it can be beneficial to control or regulate certain internal conditions of the bioreactor during the subsequent growth phase, including but not limited to pH, temperature, oxygenation, etc. For example, pH can be controlled by supplying an appropriate amount of acid or base and oxygenation can be controlled with sparging devices that are well known in the art.

[0137] In certain embodiments of the present invention, the practitioner can find it beneficial or necessary to periodically monitor particular conditions of the growing cell culture. Monitoring cell culture conditions allows the practitioner to determine whether the cell culture is producing recombinant polypeptide or protein at suboptimal levels or whether the culture is about to enter into a suboptimal production phase.

[0138] In order to monitor certain cell culture conditions, it will be necessary to remove small aliquots of the culture for analysis. One of ordinary skill in the art will understand that such removal can potentially introduce contamination into the cell culture, and will take appropriate care to minimize the risk of such contamination.

[0139] As non-limiting example, it can be beneficial or necessary to monitor temperature, pH, cell density, cell viability, integrated viable cell density, lactate levels, ammonium levels, osmolarity, or titer of the expressed polypeptide or protein. Numerous techniques are well known in the art that will allow one of ordinary skill in the art to measure these conditions. For example, cell density can be measured using a hemacytometer, a Coulter counter, or Cell density examination (CEDEX). Viable cell density can be determined by staining a culture sample with Trypan blue. Since only dead cells take up the Trypan blue, viable cell density can be determined by counting the total number of cells, dividing the number of cells that take up the dye by the total number of cells, and taking the reciprocal. HPLC can be used to determine the levels of lactate, ammonium or the expressed polypeptide or protein. Alternatively, the level of the expressed polypeptide or protein can be determined by standard molecular biology techniques such as coomassie staining of SDS-PAGE gels, Western blotting, Bradford assays, Lowry assays, Biuret assays, and UV absorbance. It can also be beneficial or necessary to monitor the post-
translational modifications of the expressed polypeptide or protein, including phosphorylation and glycosylation.

[0140] The practitioner can also monitor the metabolic status of the cell culture, for example, by monitoring the glucose, lactate, ammonium, and amino acid concentrations in the cell culture, as well as by monitoring the oxygen production or carbon dioxide production of the cell culture. For example, cell culture conditions can be analyzed by using NOVA Bioprofile 100 or 400 (NOVA Biomedical, WA). Additionally, the practitioner can monitor the metabolic state of the cell culture by monitoring the activity of mitochondria. In embodiment, mitochondrial activity can be monitored by monitoring the mitochondrial membrane potential using Rhodamine 123. Johnson LV, Walsh ML, Chen LB. 1980. Proceedings of the National Academy of Sciences 77(2):990-994.

Isolation of Expressed Polypeptide

[0141] In general, it will typically be desirable to isolate and/or purify proteins or polypeptides expressed according to the present invention. In one embodiment, the expressed polypeptide or protein is secreted into the medium and thus cells and other solids can be removed, as by centrifugation or filtering for example, as a first step in the purification process.

[0142] Alternatively, the expressed polypeptide can be bound to the surface of the host cell. In this embodiment, the media is removed and the host cells expressing the polypeptide or protein are lysed as a first step in the purification process. Lysis of mammalian host cells can be achieved by any number of means well known to those of ordinary skill in the art, including physical disruption by glass beads and exposure to high pH conditions.

reference). For immunoaffinity chromatography in particular, the protein can be isolated by binding it to an affinity column comprising antibodies that were raised against that protein and were affixed to a stationary support. Alternatively, affinity tags such as an influenza coat sequence, poly-histidine, or glutathione-S-transferase can be attached to the protein by standard recombinant techniques to allow for easy purification by passage over the appropriate affinity column. Protease inhibitors such as phenyl methyl sulfonyl fluoride (PMSF), leupeptin, pepstatin or aprotinin can be added at any or all stages in order to reduce or eliminate degradation of the polypeptide or protein during the purification process. Protease inhibitors are particularly desired when cells must be lysed in order to isolate and purify the expressed polypeptide or protein. One of ordinary skill in the art will appreciate that the exact purification technique will vary depending on the character of the polypeptide or protein to be purified, the character of the cells from which the polypeptide or protein is expressed, and the composition of the medium in which the cells were grown.

Pharmaceutical Compositions

[0144] A polypeptide or virus can be formulated as a pharmaceutical composition for administration to a subject, e.g., to treat or prevent a disorder or disease. Typically, a pharmaceutical composition includes a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. The composition can include a pharmaceutically acceptable salt, e.g., an acid addition salt or a base addition salt (See e.g., Berge, S. M., et al. (1977) J Pharm. Sci. 66:1-19). In one embodiment, a pharmaceutical composition is an immunogenic composition comprising a virus produced in accordance with methods described herein.

