wo 2015/171295 A1 [N 00O O O Y O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2015/171295 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

12 November 2015 (12.11.2015) WIPO I PCT
International Patent Classification:
GO6F 9/38 (2006.01)
International Application Number:
PCT/US2015/026634

International Filing Date:
20 April 2015 (20.04.2015)

Filing Language: English
Publication Language: English
Priority Data:

14/271,812 7 May 2014 (07.05.2014) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: VENKUMAHANTI, Suresh Kumar; 5775
Morehouse Drive, San Diego, California 92121 (US).
SHANNON, Stephen, Robert; 5775 Morehouse Drive,
San Diego, California 92121 (US). WANG, Lin; 5775
Morehouse Drive, San Diego, California 92121 (US).

Agent: OWENS, Bruce; Withrow & Terranova, PLLC,
2530 Meridian Parkway, Suite 300, Durham, North Caro-
lina 27713 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: DYNAMIC LOAD BALANCING OF HARDWARE THREADS IN CLUSTERED PROCESSOR CORES USING
SHARED HARDWARE RESOURCES, AND RELATED CIRCUITS, METHODS, AND COMPUTER-READABLE MEDIA

CLUSTERED PROCESSOR CORE (10)

CLUSTER (16(0))
HARDWARE THREAD [HARDWARE THREAD
(1410%) 14(1)

i DYNAMIC LOAD
| BALANGING CIRCUIT

PRIVATE PRIVATE
REGISTER(S) REGISTER(S)
(180N (181

CONTROL
UNIT 2

58

L2

} CONTROL
, REGISTER(S)
!

PROGRAM |
; COUNTER
R

COUNTER |
Ty

IDENTIFIER IDENTIFIER
(28(07) (26(1)

ESHARED HARDWARE
i RESOURCES (38)

301?40 2E L

SHARED CLUSTER RESOURCES
28(0)

CLUSTER {16(1}}
HARDWARE THREAD | | HARDWARE THREAD
(142)) (143)
PRIVATE PRIVATE
REGISTER(S) REGISTER(S)
(18(2)) (18(3))
GPRIS) GPR(S)
(202)) (203))
CONTROL CONTROL
REGISTER(S) REGISTER(S)
(22(2) (22(3)
PROGRAM PROGRAM
COUNTER COUNTER
(24(2)) (2403))
IDENTIFIER IDENTIFIER
44 (26(2)) (28(3))
fegt] 4
ERS R
3 ¥
SHARED CLUSTER RESOURCES
28(1))

(57) Abstract: Dynamic load balancing of hardware threads in clustered processor cores using shared hardware resources, and re-
lated circuits, methods, and computer readable media are disclosed. In one aspect, a dynamic load balancing circuit comprising a
control unit is provided. The control unit is configured to determine whether a suboptimal load condition exists between a first
cluster and a second cluster of a clustered processor core. If a suboptimal load condition exists, the control unit is further configured
to transfer a content of private register(s) of a first hardware thread of the first cluster to private register(s) of a second hardware
thread of the second cluster via shared hardware resources of the first hardware thread and the second hardware thread. The control
unit is also contigured to exchange a first identifier associated with the first hardware thread with a second identifier associated with
the second hardware thread via the shared hardware resources.

WO 2015/171295 PCT/US2015/026634

DYNAMIC LOAD BALANCING OF HARDWARE THREADS IN CLUSTERED
PROCESSOR CORES USING SHARED HARDWARE RESOURCES, AND
RELATED CIRCUITS, METHODS, AND COMPUTER-READABLE MEDIA

PRIORITY CLAIM
[0001] The present application claims priority to U.S. Patent Application Serial No.
14/271,812 filed on May 7, 2014, and entitled “DYNAMIC LOAD BALANCING OF
HARDWARE THREADS IN CLUSTERED PROCESSOR CORES USING SHARED
HARDWARE RESOURCES, AND RELATED CIRCUITS, METHODS, AND
COMPUTER-READABLE MEDIA,” which is incorporated herein by reference in its

entirety.

BACKGROUND
I. Field of the Disclosure

[0002] The technology of the disclosure relates generally to improving performance

of clustered processor cores.

II. Background

[0003] Modern processors, such as central processing units (CPUs), may include
one or more hardware threads providing resources for executing computer instructions.
Each hardware thread may include a set of private registers (such as General Purpose
Registers (GPRs), control registers, or program counters, as non-limiting examples) that
are accessible only by the hardware thread. The private registers may be used by the
hardware thread to host a software thread for execution. The contents of the private
registers may together represent a “context” for the software thread that defines its state
at a given point in time as it is executed by the hardware thread.

[0004] Within a processor, hardware threads may be organized into groups known
as “clusters.” Fach cluster may include one or more hardware threads, and may also
include shared cluster resources that can be accessed by any hardware thread within the
cluster. For example, shared cluster resources may include an execution pipeline that
each of the hardware threads of the cluster may use on a rotating basis. Multiple
clusters may be further organized into “clustered processor cores.” Each clustered

processor core may include shared hardware resources that may be utilized by the

WO 2015/171295 PCT/US2015/026634

multiple clusters. The shared hardware resources may include one or more execution
units (such as floating point units and/or arithmetic logic units) and/or caches (e.g., data
caches), as non-limiting examples.

[0005] In some circumstances, a first cluster of a clustered processor core may
experience a suboptimal load condition relative to a second cluster. For example, all
hardware threads of the first cluster may be executing software threads and operating
under high load conditions, while the hardware threads within the second cluster may be
underutilized. The suboptimal load condition may also occur if the first and second
clusters are each executing a hardware thread in circumstances during which power
savings could be realized if a single cluster were executing both hardware threads.
[0006] The existence of a suboptimal load condition may result in the clustered
processor core operating at a sub-optimal performance level. Conventional software-
based techniques enable a software thread to be shifted from one hardware thread to
another. The shifting process conventionally requires an operating system to save the
context of the software thread to memory, and then reload the software thread into a
different hardware thread. However, this process may be not be feasible if the operating
system lacks access to micro-architectural data needed to determine performance and/or
power consumption benefits of shifting the software thread. Moreover, saving the

context of the software thread to memory may be prohibitively slow.

