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TITLE OF THE INVENTION
AUTOMATED METHOD AND SYSTEM FOR THE DETECTION OF

ABNORMALITIES IN SONOGRAPHIC IMAGES

[0001] The present invention was made in part with U.S. Government support under grant
number CA89452 and T31 CA09649 from the USPHS, and U.S. Army Medical Research and

Materiel Command 97-2445.

CROSS-REFERENCE TO RELATED APPLICATION
[0002] The present application claims priority to U.S. Provisional Patent Application
60/332,005 filed November 23, 2001, entitled “Automated Method and System for the

Detection of Abnormalities in Sonographic Images.”

BACKGROUND OF THE INVENTION
Field of the Invention
[0003] The invention relates generally to the field of computer-assisted diagnosis in the
detection of abnormalities in sonography images. It describes a method and system that
employ an abnormality detection module for the computer assisted interpretation of medical
sonographic images. The technique includes background preprocessing, radial gradient
processing, thresholding, and region growing. This technique is useful for analyzing
abnormalities including, but not limited to, cysts, benign solid lesions, and malignant
(cancerous) lesions.

[0004] The present invention also generally relates to computerized techniques for
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automated analysis of digital images, for example, as disclosed in one or more of U.S. Patents
4,839,807; 4,841,555; 4,851,984, 4,875,165; 4,907,156; 4,918,534; 5,072,384, 5,133,020;
5,150,292; 5,224,177, 5,289,374; 5,319,549; 5,343,390; 5,359,513; 5,452,367, 5,463,548;
5,491,627, 5,537,485; 5,598,481, 5,622,171; 5,638,458; 5,657,362; 5,666,434; 5,673,332;
5,668,888; 5,732,697; 5,740,268; 5,790,690; 5,832,103; 5,873,824, 5,881,124; 5,931,780;
5,974,165; 5,982,915; 5,984,870, 5,987,345; 6,011,862; 6,058,322; 6,067,373, 6,075,878;
6,078,680; 6,088,473; 6,112,112; 6,138,045; 6,141,437; 6,185,320; 6,205,348; 6,240,201;
6,282,305; 6,282,307, 6,317,617 as well as U.S. patent applications 08/173,935; 08/398,307
(PCT Publication WO 96/27846); 08/536,149; 08/900,189; 09/027,468; 09/141,535;
0\9/471,088; 09/692,218; 09/716,335; 09/759,333; 09/760,854; 09/773,636; 09/816,217;
0‘9/830,562; 09/818,831; 09/842,860; 09/860,574; 60/160,790; 60/176,304; 60/329,322;
09/990,311; 09/990,310; 09/990,377; and 60/331, 995; and PCT patent applications
PCT/US98/15165; PCT/US98/24933; PCT/US99/03287; PCT/US00/41299;
PCT/US01/00680; PCT/US01/01478 and PCT/US01/01479, all of which are incorporated
herein by reference.

[0005] The present invention includes use of various technologies referenced and
described in the above-noted U.S. Patents and Applications, as well as described in the
references identified in the following LIST OF REFERENCES by the author(s) and year of

publication and cross referenced throughout the specification by reference to the respective

number, in parentheses, of the reference:

LIST OF REFERENCES
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Sickles EA. Breast Imaging: From 1965 to the Present. Radiology, 151:1-16, 2000.
Warner E, Plewes DB, Shumak RS, Catzavelos GC, Di Prospero LS, Yaffe MJ,
Ramsay GE, Chart PL, Cole DEC, Taylor GA, Cutrara M, Samuels TH, Murphy JP,
Murphy JM, and Narod SA. Comparison of Breast Magnetic Resonance Imaging,
Mammography, and Ultrasound for Surveillance of Women at High Risk of
Hereditary Breast Cancer. J Clin Oncol, 19:3524-3531, 2001.

Weber, WN, Sickles EA, Callen PW, and Filly RA. Nonpalpable Breast Lesion
Localization: Limited Efficacy of Sonography. Radiology, 155:783-784, 1985.
Hilton SV, Leopold GR, Olson LK, and Wilson SA. Real-Time Breast Sonography:
Application in 300 Consecutive Patient. Am J Roentgenol, 147:479-486, 1986.
Sickles EA, Filly RA, and Callen PW. Benign Breast Lesions: Ultrasound Detection
and Diagnosis. Radiology, 151:467-470, 1984.

Velez N, Earnest DE, and Staren ED. Diagnostié and Interventional Ultrasound for
Breast Disease. Am J Surg, 280:284-287, 2000.

Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, and Sisney GA. Solid
Breast Nodules: Use of Sonography to Distinguish Between Benign and Malignant
Lesions. Radiology, 196:123-134, 1995.

Rahbar G, Sie AC, Hansen GC, Prince JS, Melany ML, Reynolds HE, Jackson VP,
Sayre JW, and Bassett LW. Benign Versus Malignant Solid Breast Masses: Use
Differentiation. Radiology, 213:889-894, 1999.