The pharmaceutical compositions can be in a variety of forms. These include, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, tablets, pills, powders, liposomes and suppositories. The form can depend on the intended mode of administration and therapeutic application. Typically compositions for the agents described herein are in the form of injectable or infusible solutions.

In one embodiment, the antibody is formulated with excipient materials, such as sodium chloride, sodium dibasic phosphate heptahydrate, sodium monobasic phosphate, and a stabilizer. It can be provided, for example, in a buffered solution at a suitable concentration and can be stored at 2-8°C.

Such compositions can be administered by a parenteral mode (e.g., intravenous, subcutaneous, intraperitoneal, or intramuscular injection). The phrases "parenteral administration" and "administered parenterally" as used herein mean modes of administration other than enteral and topical administration, usually by injection, and include, without limitation, intravenous, intramuscular, intrarterial, intrathecal, intracapsular, inraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.

The composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable for stable storage at high concentration. Sterile injectable solutions can be prepared by incorporating an agent described herein in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating an agent described herein into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the methods of preparation are vacuum drying and freeze drying that yield a powder of an agent described herein plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable
compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.

[0150] In certain embodiments, the polypeptide can be prepared with a carrier that will protect the compound against rapid release, such as a controlled release formulation, including implants, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyai-hydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York (1978).

[0151] The foregoing description is to be understood as being representative only and is not intended to be limiting. Alternative methods and materials for implementing the invention and also additional applications will be apparent to one of skill in the art, and are intended to be included within the accompanying claims.

* * *

All of the references cited above, as well as all references cited herein, are incorporated herein by reference in their entireties.
EXAMPLES

Example 1

Addition of dextran sulfate and ferric citrate maintains lactate levels and decreases ammonium production

Materials and Methods

[0156] Cell line: The cell line used in this study produced a Neublastin polypeptide. The cell line was constructed using DG44 adapted to grow in serum-free medium (Prentice, 2007).

[0157] Culture medium: Basal and feed medium used for this experiment are both proprietary in-house media that were previously described in Huang, 2010 and Kshirsagar, 2012. Both media are chemically defined. Briefly the basal medium CM3 was used for all maintenance stages. A modified version of CM3, called CM3v2, with additional ferric citrate and dextran sulfate, was used for the production stage. This medium contains glucose, amino acids, vitamins, minerals, and trace elements necessary for the robust cultivation of mammalian cells. Feed medium is a more concentrated version of the basal medium with the nutritional content optimized to maximize growth and productivity. No lactate is present in the feed medium. Again citrate is included in the feed medium as a chelating agent but is present in feed medium at 2.4 mM citrate. Both the basal medium and the feed medium comprised ferric citrate. Dextran sulfate was included in feed medium between 0-10 g/L dextran sulfate.

[0158] Cell culture methods: Cells were thawed and maintained as in a previous report (Kshirsagar, et al. 2012 Biotechnol Bioeng, Huang, et al. Biotechnology Progress 26(5):1400-1410 (2010)). Basal medium for thaw and passing was the same as in previous reports (Kshirsagar/Huang). Briefly, cells were thawed and maintained in 3 L shake flasks (Corning Life Sciences, Corning, NY) with 1 L working volumes and were passaged every 2-3 days. For maintenance cultures the incubator was controlled at 36°C and 5% CO2.

[0159] Bioreactor culture conditions: Fed batch cultures were performed in 5 L glass Applikon vessels using Finesse TruBio DV controllers (Finesse Solutions, San Jose, CA) with an initial working volume between 2 – 2.5 L. Bioreactors were seeded at constant seed density of 4xl0^5 cells/ml. Concentrated feed medium was delivered on days 3, 5,
and every day following through harvest. Temperature was maintained at 36°C and pH was controlled at 7.1 +/- 0.2 by the addition of either 1 M sodium carbonate or carbon dioxide. Dissolved oxygen was maintained at 30% by air and oxygen sparge using a drilled hole sparger. Agitation was maintained between 200 - 400 RPM throughout the culture to limit total gas flow, while an overlay was maintained between 0.005 and 0.04 v/v.

Offline analysis: Samples were taken on most days and analyzed with a variety of equipment. Cell density and viability were measured using the standard technique of trypan blue exclusion using a Cedex (Roche Innovatis AG, Germany). Glucose, lactate, ammonium, potassium and sodium data were collected using a NOVA Bioprofile 100 or 400 (NOVA Biomedical, WA).

