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2.

Abstract: A method of providing an image for
printing at a predetermined bi-level dot resolution
which corresponds to a predetermined continuous tone
resolution, the method including the steps of: receiving
a first data set indicative of the image, the data set being
in a Bayer format of a first resolution; converting the
first data set into a second data set of the predetermined
continuous tone resolution; converting the second data
set into a third data set of the predetermined bi-level
dot resolution; and making the third data set available
to @ printer at the predetermined bi-level dot resolution.
An apparatus for providing an image for printing at a
predetermined bi-level dot resolution which corresponds
to a predetermined continuous tone resolution, the
apparatus including: input means for receiving a first
data set indicative of the image, the data set being in a
Bayer format of a first resolution; sampling means for
converting the first data set into a second data set of the
predetermined continuous tone resolution; processing
means for converting the second data set into a third
data set of the predetermined bi-level dot resolution;
and making the third data set available to a printer for
printing at the predetermined bi-level dot resolution. A
camera including: a CCD array for providing a Bayer
image; a printer for selectively providing a printed
image; and an apparatus according to claim 17 for
receiving the Bayer image and providing the printer
with the third data set such that the printed image is
produced.
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METHOD AND APPARATUS FOR PRODUCING PRINT FROM A BAYER IMAGE

FIELD OF INVENTION
The present invention relates to a method and apparatus for producing print from a bayer

image.

The invention has been developed primarily for a digital camera including an integral printer
for providing a paper print of an image captured by the camera and will be described hereinafter with
reference to that application. However, it will be appreciated that the invention is not limited to that
particular field of use.

CO-PENDING APPLICATIONS
Reference may be had to co-pending applications claiming priority from Australian
Provisional Patent Application number PQ2890 dated 16 September 1999. The co-pending
applications describe related modules and methods for implementing the compact printer system. The
co-pending applications, filed simultaneously to the present application, are as follows:

international Patent
Application No. Ref. No. Titte of Invention
PCT/AU00/01074 PCP02 | Method and Apparatus for Sharpening An Image
PCT/AU00/01073 PCP0O3 | Method and Apparatus for Up-Interpolating a Bayer Image
PCT/AU00/01076 PCP04 | Method and Apparatus for Rotating Bayer Images

SUMMARY OF INVENTION

According to a first aspect of the invention there is provided a method of providing an image
for printing at predetermined bi-level dot resolution which corresponds to a predetermined continuous
tone resolution, the method including the steps of:

receiving a first data set indicative of the image, the data set of the predetermined continuous
tone resolution;

converting the first data set into a second data set of the predetermined continuous tone
resolution;

converting the second data set into a third data set of the predetermined bi-level dot
resolution; and

making the third data set available to a printer at the predetermined bi-leve! dot resolution.

RECTIFIED SHEET (Rule 91) RO/AU
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Preferably, the first resolution matches the predetermined bi-level dot resolution. In other
embodiments, however, the first resolution is greater than the predetermined bi-level dot resolution. In

still further embadiment the first resolution is less than the predetermined bi-level dot resolution.

Preferably also, the first data set is in are red, green and blue (RGB) format and the printer is
responsive to a cyan, magenta and yellow (CMY) format, and the method includes the additional step
of converting the third data set from an RGB format to a CMY format.

In a preferred form the method includes the step of sharpening the second data set.
Altemnatively, the method includes the preferred step of sharpening the first data set.

Preferably, the first data set is obtained from a sensor device and the method includes the
step of compensating the first data set for non-linearities in the sensor device. More preferably, the step
of compensating includes converting the first data set from a plurality of x bit samples to a plurality of y
bit samples, where x > y. Even more preferably, x=10andy = 8.

Preferably also, the method includes the step of planarising the first data set into a red plane,
a green plane and a blue plane.

determining for the first data set the m% of darkest pixels and the n% of the lightest pixels;
adjusting thé first data set to equate the m% of darkest pixels; and
adjusting the first data set to equate the n% of lightest pixels.

Preferably, the method includes the additional step of adjusting the first data set to provide a
predetermined white balance. More preferably, the method includes the additional step of adjusting the
first data set to provide a predetermined range expansion. Even more preferably, the color resolution of
the first data set is increased while maintaining the same spatial resolution.

In a preferred form, the first data set is selectively adjusted for providing the image in a
predetermined rotational orientation.

According to a second aspect of the invention there is provided an apparatus for providing an
image for printing at a predetermined biHevel dot resolution which coresponds to a predetermined
continuous tone resolution, the apparatus including:

input means for receiving a first data set indicative of the image, the data set being in a Bayer
format of a first resolution;

sampling means for converting the first data set into a second data set of the predetermined
continuous tone resolution;
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processing means for converting the second data set into a third data set of the
predetermined bi-level dot resolution; and

making the third data set available to a printer for printing at the predetermined bi-level dot
resolution.

Preferably, the first resolution matches the predetermined bi-level dot resolution.
Altematively, the first resolution is greater than the predetermined bi-level dot resolution. in other
embodiments, however, the first resolution is less than the predetermined bi-level dot resolution.

Preferably also, the first data set is in a red, green and blue (RGB) format and the printer is
responsive to a cyan, magenta and yellow (CMY) format, wherein the processing means converting the
third data set from an RGB format to a CMY format.

Preferably also, the apparatus sharpens the second data set. in other embodiment, however,
the apparatus sharpens the first data set.

In a preferred form, the first data set is obtained from a sensor device and the input means
compensates the first data set for non-linearities in the sensor device. More preferably, the
compensation for non-linearities includes converting the first data set from a plurality of x bit samples to
a plurality of y bit samples, where x > y. Even more preferably, x = 10 and y = 8.

Preferably, the input means planarises the first data set into a red plane, a green plane and a
blue plane.

