Office de la Propriete Canadian CA 2255042 C 2004/04/13

IdnJeCI)I:ﬁ;udeellle g;f?cl:lgctual ropery (11)(21) 2 255 042
Uln orgar_ﬂsme An agency of (12) BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT
13) C
(22) Date de dépdot/Filing Date: 1998/11/30 (51) CL.Int.%/Int.CI.° GO6F 9/445, GO6F 9/45
(41) Mise a la disp. pub./Open to Public Insp.: 2000/05/30 (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2004/04/13 VAN, ¥IGTOR SHITFGHUAN, GA

CHIANG, SHIRLEY S., CA,
STOKES, DAVID K., CA;
THEIVENDRA, LEONARD W., CA

(73) Proprietaire/Owner:
IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(74) Agent: SAUNDERS, RAYMOND H.

(54) Titre : CHARGEUR DE CLASSES
(54) Title: CLASS LOADER

— _~\‘-\

>

FILE SYSTEM

46 46 |ewn | 46

A T~

40
l DYNAMIC
/ . CLASS LOADER
30
DEFAULT T

CLASS LOADER

50

AUTOMATED
DEPLOYMENT

TOQL
Y /

44
L ». JAR ARCHIVING |
TOOL

28
MEMORY

pa—

INTERPRETER

(57) Abrége/Abstract:

This Invention relates to the loading of classes In programming environments, and In particular, Java programming
environments. This invention discloses a system and method that permits dynamic loading of classes during the execution of
Java programs. This invention allows for classes to be loaded despite the fact that such classes may not reside In the current
path or working directory within a Java programming environment. This invention also discloses a system and method for
archiving files in an archive file that provides customized entry names for the archived files.

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

10

T 4 A A bl -

CA 02255042 1998-11-30

CLASS LOADER

ABSTRACT OF THE DISCLOSURE

This invention relates to the loading of classes in programming environments, and in
particular, Java programming environments. This invention discloses a system and method that
permits dynamic loading of classes during the execution of Java programs. This invention allows
for classes to be loaded despite the fact that such classes may not reside in the current path or
working directory within a Java programming environment. This invention also discloses a system
and method for archiving files in an archive file that provides customized entry names for the

archived files.

CA998-053

10

15

20)

25

CA 02255042 1998-11-30

CLASS LOADER

FIELD OF THE INVENTION

This invention relates to class loaders in software environments and the dynamic loading of

classes during the execution of program files.

BACKGROUND OF THE INVENTION

Currently, 1n typical Sun Microsystems, Inc.’s Java™ software programming language
environments, the execution of Java programs first requires that the source code for these programs
be compiled into Java bytecodes, which are instructions for a virtual computer, called the Java virtual
machine (JVM). A JVM may be implemented either in software (as a JVM interpreter) or in
hardware (as a JVM chip).

Java program source code typically consists of a set of classes stored in a series of class files.
After these classes are compiled into Java bytecodes, these bytecodes are then typically loaded into
memory by a class loader for interpretation by a JVM interpreter before the associated program is
executed. Class loading can also occur when a Java program dynamically attempts to load another

class at run time.

[n current Java programming environments (e.g. the Java Development Kit (JDK) produced
by Sun Microsystems, Inc.), the default class loader makes use of an environment variable which
stores directory information on where the class loader should look for class files on a secondary
storage device. For instance, when programming in Java using the JDK, an environment variable
called CLASSPATH, is used for this purpose. In addition to directories, the CLASSPATH
environment variable can also specify Java archive files (.jar files) from which classes can be loaded.
Unfortunately, this Java programming environment does not allow for the modification of the
CLASSPATH environment variable ina JVM during the execution of a program. As aresult, certain
directories and .jar files cannot be dynamically specified at run time. Thus, the programmer 1s
required to specify the location of all classes forming part of a program to be executed prior to run
time, even 1n cases where it may not be feasible or possible to do so.

For example, in some cases, the location of certain classes which require loading 1s known

CA998-053]

10

15

20

25

CA 02255042 1998-11-30

only at run time. This situation may arise when an application to create a .jar file is being executed,
and the classes to be included in the .jar file need to be determined during execution of the
application. Alternatively, it may be impossible at run time to obtain or specify the location of
classes used by other classes or applications which reside on a remote machine.

