
(19) *DE102014003690A120140918*

(10) DE 10 2014 003 690 A1 2014.09.18

(12) Offenlegungsschrift

(21) Aktenzeichen: 10 2014 003 690.1
(22) Anmeldetag: 14.03.2014
(43) Offenlegungstag: 18.09.2014

(51) Int Cl.: G06F 9/30 (2006.01)
G06F 9/318 (2006.01)

(30) Unionspriorität:
13/844,881 16.03.2013 US

(71) Anmelder:
Intel Corporation, Santa Clara, Calif., US

(74) Vertreter:
BOEHMERT & BOEHMERT Anwaltspartnerschaft
mbB - Patentanwälte Rechtsanwälte, 28209
Bremen, DE

(72) Erfinder:
Rash, William C., Saratoga, Calif., US; Toll, Bret
L., Hilsboro, Oreg., US; Hahn, Scott D., Portland,
Oreg., US; Hinton, Glenn J., Portland, Oreg., US

Prüfungsantrag gemäß § 44 PatG ist gestellt.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Prozessoren, Verfahren und Systeme zur Befehlsemulation

(57) Zusammenfassung: Ein Prozessor enthält unter einem
Aspekt Dekodierlogik zum Erhalten eines ersten Befehls
und zum Bestimmen, dass der erste Befehl emuliert werden
soll. Der Prozessor enthält auch emulationsmodusbewusste
Nachdekodier-Befehlsprozessorlogik, die mit der Dekodier-
logik gekoppelt ist. Die emulationsmodusbewusste Nachde-
kodier-Befehlsprozessorlogik soll ein oder mehrere Steuer-
signale verarbeiten, die aus einem Befehl dekodiert wer-
den. Der Befehl ist einer aus einem Satz von einem oder
mehreren Befehlen, die zum Emulieren des ersten Befehls
verwendet werden. Die ein oder mehreren Steuersignale
sollen durch die emulationsmodusbewusste Nachdekodier-
Befehlsprozessorlogik anders verarbeitet werden, wenn ein
Emulationsmodus vorliegt, als wenn kein Emulationsmo-
dus vorliegt. Andere Vorrichtungen sind ebenfalls offenbart,
ebenso wie Verfahren und Systeme.



DE 10 2014 003 690 A1    2014.09.18

2/48

Beschreibung

Hintergrund

Technisches Gebiet

[0001] Hier beschriebene Ausführungsformen be-
ziehen sich allgemein auf Prozessoren. Insbesonde-
re beziehen sich hier beschriebene Ausführungsfor-
men allgemein auf Befehlsemulation in Prozessoren.

Hintergrundinformation

[0002] Prozessoren weisen gewöhnlich Befehlssatz-
architekturen (instruction set architectures (ISA)) auf.
Die ISA stellt allgemein den Teil der Architektur des
Prozessors dar, der sich auf Programmieren be-
zieht. Die ISA enthält gewöhnlich die nativen Befeh-
le, Architekturregister, Datentypen, Addressierungs-
modi und ähnliches der Prozessoren. Ein Teil der
ISA ist der Befehlssatz. Der Befehlssatz enthält all-
gemein Makrobefehle oder Befehle auf ISA-Ebene,
die dem Prozessor zur Ausführung bereitgestellt wer-
den. Eine Ausführungslogik und andere Pipeline-Lo-
gik ist enthalten, um die Befehle des Befehlssatzes zu
verarbeiten. Oftmals kann der Umfang solcher Aus-
führungs- und Pipeline-Logik beträchtlich sein. Ge-
wöhnlich ist der Umfang solcher Logik umso größer,
je mehr Befehle in dem Befehlssatz vorliegen und je
komplexer und/oder spezieller die Befehle in dem Be-
fehlssatz sind. Solche Hardware kann dazu tendie-
ren, die Herstellungskosten, die Größe und/oder den
Stromverbrauch der Prozessoren zu erhöhen.

Kurze Beschreibung der Zeichnungen

[0003] Die Erfindung kann am besten durch Bezug-
nahme auf die folgende Beschreibung und beigefüg-
ten Zeichnungen verstanden werden, die verwendet
werden, um die Ausführungsformen der Erfindung zu
veranschaulichen. In den Zeichnungen zeigt:

[0004] Fig. 1 ein Blockdiagramm einer Ausführungs-
form eines Computersystems,

[0005] Fig. 2 ein Blockflußdiagramm einer Ausfüh-
rungsform eines Verfahrens zum Emulieren eines
Befehls in einem Prozessor,

[0006] Fig. 3 ein Blockdiagramm, das eine Ausfüh-
rungsform von Logik zum Emulieren eines Befehls
mit einem Satz eines oder mehrerer Befehle zeigt,

[0007] Fig. 4 ein Blockdiagramm, das eine Ausfüh-
rungsform von Logik zeigt, um einem Prozessor zu
ermöglichen, Ausnahmebedingungen anders zu be-
handeln, wenn er sich in einem Emulationsmodus be-
findet, als wenn er sich nicht in dem Emulationsmo-
dus befindet,

[0008] Fig. 5 ein Blockdiagramm, das eine Ausfüh-
rungsform von Logik zeigt, um einem Prozessor zu
ermöglichen, auf (ein) Betriebsmittel und/oder Infor-
mation anders zuzugreifen, wenn er sich in einem
Emulationsmodus befindet, als wenn er sich nicht in
dem Emulationsmodus befindet,

[0009] Fig. 6 ein Blockflussdiagramm einer Ausfüh-
rungsform eines Verfahrens, das durch und/oder in
einem Prozessor durchgeführt wird,

[0010] Fig. 7 ein Blockdiagramm, das eine Ausfüh-
rungsform von Logik zeigt, um einem Opcode zu er-
möglichen, unterschiedliche Bedeutungen zu haben,

[0011] Fig. 8 ein Blockflussdiagramm einer Ausfüh-
rungsform eines Verfahrens, das durch ein Betriebs-
systemmodul durchgeführt werden kann,

[0012] Fig. 9 ein Blockdiagramm einer Ausführungs-
form eines Programmladermoduls einschließlich ei-
nes Auswählmoduls, das betrieben werden kann, um
einen Satz einer oder mehrerer Funktionen, Subrou-
tinen oder andere Teile einer Softwarebibliothek aus-
zuwählen, die eine Bedeutung eines gegebenen Op-
codes haben, die für Software geeignet ist, die sie
verwenden wird,

[0013] Fig. 10A ein Blockdiagramm, das sowohl
eine beispielhafte geordnete Pipeline als auch ei-
ne beispielhafte ungeordnete Ausgabe-(issue)/Aus-
führungs-Pipeline mit Registerumbenennung gemäß
Ausführungsformen der Erfindung zeigt,

[0014] Fig. 10B ein Blockdiagramm, das sowohl
eine beispielhafte Ausführungsform eines geordne-
ten Architekturkerns als auch einen ungeordneten
Ausgabe-/Ausführungsarchitekturkern mit Register-
umbenennung, der in einem Prozessor aufgenom-
men werden soll, gemäß Ausführungsformen der Er-
findung zeigt,

[0015] Fig. 11A ein Blockdiagramm eines einzelnen
Prozessorkerns gemeinsam mit seiner Verbindung
zu dem Schaltnetzwerk auf dem Chip und mit seinem
lokalen Teil des Level-2(L2)-Caches gemäß Ausfüh-
rungsformen der Erfindung,

[0016] Fig. 11B eine erweiterte Ansicht des Prozes-
sorkern aus Fig. 11A gemäß Ausführungsformen der
Erfindung,

[0017] Fig. 12 ein Blockdiagramm eines Prozessors,
der mehr als einen Kern, einen integrierten Speicher-
controller und integrierte Grafikvorrichtung gemäß
Ausführungsformen der Erfindung enthalten kann,

[0018] Fig. 13 ein Blockdiagramm eines Systems
gemäß einer Ausführungsform der vorliegenden Er-
findung,



DE 10 2014 003 690 A1    2014.09.18

3/48

[0019] Fig. 14 ein Blockdiagramm eines ersten kon-
kreten beispielhaften Systems gemäß einer Ausfüh-
rungsform der vorliegenden Erfindung,

[0020] Fig. 15 ein Blockdiagramm eines zweiten
konkreten beispielhaften Systems gemäß Ausfüh-
rungsformen der vorliegenden Erfindung,

[0021] Fig. 16 ein Blockdiagramm eines SoC gemäß
einer Ausführungsform der vorliegenden Erfindung,

[0022] Fig. 17 ein Blockdiagramm, das die Verwen-
dung eines Softwarebefehlswandlers zum Umwan-
deln von Binärbefehlen in einem Quellbefehlssatz zu
Binärbefehlen in einem Zielbefehlssatz gemäß Aus-
führungsformen der Erfindung gegenüberstellt.

Ausführliche Beschreibung von Ausführungsformen

[0023] Vorliegend sind Prozessoren, Verfahren und
Systeme zur Befehlsemulation offenbart. In der fol-
genden Beschreibung sind zahlreiche spezifische
Details dargelegt (beispielsweise spezifische emu-
lationsmodusbewußte Logik, Ansätze zum Behan-
deln von Ausnahmebedingungen, Typen privilegier-
ter Betriebsmittel und Information, Logikimplemen-
tierungen, Mikroarchitekturdetails, Operationsse-
quenzen, Logikpartitionierungs-/Integrationsdetails,
Hardware-/Softwarepartitionierungsdetails, Prozes-
sorkonfigurationen, Typen und Wechselbeziehungen
von Systemkomponenten und ähnliche). Jedoch ver-
steht sich, dass Ausführungsformen der Erfindung
ohne diese spezifischen Details umgesetzt werden
können. In anderen Beispielen sind wohlbekannte
Schaltungen, Strukturen und Techniken nicht im De-
tail gezeigt, um das Verständnis dieser Beschreibung
nicht zu verschleiern.

[0024] Fig. 1 zeigt ein Blockdiagramm einer Aus-
führungsform eines Computersystems 100. In ver-
schiedenen Ausführungsformen kann das Compu-
tersystem einen Desktopcomputer, Laptopcompu-
ter, Notebookcomputer, Tabletcomputer, Netbook,
Smartphone, Personal Digital Assistant, Mobiltelefon,
Server, Netzwerkvorrichtung (beispielsweise Router
oder Switch), mobiles Internetgerät (Mobile Internet
Device (MID)), Medienabspielgerät, Smart-Fernseh-
gerät, Set-top-Box, Videospielcontroller oder ande-
ren Typ elektronischer Vorrichtung darstellen.

[0025] Das Computersystem enthält eine Ausfüh-
rungsform eines Prozessors 101. In einigen Aus-
führungsformen kann der Prozessor ein Vielzweck-
prozessor sein. Beispielsweise kann der Prozes-
sor ein Vielzweckprozessor des Typs sein, der ge-
wöhnlich als eine zentrale Prozessoreinheit (central
processing unit (CPU)) verwendet wird. In anderen
Ausführungsformen kann der Prozessor ein Spezial-
prozessor sein. Beispiele für geeignete Spezialpro-
zessoren schließen Koprozessoren, Grafikprozesso-

ren, Kommunikationsprozessoren, Netzwerkprozes-
soren, Kryptografieprozessoren, eingebettete Pro-
zessoren und digitale Signalprozessoren (DSPs) ein,
um lediglich einige Beispiele zu nennen, ohne auf die-
se beschränkt zu sein. Der Prozessor kann irgend-
einer von verschiedenen Prozessoren mit komple-
xem Befehlssatz (complex instruction set computing
(CISC), verschiedenen Prozessoren mit reduzier-
tem Befehlssatz (reduced instruction set computing
(RISC)), verschiedenen Prozessoren mit sehr lan-
gem Befehlswort (very long instruction word (VLIW)),
verschiedenen Hybriden derselben oder vollständig
anderen Prozessorentypen sein.

[0026] Das Computersystem enthält außerdem ei-
ne Ausführungsform eines Speichers 110, der mit
dem Prozessor 101 durch einen Kopplungsmecha-
nismus 109 gekoppelt ist. Jeder konventionelle Kopp-
lungsmechanismus, der im Stand der Technik zum
Koppeln eines Prozessors und eines Speichers be-
kannt ist, ist geeignet. Beispiele für solche Mecha-
nismen schließen Schaltverbindungen, Busse, Hubs,
Speichercontroller, Chipsätze, Chipsatzkomponen-
ten und ähnliche sowie Kombinationen derselben
ein, ohne auf diese beschränkt zu sein. Der Spei-
cher kann eine oder mehrere Speichervorrichtungen
entweder des gleichen oder unterschiedlicher Typen
aufweisen. Ein gewöhnlich verwendeter Speichertyp,
der für Ausführungsformen geeignet ist, ist dynami-
scher Speicher mit wahlfreiem Zugriff (dynamic ran-
dom access memory (DRAM)), obwohl andere Spei-
chertypen (beispielsweise Flashspeicher) alternativ
verwendet werden können.

[0027] Der Speicher 110 kann darin Software 111
gespeichert aufweisen. Die Software kann beispiels-
weise ein oder mehrere Betriebssysteme (operating
system (OS)) und eine oder mehrere Anwendungen
enthalten. Im Betrieb kann ein Teil der Software in
den Prozessor geladen und auf dem Prozessor zum
Ablaufen gebracht werden. Wie gezeigt, kann der
Prozessor ISA-Befehle 102 eines Befehlssatzes des
Prozessors empfangen. Beispielsweise kann eine
Befehlseinholeinheit die ISA-Befehle einholen. Die
ISA-Befehle können Makrobefehle, Assemblerbefeh-
le, Befehle auf Maschinenebene oder andere Befeh-
le darstellen, die an den Prozessor geliefert werden,
um dekodiert und ausgeführt zu werden. Wie gezeigt,
können die ISA-Befehle in einigen Ausführungsfor-
men sowohl nichtemulierte Befehle 103 als auch ei-
nen oder mehrere Typen emulierter Befehle 104 ent-
halten.

[0028] Der Prozessor enthält eine Dekodierlogik
105. Die Dekodierlogik kann auch als eine Dekodier-
einheit oder ein Dekodierer bezeichnet werden. Die
Dekodierlogik kann die ISA-Befehle 102 empfangen.
Im Falle der nichtemulierten Befehle 103 kann die De-
kodierlogik die Befehle relativ höherer Ebenen deko-
dieren und einen oder mehrere Mikrobefehle, Mikro-



DE 10 2014 003 690 A1    2014.09.18

4/48

operationen, Mikrocode-Zugangspunkte relativ nied-
rigerer Ebene oder andere Befehle relativ niedrige-
rer Ebene oder Steuersignale, die von den ISA-Be-
fehlen abgeleitet sind, ausgeben. In der Zeichnung
sind diese als dekodierte Befehle 106 gezeigt. Die
dekodierten Befehle, die von dem Dekodierer ausge-
geben werden, können die ISA-Befehle höherer Ebe-
ne, die in den Dekodierer eingegeben werden, wider-
spiegeln, darstellen und/oder von diesen abgeleitet
sein, und können die ISA-Befehle durch eine oder
mehrere Operationen niedrigerer Ebene (beispiels-
weise auf Schaltungsebene oder Hardwareebene)
implementieren. Der Dekodierer kann unter Verwen-
dung verschiedener unterschiedlicher Mechanismen
implementiert sein, einschließlich Mikrocode-Nurle-
sespeicher (read only memories (ROMs)), Werteta-
bellen, Hardwareimplementationen, programmierba-
rer Logikarrays (PLAs) und anderer Mechanismen,
die verwendet werden, um Dekodierer, die im Stand
der Technik bekannt sind, zu implementieren, ohne
auf diese beschränkt zu sein.

[0029] Eine Nachdekodier-Befehlsprozessorlogik
107 ist mit der Dekodierlogik gekoppelt. Die Nach-
dekodier-Befehlsprozessorlogik kann einen Nach-
dekodierabschnitt der Befehlsverarbeitungspipeline
des Prozessors darstellen. Die Nachdekodier-Be-
fehlsprozessorlogik kann die dekodierten Befehle
106 empfangen und verarbeiten. Gewöhnlich kann
die Nachdekodier-Befehlsprozessorlogik eine Regis-
terlese- und/oder Speicherleselogik, Ausführungslo-
gik, Register- und/oder Speicherrückschreiblogik und
Ausnahmebehandlerlogik enthalten, obwohl die Lo-
gik von einer Architektur zur anderen variieren kann
und der Schutzbereich der Erfindung nicht auf sol-
che Logik beschränkt ist. In einigen Ausführungsfor-
men kann, beispielsweise im Falle einer ungeordne-
ten Prozessorpipeline, die Nachdekodier-Befehlspro-
zessorlogik optional andere Logik enthalten, wie etwa
beispielsweise Zuweisungslogik, Umbenennungslo-
gik, Planungslogik, Rückzugs- oder Überweisungslo-
gik oder ähnliche.

[0030] Der Prozessor enthält auch einen oder meh-
rere Sätze architektonisch sichtbarer oder Architek-
turregister 108. Die architektonisch sichtbaren Re-
gister stellen Register dar, die für Software und/
oder einen Programmierer und/oder die Register,
die durch die ISA-Befehle 102 angegeben werden,
um Operanden zu bestimmen, sichtbar sind. Diese
Architekturregister werden anderen nichtarchitekto-
nischen oder nichtarchitektonisch sichtbaren Regis-
tern in einer gegebenen Mikroarchitektur (beispiels-
weise temporäre Register, die von Befehlen, Um-
ordnungspuffern, Rückzugsregistern etc. verwendet
werden) gegenübergestellt. Diese Architekturregister
stellen allgemein Prozessorspeicherplätze auf dem
Chip dar, die betrieben werden können, um Daten zu
speichern. Diese Architekturregister werden hier oft
einfach als Register bezeichnet. Beispielsweise kön-

nen die Architekturregister einen Satz Vielzweckre-
gister, einen Satz Register mit gepackten Daten, ei-
nen Satz Fließkommaregister, einen Satz Ganzzahl-
register oder irgendeine Kombination derselben ein-
schließen. Die Architekturregister können auf unter-
schiedliche Arten in unterschiedlichen Mikroarchitek-
turen unter Verwendung wohlbekannter Techniken
implementiert sein und sind nicht auf irgendeinen be-
stimmten Schaltungstyp beschränkt. Beispiele geeig-
neter Typen von Architekturregistern schließen eige-
ne physikalische Register, dynamisch zugewiesene
physikalische Register unter Verwendung von Regis-
terumbenennung und Kombinationen derselben ein,
ohne auf diese beschränkt zu sein.

[0031] Die Nachdekodier-Befehlsprozessorlogik
107 ist mit den Registern 108 gekoppelt. Die Nach-
dekodier-Befehlsprozessorlogik kann Daten von den
Registern empfangen und Daten in diese schreiben
oder speichern. Beispielsweise kann die Registerle-
selogik Daten aus Registern lesen, die als Quellope-
randen von Befehlen angezeigt sind, und/oder kann
die Rückschreiblogik Ergebnisse in Register schrei-
ben oder speichern, die als Zieloperanden der Be-
fehle angezeigt sind. Die Nachdekodier-Befehlspro-
zessorlogik ist außerdem mit dem Speicher 110 ge-
koppelt und kann Daten von dem Speicher empfan-
gen und in diesen speichern. Beispielsweise kann
die Speicherleselogik Daten aus Speicherplätzen le-
sen, die durch Befehle angezeigt sind, und/oder kann
die Speicherrückschreiblogik Daten in Speicherplät-
ze schreiben, die durch Befehle angezeigt sind.

[0032] Unter erneuter Bezugnahme auf Fig. 1 kön-
nen die emulierten Befehle 104 auch an die Deko-
dierlogik 105 geliefert werden. Im Gegensatz zu den
nichtemulierten Befehlen 103 können die emulierten
Befehle 104 nicht vollständig durch die Dekodierlo-
gik dekodiert und als entsprechende dekodierte Be-
fehle 106 der Nachdekodier-Befehlsprozessorlogik
107 bereitgestellt werden. Vielmehr kann die Emula-
tionslogik 115 in einigen Ausführungsformen bereit-
gestellt werden, um den/die emulierten Befehl(e) 104
zu emulieren. Im Stand der Technik werden verschie-
dene unterschiedliche Begriffe für solche Emulation
verwendet, wie etwa beispielsweise Befehlsüberset-
zung, binäre Übersetzung, Codemorphing, Befehlsin-
terpretation und ähnliche. Der Begriff Emulation wird
hier breit verwendet, um diese unterschiedlichen Be-
griffe, die in der Industrie verwendet werden, zu um-
fassen.

[0033] Wie gezeigt, kann die Emulationslogik 115 in
einigen Ausführungsformen zwischen teilweise auf
dem Chip befindlicher Logik 117 und teilweise außer-
halb des Chips befindlicher Emulationslogik verteilt
werden, obwohl dies nicht notwendig ist. In anderen
Ausführungsformen kann die gesamte Emulationslo-
gik 115 optional auf dem Chip sein, oder kann ein
größerer Teil optional außerhalb des Chips sein, ob-



DE 10 2014 003 690 A1    2014.09.18

5/48

wohl typischerweise wenigstens ein Teil der Emulati-
onslogik auf dem Chip ist (beispielsweise ein Emulati-
onsmodus 118, irgendeine emulationsmodusbewuß-
te Befehlsprozessorlogik 120 in der Pipeline etc.).
Die Emulationslogik auf dem Chip ist fest, speicher-
resident oder liegt permanent mit dem Prozessor auf
dem Chip vor. Gewöhnlich liegt die Emulationslogik
mit dem Prozessor auf dem Chip vor, selbst wenn
der Prozessor ausgeschaltet ist, vor einem Boot-
vorgang und/oder zum Zeitpunkt der Fertigstellung
der Herstellung. Beispiele geeigneter Emulationslo-
gik auf dem Chip schließt Hardware (beispielsweise
integrierte Schaltungen, Transistoren etc.), Firmware
(beispielsweise ROM auf dem Chip, EPROM, Flash-
speicher oder anderen permanenten oder nichtflüch-
tigen Speicher und nichtflüchtige Befehle, die darin
gespeichert sind) oder eine Kombination derselben
ein, ohne auf diese beschränkt zu sein.

[0034] Die Emulationslogik 113 außerhalb des Chips
kann in dem Speicher 110 enthalten sein. Die Emu-
lationslogik außerhalb des Chips kann mit der Emu-
lationslogik auf dem Chip gekoppelt sein oder auf
andere Weise mit dieser in Kommunikation stehen.
In einigen Ausführungsformen kann die Emulations-
logik außerhalb des Chip in einem geschützten Be-
reich oder einem Abschnitt 112 des Speichers enthal-
ten sein. In einigen Ausführungsformen kann der ge-
schützte Abschnitt zur Verwendung durch Hardware
auf dem Chip und/oder Firmwarelogik allein des Pro-
zessors, jedoch nicht für die Software 111, die auf
dem Prozessor ausgeführt wird, reserviert sein. Bei-
spielsweise kann in einigen Ausführungsformen die
Emulationslogik 117, die emulationsmodusbewußte
Befehlsprozessorlogik 120 und/oder andere potenti-
elle Prozessorlogik auf dem Chip in der Lage sein,
auf die Emulationslogik 113 außerhalb des Speichers
zuzugreifen und diese zu verwenden, jedoch kann
die Software 111 (beispielsweise ein Betriebssystem
oder eine Anwendung), die auf dem Prozessor läuft,
nicht in der Lage sein, auf die Emulationslogik 113 au-
ßerhalb des Chips zuzugreifen oder diese zu verwen-
den. In einigen Ausführungsformen kann die Emula-
tionslogik außerhalb des Chips vor Zugriff und Mo-
difikation durch Anwendungen, das Betriebssystem,
einen virtuellen Maschinenmanager, falls vorhanden,
und/oder I/O-Vorrichtungen geschützt sein und/oder
für diese unsichtbar sein. Dies kann dabei helfen, Si-
cherheit zu fördern.

