
US 20060021021A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0021021 A1

Pate (43) Pub. Date: Jan. 26, 2006

(54) SECURITY EVENT DATA NORMALIZATION Publication Classification

(76) Inventor: Rajesh Patel, Los Altos, CA (US) (51) Int. Cl.
G06F 15/16 (2006.01)

Correspondence Address: (52) U.S. Cl. .. 726/13
GREENBLUM & BERNSTEIN, P.L.C.
1950 ROLAND CLARKE PLACE
RESTON, VA 20191 (US) (57) ABSTRACT

(21) Appl. No.: 11/149,083 Normalizing security event data from multiple different
(22) Filed: Jun. 8, 2005 network agents. The data from the multiple different agents

is categorized and tagged with a descriptor that includes
Related U.S. Application Data information about the nature of the event. Multiple different

events from multiple different devices can therefore be
(60) Provisional application No. 60/578,281, filed on Jun. evaluated using a common format which is common for the

8, 2004. multiple different devices from different vendors.

Event Data

Translation and Event Threaded Descriptor Encryption Processing
Engine Engine

RealTime
Raw and Display
Parsed Data

User
interface

Forensic
Reporting Database

User

TVS Functional Areas

Patent Application Publication Jan. 26, 2006 Sheet 1 of 8 US 2006/0021021 A1

Event Data

Translation and Event Threaded Descriptor Encryption Processing
Engine Engine

RealTime
Raw and Display
Pa rised D ata

User
interface

Forensic
Reporting Database

User

Figure 1. TVS Functional Areas

Patent Application Publication Jan. 26, 2006 Sheet 2 of 8 US 2006/0021021 A1

inbound Events
Packet Listener

No. Reject
Packet

ls the packet from a
registered device?

Yes

Match against
regex for

Subsystem.

No Reject Packet
and write to
database

Was there a regex
match?

Yes

Perform system
functions and

value mappings.

Create event
descriptor Ship tagged

data to TPE packet.

Write to
database

Figure 2. TEE Logical Flow

Patent Application Publication Jan. 26, 2006 Sheet 3 of 8 US 2006/0021021 A1

fee ca?e he even ea?t ?event is
OOOO 00000 OOOOOOOOOO OOOOOOOOOOOOO

Figure 3. TVS Event Tag

Patent Application Publication Jan. 26, 2006 Sheet 4 of 8 US 2006/0021021 A1

West
Rawata

Supporting
Data

Wendo
Rawata

WSRis
Erwinishment Normalization Tool

Wendor
Raw Data

Supporting
Wender data
Raw Data

Figure 4. Initial state of TVS data requirements support.

Patent Application Publication Jan. 26, 2006 Sheet 5 of 8 US 2006/0021021 A1

Supporting
Data

Wend
Raw Ea Wendor Data

Normalization

Wendor
Raw Data

WS Centralized
Globallnformation Repository

Wendor
Raw Data

WSRime
Environment

Wendof
Raw Data

Figure 5. Example of a Centralized Global Information Repository.

Patent Application Publication Jan. 26, 2006 Sheet 6 of 8 US 2006/0021021 A1

fopt/towerview/demo/vmf

default-system.vm value map registration point
'subsystem-name1.vm" #registered subsystem signature id value map
'subsystem-name2.vm" #registered subsystem signature id value map
afetc.

vendors information about vendor references
agent refs information about vendor references

fopt/towerview/demo

config.xml information about vendor devices
retc.

foot/towerview/demo/ruletemplates

valuemappings #ht id to message value mappings for use in the DM
avetc.

Figure 6. TVS Runtime Requirements.

Patent Application Publication Jan. 26, 2006 Sheet 7 of 8 US 2006/0021021 A1

Routine
Mainterance
Updates

serDefined
Fiters

(ie, Wendor
Productrevision
Specifications)

VS Centralized
Global Information repository

WSrutine
Environent

Figure 7. TVS Runtime Requirements Delivery Automation.

Patent Application Publication Jan. 26, 2006 Sheet 8 of 8 US 2006/0021021 A1

Update retrieval Process

Configuration WS Centralized WSRuntime
Global information repository Updatefruitime Support data witer runtime Support data Environment

User interface
Wizard

Figure 8. TVS Update Process.