Chen D-R, Chang R-F, and Huang Y-L. Computer-aided Diagnosis Applied to Use of
Solid Breast Nodules by Using Neural Networks. Radiology, 213:407-412, 1999.
Buchberger W, DeKoekkoek-Doll P, Springer P, Obrist P, and Dunser M. Incidental

Findings on Sonography of the Breast: Clinical Significance and Diagnostic Workup.
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Am J Roentgenol, 173:921-927, 1999.

Berg WA and Gilbreath PL. Multicentric and Multifocal Cancer: Whole Breast Use
in Preoperative Evaluation. Radiology, 214:59-66, 2000.

Zonderland HM, Coerkamp EG, Hermans J, van de Vijver MJ, and van Voorthuisen
AE. Diagnosis of Breast Cancer: Contribution of Use as an Adjunct to
Mammography. Radiology, 213:413-422, 1999.

Moon WK, Im J-G, Koh YH, Noh D-Y, and Park IA. Use of Mammographically
Detected Clustered Microcalcifications. Radiology, 217:849-854, 2000.

Bassett LW, Isracl M, Gold RH, and Ysrael C. Usefulness of Mammography and
Sonography in Women < 35 Yrs Old. Radiolography, 180:831, 1991.

Kolb TM, Lichy J, and Newhouse JH. Occult Cancer in Women with Dense Breasts:
Detection and Screening Use - Diagnostic Yield and Tumor Characteristics.
Radiology, 207:191-199, 1998.

Giger ML, Al-Hallag H, Huo Z, Moran C, Wolverton DE, Chan CW, and Zhong W.
Computerized Analysis of Lesions in Use Images of the Breast. Acad Radiol, 6:665-
674, 1999.

Garra BS, Krasner BH, Horii SC, Ascher S, Mun SK, and Zeman RK. Improving the
Distinction Between Benign and Malignant Breast Lesions: The Value of Sonographic
Texture Analysis. Ultrason Imaging, 15:267-285, 1993.

Chen DR, Chang RF, and Huang YL. Computer-aided Diagnosis Applied to Use of
Solid Breast Nodules by Using Neural Networks. Radiology, 213:407-412, 1999.
Golub RM, Parsons RE, Sigel B, and et el. Differentiation of Breast Tumors by
Ultrasonic Tissue Characterization. J Ultrasound Med, 12:601-608, 1993.

Sahiner B, LeCarpentier GL, Chan HP, and et el. Computerized Characterization of
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Breast Masses Using Three-Dimensional Ultrasound Images. In Proceedings of the
SPIE, volume 3338, pages 301-312, 1998.

21.  Horsch K, Giger ML, Venta LA, and Vyborny CJ. Computerized Diagnosis of Breast
Lesions on Ultrasound. Med Phys, 2001. In press.

22.  Kupinski MA and Giger ML. Automated Seeded Lesion Segmentation on Digital
Mammograms. [EEE Trans Med Im, 17:510-517, 1998.

23.  Horsch K, Giger ML, Venta LA, and Vyborny CJ. Automatic Segmentation of Breast
Lesions on Ultrasound. Med Phys, 28:1652-1659, 2001.

24. Tohno E, Cosgrove DO, and Sloane JP. Ultrasound Diagnosis of Breast Disease.
Churchill Livingstone, Edinburgh, Scotland, 1994.

25.  Kupinski MA, Edwards DC, Giger ML, and Metz CE. Ideal Observer Approximation
Using Bayesian Classification Neural Networks. IEEE Trans Med Im, 20:886-899,
2001.

26.  Metz CE. Basic Principles of ROC Analysis. Sem Nucl Med, 8:283-298, 1978.

[0006] The contents of each of these references are incorporated herein by reference. The

techniques disclosed in the patents and references can be utilized as part of the present

invention.

Discussion of the Background

[0007] Breast cancer is the leading cause of death for women in developed countries.
Detection of breast cancer in an early stage increases success of treatment dramatically, and
hence screening for breast cancer of women over 40 years of age is generally recommended.
Current methods for detecting and diagnosing breast cancer include, for example,

mammography, sonography (also referred to as ultrasound), and magnetic resonance imaging
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(MRI). Mammography is the standard method used for periodic screening of women over 40
years of age. MRI has recently gained interest as a breast cancer screening tool (See
Reference 2), but has not been used widely.

[0008]  Inthe mid 1980's, sonography gained recognition as an imaging tool for breast
cancer, but at that time the results were disappointing, both for localization (See Reference 3)
and screening (See Reference 4). Sonography is currently the method of choice to distinguish
simple cysts of the breast from solid abnormalities (See Reference 5), while most radiologists
still feel uncomfortable relying on sonography to differentiate solid masses. The use,
however, of diagnostic and interventional sonography for breast cancer has grown rapidly

over the last few years (See Reference 6). Recently, several groups have shown that
\

i
sonography may be used for classification of solid benign and malignant masses (See

References 7 and 8). It has also been shown that the use of computer classification schemes
for the distinction between benign and malignant masses helped inexperienced operators
avoid misdiagnosis (See Reference 9).