[0035] Die Dekodierlogik enthält Logik 119, um den
emulierten Befehl 104 zu detektieren oder erkennen.
Beispielsweise kann der Dekodierer den emulierten
Befehl anhand eines Opcodes detektieren. In eini-
gen Ausführungsformen kann der Dekodierer bei De-
tektieren des emulierten Befehls ein Emulationsmo-
dussignal 116 (beispielsweise ein Emulationsfang-
signal) an die Emulationslogik 115 liefern. Wie ge-
zeigt, kann die Emulationslogik einen Emulationsmo-
dus 118 aufweisen. Als Beispiel kann der Emulations-

modus ein oder mehrere Bits oder Steuerelemente in
einem Steuer- oder Konfigurationsregister des Pro-
zessors enthalten, um anzuzeigen, ob der Prozessor
(beispielsweise die Logik 105, 107 etc.) in dem Emu-
lationsmodus ist oder nicht. In einigen Ausführungs-
formen kann der Emulationsmodus 118 nach Erhalt
des Emulationsmodussignals 116 von dem Dekodie-
rer angenommen werden, das anzeigt, dass ein emu-
lierter Befehl 104 emuliert werden soll.

[0036] In einigen Ausführungsformen kann die De-
kodierlogik 105 außerdem andere Information be-
reitstellen, die mit dem Befehl assoziiert ist, der
für die Emulationslogik 115 emuliert wird. Beispie-
le solcher Information schließen potentiell Operan-
denbezeichner (beispielsweise Quell- oder Zielregis-
teradressen oder Speicherplätze), Speicheraddres-
siermodi, unmittelbare Addressen, Konstanten zur
Ausführungsbeschleunigung und/oder andere Infor-
mation, die von dem emulierten Befehl 104 stammt
und/oder mit diesem assoziiert ist, ein. Als Beispiel
kann jede Information, die von dem emulierten Befehl
stammt und/oder mit diesem assoziiert ist, der für das
Emulationssystem nützlich ist, um dem Emulations-
system zu ermöglichen, den emulierten Befehl 104 zu
emulieren, potentiell bereitgestellt werden.

[0037] In einigen Ausführungsformen kann die Emu-
lationslogik 115 einen anderen Satz eines oder meh-
rerer Befehle 114 enthalten, um jeden anderen Typ
des emulierten Befehls 104 zu emulieren. Beispiels-
weise kann ein erster Satz eines oder mehrerer Be-
fehle 114 bereitgestellt werden, um einen ersten Be-
fehl 104 zu emulieren, der einen ersten Opcode auf-
weist, und kann ein zweiter, anderer Satz eines oder
mehrerer Befehle 114 bereitgestellt werden, um ei-
nen zweiten, anderen Befehl 104 zu emulieren, der
einen zweiten, anderen Opcode aufweist. In einigen
Ausführungsformen kann jeder Satz wenigstens drei
Befehle enthalten. In der gezeigten Ausführungsform
kann der Satz eines oder mehrerer Befehle 114 in
der Emulationslogik 113 außerhalb des Chips enthal-
ten sein, obwohl dies nicht notwendig ist. In ande-
ren Ausführungsformen können die Befehle 114 auf
dem Chip bereitgestellt werden (beispielsweise in ei-
nem permanenten oder nichtflüchtigen Speicher der
Emulationslogik 117 auf dem Chip). In noch weite-
ren Ausführungsformen kann ein Teil der Befehle 114
auf dem Chip bereitgestellt werden (beispielsweise in
der Emulationslogik auf dem Chip), und kann ein Teil
außerhalb des Chips bereitgestellt werden (beispiels-
weise in der Emulationslogik außerhalb des Chips).

[0038] In einigen Ausführungsformen kann jeder der
Befehle des Satzes einen oder mehrere Befehle 114,
die verwendet werden, um den emulierten Befehl 104
zu emulieren, von der Emulationslogik 115 eingeholt
oder auf andere Weise empfangen und der Dekodier-
logik 105 bereitgestellt werden. In einigen Ausfüh-
rungsformen kann jeder der Befehle des Satzes von



DE 10 2014 003 690 A1    2014.09.18

6/48

einem oder mehreren Befehlen 114, die zum Emulie-
ren des emulierten Befehls 104 verwendet werden,
aus einem gleichen Befehlssatz stammen wie der
emulierte Befehl 104. Die Dekodierlogik 105 kann be-
trieben werden, jeden aus dem Satz von einem oder
mehreren Befehlen 114 in entsprechende dekodier-
te Befehle 106 zu dekodieren. Die dekodierten Be-
fehle können der Nachdekodier-Befehlsprozessorlo-
gik 107 bereitgestellt werden.

[0039] Die Nachdekodier-Befehlsprozessorlogik
enthält eine Ausführungsform einer emulationsmo-
dusbewussten Befehlsprozessorlogik 120. Wie ge-
zeigt, kann die emulationsmodusbewusste Befehls-
prozessorlogik mit dem Emulationsmodus 118 ge-
koppelt sein oder diesen auf andere Weise kennen. In
einigen Ausführungsformen kann die emulationsmo-
dusbewusste Befehlsprozessorlogik betrieben wer-
den, um wenigstens einige der dekodierten Versio-
nen der Befehle 114 wenigstens auf einige andere
Arten zu verarbeiten, wenn der Prozessor in dem
Emulationsmodus ist, als wenn der Prozessor nicht
in dem Emulationsmodus ist. Es gibt verschiedene
unterschiedliche Aspekte, unter denen die Verarbei-
tung anders sein kann. In einigen Ausführungsfor-
men kann Störungs- oder Fehlerbehandlung anders
durchgeführt werden, wenn der Emulationsmodus
vorliegt, als wenn der Emulationsmodus nicht vor-
liegt. In anderen Ausführungsformen kann Zugriff auf
bestimmte Typen von Betriebsmitteln und/oder Infor-
mation, wie etwa beispielsweise sichere, privilegierte
oder auf andere Weise zugriffsgesteuerte Betriebs-
mittel und/oder Information, anders behandelt wer-
den, wenn der Emulationsmodus vorliegt, als wenn
der Emulationsmodus nicht vorliegt. Beispielsweise
kann Zugriff auf die Betriebsmittel und/oder Infor-
mation ermöglicht werden, wenn der Emulationsmo-
dus vorliegt, aber nicht ermöglicht werden, wenn der
Emulationsmodus nicht vorliegt.

[0040] Wenn der Emulationsmodus vorliegt, kann
die Nachdekodier-Befehlsprozessorlogik auf Spei-
cherplätze 121 zugreifen. In der gezeigten Ausfüh-
rungsform sind die Speicherplätze 121 teil der Emu-
lationslogik 117 auf dem Chip. Alternativ können die
Speicherplätze in der Emulationslogik außerhalb des
Chips enthalten sein oder teilweise in der Emulations-
logik auf dem Chip und teilweise in der Emulations-
logik außerhalb des Chips enthalten sein. Die Spei-
cherplätze können verwendet werden, um temporä-
re Variablen, Zwischenergebnisse und/oder Ausfüh-
rungszustand, der mit der Ausführung des Satzes von
Befehlen 114 assoziiert ist, zu speichern. Dies kann
helfen, zu vermeiden, dass der Ausführungszustand
des ursprünglichen Programms, das den emulierten
Befehl 104 enthält, gespeichert werden muss, und/
oder kann helfen, solchen Ausführungszustand (bei-
spielsweise den Inhalt der Architekturregister 108)
daran zu hindern, durch die Verarbeitung des Sat-
zes von Befehlen 114 fehlerhaft zu werden. In einigen

Ausführungsformen können die Speicherplätze 121
Architekturregister emulieren, obwohl dies nicht not-
wendig ist. In einigen Ausführungsformen kann der
Inhalt der Speicherplätze 121 vom Zugriff durch An-
wendungen, Betriebssysteme, virtuellen Maschinen-
managern, I/O-Vorrichtungen, Interrupts und ähnli-
chen unabhängig, isoliert und/oder geschützt sein.
Bei Abschluss des Satzes von Befehlen 114 kann der
Architekturzustand des Prozessors aktualisiert wer-
den (beispielsweise kann ein Ergebnis der Speicher-
plätze 121 in die Register 108 gespeichert werden).
Dies kann mit niedrigem Latenzzugriff erfolgen. Ge-
wöhnlich kann dies verwendet werden, um die Än-
derung im Architekturzustand, die aufgetreten wäre,
und/oder das Verhalten des Prozessors, das erfolgt
wäre, wenn der emulierte Befehl 104 tatsächlich di-
rekt ausgeführt worden wäre, zu approximieren, imi-
tieren, nachzubauen oder auf andere Weise zu emu-
lieren.

[0041] Um ein Verschleiern der Beschreibung zu
vermeiden, wurde ein relativ einfacher Prozessor 101
gezeigt und beschrieben. In anderen Ausführungs-
formen kann der Prozessor optional andere wohlbe-
kannte Komponenten enthalten. Es gibt buchstäb-
lich zahlreiche unterschiedliche Kombinationen und
Konfigurationen von Komponenten in Prozessoren,
und die Ausführungsformen sind nicht auf irgend-
eine bestimmte Kombination oder Konfiguration be-
schränkt. Der Prozessor kann eine integrierte Schal-
tung oder einen Satz eines oder mehrerer Halblei-
terplatten oder -chips darstellen (beispielsweise eine
einzelne Leiterplatte oder Chip oder ein Paket, das
zwei oder mehr Leiterplatten oder Chips enthält). In
einigen Ausführungsformen kann der Prozessor ein
System-on-Chip (SoC) und/oder einen Chip-Multipro-
zessor (CMP) darstellen.

[0042] Einige Prozessoren verwenden relativ kom-
plexe Operationen. Beispielsweise führen einige Be-
fehle mehrere Speicherzugriffe anstatt lediglich ei-
nen einzelnen Speicherzugriff durch. Ein Beispiel ist
ein Befehl zum Vektoreinholen, um einen Vektor von
Datenelementen aus einem Speicher zu holen. Als
ein weiteres Beispiel können bestimmte Befehle zahl-
reiche Datenelementvergleiche durchführen, anstatt
ein einzelnes Paar von Datenelementen oder Paare
entsprechenden der Datenelementen in zweigepack-
ten Daten zu vergleichen. Beispiele sind Vektorkon-
fliktbefehle und Zeichenkettenverarbeitungsbefehle.
Ein Ansatz ist, solche komplexen Operationen voll-
ständig in Hardware zu implementieren. Jedoch kann
die Menge an benötigter Hardware tendenziell be-
trächtlich sein, was dazu führen kann, Herstellungs-
kosten, Chipgröße und Stromverbrauch zu erhöhen.
Ein weiterer Ansatz ist, solche komplexen Operatio-
nen wenigstens teilweise in Mikrocode zu implemen-
tieren. Die Verwendung von Mikrocode kann helfen,
die Menge an benötigter Hardware zu reduzieren, um
solche komplexen Operationen zu implementieren,



DE 10 2014 003 690 A1    2014.09.18

7/48

und/oder kann helfen, bestimmte existierende Hard-
ware wiederzuverwenden. Jedoch benutzen einige
Prozessoren keinen Mikrocode (beispielsweise kei-
nen Mikrocode zum Implementieren irgendeines Be-
fehls eines Befehlssatzes).

[0043] In einigen Ausführungsformen kann ein rela-
tiv komplexerer Befehl mit dem Satz eines oder meh-
rerer relativ einfacherer Befehle emuliert werden. Die
Begriffe komplexer und einfacher sind relative Begrif-
fe, keine absoluten Begriffe, die zueinander relativ
sind. Vorteilhafterweise kann dies potentiell helfen,
die Menge an Hardware zu reduzieren, die benötigt
wird, um den komplexeren Befehl zu implementie-
ren, und/oder kann helfen, Wiederverwendung exis-
tierender Hardware zu ermöglichen, die von den ein
oder mehreren Befehlen verwendet wird, die verwen-
det werden, um den komplexeren Befehl zu emulie-
ren. In einigen Ausführungsformen kann die Emulati-
on des komplexeren Befehls mit den ein oder mehre-
ren einfacheren Befehlen verwendet werden, um ei-
ne Mikrocode-ähnliche Implementation des komple-
xeren Befehls bereitzustellen, selbst wenn der Pro-
zessor in einigen Ausführungsformen nicht konfigu-
riert sein kann, um Mikrocode zu verwenden, und/
oder nicht konfiguriert sein kann, Mikrocode zu ver-
wenden, um den komplexeren Mikrobefehl zu imple-
mentieren.

[0044] Fig. 2 zeigt ein Blockflussdiagramm einer
Ausführungsform eines Verfahrens 230 zum Emulie-
ren eines Befehls in einem Prozessor. In einigen Aus-
führungsformen können die Operationen und/oder
Verfahren aus Fig. 2 durch den Prozessor aus Fig. 1
und/oder innerhalb dieses Prozessors durchgeführt
werden. Die Komponenten, Strukturen und spezifi-
schen optionalen Details, die hier für den Prozes-
sor aus Fig. 1 beschrieben sind, gelten optional für
die Operationen und/oder Verfahren aus Fig. 2. Al-
ternativ können die Operationen und/oder Verfah-
ren aus Fig. 2 ähnlichen oder ganz anderen Prozes-
sor und/oder innerhalb dieses Prozessors durchge-
führt werden. Darüber hinaus kann der Prozessor aus
Fig. 1 Operationen und/oder Verfahren durchführen,
die ähnlich oder anders sind als die aus Fig. 2.

[0045] Das Verfahren schließt Empfangen eines ers-
ten Befehls an Block 231 ein. In einigen Ausführungs-
formen kann der erste Befehl an einem Dekodierer
empfangen werden. Das Verfahren schließt Bestim-
men des Emulierens des ersten Befehls an Block 232
ein. In einigen Ausführungsformen kann der Deko-
dierer bestimmen, den ersten Befehl zu emulieren,
indem bestimmt wird, dass ein Opcode des ersten
Befehls in einem Satz eines oder mehrerer Opcodes
für zu emulierende Befehle vorliegt. Das Verfahren
schließt an Block 233 Empfangen eines Satzes eines
oder mehrerer Befehle ein, die zum Emulieren des
ersten Befehls verwendet werden sollen. In einigen
Ausführungsformen kann der Satz von Befehlen an

dem Dekodierer von Emulationslogik auf dem Chip
oder Emulationslogik außerhalb des Chips oder ei-
ner Kombination derselben empfangen werden. In ei-
nigen Ausführungsformen kann jeder Befehl aus ei-
nem gleichen Befehlssatz wie der erste Befehl stam-
men. Das Verfahren schließt Verarbeiten eines oder
mehrerer Steuersignale an Block 234 ein, die von ei-
nem Befehl des Satzes anders abgeleitet sind, wenn
ein Emulationsmodus vorliegt, als wenn kein Emula-
tionsmodus vorliegt.

[0046] Dies kann in unterschiedlichen Ausführungs-
formen auf unterschiedliche Weise vorgenommen
werden. In einigen Ausführungsformen können Aus-
nahmebedingungen, denen während einer Verarbei-
tung eines Befehls des Satzes begegnet wird, un-
terschiedlich behandelt werden. In einigen Ausfüh-
rungsformen kann die Verarbeitung eines Befehls
des Satzes Zugriff auf Information und/oder Betriebs-
mittel ermöglichen, die dem gleichen Befehl (d. h. ei-
nem Befehl, der den gleichen Opcode aufweist an-
dernfalls nicht zugänglich wären, wenn dies nicht in-
nerhalb eines Emulationsmodus vorgenommen wird.

[0047] Fig. 3 zeigt ein Blockdiagramm, das eine Aus-
führungsform der Logik 301 zum Emulieren eines Be-
fehls (beispielsweise eines komplexen Befehls) 304
mit einem Satz eines oder mehrerer Befehle (bei-
spielsweise einfacherer Befehle) 314 zeigt. In einigen
Ausführungsformen kann die Logik aus Fig. 3 in dem
Prozessor und/oder dem Computersystem aus Fig. 1
enthalten sein. Alternativ kann die Logik aus Fig. 3 in
einem ähnlichen oder anderen Prozessor oder Com-
putersystem enthalten sein. Darüber hinaus kann der
Prozessor und/oder das Computersystem aus Fig. 1
ähnliche oder andere Logik als die aus Fig. 3 enthal-
ten.

[0048] Ein Befehl (beispielsweise ein komplexer Be-
fehl) 304, der emuliert werden soll, kann für die De-
kodierlogik 305 bereitgestellt werden. Die Dekodier-
logik kann eine Logik 319 zum Detektieren des Be-
fehls 304 enthalten, um beispielsweise zu detektie-
ren, dass ein Opcode des Befehls 304 in dem Satz
von Opcodes für Befehle, die zu emulieren sind, ent-
halten ist. Wie gezeigt, kann der Prozessor in eini-
gen Ausführungsformen keinen Mikrocode 330 auf-
weisen. Die Dekodierlogik kann ein Emulationsmo-
dussignal 316 für die Emulationslogik 35 bereitstel-
len. In verschiedenen Ausführungsformen kann die
Emulationslogik 315 Logik auf dem Chip, Logik au-
ßerhalb des Chips oder sowohl auf dem Chip als auch
außerhalb des Chips enthalten. Die Emulationslogik
kann als Antwort auf das Emulationsmodussignal in
einen Emulationsmodus 318 eintreten.

[0049] Die Emulationslogik enthält außerdem einen
Satz eines oder mehrerer einfacherer (beispielswei-
se einfacherer) Befehle 314, die verwendet werden
können, um den (beispielsweise komplexeren) Be-



DE 10 2014 003 690 A1    2014.09.18

8/48

fehl 304 zu emulieren. In einigen Ausführungsfor-
men können die ein oder mehreren Befehle 314 aus
dem gleichen Befehlssatz wie der Befehl 304 stam-
men. In einigen Ausführungsformen können die ein
oder mehreren Befehle 314 mit anderen Befehlen
identisch sein, die dekodiert und ausgeführt werden,
wenn kein Emulationsmodus vorliegt. Um den (bei-
spielsweise komplexen) Befehl 304 zu emulieren,
kann jeder der ein oder mehreren (beispielsweise ein-
facheren) Befehle 314 an die Dekodierlogik geliefert
werden. Die Dekodierlogik kann jeden der Befehle
314 als einen oder mehrere dekodierte Befehle 306
dekodieren.

[0050] Eine Nachdekodier-Befehlsprozessorlogik
307 kann die dekodierten Befehle 306 erhalten, die
den Befehlen 314 entsprechen. Die Nachdekodier-
Befehlsprozessorlogik kann eine Ausführungsform
der emulationsmodusbewussten Logik 320 enthal-
ten. Wie gezeigt, kann die emulationsmodusbewuss-
te Logik in einigen Ausführungsformen mit dem Emu-
lationsmodus 318 gekoppelt sein oder diesen auf an-
dere Weise kennen. In einigen Ausführungsformen
kann die emulationsmodusbewusste Logik betrieben
werden, um die dekodierten Befehle 306, die den
Befehlen 314 entsprechen, anders zu verarbeiten,
wenn der Prozessor in dem Emulationsmodus 318
ist, als wenn der Prozessor nicht in dem Emulati-
onsmodus ist. In einigen Ausführungsformen kann
Störungs- oder Fehlerbehandlung anders durchge-
führt werden, wenn der Emulationsmodus vorliegt,
als wenn der Emulationsmodus nicht vorliegt. Bei-
spielsweise kann die Logik 320 optionale Aspekte
verwenden, die unten für Fig. 4 diskutiert sind. In an-
deren Ausführungsformen kann Zugriff auf bestimm-
te Betriebsmittel und/oder Information selektiv bereit-
gestellt werden, wenn der Emulationsmodus vorliegt,
aber nicht, wenn der Prozessor nicht in dem Emulati-
onsmodus ist. Beispielsweise kann die Logik 320 op-
tionale Aspekte verwenden, die unten für Fig. 5 dis-
kutiert sind.

[0051] Vorteilhafterweise kann in einigen Ausfüh-
rungsformen ein komplexerer Befehl durch einen
Satz einfacherer Befehle/Operationen implementiert
sein. Vorteilhafterweise kann dies potentiell helfen,
die Menge an Hardware zu reduzieren, die benötigt
wird, um den komplexeren Befehl zu implementieren,
und/oder kann helfen, Wiederverwendung existieren-
der Hardware zu ermöglichen, die von den ein oder
mehreren Befehlen verwendet wird, die verwendet
werden, um den komplexeren Befehl zu emulieren. In
einigen Ausführungsformen kann die Emulation des
komplexeren Befehls mit den ein oder mehreren ein-
facheren Befehlen verwendet werden, um eine Mikro-
code-ähnliche Implementation des komplexeren Be-
fehls bereitzustellen, obwohl der Prozessor in einigen
Ausführungsformen nicht konfiguriert sein kann, um
Mikrocode zu verwenden und/oder nicht konfiguriert
sein kann, Mikrocode zu verwenden, um den komple-

xeren Befehl zu implementieren. In einigen Ausfüh-
rungsformen können die einfacheren Befehle/Opera-
tionen sogar aus dem gleichen Befehlssatz stammen
wie der komplexere Befehl.

[0052] Solche Emulation komplexerer Befehle mit
einfacheren Befehlen ist lediglich ein Beispiel für ei-
nen möglichen Grund, einen Befehl zu emulieren. In
anderen Ausführungsformen kann der emulierte Be-
fehl einer sein, der relativ weniger häufig verwen-
det wird (beispielsweise selten verwendet wird), und
kann mit einem oder mehreren Befehlen emuliert
werden, die relativ häufiger verwendet werden. Vor-
teilhafterweise kann dies potentiell helfen, die Menge
an Hardware, die benötigt wird, um den selten ver-
wendeten Befehl zu implementieren, zu reduzieren,
und/oder kann helfen, Wiederverwendung existieren-
der Hardware zu ermöglichen, die von den ein oder
mehreren Befehlen verwendet wird, die verwendet
werden, um den selten verwendeten Befehl zu emu-
lieren. In noch weiteren Ausführungsformen kann der
emulierte Befehl ein älterer und/oder veralteter Be-
fehl sein und/oder kann einer sein, der im Begriff ist,
zu veralten, und kann mit den ein oder mehreren an-
deren Befehlen emuliert werden. Vorteilhafterweise
kann die Emulation helfen, dem Befehl, der veral-
tet, zu ermöglichen, weiterhin ausgeführt zu werden
und somit Rückwärtskompatibilität für Software be-
reitzustellen, während gleichzeitig potentiell geholfen
wird, die Menge an Hardware zu reduzieren, die be-
nötigt wird, um den veralteten Befehl zu implemen-
tieren, und/oder geholfen wird, Wiederverwendung
existierender Hardware zu ermöglichen, die von den
ein oder mehreren Befehlen verwendet wird, die ver-
wendet werden, um den veralteten Befehl zu emu-
lieren. Noch weitere Verwendungen der hier offen-
barten Emulation werden Durchschnittsfachleuten er-
sichtlich sein, die die vorliegende Offenbarung zur
Kenntnis nehmen.

[0053] Fig. 4 zeigt ein Blockdiagramm, dass eine
Ausführungsform von Logik 401 zeigt, um einem Pro-
zessor zu ermöglichen, Ausnahmebedingungen an-
ders zu behandeln, wenn ein Emulationsmodus vor-
liegt, als wenn kein Emulationsmodus vorliegt. In eini-
gen Ausführungsformen kann die Logik aus Fig. 4 in
dem Prozessor und/oder dem Computersystem aus
Fig. 1 und/oder der Logik aus Fig. 3 enthalten sein.
Alternativ kann die Logik aus Fig. 4 in einem ähnli-
chen oder anderen Prozessor oder Computersystem
enthalten sein. Darüber hinaus kann der Prozessor
und/oder das Computersystem aus Fig. 1 und/oder
die Logik aus Fig. 3 ähnliche oder andere Logik als
die aus Fig. 4 enthalten.