US 2006/0021021 A1

SECURITY EVENT DATA NORMALIZATION

0001. This application claims priority from Application
No. 60/578,281, filed Jun. 8, 2004, the disclosure of which
is here with incorporated by reference.

BACKGROUND

0002. In the world of security event management, every
one is speaking a different language. This stems from the
fact that there is no industry wide Standard language used to
describe Security events. Therefore, each vendor provides
notification of detected events in their own proprietary
format.

SUMMARY

0003. In order to accommodate the disparity in vendor
event notification formats, HighTower Software has devel
oped a method of normalizing events from each vendor's
proprietary format into a common format. By development
of a categorization Scheme and associated tagging process,
each event that enters the normalizing application is evalu
ated and tagged with a descriptor that carries specific
information about the nature of the event. This technique
allows events to be evaluated in a common context, while
retaining the Vendor Specific context.

BRIEF DESCRIPTION OF THE DRAWINGS

0004. These and other aspects will now be described in
detail with reference the accompanying drawings, wherein:
0005 FIG. 1 shows a block diagram of the overall
System operation;

0006 FIG. 2 illustrates the logical information flow
within the translation and encryption engine;
0007 FIG. 3 illustrates an exemplary event tag;
0008 FIG. 4 illustrates the normalization runtime envi
ronment and the data that it receives,
0009 FIG. 5 illustrates the information registry receiving
the data from various items,
0.010 FIG. 6 illustrates the runtime requirements of the
System;

0011 FIG. 7 illustrates the automation of delivery of
these runtime requirements, and
0012 FIG. 8 illustrates the update procedure that allows
for application maintenance.

DETAILED DESCRIPTION

0013 FIG. 1 shows a block diagram with three discreet
functional parts, including the Translation and Encryption
Engine (TEE) 100, the Threaded Processing Engine (TPE)
110 and the Data Monitor (Datamon or DM) 120.
0.014. The TEE is responsible for the validation, initial
processing, formatting, database Storage, and the forwarding
to the TPE of data received from devices that are monitored
by TVS. The TPE is responsible for performing analysis,
according to user Specified configuration directives, in the
form of rules assignment, of the event data it receives from
the TEE. Once analysis has been performed, the results of
that analysis are Sent to the Datamon as display updates. The
Datamon is responsible for providing the TVS user with 3D

Jan. 26, 2006

graphical display of the analysis performed by the TPE on
events that have been received and processed by the TEE.
Additionally a web based portal may be available to provide
the TVS user with an environment in which to generate
forensic analysis reports from the data contained in the TVS
runtime database.

0015 The event data normalization process is imple
mented as part of the TEE. Devices which are to be
monitored by TVS are registered with the TEE. As part of
this registration process, they are assigned a Subsystem type.
This subsystem type defines the set of rules by which these
events are to be processed. AS events from registered devices
are received by the TEE, they are broken down into their
elemental components. These elemental components include
Such items as device IPAddress, Packet Source IPAddress,
Packet Source Port, Packet Destination IP Address, Packet
Destination Port, Signature Identifier and a number of other
items of data that are specific to a particular Subsystem type.
From this set of elemental components the Signature Iden
tifier is used to match against a predetermined list of
relationships or value mappings that Serve to assign a tag to
the event. This tag is carried with the packet of elemental
components or event descriptor packet that is used to
process the event within the TVS application.
0016 TVS provides support for many device categories
and many device variants within each category. Within a
Specific device category message format and content may
differ based on each vendor's Specific message format,
message content and message or Signature identifier. Dif
ferent categories of devices may provide messages contain
ing information about an event that is also presented by
another category of device about the Same event. The format
and content of these different messages about the same event
will likely differ. TVS provides a methodology first for
normalization of data provided by disparate devices within
each category and Secondly for normalization of data about
the same event by devices in different categories.

Tee Functionality

0.017. The Translation and Encryption Engine (TEE) 100
includes a Software code that receives, validates, transforms,
normalizes, buffers and Sends data between one or more
components in the TowerView Security system. The TEE's
primary purpose is to transform the data received from a
network agent, Such as a firewall, nids, or hids, and convert
it into a common format which can be understood by other
components in the System. Then this processed data is
forwarded to one of the many connected targets, Such as the
processing engine (PE) or the data monitor (DM). The
TEE's Secondary purpose is to Store the raw and translated
data to a database repository for forensic analysis. A high
level logical flow of the TEE is depicted in FIG. 2.