[0009]  The merits of sonography as an adjunct to mammography have been explored.
Sonography is especially helpful for detection of otherwise occult malignancies in young
women with dense breasts (See Reference 10) and for preoperative evaluation, particularly
when breast conservation is considered (See Reference 11). Another study showed that the
use of sonography as an adjunct to mammography results in a relevant increase in the
diagnostic accuracy (See Reference 12). Sonography was also shown to be helpful in the
detection of masses associated with mammographically detected microcalcifications (See
Reference 13).

[0010] Mammograms of younger women are often hard to interpret. Sonography was

shown to be more effective than mammograms for women younger than 35 (See Reference

-6-
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14), and to be able to achieve similar general effectiveness as mammography for older
women. A study of the effectiveness of sonography as a screening tool for women with dense
breasts examined more than 11,000 consecutive patients (See Reference 15). All of the
women selected for sonography were women with dense breasts and normal mammographic
and physical examinations (more than 3,000). The use of sonography increased overall
cancer detection by 17%. It was shown that sonography is able to depict small, early-stage,
otherwise occult malignancies, similar in size and stage as those detected by mammography,
and smaller and lower in stage than palpable cancers in dense breasts.

[0011] This illustrates the potential of sonography as a screening tool. A fundamental
issue in the detection of abnormalities in breast tissue is the level of difficulty in performing a
correct diagnosis. Previously, the diagnosis of breast tissue in sonographic images was very
operator dependent. It required highly intensive operator training. Consequently, there are no

standard methods for diagnosing an abnormality in breast tissue for a sonographic image.

SUMMARY OF THE INVENTION
[0012] Accordingly, an object of this invention is to provide a method, system, and
computer program product. for the automated detection of abnormalities in medical
sonographic images, including using a Bayesian neural network (BNN) to determine the
likelihood of a true abnormality versus false positive (FP) detection.
[0013] This and other objects are achieved by way of a method, system, and computer
program product constructed according to the present invention, wherein a candidate
abnormality is detected in a medical image and diagnosed as either a true abnormality or as a
false detection. One such medical image environment is breast sonograms.

[0014] In particular, according to one aspect of the present invention, there is proved a

-
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novel method for detecting a candidate abnormality in a sonographic medical image, based on
determining a radial gradient index (RGI) at plural pixels, producing an RGI image,
thresholding the RGI image, determining a candidate abnormality based on the thresholding
step, locating a center point of the candidate abnormality, segmenting the candidate
abnormality including determining average radial gradients (ARDs) (See Reference 21) in the
sonographic medical image in relation to the center point, extracting plural features from the
segmented candidate abnormality, and determining a likelihood of the candidate abnormality
being an actual abnormality based on the extracted plural features.

[0015] According to other aspects of the present invention, there are provided a novel

system implementing the method of this invention and a novel computer program product,
\
]

which upon execution causes the computer system to perform the above method of the

invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] A more complete appreciation of the invention and many of the attendant
advantages thereof will be readily obtained as the same becomes better understood by
reference to the following detailed description when considered in connection with the
accompanying drawings, wherein:

Figure 1 illustrates the method for computer detection of abnormalities in sonographic
images;

Figure 2 is an illustration of each step of the computerized detection process: (a) the
original image, (b) the gray-scale inverted and median filtered image, (c) the pixel-based,
radial-gradient filtered image, (d) the thresholded image, (¢) the average radial gradient image

with suspect regions grown.
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Figure 3 shows examples of abnormality detection and then segmentation on
sonographic images of the breast: (a) cyst, (b) benign solid mass, (c) malignant mass, (d)
benign solid mass with false-positive detections, (e) malignant abnormality for which its
shadow hinders detection and segmentation, (f) subtle malignant lesion that goes undetected
(false-negative), (g) malignant lesion exhibiting substantial posterior acoustic shadowing
resulting in a computer false-positive detection plus a false-negative, and (h) computer
detection lies outside the radiologist outline, but the region grown from the detection point
has substantial overlap with the radiologist segmentation.

Figure 4 illustrates Receiver Operator Characteristics (ROC) analysis of BNN

performance.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0017] Referring now to the drawings, wherein like rleference numerals designate
identical or corresponding parts throughout the several views, as described herein, the
inventors discovered that a Bayesian neural network provides a likelihood of true abnormality
that closely corresponds to a radiologist’s diagnosis. During diagnostic breast exams at the
Lynn Sage Breast Center of Northwestern Memorial Hospital, 757 images were obtained
from 400 consecutive sonography examinations. The images were obtained using an ATL
3000 unit and were captured directly from the 8-bit video signal. The number of images
available per patient varied from one to six. The cases were collected retrospectively and had
been previously diagnosed (i.e., by biopsy or by aspiration). Of the 400 sonographic cases,
124 were complex cysts (229 images), 182 were benign solid lesions (334 images), and 94
were malignant solid lesions (194 images).