[0054] Eine erste Instanz 403-1 eines gegebenen
Befehls (beispielsweise eines Befehls, der einen ge-
gebenen Opcode aufweist) wird an die Dekodierlo-
gik 405 geliefert, wenn der Prozessor nicht in einem
Emulationsmodus 418 ist. Eine zweite Instanz 403-2



DE 10 2014 003 690 A1    2014.09.18

9/48

des gleichen gegebenen Befehls (beispielsweise ei-
nes anderen Befehls, der den gleichen gegebenen
Opcode aufweist) wird an die Dekodierlogik geliefert,
wenn der Prozessor in dem Emulationsmodus 418 ar-
beitet. Die zweite Instanz 403-2 des gegebenen Be-
fehls kann als Antwort auf einen Dekodierer, der den
emulierten Befehl erhält, aus einem Satz eines oder
mehrerer Befehle 414 bereitgestellt werden, die ver-
wendet werden, um einen emulierten Befehl zu emu-
lieren. Der Satz von Befehlen kann in einer Emulati-
onslogik 415 enthalten sein, die auf dem Chip, außer-
halb des Chips oder teilweise auf dem Chip und au-
ßerhalb des Chips ist. Die Emulationslogik 515 kann
jede der optionalen Charakteristiken aufweisen, die
hier an anderer Stelle für die Emulationslogik erwähnt
werden. Die Dekodierlogik kann (beispielsweise ei-
nen identischen Satz) eines oder mehrerer dekodier-
ter Befehle für jeden der ersten 403-1 und zweiten In-
stanzen 403-2 des gegebenen Befehls bereitstellen.

[0055] Die Nachdekodier-Befehlsprozessorlogik
407 kann den/die dekodierten Befehl(e) 406 erhal-
ten. Die Nachdekodier-Befehlsprozessorlogik weist
eine emulationsmodusbewusste Ausnahmebehand-
lerlogik 420 auf. Die emulationsmodusbewusste Aus-
nahmebehandlerlogik kann betrieben werden, um
Ausnahmebedingungen auf eine emulationsmodus-
bewusste Weise zu behandeln/verarbeiten. Wie hier
verwendet, bezieht sich der Begriff ”Ausnahmebedin-
gung” grob auf verschiedene unterschiedliche Typen
von Ausnahmebedingungen, die auftreten können,
während Befehle verarbeitet werden. Beispiele sol-
cher Ausnahmebedingungen schließen Ausnahmen,
Interrupts, Störungen (faults), Fangstellen (traps) und
ähnliche ein, ohne darauf beschränkt zu sein. Die Be-
griffe Ausnahme, Interrupt, Fault und Trap werden
im Stand der Technik häufig auf verschiedene Art
verwendet. Der Begriff ”Ausnahme” wird vermutlich
häufiger verwendet, um sich auf eine automatisch er-
zeugte Steuerungsübergabe an eine Behandlerrouti-
ne als Antwort auf Rechteverletzungen, Rechteaus-
nahmen, Page-Faults, Speicherschutzstörungen, Di-
vision durch Null, versuchte Ausführung eines ungül-
tigen Opcodes und andere solche Ausnahmebedin-
gungen zu beziehen.

[0056] In einigen Ausführungsformen kann, wenn ei-
ne Rechteverletzung, ein Page-Fault, eine Speicher-
schutzstörung, eine Division durch Null, eine ver-
suchte Ausführung eines ungültigen Opcodes oder
andere Ausnahmebedingung auftritt, wenn die ers-
te Instanz 403-1 des gegebenen Befehls verarbeitet
wird, wenn der Prozessor nicht in dem Emulations-
modus 418 arbeitet, der Prozessor im wesentlichen
herkömmliches Behandeln der Ausnahmebedingung
durchführen. Beispielsweise kann die Ausnahmebe-
dingung in einigen Ausführungsformen direkt ange-
nommen 440 werden, wobei eine Steuerung an ei-
ne Ausnahmebehandlerroutine 441 übergeben wird.
Gewöhnlich kann die Ausnahmebehandlerroutine teil

eines Betriebssystems, eines virtuellen Maschinen-
monitors oder anderer privilegierter Software sein.
Beispiele solcher Behandlerroutinen schließen Pa-
ge-Fault-Behandler, Fehler-Behandler, Interrupt-Be-
handler und ähnliche ein, ohne darauf beschränkt zu
sein.

[0057] Andererseits kann in einigen Ausführungs-
formen, wenn eine Berechtigungsverletzung, Page-
Fault, Speicherschutzstörung, Division durch Null,
versuchte Ausführung eines ungültigen Opcodes
oder andere Ausnahmebedingung auftritt, wenn die
zweite Instanz 403-2 des gegebenen Befehls ver-
arbeitet wird, wenn der Prozessor in dem Emulati-
onsmodus 418 arbeitet, der Prozessor im wesent-
lich unkonventionelle Behandlung der Ausnahmebe-
dingung durchführen. Beispielsweise kann die Aus-
nahmebedingung in einigen Fällen nicht direkt an-
genommen werden. In einigen Ausführungsformen
kann die Logik 420 einen Mechanismus zum Un-
terdrücken einer andernfalls automatischen Steu-
erübertragung an eine Ausnahmebehandlerroutine
enthalten, die andernfalls aus der Ausnahmebedin-
gung resultieren würde. Die Steuerung braucht nicht
direkt von dem Emulationsprogramm zu der Aus-
nahmebehandlerroutine 441 übertragen zu werden.
Vielmehr kann die emulationsmodusbewusste Aus-
nahmebehandlerlogik 420 in einigen Ausführungs-
formen Steuerungsübertragung an den Ausnahme-
bedingungsbehandler 441 vorübergehend unterdrü-
cken und die Ausnahmebedingung indirekt berichten
442. In einigen Ausführungsformen kann die emula-
tionsmodusbewusste Ausnahmebehandlerlogik 420
die Ausnahmebedingung durch ein oder mehrere
Emulationskommunikationsregister 443 indirekt be-
richten. Die ein oder mehreren Kommunikationsre-
gister können verwendet werden, um Information
zwischen der Emulationslogik und dem Programm
zu kommunizieren, für das der ursprüngliche Befehl
emuliert wird.

[0058] In einigen Ausführungsformen kann die
emulationsmodusbewusste Ausnahmebehandlerlo-
gik 420 als Antwort auf Auftreten der Ausnahmebe-
dingung, wenn ein Emulationsmodus vorliegt, eine
Anzeige der Ausnahmebedingung in einer Ausnah-
mebedingung oder einem Fehlerstatusflag(s), -feld
oder -register 444 speichern. Beispielsweise kann ein
einzelnes Bit oder Flag einen ersten Wert (beispiels-
weise auf binäre Eins gesetzt) aufweisen, um an-
zuzeigen, dass eine Ausnahmebedingung aufgetre-
ten ist, oder kann einen zweiten Wert (beispielsweise
zu binärer Null gelöscht) aufweisen, um anzuzeigen,
dass keine Ausnahmebedingung aufgetreten ist. In
einigen Ausführungsformen kann die emulationsmo-
dusbewusste Ausnahmebehandlerlogik 420 als Ant-
wort auf Auftreten der Ausnahmebedingung, wenn
der Emulationsmodus 418 vorliegt, einen Fehlercode
für die Ausnahmebedingung in einem Fehlercodefeld
oder -register 445 speichern. Der Fehlercode kann



DE 10 2014 003 690 A1    2014.09.18

10/48

weitere Information über den Fehler bereitstellen, wie
etwa beispielsweise einen Typ des Fehlers und optio-
nal weitere Details, um Kommunizieren der Beschaf-
fenheit der Ausnahmebedingung zu unterstützen. Al-
ternativ kann, anstatt die Kommunikationsregister zu
verwenden, die Information auf andere Weise signa-
lisiert oder bereitgestellt werden (beispielsweise in
Speicher gespeichert werden, durch ein elektrisches
Signal berichtet werden etc.).

[0059] In einigen Ausführungsformen kann die
emulationsmodusbewusste Ausnahmebehandlerlo-
gik 420 außerdem eine Anzeige der Adresse (bei-
spielsweise den Befehlszeiger) des Befehls, der
emuliert wird (d. h. desjenigen, der die zweite Instanz
403-2 veranlasste, an die Dekodierlogik 405 gesen-
det zu werden) bereitstellen. Beispielsweise kann in
einigen Ausführungsformen die Adresse 446 des Be-
fehls, der emuliert wird, oben auf dem Stack 447
gespeichert werden. Speichern der Adresse eines
gegebenen Befehls, der emuliert wird, auf dem St-
ack anstatt derjenigen eines der Befehle, die verwen-
det werden, um diesen gegebenen Befehl zu emulie-
ren, kann dazu fühhren, dass die Rückgabe von dem
Ausnahmebehandler an den emulierten Befehl an-
statt an einen der Befehle zurückkehrt, die verwendet
werden, um diesen emulierten Befehl zu emulieren.
Wenn andernfalls die Rückgabe von dem Ausnahme-
behandler an einen der Befehle gerichtet wäre, die
verwendet werden, um diesen Befehl zu emulieren,
kann dies potentiell ein Problem verursachen. Bei-
spielsweise kann Software (beispielsweise eine An-
wendung, ein Betriebssystem etc.) die Befehle nicht
kennen, die verwendet werden, um diesen gegebe-
nen Befehl zu emulieren, und kann die assoziierte
Adresse nicht erkennen. Das Betriebssystem kann
erkennen, dass Steuerfluss an einen unbekannten,
ungültigen, riskanten oder nicht erlaubten Ort über-
tragen wird, und kann potentiell versuchen, die Über-
gabe zu verhindern.

[0060] In einigen Ausführungsformen kann der Satz
von Befehlen 414 den Fehlerstatus 444 und/oder den
Fehlercode 445 überwachen. Beispielsweise können
die Befehle 414 in einigen Ausführungsformen den
Fehlerstatus 444 und den Fehlercode 445 aus den
Emulationskommunikationsregistern 443 lesen, um
die Ausnahmebedingung und Angaben über die Aus-
nahmebedingung in Erfahrung zu bringen. Wenn der
Fehlerstatus 444 eine Ausnahmebedingung anzeigt,
kann der Satz von Befehlen 414 in einigen Ausfüh-
rungsformen die Ausnahmebedingung 449 anneh-
men. Beispielsweise können einer oder mehrere der
Befehle 414 ausgeführt werden, um den Fehlerstatus
zu prüfen und Steuerung an den Ausnahmebehand-
ler zu übergeben, wenn ein Fehler angezeigt wird. In
einigen Ausführungsformen kann dies einschließen,
dass der Satz von Befehlen 414 Steuerung an den
Ausnahmebehandler 441 übergibt. In einigen Aus-
führungsformen kann Information über die Ausnah-

mebedingung (beispielsweise der Fehlercode 445)
für den Ausnahmebehandler 441 bereitgestellt wer-
den. In einigen Ausführungsformen kann die emulier-
te Befehlsadresse 446 auch an den Ausnahmebe-
handler 441 geliefert und/oder wenigstens oben auf
dem Stack erhalten werden. Die emulierte Befehls-
adresse 446 kann von dem Ausnahmebehandler 441
nach Rückgabe vom Behandeln der Ausnahmebe-
dingung verwendet werden. Vorteilhafterweise kann
das Betriebssystem oder eine andere Fehlerbehand-
lerroutine denken, dass der Befehl, der emuliert wird,
die Quelle des Fehlers ist.

[0061] In einigen Ausführungsformen kann die Emu-
lationslogik Logik zum Testen und zum Berichten,
ob Speicherzugriff in dem Befehl korrekt funktioniert,
enthalten oder den Typ der Ausnahmebedingung an-
geben, die entstehen kann. Beispielsweise kann ein
spezieller Befehl enthalten sein, um eine Speicher-
adresse mit emulierten Adressrechten zu testen, um
festzustellen, ob die Speicheradresse gültig ist (bei-
spielsweise, ob die Seite vorliegt) und ob das Pro-
gramm ausreichende Zugriffsrechte besitzt, um den
Speicherplatz zu lesen und/oder um den Speicher-
platz zu modifizieren. Falls irgendwelche Tests schei-
tern, kann die Emulationslogik Steuerung an den rich-
tigen Interruptbehandler mit einer Rückgabeadresse
übergeben, als ob der Befehl, der emuliert wird, direkt
Steuerung an den Ausnahmebehandler übergeben
hätte. Als ein weiteres Beispiel kann ein Zustands-
automat eine bedingte Speichertransaktion durch-
führen, die anzeigt, ob die Speicheroperation gültig
wäre. Dies kann verwendet werden, um zu bestim-
men, wann eine Speicheroperation durchgeführt wer-
den kann unter der Annahme, dass keine Ausnah-
me entsteht. Dies kann außerdem verwendet wer-
den, um zu bestimmen, wie viele Bytes eines Be-
fehlsstreams oder einer Zeichenkette aus Befehlsin-
formation auf sichere Weise ohne Ausnahmen gele-
sen werden können. Beispielsweise kann dies ver-
wendet werden, um zu testen und zu bestimmen, ob
eine Befehlslänge gelesen werden kann oder nicht,
oder ob ein Teil der Befehlslänge einen Seitenfehler
verursachen würde oder nicht. Die Emulationslogik
kann Logik enthalten, um mit Befehlen umzugehen,
die mehrere Seiten umfassen, und/oder wenn eine
Seite nicht im Speicher vorliegt.

[0062] In einigen Ausführungsformen kann die Emu-
lationslogik Logik enthalten, um einen zwischenzei-
tigen Ausführungsinterruptstatus bereitzustellen, so
dass Ausführung der Emulation anhalten und später
an dem Zwischenpunkt fortfahren kann. Dies kann
insbesondere vorteilhaft sein, wenn Befehle emu-
liert werden, die lange Dauern oder Ausführungs-
zeiten einschließen. In einigen Ausführungsformen
kann der Satz von Befehlen, die verwendet wer-
den, um bestimmte Typen von Befehlen (beispiels-
weise Zeichenkettenbefehle bewegen, Befehle ein-
holen und andere mit langen Operationen) zu emu-



DE 10 2014 003 690 A1    2014.09.18

11/48

lieren, den Ausführungszustand der Software aktua-
lisieren, die den Befehl aufweist, der emuliert wird,
um eine gegenwärtige Fortschrittsstufe wiederzuge-
ben. Beispielsweise kann die Operation an einem
Zwischenpunkt unterbrochen werden, und kann der
Satz von Befehlen, die zur Emulation verwendet wer-
den, ein Flag oder Statusbit in dem gespeicherten
Maschinenzustand durch den Ausnahmebehandler
setzen (beispielsweise in einem Prozessorstatusre-
gister), so dass bei Rückgabe der Emulationscode in
der Lage sein kann, das Flag oder Statusbit zu testen,
um zu bestimmen, dass er Ausführung von einem
Zwischenzustand aus fortsetzt. Das Flag oder Sta-
tusbit kann unterbrochene Ausführung anzeigen. Auf
diese Weise kann das Programm, wenn es von ei-
nem Ausnahmebehandler zurückkehrt, nachdem ei-
ne Ausnahmebedingung behandelt wurde, Ausfüh-
rung an einer zwischenzeitigen Fortschrittsstufe fort-
setzen, wo es aufgehört hatte. In einigen Fällen kann
ein Befehl (beispielsweise ein Befehl zum Bewegen
einer Zeichenkette) Register modifizieren, um einen
Zwischenzustand der Operation wiederzugeben, so
dass nach einer Unterbrechung Ausführung von dem
Zwischenzustand aus fortgesetzt werden kann.

[0063] Fig. 5 zeigt ein Blockdiagramm, das eine Aus-
führungsform einer Logik 501 zeigt, um einem Pro-
zessor zu ermöglichen, auf Betriebsmittel und/oder
Information auf andere Weise zuzugreifen, wenn er
in einem Emulationsmodus ist, als wenn er nicht in
einem Emulationsmodus ist. In einigen Ausführungs-
formen kann die Logik aus Fig. 5 in dem Prozessor
und/oder dem Computersystem aus Fig. 1 und/oder
aus Fig. 3 enthalten sein. Alternativ kann die Logik
aus Fig. 5 in einem ähnlichen oder anderen Prozes-
sor oder Computersystem enthalten sein. Darüber-
hinaus können der Prozessor und/oder das Compu-
tersystem aus Fig. 1 und/oder die Logik aus Fig. 3
ähnliche oder andere Logik als die aus Fig. 5 enthal-
ten.

[0064] Eine erste Instanz 503-1 eines gegebenen
Befehls (beispielsweise eines Befehls, der einen ge-
gebenen Opcode aufweist) wird einer Dekodierlogik
505 bereitgestellt, wenn der Prozessor nicht in einem
Emulationsmodus 518 ist. Eine zweite Instanz 503-2
des gleichen gegebenen Befehls (beispielsweise ei-
nes anderen Befehls, der den gleichen gegebenen
Opcode aufweist) wird der Dekodierlogik bereitge-
stellt, wenn der Prozessor in dem Emulationsmodus
518 arbeitet. Die zweite Instanz 503-2 des gegebe-
nen Befehls kann als Antwort darauf, dass ein Deko-
dierer den emulierten Befehl erhält, von einem Satz
eines oder mehrerer Befehle 514 bereitgestellt wer-
den, die verwendet werden, um einen emulierten Be-
fehl zu emulieren. Der Satz von Befehlen kann in der
Emulationslogik 515 enthalten sein, die auf dem Chip,
außerhalb des Chips oder teilweise auf dem Chip und
außerhalb des Chips sein kann. Die Emulationslogik
515 kann jede der optionalen Charakteristiken auf-

weisen, die hier an anderer Stelle für die Emulations-
logik erwähnt werden.

[0065] Eine Nachdekodier-Befehlsprozessorlogik
507 kann den/die dekodierten Befehl(e) 506 erhalten,
die der zweiten Instanz 503-2 entsprechen. Die Nach-
dekodier-Befehlsprozessorlogik enthält eine emu-
lationsmodusbewusste Zugriffssteuerlogik 520. Die
emulationsmodusbewusste Zugriffssteuerlogik kann
betrieben weren, Zugriff auf ein oder mehrere Be-
triebsmittel und/oder Information 550 auf eine Wei-
se zu steuern, die über den Emulationsmodus infor-
miert ist. In einigen Ausführungsformen kann, wenn
der Prozessor nicht in dem Emulationsmodus ar-
beitet, die Nachdekodier-Befehlsprozessorlogik 507
die erste Instanz 503-1 des gegebenen Befehls mit
im wesentlichen herkömmlichem Zugriff auf das/die
Betriebsmittel und/oder Information 550 verarbeiten.
Wie gezeigt, kann in einigen Ausführungsformen Zu-
griff auf Betriebsmittel und/oder Information 550 ver-
hindert werden 551, wenn die erste Instanz 503-1
des gegebenen Befehls verarbeitet wird, wenn kein
Emulationsmodus vorliegt. Verhindern von Zugriff auf
das/die Betriebsmittel und/oder Information, wenn
kein Emulationsmodus vorliegt, kann aus irgendei-
nem von verschiedenen möglichen Gründen ange-
messen sein, wie etwa beispielsweise, um die Si-
cherheit von Information und/oder Betriebsmittel(n)
zu schützen, weil der gegebene Befehle allgemein
nicht auf diese(s) Betriebsmittel und/oder Informati-
on zuzugreifen braucht und man das/die Betriebsmit-
tel und/oder Information lediglich bei Bedarf oder aus
anderen Gründen bereitstellen will.

[0066] Hingegen kann in einigen Ausführungsfor-
men, wenn die zweite Instanz 503-2 des gegebe-
nen Befehls verarbeitet wird, wenn in dem Emulati-
onsmodus 518 gearbeitet wird, die Nachdekodier-Be-
fehlsprozessorlogik im wesentlichen unkonventionel-
len Zugriff auf das/die Betriebsmittel und/oder Infor-
mation 550 (beispielsweise auf eine Weise, die an-
ders ist, als wenn ein Nichtemulationsmodus vorliegt)
verwenden. Beispielsweise kann, wie in der gezeig-
ten Ausführungsform gezeigt, Zugriff auf das/die Be-
triebsmittel und/oder Information 550 erlaubt werden
552, wenn die zweite Instanz 503-2 des gegebenen
Befehls verarbeitet wird, wenn der Emulationsmodus
518 vorliegt. Als Beispiel kann der Emulationsmodus
518 der Logik 507 und/oder der Logik 520 ermögli-
chen, einen speziellen Hardwarezustand zu haben,
der selektiven Zugriff auf die Information und/oder
Betriebsmittel für diesen gegebenen Befehl ermög-
licht, wenn Emulationsmodus vorliegt. Beispielswei-
se können ein oder mehrere Zugriffsberechtigungs-
bits bereitgestellt und konfiguriert werden, wenn der
Emulationsmodus vorliegt, um einem Zustandsauto-
maten zu ermöglichen, auf die Information zuzugrei-
fen.



DE 10 2014 003 690 A1    2014.09.18

12/48

[0067] Verschiedene unterschiedliche Typen von In-
formation und/oder Betriebsmittel(n) 550 werden be-
trachtet. Beispiele eines geeigneten/geeigneter Be-
triebsmittel und/oder Information schließen (ein) si-
cherheitsbezogene(s) Betriebsmittel und/oder Infor-
mation (beispielsweise Sicherheitslogik), (ein) ver-
schlüsselungs- und/oder entschlüsselungsbezogene
(s) Betriebsmittel und/oder Information (beispiels-
weise Verschlüsselungslogik und/oder Entschlüsse-
lungslogik), (ein) Zufallsgeneratorbetriebsmittel und/
oder -information (beispielsweise Zufallsgenerator-
logik), (ein) Betriebsmittel und/oder Information, die
für Berechtigungs- oder Ringstufen reserviert sind,
die einem Betriebssystem und/oder virtuellen Ma-
schinenmonitor entsprechen, und ähnliches ein, oh-
ne darauf beschränkt zu sein.

[0068] Ein weiteres Beispiel eines geeigneten/
geeigneter Betriebsmittel(s) und/oder Information
schließt (ein) Betriebsmittel und/oder Information in
einem anderen physikalischen Prozessor oder logi-
schen Prozessor (beispielsweise einen Kern, Hard-
warethread, Threadkontext etc.) als dem physikali-
schen oder logischen Prozessor ein, der die Nachde-
kodier-Befehlsprozessorlogik 507 aufweist. Die un-
terschiedlichen physikalischen oder logischen Pro-
zessoren können entweder in den gleichen oder
unterschiedlichen Sockets sein. Als Beispiel kann,
wenn ein Emulationsmodus vorliegt, eine emulations-
modusbewusste Steuerlogik 520 in der Lage sein,
auf Information und/oder Betriebsmittel eines ande-
ren Kerns in einem anderen Socket (beispielswei-
se Anfordern eines Status des Kerns) zuzugreifen,
der nicht für die Nachdekodier-Befehlsprozessorlogik
507 zur Verfügung steht, wenn kein Emulationsmo-
dus vorliegt.

[0069] Vorteilhafterweise kann die emulationsmo-
dusbewusste Zugriffssteuerlogik 520 helfen, wenigs-
tens einigen der Befehle 514 zu ermöglichen, selektiv
auf (ein) bestimmte(s) Betriebsmittel und/oder Infor-
mation zuzugreifen, wenn der Emulationsmodus vor-
liegt, die normalerweise nicht für die gleichen Befehle
des Befehlssatzes zur Verfügung stünden, wenn kein
Emulationsmodus vorliegt. Sicherheit kann trotzdem
aufrechterhalten werden, da die Emulationslogik auf
dem Chip und/oder in einem geschützten Abschnitt
des Speichers sein kann.

[0070] In einigen Ausführungsformen können einige
Ausführungslevel, beispielsweise Sicherheitsausfüh-
rungszustände, daran gehindert sein, solche Emulati-
on zu verwenden, um auf diese(s) Betriebsmittel und/
oder Information zuzugreifen. Beispielsweise braucht
nicht sämtlichen Ausführungszuständen erlaubt zu
werden, emulierte Opcodes zu verwenden. Spezielle
Sicherheitsausführungszustände können nicht zertifi-
zierbar sicher sein, wenn solche Interrupts oder Aus-
führung auf niedriger Ebene erlaubt wird. Stattdes-
sen können, wenn solche Ausführungsstufen oder Si-

cherheitsausführungszustände ähnlichen Zugriff be-
nötigen, ihn diese stattdessen durch Verwenden von
Hardwareprimitiven implementieren, die für Emulati-
onssoftware zur Verfügung stehen.