Tags

0018. In order to provide state-full normalization of data
to the processing engine we assign a tag to each event that
is processed. This tag contains meta information about the
event that will be used by the rule set in the TPE.

Tag Structure
0019. The Hightower Security Event TAG is a 32 binary
bit segmented data entity. Each Segment provides Specific

US 2006/0021021 A1

information about the event it tags. The currently defined
structure of the hit event tag is shown in FIG. 3.
ht Sig cat:
0020. To support normalization of event data between
categories of devices we require broad classification of
events. This reflects the severity of the event in the context
of network Security. These broad classifications have cur
rently been defined as Uncategorized, Unknown, Normal,
Reconnaissance, Malicious, Compromised and Health/Sta
tus. These classifications are reflected in a four-position
binary tag field labeled hit Sig cat. The current mapping for
the values of the hit sig cat tag field are shown below in
Table 1.

TABLE 1.

ht sig cat keV

ht sig cat Category

1. Uncategorized
2 Unknown
3 Normal
4 Reconnaissance
5 Malicious
6 Compromised
7 Health/Status

0021. The hit sig cat tag describes at a high level the
nature of the event being evaluated.
ht device cat:
0022. To support normalization of event data provided by
like devices, perhaps from different vendors, with different
event data formats we are required to defined device cat
egories. These classifications are reflected in a five-position
binary tag field labeled hit device cat. The current mapping
for the values of the hit device cat tag field are shown in
Table 2.

TABLE 2

ht device cat keV

ht device cat Category

1. Firewall
2 Intrusion

Detection System
3 Router
4 Vulnerability

Assessment
5 VPN
6 Tbd
7 Tbd

0023 The ht device cat tag describes the type of device
has sent the data about the event being evaluated.
ht event cat:
0024 Table 2 shows five device categories. The events
that may by a device in a particular category, for example an
Intrusion Detection System, we will see that these events
also fall into a Specific number of categories. These event
categories are largely common amongst different IDS imple
mentations. To provide normalization of events from differ
ent implementations of like devices we are required to

Jan. 26, 2006

provide classification of events by event category. These
classifications are reflected in a ten-position binary tag field
labeled hit event cat. For example for an Intrusion Detec
tion System mappings for the values of the hit event cat
field are shown below in Table 3.

TABLE 3

ht event cat key for IDS

ht event cat Category

O1 Attack Response
O2 Backdoor
O3 Bad Traffic
O4 Chat
05 DDOS
O7 DNS
O8 DOS
O9 Exploit
1O Finger
11 FTP
12 ICMP-Info
13 ICMP
14 IMAP
15 Info
16 Local
17 Misc
18 Multimedia
19 Mysql
2O Netbios
21 Nntp
22 Oracle
23 Other-IDS
24 P2p
25 Policy
26 Pop2
27 Pop3
28 Porn
29 Rpc
3O Rservices
31 Scan
32 Shellcode
33 Smtp
34 Snmp
35 Sql
36 Telnet
37 Tftp
38 Virus
39 Web-attacks
40 Web-cgi
41 Web-client
42 Web-coldfusion
43 Web-frontpage
44 Web-lis
45 Web-misc
46 Web-php
47 X11
48 Packet Discarded

ht event id:
0025. Within each ht event cat we have allowed for up
to 8192 unique event ids. These classifications are reflected
in a thirteen-position binary tag field labeled hit event id.
Application of the hit Event Tag
0026. For example consider an event reported by the
following Snort NIDS rule:
0027) alert tep SEXTERNAL NET any->SDNS SERV
ERS 53-"thisis.Sometempspaceforthe
Sockinaddrinyeahyeahiknowthisisla mebutanyway who
careshorizongotitworkingSoalliscool”

0028. If this rule triggers it indicates that a DNS com
promise has occurred. This vulnerability is described in

US 2006/0021021 A1

CVE-1999-0833, BUGTRAQ ID 788 and CERT CA-1999
14. This event will be assigned a hit event tag of 610D400C
(hex) or 1628258316 (decimal). From the binary perspective
that is ht Sig cat 6 (compromised), ht device cat 2 (IDS),
ht event cat 107 (DNS) and ht event id 12 (ADM DNS
overflow).
0029 Consider the following Dragon NIDS rule: SIG
NATURET D A B 1O O 53 DNS:ADM-OVERFLOW
thisis.SometempSpacefortheSockinaddr