In order to investigate the effect of dextran sulfate and ferric citrate on the lactate and the ammonium levels in cell culture, 0.25 g/L dextran sulfate and 2.3mM ferric citrate were added to the production medium on day 0. In some cases, no additional dextran sulfate is provided. In some cases, additional dextran sulfate is added via the feed.

In 902 using CM3 basal medium, lactate levels started at about 0.5 g/L on day 0, peaked at about 2-2.5 g/L on day 3, and then rapidly decreased to about 0.5 g/L from day 10 to day 14 (Fig. 1A). Lactate levels then slightly increased again and remained at about 0.5-1 g/L between day 15 and day 17. In the presence of dextran sulfate and ferric citrate using CM3v2 basal medium, lactate level in the 902 medium was well maintained at about 2-2.5 g/L between day 3 and day 9, then decreased eventually to about 1 g/L on day 17 (Fig. 1A). Similarly, lactate level in N65 culture using CM3 basal medium peaked at about 2.5 g/L on day 5, then rapidly decreased to about 1 g/L on day 14. However, the presence of dextran sulfate and ferric citrate almost sustained the lactate level in the N65 medium at about 2.5-3 g/L between day 5 and day 17, with only a very slight decrease from day 7 to day 16 (Fig. 1A).

Ammonium levels in the cell culture started at about 0.5 mM on day 0 in medium with or without dextran sulfate or ferric citrate (Figure 1B). In 902 using CM3 basal medium, the ammonium level slightly increased to about 3 mM on day 9, then dramatically climbed up to about 8 mM on day 13, and reached about 9 mM on day 17. In the presence of dextran sulfate and ferric citrate, the ammonium production in the 902
medium was significantly reduced from day 0 to day 17, with between about 1 g/L and about 3 g/L ammonium reduction from day 9 to day 14 (Figure 1B). In N65 using CM3 basal medium, the ammonium level increased from 0.5 raM to nearly 4 n:M on day 14, then slightly decreased to about 2 mM on day 17. In the presence of dextran sulfate and ferric citrate, the ammonium production in the N65 medium was well maintained at or below 2 mM from day 0 to day 17 (Figure 1B).

Therefore, the addition of dextran sulfate and ferric citrate is able to maintain lactate levels and decrease ammonium production in cell culture.

Example 2

Addition of dextran sulfate stabilizes viability of shake flask maintenance culture

To investigate the effect of dextran sulfate on the viability of shake flask maintenance culture, 0.1 g/L dextran sulfate was added to a commercially available medium lacking dextran sulfate and CM3 HEKvl, a rebalanced version of CM3 optimized for HEK293 culture. While the viable cell density in a medium comprising 0.1 g/L dextran sulfate was comparable to that in medium with no dextran sulfate (Fig. 2A), the presence of dextran sulfate greatly increased the percentage of viable cells (Fig. 2B). Cell viability in maintenance culture without dextran sulfate went through frequent sudden decreases from day 0 to day 32 and varied dramatically between about 80% to about 95%, but the presence of 0.1 g/L dextran sulfate effectively maintained the percentage of cell viability above 95% at all the time points (Fig. 2B). Therefore, addition of dextran sulfate is able to stabilize viability of shake flask maintenance culture.

Cell line: The cell line used in this study produced a Factor VIII polypeptide. The cell line was constructed using HEK 293 adapted to grow in serum-free medium.

Culture medium: Basal and feed medium used for this experiment are both modified versions of proprietary in-house media that were previously described in Huang, 2010 and Kshirsagar, 2012 with rebalanced amino acid and salt concentrations and named CM3 HEKvl. Both media are chemically defined. Briefly the basal medium CM3 HEKvl was used for all maintenance stages unless otherwise noted. A modified version of CM3 HEKvl, supplemented with dextran sulfate, was used for direct comparison in both maintenance and production culture. This medium contains glucose, amino acids,
vitamins, minerals, and trace elements necessary for the robust cultivation of mammalian cells. Feed medium is a more concentrated version of the basal medium with the nutritional content optimized to maximize growth and productivity. No lactate is present in the feed medium. Dextran sulfate was not included in feed medium.

Cell culture methods: Cells were thawed and maintained as in a previous report (Kshirsagar, et al. 2012 Biotechnol Bioeng, Huang, et al. Biotechnology Progress 26(5): 1400-1410 (2010)). Basal medium for thaw and passing, CM3 HEKvl, was a modified version as that used in previous reports with rebalanced amino acid and salt concentrations (Kshirsagar/Huang). Briefly, cells were thawed and maintained in 1 L shake flasks (Corning Life Sciences, Corning, NY) with 0.2 L working volumes and were passaged every 2-3 days. For maintenance cultures the incubator was controlled at 37°C and 10% CO₂.