[0071] In einigen Ausführungsformen kann Befehls-
emulation verwendet werden, um Bereitstellen unter-
schiedlicher Bedeutungen für einen gegebenen Op-
code eines Befehls zu unterstützen. Makrobefehle,
Maschinensprachbefehle und andere Befehle eines
Befehlssatzes weisen oftmals einen Operationscode
oder Opcode auf. Der Opcode stellt allgemein einen
Teil des Befehls dar, der verwendet wird, um den kon-
kreten Befehl und/oder die Operation anzugeben, die
als Antwort auf den Befehl durchgeführt werden soll.
Beispielsweise kann ein Opcode eines gepackten
Multiplizierbefehls anders sein als ein Opcode eines
gepackten Addierbefehls. Allgemein weist der Op-
code mehrere Bits in einem oder mehreren Feldern
auf, die logisch, wenn nicht physikalisch, zusammen
angeordnet sind. Oftmals ist es wünschenswert, zu
versuchen, die Opcodes relativ kurz oder so kurz wie
möglich zu halten, während die gewünschte Anzahl
von Befehlen/Operationen ermöglicht wird. Relativ
lange Opcodes tendieren dazu, die Größe und/oder
Komplexität des Dekodierers zu vergrößern, und ten-
dieren auch allgemein dazu, die Befehle zu verlän-
gern. Für eine feste Anzahl an Bits in einem Op-
code kann allgemein lediglich eine feste Anzahl un-
terschiedlicher Befehle/Operationen identifiziert wer-
den. Es gibt verschiedene Tricks, die im Stand der
Technik bekannt sind, um zu versuchen, den Opcode
am besten zu nutzen, beispielsweise durch Verwen-
den von Escape-Codes und ähnlichem. Nichtsdesto-
weniger ist die Anzahl von Befehlen, die mit einem
Opcode eindeutig identifiziert werden können, allge-
mein beschränkter als wünschenswert ist. Allgemein
können neue Befehle nicht kontinuierlich dem Op-
code-Raum des Prozessors hinzugefügt werden, oh-
ne an einem Punkt irgendwann keine Opcodes mehr
zur Verfügung zu haben.

[0072] Auslastungen ändern sich mit der Zeit. Auf
ähnliche Weise ändern sich gewünschte Befeh-
le und gewünschte Befehlsfunktionalitäten mit der
Zeit. Neue Befehlsfunktionalitäten werden gewöhn-
lich fortwährend zu Prozessoren hinzugefügt. Auf
ähnliche Weise werden einige Befehle/Operationen
mit der Zeit relativ weniger nützlich und/oder weniger
häufig benutzt und/oder weniger wichtig. In einigen
Fällen, wenn Befehle/Operationen ausreichend be-
grenzten Nutzen oder Wichtigkeit haben, können sie
veraltet sein. Veraltung ist ein Begriff, der im Stand
der Technik gewöhnlich verwendet wird, um einen
Status zu bezeichnen, der auf eine Komponente, ei-
ne Struktur, eine Charakteristik oder Vorgehen ange-
wendet wird, um darauf hinzuweisen, dass sie/es all-
gemein vermieden werden sollte, oftmals weil sie/es
im Begriff ist, verworfen oder ersetzt zu werden und/



DE 10 2014 003 690 A1    2014.09.18

13/48

oder in der Zukunft nicht zur Verfügung stehen oder
unterstützt werden kann.

[0073] Gewöhnlich können solche Befehle/Operatio-
nen veralten, anstatt sofort entfernt zu werden, um
zu helfen, vorübergehende Rückwärtskompatibilität
zu liefern (beispielsweise existierendem oder über-
liefertem Code Weiterbetrieb zu ermöglichen). Dies
kann Zeit einräumen, um den Code mit den Ersatz-
befehlen/-operationen in Einklang zu bringen, und/
oder Zeit einräumen, den existierenden oder überlie-
ferten Code auszusondern. Oftmals braucht Ausson-
dern von Befehlen/Operationen aus einem Befehls-
satz viel Zeit, beispielsweise in der Größenordnung
von Jahren, wenn nicht Jahrzehnten, um Zeit zu ge-
ben, alte Programme ausreichend zu entfernen. Her-
kömmlicherweise könnte der Wert des Opcodes des
veralteten Befehls der veralteten Operation allgemein
nicht wiedererlangt und für einen anderen Befehl/ei-
ne andere Operation wiederverwendet werden, bis
eine so lange Zeitperiode verstrichen ist. Anderer-
seits können, falls überlieferte Software zum Ablauf
gebracht wurde, Befehle, die den Opcode-Wert auf-
weisen, den Prozessor veranlassen, die Ersatzope-
ration anstelle der beabsichtigten veralteten Operati-
on durchzuführen, was ein fehlerhaftes Ergebnis zur
Folge haben könnte.

[0074] In einigen Ausführungsformen kann Befehls-
emulation verwendet werden, um Bereitstellen unter-
schiedlicher Bedeutungen für einen gegebenen Op-
code eines Befehls zu unterstützen. In einigen Aus-
führungsformen kann der gegebene Opcode des Be-
fehls mit unterschiedlichen Bedeutungen interpretiert
werden. In einigen Ausführungsformen können meh-
rere Opcode-Definitionen für den gegebenen Opcode
unterstützt werden. Beispielsweise kann der gegebe-
ne Opcode mit einer Bedeutung interpretiert werden,
die ein Softwareprogramm, das den Befehl aufweist,
beabsichtigt. Als Beispiel kann ein älteres oder über-
liefertes Softwareprogramm anzeigen, dass Befehle
mit dem gegebenen Opcode eine ältere, überliefer-
te oder veraltete Bedeutung haben sollen, und kann
ein neueres Softwareprogramm anzeigen, dass Be-
fehle mit dem gegebenen Opcode eine neuere Be-
deutung haben sollen. In einigen Ausführungsformen
kann die ältere oder veraltete Bedeutung emuliert
werden, während die neuere Bedeutung in Steuersi-
gnale dekodiert und direkt auf der Pipeline des Pro-
zessors ausgeführt werden kann. Vorteilhafterweise
kann dies in einigen Ausführungsformen helfen, frü-
heres Wiedererlangen und Wiederverwendung von
Opcodes, die veraltet sind, zu ermöglichen, während
trotzdem Rückwärtskompatibilität bereitgestellt wird,
die älteren Programmen ermöglicht, immer noch mit
einem veralteten Opcode abzulaufen, während dem
veralteten Opcode ermöglicht wird, auch für neuere
Programme mit einer anderen Bedeutung verwendet
zu werden, um beim Verbessern von Leistung zu hel-
fen.

[0075] Fig. 6 zeigt ein Blockflußdiagramm einer Aus-
führungsform eines Verfahrens 660, das durch ei-
nen und/oder in einem Prozessor durchgeführt wird.
In einigen Ausführungsformen können die Operatio-
nen und/oder das Verfahren aus Fig. 6 durch den
und/oder in dem Prozessor aus Fig. 1 und/oder der
Logik aus Fig. 3 oder Fig. 7 durchgeführt werden.
Die Komponenten, Strukturen und spezifischen op-
tionalen Details, die hier für den Prozessor und die
Logik beschrieben sind, gelten optional auch für die
Operationen und/oder Verfahren aus Fig. 6. Alterna-
tiv können die Operationen und/oder Verfahren aus
Fig. 6 durch einen und/oder innerhalb eines ähn-
lichen oder ganz anderen Prozessors oder Logik
durchgeführt werden. Darüberhinaus kann der Pro-
zessor aus Fig. 1 und/oder die Logik aus Fig. 3 oder
Fig. 7 ähnliche oder andere Operationen und/oder
Verfahren als die aus Fig. 6 durchführen.

[0076] Das Verfahren schließt Empfangen eines ers-
ten Befehls an Block 661 ein, der einen gegebe-
nen Opcode aufweist. In einigen Ausführungsformen
kann der erste Befehl an dem Dekodierer empfangen
werden. Eine Bestimmung kann an Block 662 vor-
genommen werden, ob der gegebene Opcode eine
erste Bedeutung oder eine erste Bedeutung aufweist.
In einigen Ausführungsformen kann die erste Bedeu-
tung eine erste Opcode-Definition und die zweite Be-
deutung eine zweite, andere Opcode-Definition sein.
Wie weiter unten erläutert wird, kann dies in eini-
gen Ausführungsformen einschließen, dass der De-
kodierer eine Anzeige, beispielsweise in einem Flag,
Statusregister oder anderem Speicherplatz auf dem
Chip, lesen oder prüfen kann, ob der gegebene Op-
code die erste Bedeutung oder die zweite Bedeu-
tung aufweist. Wie weiter unten erläutert wird, kann
in einigen Ausführungsformen Software (beispiels-
weise ein Programmladermodul eines Betriebssys-
temmoduls) die Anzeige in dem Flag, Statusregister
oder anderem Speicherplatz auf dem Chip speichern,
wenn Software geladen wird, um von dem Prozessor
zum Ablauf gebracht zu werden. Als Beispiel kann
die Software Metadaten (beispielsweise ein Objekt-
modulformat) enthalten, um anzuzeigen, ob die Soft-
ware den gegebenen Opcode erwartet oder spezi-
fiziert, die erste Bedeutung oder zweite Bedeutung
aufzuweisen.

[0077] Unter erneuter Bezugnahme auf Fig. 6 kann,
falls die Bestimmung an Block 662 ergibt, dass der
gegebene Opcode die erste Bedeutung aufweist, das
Verfahren zu Block 663 fortschreiten. An Block 663
kann der erste Befehl in einem oder mehrere Mi-
krobefehle, Mikrooperationen oder andere Befehle
oder Steuersignale niedrigerer Ebene dekodiert wer-
den. In einigen Ausführungsformen kann der Deko-
dierer diese(n) Befehl(e) oder diese(s) Steuersignal
(e) an die Nachdekodier-Befehlsprozessorlogik (bei-
spielsweise Ausführungseinheiten etc.) ausgeben.
Die Nachdekodier-Befehlsprozessorlogik kann die-



DE 10 2014 003 690 A1    2014.09.18

14/48

se Befehle verarbeiten, typischerweise viel schneller,
als wenn stattdessen Emulation verwendet werden
würde. In einigen Ausführungsformen kann die erste
Bedeutung für nicht-veraltete Opcode-Bedeutungen,
relativ neuere Opcode-Bedeutungen, relativ häufiger
verwendete Opcode-Bedeutungen, Opcode-Bedeu-
tungen, die Leistung stärker beeinflussen, oder ähn-
liche verwendet werden.

[0078] Umgekehrt kann, falls die Bestimmung an
Block 662 ergibt, dass der gegebene Opcode die
zweite Bedeutung aufweist, das Verfahren zu Block
664 fortschreiten. Bei Block 664 kann Emulation des
ersten Befehls herbeigeführt werden. Beispielswei-
se kann der Dekodierer ein Emulationsfangsignal lie-
fern oder auf andere Weise einen Emulationsmodus
an die Emulationslogik signalisieren. Anschließend
kann ein Satz von einem oder mehreren Befehlen
der Emulationslogik, die zum Emulieren des ersten
Befehls verwendet werden sollen, wobei der Opcode
die zweite Bedeutung aufweist, dem Dekodierer ge-
liefert und in dem Emulationsmodus verarbeitet wer-
den. Dies kann im Wesentlichen wie hier an anderer
Stelle beschrieben vorgenommen werden. In einigen
Ausführungsformen kann die zweite Bedeutung für
veraltete Opcode-Bedeutungen, Opcode-Bedeutun-
gen, die im Begriff sind, zu veralten oder vor der Aus-
sonderung stehen, relativ ältere Opcode-Bedeutun-
gen, relativ weniger häufig verwendete Opcode-Be-
deutungen, Opcode-Bedeutungen, die weniger stark
Leistung beeinflussen, oder ähnliche verwendet wer-
den.

[0079] Fig. 7 zeigt ein Blockdiagramm, das eine Aus-
führungsform der Logik 701 zeigt, um einem gege-
benen Opcode zu ermöglichen, unterschiedliche Be-
deutungen aufzuweisen. In einigen Ausführungsfor-
men kann die Logik aus Fig. 7 in dem Prozessor und/
oder dem Computersystem aus Fig. 1 und/oder der
Logik aus Fig. 3 enthalten sein. Alternativ kann die
Logik aus Fig. 7 in einem ähnlichen oder anderen
Prozessor oder Computersystem enthalten sein. Dar-
überhinaus kann der Prozessor und/oder das Com-
putersystem as Fig. 1 und/oder die Logik aus Fig. 3
ähnliche oder andere Logik als die aus Fig. 7 enthal-
ten.

[0080] Ein Speicher 710 enthält ein erstes Software-
modul 711-1, ein zweites Softwaremodul 711-2 und
ein Betriebssystemmodul 797, das ein Programmla-
dermodul 770 aufweist. In einigen Ausführungsfor-
men enthält das erste Softwaremodul eine Anzeige
772 zum Verwenden einer ersten Bedeutung für ei-
nen gegebenen Opcode, und enthält das zweite Soft-
waremodul eine Anzeige 773 zum Verwenden einer
zweiten, anderen Bedeutung für den gegebenen Op-
code. Als Beispiel können die ersten und zweiten
Softwaremodule jeweils ein Objektmodulformat, an-
dere Metadaten oder eine oder mehrere Datenstruk-
turen enthalten, die diese Anzeigen 772, 773 enthal-

ten. Das Programmladermodul kann betrieben wer-
den, um das erste Softwaremodul und das zweite
Softwaremodul zur Ausführung auf einem Prozes-
sor zu laden. Wie gezeigt, kann das Programmlader-
modul in einigen Ausführungsformen ein Modul 771
enthalten, um eine Bedeutung des gegebenen Op-
codes, der von dem konkreten Softwaremodul ange-
zeigt wird, auf den Prozessor als Prozessorzustand
zu laden. In einigen Ausführungsformen kann das
Modul 771 betrieben werden, um die Anzeige 772,
wenn das erste Softwaremodul geladen wird, oder die
Anzeige 773, wenn das zweite Softwaremodul gela-
den wird, auf einen Speicherplatz 774 auf dem Chip
als eine Anzeige 775 zu laden, ob die erste oder zwei-
te Bedeutung für den gegebenen Opcode verwen-
det werden soll. Der Speicherplatz auf dem Chip ist
mit einem Dekodierer 705 gekoppelt oder auf andere
Weise für diesen zugänglich.

[0081] In einigen Ausführungsformen kann, bei-
spielsweise im Falle eines alten Softwaremoduls, das
Softwaremodul keine explizite Anzeige zum Verwen-
den einer gegebenen Bedeutung für den gegebenen
Opcode aufweisen. Beispielsweise kann die Soft-
ware vor der Existenz der neueren Bedeutung ge-
schrieben worden sein. In einigen Ausführungsfor-
men kann das Modul 771 und/oder der Programmla-
der 770 betrieben werden, um festzustellen, ob das
Softwaremodul die erste oder zweite Bedeutung des
gegebenen Opcodes verwenden muß. Beispielswei-
se kann dies aus einer Merkmalsliste, die in dem Pro-
gramm eingebettet ist, dem Format des Programms,
dem Alter des Programms oder dem Jahr, in dem das
Programm erstellt wurde, oder anderer solcher Infor-
mation in den Metadaten und/oder in dem Software-
modul festgestellt werden. Beispielsweise kann, falls
das zweite Softwaremodul 711-2 alte Software ist, die
vor Einführung/Definition der ersten Bedeutung des
gegebenen Opcodes erstellt wurde, das Programm-
ladermodul und/oder das Betriebssystemmodul be-
trieben werden, um festzustellen, dass das zweite
Softwaremodul die zweite Bedeutung und nicht die
erste Bedeutung des gegebenen Opcodes verwen-
den muss. Das Modul 771 kann betrieben werden,
um die Anzeige 775 in dem Speicherbereich auszu-
schalten oder auszuwechseln (swap), wenn Software
ausgeschaltet oder ausgewechselt wird.

[0082] Um dies weiter beispielhaft zu zeigen, wird
eine erste Instanz 703-1 eines Befehls betrachtet,
wobei der gegebene Opcode einem Dekodierer 705
von dem ersten Softwaremodul 711-1 bereitgestellt
wird. Das erste Softwaremodul enthält die Anzeige
772 zum Verwenden der ersten Bedeutung für den
gegebenen Opcode, den das Modul 771 in dem Spei-
cherplatz 774 vorhalten kann. Der Dekodierer ent-
hält eine Prüflogik 776, die mit dem Speicherplatz
774 gekoppelt ist, um die Anzeige 775 darauf zu prü-
fen, ob die erste oder zweite Bedeutung für den ge-
gebenen Opcode verwendet werden soll. Die Prüflo-



DE 10 2014 003 690 A1    2014.09.18

15/48

gik kann auf den Speicherplatz zugreifen oder aus
diesem lesen und bestimmen, dass die erste Bedeu-
tung für den gegebenen Opcode verwendet werden
soll, wenn die erste Instanz des Befehls von dem ers-
ten Softwaremodul verarbeitet wird. In einigen Aus-
führungsformen kann der Speicherplatz 774 mehrere
unterschiedliche Speicherplätze enthalten, um meh-
rere Anzeigen zu speichern, die jeweils einem ande-
ren Opcode entsprechen. Als Antwort kann die Deko-
dierlogik 777 des Dekodierers den Befehl unter der
Annahme der ersten Bedeutung des gegebenen Op-
codes dekodieren. Ein oder mehrere dekodierte Be-
fehle 706 oder ein oder mehrere andere Steuersigna-
le können von dem Dekodierer an die Nachdekodier-
Befehlsprozessorlogik 707 geliefert werden, die die-
se verarbeiten kann.

[0083] Eine zweite Instanz 703-2 eines Befehls mit
dem gleichen gegebenen Opcode kann dem Deko-
dierer 705 von dem zweiten Softwaremodul 711-2 ge-
liefert werden. Das zweite Softwaremodul enthält die
Anzeige 773 zum Verwenden der zweiten Bedeutung
für den gegebenen Opcode, den das Modul 771 an
dem Speicherplatz 774 erhalten kann. Die Prüflogik
776 kann die Anzeige 775 prüfen und bestimmen,
dass die zweite Bedeutung für den gegebenen Op-
code verwendet werden soll, wenn die zweite Instanz
des Befehls von dem zweiten Softwaremodul verar-
beitet wird. Als Antwort kann die Emulationsauslö-
selogik 778 Emulation der zweiten Instanz des Be-
fehls 703-2 auslösen. Beispielsweise kann die Emu-
lationsauslöselogik ein Emulationsfangsignal durch-
führen oder auf andere Weise einen Emulationsmo-
dus 718 signalisieren. Ein Satz von einem oder meh-
reren Befehlen 714, die verwendet werden, um die
zweite Instanz des Befehls, der den gegebenen Op-
code mit der zweiten Bedeutung aufweist, zu emulie-
ren, kann an den Dekodierer von einer Emulations-
logik 715 geliefert werden. Die Emulationslogik kann
auf dem Chip, außerhalb des Chips oder teilweise
auf dem Chip und teilweise außerhalb des Chips vor-
liegen. Die Emulationslogik 715 kann jede der Cha-
rakteristiken aufweisen, die hier an anderer Stelle für
Emulationslogik beschrieben ist.

[0084] In einigen Ausführungsformen kann/können
der/die Befehl(e) 714 aus dem gleichen Befehlssatz
wie der Befehl, der den gegebenen Opcode auf-
weist, stammen. In einigen Ausführungsformen kann
der Dekodierer jeden dieser Befehle dekodieren und
sie als dekodierte Befehle 706 oder andere Steuer-
signale an die Nachdekodier-Befehlsprozessorlogik
liefern. In einigen Ausführungsformen kann die Nach-
dekodier-Befehlsprozessorlogik eine emulationsmo-
dusbewusste Befehlsprozessorlogik 720 enthalten,
die ähnlich oder identisch hier an anderer Stelle be-
schrieben sein kann (beispielsweise diejenigen aus
einer der Fig. 1 oder Fig. 3 bis Fig. 5). Wie gezeigt,
kann die emulationsmodusbewusste Befehlsprozes-
sorlogik mit dem Emulationsmodus 718 gekoppelt

sein oder diesen auf andere Weise kennen. Darüber
hinaus kann die emulationsmodusbewusste Befehls-
prozessorlogik mit Speicherplätzen 721 der Emulati-
onslogik gekoppelt sein und Daten aus diesen lesen
und in diese schreiben.

[0085] In einigen Ausführungsformen kann die Logik
796 enthalten sein, um ein Prozessormerkmalsidenti-
fizierungregister 795 anhand der Anzeige 775 an dem
Speicherplatz 774 zu aktualisieren. Ein Beispiel ei-
nes geeigneten Prozessormerkmalsidentifizierungs-
register ist ein für CPU IDentification (CPUID) ver-
wendetes. Die Logik 796 kann mit dem Speicher-
platz 774 und mit dem Prozessormerkmalsidentifi-
zierungsregister 795 gekoppelt sein. Das Prozessor-
merkmalsidentifizierungsregister kann durch einen
Prozessormerkmalsidentifizierungsbefehl (beispiels-
weise einen CPUID-Befehl) eines Befehlssatzes des
Prozessors lesbar sein. Software kann die Anzei-
ge der Bedeutung des Opcodes aus dem Prozes-
sormerkmalsidentifizierungsregister durch Ausführen
des Prozessoridentifizierungsbefehls lesen.

[0086] In einigen Ausführungsformen kann eine Be-
rechtigungsstufen- und/oder Ringstufenlogik 794 mit
dem Dekodierer 705 gekoppelt sein, und kann den
Dekodierer zwingen oder auf andere Weise veranlas-
sen, eine gegebene Bedeutung des Opcodes anhand
einer Berechtigungsstufe und/oder Ringstufe zu ver-
wenden. Beispielsweise kann dies in Ausführungsfor-
men nützlich sein, in denen die erste Bedeutung ei-
ne neuere Bedeutung und die zweite Bedeutung ei-
ne veraltete Bedeutung ist. Betriebssysteme arbei-
ten typischerweise auf einer bestimmten Berechti-
gungsstufe und/oder Ringstufe, die sich von derjeni-
gen von Benutzeranwendungen unterscheidet. Dar-
über hinaus verwenden Betriebssysteme typischer-
weise die neuere Bedeutung des gegebenen Op-
codes und nicht die ältere Bedeutung des gegebenen
Opcodes, weil sie im Allgemeinen häufig aktualisiert
werden. In solchen Fällen kann die Berechtigungs-
stufen- und/oder Ringstufenlogik 794 den Dekodierer
veranlassen, die neuere Bedeutung des gegebenen
Opcodes zu verwenden, wenn eine Berechtigungs-
oder Ringstufe vorliegt, die der des Betriebssystems
entspricht.

[0087] Zur Vereinfachung der Beschreibung wer-
den hier typischerweise zwei unterschiedliche Be-
deutungen des Opcodes beschrieben. Jedoch ver-
steht sich, dass andere Ausführungsformen drei oder
mehr unterschiedliche Bedeutungen für einen gege-
benen Opcode verwenden können. Als Beispiel kann
der Speicherplatz 774 zwei oder mehr Bits aufweisen,
um anzuzeigen, welche der mehreren solchen unter-
schiedlichen Bedeutungen für einen gegebenen Op-
code verwendet werden sollen. Auf ähnliche Weise
kann das Prozessoridentifizierungsregister mehrere
solche Bedeutungen für den gegebenen Opcode wie-
dergeben.



DE 10 2014 003 690 A1    2014.09.18

16/48

[0088] Fig. 8 zeigt ein Blockflussdiagramm einer
Ausführungsform eines Verfahrens 880, das von
einem Betriebssystemmodul durchgeführt werden
kann. In einigen Ausführungsformen kann das Ver-
fahren durch ein Programmladermodul durchgeführt
werden.