{0018] In order to obtain initial indicators of the performance of the methods described

9.
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herein, 36 “normal” images were constructed from images in the database that contained
substantial normal areas. The average image size of the “normal” images was smaller than
the average overall image size by approximately a factor of 3 (3 84mm?® as compared with
1120mm®).

[0019] As shown in Figure 1, the detection of abnormalities in sonographic images
includes obtaining a preprocessed image, automated pixel-based radial gradient filtering (RGI
filtering), and ARD segmentation. In sonographic images, abnormalities are almost
invariably darker than the background, thus the image gray scale is inverted prior to RGI
filtering. The size of the sonography images varies, as well as the pixel size. The average

image area is 1120mm?®, while the image height ranges from 15mm to 48mm. The average

\
!

pixel size equals 96 microns. In order to suppress the sonographic speckle, the images are
pre-filtered using a square median filter with a side of 0.95mm. Images thus pre-processed,
as shown in step S102, form the input to the RGI filtering technique of step S104. In order to
speed up the RGI-filtering, the preprocessed images are subsampled with a factor of 4. The
threshold for the RGI filtered image is varied step-wise from 0.74 to 0.66, until at least one
area of interest is detected, in steps S106, S108, and S110. Detected areas smaller than S5mm?
are discarded, since those are likely due to artifacts.

[0020] The filtering technique of step S104 for abnormality detection is based on the
radial gradient index (RGI) of computer-generated contours of candidate abnormalities. (See
Reference 22). Abnormality-like shapes are obtained by first multiplying the image with a
constraining function, a two-dimensional (2D) isotropic Gaussian, having a width of 15mm,

using the following equation for a 2D homogeneous Gaussian centered at ( u,, i, ):

-10-
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1 - . 1)
R 1 x? =& =, N ’ b »J )
GL (4, 14,) STyl (MZ)ECig(x y) e £(x, )

x,Y)EC;

Here, 3(x,y)is the gradient vector, | g(x, y )| its length, and #(x, y)the unit radial vector

pointing from ( 4,4, ) to (x,y). By definition, RGI values are between -1 and +1, where an

RGI value of +1 signifies that along the contour all gradients point radially outward, and
where an RGI value of -1 means that all gradients point radially inward. Actual abnormalities

are expected to have absolute RGI values of close to 1. For a given image point (4, 4, ), the
contour with the maximum RGI value is selected and this value is assigned to the (x4, )

coordinate in the filtered image. The RGI filtered image subsequently undergoes thresholding
in step S106 to determine regions of interest (ROIs), such as candidate abnormalities, in step
$108. If no candidate abnormality has been detected in step S108, the threshold is relaxed in
step S110 and thresholding in step S106 is repeated. Steps S1 10 and S106 are repeated until
the output of step S108 is “yes,” indicating that a candidate abnormality has been detected.
[0021] For all detected areas, the geometric center is determined in step S112, and stored
for later use in abnormality segmentation. The image gray level data is denoted by I(m, n)
where m = (0, 1,---,M, =1)and n=(0, 1,---,N, —=1). M;is the number of pixels in the lateral
direction of the image and N; is the number of pixels in the depth direction of the image. The
gradient image is denoted by VI and is computed using Sobel filters. The gray level data of a
subimage, or RO, is denoted by R(m, n) where m=(0, 1,---,M, -1) and

n=(0,1,-,N, —1). Mgis the number of pixels in the lateral direction of the ROI and Nk is
the number of pixels in the depth direction of the ROL The points on the candidate

abnormality margin have x and y coordinates (¥,(j),¥,(j)) where the index

-11-
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j=(0,1,---,J —1) and J is the number of points in the margin. A vector 7(m,n) of unit
length is also required in the radial direction from the geometric center of the candidate

abnormality to the point indexed by (m, n).

[0022] The geometric center of the candidate abnormality is computed by:

A ’ A @

(m_,n

¢ c

)= [ZmZnL(m,n)m > mXnL(m,n)n

where L(m,n) is the candidate abnormality mask, a binary image having value 1 within the
image and 0 (zero) elsewhere. A is the area of the candidate abnormality.

[0023] After ROIs are located by RGI filtering and their centers are documented as points
of\interest, a region growing algorithm is applied to determine candidate abnormality
m,argins, in step S114. (See Reference 23). In step S114, ARD is also used to segment. (See
Reference 23).

[0024] In order to study the sensitivity of the segmentation algorithm on the choice of
variance, both manual and automatic width and height estimation were performed. The
segmentation algorithms using manually and automatically estimated candidate abnormality
width and height are referred to as partially automatic and fully automatic, respectively.
[0025]  In fully automated candidate abnormality segmentation using ARD, estimations of
the candidate abnormality width and height are determined by Sobel edge detection.