Offline analysis: Samples were taken on most days and analyzed with a variety of equipment. Cell density and viability were measured using the standard technique of trypan blue exclusion using a Cedex (Roche Innovatis AG, Germany). Glucose, lactate, ammonium, potassium sad sodium data were collected using a NOVA Bioprofile 100 or 400 (NOVA Biomedical, WA).

Example 3

Addition of dextran sulfate stabilizes viability of bioreactor inoculum train culture

To investigate the effect of dextran sulfate on the viability of bioreactor inoculum train culture, 0.1 g/L dextran sulfate was added to CM3 HEKvl on day 0. While the presence of dextran sulfate did not affect the viable cell density (Fig. 3A), it effectively maintained the percentage of viable cells in the bioreactor inoculum train culture (Fig. 3B). Cell viability in inoculum train culture without dextran sulfate dropped from about 85% on day 0 to below 60% on day 7, and was between about 60% and about 75% after day 7, but addition of 0.1 g/L dextran sulfate effectively maintained the percentage of cell viability at about 95% at all the time points (Fig. 3B). Therefore, addition of dextran sulfate is able to stabilize viability of bioreactor inoculum train culture.

Bioreactor culture conditions: Fed batch cultures were performed in 5 L glass Applikon vessels using Finesse TruBio DV controllers (Finesse Solutions, San Jose, CA)
with an initial working volume between 2 - 2.5 L. Bioreactors were seeded at constant seed density of 4×10^5 cells/ml. Temperature was maintained at 37°C and pH was controlled at 7.0 +/- 0.3 by the addition of either 1 M sodium carbonate or carbon dioxide. Dissolved oxygen was maintained at 50% by air and oxygen sparge using a drilled hole sparger. Agitation was maintained at 125 RPM throughout the culture to limit total gas flow, while an overlay was maintained between 0.005 and 0.04 vvm.

Example 4

Dextran sulfate containing inoculum was enough to stabilize early stage culture viability in production bioreactors

To further investigate whether the amount of dextran sulfate contained in the inoculum culture was able to stabilize cell viability in production bioreactors, bioreactor culture was inoculated with inoculum culture containing 0.1 g/L dextran sulfate on day 0, and no additional dextran sulfate was added in subsequent feed medium. The presence of dextran sulfate in the production bioreactor culture was able to stabilize both viable cell density and cell viability for two more days (Fig. 4). In bioreactor culture without dextran sulfate, both viable cell density and cell viability sharply decreased after day 12, but the presence of dextran sulfate postponed this decrease to day 14 (Fig. 4). In addition, the presence of dextran sulfate also greatly maintained the cell viability above 95% from day 0 to day 6, when the viability in dextran sulfate free culture varied between 80% to about 90% (Fig. 4B). Therefore, inoculation of production culture using dextran sulfate containing inoculum is enough to stabilize early stage culture viability.

Bioreactor culture conditions: Fed batch cultures were performed in 5 L glass Applikon vessels using Finesse TruBio DV controllers (Finesse Solutions, San Jose, CA) with an initial working volume between 2 - 2.5 L. Bioreactors were seeded at constant seed density of 5×10^5 cells/ml. Concentrated feed medium was delivered on day 3, and every day following through harvest. Temperature was maintained at 35.5°C and pH was controlled at 7.2 +/- 0.1 by the addition of either 1 M sodium carbonate or carbon dioxide. Dissolved oxygen was maintained at 30% by air and oxygen sparge using a drilled hole sparger. Agitation was maintained between 200 - 400 RPM throughout the culture to limit total gas flow, while an overlay was maintained between 0.005 and 0.04 vvm.
Offline analysis: San pies were taken on most days and analyzed with a variety of equipment. Cell density and viability were measured using the standard technique of trypan blue exclusion using a Cedex (Roche Innovatis AG, Germany). Glucose, lactate, ammonium, potassium and sodium data were collected using a NOVA Bioprofile 100 or 400 (NOVA Biomedical, WA).

The present invention is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the invention, and any compositions or methods which are functionally equivalent are within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

All documents, articles, publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
WHAT IS CLAIMED IS:

1. A method of producing a polypeptide of interest in a large-scale cell culture, comprising culturing mammalian cells expressing the polypeptide of interest in a cell culture medium under conditions that support expression of the polypeptide of interest, wherein said cell culture medium comprises between about 0.01 g/L and about 5 g/L dextran sulfate.

2. A method of producing a polypeptide of interest in a large-scale cell culture, comprising
 supplementing the culture with a feed medium comprising a sufficient amount of dextran sulfate to increase the dextran sulfate concentration in the culture by between about 0.01 g/L and about 5 g/L, wherein the culture comprises cells expressing the polypeptide and a medium, and the cells are maintained under conditions that allow for expression and accumulation of the polypeptide.