SUMMARY OF THE DISCLOSURE
[0007] Aspects disclosed in the detailed description include dynamic load balancing

of hardware threads in clustered processor cores using shared hardware resources.
Related circuits, methods, and computer-readable media are also disclosed. In this
regard in one aspect, a dynamic load balancing circuit for providing dynamic load
balancing of hardware threads in clustered processor cores is provided. The dynamic
load balancing circuit comprises a control unit that is communicatively coupled to a first
cluster and a second cluster of a clustered processor core. The control unit is configured
to determine whether a suboptimal load condition exists between the first cluster and the
second cluster. Responsive to determining that the suboptimal load condition exists, the
control unit is further configured to transfer a content of one or more private registers of

a first hardware thread of the first cluster to one or more private registers of a second

WO 2015/171295 PCT/US2015/026634

hardware thread of the second cluster via shared hardware resources communicatively
coupled to the first hardware thread and the second hardware thread. Further responsive
to determining that the suboptimal load condition exists, the control unit is also
configured to exchange a first identifier associated with the first hardware thread with a
second identifier associated with the second hardware thread via the shared hardware
resources. In this manner, the suboptimal load condition may be efficiently resolved by
relocating contents of the first hardware thread from the first cluster to the second
cluster via the shared hardware resources.

[0008] In another aspect, a dynamic load balancing circuit for providing dynamic
load balancing of hardware threads in clustered processor cores is provided. The
dynamic load balancing circuit comprises a means for determining whether a
suboptimal load condition exists between a first cluster and a second cluster of a
clustered processor core. The dynamic load balancing circuit further comprises a means
for, responsive to determining that the suboptimal load condition exists, transferring a
content of one or more private registers of a first hardware thread of the first cluster to
one or more private registers of a second hardware thread of the second cluster via
shared hardware resources communicatively coupled to the first hardware thread and the
second hardware thread. The dynamic load balancing circuit also comprises a means
for, responsive to determining that the suboptimal load condition exists, exchanging a
first identifier associated with the first hardware thread with a second identifier
associated with the second hardware thread via the shared hardware resources.

[0009] In another aspect, a method for providing dynamic load balancing of
hardware threads in clustered processor cores is provided. The method comprises
determining whether a suboptimal load condition exists between a first cluster and a
second cluster of a clustered processor core. The method further comprises, responsive
to determining that the suboptimal load condition exists, transferring a content of one or
more private registers of a first hardware thread of the first cluster to one or more
private registers of a second hardware thread of the second cluster via shared hardware
resources communicatively coupled to the first hardware thread and the second
hardware thread. The method also comprises, responsive to determining that the

suboptimal load condition exists, exchanging a first identifier associated with the first

WO 2015/171295 PCT/US2015/026634

hardware thread with a second identifier associated with the second hardware thread via
the shared hardware resources.

[0010] In another aspect, a non-transitory computer-readable medium is provided,
having stored thereon computer executable instructions to cause a processor to
determine whether a suboptimal load condition exists between a first cluster and a
second cluster of a clustered processor core. The computer executable instructions
further cause the processor to, responsive to determining that the suboptimal load
condition exists, transfer a content of one or more private registers of a first hardware
thread of the first cluster to one or more private registers of a second hardware thread of
the second cluster via shared hardware resources communicatively coupled to the first
hardware thread and the second hardware thread. The computer executable instructions
also cause the processor to, responsive to determining that the suboptimal load
condition exists, exchange a first identifier associated with the first hardware thread
with a second identifier associated with the second hardware thread via the shared

hardware resources.

BRIEF DESCRIPTION OF THE FIGURES

[0011] Figure 1 is a block diagram of an exemplary clustered processor core that

includes a dynamic load balancing circuit that is configured to perform load balancing
of hardware threads using shared hardware resources;

[0012] Figure 2 is a block diagram of the clustered processor core of Figure 1
illustrating hosting of software threads by hardware threads prior to load balancing by
the dynamic load balancing circuit;

[0013] Figure 3 is a block diagram of the clustered processor core of Figure 1
illustrating communications flows during load balancing operations of the dynamic load
balancing circuit;

[0014] Figure 4 is a block diagram of the clustered processor core of Figure 1
illustrating hosting of software threads after load balancing operations are completed by
the dynamic load balancing circuit;

[0015] Figure 5 is a flowchart illustrating an exemplary process for dynamic load
balancing of hardware threads in clustered processor cores using shared hardware

resources; and

WO 2015/171295 PCT/US2015/026634

[0016] Figure 6 is a block diagram of an exemplary processor-based system that can

include the dynamic load balancing circuit of Figure 1.

DETAILED DESCRIPTION

[0017] With reference now to the drawing figures, several exemplary aspects of the

present disclosure are described. The word “exemplary” is used herein to mean
“serving as an example, instance, or illustration.” Any aspect described herein as
“exemplary” is not necessarily to be construed as preferred or advantageous over other
aspects.

[0018] Aspects disclosed in the detailed description include dynamic load balancing
of hardware threads in clustered processor cores using shared hardware resources.
Related circuits, methods, and computer-readable media are also disclosed. In this
regard in one aspect, a dynamic load balancing circuit for providing dynamic load
balancing of hardware threads in clustered processor cores is provided. The dynamic
load balancing circuit comprises a control unit that is communicatively coupled to a first
cluster and a second cluster of a clustered processor core. The control unit is configured
to determine whether a suboptimal load condition exists between the first cluster and the
second cluster. Responsive to determining that the suboptimal load condition exists, the
control unit is further configured to transfer a content of one or more private registers of
a first hardware thread of the first cluster to one or more private registers of a second
hardware thread of the second cluster via shared hardware resources communicatively
coupled to the first hardware thread and the second hardware thread. Further responsive
to determining that the suboptimal load condition exists, the control unit is also
configured to exchange a first identifier associated with the first hardware thread with a
second identifier associated with the second hardware thread via the shared hardware
resources. In this manner, the suboptimal load condition may be efficiently resolved by
relocating contents of the first hardware thread from the first cluster to the second
cluster via the shared hardware resources.

[0019] In this regard, Figure 1 is a block diagram of an exemplary clustered
processor core 10. The clustered processor core 10 includes a dynamic load balancing
circuit 12 providing load balancing among hardware threads within clusters of the

clustered processor core 10, as disclosed herein. The clustered processor core 10 may

WO 2015/171295 PCT/US2015/026634

encompass any one of known digital logic elements, semiconductor circuits, processing
cores, and/or memory structures, among other elements, or combinations thereof.
Aspects described herein are not restricted to any particular arrangement of elements,
and the disclosed techniques may be easily extended to various structures and layouts
on semiconductor dies or packages.