[0089] Das Verfahren schließt bei Block 881 Bestim-
men ein, dass ein erster Befehl, der einen gege-
benen Opcode aufweist, eine zweite Bedeutung an-
statt einer ersten Bedeutung aufweisen soll, wenn
er durch einen Prozessor von einem Softwarepro-
gramm ausgeführt wird. Dies kann in verschiede-
nen Ausführungsformen auf unterschiedliche Arten
vorgenommen werden. In einigen Ausführungsfor-
men kann das Softwareprogramm explizit eine An-
zeige zum Verwenden einer gegebenen Bedeutung
für den gegebenen Opcode angeben. Beispielswei-
se kann das Betriebssystemmodul Metadaten des
Softwareprogramms prüfen. Beispielsweise kann ein
Flag in einem Objektmodulformat vorliegen, das an-
gibt, welche Bedeutung verwendet werden soll. In
anderen Ausführungsformen, beispielsweise im Falle
überlieferter Software, kann das Softwareprogramm
nicht explizit die Anzeige angeben, welche Bedeu-
tung verwendet werden soll. In einigen Ausführungs-
formen kann das Betriebssystemmodul Logik enthal-
ten, um zu ermitteln, welche Bedeutung verwendet
werden soll. Dies kann auf verschiedene unterschied-
liche Arten vorgenommen werden. In einigen Ausfüh-
rungsformen kann dies Prüfen einer Merkmalliste des
Softwareprogramms einschließen. In einigen Fällen
kann die Merkmalliste angeben, welche Befehlsre-
vision erwartet wird. In einigen Ausführungsformen
kann dies Prüfen eines Erstellungsdatums des Soft-
wareprogramms einschließen. Ein Erstellungsdatum,
das älter als ein bestimmtes Datum ist, beispielswei-
se ein Befehlsdatum einer neueren Ersatzbedeutung,
kann als eine Anzeige ermittelt werden, dass das
Softwareprogramm die ältere oder veraltete Bedeu-
tung verwendet. In einigen Ausführungsformen kann
dies Prüfen eines Formats des Softwareprogramms
einschließen. Beispielsweise können bestimmte Re-
visionsprogrammformate vor einer bestimmten Stu-
fe verwendet werden, um eine ältere oder veralte-
te Bedeutung zu ermitteln. In einigen Ausführungs-
formen kann dies Prüfen einer expliziten Liste (bei-
spielsweise einer Ausnahmeliste) von Softwarepro-
grammen einschließen, von denen bekannt ist, dass
sie bestimmte Bedeutungen verwenden. Als Beispiel
kann die Liste anhand Vergangenheitsinformation
(beispielsweise falls ein Fehler aus einer Bedeutung
resultiert, kann der Liste die andere Bedeutung hinzu-
gefügt werden) aktualisiert werden. Dies ist lediglich
ein Beispiel. Andere Arten zum Ermitteln der Bedeu-
tung können ebenfalls in Betracht gezogen werden.

[0090] Das Verfahren schließt bei Block 882 außer-
dem Speichern einer Anzeige ein, dass der erste Be-
fehl, der den gegebenen Opcode aufweist, die zweite

Bedeutung anstatt der ersten Bedeutung im Zustand
eines Prozessors aufweist. Beispielsweise kann das
Betriebssystemmodul ein Bit an einem Speicherplatz
modifizieren, der mit einem Dekodierer gekoppelt ist,
wie hier an anderer Stelle beschrieben ist.

[0091] Fig. 9 zeigt ein Blockdiagramm einer Aus-
führungsform eines Programmladermoduls 970 ein-
schließlich eines Selektionsmoduls 985, das betrie-
ben werden kann, einen Satz von ein oder mehre-
ren Funktionen, Subroutinen oder andere Teile einer
Softwarebibliothek 983 auszuwählen, die eine Be-
deutung eines gegebenen Opcodes aufweisen kann,
die für Software, die sie verwenden wird, angemes-
sen ist. Die Softwarebibliothek stellt allgemein eine
Sammlung von Software dar, die verschiedene Soft-
waremodule verwenden können, und kann bereits
existierende Software in der Form von Subroutinen,
Funktionen, Klassen, Prozeduren, Skripten, Konfigu-
rationsdaten und ähnlichen enthalten. Softwaremo-
dule können diese verschiedenen Teile der Bibliothek
verwenden, um verschiedene Funktionalitäten aufzu-
weisen. Als ein Beispiel kann ein Softwaremodul eine
Mathematiksoftwarebibliothek oder einen Teil davon
integrieren, der verschiedene mathematische Funk-
tionen oder Subroutinen aufweist.

[0092] Wie gezeigt, kann die Bibliothek in einigen
Ausführungsformen einen ersten Satz von Biblio-
theksfunktionen, -Subroutinen oder andere Teile ent-
halten, die eine erste Bedeutung eines gegebenen
Opcodes verwenden. Die Bibliothek kann auch einen
zweiten Satz von Bibliotheksfunktionen, -Subroutinen
oder andere Teile enthalten, die eine zweite, ande-
re Bedeutung des gegebenen Opcodes verwenden.
Optional kann, falls mehr als zwei Bedeutungen des
Opcodes vorliegen, in ähnlicher Form unterschiedli-
che Teile der Bibliothek für jede der drei oder mehr
unterschiedlichen Bedeutungen vorliegen. In einigen
Fällen können die Teile, die die unterschiedlichen
Bedeutungen verwenden, unterschiedliche Codeteile
sein. In anderen Fällen können die Teile unterschied-
liche Teile des gleichen Codes sein, und können Ver-
zweigungen oder bedingte Sprunganweisungen ver-
wendet werden, um in geeigneter Weise zu demjeni-
gen Teil, der die erste Bedeutung oder die zweite Be-
deutung verwendet, zu springen.

[0093] Unter erneuter Bezugnahme auf die Zeich-
nung kann das Programmladermodul 970 Teile
der Bibliothek sowohl für ein erstes Softwaremodul
911-1, das eine erste Bedeutung des gegebenen Op-
code verwendet, als auch für ein zweites Software-
modul 911-2, das eine zweite Bedeutung des gege-
benen Opcode verwendet, laden. Das Programmla-
dermodul enthält ein Selektionsmodul 985, das be-
trieben werden kann, einen Satz von ein oder mehre-
ren Funktionen, Subroutinen oder andere Teilen der
Softwarebibliothek auszuwählen, die eine Bedeutung
des gegebenen Opcodes aufweisen, die für die Soft-



DE 10 2014 003 690 A1    2014.09.18

17/48

ware, die sie verwenden wird, geeignet ist. Beispiels-
weise kann das Selektionsmodul Teile der Bibliothek,
die die gleiche Bedeutung des gegebenen Opcode
aufweisen wie die Software, die sie verwenden wird,
auswählen. Beispielsweise kann das Selektionsmo-
dul, wie in der Zeichnung gezeigt, den ersten Satz
984-1 für das erste Softwaremodul 911-1 auswählen,
weil es die erste Bedeutung des gegebenen Opcodes
verwendet. Auf ähnliche Weise kann das Selektions-
modul den zweiten Satz 984-2 für das zweite Soft-
waremodul 911-2 auswählen, weil es die zweite Be-
deutung für den gegebenen Opcode verwendet. In
einer bestimmten Ausführungsform, in der die erste
Software 911-1 alte Software und die erste Bedeu-
tung des gegebenen Opcodes eine veraltete Bedeu-
tung ist, kann das Selektionsmodul betrieben werden,
um den ersten Satz von Bibliotheksteilen 984 auszu-
wählen, der ebenfalls die gleiche veraltete Bedeutung
für den gegebenen Opcode verwendet. Somit kann
das Selektionsmodul Teile einer Bibliothek auswäh-
len, die eine Bedeutung eines gegebenen Opcodes
verwenden, die mit der Software, die diesen Teil der
Bibliothek verwenden wird, konsistent ist oder mit ihr
identisch ist.

[0094] Beispielhafte Kernarchitekturen, Prozesso-
ren und Computerarchitekturen Prozessorkerne kön-
nen auf verschiedene Arten, zu verschiedenen Zwe-
cken und in unterschiedlichen Prozessoren imple-
mentiert sein. Beispielsweise können Implementa-
tionen solcher Kerne einschließen: 1) einen geord-
neten Vielzweckkern, der für allgemeines Rechnen
vorgesehen ist; 2) einen ungeordneten Hochleis-
tungsvielzweckkern, der für allgemeines Rechnen
vorgesehen ist; 3) einen ungeordneten Spezialkern,
der vorrangig für Grafik und/oder wissenschaftliches
(Durchsatz-)Rechnen vorgesehen ist. Implementatio-
nen unterschiedlicher Prozessoren können einschlie-
ßen: 1) eine CPU, die einen oder mehrere geordne-
te Vielzweckkerne enthält, die für allgemeines Rech-
nen vorgesehen sind, und/oder einen oder mehre-
re ungeordnete Vielzweckkerne, die für allgemeines
Rechnen vorgesehen sind; und 2) einen Koprozes-
sor, der einen oder mehrere Spezialkerne enthält,
die vorrangig für Grafik- und/oder wissenschaftliches
(Durchsatz-)Rechnen vorgesehen sind. Solche un-
terschiedlichen Prozessoren führen zu unterschied-
lichen Computersystemarchitekturen, die enthalten
können: 1) den Koprozessor auf einem von der CPU
separaten Chip; 2) den Koprozessor auf einem se-
paraten Chip in dem gleichen Package wie eine
CPU; 3) den Koprozessor auf dem gleichen Chip
wie eine CPU (in welchem Fall ein solcher Kopro-
zessor manchmal als eine Speziallogik bezeichnet
wird, wie etwa integrierte Grafik- und/oder wissen-
schaftliche (Durchsatz-)Logik oder als Spezialkerne)
; und 4) ein System auf dem Chip, das auf dem glei-
chen Chip die beschriebene CPU (manchmal als der/
die Anwendungskern(e) oder Anwendungsprozessor
(en) bezeichnet), den oben beschriebenen Koprozes-

sor und weitere Funktionalität enthalten kann. Bei-
spielhafte Kernarchitekturen werden als nächstes be-
schrieben, gefolgt von Beschreibungen beispielhafter
Prozessoren und Computerarchitekturen.

Beispielhafte Kernarchitekturen

Blockdiagramm geordneter und ungeordneter Kerne

[0095] Fig. 10A zeigt ein Blockdiagramm, das so-
wohl eine beispielhafte geordnete Pipeline als auch
eine beispielhafte ungeordnete Ausgabe-/Ausfüh-
rungs-Registerumbenennungspipeline gemäß Aus-
führungsformen der Erfindung zeigt. Fig. 10B zeigt
ein Blockdiagramm, dass sowohl eine beispielhaf-
te Ausführungsform eines geordneten Architektur-
kerns als auch einen beispielhaften ungeordne-
ten Ausgabe-/Ausführungs-Registerumbenennungs-
architekturkern gemäß Ausführungsformen der Erfin-
dung, der/die in einem Prozessor enthalten sein soll
(en), zeigt. Die durchgehend umrandeten Kästen in
Fig. 10A–B zeigen die geordnete Pipeline und geord-
neten Kern, während das optionale Hinzufügen der
gestrichelten Kästen die ungeordnete Ausgabe-/Aus-
führungs Registerumbenennungspipeline und -kern
zeigt. Vorausgesetzt, dass der geordnete Aspekt ei-
ne Teilmenge des ungeordneten Aspekts ist, wird der
ungeordnete Aspekt beschrieben.

[0096] In Fig. 10A enthält eine Prozessorpipeline
1000 eine Einholstufe 1002, eine Längendekodier-
stufe 1004, eine Dekodierstufe 1006, eine Zuwei-
sungsstufe 1008, eine Umbenennungsstufe 1010, ei-
ne Planungs(auch als Auslösung oder Ausgabe be-
kannt)-stufe 1012, eine Registerlese-/Speicherlese-
stufe 1014, eine Ausführungsstufe 1016, eine Rück-
schreib-/Speicherschreibstufe 1018, eine Ausnah-
mebehandlungsstufe 1022 und eine Überweisungs-
stufe 1024.

[0097] Fig. 10B zeigt einen Prozessorkern 1090,
der eine vordere Einheit 1030 enthält, die mit ei-
ner Ausführungseinheit 1050 gekoppelt ist, und bei-
de sind mit einer Speichereinheit 1070 gekoppelt.
Der Kern 1090 kann ein Kern mit reduziertem Be-
fehlssatz (reduced instruction set computing (RISC)
), ein Kern mit komplexem Befehlssatz (complex
instruction set computing (CISC)), ein Kern mit
sehr langem Befehlswort (very long instruction word
(VLIW)) oder ein hybrider oder alternativer Kerntyp
sein. Als weitere Option kann der Kern 1090 ein
Vielzweckkern, wie etwa beispielsweise ein Netz-
werk- oder Kommunikationskern, Kompressionsein-
heit, Koprozessorkern, Vielzweckgrafikprozessorein-
heits(general purpose computing graphics proces-
sing unit (GPGPU)-Kern, Grafikkern oder ähnliches
sein.

[0098] Die vordere Einheit 1030 enthält eine Ver-
zweigungsvorhersageeinheit 1032, die mit einer Be-



DE 10 2014 003 690 A1    2014.09.18

18/48

fehlscacheeinheit 1034 gekoppelt ist, die mit ei-
nem Befehlsübersetzungspuffer (translation lookasi-
de buffer (TLB)) 1036 gekoppelt ist, der mit einer Be-
fehlseinholeinheit 1038 gekoppelt ist, die mit einer
Dekodiereinheit 1040 gekoppelt ist. Die Dekodierein-
heit 1040 (oder Dekodierer) kann Befehle dekodie-
ren und als eine Ausgabe eine oder mehrere Mikro-
perationen, Mikrocode-Zugangspunkte, Mikrobefeh-
le, andere Befehle oder andere Steuersignale erzeu-
gen, die aus den ursprünglichen Befehlen dekodiert
werden oder diese auf andere Weise wiedergeben
oder aus diesen abgeleitet sind. Die Dekodiereinheit
1040 kann unter Verwendung verschiedener unter-
schiedlicher Mechanismen implementiert sein. Bei-
spiele geeigneter Mechanismen schließen Werteta-
bellen, Hardwareimplementationen, programmierba-
re Logikarrays (PLAs), Mikrocode-Nurlesespeicher
(read only memories (ROMs)) etc. ein. In einer Aus-
führungsform enthält der Kern 1090 ein Mikrocode-
ROM oder anderes Medium, das Mikrocode für be-
stimmte Makrobefehle (beispielsweise in der Deko-
diereinheit 1040 oder andernfalls innerhalb der vor-
deren Einheit 1030) speichert. Die Dekodiereinheit
11040 ist mit einer Umbenennungs-/Zuweisungsein-
heit 1052 in der Ausführungseinheit 1050 gekoppelt.

[0099] Die Ausführungseinheit 1050 enthält die Um-
benennungs-/Zuweisungseinheit 1052, die mit einer
Rückzugseinheit 1054 und einem Satz einer oder
mehrerer Planungseinheit(en) 1056 gekoppelt ist.
Die Planungseinheit(en) 1056 stellt/stellen irgendei-
ne Anzahl unterschiedlicher Planer dar, einschließ-
lich Reservierungsstationen, zentralem Befehlsfens-
ter etc. Der/die Planungseinheit(en) 1056 ist/sind mit
den/der physikalischen Registerdatei(en)einheit(en)
1058 gekoppelt. Jede der physikalischen Register-
dateieinheiten 1058 stellt eine oder mehrere physi-
kalische Registerdateien dar, von denen verschie-
dene einen oder mehrere unterschiedliche Datenty-
pen speichern, etwa als skalare ganze Zahl, skala-
re Fließkommazahl, gepackte ganze Zahl, gepackte
Fließkommazahl, Ganzzahlvektor, Fließkommavek-
tor, Status (beispielsweise einen Befehlszeiger, der
die Adresse des nächsten Befehls ist, der ausge-
führt werden soll), etc. In einer Ausführungsform um-
fasst die physikalische Registerdatei(en)einheit 1058
eine Vektorregistereinheit, eine Schreibmaskenre-
gistereinheit und eine Skalarregistereinheit. Diese
Registereinheiten können architektonische Vektor-
register, Vektormaskenregister und Vielzweckregis-
ter bereitstellen. Die physikalische(n) Registerdatei
(en)einheit(en) 1058 wird durch die Rückzugseinheit
1054 überlappt, um verschiedene Wege zu zeigen,
auf denen Registerumbenennung und ungeordnete
Ausführungsform implementiert sein kann (beispiels-
weise unter Verwendung eines Umordnungspuffers
und/von Umordungspuffern (einer) Rückzugsregis-
terdatei(en); unter Verwendung einer Zukunftsdatei/
von Zukunftsdateien, eines Vergangenheitspuffers/
von Vergangenheitspuffern und (einer) Rückzugsre-

gisterdatei(en); unter Verwendung einer Registerkar-
te und eines Pools von Registern etc.). Die Rück-
zugseinheit 1054 und die physikalische Registerdatei
(en)einheit(en) 1058 sind mit dem/den Ausführungs-
cluster(n) 1060 gekoppelt. Das/die Ausführungsclus-
ter 1060 enthält/enthalten einen Satz einer oder meh-
rerer Ausführungseinheiten 1062 und einen Satz ei-
ner oder mehrerer Speicherzugriffseinheiten 1065.
Die Ausführungseinheiten 1062 können verschiede-
ne Operationen (beispielsweise Shifts, Addition, Sub-
traktion, Multiplikation) auf verschiedenen Datenty-
pen (beispielsweise skalare Fließkommazahl, ge-
packte ganze Zahl, Ganzzahlvektor, Fließkomma-
vektor) durchführen. Während einige Ausführungs-
formen eine Anzahl von Ausführungseinheiten ein-
schließen, die für spezifische Funktionen oder Sät-
ze von Funktionen gestaltet sind, können ande-
re Ausführungseinheiten lediglich eine Ausführungs-
form oder mehrere Ausführungsformen einschließen,
die alle sämtliche Funktionen durchführen. Die Pla-
nungseinheit(en) 1056, physikalischen Registerdatei
(en)einheit(en) 1058 und Ausführungscluster 1060
sind als möglicherweise in der Mehrzahl gezeigt,
weil bestimmte Ausführungsformen separate Pipe-
lines für bestimmte Datentypen/Operationen erstel-
len (beispielsweise eine skalare Ganzzahlpipeline,
eine skalare Fließkomma-/gepackte Ganzzahl-/ge-
packte Fließkomma-/Ganzzahlvektor-/Fließkomma-
vektorpipeline und/oder eine Speicherzugriffspipe-
line, die jeweils ihre eigene Planungseinheit, phy-
sikalische Registerdatei(en)einheit und/oder Ausfüh-
rungscluster aufweisen – und im Fall einer separaten
Speicherzugriffpipeline sind bestimmte Ausführungs-
formen implementiert, in denen lediglich das Ausfüh-
rungscluster dieser Pipeline die Speicherzugriffsein-
heit(en) 1064 aufweist). Es versteht sich außerdem,
dass, wenn separate Pipelines verwendet werden, ei-
ne oder mehrere dieser Pipelines mit ungeordneter
Ausgabe/Ausführung gestaltet sein können und der
Rest geordnet ist.

[0100] Der Satz von Speicherzugriffseinheiten 1064
ist mit der Speichereinheit 1070 gekoppelt, die eine
Daten-TLB-Einheit 1072 enthält, die mit einer Daten-
cacheeinheit 1074 gekoppelt ist, die mit einer Level-
2(L2)-Cacheeinheit 1076 gekoppelt ist. In einer bei-
spielhaften Ausführungsform können die Speicherzu-
griffseinheiten 1064 eine Ladeeinheit, eine Adress-
speichereinheit und eine Datenspeichereinheit ent-
halten, von denen jede mit der Daten-TLB-Einheit
1072 in der Speichereinheit 1070 gekoppelt ist. Die
Befehlscacheeinheit 1034 ist ferner mit einer Level-2
(L2)-Cacheeinheit 1076 in der Speichereinheit 1070
gekoppelt. Die L2-Cacheeinheit 1076 ist mit einem
oder mehreren Cachelevels und letztlich mit einem
Hauptspeicher gekoppelt.

[0101] Als Beispiel kann die beispielhafte unge-
ordnete Ausgabe-/Ausführungs-Registerumbenen-
nungs-Kernarchitektur die Pipeline 1000 wie folgt im-



DE 10 2014 003 690 A1    2014.09.18

19/48

plementieren: 1) die Befehlseinholeinheit 1038 führt
das Einholen und die Längendekodierstufen 1002
und 1004 durch; 2) die Dekodiereinheit 1040 führt die
Dekodierstufe 1006 durch; 3) die Umbenennungs-/
Zuweisungseinheit 1052 fährt die Zuweisungsstu-
fe 1008 und Umbenennungsstufe 1010 durch; 4)
die Planungseinheit(en) 1056 führt/führen die Pla-
nungsstufe 1012 durch; 5) die physikalischen Re-
gisterdatei(en)einheit(en) 1058 und die Speicherein-
heit 1070 führen die Registerlese-/Speicherlesestu-
fe 1014 durch; das Ausführungscluster 1060 führt
die Ausführungsstufe 1016 durch; 6) die Speicherein-
heit 1070 und die physikalische (n)Registerdatei(en)
einheit(en) 1058 führt/führen die Rückschreib-/Spei-
cherschreibstufe 1018 durch; 7) verschiedene Ein-
heiten können an der Ausnahmebehandlungsstufe
1022 beteiligt sein; und 8) die Rückzugseinheit 1054
und die physikalische(n) Registerdatei(en)einheit(en)
1058 führen die Überweisungsstufe 1024 durch.

[0102] Der Kern 1090 kann einen oder mehrere Be-
fehlssätze (beispielsweise den x86-Befehlssatz (mit
einigen Erweiterungen, die in neueren Versionen hin-
zugefügt wurden); den MIPS-Befehlssatz von MIPS-
Technologies aus Sunnyvale, CA; den ARM-Befehls-
satz (mit optionalen zusätzlichen Erweiterungen, wie
etwa NEON) von ARM-Holdings aus Sunnyvale, CA),
die den/die Befehl(e) enthalten, der/die hier beschrie-
ben sind/ist. In einer Ausführungsform enthält der
Kern 1090 Logik, um eine Befehlssatzerweiterung
gepackter Daten (beispielsweise AVX1, AVX2) zu un-
terstützen, so dass den Operationen, die von vielen
Multimediaanwendungen verwendet werden, ermög-
licht wird, unter Verwendung gepackter Daten durch-
geführt zu werden.

[0103] Es versteht sich, dass der Kern Multithrea-
ding (Ausführen von zwei oder mehreren Sätzen
von Operationen oder Threads) unterstützen kann,
und dies auf eine Vielzahl von Arten vornehmen
kann, einschließlich zeitlich geteiltes Multithreading,
simultanes Multitheading (wenn ein einzelner physi-
kalischer Kern einen logischen Kern für jeden der
Threads bereitstellt, führt der Prozessor simultan
Multithreading durch) oder eine Kombination dersel-
ben (beispielsweise zeitlich geteiltes Einholen und
Dekodieren und anschließendes simultanes Multi-
threading, wie etwa in der Intel Hyperthreading-Tech-
nologie).

[0104] Während Registerumbenennen im Kontext
ungeordneter Ausführung beschrieben wird, versteht
sich, dass Registerumbenennen in einer geordne-
ten Architektur verwendet werden kann. Während die
gezeigten Ausführungsformen des Prozessors auch
separate Befehls- und Datencache-Einheiten 1034/
1074 und eine gemeinsam benutzte L2-Cacheeinheit
1076 einschließen, können alternative Ausführungs-
formen einen einzelnen internen Cache sowohl für
Befehle als auch Daten einschließen, wie etwa bei-

spielsweise einen internen Level-1(L1)-Cache oder
mehrere Level von internem Cache. In einigen Aus-
führungsformen kann das System eine Kombination
eines internen Caches und eines externen Caches
aufweisen, die außerhalb des Kerns und/oder des
Prozessors ist. Alternativ kann der gesamte Cache
außerhalb des Kerns und/oder des Prozessors sein.

Spezifische beispielhafte geordnete Kernarchitektur

[0105] Fig. 11A–B zeigen ein Blockdiagramm ei-
ner konkreten beispielhaften geordneten Kernarchi-
tektur, deren Kern einer von mehreren Logikblö-
cken (einschließlich anderer Kerne des gleichen
Typs und/oder unterschiedlicher Typen) in einem
Chip wäre. Die Logikblöcke kommunizieren durch ein
Schaltnetzwerk hoher Bandbreite (beispielsweise ein
Ringnetzwerk) mit irgendeiner festen Funktionslogik,
Speicher-I/O-Schnittstellen und anderer notwendiger
I/O-Logik, abhängig von der Anwendung.