0030 This rule is written to detect the same event as the
Snort rule above. Detection of these events by disparate IDS
Systems will produce an identical ht event tag. This event
will be assigned a ht event tag of 610D400C (hex) or
1628258316 (decimal). From the binary perspective that is
ht sig cat 6 (compromised), ht device cat 2 (IDS),
ht event cat 107 (DNS) and ht event id 12 (ADM DNS
overflow).
0031) Note: If this event were to be detected by the Cisco
PIX Firewall IDS feature, the field ht device cat in the
ht event tag would reflect a device type of 1 and the
resulting ht event tag would be 608D400C (hex) or
1619869708 (decimal). From the binary perspective that is
ht sig cat 6 (compromised), ht device cat 1 (FW),
ht event cat 107 (DNS) and ht event id 12 (ADM DNS
overflow).
0032. In the present system, with Snort and Dragon, the
ht event tag is identical. Events detected from different
points in your network and by devices from different ven
dors can be correlated and identified as identical events. This
enables evaluation of the effectiveness of a networks
defense in depth by showing the progreSS or lack of progreSS
of hostile events acroSS the layers of your network. In the
context of TVS, device chains can be identified, which are
used to notify operators of the detection of identical events
by devices at multiple points in the network.

Vulnerability Assessment Correlation
0.033 Consider the case of a network that employs use of
a Vulnerability Assessment (VA) system. That is a system
that by varying methods and vary degrees of intrusiveness
examines the nodes on a given network Segment for their
susceptibility to a set of vulnerabilities known by the vendor
of the VA System. VA Systems generally produce a set of
results of the analysis of networks they scan. Network and
System Administrators have traditionally used this data to
guide them as to which Systems require patching for the
various vulnerabilities that have been discovered.

0034 Consider the Foundstone VA tool which runs a
Series of Scripts that are used to detect Vulnerabilities in
nodes on a given network Segment. One of the Scripts that
the Foundstone VA tool runs is unix-chargen-dos-v2.fas13.
This Script is used to detect unix Systems that are Vulnerable
to chargen dos exploits. The chargen Service generates
random characters and this Service can be used in conjunc
tion with other Services to cause a denial of Service attack via
flooding.
0035) The following snort NIDS rule is used to detect
instances of this exploit on the networks it monitors.
0036) alert udp any 19 < > any 7 (msg: “DOS UDP
echo+chargen bomb”; reference: cve, CAN-1999-0635; ref
erence: cve, CVE-1999-0103; classtype: attempted-dos; sid:
271; rev: 3;)

Jan. 26, 2006

0037. In order to eliminate false alarms and unnecessary
response to events to which we are not Vulnerable and to
enhance Our Sense of urgency and highlight those events to
which we are vulnerable we can use capabilities enabled by
the TVS normalization process to determine if there is a
correlation between NIDS detected hostile events and the
network vulnerabilities reported by our VA tool.
0038. In order to provide for VA correlation, TVS builds
a table which reflects the state of node vulnerabilities on the
monitored network Segment, based on data provided by the
VA tool deployed in the network. To build that table TVS
must acquire and process the VA data from the VA tool. The
particular method of data acquisition from the VA tool is
vendor dependent.

Acquisition of VA Data
0039. In order to support VA correlation we acquire the
following elements of data from the VA tool results set. Our
query, which is performed by the Script getVadata.pl, popu
lates three files. These files are va Vulns.dat, Va os Scan
date.dat, and va ports open.dat. The file va Vulns.dat con
tains three data items; they are ipaddr converted,
ht event tag, and Va Sid. The file valos Scandate.dat con
tains three items of data; they are ipaddr converted, OS, and
va Scandate. The file Va ports open contains three items of
data; they are ipaddr converted, protocol and port.

