The invention relates to a heat exchanger for a first and a second medium flow, comprising flat tubes (12) which have internal fins (15, 15a, 15b) formed from zigzag shaped sheet metal plate (16, 16a, 16b). The tubes have a thermally conductive connection to at least one duct for the one medium flow. Each fin (15, 15a, 15b) is fixed only to the one longitudinal side (17, 18) of each tube (12). Furthermore, there is a gap (19) between the fins fixed to the one longitudinal side (17, 18) and the opposite longitudinal side (17, 18) of the tube (12).
TITLE:
Heat exchanger for EGR-gas

TECHNICAL FIELD:
The present invention relates to a heat exchanger for a first and a second medium flow, comprising flat tubes which have internal fins formed from zigzag-shaped sheet metal plate, said tubes having a thermally conductive connection to at least one duct for the one medium flow.

BACKGROUND:
Heat exchangers for EGR-gas are used, for example, in diesel engines for heavy vehicles and are exposed to very large temperature changes as the working temperature varies greatly from cold starting to full load. These temperature changes can give rise to problems in the form of fatigue and damage in the metal structure, which on the one hand can lead to impaired heat exchange and on the other can have a negative effect on the gas flow through the heat exchanger.

SUMMARY OF THE INVENTION:
An object of the invention is therefore to provide a heat exchanger for EGR-gas, which is more resistant to temperature changes and is thereby more reliable.

To this end, the heat exchanger according to the invention is characterized in that the fins are fixed only to the one longitudinal side of each tube, and that there is a gap between the fins fixed on the one longitudinal side and the opposite longitudinal side of the tube. Forming the tubes in this way means that as
the fins heat up they have scope to expand into said gap, towards the opposite tube wall.

BRIEF DESCRIPTION OF THE DRAWINGS

5 The invention will be described in more detail below, with reference to exemplary embodiments shown in the drawings attached, in which:

Fig. 1 is a perspective view of a heat exchanger according to a first exemplary embodiment of the invention,

Fig. 2 is an end view of a gas tube forming part of the heat exchanger in Fig. 1, according to a first exemplary embodiment of the invention,

Fig. 3 shows a perspective view of the fins forming part of the gas tube in Fig. 2,

Fig. 4 is an end view of a gas tube forming part of the heat exchanger in Fig. 1, according to a second exemplary embodiment of the invention,

Fig. 5 shows a perspective view of the fins forming part of the gas tube in Fig. 4, and

Fig. 6 is an end view of a heat exchanger according to a third exemplary embodiment of the invention.

DESCRIPTION OF EXEMPLARY EMBODIMENTS:

The heat exchangers 10 shown in the drawings are intended for use as cooling radiators for EGR-gas in a diesel engine for a heavy vehicle. In a first exemplary embodiment according to Fig. 1 the heat exchanger comprises a duct casing 11, which encloses twenty gas tubes 12. The duct casing 11 is provided with an inlet 13 and an outlet (not shown) for a first medium flow, suitably coolant from the engine cooling system.
The gas tubes 12 take the form of flat tubes and via end pieces 14 are mounted parallel inside the duct casing 11 at a distance from one another and at a distance from the duct wall. The gas tubes 12 form part of a duct for carrying EGR-gas from the engine exhaust manifold to the engine inlet manifold.

Each of the gas tubes 12 is provided with longitudinal, heat-transmitting fins 15, which in the exemplary embodiment according to Figs. 2 and 3 are formed from a sheet metal plate 16 which is bent in a zigzag shape and which, after it has been inserted into the tube, has then been connected to one side 17 of the two longitudinal sides 17, 18 of the flattened tube conduit.

The fins 15 extend laterally in such a way that there is a gap 19 between the fins fixed to the one longitudinal side 18 and the opposite longitudinal side 17 of the tube conduit 12. The gap 19 is greater than the thermal expansion to which the fins 15 may ordinarily be exposed. The fact that the fins are thus only fixed to the one longitudinal side and that there is also space, via the gap 19, to expand freely towards the opposite longitudinal side 17 of the tube conduit 12, means that the tube is able to withstand cyclical thermal expansion without the risk of harmful deformation.