[0106] Fig. 11A zeigt ein Blockdiagramm eines ein-
zelnen Prozessorkerns, gemeinsam mit seiner Ver-
bindung zu dem Schaltnetzwerk 1102 auf dem Chip
und mit seinem lokalen Teil des Level 2(L2)-Caches
1104 gemäß Ausführungsformen der Erfindung. In ei-
ner Ausführungsform unterstützt der Befehlsdekodie-
rer 1100 den x86-Befehlssatz mit einer Befehlssatz-
erweiterung gepackter Daten. Ein L1-Cache 1106 er-
möglicht Zugriffe mit geringer Latenz auf Cachespei-
cher in den Skalar- und Vektoreinheiten. Während
in einer Ausführungsform (um das Design zu verein-
fachen) eine Skalareinheit 1108 und eine Vektorein-
heit 1110 separate Registersätze (jeweils skalare Re-
gister 1112 und Vektorregister 1114) verwenden, und
Daten, die zwischen diesen übertragen werden, in
Speicher geschrieben und dann aus einem Level 1
(L1)-Cache 1106 gelesen werden, können alternati-
ve Ausführungsformen der Erfindung einen anderen
Ansatz verwenden (beispielsweise einen Einzelregis-
tersatz verwenden oder einen Kommunikationspfad
einschließen, der es Daten ermöglicht, zwischen den
beiden Registerdateien übertragen zu werden, ohne
geschrieben und zurückgelesen zu werden).

[0107] Der lokale Teil des L2-Caches 1104 ist Teil
eines globalen L2-Caches, der in separate lokale Tei-
le unterteilt ist, einer je Prozessorkern. Jeder Prozes-
sorkern weist einen direkten Zugriffspfad zu seinem
eigenen lokalen Teil des L2-Caches 1104 auf. Da-
ten, die von einem Prozessor gelesen werden, wer-
den in seinem L2-Cache-Teil gespeichert und können
schnell, parallel zu anderen Prozessorkernen zuge-
griffen werden, die auf ihre eigenen lokalen L2-Ca-
che-Teile zugreifen. Daten, die von einem Prozessor-
kern geschrieben werden, werden in dessen eigenem
L2-Cache-Teil 1104 gespeichert und von anderen
Teilen gelöscht, falls notwendig. Das Ringnetzwerk
gewährleistet Kohärenz für gemeinsam benutzte Da-
ten. Das Ringnetzwerk ist bidirektional, um Agenten,



DE 10 2014 003 690 A1    2014.09.18

20/48

wie etwa Prozessorkernen, L2-Caches und anderen
Logikblöcken zu ermöglichen, miteinander innerhalb
des Chips zu kommunizieren. Jeder Ringdatenpfad
ist je Richtung 1012 Bits breit.

[0108] Fig. 11b zeigt eine erweiterte Ansicht eines
Teils des Prozessorkerns aus Fig. 11A gemäß Aus-
führungsformen der Erfindung. Fig. 11B weist einen
L1-Datencache 1106A -Teil des L1-Caches 1104,
ebenso wie weitere Details betreffend die Vektor-
einheit 1110 und die Vektorregister 1114 auf. Insbe-
sondere ist die Vektoreinheit 1110 eine 16 Bit brei-
te Vektorverarbeitungseinheit (vector processing unit
(VPU)) (siehe die 16 Bit breite ALU 1128), die einen
oder mehrere Befehle mit ganzen Zahlen, Fließkom-
mazahlen mit einfacher Genauigkeit und Fließkom-
mazahlen mit doppelter Genauigkeit ausführt. Die
VPU unterstützt Vermischen (swizzling) der Register-
eingaben mit Swizzle-Einheit 1120, numerische Um-
wandlung mit numerischen Umwandlungseinheiten
1122A–B und Replikation mit einer Replikationsein-
heit 1124 auf der Speichereingabe. Schreibmasken-
register 1126 ermöglichen Vorhersagen resultieren-
der Vektorschreiboperationen.

Prozessor mit integriertem
Speichercontroller und Grafik

[0109] Fig. 12 zeigt ein Blockdiagramm eines Pro-
zessors 1200, der gemäß Ausführungsformen mehr
als einen Kern, einen integrierten Speichercontroller
und integrierte Grafik enthalten kann. Die durchge-
hend umrandeten Kästen in Fig. 12 zeigen einen Pro-
zessor 1200 mit einem einzelnen Kern 1202A, einem
Systemagenten 1210, einem Satz von einem oder
mehreren Buscontrollereinheiten 1216, während die
optionale Zugabe der gestrichelt umrandeten Kästen
einen alternativen Prozessor 1200 mit mehreren Ker-
nen 1202A–N, einen Satz von einer oder mehreren
integrierten Speichercontrollereinheit(en) 1214 in der
Systemagenteneinheit 1210 und Speziallogik 1208
zeigt.

[0110] Somit können unterschiedliche Implementa-
tionen des Prozessors 1200 einschließen: 1) ei-
ne CPU, bei der die Speziallogik 1208 eine inte-
grierte Grafik- und/oder Wissenschafts (Durchsatz-
)Logik (die einen oder mehrere Kerne enthalten
kann) ist und, die Kerne 1202A–N ein oder meh-
rere Vielzweckkerne sind (beispielsweise geordne-
te Vielzweckkerne, ungeordnete Vielzweckkerne, ei-
ne Kombination von beiden); 2) einen Koprozessor,
bei dem die Kerne 1202A–N eine große Anzahl von
Spezialkernen sind, die primär für Grafik- und/oder
wissenschaftliche Anwendungen dienen (Durchsatz);
und 3) einen Koprozessor, bei dem die Kerne 1202A–
N eine große Anzahl geordneter Vielzweckkerne
sind. Somit kann der Prozessor 1200 ein Vielzweck-
prozessor, Koprozessor oder Spezialprozessor sein,
wie etwa beispielsweise ein Netzwerk- oder Kom-

munikationsprozessor, Kompressionseinheit, Grafik-
prozessor, GPGPU (general purpose graphics pro-
cessing unit), ein Hochdurchsatzkoprozessor mit vie-
len integrierten Kernen (many integrated cores (MIC)
) (einschließlich 30 oder mehr Kerne), eingebetteter
Prozessor oder ähnliche. Der Prozessor kann auf ei-
nem oder mehreren Chips implementiert sein. Der
Prozessor 1200 kann ein Teil von und/oder auf ei-
nem oder mehreren Substraten unter Verwendung ei-
ner Anzahl von Prozessortechnologien implementiert
sein, wie etwa beispielsweise BiCMOS, CMOS oder
NMOS.

[0111] Die Speicherhierarchie enthält einen oder
mehrere Cachelevel innerhalb der Kerne, einen Satz
von einem oder mehreren gemeinsam benutzten Ca-
cheeinheiten 1206 und externen Speicher (nicht ge-
zeigt), der mit dem Satz integrierter Speichercon-
trollereinheiten 1214 gekoppelt ist. Der Satz ge-
meinsam benutzter Cacheeinheiten 1206 kann einen
oder mehrere Caches mittleren Levels, wie etwa Le-
vel 2 (L2), Level 3 (L3), Level 4 (L4) oder andere
Cachelevel, einen Last-Level-Cache (LLC) und/oder
Kombinationen derselben enthalten. Während in ei-
ner Ausführungsform eine ringbasierte Schaltverbin-
dungseinheit 1212 die integrierte Grafiklogik 1208,
den Satz gemeinsam benutzter Cacheeinheiten 1206
und die Systemagenteinheit 1210/integrierte Spei-
chercontrollereinheit(en) 1214 miteinander verbin-
det, können alternative Ausführungsformen irgendei-
ne Anzahl wohlbekannter Techniken zum Verbinden
solcher Einheiten verwenden. In einer Ausführungs-
form wird Kohärenz zwischen einer oder mehreren
solchen Cacheeinheiten 1206 und Kernen 1202A–N
aufrechterhalten.

[0112] In einigen Ausführungsformen sind ein oder
mehrere der Kerne 1202A–N Multithreadingfähig.
Der Systemagent 1210 enthält diejenigen Kompo-
nenten, die die Kerne 1202A–N koordinieren und be-
treiben. Die Systemagenteinheit 1210 kann beispiels-
weise eine Energiesteuereinheit (power control unit
(PCU)) und eine Anzeigeinheit enthalten. Die PCU
kann Logik und Komponenten sein oder enthalten,
die zum Regulieren des Energiezustands der Kerne
1202a–N und der integrierten Grafiklogik 1208 benö-
tigt werden. Die Anzeigeinheit dient dem Steuern ei-
ner oder mehrerer extern verbundener Anzeigen.

[0113] Die Kerne 1202A–N können hinsichtlich Ar-
chitekturbefehlssatz homogen oder heterogen sein;
das heißt, zwei oder mehrere der Kerne 1202A–N
können in der Lage sein, den gleichen Befehlssatz
auszuführen, während andere in der Lage sein kön-
nen, lediglich eine Teilmenge dieses Befehlssatzes
oder eines anderen Befehlssatzes auszuführen.



DE 10 2014 003 690 A1    2014.09.18

21/48

Beispielhafte Computerarchitekturen

[0114] Fig. 13–Fig. 16 zeigen Blockdiagramme bei-
spielhafter Computerarchitekturen. Andere System-
designs und -konfigurationen, die aus dem Stand der
Technik für Laptops, Desktops, Hand-PCs, Perso-
nal Digital Assistants, Ingenieur-Workstations, Ser-
ver, Netzwerkgeräte, Netzwerk-Hubs, Switches, ein-
gebettete Prozessoren, digitale Signalprozessoren
(DSPs), Grafikgeräte, Videospielgeräte, Set-top-Bo-
xen, Mikrocontroller, Mobiltelefone, tragbare Medien-
abspielgeräte, Handgeräte und verschiedene andere
elektronische Geräte bekannt sind, sind ebenfalls ge-
eignet. Allgemein ist eine große Vielzahl von Syste-
men oder elektronischen Geräten, die in der Lage ist,
einen Prozessor und/oder andere Ausführungslogik,
wie hier offenbart, aufzunehmen, allgemein geeignet.

[0115] Unter Bezugnahme auf Fig. 13 ist ein Block-
diagramm eines Systems 1300 gemäß einer Ausfüh-
rungsform der vorliegenden Erfindung gezeigt. Das
System 1300 kann einen oder mehrere Prozesso-
ren 1310, 1315 enthalten, die mit einem Control-
ler-Hub 1320 gekoppelt sind. In einer Ausführungs-
form enthält der Controller-Hub 1320 einen Grafik-
speichercontroller-Hub (graphics memory controller
hub (GMCH)) 1390 und einen Eingabe-/Ausgabe-
Hub (Input/Output Hub (IOH)) 1350 (die auf separa-
ten Chips vorliegen können); der GMCH 1390 ent-
hält Speicher- und Grafikcontroller, mit denen Spei-
cher 1340 und ein Koprozessor 1345 gekoppelt ist;
der IOH 1350 koppelt Eingabe-/Ausgabe-(I/O)-Gerä-
te 1360 an den GMCH 1390. Alternativ sind ein oder
beide Speicher- und Grafikcontroller innerhalb des
Prozessors (wie hier beschrieben) integriert, sind der
Speicher 1340 und der Koprozessor 1345 direkt mit
dem Prozessor 1310 gekoppelt, und ist der Control-
ler-Hub 1320 in einem einzelnen Chip mit dem IHO
1350.

[0116] Der optionale Charakter der zusätzlichen
Prozessoren 1315 ist in Fig. 13 mit durchbrochenen
Linien bezeichnet. Jeder Prozessor 1310, 1315 kann
einen oder mehrere der hier beschriebenen Prozes-
sorkerne enthalten und irgendeine Version des Pro-
zessors 1200 sein.

[0117] Der Speicher 1340 kann beispielsweise dy-
namischer Speicher mit wahlfreiem Zugriff (dynamic
random access memory (DRAM)), Phasenwechsel-
speicher (phase change memory (PCM)) oder ei-
ne Kombination der beiden sein. In wenigstens ei-
ner Ausführungsform kommuniziert der Controller-
Hub 1320 mit dem/den Prozessor(en) 1310, 1315
über einen Multidrop-Bus, wie etwa einen Frontside-
Bus (FSB), eine Punkt-zu-Punkt-Schnittstelle, wie et-
wa QuickPath Interconnect (QPI), oder eine ähnliche
Verbindung 1395.

[0118] In einer Ausführungsform ist der Koprozessor
1345 ein Spezialprozessor, wie etwa beispielsweise
ein MIC-Prozessor mit hohem Durchsatz, ein Netz-
werk- oder Kommunikationsprozessor, Kompressi-
onseinheit, Grafikprozessor, GPGPU, eingebetteter
Prozessor oder ähnliches. In einer Ausführungsform
kann der Controller-Hub 120 einen integrierten Gra-
fikbeschleuniger enthalten.

[0119] Es kann eine Vielzahl von Unterschieden zwi-
schen den physikalischen Betriebsmitteln 1310, 1315
hinsichtlich eines Spektrums von Metriken vorlie-
gen, einschließlich architektonische, mikroarchitekto-
nische, thermische, Energieverbrauchscharakteristi-
ken und ähnliche.

[0120] In einer Ausführungsform führt der Prozes-
sor 1310 Befehle aus, die Datenverarbeitungsope-
rationen eines allgemeinen Typs steuern. Eingebet-
tet innerhalb der Befehle können Koprozessorbefeh-
le sein. Der Prozessor 1310 erkennt diese Koprozes-
sorbefehle als einen Typ, der durch den verbunde-
nen Koprozessor 1345 ausgeführt werden sollte. So-
mit gibt der Prozessor 1310 diese Koprozessorbefeh-
le (oder Steuersignale, die Koprozessorbefehle dar-
stellen) auf einen Koprozessorbus oder andere Ver-
bindung zu dem Koprozessor 1345 aus. Koprozessor
(en) 1345 akzeptiert/akzeptieren die erhaltenen Ko-
prozessorbefehle und führt/führen sie aus.

[0121] Unter Bezugnahme auf Fig. 14 ist ein Block-
diagramm eines ersten konkreteren beispielhaften
Systems 1400 gemäß einer Ausführungsform der
vorliegenden Erfindung gezeigt. Wie in Fig. 14 ge-
zeigt, ist das Multiprozessorsystem 1400 ein Punkt-
zu-Punkt-Verbindungssystem und enthält einen ers-
ten Prozessor 1470 und einen zweiten Prozessor
1480, die über eine Punkt-zu-Punkt-Verbindung 1450
miteinander verbunden sind. Jeder der Prozessoren
1470 und 1480 kann irgendeine Version des Prozes-
sors 1200 sein. In einer Ausführungsform sind die
Prozessoren 1470 und 1480 jeweils die Prozesso-
ren 1310 und 1315, während der Koprozessor 1438
ein Koprozessor 1345 ist. In einer anderen Ausfüh-
rungsform sind die Prozessoren 1470 und 1480 je-
weils Prozessor 1310 und Koprozessor 1345.

[0122] Die Prozessoren 1470 und 1480 sind ein-
schließlich den jeweiligen integrierten Speichercon-
troller(integrated memory controller (IMC))-Einheiten
1472 und 1482 gezeigt. Der Prozessor 1470 ent-
hält außerdem als Teil seiner Buscontroller-Einheiten
Punkt-zu-Punkt(P-P)-Schnittstellen 1476 und 1478;
auf ähnliche Weise enthält ein zweiter Prozessor
1480 P-P-Schnittstellen 1486 und 1488. Die Prozes-
soren 1470, 1480 können über eine Punkt-zu-Punkt
(P-P)-Schnittstelle 1450 Information unter Verwen-
dung von P-P-Schnittstellenschaltungen 1478, 1488
austauschen. Wie in Fig. 14 gezeigt, koppeln die
IMCs 1472 und 1482 die Prozessoren mit jeweiligen



DE 10 2014 003 690 A1    2014.09.18

22/48

Speichern, nämlich einem Speicher 1432 und einem
Speicher 1434, die Abschnitte des Hauptspeichers
sein können, der lokal mit den jeweiligen Prozesso-
ren verbunden ist.

[0123] Die Prozessoren 1470, 1480 können jeweils
Information mit einem Chipsatz 1490 über individuel-
le P-P-Schnittstellen 1452, 1454 unter Verwendung
von Punkt-zu-Punkt-Schnittstellenschaltungen 1476,
1494, 1486, 1498 austauschen. Der Chipsatz 1490
kann optional Information mit dem Koprozessor 1438
über eine Hochleistungsschnittstelle 1439 austau-
schen. In einer Ausführungsform ist der Koprozessor
1438 ein Spezialprozessor, wie etwa beispielsweise
ein MIC-Prozessor mit hohem Durchsatz, ein Netz-
werk- oder Kommunikationsprozessor, eine Kom-
pressionseinheit, ein Grafikprozessor, GPGPU, ein-
gebetteter Prozessor oder ähnliches.

[0124] Ein gemeinsam benutzter Cache (nicht ge-
zeigt) kann in jedem Prozessor oder außerhalb bei-
der Prozessoren enthalten sein und trotzdem mit den
Prozessoren über P-P-Verbindung verbunden sein,
so dass lokale Cache-Information jedes oder beider
Prozessoren in dem gemeinsam gespeicherten Ca-
che gespeichert werden kann, wenn ein Prozessor in
einen Niedrigenergiemodus versetzt wird.

[0125] Der Chipsatz 1490 kann mit einem ersten Bus
1416 über eine Schnittstelle 1496 gekoppelt sein. In
einer Ausführungsform kann der erste Bus 1416 ein
Peripheral Component Interconnect(PCI)-Bus oder
ein Bus wie etwa PCI-Express-Bus oder ein anderer
I/O-Verbindungsbus dritter Generation sein, obwohl
der Schutzbereich der vorliegenden Erfindung nicht
in dieser Hinsicht beschränkt ist.

[0126] Wie in Fig. 14 gezeigt, können verschiedene
I/O-Geräte 1414 mit dem ersten Bus 1416 gekoppelt
sein, gemeinsam mit einer Bus-Bridge 1418, die den
ersten Bus 1416 mit einem zweiten Bus 1420 kop-
pelt. In einer Ausführungsform sind ein oder mehrere
weitere(r) Prozessor(en) 1415, wie etwa Koprozesso-
ren, MIC-Prozessoren mit hohem Durchsatz, GPG-
PUs, Beschleuniger (wie etwa beispielsweise Grafik-
beschleuniger oder digitale Signalverarbeitungs(di-
gital signal processing (DSP))-Einheiten, Field pro-
grammable Gate Arrays oder irgendein anderer Pro-
zessor mit dem ersten Bus 1416 gekoppelt. In ei-
ner Ausführungsform kann der zweite Bus 1420 ein
Low Pin Count(LPC)-Bus sein. Verschiedene Geräte
können an einen zweiten Bus 1420 gekoppelt sein,
einschließlich beispielsweise einer Tastatur und/oder
Maus 1422, Kommunikationsgeräten 1427 und einer
Speichereinheit 1428, wie etwa einem Plattenlauf-
werk oder anderem Massenspeichergerät, das in ei-
ner Ausführungsform Befehle/Code und Daten 1430
enthalten kann. Ferner kann ein Audio-I/O 1424 mit
dem zweiten Bus 1420 gekoppelt sein. Es versteht
sich, dass andere Architekturen möglich sind. Bei-

spielsweise kann statt der Punkt-zu-Punkt-Architek-
tur aus Fig. 14 ein System einen Multidrop-Bus oder
andere solche Architektur implementieren.

[0127] Unter Bezugnahme auf Fig. 15 ist ein Block-
diagramm eines zweiten konkreteren beispielhaften
Systems 1500 gemäß einer Ausführungsform der
vorliegenden Erfindung gezeigt. Gleiche Elemente in
den Fig. 14 und Fig. 15 enthalten gleiche Bezugs-
zeichen, und bestimmte Aspekte aus Fig. 14 wurden
aus Fig. 15 weggelassen, um Verschleiern anderer
Aspekte aus Fig. 15 zu vermeiden.

[0128] Fig. 15 zeigt, dass die Prozessoren 1470,
1480 jeweils integrierten Speicher und I/O-Steuer-
logik (control logik (CL)) 1472 und 1482 enthalten
können. Somit enthalten die CL 1472, 1482 inte-
grierte Speichercontrollereinheiten und I/O-Steuerlo-
gik. Fig. 15 zeigt, dass nicht nur die Speicher 1432,
1434 mit den CL 1472, 1482 gekoppelt sind, sondern
auch dass die I/O-Geräte 1514 mit den Steuerlogi-
ken 1472, 1482 gekoppelt sind. Veraltete I/O-Geräte
1515 sind mit dem Chipsatz 1490 gekoppelt.

[0129] Unter Bezugnahme auf Fig. 16 ist ein Block-
diagramm eines SoC 1600 gemäß einer Ausfüh-
rungsform der vorliegenden Erfindung gezeigt. Ähn-
liche Elemente in Fig. 12 weisen ähnliche Bezugs-
zeichen auf. Außerdem zeigen gestrichelt umrandete
Kästen optionale Merkmale weiterentwickelter SoCs.
In Fig. 16 ist eine/sind Verbindungseinheit(en) 1602
gekoppelt mit: einem Anwendungsprozessor 1610,
der einen Satz eines oder mehrerer Kerne 202A–
N und gemeinsam benutzte Cacheeinheit(en) 1206
enthält; (einer) Systemagenteinheit 1210; einer Bus-
controllereinheit(en) 1216; (einer) integrierten Spei-
chercontrollereinheit(en) 1214; einem Satz aus ei-
nem oder mehreren Koprozessoren 1620, die inte-
grierte Grafiklogik enthalten können; einem Bildpro-
zessor; einem Audioprozessor und einem Videopro-
zessor; einer statischen Speichereinheit mit wahlfrei-
em Zugriff (static random access memory (SRAM))
1630; einer Direktspeicherzugriffseinheit (direct me-
mory access (DMA)) 1632; und einer Anzeigeein-
heit 1640 zum Koppeln an eine oder mehrere ex-
terne Anzeigen. In einer Ausführungsform enthält/
enthalten der/die Koprozessor(en) 1620 einen Spe-
zialprozessor, wie etwa beispielsweise einen Netz-
werk- oder Kommunikationsprozessor, Kompressi-
onseinheit, GPGPU, einen MIC-Prozessor mit hohem
Durchsatz, eingebetten Prozessor oder ähnliche.

[0130] Ausführungsformen der hier offenbarten Me-
chanismen können in Hardware, Software, Firm-
ware oder einer Kombination solcher Implementati-
onsansätze implementiert sein. Ausführungsformen
der Erfindung können als Computerprogramme oder
Programmcode implementiert sein, die/der auf pro-
grammierbaren Systemen ausgeführt wird/werden,
die wenigstens einen Prozessor, ein Speichersystem



DE 10 2014 003 690 A1    2014.09.18

23/48

(einschließlich flüchtigen und nichtflüchtigen Spei-
cher und/oder Speicherelemente), wenigstens ein
Eingabegerät und wenigstens ein Ausgabegerät um-
fassen.

[0131] Programmcode, wie etwa der in Fig. 14 ge-
zeigte Code 1430, kann auf Eingabebefehle ange-
wendet werden, um die hier beschriebenen Funktio-
nen durchzuführen und Ausgabeinformation zu er-
zeugen. Die Ausgabeinformation kann auf ein oder
mehrere Ausgabegeräte in bekannter Weise ange-
wendet werden. Für Zwecke dieser Anmeldung um-
fasst ein Prozessorsystem irgendein System, das
einen Prozessor aufweist, wie etwa beispielswei-
se: einen digitalen Signalprozessor (DSP), einen Mi-
krocontroller, eine anwendungsspezifische integrier-
te Schaltung (application specific integrated circuit
(ASIC)) oder einen Mikroprozessor.

[0132] Der Programmcode kann in einer prozedura-
len oder objektorientierten Hochprogrammiersprache
implementiert sein, um mit einem Prozessorsystem
zu kommunizieren. Der Programmcode kann auch
in Assembler oder Maschinensprache implementiert
sein, falls gewünscht. Tatsächlich sind die hier be-
schriebenen Mechanismen hinsichtlich des Schutz-
bereichs nicht auf irgendeine bestimmte Program-
miersprache beschränkt. In jedem Fall kann die Spra-
che eine kompilierte oder interpretierte Sprache sein.