File Use and Population
va Vulns.dat:
0040. This file, which contains a listing the vulnerabili
ties that have been detected by a Vulnerability Scan, will
document the IP address of the Vulnerable device and the
relationship between hit tag and VA tools Sid for the event.
The Script getVadata.pl will query the VA tool results Set and
Select the IPAddress of the Vulnerable network node and the
Sid. The Sid is used as an index to assign an ht event tag
from the VA devices value-map file. The VA devices value
map file documents the relationship between the VA devices
Sid and the associated hit event tag.
0041) The data itemipaddr converted will be constructed
from the item in the VA tool results set that represents the IP
address of the Vulnerable device. The data item ht event tag
is determined by using the VA tools event Sid to index the
value-map file, retrieving the appropriate value. The data
item va Sid is retrieved directly from the VA tool results set.
Va os Scandate:
0042. This file, contains scan dates and Operating Sys
tems (OSs), and documents the IP address of the vulnerable
device, its Operating System and the date that the last VA
Scan was performed.
0043. The data item ipaddr converted is constructed
from the item in the VA tool results set that represents the IP
address of the Vulnerable device. For each IP address we will
query the VA tool results set for the OSName. For each IP
address we will query the VA tool results set for the
date/time of the VA Scan. The file valos Scandate will be
populated with ipaddr converted, OS and va Scandate.
Va ports open:

0044) This file, contains a list of active services, and
documents the IP address of the device as well as the
protocol and port of any active Services.

US 2006/0021021 A1

004.5 The data item ipaddr converted is constructed
from the item in the VA tool results set that represents the IP
address of the vulnerable device. The data item protocol is
constructed from the item in the VA tool results set that
represents the protocol used to access the Vulnerability on
the vulnerable device. The data itemport is constructed from
the item in the VA tool results set that represents the port
used to access the vulnerability on the vulnerable device.
The file va ports open will be populated with ipaddr con
verted, protocol and port.
VA Correlation

0046) Once the VA files have been populated and the
runtime table that reflects the state of the VA assessment has
been built within TVS, analytics are used monitor events
which may exploit particular Vulnerabilities. If an event is
evaluated and found to be an exploit destined for a node that
has a documented Vulnerability for that exploit an alarm
indicating this can be issued to the TVS operator.
0047 Consider the previous example of the dos+chargen
bomb. The Snort rule that detects this event, alert udpany 19
< > any 7 (msg: “DOS UDP echo+chargen bomb”; refer
ence: cve, CAN-1999-0635; reference: cve, CVE-1999
0103; classtype: attempted-dos; sid: 271; rev: 3;), is
assigned the hit event tag 5:2:108:3 (ht sig cat 5 or mali
cious, ht dev cat 2 or IDS, ht event cat 108 or DOS,
ht event id (in hit event cat 108) 3 or DOS UDP echo+
chargen bomb) and it is represented by the decimal number
1359839235.

0048 Next consider the vulnerability detected by the
Foundstone VA tool script unix-chargen-dos-v2.fas13. This
Vulnerability is assigned the hit event tag 5:4:108:3 and it is
represented by the decimal number 1376616451. If the
Foundstone VA tool determined that this vulnerability
existed on a node that was assigned the IP address
10.1.15.106 the file va Vulns.dat would contain the follow
ing entry:

0049)
0050) 167841642<>1376616451<>673

0051. At runtime the table that reflects the state of
vulnerabilities in the monitored network will reflect this
information. When an event is detected with a destination IP
address that matches an entry in this table entry the hit event
tags are compared, excluding the ht deV cat Segment,

which is different because and IDS detected the event and a
VA tool detected the existence of the vulnerability.
0.052) If a system is not vulnerable to an exploit, but is

Still listening on a port that is used by an exploit, we can alert
the TVS operator to this by referencing the data contained in
the table vaports open.dat. If the node was a Sun Server
running the Sunrpc Service the file Va ports open.dat might
contain the following entry:

0053)
0054) 167841642<>tcp->111

0.055 The currency of VA scans is evaluated by moni
toring the file Va os Scandate.dat. The file valos Scandate
.dat might contain the following entry:

0056)
0057) 167841642<>Linux 2.47-13->1084386780

ipaddr converted.<>ht event tag->va Sid

ipaddr converted.<>protocol->port

ipaddr converted.<> OS <>Scandate

Jan. 26, 2006

0058 As a result of the above examination of the use of
the TVS Event Data Normalization Architecture and process
you should have a good understanding of the functionality
and application of this technology. We also need to gain an
understanding of the nature and magnitude of the data that
we are dealing with in our process of Event Data Normal
ization. Towards that end we will examine the data require
ments of TVS.