Furthermore, standard tools for creating .jar files in Java programming environments cause
the entry name of each class file or other file in a Java archive to reflect where the file is physically
located 1n a file system, as well as where the archiving tool is being called from.

For example, when using the JDK, if files A.class and B.class in the package com.ibm.ejs
were to be placed in a jar archive file with entry names com/ibm/ejs/A.class and
com/ibm/e)js/B.class respectively, a standard Jar archiving tool might be called using the command:

jar-cvi out.jar com/ibm/ejs/A.class com/ibm/ejs/B.class
if the Jar archiving tool was called from the same directory which stores the class files for the
package com.ibm.e¢js. If the Jar archiving tool were to be called from a different directory, the input
parameters in the above command would have to be changed to reflect the location from which the
Jar archiving tool was being called. For example, if the Jar archiving tool 1s called from the directory
‘work’, the Jar archiving tool would be called using the command:

jar -cvi out.jar work/com/1ibm/ejs/A.class work/com/ibm/ejs/B.class
and as a result, the entry name of the classes in the .jar archive file will also be modified to refiect
the location from which the Jar archiving tool was being called. Therefore, if the Jar archiving tool
i1s called from the directory "work’, the entry name of A.class and B.class stored in the .jar archive
file would be work/com/ibm/ejs/A.class and work/com/ibm/ejs/B.class respectively. A JVM which
1s looking for a particular class in the .jar archive file when executing a program, may have difficulty
locating the file in a situation where the entry name has been so modified.

One possible solution to this problem would be to change the working directory in the current
programming environment so that the Jar archiving tool 1s always called from the directory in which
a particular file to be added to a .jar archive file resides. This may require the working directory to
be changed several times 1f there are numerous files being added to a .jar archive file which reside
in different directories. In some cases, the files to be added to a .jar archive file may even reside on

a remote system. Since the working directory for aJVM cannot be dynamically changed at run time,

CA998-053 2

10

15

20

25

CA 02255042 1998-11-30

and since causing the Jar archiving tool to be called from a different directory is neither always
tfeasible nor always possible, standard tools in the JDK do not afford a flexible solution to this
problem.

It will be appreciated by those skilled in the art, that a programming environment which
allows for the loading of classes without the need for specifying a path prior to the execution of a
program would allow for greater flexibility in the use and design of such programs.

Furthermore, with respect to creating .jar files, flexibility in the use and design of such
programs would be further enhanced if the entry name of a class file or other file to be placed in a
Jar archive file could be assigned a name that is independent of where the file is physically located

on a file system and of where a Jar archiving tool may be being called from.

SUMMARY OF THE INVENTION

According to an aspect of the invention, there 1s provided a dynamic class loader computer
product for providing a class in executable form in response to a request for said class, said dynamic
class loader computer product comprising a first structure comprising pointers for byte
representations of classes 1n a memory; means for checking if a pointer for said class 1s provided in
the first structure; conversion means for converting said class into executable form using the byte
representation of said class pointed to by the pointer; and means for providing said class so
converted in response to the request. The dynamic class loader computer product may turther
comprise an input means for receiving into the memory the byte representation of said class and a
name of said class and for adding a pointer to the first structure for the byte representation of said
class. Further, the dynamic class loader computer product may comprise a second structure
containing a pointer to said class in executable form in memory. Additionally, the dynamic class
loader computer product may comprise means for checking if a pointer for said class 1s provided in
the second structure and if provided, instead of providing said class so converted, providing said
class in executable form in memory pointed to by that pointer in response to the request. The
dynamic class loader computer product may further comprise means for adding a pointer to the

second structure for said class in executable form in memory. And, there is provided a dynamic class

loader computer product wherein said dynamic class loader computer product provides a means to

CA998-053 3

10

15

20

25

P N S

CA 02255042 1998-11-30

invoke a different class loader computer product should said dynamic class loader computer product

be unable to locate a pointer for said class in response to the request. Also, said first structure may

- be a first hash table, said second structure may be a second hash table and the classes may be Java

class files.