3. A method of producing a polypeptide of interest in a large-scale cell culture, comprising:
 a) providing a cell culture comprising cells capable of expressing the polypeptide and a medium,
 b) supplementing the culture with a feed medium comprising a sufficient amount of dextran sulfate to increase the dextran sulfate concentration in the culture by between about 0.01 g/L and about 5 g/L,
 c) maintaining the cells in the dextran sulfate supplemented culture of b) under conditions that allow for expression and accumulation of the polypeptide.

4. The method of any of claims 1-3, wherein the medium comprises ferric citrate.

5. The method of any of claims 1-3, further comprising supplementing the culture with a feed medium comprising a sufficient amount of ferric citrate to increase the ferric citrate concentration in the culture by between about 1 mM and about 50 mM.

6. The method of any one of claims 1-5, wherein the feed medium comprises dextran sulfate in an amount sufficient to increase the dextran sulfate concentration in the culture by between about 0.01 g/L and about 5 g/L, about 0.01 g/L and about 4 g/L, about 0.01 g/L and
about 3 g/L, about 0.01 g/L and about 2 g/L, about 0.01 g/L and about 1 g/L, about 0.01 g/L and about 0.5 g/L, about 0.01 g/L and about 0.25 g/L, about 0.05 g/L and about 5 g/L, about 0.05 g/L and about 4 g/L, about 0.05 g/L and about 3 g/L, about 0.05 g/L and about 2 g/L, about 0.05 g/L and about 1 g/L, about 0.05 g/L and about 0.5 g/L, about 0.05 g/L and about 0.25 g/L, about 0.1 g/L and about 5 g/L, about 0.1 g/L and about 4 g/L, about 0.1 g/L and about 3 g/L, about 0.1 g/L and about 2 g/L, about 0.1 g/L and about 1 g/L, about 0.1 g/L and about 0.5 g/L, about 0.1 g/L and about 0.25 g/L, about 0.2 g/L and about 5 g/L, about 0.2 g/L and about 4 g/L, about 0.2 g/L and about 3 g/L, about 0.2 g/L and about 2 g/L, about 0.2 g/L and about 1 g/L, about 0.2 g/L and about 0.5 g/L, about 0.2 g/L and about 0.25 g/L, about 0.2 g/L and about 0.25 g/L, about 0.25 g/L and about 5 g/L, about 0.25 g/L and about 4 g/L, about 0.25 g/L and about 3 g/L, about 0.25 g/L and about 2 g/L, about 0.25 g/L and about 1 g/L, or about 0.25 g/L and about 0.5 g/L.

7. The method of any one of claims 1-6, wherein the feed medium comprises dextran sulfate in an amount sufficient to increase the dextran sulfate concentration in the culture by about 0.01 g/L, about 0.02 g/L, about 0.03 g/L, about 0.04 g/L, about 0.05 g/L, about 0.06 g/L, about 0.07 g/L, about 0.08 g/L, about 0.09 g/L, about 0.1 g/L, about 0.15 g/L, about 0.2 g/L, about 0.25 g/L, about 0.5 g/L, about 1 g/L, about 2 g/L, about 3 g/L, about 4 g/L, or about 5 g/L.

8. The method of any one of claims 1-7, wherein the feed medium comprises ferric citrate in an amount sufficient to increase the ferric citrate concentration in the culture by between about 1 mM and about 50 mM, about 1 mM and about 40 mM, about 1 mM and about 35 mM, about 1 mM and about 30 mM, about 1 mM and about 25 mM, about 1 mM and about 20 mM, about 1 mM and about 15 mM, about 1 mM and about 14 mM, about 1 mM and about 13 mM, about 1 mM and about 12 mM, about 1 mM and about 11 mM, about 1 mM and about 10 mM, about 1 mM and about 50 mM, or about 50 mM.

9. The method of any one of claims 1-8, wherein the feed medium comprises ferric citrate in an amount sufficient to increase the ferric citrate concentration in the culture by about 1 mM, about 2 mM, about 3 mM, about 4 mM, about 5 mM, about 6 mM, about 7 mM, about 8 mM, about 9 mM, about 10 mM, about 11 mM, about 12 mM, about 13 mM, about 14 mM, about 15 mM, about 16 mM, about 17 mM, about 18 mM, about 19 mM, about 20 mM, about 21
mM, about 22 mM, about 23 mM, about 24 mM, about 25 mM, about 30 nM, about 35 mM, about 40, about 45 mM or about 50 mM.