[0020] In the example of Figure 1, the clustered processor core 10 includes
hardware threads 14(0)-14(3), each of which is operable to host a software thread (not
shown). The hardware threads 14(0)-14(3) are organized into clusters, with a cluster
16(0) including the hardware threads 14(0) and 14(1), and a cluster 16(1) including the
hardware threads 14(2) and 14(3). It is to be understood that the aspect shown in Figure
1 is for illustration purposes only. Accordingly, some aspects may include more or
fewer hardware threads 14 within each cluster 16 than illustrated in Figure 1. Likewise,
it is to be further understood that some aspects may include more clusters 16 within the
clustered processor core 10 than shown in Figure 1.

[0021] The hardware thread 14(0) includes private register(s) 18(0) that are
accessible only by the hardware thread 14(0). In some aspects, the private register(s)
18(0) may include respective General Purpose Register(s) (GPR(s)) 20(0), control
register(s) 22(0), and/or a program counter 24(0), as non-limiting examples. The
contents (not shown) of the private register(s) 18(0) may represent a “context” for a
software thread (not shown) hosted by the hardware thread 14(0), defining the software
thread’s state at a given point in time as it is executed. The hardware threads 14(1)-
14(3) likewise include private register(s) 18(1)-18(3), respectively, having functionality
corresponding to the private register(s) 18(0) of the hardware thread 14(0). Some
aspects may provide that the private register(s) 18(1)-18(3) include respective GPR(s)
20(1)-20(3), control register(s) 22(1)-22(3), and/or program counters 24(1)-24(3), as
non-limiting examples.

[0022] Each of the hardware threads 14(0)-14(3) of Figure 1 also includes an
identifier 26(0)-26(3), respectively. Each identifier 26(0)-26(3) contains a modifiable
identification that may be used by software, such as an operating system, to identify the
corresponding hardware threads 14(0)-14(3). In some aspects, one or more of the
identifiers 26 may be implemented as one of the control register(s) 22. As described in

greater detail below, the identifiers 26 enable the dynamic load balancing circuit 12 to

WO 2015/171295 PCT/US2015/026634

relocate a hardware thread 14 from one cluster 16 to another in a manner that is
transparent to software.

[0023] As seen in Figure 1, the clusters 16(0) and 16(1) provide shared cluster
resources 28(0) and 28(1), respectively, that may accessed and shared by the hardware
threads 14 within each cluster 16. In the cluster 16(0), the hardware thread 14(0) is
communicatively coupled to the shared cluster resources 28(0) by a bus 30, while the
hardware thread 14(1) is communicatively coupled to the shared cluster resources 28(0)
by a bus 32. Similarly, the hardware thread 14(2) in the cluster 16(1) is
communicatively coupled to the shared cluster resources 28(1) by a bus 34, while the
hardware thread 14(3) is communicatively coupled to the shared cluster resources 28(1)
by a bus 36. Each of the shared cluster resources 28(0) and 28(1) may include, as non-
limiting examples, an execution pipeline (not shown) that may be shared on a rotating
basis by the hardware threads 14 to execute software threads. For instance, access to an
execution pipeline of the shared cluster resources 28(0) may be alternately allocated to
each of the hardware threads 14(0) and 14(1) as part of preemptive multitasking
operations provided by the cluster 16(0).

[0024] The clustered processor core 10 of Figure 1 also provides shared hardware
resources 38 that are accessible to each of the hardware threads 14 of the clusters 16.
As shown in Figure 1, the hardware thread 14(0) is communicatively coupled to the
shared hardware resources 38 by a bus 40, while the hardware thread 14(1) is
communicatively coupled to the shared hardware resources 38 by a bus 42. Likewise,
the hardware thread 14(2) is communicatively coupled to the shared hardware resources
38 by a bus 44, while the hardware thread 14(3) is communicatively coupled to the
shared hardware resources 38 by a bus 46. In some aspects, the shared hardware
resources 38 may include one or more execution units 48, such as a floating point unit
and/or an arithmetic logic unit, as non-limiting examples. The shared hardware
resources 38 may also include one or more caches 50, such as a data cache, as a non-
limiting example.

[0025] The hardware threads 14 of the clusters 16 enable the clustered processor
core 10 of Figure 1 to effectively execute up to four software threads concurrently.
During execution of the software threads, circumstances may arise in which, for

example, the cluster 16(0) experiences a suboptimal load condition relative to the cluster

WO 2015/171295 PCT/US2015/026634

16(1). For instance, the hardware threads 14(0) and 14(1) of the cluster 16(0) may be
operating under high load conditions, while the hardware threads 14(2) and 14(3) of the
cluster 16(1) may be underutilized (due to, for example, being unused or being stalled
due to a cache miss or other delay condition). For aspects in which reducing power
consumption is a priority of the clustered processor core 10, the suboptimal load
condition may occur when the clusters 16(0) and 16(1) are each executing a single
hardware thread 14 in circumstances where power savings could be realized if a single
cluster 16 were executing both hardware threads 14.

[0026] Accordingly, the dynamic load balancing circuit 12 is provided to enable
dynamic load balancing between the hardware threads 14 in a more efficient manner
than software-based solutions. In this regard, the dynamic load balancing circuit 12
includes a control unit 52, which is communicatively coupled to the cluster 16(0) via a
bus 54 and communicatively coupled to the cluster 16(1) via a bus 56. In some aspects,
load data (not shown) related to load conditions of the clusters 16(0) and 16(1) may be
provided to the control unit 52 by the clusters 16(0) and 16(1), and/or may be actively
collected by the control unit 52 via the bus 54 and the bus 56. The load data may
include, as non-limiting examples, data indicating processor utilization, utilization of
shared cluster resources 28(0) and/or 28(1), a number of executing processes, and/or
power consumption by the clusters 16(0) and 16(1). By analyzing and comparing the
load data, the control unit 52 may monitor load conditions of the hardware threads 14(0)
and 14(1) of the cluster 16(0) and the hardware threads 14(2) and 14(3) of the cluster
16(1). The control unit 52 may also be communicatively coupled to the shared
hardware resources 38 via a bus 58, in order to facilitate relocation of contents of the
hardware threads 14 between the clusters 16 via the shared hardware resources 38. In
this manner, the dynamic load balancing circuit 12 may resolve suboptimal load
conditions more quickly and efficiently compared to conventional software-based
techniques for moving software threads.