In accordance with another aspect of the invention, there is provided a method for loading
a class 1n executable form in response to a request for said class comprising the steps of providing
a first structure comprising pointers for byte representations of classes in a memory; checking if a
pointer for said class 1s provided in the first structure; converting said class into executable form
using the byte representation of said class pointed to by the pointer; and providing said class so
converted in response to the request. Said method may further comprise the step of receiving into
the memory the byte representation of said class and a name of said class and adding a pointer to the
first structure for the byte representation of said class. And, the method may further comprise the
step of providing a second structure containing a pointer to said class in executable form in memory.
The method may also comprise the step of checking if a pointer for said class 1s provided in the
second structure and if provided, instead of providing said class so converted, providing said class
in executable form 1n memory pointed to by that pointer in response to the request and also comprise
the step of adding a pointer to the second structure for said class in executable form in memory.
Additionally, the method may comprise the step of invoking a default class loader if a pointer for
said class cannot be located.

In accordance with another aspect of the invention, there 1s provided a method for loading
files, said method comprising the steps of determining if said file resides in a memory as a byte
representation of said file; if said file 1s located by step a) then loading said file for execution; else
invoking a default class loader to load said file into the memory.

There is also provided a program storage device readable by a data processing system,
tangibly embodying a program of instructions, executable by said data processing system to perform

the above method steps.

CA998-053 4

10

15

20

235

CA 02255042 1998-11-30

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the figures of the
accompanying drawings in which like references indicate similar or corresponding elements, and in
which:

Figure 1 is a schematic diagram illustrating the components in a typical Java programming
environment associated with the execution of a Java program;

Figure 2 1s a schematic diagram illustrating the present invention in a preferred embodiment;

Figure 3 1s a schematic diagram illustrating how the present invention may be employed in

the execution of an automated deployment tool.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In a preferred embodiment, the present invention provides a facility to load classes for use
by a Java interpreter without having to specify the location of the classes prior to run time. This is
accomplished through a dynamic class loader disclosed herein. The dynamic class loader can replace
or be used 1n conjunction with a default class loader found in typical Java programming
environments or class loaders in other environments that provide equivalent function or have similar
behavior as the typical default class loader in Java programming environments. The function of the
default class loader in a typical Java programming environment is described below.

Figure 1 1llustrates the components in a typical Java programming environment, shown
generally as 10, associated with the execution of a Java program. Java programs typically go through
five phases to be executed, although it will be appreciated by those skilled in the art, that there may
be variations, for instance, depending on the particular operating platform.

The first phase consists of file editing which is typically accomplished with an editor
program 20 (e.g. a built-in editor in a Java development environment). In this phase, the programmer
creates Java program source code 19 using the editor program 20 and makes modifications to the
Java program source code 19 if necessary. The Java program source code 19 is then stored on a file
system 22, which typically resides on a secondary storage device (e.g. a hard disk) but the file
system 22 may be distributed across several storage devices. The Java program source code may

also stmply be stored in memory. The Java program source code 19 is typically stored with a name

CA998-053 >

10

15

20

23

CA 02255042 1998-11-30

ending in a .java extension.

The second phase consists of program compilation where a Java compiler 24 translates the
Java program source code 19 into Java bytecodes, which are instructions for a virtual computer,
called the Java virtual machine (JVM). If the program compilation by the Java compiler 24 is
successtul, .class file(s) 25 will be created and stored on the file system 22, which will contain the
bytecodes associated with the Java program source code 19 being compiled. Again, the .class file(s)
may also simply also be stored in memory.

The third phase consists of class loading where the bytecodes of the .class file(s) 25 created
in the second phase, must first be placed in a memory 28 before it can be executed. Memory can
include random access memory (RAM), a RAM disk or any other memory type device apparent to
those skilled in the art. Typically, class loading is done by a default class loader 30 which takes the
bytecodes of the .class file(s) 25 from the file system 22 and writes it to the memory 28 in an
executable form suitable for interpretation by a Java interpreter 26 such as a JVM. The JDK
provides such a default class loader. Alternatively, the bytecodes of the .class file(s) 25 can be
loaded 1nto the memory 28 from a remote secondary storage device over a network. In either case,
the loading into memory for use includes not only the physical transfer of the .class file(s) but also
standard 1nitialization required by a JVM; it is whatever steps are required to convert .class file into
an executable form for the Java interpreter. In the preferred embodiment of the present invention,
a dynamic class loader 40 (Figure 2) as disclosed herein is used in conjunction with the default class
loader 30 to assist 1n this phase.

One method of causing the default class loader 30 to begin loading of .class file(s) 25 is to
invoke a Java interpreter 26 using an appropriate command (e.g. ‘java <filename>’ in the JDK,
where <filename> is substituted with the name of a .class file 25 to be loaded and interpreted).
Alternatively, the default class loader 30 may also be executed when certain Java programs (i.e.
applets) are loaded into a World Wide Web browser.