10. The method of any one of claims 1-9, wherein the cells are maintained for between about 1 day and about 25 days.

11. The method of claim 10, wherein the cells are maintained for between about 1 day and about 20 days, about 1 day and about 15 days, about 1 day and about 14 days, about 1 day and about 13 days, about 1 day and about 12 days, about 1 day and about 11 days, about 1 day and about 10 days, about 1 day and about 9 days, about 1 day and about 8 days, about 1 day and about 7 days, about 1 day and about 6 days, about 1 day and about 5 days, about 1 day and about 4 days, about 1 day and about 3 days, about 2 days and about 25 days, about 3 days and about 25 days, about 4 days and about 25 days, about 5 days and about 25 days, about 6 days and about 25 days, about 7 days and about 25 days, about 8 days and about 25 days, about 9 days and about 25 days, about 10 days and about 25 days, about 15 days and about 25 days, or about 20 days and about 25 days.

12. The method of claim 10, wherein the cells are maintained for at least about 1 day, at least about 2 days, at least about 3 days, at least about 4 days, at least about 5 days, at least about 6 days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 11 days, at least about 12 days, at least about 15 days, at least about 20 days, or at least about 25 days.

13. The method of any one of claims 1-12, wherein the cells are maintained longer than cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

14. The method of claim 12, wherein the cells are maintained between about 1 day and 15 days longer than cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

15. The method of claim 14, wherein the cells are maintained between about 1 day and 12 days, about 1 day and 10 days, about 1 day and 8 days, about 1 day and 5 days, about 3 days and 15 days, about 5 days and 15 days, about 7 days and 15 days, or about 10 days and 15
days longer than cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

16. The method of claim 15, wherein the cells are maintained at least about 1 day, at least about 2 days, at least about 3 days, at least about 4 days, at least about 5 days, at least about 6 days, at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 11 days, at least about 12 days, or at least about 15 days longer than cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

17. The method of any one of claims 1-16, wherein the culture is supplemented with the feed medium between about 1 and about 25 times.

18. The method of claim 17, wherein the culture is supplemented with the feed medium between about 1 and about 20 times, between about 1 and about 15 times, or between about 1 and about 10.

19. The method of claim 18, wherein the culture is supplemented with the feed medium at least once, at least twice, at least three times, at least four times, at least five times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, at least 10 times, at least 1 times, at least 12 times, at least 13 times, at least 14 times, at least 15 times, at least 20 times, at least 25 times.

20. The method of any one of claims 1-19, wherein the lactate production of the cells is lower than the lactate production of cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

21. The method of claim 20, wherein the lactate production of the cells is between about 5% and about 90% lower than the lactate production of cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

22. The method of claim 21, wherein the lactate production of the cells is between about 5%, and about 80%, between about 5%, and about 70%, between about 5%, and about 50%, between about 5%, and about 40%, between about 5%, and about 30%, between about 5%, and about 20%, between about 10%, and about 90%, between about 20%, and about 90%, between about 30%, and about 90%, or between about 50%, and about 90% lower than the
lactate production of cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

23. The method of any one of claims 1-22, wherein the lactate concentration of the culture is between about 0.1 g/L and about 6 g/L.

24. The method of claim 23, wherein the lactate concentration of the culture is between about between about 0.1 g/L and about 5 g/L, between about 0.1 g/L and about 4 g/L, or between about 0.1 g/L and about 3 g/L.

25. The method of claim 24, wherein the lactate concentration of the culture is less than about 6 g/L, about 5 g/L, about 4g/L, about 3g/L, about 2 g/L or about 1 g/L.

26. The method of any one of claims 1-25, wherein the ammonium production of the cells is lower than the ammonium production of cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

27. The method of claim 26, wherein the ammonium production of the cells is between about 5% and about 90% lower than the ammonium production of cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

28. The method of claim 27, wherein the ammonium production of the cells is between about 5%, and about 80%, between about 5%, and about 70%, between about 5%, and about 50%, between about 5%, and about 40%, between about 5%, and about 30%, between about 5%, and about 20%, between about 10%, and about 90%, between about 20%, and about 90%, or between about 30%, and about 90%, or between about 50%, and about 90% lower than the ammonium production of cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

29. The method of any one of claims 1-28, wherein the ammonium concentration of the culture is between about 0.1 mM and about 20 mM.