[0027] To better illustrate the relocation of a hardware thread 14 from one cluster 16
to another by the dynamic load balancing circuit 12 of Figure 1 as a result of detecting a
suboptimal load condition, Figures 2-4 are provided. Figure 2 illustrates the clustered
processor core 10 during execution of software threads 60 hosted by the hardware

threads 14, giving rise to a suboptimal load condition. Figure 3 shows communications

WO 2015/171295 PCT/US2015/026634

flows within the clustered processor core 10 as the dynamic load balancing circuit 12
relocates contents of the hardware thread 14(1) from the cluster 16(0) to the cluster
16(1) via the shared hardware resources 38. Figure 4 illustrates the contents of the
hardware threads 14 following the relocation of the contents of the hardware thread
14(1) and resolution of the suboptimal load condition. For the sake of clarity and
brevity, elements of Figure 1 are referenced in describing Figures 2-4.

[0028] In Figure 2, the shared hardware resources 38 of the clustered processor core
10 include a data cache 62 that is accessible by all of the hardware threads 14. In the
example of Figure 2, the hardware threads 14(0)-14(3) are hosting software threads
60(0)-60(3), respectively. The hardware threads 14(0)-14(3) are associated with
identifiers 26(0)-26(3), respectively, which currently contain respective values “A,”
“B,” “C,” and “D.” The identifiers 26 serve as an abstraction layer by which software,
such as an operating system, may map each of the software threads 60(0)-60(3) to the
corresponding hardware threads 14(0)-14(3). The private register(s) 18(0) of the
hardware thread 14(0) contains a content 64(0) representing a current context of the
software thread 60(0). Likewise, the private register(s) 18(1) of the hardware thread
14(1) contains a content 64(1) representing a current context of the software thread
60(1). For purposes of illustration, the content 64(0) is shown as having bit values
“101010,” while the content 64(1) is shown as having bit values “010101.”

[0029] It is to be understood that the software threads 60(0) and 60(1) currently
have a thread state (not shown) of “ON,” indicating that they are being actively
executed on the hardware threads 14(0) and 14(1), respectively, of the cluster 16(0). In
contrast, the software threads 60(2) and 60(3) on the hardware threads 14(2) and 14(3)
of the cluster 16(1) have a thread state of “OFF,” indicating that execution is not
presently occurring. For example, one or both of the software threads 60(2) and 60(3)
may be stalled as the result of a cache miss or other delay condition.

[0030] As a consequence, a suboptimal load condition exists between the cluster
16(0) and the cluster 16(1). The cluster 16(0) is forced to multitask both the software
thread 60(0) on the hardware thread 14(0) and the software thread 60(1) on the
hardware thread 14(1), resulting in overutilization of the shared cluster resources 28(0).
At the same time, the shared cluster resources 28(1) of the cluster 16(1) are

underutilized due to the inactive thread status of the software thread 60(2) on the

WO 2015/171295 PCT/US2015/026634

hardware thread 14(2) and the software thread 60(3) on the hardware thread 14(3). This
suboptimal load condition between the cluster 16(0) and the cluster 16(1) may result in
the clustered processor core 10 operating at a sub-optimal level.

[0031] Figure 3 illustrates the operations taken by the control unit 52 of the dynamic
load balancing circuit 12 to resolve the suboptimal load condition between the cluster
16(0) and the cluster 16(1). By monitoring load conditions of the clusters 16(0) and
16(1) (as indicated by arrows 66 and 68, respectively), the control unit 52 may
determine that the suboptimal load condition exists between the cluster 16(0) and the
cluster 16(1). The control unit 52 may then issue control signals (indicated by arrows
70 and 72) to the clusters 16(0) and/or the clusters 16(1) to effect a relocation of
contents of the hardware thread 14(1) from the cluster 16(0) to the cluster 16(1). In
some aspects, the control unit 52 may also issue control signals (indicated by arrow 74)
to the shared hardware resources 38 to facilitate the relocation.

[0032] In the example of Figure 3, after the suboptimal load condition is determined
to exist, the control unit 52 of the dynamic load balancing circuit 12 may direct the
hardware thread 14(1) to transfer the content 64(1) of the private register(s) 18(1) to the
shared hardware resources 38 (in particular, to the data cache 62). This transfer is
represented by arrow 76. The content 64(1) may then be further transferred from the
data cache 62 to the private register(s) 18(2) of the hardware thread 14(2) of the cluster
16(1) (indicated by arrow 78). Because the content 64(1) represents the current context
of the software thread 60(1), transferring the content 64(1) to the private register(s)
18(2) effectively relocates the software thread 60(1) to the hardware thread 14(2).

[0033] To ensure that the relocation of the content 64(1) of the private register(s)
18(1) is transparent to operating system software being executed by the clustered
processor core 10, the control unit 52 also swaps the identifiers 26(1) and 26(2) of the
hardware threads 14(1) and 14(2), respectively. Accordingly, as seen in Figure 3, the
value in the identifier 26(1) of the hardware thread 14(1) is exchanged for the value in
the identifier 26(2) of the hardware thread 14(2) via the data cache 62 (indicated by
bidirectional arrows 80 and 82). Because the operating system uses the values of the
identifiers 26 to map the software threads 60 to the hardware threads 14, the operating
system will remain unaware that the physical resources on which the software threads

60 are executing has changed.

10

WO 2015/171295 PCT/US2015/026634

[0034] Referring now to Figure 4, the state of the hardware threads 14 and the
software threads 60 after the relocation of the contents of the hardware thread 14(1) are
shown. In Figure 4, the hardware threads 14(0) and 14(3) are associated with the
identifiers 26(0) and 26(3), respectively, having respective values “A” and “D” as
before. However, the identifier 26(1) associated with the hardware thread 14(1) now
has a value of “C,” while the identifier 26(2) associated with the hardware thread 14(2)
has a value of “B.” Additionally, the content 64(2) of the private register(s) 18(2) of the
hardware thread 14(2) now contains the values previously stored in the content 64(1) of
the private register(s) 18(1) of the hardware thread 14(1). As a result, the software
thread 60(1) is now hosted by the hardware thread 14(2), and may continue execution
within the cluster 16(1). At this point, each of the clusters 16 contains one software
thread 60 having a thread state (not shown) of “ON” (i.e., the software thread 60(0) in
the cluster 16(0) and the software thread 60(1) in the cluster 16(1)). Each cluster 16
also contains one software thread 60 having a thread state of “OFF” (i.e., the software
thread 60(2) in the cluster 16(0) and the software thread 60(3) in the cluster 16(1)).
Accordingly, the processing load resulting from executing the software threads 60 is
more evenly balanced between the clusters 16, resulting in improved performance of the
clustered processor core 10.