[0026] If C is the constraint function to be used in ARD segmentation, then the resulting

image is:

B
| 3)

I = P2 |~
o1 e

-12-
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where P is the pixel location. Inverting the image changes the candidate abnormality from
dark (low gray values) to light (high gray values). The constraint function should have higher
gray values in the region of the candidate abnormality and gray values near zero far from the

candidate abnormality. Here, a Gaussian is used as the constraint function. The Gaussian is

centered at the manually defined candidate abnormality center, /2 :

= "2A T .

o2 0
K:(O 02]’ ®)

where o7 and 0'; are the variances in the lateral and depth direction, respectively. The

variances are chosen as
h
o,=—, 0,=— (6)
2

with w being the estimated candidate abnormality width and h being the estimated candidate
abnormality height (or depth).
[0027]  In partially automatic segmentation using ARD, a manual estimation of the

candidate abnormality width and height is achieved using the manually delineated candidate
abnormality margin. If ¥(i) = (y,(i),,(@)) is a discrete parametrization of the manually
delineated margin with ¥, and y, being the coordinates in the lateral and depth direction,

respectively, then,

-13-
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Woanat = Max (,(2)) — min (3,() , )

h

‘manual

= max(r,(0)) - min(r,()- ®)

[0028] In fully automatic candidate abnormality segmentation, estimations of the

candidate abnormality width and height are determined through Sobel edge detection. The

Sobel filtered images are defined by

=~
]

!

~ ™

’ )

]

x Fx*
= *
y Fy

vx\,/here 1 is the preprocessed image, * is the convolution operator, and F and Fy are 3x3

Sobel filters in the lateral and depth direction, respectively,

-1 0 1 1 2 1
F,=[-2 0 2|, F=l0 0 0| (10)
-1 01 -1 -2 -1

Estimations of the locations of the candidate abnormality edges along horizontal and vertical

lines through the candidate abnormality center are given by
x, =arg( min LG, #,)),
7
x =arg( max I,(G,u,)),

et a1
¥, =arg( min I,(x,,0),

i€llu,]
y =arg( max T (x,.0).
i€ [N,
The estimated locations of candidate abnormality edges are then used to estimate the
candidate abnormality width and height by

Wastomatic = 2 min(:ux XX~ ﬂx), (12)

-14-
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Pomaic = 20D, — Yo, ; = H,)- (13)
For the width, instead of using the length between the left and right edges, twice the
minimum of the lengths between the candidate abnormality center and the left and right edges
is used. This is done to avoid the overestimation that may result when distant pixels are
mistaken for the candidate abnormality edge. The same prevention of overestimation is
applied for automatic lesion height estimation. The candidate abnormality segmentation that
results from using such estimation will err on the side of "under growing" rather than "over
growing."
[0029] When Wauomaric and Hauomaric are used in Equation (4), the candidate abnormality
center is the only information defined manually that is needed by the segmentation algorithm.
[0030] The variances in the width and depth direction for the Gaussian constraint function
are varied adaptively and automatically for each image. After applying the Gaussian
constraint function to the inverted preprocessed image, gr,ay-value thresholding defines
partitions whose margins are potential candidate abnormality margins. The potential margin
that maximizes the utility function on the preprocessed image then defines the candidate
abnormality margin. The utility function used in this segmentation algorithm is the Average
Radial Derivative (ARD), shown in step S114, which gives the average directional derivative

in the radial direction along the margin,

1 - n 14
ARD( f, 1)) =— D &(x.y)*7(x,y), 14)
(x.YECi

where N is the number of points in the contour C;. The same constraining function is used to
bias the region growing algorithm to abnormality-like contour shapes. The result is illustrated
in Figure 2(e). Once grown using ARD segmentation in step S114, various features are

-15-
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extracted in step S116, including abnormality shape, echogenic texture, and posterior acoustic
enhancement or shadowing.

[0031] In the clinical evaluation of breast sonography, radiologists take into account
features such as abnormality shape, margin sharpness, echogenic texture, posterior acoustic
enhancement and shadowing (See Reference 23 and U.S. Patent No. 5,984,870). Features of
cysts, benign solid masses and malignant abnormalities differ to a Jarge extent. Cysts are
often hybercchogenic, show posterior acoustic enhancement, have sharp margins, and are
wider than they are tall. Benign solids tend to be hyperechogenic, and may show posterior
acoustic shadowing. Malignant masses tend to have unsharp margins, irregular shapes, are
hypoechogenic, may show significant posterior acoustic shadowing, and may be taller than
tl;ey are wide. Even though the feature characteristics differ, true abnormalities show strong
features, while the spuriously grown regions from false detections show weak features, or
uncommon feature combinations.