More preferably, the input means:

determines for the first data set the m% of dari(est pixels and the n% of lightest pixels;
adjusts the first data set to equate the m% of darkest pixels; and

adjusts the first data set to equate the n% of lightest pixels.

In a preferred form, the input means adjusts the first data set to provide a predetermined
white balance. More preferably, the input means adjusts the first data set to provide a predetermined
range expansion. Even more preferably, the input means increases the color resolution of the first data
set while maintaining the same spatial resolution.

Preferably, the input means selectively adjusts the first data set for providing the image in a
predetermined rotational orientation. .

According to a third aspect of the invention, there is provided a camera including:

a CCD array for providing a Bayer image;
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a printer for selectively providing a printed image; and

an apparatus as described above for receiving the Bayer image and providing the printer with
the third data set such that the printed image is produced.

Brief Description of the Drawings

Preferred embodiments of the invention will now be described, by way of example only, with

reference to the following description and Figures.
Fig. 1 shows a high level image flow of the PCP.
Fig. 2 shows a block diagram of the PCP in isolation.
Fig. 3 shows a block diagram of the PCP connected to Printcam hardware.
10 Fig. 4 shows a 4-inch Memjet printhead.
Fig. 5 shows the arrangement of segments in a 4-inch printhead.
Fig. 6 shows the arrangement of nozzles in a pod, numbered by fixing order.
Fig. 7 shows the arrangement of nozzles in a pod, numbered by loading order.
Fig. 8 shows a chromopod.
15 Fig. 9 shows a podgroup.
Fig. 10 shows a phasegn:»up.

Fig. 11 shows the relationship between segments, firegroups, phasegroups, podgroups and
chromopods.

Fig. 12 shows AEnable and BEnable puise profiles during the printing of an odd and even
dot.

20 Fig. 13 shows the orientation of print formats based on the CFA image.
Fig. 14 shows a block diagram of the image capture chain.

Fig. 15 shows the arrangement of pixels in a Bayer CFA 2G mosaic.

Ei

g. 16 shows the linearize RGB process.

Fig. 17 shows the planarize RGB process.

25 Fig. 18 shows a block diagram of the image print chain.
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Fig. 19 shows a sample color range for a single color plane.

PCT/AUN/OT07S

Fig. 20 shows the steps involved in white balance and range expansion.

Fig. 21 shows a block diagram of apparatus capable of performing white balance and range

expansion.

space.

kernel.

Fig. 22 shows the various color plane pixels in relation to CFA resolution.

Fig. 23 shows the effect of rotating the green plane by 45 degrees.

Fig. 24 shows the distance between rotated pixels for the green plane.

Fig. 25 shows the process of mapping movement in unrotated CFA space to rotated CFA

Fig. 26 shows a block diagram of the sharpen process.

Fig. 27 shows the process involved in high-pass filtering a single luminance pixel witha 3 x 3

Fig. 28 shows the transformation in conversion from RGB to CMY.
Fig. 29 shows conversion from RGB to CMY by trilinear interpolation.
Fig. 30 shows pixel replication of a single pixel to a 5 x 5 block.

Fig. 31 shows a block diagram of the half-toning process.

Fig. 32 shows the process of reformatting dots for the printer.

Fig. 33 shows a biock diagram of the image capture unit.

Fig. 35 shows a block diagram of the image access unit.

Fig. 36 shows a block diagram of the image histogram unit.

Fig. 37 shows a block diagram of the printed interface.

Fig. 38 shows the block diagram of the Memjet interface.

Fig. 39 shows the generation of AEnable and BEnable pulse widths.
Fig. 40 shows a block diagram of dot count logic.

Fig. 41 shows the interface of the print generator unit.

Fig. 42 shows a block diagram of the print generator unit.

Fig. 43 shows a block diagram of the test pattern access unit.
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Fig. 44 shows a block diagram of Buffer 5.

Fig. 45 shows a block diagram of Buffer 4.

Fig. 46 shows a block diagram of the Uplinterpolate, Halftone and Reformat process.

Fig. 47 shows how to map from a standard dither cell and a staggered dither cell.

Fig. 48 shows a block diagrém of the Convert RGB to CMY process/

Fig. 49 shows a block diagram of Buffer 2.

Fig. 50 shows a basic high-pass spatial filter using a 3 x 3 kernel.

Fig. 51 shows a block diagram of the sharpen unit.

Fig. 52 shows the structure of Buffer 1

Fig. 53 shows a block diagram of the Resample and Create Luminance Channel process.

Fig. 54 shows a block diagram of the Convolve Unit.

Fig. 55 shows the order of pixels generated from the receptor.

Fig. 56 shows movement in x or y in rotated and unrotated space.

Fig. 57 shows the address of entries in Buffer 1's green sub-buffer.

Fig. 58 shows the relationship between green entries dependent on rotation.

Fig. 59 shows 4 x 4 sampling of the green channel.

Fig. 60 shows 4 x 4 green sampling type 1.

Fig. 61 shows 4 x 4 green sampling type 2.

Fig. 62 shows the two types of row addressing for green.

Fig. 63 shows the addressing of entries in buffer 1's red and blue sub-buffers.
Fig. 64 shows the first 16 samples read for calculating first pixel.

Fig. 65 shows the overlapping worst case 4 x 4 reading from biue and red buffers.
Fig. 66 shows a block diagram of the rotate, white balance and range expansion unit.

Fig. 67 shows the active image area within the generated coordinate space.
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OVERVIEW OF THE PCP
HIGH LEVEL FUNCTIONAL OVERVIEW

The Printcam Central Processor (PCP) possesses all the processing power for a Printcam

and is specifically designed to be used in the Printcam digital still camera system. The PCP 3 connects

to an image sensor 1 (for image capture), and a Memjet printer 2 for image printout. In terms of image

processing, the PCP can be thought of as being the translator of images from capture to printout, as

shown in Figure 1:

The Image Sensor 1 is a CMOS image sensor, which captures a 1500 x 1000 RGB image.
The Image Sensor is the image input device.