[0035] While the examples of Figures 2-4 illustrate the dynamic load balancing
circuit 12 distributing a processing load more evenly across the clusters 16, some
aspects of the clustered processor core 10 may provide that reduction of power
consumption is a higher priority than improving processing performance. For example,
in some aspects, the dynamic load balancing circuit 12 may detect a potential reduction
in energy consumption of the clustered processing core 10 by relocating the contents 64
of two active hardware threads 14 onto the same cluster 16. By doing so, the dynamic
load balancing circuit 12 may enable the clustered processor core 10 to shut down one
of the clusters 16 to realize power savings.

[0036] To illustrate an exemplary process for dynamic load balancing of hardware
threads 14 in clustered processor cores 10 using shared hardware resources 38, Figure 5
is provided. In describing Figure 5, elements of Figures 1-4 are referenced for the sake
of clarity. Operations begin in Figure 5 with the control unit 52 of the dynamic load

balancing circuit 12 determining whether suboptimal load condition exists between a

11

WO 2015/171295 PCT/US2015/026634

first cluster 16(0) and a second cluster 16(1) of a clustered processor core 10 (block 84).
In some aspects, operations of block 84 for determining whether the suboptimal load
condition exists may include detecting an underutilization of the second cluster 16(1)
(block 86). Some aspects may provide that operations of block 84 for determining
whether the suboptimal load condition exists comprises detecting a potential reduction
in energy consumption of the clustered processor core 10 (block 88).

[0037] The control unit 52 then evaluates, based on its determination, whether a
suboptimal load condition exists (block 90). If not, operations of the clustered
processor core 10 continue (block 92). However, if it is determined at block 90 that a
suboptimal load condition does exist, the control unit 52 transfers a content 64(1) of one
or more private registers 18(1) of a first hardware thread 14(1) of the first cluster 16(0)
to one or more private registers 18(2) of a second hardware thread 14(2) of the second
cluster 16(1) (block 94). The transfer is effected via shared hardware resources 38
communicatively coupled to the first hardware thread 14(1) and the second hardware
thread 14(2). The control unit 52 further exchanges a first identifier 26(1) associated
with the first hardware thread 14(1) with a second identifier 26(2) associated with the
second hardware thread 14(2) via the shared hardware resources 38 (block 96).

[0038] The dynamic load balancing circuit 12 according to aspects disclosed herein
may be provided in or integrated into any processor-based device. Examples, without
limitation, include a set top box, an entertainment unit, a navigation device, a
communications device, a fixed location data unit, a mobile location data unit, a mobile
phone, a cellular phone, a computer, a portable computer, a desktop computer, a
personal digital assistant (PDA), a monitor, a computer monitor, a television, a tuner, a
radio, a satellite radio, a music player, a digital music player, a portable music player, a
digital video player, a video player, a digital video disc (DVD) player, and a portable
digital video player.

[0039] In this regard, Figure 6 illustrates an example of a processor-based system 98
that can employ the dynamic load balancing circuit 12 illustrated in Figure 1. In this
example, the processor-based system 98 includes one or more central processing units
(CPUs) 100, each including one or more processors 102 that may comprise the dynamic
load balancing circuit (DLBC) 12 of Figure 1. The CPU(s) 100 may have cache

memory 104 coupled to the processor(s) 102 for rapid access to data or instructions.

12

WO 2015/171295 PCT/US2015/026634

The CPU(s) 100 is coupled to a system bus 106 and can intercouple master and slave
devices included in the processor-based system 98. As is well known, the CPU(s) 100
communicates with these other devices by exchanging address, control, and data
information over the system bus 106. For example, the CPU(s) 100 can communicate
bus transaction requests to a memory system 108, which provides memory units 110(0)-
110(N).

[0040] Other master and slave devices can be connected to the system bus 106. As
illustrated in Figure 6, these devices can include a memory controller 112, one or more
input devices 114, one or more output devices 116, one or more network interface
devices 118, and one or more display controllers 120, as examples. The input device(s)
114 can include any type of input device, including but not limited to input keys,
switches, voice processors, etc. The output device(s) 116 can include any type of output
device, including but not limited to audio, video, other visual indicators, etc. The
network interface device(s) 118 can be any devices configured to allow exchange of
data to and from a network 122. The network 122 can be any type of network,
including but not limited to a wired or wireless network, a private or public network, a
local area network (LAN), a wide local area network (WLAN), and the Internet. The
network interface device(s) 118 can be configured to support any type of
communications protocol desired.

[0041] The CPU(s) 100 may also be configured to access the display controller(s)
120 over the system bus 106 to control information sent to one or more displays 124.
The display controller(s) 120 sends information to the display(s) 124 to be displayed via
one or more video processors 126, which process the information to be displayed into a
format suitable for the display(s) 124. The display(s) 124 can include any type of
display, including but not limited to a cathode ray tube (CRT), a liquid crystal display
(LCD), a plasma display, etc.

[0042] Those of skill in the art will further appreciate that the various illustrative
logical blocks, modules, circuits, and algorithms described in connection with the
aspects disclosed herein may be implemented as electronic hardware, instructions stored
in memory or in another computer-readable medium and executed by a processor or
other processing device, or combinations of both. The master and slave devices

described herein may be employed in any circuit, hardware component, integrated

13

WO 2015/171295 PCT/US2015/026634

circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and
size of memory and may be configured to store any type of information desired. To
clearly illustrate this interchangeability, various illustrative components, blocks,
modules, circuits, and steps have been described above generally in terms of their
functionality. How such functionality is implemented depends upon the particular
application, design choices, and/or design constraints imposed on the overall system.
Skilled artisans may implement the described functionality in varying ways for each
particular application, but such implementation decisions should not be interpreted as
causing a departure from the scope of the present disclosure.

[0043] The various illustrative logical blocks, modules, and circuits described in
connection with the aspects disclosed herein may be implemented or performed with a
processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit
(ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device,
discrete gate or transistor logic, discrete hardware components, or any combination
thereof designed to perform the functions described herein. A processor may be a
microprocessor, but in the alternative, the processor may be any conventional processor,
controller, microcontroller, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a DSP and a
microprocessor, a plurality of microprocessors, one Or more microprocessors in
conjunction with a DSP core, or any other such configuration.

[0044] The aspects disclosed herein may be embodied in hardware and in
instructions that are stored in hardware, and may reside, for example, in Random Access
Memory (RAM), flash memory, Read Only Memory (ROM), Electrically
Programmable ROM (EPROM), Electrically Erasable Programmable ROM
(EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of
computer readable medium known in the art. An exemplary storage medium is coupled
to the processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be
integral to the processor. The processor and the storage medium may reside in an ASIC.
The ASIC may reside in a remote station. In the alternative, the processor and the
storage medium may reside as discrete components in a remote station, base station, or

SCIVeEr.