In the fourth phase, before the bytecodes of the .class file(s) 25 are executed by the Java
interpreter 26, the bytecodes are verified by a bytecode verifier 32. The bytecode verifier 32 ensures
that the bytecodes are valid and that they are in conformity with Java security restrictions.

Finally, 1in the last phase, the interpreter 26 reads the bytecodes of the .class file(s) 25 stored

CA998-053 6

10

15

20

235

CA 02255042 1998-11-30

in the memory 28, and translates them into a language that the computer can understand, possibly
storing data values as the program executes. In order for a computer to be able to execute Java
programs, an interpreter 26 for Java bytecodes must be supplied. The interpreter 26 can be a software
program that imitates the actions of a JVM. Alternatively, a computer can utilize a hardware chip
that executes Java bytecodes directly.

With respect to the third phase as described above, in current Java programming
environments, a default class loader 30 typically makes use of an environment variable which stores
information as to where the default class loader 30 should look for a .class file 25 on a file system
22. For example, when using the JDK, an environment variable called CLASSPATH is used for this
purpose. In addition to directories, the CLASSPATH environment variable can also specify Java
archive files 46 (Figure 2), also known as .jar files, from which classes can be loaded. While the
detault class loader 30 of the JDK typically requires the location of these directories and Java archive
files 46 to be specified prior to run time, the dynamic class loader 40 as shown in Figure 2 which is
part of the present invention does not make this a requirement.

Referring to Figure 2, the dynamic class loader 40 of the present invention in its preferred
embodiment 1s used 1n conjunction with the default class loader 30 to load a class (which is in the
form of a .class file 25) into the memory 28 in a form suitable for interpretation by a Java interpreter
26 of Figure 1.

The dynamic class loader 40 maintains a set of pointers (referred to in the Java programming
language as references) to classes (in the form of bytecodes) that have already been loaded into the
memory 28 for interpretation by a Java interpreter 26. In the preferred embodiment of the invention,
the pointers to the classes are stored in a hash table, and are indexed by class name.

In the preferred embodiment of the present invention, the dynamic class loader 40 also works
in conjunction with one or more byte representations of class files 42 (i.e. bytecodes of .class files
25) provided by the user or an application (e.g. addClass method of Appendix 'A"). The byte
representations of the files 42 reside in the memory 28. Where the dynamic class loader 40 works
1in conjunction with these byte representations, a second hash table is used by the dynamic class
loader 40 to store pointers (references) to these byte representations in memory and are indexed by

class name. In another embodiment of the invention, the second hash table of the dynamic class

CA998-053 7

10

15

20

25

CA 02255042 1998-11-30

loader 40 can be used to store pointers to classes (in the form of bytecodes) residing elsewhere in
the computer memory 28 in a collection of Jar entry meta-objects, as described later. As classes (in
the form of bytecodes) are accessible using the pointers in the second hash table of the dynamic class
loader 40, there is no need to access the corresponding .class files stored on a file system 22, and
there 1s no need to store information on where the corresponding .class files are physically located
on the file system 22.

If, for example, upon the execution of an application a particular class needs to be loaded
from the file system 22 into the memory 28 in an executable form suitable for interpretation by a
Java interpreter 26, the application will ask the dynamic class loader 40 to load the class by calling
the load method of the dynamic class loader 40 (e.g. loadClass method of Appendix “A”). The
dynamic class loader 40 checks its hash table consisting of pointers to classes already loaded into
the memory 28, to determine if the requested class has been loaded into the memory 28 in an
executable form suitable for interpretation by a Java interpreter 26.

[f the class has not already been loaded into the memory 28 in an executable form suitable
for interpretation by a Java interpreter 26, the dynamic class loader 40 checks to see if the class
resides in the one or more byte representations stored in memory, by consulting its second hash table
consisting of pointers to classes stored as one or more byte representations in memory. If the
dynamic class loader 40 determines that the class is within the one or more byte representations
stored In memory, the dynamic class loader 40 will load the class into the memory 28 in an
executable form suitable for interpretation by a Java interpreter, by calling a standard utility method
(detineClass) available in the Java programming environment which is used for that purpose.
Furthermore, a pointer to the class so loaded into the memory 28 for interpretation by a Java
interpreter 26 will be created by the dynamic class loader 40, and stored in the hash table maintained
by the dynamic class loader 40 used to keep track of classes that have already been loaded into the
memory 28 1n an executable form suitable for interpretation by a Java interpreter 26.