[0133] Ein oder mehrere Aspekte wenigstens einer
Ausführungsform können durch repräsentative Be-
fehle implementiert sein, die auf einem maschinen-
lesbaren Medium gespeichert sind, das vielfältige Lo-
gik innerhalb des Prozessors darstellt, die, wenn sie
von einer Maschine gelesen wird, die Maschine ver-
anlasst, Logik herzustellen, um die hier beschriebe-
nen Techniken durchzuführen. Solche Darstellungen,
die als ”IP cores” bekannt sind, können auf einem
greifbaren, maschinenlesbaren Medium gespeichert
sein und verschiedenen Kunden oder Herstellungs-
einrichtungen übergeben werden, um in die Herstel-
lungsmaschinen geladen zu werden, die die Logik
oder den Prozessor schließlich herstellen.

[0134] Solche maschinenlesbaren Speichermedien
können ohne Einschränkung nichtflüchtige greifba-
re Anordnungen von Erzeugnissen einschließen,
die durch eine Maschine oder Vorrichtung herstellt
oder ausgebildet werden, einschließlich Speicher-
medien wie etwa Festplatten, irgendeinem ande-
ren Typ von Disk einschließlich Floppy-Disks, op-
tische Disks, Compact Disk Read-Only Memories
(CD-ROMs), Compact Disk Rewritables (CD-RWs)
und magneto-optische Disks, Halbleitervorrichtun-
gen wie etwa Nurlesespeicher (read-only memo-
ry (ROMs), Speicher mit wahlfreiem Zugriff (ran-
dom access memories (RAMs)) wie etwa dynami-
sche Speicher mit wahlfreiem Zugriff (dynamic ran-
dom access memories (DRAMs)), statische Spei-

cher mit wahlfreiem Zugriff (static random access
memories (SRAMs)), Erasable Programmable Read-
Only Memories (EPROMs), Flashspeicher, Electri-
cally Erasable Programmable Read-Only Memories
(EEPROMs), Phasenwechselspeicher (phase chan-
ge memory (PCM)), magnetische oder optische Kar-
ten oder irgendein anderer Medientyp, der sich zum
Speichern elektronischer Befehle eignet.

[0135] Somit schließen Ausführungsformen der Er-
findung auch nichtflüchtige greifbare maschinenles-
bare Medien ein, die Befehle enthalten oder Design-
daten enthalten, wie etwa Hardwarebeschreibungs-
sprache (hardware description language (HDL)), die
Strukturen, Schaltungen, Vorrichtungen, Prozesso-
ren und/oder Systemmerkmale definiert, die hier be-
schrieben sind. Solche Ausführungsformen können
auch als Programmerzeugnisse bezeichnet werden.

Emulation (einschließlich binäre
Übersetzung, Code-Morphing etc.)

[0136] In einigen Ausführungsformen kann ein Be-
fehlswandler verwendet werden, um einen Befehl
aus einem Quellbefehlssatz zu einem Zielbefehls-
satz umzuwandeln. Beispielsweise kann der Befehls-
wandler einen Befehl in einen oder mehrere andere
Befehle, die durch den Kern verarbeitet werden sol-
len, übersetzen (beispielsweise unter Verwendung
statischer binärer Übersetzung, dynamischer binä-
rer Übersetzung einschließlich dynamischem Kompi-
lieren), morphen, emulieren oder auf andere Weise
umwandeln. Der Befehlswandler kann in Software,
Hardware, Firmware oder einer Kombination dersel-
ben implementiert sein. Der Befehlswandler kann auf
einem Prozessor, außerhalb eines Prozessors oder
teilweise auf und teilweise außerhalb eines Prozes-
sors sein.

[0137] Fig. 17 zeigt ein Blockdiagramm, das die Ver-
wendung eines Softwarebefehlswandlers zum Um-
wandeln binärer Befehle in einem Quellbefehlssatz in
binäre Befehle in einem Zielbefehlssatz gemäß Aus-
führungsformen der Erfindung hervorhebt. In der ge-
zeigten Ausführungsform ist der Befehlswandler ein
Softwarebefehlswandler, obwohl der Befehlswand-
ler alternativ in Software, Firmware, Hardware oder
verschiedenen Kombinationen derselben implemen-
tiert sein kann. Fig. 17 zeigt ein Programm in ei-
ner Hochsprache 1702, das unter Verwendung ei-
nes x86-Compilers 1704 kompiliert sein kann, um ei-
nen x86-Binärcode 1706 zu erzeugen, der nativ durch
einen Prozessor mit wenigstens einem x86-Befehls-
satzkern 1716 ausgeführt werden kann. Der Prozes-
sor mit wenigstens einem x86-Befehlssatzkern 1716
stellt irgendeinen Prozessor dar, der im Wesentli-
chen die gleichen Funktionen wie ein Intel-Prozessor
mit wenigstens einem x86-Befehlssatzkern durchfüh-
ren kann, indem er (1) einen wesentlichen Teil des
Befehlssatzes des Intel-x86-Befehlssatzes des Intel-



DE 10 2014 003 690 A1    2014.09.18

24/48

x86-Befehlssatzkerns oder (2) Objektcodeversionen
von Anwendungen oder andere Software kompatibel
ausführt oder auf andere Weise verarbeitet, die vor-
gesehen ist, um auf einem Intel-Prozessor mit we-
nigstens einem x86-Befehlssatzkern abzulaufen, um
im Wesentlichen das gleiche Ergebnis wie ein In-
tel-Prozessor mit wenigstens einem x86-Befehlssatz-
kern zu erzielen. Der x86-Compiler 1704 stellt einen
Compiler dar, der betrieben werden kann, einen x86-
Binärcode 1706 (beispielsweise Objektcode) zu er-
zeugen, der mit oder ohne zusätzlicher Linkverarbei-
tung auf dem Prozessor mit wenigstens einem x86-
Befehlssatzkern 1716 ausgeführt werden kann. Auf
ähnliche Weise zeigt Fig. 17, dass das Programm in
der Hochsprache 1702 unter Verwendung eines al-
ternativen Befehlssatzcompilers 1708 kompiliert wer-
den kann, um einen alternativen Befehlssatzbinär-
code 1710 zu erzeugen, der von einem Prozessor oh-
ne wenigstens einen x86-Befehlssatzkern 1714 (bei-
spielsweise einem Prozessor mit Kernen, die den
MIPS-Befehlssatz von MIPS-Technologies aus Sun-
nyvale, CA ausführen und/oder den ARM-Befehls-
satz von ARM-Holdings aus Sunnyvale, CA ausfüh-
ren) nativ ausgeführt werden kann. Der Befehlswand-
ler 1712 wird verwendet, um den x86-Binärcode 1706
in Code umzuwandeln, der von dem Prozessor oh-
ne einen x86-Befehlssatzkern 1714 nativ ausgeführt
werden kann. Dieser umgewandelte Code ist wahr-
scheinlicherweise nicht der gleiche wie der alternati-
ve Befehlssatzbinärcode 1710, weil ein Befehlswand-
ler, der dazu in der Lage ist, schwierig herzustellen
ist; jedoch wird der umgewandelte Code den allge-
meinen Betrieb ermöglichen und aus Befehlen aus
dem alternativen Befehlssatz bestehen. Somit stellt
der Befehlswandler 1712 Software, Firmware, Hard-
ware oder eine Kombination derselben dar, die durch
Emulation, Simulation oder irgendeinen anderen Pro-
zess einem Prozessor oder anderer elektronischer
Vorrichtung ermöglichen, der/die keinen x86-Befehls-
satzprozessor oder -kern enthält, den x86-Binärcode
1706 auszuführen.

[0138] In anderen Ausführungsformen kann die Bi-
bliothek selbst Logik enthalten, um einen Satz von Bi-
bliotheksteilen auszuwählen, die für ein Softwaremo-
dul geeignet sind. Beispielsweise kann die Bibliothek
ein Prozessormerkmalzustandsregister lesen, um zu
bestimmen, welche Bedeutung das Softwaremodul
für den gegebenen Opcode hat, und diesen Teil dann
auswählen und bereitstellen.

[0139] Komponenten, Merkmale und Details, die für
eine der Fig. 1, Fig. 4 und Fig. 5 beschrieben sind,
können optional in einer der Fig. 2 und Fig. 3 ver-
wendet werden. Darüber hinaus können Komponen-
ten, Merkmale und Details, die hier für irgendeine der
Vorrichtungen beschrieben sind, in einem der hier
beschriebenen Verfahren verwendet werden, die in
Ausführungsformen durch und/oder mit einer solchen
Vorrichtung durchgeführt werden können.

Beispielhafte Ausführungsformen

[0140] Die folgenden Beispiele gehören weiteren
Ausführungsform an. Angaben in den Beispielen kön-
nen überall in einer oder mehreren Ausführungsfor-
men verwendet werden.

[0141] Beispiel 1 ist ein Prozessor, der Dekodierlogik
zum Empfangen eines ersten Befehls und zum Be-
stimmen, dass der erste Befehl emuliert werden soll,
enthält. Der Prozessor enthält außerdem emulations-
modusbewusste Nachdekodier-Befehlsprozessorlo-
gik, die mit der Dekodierlogik gekoppelt ist. Die emu-
lationsmodusbewusste Nachdekodierprozessorlogik
soll ein oder mehrere Steuersignale, die von einem
Befehl aus einem Satz von einem oder mehreren Be-
fehlen dekodiert wurden, anders verarbeiten, wenn
ein Emulationsmodus vorliegt, als wenn kein Emula-
tionsmodus vorliegt.

[0142] Beispiel 2 schließt den Prozessor irgendeines
vorherigen Beispiels ein, wobei der erste Befehl op-
tional komplexer ist als jeder Befehl aus dem Satz, in-
dem der erste Befehl mehr Operationen einschließt,
die durchgeführt werden.

[0143] Beispiel 3 schließt den Prozessor irgendeines
vorherigen Beispiels ein, wobei der Prozessor optio-
nal keinen Mikrocode verwendet, um irgendwelche
Befehle aus einem Befehlssatz zu implementieren.

[0144] Beispiel 4 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei jeder Befehl aus
dem Satz von einem oder mehreren Befehlen optio-
nal aus einem gleichen Befehlssatz wie der erste Be-
fehl stammt.

[0145] Beispiel 5 schließt den Prozessor irgendeines
vorherigen Beispiels ein, wobei die emulationsbe-
wusste Nachdekodier-Befehlsprozessorlogik optio-
nal emulationsmodusbewusste Ausnahmebehand-
lerlogik umfasst, um eine Ausnahmebedingung zu
berichten, die auftritt, während das eine oder die
mehreren Steuersignale an Emulationslogik verarbei-
tet werden.

[0146] Beispiel 6 schließt den Prozessor irgendeines
vorherigen Beispiels ein, wobei die emulationsmo-
dusbewusste Ausnahmebehandlerlogik optional eine
Adresse des ersten Befehls in einem Stack speichert.

[0147] Beispiel 7 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei die emulations-
modusbewusste Ausnahmebehandlerlogik eine An-
zeige einer Ausnahmebedingung und einen Fehler-
code für die Ausnahmebedingung in einem oder meh-
reren Registern speichert, die mit der Emulationslo-
gik gekoppelt sind.



DE 10 2014 003 690 A1    2014.09.18

25/48

[0148] Beispiel 8 schließt den Prozessor irgendeines
vorherigen Beispiels ein, wobei die emulationsmo-
dusbewusste Ausnahmebehandlerlogik optional die
Steuerung direkt an einen Ausnahmebehandler über-
gibt als Antwort auf die Ausnahmebedingung, und
wobei ein oder mehrere Befehle der Emulationslogik
die Steuerung an den Ausnahmebehandler übergibt.

[0149] Beispiel 9 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei die emulations-
modusbewusste Nachdekodier-Befehlsprozessorlo-
gik optional umfasst, dass die emulationsmodusbe-
wusste Zugriffssteuerlogik Zugriff auf wenigstens ein
Betriebsmittel und/oder Information durch die ein
oder mehreren Steuersignale anders steuert, wenn
der Emulationsmodus vorliegt, als wenn kein Emula-
tionsmodus vorliegt.

[0150] Beispiel 10 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei die emulations-
modusbewusste Zugriffssteuerlogik optional Zugriff
auf das wenigstens eine Betriebsmittel und/oder die
Information ermöglicht, wenn der Emulationsmodus
vorliegt, und Zugriff auf das wenigstens eine Betriebs-
mittel und/oder die Information verhindert, wenn kein
Emulationsmodus vorliegt.

[0151] Beispiel 11 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei das wenigstens
eine Betriebsmittel und/oder die Information optional
wenigstens eine Sicherheitslogik Sicherheitsinforma-
tion, Verschlüsselungslogik, Entschlüsselungslogik,
Zufallsgeneratorlogik, Logik, die für Zugriffe durch
ein Betriebssystem reserviert ist, einen Abschnitt von
Speicher, der für Zugriffe durch ein Betriebssystem
reserviert ist, und Information, die für Zugriff durch ein
Betriebssystem reserviert ist, umfasst.

[0152] Beispiel 12 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei das wenigstens
eine Betriebsmittel und/oder die Information wenigs-
tens ein Betriebsmittel und/oder Information in einem
anderen logischen Prozessor und/oder einem ande-
ren physikalischen Prozessor umfasst.

[0153] Beispiel 13 schließt den Prozessor irgend-
eines vorherigen Beispiels ein, wobei der Satz von
einem oder mehreren Befehlen optional wenigstens
drei Befehle enthält.

[0154] Beispiel 14 ist ein Verfahren in einem Pro-
zessor, das Empfangen eines ersten Befehls und
Bestimmen zum Emulieren des ersten Befehls ein-
schließt. Das Verfahren schließt außerdem Empfan-
gen eines Satzes von einem oder mehreren Befeh-
len ein, die verwendet werden sollen, um den ersten
Befehl zu emulieren. Das Verfahren schließt außer-
dem Verarbeiten von einem oder mehreren Steuersi-
gnalen, die von einem Befehl des Satzes abgeleitet

sind, auf andere Weise ein, wenn ein Emulationsmo-
dus vorliegt, als wenn kein Emulationsmodus vorliegt.

[0155] Beispiel 15 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein, wobei optional Empfan-
gen des ersten Befehls Empfangen des ersten Be-
fehls umfasst, der komplexer ist als jeder Befehl des
Satzes von einem oder mehreren Befehlen.

[0156] Beispiel 16 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein, wobei optional Emp-
fangen des Satzes von einem oder mehreren Befeh-
len Empfangen von einem oder mehreren Befehlen
umfasst, die jeweils aus einem gleichen Befehlssatz
stammen wie der erste Befehl.

[0157] Beispiel 17 schließt das Verfahren irgend-
eines vorherigen Beispiels ein, wobei optional Ver-
arbeiten Berichten einer Ausnahmebedingung um-
fasst, die auftritt, während das eine oder die meh-
reren Steuersignale zur Emulationslogik verarbeitet
werden. Außerdem optional Ausführen eines oder
mehrerer Befehle der Emulationslogik, um Steuerung
an einen Ausnahmebehandler zu übergeben.

[0158] Beispiel 18 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein, wobei optional Berich-
ten optional Speichern einer Anzeige der Ausnahme-
bedingung in einem oder mehreren Registern um-
fasst. Außerdem optional Speicher einer Adresse des
ersten Befehls in einem Stack.

[0159] Beispiel 19 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein, wobei optional Verar-
beiten Steuern von Zugriff auf wenigstens ein Be-
triebsmittel oder Information durch die ein oder meh-
reren Steuersignale auf andere Weise umfasst, wenn
ein Emulationsmodus vorliegt, als wenn kein Emula-
tionsmodus vorliegt.

[0160] Beispiel 20 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein, wobei optional Steuern
von Zugriff auf andere Weise Ermöglichen von Zu-
griff auf das Betriebsmittel und/oder die Information
umfasst, wenn der Emulationsmodus vorliegt. Außer-
dem optional Verhindern von Zugriff auf das Betriebs-
mittel und/oder die Information, wenn kein Emulati-
onsmodus vorliegt.

[0161] Beispiel 21 ist ein System zum Verarbeiten
von Befehlen, das eine Verbindung und einen Pro-
zessor aufweist, der mit der Verbindung gekoppelt
ist. Der Prozessor enthält Dekodierlogik zum Emp-
fangen eines ersten Befehls und zum Bestimmen,
dass der erste Befehl emuliert werden soll. Der Pro-
zessor enthält außerdem emulationsmodusbewuss-
te Nachdekodier-Befehlsprozessorlogik, die mit der
Dekodierlogik gekoppelt ist. Die emulationsmodusbe-
wusste Nachdekodier-Befehlsprozessorlogik soll ein
oder mehrere Steuersignale, die aus einem Befehl



DE 10 2014 003 690 A1    2014.09.18

26/48

dekodiert wurden, der aus einem Satz von einem
oder mehreren Befehlen stammt, die verwendet wer-
den, um den ersten Befehl zu emulieren, auf andere
Weise verarbeiten, wenn ein Emulationsmodus vor-
liegt, als wenn kein Emulationsmodus vorliegt. Das
System weist außerdem einen dynamischen Spei-
cher mit wahlfreiem Zugriff (dynamic random access
memory (DRAM)) auf, der mit der Verbindung gekop-
pelt ist.

[0162] Beispiel 22 schließt das System aus Beispiel
21 ein, wobei optional die emulationsmodusbewusste
Nachdekodier-Befehlsprozessorlogik emulationsmo-
dusbewusste Ausnahmebehandlerlogik zum Berich-
ten einer Ausnahmebedingung umfasst, die auftritt,
während das eine oder die mehreren Steuersignale
zur Emulationslogik verarbeitet werden.

[0163] Beispiel 1 ist ein Prozessor, der einen Deko-
dierer zum Empfangen eines ersten Befehls enthält,
der einen gegebenen Opcode aufweist. Der Deko-
dierer enthält Prüflogik zum Prüfen, ob der gegebe-
ne Opcode eine erste Bedeutung oder eine zweite
Bedeutung aufweist. Der Dekodierer enthält außer-
dem Dekodierlogik zum Dekodieren des ersten Be-
fehls und gibt ein oder mehrere entsprechende Steu-
ersignale aus, wenn der gegebene Opcode die ers-
te Bedeutung aufweist. Der Dekodierer enthält au-
ßerdem Emulationsauslöselogik zum Auslösen von
Emulation des ersten Befehls, wenn der gegebene
Opcode die zweite Bedeutung aufweist.

[0164] Beispiel 2 schließt den Prozessor irgendeines
vorherigen Beispiels ein, wobei optional die zweite
Bedeutung älter als die erste Bedeutung ist.

[0165] Beispiel 3 schließt den Prozessor irgendeines
vorherigen Beispiels ein, wobei optional die zweite
Bedeutung eine Opcodedefinition umfasst, die im Be-
griff ist, zu veralten.

[0166] Beispiel 4 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein und umfasst optional fer-
ner einen Speicherplatz, der mit dem Dekodierer zum
Speichern einer Anzeige gekoppelt ist, ob der ge-
gebene Opcode die erste Bedeutung oder die zwei-
te Bedeutung aufweist, und wobei die Prüflogik den
Speicherplatz prüfen soll, um die Anzeige zu bestim-
men.

[0167] Beispiel 5 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei der Speicherplatz
für ein Programmladermodul zugänglich ist, um dem
Programmladermodul zu ermöglichen, die Anzeige
an dem Speicherplatz zu speichern.

[0168] Beispiel 6 schließt den Prozessor irgendeines
vorherigen Beispiels ein und umfasst optional ferner
Logik, die mit dem Speicherplatz gekoppelt ist, um
die Anzeige von dem Speicherplatz in ein Prozessor-

strukturregister zu speichern, wobei das Prozessor-
strukturregister durch einen Prozessorstrukturidenti-
fizierungsbefehl eines Befehlssatzes des ersten Be-
fehls lesbar ist.

[0169] Beispiel 7 schließt den Prozessor irgendeines
vorherigen Beispiels ein und umfasst optional ferner
eine Vielzahl an Speicherplätzen, die mit dem Deko-
dierer gekoppelt ist, um eine Vielzahl von Anzeigen
zu speichern, wobei jede der Anzeigen einem ande-
ren Opcode einer Vielzahl von Opcodes entspricht,
wobei jede der Anzeigen anzeigen soll, ob jeder je-
weilige Opcode eine erste Bedeutung oder eine zwei-
te Bedeutung aufweist.

[0170] Beispiel 8 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei optional die Lo-
gik zum Auslösen der Emulation Logik umfasst, um
einen Emulationsmodus festzusetzen.

[0171] Beispiel 9 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein und umfasst optional fer-
ner Emulationslogik, die mit dem Dekodierer gekop-
pelt ist, wobei die Emulationslogik als Antwort auf
die Emulationsauslöselogik, die die Emulation aus-
löst, einen Satz von einem oder mehreren Befehlen
an den Dekodierer liefert, um den ersten Befehl zu
emulieren, wenn der gegebenen Opcode die zweite
Bedeutung aufweist.

[0172] Beispiel 10 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei optional jeder
Befehl des Satzes aus einem gleichen Befehlssatz
stammt wie der erste Befehl.

[0173] Beispiel 11 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein, wobei der Prozessor
optional keinen Mikrocode verwendet, um irgendwel-
che Befehle eines Befehlssatzes zu implementieren.

[0174] Beispiel 12 schließt den Prozessor irgendei-
nes vorherigen Beispiels ein und umfasst optional fer-
ner optional Logik, um den Dekodierer zu zwingen,
eine neuere Bedeutung anstelle einer veralteten Be-
deutung für den gegebenen Opcode zu verwenden,
wenn eine Berechtigungsstufenlogik oder eine Ring-
stufenlogik einen Betriebssystemmodus anzeigt.

[0175] Beispiel 13 ist ein Verfahren in einem Pro-
zessor, das Empfangen eines ersten Befehls, der ei-
nen gegebenen Opcode aufweist, und Bestimmen
einschließt, dass der gegebene Opcode eine zwei-
te Bedeutung anstelle einer ersten Bedeutung auf-
weist. Das Verfahren schließt außerdem Bestimmen
ein, den ersten Befehl als Antwort auf Bestimmen zu
emulieren, dass der gegebene Opcode eine zweite
Bedeutung aufweist.

[0176] Beispiel 14 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein, wobei Bestimmen optio-



DE 10 2014 003 690 A1    2014.09.18

27/48

nal Bestimmen umfasst, dass der gegebene Opcode
eine zweite Bedeutung aufweist, die älter ist als die
erste Bedeutung, und wobei die zweite Bedeutung im
Begriff ist, zu veralten.

[0177] Beispiel 15 schließt ein Verfahren irgendei-
nes vorherigen Beispiels ein, wobei Bestimmen op-
tional Lesen einer Anzeige umfasst, dass der gege-
bene Opcode die zweite Bedeutung von einem Spei-
cherplatz aufweist.

[0178] Beispiel 16 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein und umfasst optional
Speichern der Anzeige, dass der gegebene Opcode
die zweite Bedeutung in einem Prozessorstrukturre-
gister aufweist, das durch einen Prozessorstrukturi-
dentifizierungsbefehl eines Befehlssatzes des Pro-
zessors lesbar ist.

[0179] Beispiel 17 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein und umfasst optional fer-
ner Emulieren des ersten Befehls, einschließlich De-
kodieren eines Satzes von einem oder mehreren Be-
fehlen, die verwendet werden, um den ersten Befehl
zu emulieren, wenn der gegebene Opcode die zweite
Bedeutung aufweist.

[0180] Beispiel 18 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein, wobei Dekodieren des
Satzes von Befehlen optional Dekodieren eines oder
mehrerer Befehle umfasst, die von einem gleichen
Befehlssatz wie der erste Befehl stammen.

[0181] Beispiel 19 schließt das Verfahren irgendei-
nes vorherigen Beispiels ein, das optional in dem Pro-
zessor durchgeführt wird, der keinen Mikrocode ver-
wendet, um irgendwelche Befehle eines Befehlssat-
zes zu implementieren.