14

WO 2015/171295 PCT/US2015/026634

[0045] It is also noted that the operational steps described in any of the exemplary
aspects herein are described to provide examples and discussion. The operations
described may be performed in numerous different sequences other than the illustrated
sequences. Furthermore, operations described in a single operational step may actually
be performed in a number of different steps. Additionally, one or more operational
steps discussed in the exemplary aspects may be combined. It is to be understood that
the operational steps illustrated in the flow chart diagrams may be subject to numerous
different modifications as will be readily apparent to one of skill in the art. Those of
skill in the art will also understand that information and signals may be represented
using any of a variety of different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols, and chips that may be
referenced throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or any
combination thereof.

[0046] The previous description of the disclosure is provided to enable any person
skilled in the art to make or use the disclosure. Various modifications to the disclosure
will be readily apparent to those skilled in the art, and the generic principles defined
herein may be applied to other variations without departing from the spirit or scope of
the disclosure. Thus, the disclosure is not intended to be limited to the examples and
designs described herein, but is to be accorded the widest scope consistent with the

principles and novel features disclosed herein.

15

WO 2015/171295 PCT/US2015/026634

‘What is claimed is:

1. A dynamic load balancing circuit, comprising
a control unit communicatively coupled to a first cluster and a second cluster of
a clustered processor core;
the control unit configured to:
determine whether a suboptimal load condition exists between the first
cluster and the second cluster; and
responsive to determining that the suboptimal load condition exists:
transfer a content of one or more private registers of a first
hardware thread of the first cluster to one or more private
registers of a second hardware thread of the second cluster
via shared hardware resources communicatively coupled to
the first hardware thread and the second hardware thread;
and
exchange a first identifier associated with the first hardware thread
with a second identifier associated with the second

hardware thread via the shared hardware resources.

2. The dynamic load balancing circuit of claim 1, wherein the shared hardware

resources comprise an execution unit or a cache, or combinations thereof.

3. The dynamic load balancing circuit of claim 1, wherein the control unit is
configured to determine whether the suboptimal load condition exists between the first

cluster and the second cluster by detecting an underutilization of the second cluster.

4. The dynamic load balancing circuit of claim 1, wherein the control unit is
configured to determine whether the suboptimal load condition exists between the first
cluster and the second cluster by detecting a potential reduction in energy consumption

of the clustered processor core.

5. The dynamic load balancing circuit of claim 1, wherein the control unit is
configured to determine whether the suboptimal load condition exists between the first

cluster and the second cluster based on load data indicating one or more of processor

16

WO 2015/171295 PCT/US2015/026634

utilization, utilization of shared cluster resources, a number of executing processes, or

power consumption by the first cluster and the second cluster.

6. The dynamic load balancing circuit of claim 1, wherein the control unit is
configured to transfer the content of the one or more private registers of the first
hardware thread of the first cluster to the one or more private registers of the second
hardware thread of the second cluster by transferring a content of one or more General
Purpose Registers (GPRs) or a content of one or more control registers, or combinations

thereof.

7. The dynamic load balancing circuit of claim 6, wherein:
the one or more control registers comprise the first identifier associated with the
first hardware thread and the second identifier associated with the second
hardware thread;
the first identifier associated with the first hardware thread maps a first software
thread to the first hardware thread; and
the second identifier associated with the second hardware thread maps a second

software thread to the second hardware thread.

8. The dynamic load balancing circuit of claim 1 integrated into an integrated

circuit.

9. The dynamic load balancing circuit of claim 1 integrated into a device selected
from the group consisting of a set top box, an entertainment unit, a navigation device, a
communications device, a fixed location data unit, a mobile location data unit, a mobile
phone, a cellular phone, a computer, a portable computer, a desktop computer, a
personal digital assistant (PDA), a monitor, a computer monitor, a television, a tuner, a
radio, a satellite radio, a music player, a digital music player, a portable music player, a
digital video player, a video player, a digital video disc (DVD) player, and a portable
digital video player.

17

WO 2015/171295 PCT/US2015/026634

10. A dynamic load balancing circuit for providing dynamic load balancing of
hardware threads in clustered processor cores, comprising:

a means for determining whether a suboptimal load condition exists between a
first cluster and a second cluster of a clustered processor core;

a means for, responsive to determining that the suboptimal load condition exists,
transferring a content of one or more private registers of a first hardware
thread of the first cluster to one or more private registers of a second
hardware thread of the second cluster via shared hardware resources
communicatively coupled to the first hardware thread and the second
hardware thread; and

a means for, responsive to determining that the suboptimal load condition exists,
exchanging a first identifier associated with the first hardware thread
with a second identifier associated with the second hardware thread via

the shared hardware resources.

11. A method for providing dynamic load balancing of hardware threads in clustered
processor cores, comprising:
determining whether a suboptimal load condition exists between a first cluster
and a second cluster of a clustered processor core; and
responsive to determining that the suboptimal load condition exists:
transferring a content of one or more private registers of a first hardware
thread of the first cluster to one or more private registers of a
second hardware thread of the second cluster via shared hardware
resources communicatively coupled to the first hardware thread
and the second hardware thread; and
exchanging a first identifier associated with the first hardware thread
with a second identifier associated with the second hardware

thread via the shared hardware resources.

12. The method of claim 11, wherein the shared hardware resources comprise an

execution unit or a cache, or combinations thereof.

18

WO 2015/171295 PCT/US2015/026634

13. The method of claim 11, wherein determining whether the suboptimal load
condition exists between the first cluster and the second cluster comprises detecting an

underutilization of the second cluster.

14. The method of claim 11, wherein determining whether the suboptimal load
condition exists between the first cluster and the second cluster comprises detecting a

potential reduction in energy consumption of the clustered processor core.

15. The method of claim 11, wherein determining whether the suboptimal load
condition exists between the first cluster and the second cluster is based on load data
indicating one or more of processor utilization, utilization of shared cluster resources, a
number of executing processes, or power consumption by the first cluster and the

second cluster.

16. The method of claim 11, wherein transferring the content of the one or more
private registers of the first hardware thread of the first cluster to the one or more
private registers of the second hardware thread of the second cluster comprises
transferring a content of one or more General Purpose Registers (GPRs) or a content of

one or more control registers, or combinations thereof.

17. The method of claim 16, wherein:
the one or more control registers comprise the first identifier associated with the
first hardware thread and the second identifier associated with the second
hardware thread;
the first identifier associated with the first hardware thread maps a first software
thread to the first hardware thread; and
the second identifier associated with the second hardware thread maps a second

software thread to the second hardware thread.