The Printhead 2 is a 4 inch long 1600dpi Memijet printer capable of printing in three colors:
cyan, magenta and yellow. The Printhead is the image output device.

The PCP 3 takes an image from the Image Sensor 1, processes it, and sends the final form
of the image to the Printhead 2 for printing. Since the tmage Sensor 1 captures in RGB and
the Printhead 2 prints in CMY, the PCP 3 must translate from the RGB color space to the
CMY color space. The PCP 3 contains ali of the requirements for the intermediate image pro-
cessing, including white balance, color correction and gamut mapping, image sharpening,
and half toning. In addition, the PCP 3 controls the user interface and entire print process,
providing support for a variety of image formats. The PCP 3 also contains interfaces fo allow
export and import of photos, complying with the DPOF (Digital Print Order Format) standard.

HiGH LEVEL INTERNAL OVERVIEW

The PCP 3 is designed to be fabricated using a 0.25 micron CMOS process, with

approximately 10 million transistors, almost half of which are flash memory or static RAM. This leads to
an estimated area of 16mm?. The estimated manufacturing cost is $4 in the year 2001: ThePCP 3isa
relatively straightforward design, and design effort can be reduced by the use of datapath compilation
techniques, macrocells, and IP cores. The PCP 3 contains:

A low speed CPU/microcontroller core 10

1.5 MBytes of muitHevel Flash memory (2-bits per cell) 11

A CMOS Image Sensor Interface 98 inside an image Capture Unit 12
16 KByte Flash memory for program storage 13

4 KByte RAM for program variable storage 14

The PCP 3 is intended to run at a clock speed of approximately 100 MHz on 3V extemnally

and 1.5V internally to minimize power consumption. The actual operating frequency will be an integer

multiple of the Printhead operating frequency. The CPU 10 is intended to be a simple micro-controller
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style CPU, running at about 1 MHz. Both the CPU 10 and CMOS sensor interface 12 can be vendor
supplied cores.

Figure 2 shows a block diagram of the PCP 3 in isolation.

The PCP 3 is designed for use in Printcam systems. Figure 3 shows a block diagram of the
PCP 3 connected to the rest of the Printcam hardware.

2 PRINTHEAD BACKGROUND

The PCP 3 is specifically designed to connect to a 4-inch (10-cm) Memjet printhead 2. The
printhead 2 is used as a page-width printer, producing a 4-inch wide printed image without having to be
moved. Instead, paper 20 is printed on as it moves past the printhead 2, as shown in Figure 4.

21 COMPOSITION OF 4-INCH PRINTHEAD

Each 4-inch printhead 2 consists of 8 segments, each segment 1/2 an inch in length. Each of
the segments 21 prints bi-level cyan, magenta and yeliow dots over a different part of the page to
produce the final image. The positions of the segments are shown in Figure 5.

- Since the printhead 2 prints dots at 1600 dpi, each dot is 22.5um in diameter, and spaced
15.875um apart. Thus each half-inch segment prints 800 dots, with the 8 segments comresponding to
positions..

Table 1. Final Image Dots Addressed by Each Segment
Segment First dot Last dot

0 0 799

1 800 _ 1,599

2 1,600 2,399

3 2,400 3,199

4 3,200 3,999

5 4,000 4,799

6 4,800 5,599

7 5,600 6,399

Although each segment 21 produces 800 dots of the final image, each dot is represented by
a combination of bi-level cyan, magenta, and yellow ink. Because the printing is bi-level, the input
image should be dithered or error-diffused for best resuits.

Each segment 21 then contains 2400 nozzles: 800 each of cyan, magenta, and yellow. A
four-inch printhead 2 contains 8 such segments 21 for a total of 19,200 nozzles.
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2141 Grouping of Nozzles Within a Segment

The nozzles 22 within a single segment 21 are grouped for reasons of physical stability as
well as minimization of power consumption during printing. In terms of physical stability, a total of 10
nozzies share the same ink reservoir. In terms of power consumption, groupings are made to enable a
low-speed and a high-speed printing mode.

The printhead 2 supports two printing speeds to allow different speed/power trade-offs to be

-made in different product configurations.

_ In the low-speed printing mode, 96 nozzles 22 are fired simultaneously from each 4-inch
printhead 2. The fired nozzles should be maximally distant, so 12 nozzles 22 are fired from each
segment. To fire all 19,200 nozzles, 200 different sets of 96 nozzles must be fired.

In the high-speed printing mode, 192 nozzles 22 are fired simultaneously from each 4-inch
printhead 2. The fired nozzles 22 should be maximally distant, so 24 nozzles are fired from each
segment. To fire all 19,200 nozzles, 100 different sets of 192 nozzles must be fired.

The power consumption in the low-speed mode is half that of the high-speed mode. Note
however, that the energy consumed to print a line, and hence a page, is the same in both cases.

in a scenario such as a battery powered Printcam, the power consumption requirements
dictate the use of low-speed:printing.

2.1.1.1 10 Nozzles Make a Pod

A single pod 23 consists of 10 nozzles 22 sharing a common ink reservoir. 5 nozzles 22 are
in one row, and 5 are in another. Each nozzle 22 produces dots approximately 22.5um in diameter
spaced on a 15.875um grid. Figure 6 shows the arrangement of a single pod, with the nozzles 22
numbered according to the order in which they must be fired.