30. The method of claim 29, wherein the ammonium concentration of the culture is between about 0.1 mM and about 15 mM, about 0.1 mM and about 14 mM, about 0.1 mM and about 13 mM, about 0.1 mM and about 12 mM, about 0.1 mM and about 11 mM, about 0.1 mM and about 10 mM, about 0.1 mM and about 9 mM, about 0.1 mM and about 8 mM, about 0.1
mM and about 7 mM, about 0.1 mM and about 6 mM, about 0.1 mM and about 5 mM, about 0.1 mM and about 4 mM, about 0.1 mM and about 3 mM, about 0.1 mM and about 2 mM, about 0.1 mM and about 1 mM, about 0.5 mM and about 15 mM, about 0.5 mM and about 14 mM, about 0.5 mM and about 13 mM, about 0.5 mM and about 12 mM, about 0.5 mM and about 11 mM, about 0.5 mM and about 10 mM, about 0.5 mM and about 9 mM, about 0.5 mM and about 8 mM, about 0.5 mM and about 7 mM, about 0.5 mM and about 6 mM, about 0.5 mM and about 5 mM, about 0.5 mM and about 4 mM, about 0.5 mM and about 3 mM, about 0.5 mM and about 2 mM, about 0.5 mM and about 1 mM, about 0.5 mM and about 1 mm, about 1 mm and about 15 mm, about 1 mm and about 14 mm, about 1 mm and about 13 mm, about 1 mm and about 12 mm, about 1 mm and about 11 mm, about 1 mm and about 10 mm, about 1 mm and about 9 mm, about 1 mm and about 8 mm, about 1 mm and about 7 mm, about 1 mm and about 6 mm, about 1 mm and about 5 mm, about 1 mm and about 4 mm, about 1 mm and about 3 mm, or about 1 mm and about 2 mm.

31. The method of claim 30, wherein the ammonium concentration of the culture is less than about 20 mM, about 19 mM, about 18 mM, about 17 mM, about 16 mM, about 15 mM, about 14 mM, about 13 mM, about 12 mM, about 11 mM, about 10 mM, about 9 mM, about 8 mM, about 7 mM, about 6 mM, about 5 mM, about 4 mM, about 3 mM, about 2 mM, about 1 mM, or about 0.5 mM.

32. The method of any one of claims 1-31, wherein the cell specific lactate production rate to the cell specific glucose uptake rate ratio (LPR/GUR ratio) of the cells is between about -0.5 and about 0.5.

33. The method of claim 32, wherein the LPR/GUR ratio of the cells is between about -0.4 and about 0.5, about -0.3 and about 0.5, about -0.2 and about 0.5, about -0.1 and about 0.5, about -0.5 and about 0.4, about -0.5 and about 0.3, about -0.5 and about 0.2, about -0.5 and about 0.1, about -0.4 and about 0.4, about -0.3 and about 0.3, about -0.2 and about 0.2, about -0.1 and about 0.1, about -0.1 and about 0.05, about -0.2 and about 0.1, or about -0.3 and about 0.15.

34. The method of any one of claims 1-32, wherein the cells are selected from the group consisting of CHO cells, HEK 293 cells, NSO cells, PER.C6 cells, HeLa cells, and M)CK cells.

35. The method of claim 34, wherein the cells are CT1O cells.
36. The method of claim 34, wherein the cells are HEK 293 cells.

37. The method of any one of claims 1-34, wherein the cells are hybridoma cells.

38. The method of any one of claims 1-37, wherein the cells have been adapted to grow in serum free medium, animal protein free medium or chemically defined medium.

39. The method of any one of claims 1-38, wherein the cells have been genetically modified to alter their innate glycosylation pathways.

40. The method of any one of claims 1-39, wherein the cells have been genetically modified to increase their life-span in culture.

41. The method of any one of claims 1-40, wherein the polypeptide of interest is selected from the group consisting of: an antibody, a Transforming Growth Factor (TGF) beta superfamily signaling molecule, an Fc fusion protein, and a clotting factor.

42. The method of any one of claims 1-41, wherein the polypeptide of interest is an antibody.

43. The method of claim 42, wherein the antibody is an IgA, IgD, IgE, IgG, or IgM.

44. The method of claim 42 or 43, wherein the antibody is an IgGl, IgG2, IgG3 or IgG4.

45. The method of any one of claims 42-44, wherein the antibody is a full antibody.

46. The method of any one of claims 42-45, wherein the antibody is a chimeric antibody, humanized antibody or human antibody.

47. The method of any one of claims 42-46, wherein the antibody is a human IgGl antibody.

48. The method of claim 41, wherein said TGF-beta superfamily signaling molecule is Neublastin.

49. The method of claim 41, wherein said clotting factor is a full-length clotting factor, a mature clotting factor, or a chimeric clotting factor.
50. The method of any one of claims 1-49, wherein the total amount of polypeptide produced by the cells is higher than the total amount of polypeptide produced by the cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

51. The method of claim 50, wherein the total amount of polypeptide produced by the cells is between about 5% and about 500% higher than the total amount of polypeptide produced by the cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

52. The method of any one of claims 1-51, wherein the specific productivity of the cells is higher than the specific productivity of cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

53. The method of 52, wherein the specific productivity of the cells is between about 5% and about 500% higher than the specific productivity of cells maintained in a culture medium that is substantially free from dextran sulfate and ferric citrate.