18. A non-transitory computer-readable medium having stored thereon computer
executable instructions which, when executed, cause a processor to:
determine whether a suboptimal load condition exists between a first cluster and
a second cluster of a clustered processor core; and

responsive to determining that the suboptimal load condition exists:

19

WO 2015/171295 PCT/US2015/026634

transfer a content of one or more private registers of a first hardware
thread of the first cluster to one or more private registers of a
second hardware thread of the second cluster via shared hardware
resources communicatively coupled to the first hardware thread
and the second hardware thread; and

exchange a first identifier associated with the first hardware thread with a
second identifier associated with the second hardware thread via

the shared hardware resources.

19. The non-transitory computer-readable medium of claim 18 having stored thereon
computer-executable instructions to cause the processor to:
transfer the content of the one or more private registers of the first hardware
thread of the first cluster to the one or more private registers of the
second hardware thread of the second cluster via an execution unit or a
cache, or combinations thereof; and
exchange the first identifier associated with the first hardware thread with the
second identifier associated with the second hardware thread via the

execution unit or the cache, or combinations thereof.

20. The non-transitory computer-readable medium of claim 18 having stored thereon
computer-executable instructions to cause the processor to determine whether the
suboptimal load condition exists between the first cluster and the second cluster by

detecting an underutilization of the second cluster.

21. The non-transitory computer-readable medium of claim 18 having stored thereon
computer-executable instructions to cause the processor to determine whether the
suboptimal load condition exists between the first cluster and the second cluster by

detecting a potential reduction in energy consumption of the clustered processor core.

22. The non-transitory computer-readable medium of claim 18 having stored thereon
computer-executable instructions to cause the processor to determine whether the
suboptimal load condition exists between the first cluster and the second cluster based

on load data indicating one or more of processor utilization, utilization of shared cluster

20

WO 2015/171295 PCT/US2015/026634

resources, a number of executing processes, or power consumption by the first cluster

and the second cluster.

23. The non-transitory computer-readable medium of claim 18 having stored thereon
computer-executable instructions to cause the processor to transfer the content of the
one or more private registers of the first hardware thread of the first cluster to the one or
more private registers of the second hardware thread of the second cluster by
transferring a content of one or more General Purpose Registers (GPRs) or a content of

one or more control registers, or combinations thereof.

24, The non-transitory computer-readable medium of claim 23 having stored thereon
computer-executable instructions to cause the processor to transfer the content of the
one or more control registers comprising the first identifier associated with the first
hardware thread and the second identifier associated with the second hardware thread;
wherein:
the first identifier associated with the first hardware thread maps a first
software thread to the first hardware thread; and
the second identifier associated with the second hardware thread maps a

second software thread to the second hardware thread.

21

PCT/US2015/026634

WO 2015/171295

1/6

L "OId

((1)82) ((0)82)
$304N0STY YILSNTO AIUVHS $304N0STY YILSNTO AIUVHS
£ mw ,w 3
® & & oy v Vo WEEEEEW x4 Oy 4 & 0€
“““““““““““““““““““ WIS B (08) w oo
(2192 (1292 gy | LSOV, (1192 (0%
Y3I4ILN3Al Y3I4ILN3al s : ¥3I4ILN3Al Y3IILNAl
e B M 8Y) b i e e e m
((€)v2) (2)¥2) . (SILINn ! (g L (o)
~ Y3INNOD Y3LNNOD . NOILNO3X3 ! ; 93LNNOD ; ¥3LNNOO
| NVHO0Ud | LGOI B B B R m { WWHO0Hd JIVHO0ud |
R R (8¢) S30UNOSTY [m [m
o Aeled) - @ed) FAYMAHYH 03uVHS oWz o)
(8)43LSI93d | (S)43LS193d 3 (84318193 | ; (S)¥3LSI193Y |
.. JOdINQD | .. JOUINOD . 1O4INOO (. JOINOD
-~ ((€)oz) ((Zoz) - (O P (loog)
(Shudo _(Shddo . (SO . SO
N4
((¢)s)) ((2)81) ((1)81) ((0)81)
(S/43LSIOTY ONETEE YR P00 B S IR SN (S)431SI93Y
JLVAINd EINZNE TOMLNOD ALVAId ALVAINd
((e)y1) (@1) (L)1) (1)
Qv3YHL FIVMQUYH | | AYIYHL FEYMAYVH (z1) Av3IYHL FIVMQUVYH | | QYIYHL FEYMAYVH
1IN0YI0 ONIONY VS
((1)91) ¥3LsN1o avo1 OINYNACQ ((0)91) ¥3LSN10

(01) 340D ¥OSSID0Hd 0I™IALSNTD

PCT/US2015/026634

WO 2015/171295

2/6

¢ OId

((1)82)
S304N0SIY ¥ALSNTD AIYVHS

((0)g2)
S304N0SIY ¥IALSNTD AIYVHS

a o)
((€)9z) ((2)92)
Y3I4ILNAAl NEEILE
((€)¥9) ((2)¥9)
INJLNOD INIINOD
((e)g)) ((2)8))
(SREIRRER (S)¥3LsIvH3Y
JLVAINd JLVAINd
((£)09) ((2)09)
AVIYHL IIYMLA0S | | QVIYHL IUYMLIH0S
ONILNDAXT ((§)p)) ONILND3AX3 ((2)¥))
AVIYHL IUYMAYYH | | QYIYHL IHYMAYYH

(z9)
JHOVO Y1va

(8¢) S324NOS3Y
JUYMAYYH aIYVHS

((1)9l) ¥aLsn1o

(z)
LINN
JOY1INOD

(z1)
LINJYID ONIONYTVE
avo1 JINYNAQ

g v
((1)9z) ((0)92)
E(BIYE] NEEILE
101010 010401
((1)¥9) ((0)¥9)
INJLNOD INIINOD
((LgL) ((0)8))
(SREIRRER REIRREN!
JLVAINd J1VAINd
((1)o9) ((0)09)
AVIYHL IIYMLA0S | | QVIYHL IUYMLH0S
ONILNDAXT (L)L) ONILND3AX3 ((0)p))
AVIYHL IYYMAYYH | | QYIYHL IHYMAYYH

((0)91) ¥3Lsn1o

(01) 340D ¥OSSID0Hd dI™IALSNTD

PCT/US2015/026634

WO 2015/171295

3/6

€ old

((1)82)
S304N0SIY ¥ALSNTD AIYVHS

8

¥
&

(z9)
JHOVO VIVa |,

d 0 %
((£)9z) ((2)92)
Y3I41LN3al Y3I4ILNIAl
((ehr9) ((2)v9)
INJINOD INJINOD
((e)g1) ((2)81)
(SREIRRER (S)¥3LsIvH3Y
JLVAINd JLVAIYd
((£)09) ((2)09)
QVIYHL FYYMLA0S § | QVIYHL FHVYMLA0S
ONILNDAXT ((§)p)) ONILND3AX3 ((2)¥))
AVIYHL FUYMAYVYH | | QVIYHL FHVYMAYVYH

(8¢) S324NOS3Y
JUYMAYYH aIYVHS

2.