[t the hash table of the dynamic class loader 40 that keeps track of classes contained in the
one or more representations stored in memory does not contain a pointer to the class which needs
to be loaded, the dynamic class loader 40 can request the default class loader 30 to search for the

class 1n a default path.

CA998-053 8

10

15

20

25

30

CA 02255042 1998-11-30

In the preferred embodiment of the present invention, Jar entry meta-objects refer to files

stored 1n a .jar archive file and are instances of the following class represented by the following

pseudo-code:

Class JarEntry {

String Entry Name; //Name of entry in the .jar archive file (including directory information if applicable)

String File Name; //File name of the file if it physically exists on the file system (such as in a working directory)
byte[] byte Array; //Byte representation of the file

// Constructor Methods

// Methods to retrieve the byte representation of the file

The pseudo-code for implementing the dynamic class loader 40 can be found in Appendix
"A". In this implementation, the class defining a Java default class loader 30 is extended to create
the dynamic class loader 40.

Another aspect of the present invention comprises a Jar archiving tool 44 which enables
archived classes to be named irrespective of where the class files may be located on a file system 22.
The Jar archiving tool 44 comprises archiving routines for the creation of .jar files 46 using the
classes and files stored in the collection of Jar entry meta-objects 42 as its source. As the byte
representation of the classes to be archived are available through the collection of Jar entry
meta-objects 42, the physical location of the class files on the file system 22 is irrelevant, and each
meta-object can optionally be assigned a custom entry name or instead the Jar entry meta-objects
preserve the file name and directory information of the files. Pseudo-code for implementing the Jar
archiving tool 44 can be found in Appendix "B".

Referring to Figure 3, a schematic diagram is provided illustrating how the dynamic class
loader 40 and the Jar archiving tool 44 of the present invention may be employed in the execution
of an automated deployment tool 50 (Figure 2). An example of such an automated deployment tool
50 1s an Enterprise JavaBeans™ (EJB) deployment tool. The automated deployment tool 50 prepares
objects, such as Enterprise JavaBeans components, for use on a specific server, such as an EJB
server. The automated deployment tool 50 may be called by various other administration tools and
by multiple, possibly remote, users. As those skilled in the art will appreciate, the dynamic class

loader 40 and the Jar archiving tool 44 of the present invention address the typical problems in

CA998-033 9

10

15

20

25

CA 02255042 1998-11-30

locating classes (e.g. fixed class path, fixed working directory) encountered by programs such as the
automated deployment tool 50.

After the automated deployment tool 50 (which in the preferred embodiment, takes an input
Jar tile name, a temporary working directory name and an output Jar file name) is launched at Step
60, an mput .jar file 46 (Figure 2) is opened and processed at Step 62. Processing at Step 62 includes
the extraction of files (which can be specified by a user or a program) by the Jar archiving tool 44
(Figure 2) from the input .jar file 46, and the storing of the byte representations of the files in the
collection of Jar entry meta-objects 42. Processing at Step 62 also includes the creation by the
dynamic class loader 40 of a new pointer for each new class added to the collection of Jar entry
meta-objects 42 during the extraction stage. The pointers are then stored in the second hash table of
the dynamic class loader 40 that keeps track of classes contained in the collection of Jar entry
meta-objects 42. The creation and storing of pointers in this stage of processing may be implemented
in an add class method (e.g. addClass method of Appendix “A™).

Processing at Step 62 may also include the “de-serialization” of classes. De-serialization is
a process whereby a class 1s re-instantiated, after an instance of the class had been saved to a file (i.e.
serialized). For instance, when the deployment tool 50 is launched, all serialized classes (.scr files)
in an input .jar file 46 (Figure 2) are de-serialized in the processing stage, and all classes (.class files)
referred to by the class being de-serialized need to be loaded by the dynamic class loader 40 into the
memory 28 in a form suitable for interpretation by a Java interpreter 26. The de-serialization process
can be implemented by extending the functionality of a de-serialization 1/0O routine provided in
typical Java programming environments to use the dynamic class loader 40 to load classes referred
to by the class being de-serialized. One possible implementation of this process is provided as
pseudo-code in Appendix “C”,