Although the nozzles 22 are fired in this order, the relationship of nozzles 22 and physical
placement of dots on the printed page is different. The nozzles 22 from one row represent the even
dots from one line on the page, and the nozzles on the other row represent the odd dots from the
adjacent line on the page. Figure 7 shows the same pod 23 with the nozzles 22 numbered according to
the order in which they must be loaded.

The nozzles 22 within a pod 23 are therefore logically separated by the width of 1 dot. The
exact distance between the nozzles 22 will depend on the properties of the Memjet firing mechanism.
The printhead 2 is designed with staggered nozzles designed to match the flow of paper 20.
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21.1.2 3 Pods Make a Chromapod

One pod 23 of each color (cyan, magenta, and yellow) are grouped into a chromapod 24. A
chromapod 24 represents different color components of the same horizontal set of 10 dots, on different
lines. The exact distance between different color pods 23 depends on the Memjet operating
parameters, and may vary from one Memjet design to another. The distance is considered to be a
constant number of dot-widths, and must therefore be taken into account when printing: the dots
printed by the cyan nozzles willi be for different lines than those printed by the magenta or yellow
nozzles. The printing algorithm must allow for a variable distance up to about 8 dot-widths between
colors (see Table 3 for more details). Figure 8 illustrates a single chromapod 24,

21.1.3 5 Chromapods make a Podgroup

5 chromapods 24 are organized into a single podgroup 25. Since each chromapod contains
30 nozzles 22, each podgroup contains 150 nozzles 22: 50 cyan, 50 magenta, and 50 yellow nozzles.
The arrangement is shown in Figure 9, with chromapods numbered 0-4. Note that the distance
between adjacent chromapods is exaggerated for clarity.

21.1.4 2 Podgroups make a Phasegroup

2 podgroups 25 are organized into a single phasegroup 26. The phasegroup 26 is so named
because groups of nozzles 23 within a phasegroup are fired simultaneously during a given firing phase
(this is explained in more detail below). The formation of a phasegroup from 2 podgroups 25 is entirely
for the purposes of low-speed and high-speed printing via 2 PodgroupEnable lines.

‘During low-speed printing, only one of the two PodgroupEnable lines is set in a given firing
pulse, so only one podgroup of the two fires nozzles. During high-speed printing, both PodgroupEnable
lines are set, so both podgroups fire nozzles. Consequently a low-speed print takes twice as long as a
high-speed print, since the high-speed print fires twice as many nozzles at once.

Figure 10 illustrates the composition of a phasegroup. The distance between adjacent
podgroups is exaggerated for clarity.

2.1.1.5 2 Phasegroups make a Firegroup

' Two phasegroups (PhasegroupA and PhasegroupB) are organized into a single firegroup
27, with 4 firegroups in each segment. Firegroups 27 are 50 hamed because they all fire the same
nozzles 27 simultaneously. Two enable lines, AEnable and BEnable, allow the firing of PhasegroupA
nozzles and PhasegroupB nozzles independently as different firing phases. The arrangement is shown
in Figure 11. The distance between adjacent groupings is exaggerated for clarity.
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2.1.1.6 Nozzle Grouping Summary

Table 2 is a summary of the nozzle groupings in a printhead.

Table 2. Nozzle Groupings for a single 4-inch printhead

Replication Nozzle
Name of Grouping Composition Ratio Count
Nozzle 22 Base unit 1:1 1
Pod 23 Nozzles per pod 10:1 10
Chromapod 24 Pods per CMY chromapod 31 30
Podgroup 25 Chromapods per podgroup 5:1 150
Phasegroup 26 Podgroups per phasegroup 2:1 300
Firegroup 27 Phasegroups per firegroup 2:1 600
Segment 21 Firegroups per segment 4.1 2,400
4-inch printhead 2 Segments per 4-inch printhead 8:1 19,200

22 LOAD AND PRINT CYCLES

A single 4-inch printhead 2 contains a total of 19,200 nozzles 22. A Print Cycle involves the
firing of up to all of these nozzles, dependent on the information to be printed. A Load Cycle invoives
the loading up of the printhead with the information to be printed during the subsequent Print Cycle.

Each nozzle 22 has an associated. NozzieEnable bit that determines whether_ or not the -
nozzle will fire during the Print Cycle. The NozzleEnable bits (one per nozzle) are loaded via a set of
shift registers.

Logically there are 3 shift registers per segment (one per color), each 800 long. As bits are
shifted into the shift register for a given color they are directed to the lower and upper nozzles on
altemate pulses. Internally, each 800-deep shift register is comprised of two 400-deep shift registers:
one for the upper nozzles, and one for the lower nozzles. Alternate bits are shifted into the alternate
internal registers. As far as the external interface is concerned however, there is a single 800 deep shift
register.

Once all the shift registers have been fully loaded (800 load pulses), all of the bits are
transferred in parallel to the appropriate NozzieEnable bits. This equates to a single parallel transfer of
19,200 bits. Once the transfer has taken place, the Print Cycle can begin. The Print Cycle and the Load
Cycle can occur simultaneously as long as the parallel load of all NozzieEnable bits occurs at the end
of the Print Cycle.

2.21 Load Cycle

The Load Cycle is concerned with loading the printhead’s shift registers with the next Print
Cycle's NozzleEnable bits.
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Each segment 21 has 3 inputs directly related to the cyan, magenta, and yellow shift
registers. These inputs are called CDataln, MDataln and YDatain. Since there are 8 segments, there
are a total of 24 color input lines per 4-inch printhead. A single pulse on the SRClock line (shared
between all 8 segments) transfers the 24 bits into the appropriate shift registers. Altemate pulses
transfer bits to the lower and upper nozzles respectively. Since there are 19,200 nozzles, a total of 800
pulses are required for the transfer. Once all 19,200 bits have been transferred, a single pulse on the
shared PTransfer line causes the parallel transfer of data from the shift registers to the appropriate
NozzieEnable bits.