[0182] Beispiel 20 ist ein Erzeugnis, das ein nicht-
flüchtiges maschinenlesbares Speichermedium ent-
hält, das Befehle speichert, die, wenn sie durch eine
Maschine ausgeführt werden, die Maschine veran-
lassen, Operationen durchzuführen. Die Operationen
schließen Bestimmen ein, dass ein erster Befehl, der
den gegebenen Opcode aufweist, eine zweite Bedeu-
tung anstelle einer ersten Bedeutung aufweist, wenn
er durch einen Prozessor von einem Softwaremodul
ausgeführt wird, indem er Metadaten des Software-
moduls prüft. Die Operationen schließen außerdem
Speichern einer Anzeige ein, dass der erste Befehl,
der den gegebenen Opcode aufweist, die zweite Be-
deutung in einem Zustand des Prozessors aufweisen
soll.

[0183] Beispiel 21 schließt das Erzeugnis irgend-
eines vorherigen Beispiels ein, wobei optional das
maschinenlesbare Speichermedium ferner Befehle
speichert, die, wenn sie durch die Maschine ausge-
führt werden, die Maschine veranlassen, Operatio-

nen durchzuführen, einschließlich Auswählen eines
Teils aus einer Softwarebibliothek, der die zweite Be-
deutung des gegebenen Opcodes verwendet, anstel-
le eines anderen Teils der Softwarebibliothek, der
die erste Bedeutung des gegebenen Opcodes ver-
wendet, und Bereitstellen des ausgewählten Teils der
Softwarebibliothek an das Softwaremodul, wobei die
zweite Bedeutung eine veraltete Bedeutung ist.

[0184] Beispiel 22 schließt das Erzeugnis irgend-
eines vorherigen Beispiels ein, wobei das maschi-
nenlesbare Speichermedium optional ferner Befeh-
le speichert, die, wenn sie durch die Maschine aus-
geführt werden, die Maschine veranlassen, Operatio-
nen durchzuführen einschließlich Bestimmen anhand
eines Alters des Softwaremoduls, dass der gegebe-
ne Opcode die zweite Bedeutung aufweist.

[0185] Beispiel 23 schließt das Erzeugnis irgendei-
nes vorherigen Beispiels ein, wobei optional das ma-
schinenlesbare Medium ferner Befehle speichert, die,
wenn sie durch die Maschine ausgeführt werden, die
Maschine veranlassen, Operationen durchzuführen
einschließlich Prüfen eines Flags in einem Objektmo-
dulformat und Speichern der Anzeige in einem Flag
in einem Register des Prozessors.

[0186] Beispiel 24 ist ein System zum Verarbeiten
von Befehlen, das eine Verbindung und einen Pro-
zessor aufweist, der mit der Verbindung gekoppelt
ist. Der Prozessor soll einen ersten Befehl empfan-
gen, der einen gegebenen Opcode aufweist. Der Pro-
zessor enthält Prüflogik zum Prüfen, ob der gege-
bene Opcode eine erste Bedeutung oder eine zwei-
te Bedeutung aufweist. Der Prozessor enthält De-
kodierlogik zum Dekodieren des ersten Befehls und
gibt ein oder mehrere entsprechende Steuersignale
aus, wenn der gegebene Opcode die erste Bedeu-
tung aufweist. Der Prozessor enthält Emulationsaus-
löselogik, um Emulation des ersten Befehls auszu-
lösen, wenn der gegebene Opcode die zweite Be-
deutung aufweist. Das System weist außerdem einen
dynamischen Speicher mit wahlfreiem Zugriff (dyna-
mic random access memory (DRAM)) auf, der mit der
Verbindung gekoppelt ist.

[0187] Beispiel 25 schließt den Gegenstand des Bei-
spiels 24 ein und umfasst optional ferner Emulations-
logik zum Bereitstellen eines Satzes von einem oder
mehreren Befehlen eines gleichen Befehlssatzes wie
der erste Befehl an den Dekodierer, um den ersten
Befehl zu emulieren, wenn der gegebene Opcode die
zweite Bedeutung aufweist.

[0188] Beispiel 26 schließt eine Vorrichtung zum
Durchführen des Verfahrens nach einem der Beispie-
le 13 bis 19 ein.



DE 10 2014 003 690 A1    2014.09.18

28/48

[0189] Beispiel 27 schließt eine Vorrichtung ein, die
Mittel zum Durchführen des Verfahrens nach einem
der Beispiele 13 bis 19 umfasst.

[0190] Beispiel 28 schließt eine Vorrichtung zum
Durchführen eines Verfahrens im Wesentlichen wie
hier beschrieben, ein.

[0191] Beispiel 29 schließt eine Vorrichtung ein, die
Mittel zum Durchführen eines hierzu beschriebenen
Verfahrens enthält.

[0192] In der Beschreibung und den Ansprüchen
können die Begriffe ”gekoppelt” und ”verbunden”
gemeinsam mit ihren Ableitungen benutzt worden
sein. Es versteht sich, dass diese Begriffe nicht als
Synonyme füreinander stehen sollen. Vielmehr kann
in bestimmten Ausführungsformen ”verbunden” ver-
wendet werden, um anzuzeigen, dass zwei oder
mehr Elemente in direktem physikalischen oder elek-
trischen Kontakt miteinander stehen. ”Gekoppelt”
kann bedeuten, dass zwei oder mehr Elemente in
direktem physikalischen oder elektrischen Kontakt
miteinander stehen. Jedoch kann ”gekoppelt” auch
bedeuten, dass zwei oder mehr Elemente nicht in
direktem Kontakt miteinander stehen, jedoch trotz-
dem miteinander kooperieren oder interagieren. Bei-
spielsweise können eine erste Komponente und ei-
ne zweite Komponente miteinander durch eine Zwi-
schenkomponente gekoppelt sein. In den Figuren
werden bidirektionale Pfeile verwendet, um bidirek-
tionale Verbindungen und Kopplungen zu zeigen.

[0193] In den Beschreibung und den Ansprüchen
kann der Begriff ”Logik” verwendet worden sein. Wie
hier verwendet, kann Logik Hardware, Firmware,
Software oder eine Kombination derselben einschlie-
ßen. Beispiele für Logik schließen integrierte Schal-
tungen, anwendungsspezifische integrierte Schaltun-
gen, analoge Schaltungen, digitale Schaltungen, pro-
grammierte Logikgeräte, Speichergeräte einschließ-
lich Befehle etc. ein. In einigen Ausführungsformen
kann die Hardwarelogik Transistoren und/oder Gatter
potentiell gemeinsam mit anderen Schaltungskompo-
nenten enthalten.

[0194] Der Begriff ”und/oder” kann verwendet wor-
den sein. Wie hier verwendet, bedeutet der Begriff
”und/oder” das eine oder das andere oder beides
(beispielsweise bedeutet A und/oder B A oder B oder
sowohl A als auch B).

[0195] In der obigen Beschreibung wurden zu Zwe-
cken der Erläuterung zahlreiche spezifische Details
dargelegt, um ein tiefgreifendes Verständnis von
Ausführungsformen der Erfindung zu liefern. Es ver-
steht sich für einen Durchschnittsfachmann jedoch,
dass eine oder mehrere Ausführungsformen ohne
einige dieser spezifischen Details umgesetzt wer-
den können. Die genauen beschriebenen Ausfüh-

rungsformen werden nicht bereitgestellt, um die Er-
findung zu beschränken, sondern um sie durch bei-
spielhafte Ausführungsformen zu veranschaulichen.
Der Schutzbereich der Erfindung soll nicht durch die
spezifischen Beispiele bestimmt werden, sondern nur
durch die Ansprüche. In anderen Beispielen wurden
wohlbekannte Schaltungen, Strukturen, Geräte und
Operationen in Blockdiagrammform oder ohne De-
tails gezeigt, um Verschleiern des Verständnisses
der Beschreibung zu vermeiden.

[0196] Wo es angemessen erschien, wurden Be-
zugszeichen oder Endabschnitte von Bezugszeichen
zwischen den Figuren wiederholt, um entsprechende
oder analoge Elemente anzuzeigen, die optional ähn-
liche oder die gleichen Charakteristiken haben kön-
nen, außer wenn anders angegeben oder klar ersicht-
lich. Wo mehrere Komponenten beschrieben wurden,
können sie allgemein in eine Einzelkomponente inte-
griert sein. In anderen Fällen kann, wo eine Einzel-
komponente beschrieben wurde, diese allgemein in
mehrere Komponenten unterteilt werden.

[0197] Zahlreiche Operationen und Verfahren wur-
den beschrieben. Einige der Verfahren wurden in re-
lativ grundlegender Form in den Flussdiagrammen
beschrieben, jedoch können den Verfahren Operatio-
nen optional hinzugefügt und/oder aus ihnen entfernt
werden. Zusätzlich ist, während die Flussdiagramme
eine bestimmte Reihenfolge der Operationen gemäß
beispielhaften Ausführungsformen zeigen, diese be-
stimmte Reihenfolge beispielhaft. Alternative Ausfüh-
rungsformen können optional die Operationen in an-
derer Reihenfolge durchführen, bestimmte Operatio-
nen kombinieren, bestimmte Operationen überlap-
pen etc.

[0198] Einige Ausführungsformen schließen ein Er-
zeugnis (beispielsweise ein Computererzeugnis) ein,
dass ein maschinenlesbares Medium aufweist. Das
Medium kann einen Mechanismus enthalten, der In-
formation in einer Form bereitstellt, beispielsweise
speichert, die durch die Maschine lesbar ist. Das
maschinenlesbare Medium kann einen oder mehre-
re Befehle bereitstellen oder in gespeicherter Form
darauf aufweisen, die, wenn und/oder wann immer
sie durch eine Maschine ausgeführt werden, betrie-
ben werden können, die Maschine zu veranlassen
und/oder dazu zu bringen, in der Maschine eine oder
mehrere Operationen, Verfahren oder Techniken, die
hier offenbart sind, durchzuführen. Beispiele geeig-
neter Maschinen schließen, ohne darauf beschränkt
zu sein, Prozessoren, Befehlsverarbeitungsvorrich-
tungen, digitale Logikschaltungen, integrierte Schal-
tungen und ähnliche ein. Weitere Beispiele geeigne-
ter Maschinen schließen Rechenvorrichtungen und
andere elektronische Geräte ein, die solche Pro-
zessoren, Befehlsverarbeitungsvorrichtungen, digi-
tale Logikschaltungen oder integrierte Schaltungen
integrieren. Beispiele solcher Rechenvorrichtungen



DE 10 2014 003 690 A1    2014.09.18

29/48

und elektronischer Geräte schließen Desktopcom-
puter, Laptopcomputer, Notebookcomputer, Tablet-
computer, Netbooks, Smartphones, Mobiltelefone,
Server, Netzwerkgeräte (beispielsweise Router und
Switches), Mobile Internet Devices (MIDs), Medien-
abspielgeräte, intelligente Fernsehgeräte, Net-tops,
Set-top-Boxen und Videospielcontroller ein, ohne
darauf beschränkt zu sein.

[0199] In einigen Ausführungsformen kann das ma-
schinenlesbare Medium ein greifbares und/oder
nichtflüchtiges maschinenlesbares Speichermedium
umfassen. Beispielsweise kann das greifbare und/
oder nichtflüchtige maschinenlesbare Speicherme-
dium eine Floppy-Diskette, ein optisches Speicher-
medium, eine optische Disk, eine optische Daten-
speichereinrichtung, eine CD-ROM, eine magneti-
sche Disk, eine magneto-optische Disk, einen Nur-
lesespeicher (read-only memory (ROM), einen pro-
grammierbaren ROM (PROM), einen löschbaren und
programmierbaren ROM (erasable and programma-
ble ROM (EPROM)), einen elektrisch löschbaren und
programmierbaren ROM (electrically erasable and
programmable ROM (EEPROM)), einen Speicher mit
wahlfreiem Zugriff (random access memory (RAM)),
einen statischen RAM (SRAM), einen dynamischen
RAM (DRAM), einen Flashspeicher, einen Phasen-
wechselspeicher, ein Phasenwechseldatenspeicher-
material, einen nichtflüchtigen (non-volatile) Spei-
cher, eine nichtflüchtige Datenspeichervorrichtung,
einen nichtflüchtigen (non-transitory) Speicher, eine
nichtflüchtige Datenspeichervorrichtung oder ähnli-
che einschließen. Das nichtflüchtige maschinenles-
bare Speichermedium besteht nicht aus einem flüch-
tigen weitergeleiteten Signal.

[0200] Es versteht sich, dass überall in der Be-
schreibung Bezugnahme auf ”eine (1) Ausführungs-
form”, ”eine Ausführungsform” oder ”eine oder meh-
rere Ausführungsformen” beispielsweise bedeuten,
dass ein bestimmtes Merkmal beim Umsetzen der Er-
findung enthalten sein kann. Auf ähnliche Weise ver-
steht sich, dass in der Beschreibung zahlreiche Merk-
male manchmal in einer einzelnen Ausführungsform,
Figur oder Beschreibung derselben zum Zweck der
Straffung der Offenbarung und Unterstützung beim
Verstehen verschiedener erfinderischer Aspekte zu-
sammengefasst sind. Dieses Verfahren der Offenba-
rung soll jedoch nicht interpretiert werden, eine Ab-
sicht wiederzugeben, derzufolge die Erfindung weite-
re Merkmale benötigt als ausdrücklich in jedem An-
spruch aufgeführt sind. Vielmehr können, wie die fol-
genden Ansprüche wiedergeben, erfinderische As-
pekte in weniger als sämtlichen Merkmalen einer
einzelnen offenbarten Ausführungsform liegen. So-
mit werden die Ansprüche, die der ausführlichen Be-
schreibung folgen, hierdurch ausdrücklich in diese
Ausführliche Beschreibung integriert, wobei jeder An-

spruch für sich als eine separate Ausführungsform
der Erfindung steht.

Patentansprüche

1.  Prozessor, umfassend:
Dekodierlogik zum Empfangen eines ersten Befehls
und zum Bestimmen, dass der erste Befehl emuliert
werden soll; und
emulationsmodusbewusste Nachdekodierbefehls-
prozessorlogik, die mit der Dekodierlogik gekoppelt
ist, wobei die emulationsmodusbewusste Nachdeko-
dierbefehlsprozessorlogik ein oder mehrere Steuer-
signale verarbeiten soll, die aus einem Befehl aus ei-
nem Satz von einem oder mehreren Befehlen deko-
diert wurden, die verwendet werden, um den ersten
Befehl anders zu emulieren, wenn ein Emulationsmo-
dus vorliegt, als wenn kein Emulationsmodus vorliegt.

2.  Prozessor nach Anspruch 1, dadurch gekenn-
zeichnet, dass der erste Befehl komplexer ist als je-
der Befehl des Satzes, indem der erste Befehle mehr
Operationen umfasst, die durchgeführt werden.

3.   Prozessor nach Anspruch 1 oder 2, dadurch
gekennzeichnet, dass der Prozessor keinen Mikro-
code verwendet, um irgendwelche Befehle eines Be-
fehlssatzes zu implementieren.

4.  Prozessor nach Anspruch 1, dadurch gekenn-
zeichnet, dass jeder Befehl des Satzes von einem
oder mehreren Befehlen aus einem gleichen Befehls-
satz stammt wie der erste Befehl.

5.    Prozessor nach einem der Ansprüche 1 bis
4, dadurch gekennzeichnet, dass die emulati-
onsmodusbewusste Nachdekodierbefehlsprozessor-
logik emulationsmodusbewusste Ausnahmebehand-
lerlogik zum Berichten einer Ausnahmebedingung
umfasst, die gegenüber Emulationslogik auftritt, wäh-
rend das eine oder die mehreren Steuersignale ver-
arbeitet werden.

6.  Prozessor nach Anspruch 5, dadurch gekenn-
zeichnet, dass die emulationsmodusbewusste Aus-
nahmebehandlerlogik eine Adresse des ersten Be-
fehls in einem Stack speichert.

7.  Prozessor nach Anspruch 5 oder 6, dadurch ge-
kennzeichnet, dass die emulationsmodusbewuss-
te Ausnahmebehandlerlogik eine Anzeige der Aus-
nahmebedingung und einen Fehlercode für die Aus-
nahmebedingung in einem oder mehreren Registern
speichern soll, die mit der Emulationslogik gekoppelt
sind.

8.    Prozessor nach einem der Ansprüche 5 bis
7, dadurch gekennzeichnet, dass die emulations-
modusbewusste Ausnahmebehandlerlogik direktes
Übertragen einer Steuerung an einen Ausnahmebe-



DE 10 2014 003 690 A1    2014.09.18

30/48

handler als Antwort auf die Ausnahmebedingung ver-
meiden soll und dass ein oder mehrere Befehle der
Emulationslogik eine Steuerung an den Ausnahme-
behandler übergeben sollen.

9.    Prozessor nach einem der Ansprüche 1 bis
4, dadurch gekennzeichnet, dass die emulati-
onsmodusbewusste Nachdekodierbefehlsprozessor-
logik emulationsmodusbewusste Zugriffssteuerlogik
zum Steuern von Zugriff auf wenigstens ein Be-
triebsmittel und/oder Information durch das eine oder
die mehreren Signale anders steuern soll, wenn der
Emulationsmodus vorliegt, als wenn kein Emulations-
modus vorliegt.

10.  Prozessor nach Anspruch 9, dadurch gekenn-
zeichnet, dass die emulationsmodusbewusste Zu-
griffssteuerlogik Zugriff auf wenigstens das Betriebs-
mittel und/oder die Information ermöglicht, wenn der
Emulationsmodus vorliegt, und Zugriff auf das we-
nigstens eine Betriebsmittel und/oder die Information
verhindert, wenn der Emulationsmodus nicht vorliegt.

11.    Prozessor nach Anspruch 10, dadurch ge-
kennzeichnet, dass das wenigstens eine Betriebs-
mittel und/oder die Information wenigstens eine Si-
cherheitslogik, Sicherheitsinformation, Verschlüsse-
lungslogik, Entschlüsselungslogik, Zufallsgenerator-
logik, Logik, die für Zugriffe durch ein Betriebssystem
reserviert ist, einen Abschnitt eines Speichers, der für
Zugriffe durch ein Betriebssystem reserviert ist, und/
oder Information, die für Zugriffe durch ein Betriebs-
system reserviert ist, umfasst.

12.    Prozessor nach Anspruch 10, dadurch ge-
kennzeichnet, dass das wenigstens eine Betriebs-
mittel und/oder die Information wenigstens ein Be-
triebsmittel und/oder Information in einem anderen lo-
gischen Prozessor und/oder einem anderen physika-
lischen Prozessor umfasst.

13.    Prozessor nach einem der vorhergehen-
den Ansprüche, dadurch gekennzeichnet, dass der
Satz von einem oder mehreren Befehlen wenigstens
drei Befehle enthält.

14.  Verfahren in einem Prozessor, umfassend:
Empfangen eines ersten Befehls;
Bestimmen, den ersten Befehl zu emulieren;
Empfangen eines Satzes von einem oder mehreren
Befehlen, die verwendet werden sollen, um den ers-
ten Befehl zu emulieren; und
Verarbeiten eines oder mehrerer Steuersignale, die
von einem Befehl des Satzes abgeleitet sind, auf an-
dere Weise, wenn ein Emulationsmodus vorliegt, als
wenn kein Emulationsmodus vorliegt.

15.    Verfahren nach Anspruch 14, dadurch ge-
kennzeichnet, dass der erste Befehl Empfangen des
ersten Befehls umfasst, der komplexer ist als jeder

Befehl des Satzes von einem oder mehreren Befeh-
len.

16.    Verfahren nach Anspruch 14, dadurch ge-
kennzeichnet, dass Empfangen des Satzes der ein
oder mehreren Befehle Empfangen eines oder meh-
rerer Befehle umfasst, die jeweils aus einem gleichen
Befehlssatz stammen wie der erste Befehl.

17.   Verfahren nach einem der Ansprüche 14 bis
16, dadurch gekennzeichnet, dass Verarbeiten um-
fasst:
Berichten einer Ausnahmebedingung, die gegenüber
Emulationslogik auftritt, während das eine oder die
mehreren Steuersignale verarbeitet wird/werden; und
Ausführen eines oder mehrerer Befehle der Emulati-
onslogik, um eine Steuerung an einen Ausnahmebe-
handler zu übergeben.

18.    Verfahren nach Anspruch 17, dadurch ge-
kennzeichnet, dass Berichten umfasst:
Speichern einer Anzeige des Ausnahmebehandlers
in einem oder mehreren Registern; und
Speichern einer Adresse des ersten Befehls in einem
Stack.

19.  Verfahren nach einem der Ansprüche 14 bis 16,
dadurch gekennzeichnet, dass Verarbeiten Steu-
ern von Zugriff auf wenigstens ein Betriebsmittel und/
oder Information durch das eine oder die mehreren
Steuersignale auf andere Weise umfasst, wenn der
Emulationsmodus vorliegt, als wenn kein Emulations-
modus vorliegt.

20.    Verfahren nach Anspruch 19, dadurch ge-
kennzeichnet, dass Steuern von Zugriff auf andere
Weise umfasst:
Ermöglichen von Zugriff auf wenigstens das Betriebs-
mittel und/oder die Information, wenn der Emulations-
modus vorliegt; und
Verhindern von Zugriff auf das wenigstens eine Be-
triebsmittel und/oder die Information, wenn der Emu-
lationsmodus nicht vorliegt.

21.  System zum Verarbeiten von Befehlen, umfas-
send:
eine Verbindung;
einen Prozessor, der mit der Verbindung gekoppelt
ist, wobei der Prozessor enthält:
Dekodierlogik zum Empfangen eines ersten Befehls
und zum Bestimmen, das der erste Befehl emuliert
werden soll; und
emulationsmodusbewusste Nachdekodierbefehls-
prozessorlogik, die mit der Dekodierlogik gekoppelt
ist, wobei die emulationsmodusbewusste Nachdeko-
dierbefehlsprozessorlogik ein oder mehrere Steuer-
signale verarbeiten soll, die aus einem Befehl aus ei-
nem Satz von einem oder mehreren Befehlen deko-
diert wurden, die verwendet werden, um den ersten
Befehl auf andere Weise zu dekodieren, wenn ein



DE 10 2014 003 690 A1    2014.09.18

31/48

Emulationsmodus vorliegt, als wenn kein Emulations-
modus vorliegt; und
einen dynamischen Speicher mit wahlfreiem Zugriff
(dynamic random access memory (DRAM)), der mit
der Verbindung gekoppelt ist.

22.    System nach Anspruch 21, dadurch ge-
kennzeichnet, dass die emulationsmodusbewuss-
te Nachdekodierprozessorlogik emulationsmodusbe-
wusste Ausnahmebehandlerlogik umfasst, um eine
Ausnahmebedingung zu berichten, die gegenüber
Emulationslogik auftritt, wenn das eine oder die meh-
reren Steuersignale verarbeitet werden.

23.  Vorrichtung zum Durchführen des Verfahrens
nach einem der Ansprüche 14 bis 20.

24.  Vorrichtung, umfassend Mittel zum Durchfüh-
ren des Verfahrens nach einen der Ansprüche 14 bis
20.

25.  System, umfassend den Prozessor nach einem
der Ansprüche 1 bis 13 und einen dynamischen Spei-
cher mit wahlfreiem Zugriff, der mit dem Prozessor
gekoppelt ist.

Es folgen 17 Seiten Zeichnungen



DE 10 2014 003 690 A1    2014.09.18

32/48

Anhängende Zeichnungen



DE 10 2014 003 690 A1    2014.09.18

33/48



DE 10 2014 003 690 A1    2014.09.18

34/48



DE 10 2014 003 690 A1    2014.09.18

35/48



DE 10 2014 003 690 A1    2014.09.18

36/48



DE 10 2014 003 690 A1    2014.09.18

37/48



DE 10 2014 003 690 A1    2014.09.18

38/48



DE 10 2014 003 690 A1    2014.09.18

39/48



DE 10 2014 003 690 A1    2014.09.18

40/48



DE 10 2014 003 690 A1    2014.09.18

41/48



DE 10 2014 003 690 A1    2014.09.18

42/48



DE 10 2014 003 690 A1    2014.09.18

43/48



DE 10 2014 003 690 A1    2014.09.18

44/48



DE 10 2014 003 690 A1    2014.09.18

45/48



DE 10 2014 003 690 A1    2014.09.18

46/48



DE 10 2014 003 690 A1    2014.09.18

47/48



DE 10 2014 003 690 A1    2014.09.18

48/48


	Titelseite
	Beschreibung
	Ansprüche
	Anhängende Zeichnungen