[0032] The detections, specifically the grown regions, are classified as true positive (TP)
or false positive (FP) employing a Bayesian neural network (BNN). Analysis is performed
using four similar features that are used to distinguish benign and malignant sonographic
abnormalities: depth-to-width ratio, RGI value (obtained from Equation 1), texture, and
posterior acoustic behavior of the candidate abnormality (See References 21 and 23). These
features are extracted automatically in step S116.

[0033] In order to obtain the depth-to-width ratio (DWR), the following equation is

applied:

(15)

where j = (0, 1, ..., J-1). Cysts and benign solids tend to be wider than they are deep and
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benign lesions, therefore, tend to yield smaller values for the DWR than malignant lesions.
[0034]  Texture is quantified using the autocorrelation in depth of R. The gray level
values in the minimal rectangular ROI containing the candidate abnormality, are used to

define:

"l C,(n)
COR = =2 (16)
= C,0)
where the autocorrelation in depth and its sum in the lateral direction are:
Cleni) = .3 R pIR G a7
, = - )
_ Mp=~1-n
C,(m) = Y C,(mn). (18)
m=0

[0035] Because the COR is a sum and not an average, it includes both texture information
and size information.

[0036]  Posterior acoustic behavior compares the gray-level values posterior to the
candidate abnormality with the gray-level values of tissue adjacent to the candidate
abnormality at the same depth. This comparison considers differences in the average gray
level values of the appropriate ROI. To avoid edge shadows, the ROl is defined as the
candidate abnormality itself minus a portion of the candidate abnormality’s lateral sides. The
left, post, and right ROIs are rectangular with the same width and area as the ROI which
includes the candidate abnormality itself minus a portion of the candidate abnormality’s
lateral sides. The posterior acoustic behavior feature is the minimum side difference (MSD).

The minimum is chosen in order to err on the side of malignancy. The posterior acoustic

behavior is defined as:
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MSD = min (A, = A » Apost ~ Arign)s 19)

where A, A,;,and A, are the average gray-level values over the appropriate ROL

post?
[0037]  These feature values form the input for a Bayesian neural network (BNN) with
five hidden layers and one output node in step S118. The output is a measure for the
confidence that a given candidate abnormality is a true abnormality in step S120.
[0038] In the final stage, the likelihood that a given candidate abnormality represents an
actual abnormality is calculated for all candidate abnormalities. Receiver Operator
Characteristics (ROC) analysis was used to evaluate the BNN. (See Reference 26). The BNN
outputs were validated using round-robin and jack-knife techniques.
[Q039] The performance of the initial detection algorithm based on RGI filtering was
assessed by determining whether or not the detected points fell within the radiologist
abnormality outlines. Points within the contour were defined as TP detections, and those that
fell outside the contour were defined as FP detections. The results are summarized in Table
1. Table 1 demonstrates the performance as a function of the lower boundary of the RGI
threshold value, and the resulting true-positive and falsé—positive detections. For the majority
of images, an RGI threshold value of 0.74 resulted in detection points. For less than 30% of
the images, the RGI threshold value was iteratively lowered. The number of FPs increased as
the RGI threshold value was lowered to obtain a detection. Analysis of the entire database
(757 images) at a fixed threshold of 0.74 resulted in a true-positive fraction (TPF) of only
0.66 (by image, at 0.41 FP/image). By use of this iterative threshold method, a TPF of 0.87 at
an FP/image of 0.76 was obtained. Moreover, the iterative thresholding method resulted in
substantially lower FP rates than would be obtained by employing a fixed lower value for the

RGI threshold of 0.62, which resulted in a TPF 0.89 at a cost of 2.0 FP/image.
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Table 1
RGI Threshold Number of Images Overall TPF Overall FP/image
Analyzed
0.74 536 0.66 0.41
0.7 98 0.76 0.54
0.66 87 0.83 0.68
0.62 36 | 0.87 0.76

[0040] Table 2 discloses the detection performance for different types of abnormalities.
TP detections are given both per image and per case. Complex cysts were the easiest to
detect by RGI filtering, with a TPF by image and TPF by case being almost identical,
indicating that cysts are usually well visible in multiple images of a given case. The ease of
detection was also reflected in the low number of FP detections per image. Since cysts tend
to be round and well-defined in an image, they were found at the highest RGI threshold value.
For benign solid masses the TP detection rate is lower than for cysts, due to the presence of
complicated image features such as vague abnormality edges, irregular abnormality shapes
and post-abnormality shadowing. The difference between true detections by case and by
image was larger, illustrating the importance of viewing irregularly shaped 3D objects from
different angles when limited to a 2D imaging technique.

[0041] Malignant abnormalities are by far the hardest to detect. They are often highly
irregular in shape, sometimes extremely small, and often extensive shadowing complicates

detection. The high FP detection rate illustrated that malignant abnormalities look more like
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non-abnormality image structures. More effort, i.e., iterative lowering of the RGI threshold
value, is often necessary to determine ROIs in images with subtle abnormalities, resulting in
detection of both abnormality and non-abnormality regions. On the other hand, shadows are
very prominent in a large number of these images, resulting in multiple detection points
within the abnormality shadows at the hi ghest threshold value. For malignant abnormalities,
the difference in TP detection on a by image and a by case basis is the largest, as expected
from thé complicated image features for malignant abnormalities.