In the Analyze Class process at Step 64, the classes in the input .jar file 46 (Figure 2) are
loaded by the dynamic class loader 40 into the memory 28 in a form suitable for interpretation by
a Java interpreter 26, if they have not already been loaded at Step 62. A class analyzer of the
automated deployment tool 50 then determines if other classes are needed so that the classes can be
used on a specific server. If so, these new classes will be generated at Step 66 by a code generator,

eventually to be added to the input .jar file 46 (Figure 2) to form a new .jar file. A temporary

CA998-0353 10

10

15

20

25

CA 02255042 1998-11-30

directory may be specified at Step 60 that can be used for storing the generated classes. It will be
appreciated by those skilled in the art, that these actions require the dynamic loading of the new
classes, particularly since the temporary directory when provided as input, is unknown until after the
automated deployment tool 50 is launched and the default class loader may not know where to find
such classes.

During the Analyze Class process at Step 64 and the Code Generation process at Step 66,
class analyzers and code generators will require information on classes (e.g. the handle to a class,
information about its methods and fields) previously stored in the input jar file 46 (Figure 2).
Introspection (dynamic inspection) routines 68 which enable code generators and class analyzers to
obtain needed information about a class utilize the dynamic class loader 40. As there will likely be
multiple requests for information by class analyzers and code generators on a particular class in the
input .jar file 46, the dynamic class loader 40 provides for an efficient way of retrieving the
information, since one of the hash tables of the dynamic class loader 40 maintains pointers to classes,
including those from the input .jar file 46, that have been loaded into the memory 28 in a form
suitable for interpretation by a Java interpreter 26. The class for which information is sought can be
more quickly accessed via this pointer from the memory 28, and need not be accessed from the input
Jar file 46 which typically resides in secondary storage.

After the new classes are generated (as .java source files), they are compiled into class files
(.class) and are added to the collection of Jar entry meta-objects 42 at Step 70. These are new files
not archived in the original input .jar file 46 but instead will be included in a .jar file to be produced
as output by the automated deployment tool 50 at Step 72.

At Step 72, adeployed .jar file (not shown) is created using the Jar archiving tool 44 (Figure
2) and the collection of Jar entry meta-objects 42 as a source. Subsequently, at Step 74, the deployed
Jar file 1s outputted to a file system 22, and will either overwrite the input jar file 46, or be written
to a new file on the file system 22.

It will be apparent to those skilled in the art, that the application of the invention herein
disclosed 1s not limited to programs and programming environments based on the Java programming
language.

The mvention may be implemented on a stand-alone basis, integrated into an application

CA998-053 11

it ———

10

15

20

CA 02255042 1998-11-30

wherein the invention is a feature such an integrated software development environment or

integrated into an application to further process the output and/or provide the variable inputs

including the classes, class names and Jar file names.

The invention may be implemented as a program storage device readable by a data
processing system, tangibly embodying a program of instructions, executable by said data processing
system to perform the method steps of the invention. Such a program storage device may include
diskettes, optical discs, tapes, CD-ROMS, hard drives, memory including ROM or RAM, computer

tapes or other storage media capable of storing a computer program.

The invention may also be implemented in a computer system. In a preferred embodiment,
a system 1s provided comprising a computer program operating on a data processing system, with
the computer program embodying the method of the invention and producing an output of the
method on a display or output device. Data processing systems include computers, computer
networks, embedded systems and other systems capable of executing a computer program. A
computer includes a processor and a memory device and optionally, a storage device, a video display
and/or an input device. Computers may equally be in stand-alone form (such as the traditional

desktop personal computer) or integrated into another apparatus (such as a cellular telephone).

While this invention has been described in relation to preferred embodiments, it will be
understood by those skilled in the art that changes in the details of processes and structures may be
made without departing from the spirit and scope of this invention. Many modifications and
variations are possible in light of the above teaching. Thus, it should be understood that the above
described embodiments have been provided by way of example rather than as a limitation and that
the specification and drawing are, accordingly, to be regarded in an illustrative rather than a

restrictive sense.

CA998-053 12

CA 02255042 1999-02-15

APPENDIX “A"
Pseudo-Code for Class Loader

public class ByteArraySetClasslLoader extends ClasslLoader {
/I ClassLoader is Java39s default class loader

/I Hashtable of class byte[]'s to be loaded indexed by class name
/1 (this Is the set which loader uses to find/resolve classes)
private static Hashtable classBytes = new Hashtable();

// Hashtable of class already loaded
private static Hashtable loadedClasses = new Hashtable();

/**

* Adds a class byte[] to current set of classes

*/

public static final void addClass(String name, byte[} data) {
// method implementation

}

/**

* Loads a specified class.