Data Requirements Overview:
0059. In order to support the goal of becoming a market
ready production class SEM tool it is evident that managing
the volume of information required to develop, build and
Support the product will require a detailed, well thought out
information management architecture.
Initial State:

0060. In order to begin this effort, it is necessary to
understand the data requirements that TVS had and the
current methods of Supporting those requirements. TVS has
a number of data requirements, these include value map
pings that provide translations from Vendor Signature iden
tifier to HighTower Signature identifier, value mappings that
provide translations from HighTower Signature identifier to
event textual description; value mappings that provide trans
lations from port number to Service name and there are many
requirements for vendor information Support in order to
provide the forensic capabilities of the portal. AS can be seen
in FIG. 4 the initial state of TVS required that a number of
manual processes be performed to populate the files and
databases that are used in the TVS runtime environment.

0061 These manual processes are cumbersome at best
and non-repeatable at worst. The information used to Sup
port or feed these processes resided only on the desktop of
staff workstations. Revision control ranged from difficult to
non-existent and information updates are not easily imple
mented.

Solution:

0062. In order to support the data requirements of TVS,
a Centralized Global Information Repository has been
defined and developed as has the definition and development
of a number of interfaces to that repository. A high level
example of this repository and its interfaces can be seen in
FIG 5.

0063. In order to develop this repository a number of
StepS are required. At a high level these included:

0064 Define the components within the TVS environ
ment that will require access to the repository.
0065 Supported component name
0.066 Function provided

0067. Define the nature of the access required.
0068 Read only, read/write, read/modify/write,
write only

0069 Reason for access
0070 Define change control policy.

0.071) Process
0072 Revision management

US 2006/0021021 A1

0073 Enforcement
0.074 Rollbacks

0075 Once the components are identified, the details of
their access requirements is defined. This looks like:

0076) Define the detailed data requirements of the TVS
runtime environment.

0077. Define the method of interface to the TVS
runtime environment

0078 Read only
0079 Define runtime database requirements
0080 Mysql tables

0081. Define all value mappings files
0082) Value maps
0.083 Config files

0084. Define vendor Support requirements
0085 Vendor references and linkages

0086) Define portal requirements
0087 Table requirements
0088 Query requirements

0089 Define change control policy
0090 Who, what, when, where and why?

0091 Define change control process
0092) How?

0093. Define current data population processes
0094) Identify
0095) Automate
0096 Document

0097 Identify output reasons
0098) Normal runtime builds
0099 Runtime updates
0100 Custom builds

0101 Customer has a custom security device
(ie. Snort with custom rules)

0102) Additional discovery if necessary
0103) Define the detailed data requirements of the
Vendor Data Normalization Tool.

0104 Define the method of interface to the Vendor
Data Normalization Tool

0105 Read/modify/write
0106 Define VDNT runtime database requirements
0107 Tables (view) required

0108) Define change control policy
0109) Who, what, when, where and why?

0110 Define change control process
0111 How?

Jan. 26, 2006

0112 Define current data population processes
0113 Identify
0114) Automate
0115) Document

0116. Additional discovery if necessary
0117 Define the detailed data requirements for Sup
porting data.
0118 Define the method of interface to the Support
ing data
0119) Write only

0120 Define the content
0121 Standards
0122) RFC guidelines
0123 Port number to name
0.124 Protocol number to name

0.125 Define change control process
0126) How?

0127 Define current data population processes
0128) Identify
0129 Automate
0130) Document

0131 Additional discovery if necessary
0132) Define the requirements for vendor raw data.

0.133 Define the method of interface to the vendor
data

0134) Write only
0135 Volume of data

0.136) Size-number of records/events
0137 Number of files or tables

0138 Format of data
013:9) Table or file structure

0140. Define change control process
0141. How?

0142. Define current data population processes
0143 Identify
0144) Automate
0145 Document

0146 Additional discovery if necessary
A Closer Look at Some Data Requirements:

0147 In order to understand the reasoning behind and the
requirements of Such a repository, detail about the runtime
data requirements of TVS is provided. Some of the envi
ronments requirements are depicted in FIG. 6.
0.148. This is by no means a complete list of the data
requirements of the TVS runtime environment. Up to this
point in the history of TVS the data required for runtime had