The parallel transfer via a pulse on PTransfer must take place after the Print Cycle has
finished. Otherwise the NozzleEnable bits for the line being printed will be incorrect.

Since all 8 segments 21 are loaded with a single SRClock pulse, any printing process must
produce the data in the correct sequence for the printhead. As an example, the first SRClock pulse will
transfer the CMY bits for the next Print Cycle's dot 0, 800, 1600, 2400, 3200, 4000, 4800, and 5600.
The second SRClock pulse will transfer the CMY bits for the next Print Cycle'’s dot 1, 801, 1601, 2401,
3201, 4001, 4801 and 5601. After 800 SRClock pulses, the PTransfer pulse can be given.

Print Cycle, do not appear on the same physical output line. The physical separation of odd and even
nozzles within the printhead, as well as separation between nozzles of different colors ensures that
they will produce dots on different lines of the page. This relative difference must be accounted for
when loading the data into the printhead. The actual difference in lines depends on the characteristics
of the inkjet mechanism used in the printhead. The differences can be defined by variables D, and D,
where D, is the distance between nozzles of different colors, and D, is the distance between nozzles of
the same color. Table 3 shows the dots transferred to segment n of a printhead on the first 4 pulses.

Table 3. Order of Dots Transferred to a 4-inch Printhead

Pulse Dot Yellow Line Magenta Line | Cyan Line
1 800s? N N+D,P N+2D,
2 800S+1 N+D,¢ N+D,+D, N+2D,+D,
3 8005+2 N N+D, N+2D,
4 800S+3 N+D, N+D;+D, N+20,+D,

a. S = segment number (0-7)
b. D, = number of lines between the nozzles of one color and the next (likely = 4-8)

c. D, = number of lines between two rows of nozzles of the same color (likely = 1)

And so on for all 800 pulses.
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Data can be clocked into the printhead at a maximum rate of 20 MHz, which will load the
entire data for the next line in 40ps.

22.2 Print Cycle

A 4-inch printhead 2 contains 19,200 nozzles 22. To fire them all at once would consume too
much power and be problematic in terms of ink refill and nozzle interference. Consequently two firing
modes are defined: a low-speed print mode and a high-speed print mode: '

. in the low-speed print mode, there are 200 phases, with each phase firing 96 nozzles. This
equates to 12 nozzles per segment, or 3 per firegroup.

. In the high-speed print mode, there are 100 phases, with each phase firing 192 nozzles. This
equates to 24 nozzles per segment, or 6 per firegroup.

The nozzles to be fired in a given firing pulse are determined by

° 3 bits ChromapodSelect (select 1 of 5 chromapods 24 from a firegroup 27)
* 4 bits NozzleSelect (select 1 of 10 nozzles 22 from a pod 23)
. 2 bits of PodgroupEnable lines (select 0, 1, or 2 podgroups 25 to fire)

When one of the PodgroupEnable lines is set, only the specified Podgroup’s 4 nozzles will
fire as determined by ChromapodSelect and NozzieSelect. When both of the PodgroupEnable tines are
set, both of the podgroups will fire their nozzles. For the low-speed mode, two fire pulses are required,
with PodgroupEnable = 10 and 01 respectively. For the high-speed mode, only one fire pulse is
required, with PodgroupEnable = 11.

The duration of the firing pulse is given by the AEnable and BEnable lines, which fire the
PhasegroupA and PhasegroupB nozzles from all firegroups respectively. The typical duration of a firing
pulse is 1.3 - 1.8 us. The duration of a pulse depends on the viscosity of the ink (dependent on
temperature and ink characteristics) and the amount of power available to the printhead. See Section
2.3 on page 18 for details on feedback from the printhead in order to compensate for temperature
change.

The AEnable and BEnable are separate lines in order that the firing pulses can overlap. Thus
the 200 phases of a low-speed Print Cycle consist of 100 A phases and 100 B phases, effectively giving
100 sets of Phase A and Phase B. Likewise, the 100 phases of a high-speed print cycle consist of 50 A
phases and 50 B phases, effectively giving 50 phases of phase A and phase B.

Figure 12 shows the AEnable and BEnable lines during a typical Print Cycle. In a high- speed
print there are 50 2us cycles, while in a low-speed print there are 100 2us cycles.

For the high-speed printing mode, the firing order is:
. ChromapodSelect 0, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)
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[ ChromapodSelect 1, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)
L ChromapodSelect 2, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)
L ChromapodSelect 3, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)
. ChromapodSelect 4, NozzleSelect 0, PodgroupEnable 11 (Phases A and B)
L4 ChromapodSelect 0, NozzleSelect 1, PodgroupEnable 11 (Phases A and B)
[ ]

L ChromapodSelect 3, NozzleSelect 9, PodgroupEnable 11 (Phases A and B)
. ChromapodSelect 4, NozzleSelect 9, PodgroupEnable 11 (Phases A and B)

For the low-speed printing mode, the firing order is similar. For each phase of the high speed
mode where PodgroupEnable was 11, two phases of PodgroupEnable = 01 and 10 are substituted as

follows:

o ChromapodSelect 0, NozzleSelect 0, PodgroupEnable 01 (Phases A and B)

. ChromapodSelect 0, NozzleSelect 0, PodgroupEnable 10 (Phases A and B)

. ChromapodSelect 1, NozzieSelect 0, PodgroupEnable 01 (Phases A and B)

. ChromapodSelect 1, NozzleSelect 0, PodgroupEnable 10 (Phases A and B}

. S . : o : —
L ChromapodSelect 3, NozzleSelect 9, PodgroupEnable 01 (Phases A and B)

. ChromapodSelect 3, NozzleSelect 9, PodgroupEnable 10 (Phases A and B)

J ChromapodSelect 4, NozzleSelect 9, PodgroupEnable 01 (Phases A and B)

° ChromapodSelect 4, NozzleSelect 9, PodgroupEnable 10 (Phases A and B)

When a nozzle 22 fires, it takes approximately 100us to refill. The nozzle 22 cannot be fired
before this refill time has elapsed. This limits the fastest printing speed to 100us per line. In the high-
speed print mode, the time to print a line is 100us, so the time between firing a nozzle from one line to
the next matches the refill time, making the high-speed print mode acceptable. The low-speed print
mode is slower than this, so is also acceptable.