54. The method of any one of claims 3-53, wherein the culture is a perfusion culture.

55. The method of any one of claims 1-54, wherein the culture is a fed batch culture.

56. The method of any one of claims 1-55, wherein the cell culture has a volume of between about 500 liters and about 30,000 liters.

57. The method of any one of claims 1-56, wherein the medium is a serum free medium, animal protein free medium or a chemically defined medium.

58. The method of claim 57, wherein the medium is a chemically defined medium.

59. The method of any one of claims 49 to 58, wherein the chimeric clotting factor comprises a Factor VIII polypeptide, a Factor VII polypeptide, a Factor IX polypeptide, a Von Willebrand Factor polypeptide, or any functional fragments thereof.

60. The method of claim 59, wherein the chimeric clotting factor further comprises a heterologous moiety.
61. The method of claim 60, wherein the heterologous moiety extends an *in vivo* half-life of the clotting factor.

62. The method of claim 61, wherein the heterologous moiety is selected from the group consisting of albumin, albumin binding polypeptide, an FcRn binding partner, Fc, PAS, the β subunit of the C-terminal peptide (CTP) of human chorionic gonadotropin, polyethylene glycol (PEG), hydroxyethyl starch (HES), albumin-binding small molecules, or combinations thereof.

63. The method of any one of claims 59 to 62, wherein the chimeric clotting factor is a monomer-dimer hybrid.

64. The method of any one of claims 59 to 63, wherein the Factor VII polypeptide comprises inactivated Factor VII, active Factor VII (FVIIa), or activatable Factor VII.

65. The method of any one of claims 59 to 63, wherein the Factor VIII polypeptide comprises full-length Factor VIII, mature Factor VIII, Factor VIII containing a partial or full deletion in B domain, or Factor VIII containing an insertion in one or more FVIII domains.
Figure 1

A.

B.

SUBSTITUTE SHEET (RULE 26)
Figure 2

A.

B.

% Viability

Time (Days)

Commercially Available Media w/ Dextran Sulfate
Commercially Available Media w/o Dextran Sulfate
CM3 HEKv1 w/ Dextran Sulfate
CM3 HEKv1 w/o Dextran Sulfate
Figure 4

A. Viable Cell Density (cells/mL)

- CM3 HEKv1 free of Dextran Sulfate
- CM3 HEKv1 from Inoculum Source Containing Dextran Sulfate

B. Viability

- CM3 HEKv1 free of Dextran Sulfate
- CM3 HEKv1 from Inoculum Source Containing Dextran Sulfate
<table>
<thead>
<tr>
<th>Box No. II</th>
<th>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</td>
</tr>
<tr>
<td>1. ☐ Claims Nos.:</td>
<td>because they relate to subject matter not required to be searched by this Authority, namely:</td>
</tr>
<tr>
<td>2. ☐ Claims Nos.:</td>
<td>because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:</td>
</tr>
<tr>
<td>3. ☑ Claims Nos.: 6-65</td>
<td>because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This International Searching Authority found multiple inventions in this international application, as follows:</td>
</tr>
<tr>
<td>1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.</td>
<td></td>
</tr>
<tr>
<td>2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.</td>
<td></td>
</tr>
<tr>
<td>3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:</td>
<td></td>
</tr>
<tr>
<td>4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</td>
<td></td>
</tr>
</tbody>
</table>

Remark on Protest
- ☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- ☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- ☐ No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - C12N 5/00 (2014.01)

USPC - 435/391

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - C07K 2/00; C12N 5/00; 5/07, 5/16, 7/00; C12P 21/00 (2014.01)

USPC - 435/69.1, 325, 383, 391, 404, 410, 530/300

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

CPC - C12N 7/00, 15/85, 2500/84, 2500/90, 2500/99 (2014.01)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase, Google Patents, Google, PubMed

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2007/0254358 (CICCARONE et al) 01 November 2007 (01.11.2007) entire document</td>
<td>1-5</td>
</tr>
</tbody>
</table>

H Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search

26 February 2014

Date of mailing of the international search report

19 MAR 2014

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents

P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Form PCT/ISA /Z10 (second sheet) (July 2009)

Authorized officer:

Blaine R. Copenheaver

PCT Filedesk: 571-272-4300

PCT OSP: 571-272-7774