*/

protected Class loadClass(String name, boolean resolve) throws
ClassNotFoundException {

// Check if class is already loaded
Class cl = (Class) loadedClasses.get(name);

if (cl==null){

try {

/I Load class bytes from current set of class byte{]'s

/[l (throw exception if byte[] is null

}

catch (ClassNotFoundException e) {
/I Attempt to load class from system classpath
// because requested class was not found in

/I current set by calling the default class loader

}

/| Register class as loaded by adding it to hashtable
;

if (resolve)
resolveClass(cl);

return cl:

T i b A0 | A e AU A Nt Mt A A it a0 AN SMCALEHE LI LIS A AL 4 by 3D ot SIS ST ke e e L L AL L L TR Tt s e e e b e 30 gk gt e SRS A M T S 1 s e el e s et s Tty fedd

CA 02255042 1999-02-15

APPENDIX “B"
Pseudo-Code for Jar Archiving Tool

public class JarUltils {
/**

* Create a .jar file given a .jar filename, set of jar entries, and a working directory.
* parameter 1: File name of .jar to be created
* parameter 2: Vector of jar entry meta-objects

* parameter 3: Directory name to hold temporary files
*/

public static final void createJar(String fileName, Vector jarEntries, String
workingDir) {

/I Method implementation using standard Java I/O libary

/**

* Extracts a given .jar file given .jar filename, destination directory, and
* file exclusion filter.

*NOTE: - The returned set of jar entries will include all the files in the
¥ source .jar as byte array representations,

* but the specified exclude files will not be extracted.

- |f destination directory is null, no files will be physically

* extracted.

®

%*

* parameter 1: Filename of .jar to be extracted
* parameter 2: Directory name for files to be extracted into

* parameter 3: Exclude string specifying file patterns to be NOT extracted

* onto the file system (i.e: "*.java")
*/

public static final Vector extractJar(String srcJarFile, String dstDir,
String exciudeFilter) {

// Method implementation using standard Java |/O library

Cn e gt

CA 02255042 1999-02-15

APPENDIX “C"
Pseudo-Code for the Deserialization

Routine that Employs the Dynamic Class Loader

public class ObjectinputStreamCustomResolver extends ObjectinputStream

{

[* ObjectinputStream is the class which houses the default deserialization
routines */

/**

* This overrides the default resolveClass() method to use

* a custom class loader. This method is called by the standard
* deserialization routine whenever a class needs to be loaded.
*(NOTE: The application never calls this method)

*

* Parameter: A class descriptor object containing the class name, etc.
*/
protected Class resolveClass(ObjectStreamClass classDesc) {

// Call our classloader to load the class and return
/l the handle to it.

Vst 11 N AT e e LTI T3 0 A G M A L M NS P 4.0 A s 14 p ol e #esam S 1 e e e e T et ke R e AN et e b R L TR R P S T . e B BRI TS TIE PRTT T P T S PRI PRy P PRy Swrppe v i P S i L PR LT L L AT TP L POp T P r e PR

10

15

20

235

CA 02255042 1998-11-30

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A dynamic class loader computer product for providing a class in executable form in
response to a request for said class, said dynamic class loader computer product comprising:
a first structure comprising pointers for byte representations of classes in a memory;
means for checking if a pointer for said class is provided in the first structure;

conversion means for converting said class into executable form using the byte representation

of said class pointed to by the pointer; and

means for providing said class so converted in response to the request.

2. The dynamic class loader computer product of claim 1 further comprising an input means
for receiving into the memory the byte representation of said class and a name of said class and for

adding a pointer to the first structure for the byte representation of said class.

3. The dynamic class loader computer product of claim 1 or claim 2 further comprising a second

structure containing a pointer to said class in executable form in memory.

4. The dynamic class loader computer product of claim 3 further comprising means for
checking 1f a pointer for said class is provided in the second structure and if provided, instead of
providing said class so converted, providing said class in executable form in memory pointed to by

that pointer in response to the request.

5. The dynamic class loader computer product of claim 3 or claim 4 further comprising means

for adding a pointer to the second structure for said class in executable form in memory.