The firing of a nozzle 22 also causes acoustic perturbations for a limited time within the
common ink reservoir of that nozzle's pod 23. The perturbations can interfere with the firing of another
nozzle within the same pod 23. Consequently, the firing of nozzles within a pod should be offset from
each other as long as possible. We therefore fire three nozzles from a chromapod 24 (one nozzle 22
per color) and then move onto the next chromapod 24 within the podgroup 25.

° In the low-speed printing mode the podgroups 25 are fired separately. Thus the 5 chroma-

pods 24 within both podgroups must all fire before the first chromapod fires again, totalling 10

x 2us cycles. Consequently each pod 23 is fired once per 20us.
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. In the high-speed printing mode, the podgroups 26 are fired together. Thus the 5 chroma-
pods 24 within a single podgroup must all fire before the first chromapod fires again, totalling
5 x 2us cycles. Consequently each pod 23 is fired once per 10 ps.

As the ink channel is 300um long and the velocity of sound in the ink is around 1500m/s, the
resonant frequency of the ink channel is 2.5MHz, thus the low speed mode allows 50 resonant cycles
for the acoustic pulse to dampen, and the high speed mode allows 25 resonant cycles. Thus any
acoustic interference is minimal in both cases.

223  Sample Timing

As an example, consider the timing of printing an 4” x 6” photo in 2 seconds, as Is required by
Printcam. in order to print a photo in 2 seconds, the 4-inch printhead must print 8600 lines (6 x 1600).
Rounding up to 10,000 lines in 2 seconds yields a line time of 200 pus. A single Print Cycle and a single
Load Cycle must both finish within this time. In addition, a physical process external to the pn‘nthéad
must move the paper an appropriate amount.

From the printing point of view, the low-speed print mode allows a 4-inch printhead to print an
entire line in 200 ps. In the low-speed print mode, 96 nozzles 22 fire per firing pulse, thereby enabling
the printing of an entire line within the specified time.

The 800 SRClock pulses to.the printhead 2 (each clock pulse. transferring 24 bits) must.also
take place within the 200 us line time. The length of an SRClock pulse cannot exceed 200 us/800 =
250ns, indicating that the printhead must be clocked at 4AMHz. in addition, the average time to calculate
each bit value (for each of the 19,200 nozzles) must not exceed 200us / 19,200 = 10ns. This requires a
dot generator running at one of the following speeds:

) 100 MHz generating 1 bit (dot) per cycle
° 50 MHz generating 2 bits (dots) per cycle
) 25 MHz generating 4 bits (dots) per cycle

23 FEEDBACK FROM THE PRINTHEAD

The printhead 2 produces several lines of feedback (accumulated from the 8 segments). The
feedback lines are used to adjust the timing of the firing pulses. Although each segment 21 produces
the same feedback, the feedback from all segments share the same tri-state bus lines. Consequently
only one segment 21 at a time can provide feedback.

A pulse on the SenseSegSelect line ANDed with data on Cyan enables the sense lines for
that segment. The feedback sense lines will come from the selected segment until the next
SenseSegSelect pulse. The feedback sense lines are as follows:
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. Tsenseinforms the controller how hot the printhead is. This allows the controller to adjust
timing of firing pulses, since temperature affects the viscosity of the ink.

. Vsenseinforms the controller how much voltage is available to the actuator. This allows the
controlier to compensate for a flat battery or high voltage source by adjusting the pulse width.

. Rsenseinforms the controller of the resistivity (Ohms per square) of the actuator heater. This
allows the controller to adjust the pulse widths to maintain a constant energy irrespective of
the heater resistivity.

o Wsenseinforms the controller of the width of the critical part of the heater, which may vary up
to £ 5% due to lithographic and etching variations. This allows the controller to adjust the
pulse width appropriately. '

24 SPECIAL CYCLES

241 Preheat Cycle

The printing process has a strong tendency to stay at the equilibrium temperature. To ensure
that the first section of the printed photograph has a consistent dot size, the equilibrium temperature
must be met before printing any dots. This is accomplished via a preheat cycle.

The Preheat cycle involves a single Load Cycle to all nozzles with 1s (i.e. sefting all nozzles
to fire), and a number of short firing pulses to each nozzle. The duration of the pulse must be
insufficient to fire the drops, but enough to heat up the ink. Altogether about 200 pulses for each nozzle
are required, cycling through in the same sequence as a standard Print Cycle.

Feedback during the Preheat mode is provided by Tsense, and continues until equilibrium
temperature is reached (about 30° C above ambient). The duration of the Preheat mode is around 50

milliseconds, and depends on the ink composition.

Preheat is performed before each print job. This does not affect printer performance, as it is
done while the page data is transferred to the printer.

242 Cleaning Cycle

In order to reduce the chances of nozzles becoming clogged, a cleaning cycle can be
undertaken before each print job. Each nozzle is be fired a number of times into an absorbent sponge.