US 2006/0021021 A1

been compiled bit by bit, file by file from disparate sources.
Updates had been tedious manual processes. TVS has devel
oped a methodology for providing easily repeatable, auto
mated data update methods. These data updates encompass
the entire product and provide maintenance Signature
updates or even custom Signature updates for example for a
customer who writes their own Snort or Dragon IDS rules.
FIG. 7 depicts the process for providing TVS runtime
environment data from the central repository. AS shown in
the diagram the user Specifies the requirements of the data
population via a “User Control Interface” or “Wizard'. This
interface allows the user to Specify the information required
for this instance of the TVS runtime environment data
population. In essence Simple input data Source to output
data file specification. In FIG. 7, there are three destinations
for data used in TVS runtime. First and most importantly
there is the TVS Runtime Environment which is a set of all
data required to support the TVS runtime environment. This
is used to support full TVS builds. Secondly are routine
maintenance updates. These are provide Support for vendor
event updates. Thirdly are custom updates which provide
TVS Support for events that are not part of the vendor's
event base but are events that the customer has defined
which are implemented in the context of a Supported ven
dor's product. For example in the case of Snort and Dragon
(two IDS that are currently supported by TVS) functionality
is Supported that enables the end user to define their own
IDS rules. TVS runtime environment data for clients requir
ing Support of custom events is Supported in a “one-off

C.

0149 Each of the components within the TVS environ
ment that will require access to the repository is evaluated to
determine how it integrates with the repository. In the case
of Support for the TVS Runtime Environment a configura
tion wizard has been developed that is integrated to provide
the input controls required to define the TVS Runtime
Environment build process.
0150. This functionality requires that some form of the
repository ship with the TVS product. The contents of the
Shipped repository has been Scrupulously reviewed and
defined so that while providing the customer with the
functionality they expect we do not disclose corporate
confidential information. For example, we are required to
ship the event profiles table, which is the structure that
defines the relationships between disparate vendor's defini
tions of like events, and So that we can Support linking to
vendors web based documentation in Support of the forensic
capabilities of the portal, the raw data tables from which the
event profiles table is built, but we do not ship the normal
ization tool that is used to evaluate the raw data tables and
produce the event profiles table. The normalization tool, the
normalization process and its Specific functionality are pro
prietary items.
0151. The shipped repository also provides a suitable
target for periodic maintenance updates for TVS device
Support and with additional development will Serve as a
vehicle for TVS application maintenance.
0152 A process for providing maintenance update for
device Support will include distributing new or updated raw

Jan. 26, 2006

device files, new or updated event profile tables and new or
updated value mapping files and any other new or updated
files required by the System.
0153. An overview of this process is depicted in FIG. 8.
0154 Although only a few embodiments have been dis
closed in detail above, other modifications are possible, and
this disclosure is intended to cover all Such modifications,
and most particularly, any modification which might be
predictable to a person having ordinary skill in the art.
O155 Also, only those claims which use the words
“means for are intended to be interpreted under 35 USC
112, Sixth paragraph. Moreover, no limitations from the
Specification are intended to be read into any claims, unless
those limitations are expressly included in the claims.

What is claimed is
1. A method, comprising:
receiving a packet from a network Security agent indicat

ing a network event;
converting the packet to a Security event tag that repre

Sents information indicative of the event and informa
tion indicative of a type of agent which detected the
event; and

using the Security event tag to represent the event in place
of the packet.

2. A method as in claim 1, further comprising determining
if the packet is from a registered device.

3. A method as in claim 1, wherein the network Security
agent is one of a firewall, a network intrusion System, a
router, or a virtual private network.

4. A method as in claim 1, wherein the Security event tag
has common fields for the same event from different agents.

5. A method as in claim 1, wherein the Security event tag
represents at least an IP address, at least one port, and at least
one signature identifier.

6. A System, comprising:
A port that receives a packet from a network Security

agent indicating a network event;
A processing engine operating to convert the packet to a

Security event tag that represents information indicative
of the event and information indicative of a type of
agent which detected the event; and

A Security monitoring System that uses the Security event
tag to represent the event in place of the packet.

7. A System as in claim 6, further comprising the network
Security agent.

8. A System as in claim 7, wherein Said network Security
agent is one of a firewall, a network intrusion System, a
router, or a virtual private network.

9. A method as in claim 6, wherein the Security event tag
has common fields for the same event from different agents.

10. A method as in claim 9, wherein the security event tag
represents at least an IP address, at least one port, and at least
one signature identifier.