[0042] The number of images and cases that did not result in any false detections was also
of interest, especially in a screening environment, as shown in Table 2. The results for cysts

and benign solid masses are almost identical. For malignant abnormalities, still almost half of
\

!
the images had no FP detections, suggesting that FP detections tend to occur in groups,

perhaps due to characteristics of the sonographic parenchymal pattern.

Table 2
Image Set TPFby | TPFbycase | FP/image | % without FPsby | ¢, without
image image FPs by case
entire database 0.87 0.93 0.76 53 39
cysts 0.95 0.97 0.64 55 40
benign solid 0.86 0.92 0.77 54 41
malignant 0.78 0.87 0.88 49 35

[0043] Analysis of the 36 constructed “normal” images resulted in 6 FP detections (0.17
FP/image). When taking into consideration that these constructed images are a factor of 3

smaller on average than the database images, an estimate of 0.51 FP/image for average sized
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normal images was obtained. This was considerably lower than the 0.76 FP/image found for
the entire database, and probably due to edge effects. These results confirm that this approach
does not introduce many FP detections in normal images.

[0044]  Examples of automated detection and segmentation are shown in Figure 3, (a) -
(h). Some sonographic characteristics, extensive shadowing behind abnormalities in
particular, make abnormality detection and/or segmentation fnore difficult. Shadows often
occur behind malignant and benign solid abnormalities because of the abnormalities’ sound
absorbing properties. These dark regions can be mistaken for additional abnormalities and
frequently lead to FP detections, as illustrated in Figure 3(d). Moreover, in some cases the
abnormality shadow is the most prominent entity in an image, while the abnormality itself is
vague, which results in detection of the shadow rather than of the abnormality itself. Even
when an abnormality is detected, shadowing may influence the region growing and cause part
of the shadow to be segmented along with the abnormalitir as illustrated in Figure 3(e). Edge
shadows, with or without posterior acoustic enhancement as often seen for cysts, do not seem
to cause any problems for this detection and segmentation procedure.

[0045] In order to distinguish FPs from abnormalities, it was discovered that a BNN was
very useful. For this purpose, the database was divided in half: half of the cases for each
abnormality type were used for training, the other half for testing. A seven-layer BNN was
designed, with an input layer, an output layer, and five hidden layers. The input units
represented selected features extracted from the abnormalities, the single output unit is a
likelihood of a true abnormality. While varying numbers of hidden layers were evaluated
through experimentation, five is the preferred number. It is expected that the likelihood of
true abnormality correlates well with a radiologist's determination. Similarly, classifiers such

as linear discriminants and artificial neural networks (ANNs) may also be used to determine
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the likelihood of a true abnormality.

[0046] Various combinations of features for inputs were tested for the determination of a
likelihood of true abnormality. (See U.S. Pat. No. 5,984,870).

[0047] In order to evaluate the peformance of the BNN in distinguishing abnormalities
from FPs, jack-knife analysis was used. The database was split in half ten (10) times, where
each time half of the cases for each abnormality type were randomly selected for training and
the other half was used for testing. The ROC curves used to classify the detected abnormality
sites as cancerous or not cancerous are shown in Figure 4. The A, values (area under the
ROC curve and a measure for performance) are 0.88 and 0.82 for training and testing,
rc\fpectivcly. The difference in the A, values resulted from suspected slight over-training of
th,e network, and the fact that the randomly selected training set was easier than the set used
for testing (obvious when training and testing set are interchanged; A, values of 0.86 and 0.83
were obtained, respectively, for training and testing).

[0048] Subsequently, a round-robin analysis was performed for the entire database. Here,
each case was singled out sequentially for testing, while the BNN was trained on the
remaining cases. This resulted in an A, value of 0.84, which was comparable to the
performance found for distinguishing different abnormality types in sonography using linear
discriminant analysis (based on feature analysis of regions grown from the center of the

radiologist segmented abnormality). (See References 21 and 23). The detection results for

various thresholds of the BNN are shown in Table 3.
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Table 3: BNN Thresholds
BNN threshold FPF TPF by image TPF by case FP/image
0.23 0.6 0.86 0.93 0.34
0.06 0.8 0.89 0.94 0.48
0 1 0.9 0.95 0.61
The overall performance of the method is summarized in Table 4 below.
Table 4: Summary of Performance After Each Stage
Stage TPF by image | TPF by case | FP/image
RGI filtering and iterative thresholding 0.87 0.93 0.76
procedure
ARD region growing (segmentation) 0.9 0.95 0.61
BNN classifier (at FPF=0.8) 0.89 0.94 0.48

[0049]

In summary, the computer-aided scheme for determining the location of

abnormalities in medical images can be implemented based on the likelihood of abnormality

defined above. First, a database of medical images with a variety of abnormalities is created,

from which many pairs of similar images are selected. The locations and likelihood of

malignancy are determined and the BNN is trained by use of the determinations and a number

of features extracted from the candidate abnormality.