V.

cL 0

(z9)

A

1INN

((1)9l) ¥aLsn1o

i
&

(z1)
LINJYID ONIONYTVE
avo1 JINYNAQ

g9 | TOMINOD | ¢

((0)g2)
S304N0SIY ¥IALSNTD AIYVHS
08
¥ g v
((1)9z) ((0)92)
E(BIYE] NEEILE
5 101010 010401
((1)¥9) ((0)¥9)
INJLNOD INIINOD
((LgL) ((0)8))
(SREIRRER REIRREN!
JLVAINd J1VAINd
((1)o9) ((0)09)
AVIYHL IIYMLA0S | | QVIYHL IUYMLH0S
ONILNDAXT (L)L) ONILND3AX3 ((0)p))
AVIYHL IYYMAYYH | | QYIYHL IHYMAYYH
((0)91) ¥3LSN10

(01) 340D ¥OSSID0Hd dI™IALSNTD

PCT/US2015/026634

WO 2015/171295

4/6

v "Old

((1)82)
S304N0SIY ¥ALSNTD AIYVHS

((0)g2)
S304N0SIY ¥IALSNTD AIYVHS

a g
((€)9z) ((2)92)
Y3I4ILNAAl NEEILE

101010
((€)¥9) ((2)¥9)
INJLNOD INIINOD
((e)g)) ((2)8))
(SREIRRER (S)¥3LsIvH3Y
JLVAINd JLVAINd
((£)09) ((1)09)
AVIYHL IIYMLA0S | | QVIYHL IUYMLIH0S
ONILNDAXT ((§)p)) ONILND3AX3 ((2)¥))
AVIYHL IUYMAYYH | | QYIYHL IHYMAYYH

(z9)
JHOVO Y1va

(8¢) S324NOS3Y
JUYMAYYH aIYVHS

((1)9l) ¥aLsn1o

(z)
LINN
JOY1INOD

(z1)
LINJYID ONIONYTVE
avo1 JINYNAQ

o) v
((1)9z) ((0)92)
E(BIYE] NEEILE
010401
((1)¥9) ((0)¥9)
INJLNOD IN3ILINOD
((LgL) ((0)8))
(SREIRRER REIRREN!
JLVAINd J1VAINd
((z)09) ((0)09)
AVIYHL IIYMLA0S | | QVIYHL IUYMLIH0S
ONILNDAXT (L)L) ONILND3AX3 ((0)p))
AVIYHL IUYMAYYH QYIYHL IHYMAYYH

((0)91) ¥3Lsn1o

(01) 340D ¥OSSID0Hd dI™IALSNTD

WO 2015/171295 PCT/US2015/026634

5/6

84
DETERMINE WHETHER A LOAD IMBALANCE CONDITION EXISTS
BETWEEN A FIRST CLUSTER (16(0)) AND A SECOND CLUSTER (16(1))
OF A CLUSTERED PROCESSOR CORE (10)
|
|
! {7 o e 86
L ———pi DETECT AN UNDERUTILIZATION OF THE SECOND T
| ; CLUSTER (16(1)) ; |
mmmmmmmmmmmmmmmmmmmmmmm |
|
|
| g e 88
: | DETECT APOTENTIAL REDUCTION INENERGY |
—==> CONSUMPTION OF THE CLUSTERED PROCESSOR =~ === =
! CORE (10) | |
B o o e v o o o e v o o o e |
|—————— e ———— J
|
90 ®
LOAD IMBALANCE ™
_ CONDITION EXISTS? el

TRANSFER A CONTENT (64(1)) OF ONE OR MORE PRIVATE REGISTERS
(18(1)) OF A FIRST HARDWARE THREAD (14(1)) OF THE FIRST 94
CLUSTER (16(0)) TO ONE OR MORE PRIVATE REGISTERS (18(2)) OF A
SECOND HARDWARE THREAD (14(2)) OF THE SECOND CLUSTER
(16(1)) VIA SHARED HARDWARE RESOURCES (38) COMMUNICATIVELY
COUPLED TO THE FIRST HARDWARE THREAD (14(1)) AND THE
SECOND HARDWARE THREAD (14(2))

W 96

EXCHANGE A FIRST IDENTIFIER (26(1)) ASSOCIATED WITH THE FIRST
HARDWARE THREAD (14(1)) WITH A SECOND IDENTIFIER (26(2))
ASSOCIATED WITH THE SECOND HARDWARE THREAD (14(2)) VIA THE
SHARED HARDWARE RESOURCES (38)

FIG. 5

PCT/US2015/026634
6/6

WO 2015/171295

9 'Ol

i i
m

1 ivaa 04aa {4
g
! m
(911) (1) (811) m (e :

Ll il 43T104LNOD

(5)30IA3a (5)30IA3a {SEonaq we\w NEN M
1nd1no 1ndNI IOMLIN ! ,,,M

2 & Ay B i

A w %
(901) SNG WALSAS
F-N E-%
4 5
” (0z1)
S)4371T0HLNOD
(z01) (¥01) IHOVD IS
(S)40SS3004d
(001) (SINdD 4
(SIAVdSIa ($4058390¢d

w@\

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/026634

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

4 August 2011 (2011-08-04)

3 March 2011 (2011-03-03)
paragraph [0028]

24 October 2013 (2013-10-24)
the whole document

paragraph [0021] - paragraph [0038]

paragraph [0037] - paragraph [0055]
paragraph [0064] - paragraph [0068]

X US 20117191776 Al (BOSE PRADIP [US] ET AL) 1-24

A US 2011/655838 Al (MOYES WILLIAM A [US]) 1-24

A US 2013/283277 Al (CAI QIONG [ES] ET AL) 1-24

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

24 June 2015

Date of mailing of the international search report

03/07/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Moraiti, Marina

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/026634
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011191776 Al 04-08-2011 NONE
US 2011055838 Al 03-03-2011 US 2011055838 Al 03-03-2011
WO 2011025720 Al 03-03-2011

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report