6. The dynamic class loader computer product of any one of claims 1 to 5 wherein said dynamic
class loader computer product provides a means to invoke a different class loader computer product

should said dynamic class loader computer product be unable to locate a pointer for said class 1n

CA998-053 13

10

15

235

CA 02255042 2002-10-21

response to the request.

7. The dynamic class loader computer product of any one of claims 1 to 6 wherein said first

structure 1s a first hash table and said second structure 1s a second hash table.

8. The dynamic class loader computer product of any one of claims 1 to 7 wherein the classes

are Java class files.

9. A method tor loading a class in executable form in response to a request for said class
comprising the steps of:

providing a first structure comprising pointers for byte representations of classes in a
memory;

checking if a pointer for said class is provided in the first structure;

if said pointer for said class is provided in the first structure. converting said class into
executable form using the byte representation of said class pointed to by the pointer; and

providing said class so converted in response to the request.

10. The method of claim 9 further comprising the step of receiving into the memory the byte
representation of said class and a name of said class and adding a pointer to the first structure for the

byte representation ot said class.

1. The method of claim 9 or claim 10 further comprising the step of providing a second

structure containing a pointer to said class in executable form in memory.
12. The method of claim 11 further comprising the step of checking if a pointer for said class 1s
provided in the second structure and if provided. instead of providing said class so converted,

providing said class in executable form in memory pointed to by that pointer in response to the

request.

CA998-055 14

e o el AL W 1T AR £ o D NI) AN i P e i b T e

10

15

CA 02255042 1998-11-30

3. The method of claim 11 or claim 12 further comprising the step ot adding a pointer to the

second structure for said class in executable form in memory.

14. The method of any one of claims 9 to 13 further comprising the step of invoking a default

class loader if a pointer for said class cannot be located.

15. A method for loading files, said method comprising the steps of:

a) determining if said file resides in a memory as a byte representation of said
file:

b) if said file is located by step a) then loading said file for execution; else

C) invoking a default class loader to load said file into the memory.
6. A program storage device readable by a data processing system, tangibly embodying a

program of instructions, executable by said data processing system to perform the method steps of

any one of claims 9 to 15.

CA998-053 15

CA 02255042 2002-10-21

— o - - o
10
20 l I 24 \
| EDITOR COMPILER
|
30
| DEFAULT |
CLASS LOADER
| “] B 28 |
- .
52 MEMORY 26
BYTE CODE INTERPRETER
VERIFIER
| ___J L
FIGURE 1
Prior Art

s =AU SN S Beral et L S e SOy < Y v AN bl - A S ST T S e -2 .- - - v N . At TG i D ET SRl PR AT AR v N ~

CA 02255042 1998-11-30

22

FILE SYSTEM

\ 46 46 ... | 46

\ o //\J' — ..

|

——— e AN

30

DEFAULT
CLASS LOADER

238

‘ MEMORY

- » JAR ARCHIVING (e———

40

DYNAMIC
CLASS LOADER

AUTOMATED
DEPLOYMENT
TOOL

44

TOOL

PP e e e -

26 l
INTERPRETER

FIGURE 2

02255042 1998-11-30

CA

SHSSV'IO

0L

"I dILVAANAD FTIdWOD

_

adyv

SLOAMd0O VLI
AYLNG AV 40
NOILOA 1100

[

Y

A11d dVv{
AdAOTddd HLVddO

CL

A4 AV
A4 AO01d4d LNdLNO

VL

NOLLY¥3NID
330D
99 /
' SANLLNOY
zo_pomamoﬁz_
SASS V1D
IZATYNY
b9
'
AV
SSY1O
u:>_<z>o
SSVID Ol
MALNIOd AQV
11 SSAD0¥d ANV

7114 4V NAdO
9

JNVN 9114 ¥VT LNdLNO
1001 N
INAWAOTdAA ANVYN AYOLDTYIA ONINIOM AYVIOdNAL
HONNV -
00 FNVN 9114 4V LNdNI

¢ HADI1A

Py

FILE SYSTEM

46 |1 46 46

S

|

T

30

DEFAULT
CLASS LOADER

40

DYNAMIC
CLASS LOADER

|

23
MEMORY

50

AUTOMATED
DEPLOYMENT
TOOL

|

>l

44

JAR ARCHIVING
TOOL

ey

N

26
INTERPRETER

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - abstract drawing