Computer and System

[0050]
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purpose computer or micro-processor programmed according to the teachings of the present
invention, as will be apparent to those skilled in the computer art. Appropriate software can
readily be prepared by programmers of ordinary skill based on the teachings of the present
disclosure, as will be apparent to those skilled in the software art.

[0051] As disclosed in cross-referenced U.S. Patent Application 09/818,831, a computer
implements the method of the present invention, wherein the computer housing houses a
motherboard which contains a CPU, memory (e.g., DRAM, ROM, EPROM, EEPROM,
SRAM, SDRAM, and Flash RAM), and other optical special purpose logic devices (e.g.,
ASICS) or configurable logic devices (e.g., GAL and reprogrammable FPGA). The computer

also includes plural input devices, (e.g., keyboard and mouse), and a display card for
\

/
controlling a monitor. Additionally, the computer may include a floppy disk drive; other

removable media devices (e.g. compact disc, tape, and removable magneto-optical media);
and a hard disk or other fixed high density media drives, connected using an appropriate
device bus (e.g., a SCSI bus, an Enhanced IDE bus, or an Ultra DMA bus). The computer
may also include a compact disc reader, a compact disc reader/writer unit, or a compact disc
jukebox, which may be connected to the same device bus or to another device bus.

[0052] As stated above, the system includes at least one computer readable medium.
Examples of computer readable media are compact discs, hard disks, floppy disks, tape,
magneto-optical disks, PROMs (e.g., EPROM, EEPROM, Flash EPROM), DRAM, SRAM,
SDRAM, etc. Stored on any one or on a combination of computer readable media, the
present invention includes software for controlling both the hardware of the computer and for
enabling the computer to interact with a human user. Such software may include, but is not
limited to, device drivers, operating systems and user applications, such as development tools.

Such computer readable media further includes the computer program product of the present
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invention for performing the inventive method herein disclosed. The computer code devices
of the present invention can be any interpreted or executable code mechanism, including but
not limited to, scripts, interpreters, dynamic link libraries, Java classes, and complete
executable programs. Moreover, parts of the processing of the present invention may be
distributed for better performance, reliability, and/or cost. For example, an outline or image
may be selected on a first computer and sent to a second computer for remote diagnosis.
[0053]  The invention may also be implemented by the preparation of application specific
integrated circuits or by interconnecting an appropriate network of conventional component
circuits, as will be readily apparent to those skilled in the art.

[0054] Numerous modifications and variations of the present invention are possible in
light of the above teachings. It is therefore to be understood that within the scope of the

appended claims, the invention may be practiced otherwise than as specifically described

herein.
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CLAIMS:

1. A method of detecting a candidate abnormality in a sonographic medical image,
comprising the steps of:

obtaining a sonographic medical image;

determining a radial gradient index (RGI) at plural pixels to produce an RGI image;

thresholding the RGI image;

determining a candidate abnormality in the RGI image based on the thresholding step;
and

locating a center point of the candidate abnormality in the RGI image and a
corresponding center point in the sonographic image.

2. The method of Claim 1, further comprising:

segmenting the candidate abnormality in the sonographic image based on the center
point in the sonographic image, including determining average radial gradients (ARDs) in the
sonographic medical image.

3. The method of Claim 2, further comprising:

extracting plural features from the segmented candidate abnormality; and

determining a likelihood of the candidate abnormality being an actual abnormality
based on the extracted plural features.

4. The method of Claim 1, wherein the thresholding step comprises:

iteratively thresholding the RGI image.

5. The method of Claim 4, wherein the extracting step comprises:

extracting at least four features from the group comprising candidate abnormality

shape, margin sharpness, echogenic texture, RGI value, posterior acoustic enhancement, and
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shadowing.

6. The method of Claim 3, wherein the determining a likelihood step comprises:

using a classifier; and

determining a likelihood of the candidate abnormality being an actual abnormality
based on the output of the classifier.

7. The method of Claim 6, wherein the using step comprises:

using a Bayesian Neural Network (BNN).

8. The method of Claim 7, wherein the using step comprises:

using a BNN having between 3 and 7 hidden layers.

9. The method of Claim 7, wherein the using step comprises:

using a BNN having 7 layers, comprised of an input layer, and output layer, and 5
hidden layers.

10. The method of Claim 6, wherein the using étep comprises:

using an artificial neural network (ANN).

11. The method of Claim 6, wherein the using step comprises:

using linear discriminants.

12. A system implementing the method of any one of Claims 1 through 11.

13. A computer program product storing program instructions, which when executed
by a computer system, cause the computer system to perform the method recited in any one of

Claims 1 through 11.
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