The cleaning cycle involves a single Load Cycle to all nozzles with 1s (i.e. setting all nozzles
to fire), and a number of firing pulses to each nozzle. The nozzles are cleaned via the same nozzle
firing sequence as a standard Print Cycle. The number of times that each nozzle 22 is fired depends
upon the ink composition and the time that the printer has been idle, as with preheat, the cleaning cycle

has no effect on printer performance.
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PRINTHEAD INTERFACE SUMMARY

A single 4-inch printhead 2 has the following connections:

Table 4. Four-inch Printhead Connections

Name #Pins Description
ChromapodSelect 3 Select which chromapod will fire (0-4)
5 | NozzleSelect 4 Select which nozzle from the pod will fire (0-9)
PodgroupEnable 2 Enable the podgroups to fire (choice of: 01, 10, 11)
AEnable 1 Firing pulse for phasegroup A
BEnable 1 Firing puise for phasegroup B
CDataln[0-7] 8 Cyan input to cyan shift register of segments 0-7
MDatain[0-7] 8 Magenta input to magenta shift register of segments 0-7
YDataln[0-7] 8 Yellow input to yellow shift register of segments 0-7
SRClock 1 A pulse on SRClock (ShiftRegisterClock) loads the current val-
10 | ues from CDataln[0-7), MDataln[0-7] and YDataln[0-7] into the
24 shift registers.
PTransfer 1 Parallel transfer of data from the shift registers to the intemal
NozzleEnable bits (one per nozzle).
SenseSegSelect 1 A pulse on SenseSegSelect ANDed with data on CDataln[n]
selects the sense lines for segment n.
Tsense 1 Temperature sense
Vsense 1 Voltage sense.
Rsense 1 Resistivity sense
15 | Wsense 1 Width sense
Logic GND 1 Logic ground
Logic PWR 1 Logic power
V- Bus Actuator Ground
v+ bars Actuator Power
TOTAL 44
Internal to the 4-inch printhead, each segment has the following connections to the bond
20 pads:
Table 5. Four-Inch Printhead Internal Segment Connections
Name #Pins Description
Chromapod- | 3 Select which chromaped will fire (0-4)
Select
NozzleSelect | 4 Select which nozzle from the pod will fire (0-9)
PodgroupkEn- | 2 Enable the podgroups to fire (choice of: 01, 10, 11)
able
25 | AEnable 1 Firing puise for phasegroup A
BEnable 1 Firing pulse for phasegroup B
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Table 5. Four-Inch Printhead Internal Segment Connections
Name #Pins Description
CDataln 1 Cyan input to cyan shift register
MDataln 1 Magenta input to magenta shift register
YDataln 1 Yellow input to yellow shift register
SRClock 1 A pulse on SRClock (ShiftRegisterClock) loads the current values from
CDataln, MDataln and YDataln into the 3 shift registers.
PTransfer 1 Parallel transfer of data from the shift registers to the internal
NozzleEnable bits (one per nozzle).
SenseSeg- 1 A pulse on SenseSegSefect ANDed with data on CDataln selects the
Select sense lines for this segment.
Tsense 1 Temperature sense
Vsense 1 Voltage sense
Rsense 1 Resistivity sense
Wsense 1 Width sense
Logic GND 1 Logic ground
Logic PWR 1 Logic power
V- 21 Actuator Ground
V+ 21 Actuator Power
TOTAL 65 (65 x 8 segments = 520 for all segments)
3 IMAGE PROCESSING CHAINS

The previous sections have dealt only with the highest level overview of the PCP functionality
- that of mapbing CFA images to a variety of output print formats. In fact, there are a number of steps
involved in taking an image from the image sensor, and producing a high quality output print. We can
break the high level process into two image processing chains, each with a number of steps:
L Image Capture Chain
] Print Chain

The Image Capture Chain is concemed with capturing the image'from the Image Sensor and
storing it locally within the Printcam. The Print Chain is concerned with taking the stored image and
printing it. These two chains map onto the basic Printcam functionality as follows:

. Take&Print = Image Capture Chain followed by Print Chain
° Reprint = Print Chain

For example, a user may print a thumbnail image (Take&Print), and if happy with the resuits,

print several standard copies (Reprint).

This chapter describes an implementation independent image processing chain that meets

the quality requirements of Printcam. At this stage, we are not considering exactly how the processing
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is performed in terms of hardware, but rather what must be done. These functions must be mapped
onto the various units within the PCP.

Regardless of the PCP implementation, there are a number of constraints:

. The input image is a CFA based contone RGB image.

° The output image is for a Memjet printhead (bidevel dots at 1600 dpi) in CMY color space,
and is always the same output width (4 inches wide).

3.0.1 Supported Print Formats

The PCP 3 supports a variety of output print formats, as shown in Table 6. In all cases, the
width of the image is 4 inches (matching the printhead width). Only the length of the print out varies.

Table 6. Supported Image Formats

Output Size Output resolution
| FormatName | Aspect Ratio (inches) | ({at 1600 dpl) | Rotation
Standard 30 2:3 4" x6" 6400 x 9600 90
Passport 31 2:3 4" x 6" 6400 x 9600 90
Panoramic 33 4.6 4" x 127 6400 x 19200 90
Thumbnail 32 2:3 4" x 2.67" 6400 x 4267 0

The image sensor does not provide orientation information. All input images are captured at
the same resolution (1500 x 1000), and may need to be rotated 90 degrees before printout. Figure 13
illustrates the mapping between the captured CFA image and the various supported print formats. Note
that ailthough the image is shown rotated 90 degrees anti-clockwise, the image can be rotated
clockwisé or anti-clockwise.

31 IMAGE CAPTURE CHAIN

The Image Capture Chain is responsible for taking an image from the Image Sensor and
storing it locally within the Printcam. The Image Capture Chain involves a number of processes that
only need to be performed during image capture. The Image Capture Chain is illustrated in Figure 14,
with subsequent sections detailing the sub-components.

3.11 image Sensor 1

The input image comes from an image sensor 1. Although a variety of image sensors are
available, we only consider the Bayer color filter array (CFA). The Bayer CFA has a number of
attributes which are defined here.