Figs. 4 and 5 show a second exemplary embodiment of the heat exchanger according to Fig. 1, in which the gas tube 12 is provided with fins 15, which are formed from two separate fin plates 16a, 16b. Here the fin plates have been bent with a zigzag shape in different ways, so that they conform to one another without any risk of coming into contact with one another. According to this
exemplary embodiment of the invention, the one fin plate 16a is connected to the longitudinal side 17, whilst the other fin plate 16b is connected to the opposite longitudinal side 18 and there are gaps 19 for thermal expansion to either side. The fact that both of the longitudinal sides 17, 18 are provided with fins 15 means that the heat transmission to both of the longitudinal sides will be more even than in the preceding exemplary embodiment according to Figs. 1-3.

Fig. 6 shows a further exemplary embodiment of the heat exchanger according to the invention, in which the casing is omitted and the first medium flow, suitably coolant from the engine cooling system, is led via an enclosed duct 20 arranged between each pair of tubes 12. This type of heat exchanger is usually referred to as a plate cooler.

The fins 15, 15a, 15b shown in the drawings are shown with an undulating shape, but may have any other desired shape. The plates forming the tube fins can be connected to the inside of the tube by brazing or welding.

The invention must not be regarded as being limited to the exemplary embodiments described above, a number of other variants and modifications being feasible without departing from the scope of the following patent claims.
CLAIMS

1. A heat exchanger for a first and a second medium flow, comprising flat tubes (12) which have internal fins (15, 15a, 15b) formed from zigzag-shaped sheet metal plate (16, 16a, 16b), said tubes having a thermally conductive connection to at least one duct for the one medium flow, characterized in that each fin (15, 15a, 15b) is fixed only to the one longitudinal side (17, 18) of each tube (12), and that there is a gap (19) between the fins fixed to the one longitudinal side (17, 18) and the opposite longitudinal side (17, 18) of the tube (12).

2. The heat exchanger as claimed in claim 1, characterized in that the gap (19) is greater than the thermal expansion to which the fins (15, 15a, 15b) may ordinarily be exposed.

3. The heat exchanger as claimed in claim 1 or 2, characterized in that the fins (15, 15a, 15b) are of undulating shape.

4. The heat exchanger as claimed in any one of claims 1 to 3, characterized in that at least one of the tubes (12) is provided with fins (15, 15a, 15b) on both of the longitudinal sides (17, 18).

5. The heat exchanger as claimed in any one of claims 1 to 4, characterized in that the fins (15, 15a, 15b) are fixed to the inside of the tube (12) by brazing.
6. The heat exchanger as claimed in any one of claims 1 to 5, \textit{characterized in that} the one medium flow consists of coolant.

7. The heat exchanger as claimed in any one of claims 1 to 6, \textit{characterized in that} the other medium flow consists of EGR-gas.

8. The heat exchanger as claimed in any one of claims 1 to 7, \textit{characterized in that} the tubes \((12)\) are fitted inside a casing having an inlet \((13)\) and an outlet for the one medium flow.

9. The heat exchanger as claimed in any one of claims 1 to 7, \textit{characterized in that} at least one of the tubes \((12)\) is fitted between two ducts \((20)\) for carrying the one medium flow.
A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: F28D, F28F, F02B, F02M, F01P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DATABASE WPI
Week 200437
Derwent Publications Ltd., London, GB;
Class Q78, AN 2004-396589
& JP 2004150672 A (TOY RADIATOR CO LTD),
27 May 2004 (2004-05-27)
abstract, fig. 1</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>US 6378203 B1 (LU ET AL), 30 April 2002
(30.04.2002), figure 6</td>
<td>1-9</td>
</tr>
</tbody>
</table>

D

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search: 13 October 2006

Date of mailing of the international search report: 7-10-2006
International patent classification (IPC)

F28F 1/40 (2006.01)
F02M 25/07 (2006.01)
F28D 7/16 (2006.01)

Download your patent documents at www.prv.se
The cited patent documents can be downloaded at www.prv.se by following the links:
- In English/Searches and advisory services/Cited documents (service in English) or
- e-tjanster/anförda dokument (service in Swedish).
Use the application number as username.
The password is UKYVYETQMR.

Paper copies can be ordered at a cost of 50 SEK per copy from
PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Country</th>
<th>Patent Number</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>6378203</td>
<td>30/04/2002</td>
<td>NONE</td>
</tr>
</tbody>
</table>