The image captured by the CMOS sensor 1 (via a taking lens) is assumed to have been
sufficiently filtered so as to remove any aliasing artifacts. The sensor itself has an aspect ratio of 3:2,
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with a resolution of 1500 x 1000 samples. The most likety pixel arrangement is the Bayer color filter
amray (CFA), with each 2x2 pixel block arranged in a 2G mosaic as shown in Figure 15:

Each contone sample of R, G, or B (corresponding to red, green, and blue respectively) is
10-bits. Note that each pixel of the mosaic contains information about only one of R, G, or B. Estimates
of the missing color information must be made before the image can be printed out.

The CFA is considered to perform adequate fixed pattern noise (FPN) suppression.

312 Linearize RGB 40
. The image sensor 40 is unlikely to have a completely linear response. Therefore the 10-bit
. RGB samples from the CFA must be considered to be non-linear. These non-linear samples
are translated into 8-bit linear samples by means of lookup tables (one table per color).

Pixels from the CFA lines 0, 2, 4 etc. index into the R and G tables, while pixels from the CFA
lines 1, 3, 5 etc. index into the G and B tables. This is completely independent of the orientation of the
camera. The process is shown in Figure 16. The total amount of memory required for each lookup table
is 2'* x 8-bits. The 3 lookup tables 45 therefore require a total of 3 KBytes (3 x 2'° bytes).

313  Planarize RGB 41

The pixels obtained from the CFA have their color planes interieaved due to the nature of the
Bayer mosaic of pixels. By this we mean that on even horizontal lines, one red pixel is followed by a
green pixel and then by another red pixel - the different color planes are interleaved with each other. In
some image processing systems, an interdeaved format is highly useful. However in the Printcam
processing system, the algorithms are more efficient if working on planar RGB.

A planarized image is one that has been separated into its component colors. In the case of
the CFA RGB image, there are 3 separate images: one image containing only the red pixels, one image
containing only the blue pixels, and one image containing only the green pixels. Note that each plane
only represents the pixels of that color which were actually sampled. No resampling is performed during
the planarizing process. As a result, the R, G and B planes are not registered with each other, and the
G plane is twice as large as either the R or B planes. The process is shown in Figure 17.

The actual process is quite simple - depending on the color of the pixels read in, the output
pixels are sent to the next position in the appropriate color plane’s image (therefore in the same
orientation as the CFA).

The red 45 and blue 47 planar images are exactly one quarter of the size of the original CFA
image. They are exactly half the resolution in each dimension. The red and blue images are therefore
750 x 500 pixels each, with the red image implicitly offset from the blue image by one pixel in CFA
space (1500 x 1000) in both the x and y-dimensions.
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Although the green planar image 46 is half of the size of the original CFA imags, it is not set
out as straightforwardly as the red or biue planes. The reason is due to the checkerboard layout of
green. On one line the green is every odd pixel, and on the nextline the green is every even pixel. Thus
alternate lines of the green plane represent odd and even pixels within the CFA image. Thus the green
planar image is 750 x 1000 pixels. This has ramifications for the resampling process (see “Resample
64" on page 28 below).

3.14 Stored Image 42

Each color plane of the linearized RGB image is written to memory for temporary storage.
The memory should be Flash 11 so that the image is retained after the power has been shut off.

The total amount of memory required for the planarized linear RGB image is 1,500,000 bytes
(approximately 1.5 MB) arranged as follows:

L R: 750 x 500 =375,000 bytes
o B: 750 x 500 =375,000 bytes
o G: 750 x 1000 =750,000 bytes

32  PRINT CHAIN

The Print Chain is concemed with taking an existing image from memory 42 and printing it to
a Memjet printer 2. An image is typically printed-as soon as-it-has been captured, although it can also
be reprinted (i.e. without recapture).

There are a number of staps required in the image processing chain in order to produce high
quality prints from CFA captured images. Figure 18 illustrates the Print Chain. The chain is divided into
3 working resolutions. The first is the original image capture space 50 (the same space as the CFA),
the second is an intermediate resolution 51 (lines of 1280 continuous tone pixels), and the final
resolution is the printer resolution 52, with lines of 6400 bi-level dots.

3.21 Input image

The input image is a linearized RGB image 42 stored in planar form, as stored by the image
Capture Chain described in Section 3.1.4.

3.2.2 QGather Statistics 60

A number of statistics regarding the entire image need to be gathered before processes like
white balance and range expansion can be performed. These statistics only need to be gathered once
for all prints of a particular captured image 42, and can be gathered separately from the red, green, and
blue planar images. '
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3.2.2.1 Build Histogram

The first step is to build a histogram for each 8-bit value of the color plane. Each 1500 x 1000
CFA image contains a total of:

. 375,000 red pixels (min 19-bit counter required)
. 375,000 blue pixels (min 19-bit counter required)
. 750,000 green pixels (min 20-bit counter required)

Therefore a single 256 x 20 bit table is required to hold the histogram.

The process of building the histogram is straightforward, as illustrated by the following
pseudocode:

For I = 0 to 255
Entry(I] = 0

EndFor

FPor Pixel = ImageStart to ImageEnd
p = Image [Pixel]
Entry(pl =~ Entry(pl+l

EndFor

3.222 Determine High and Low Thresholds

Once the histogram has been constructed for the color ptane, it can be used to determine a
high and low threshold. These thresholds can be used for automating later white balance and range
expansion during the print process.

Basing the thresholds on the number of pixels from the histogram, we consider the n%
darkest pixels to be expendable and therefore equal. In the same way, we consider the n% lightest
pixels to be expendable and therefore equal. The exact value for n is expected to be about 5%, but will
depend on the CFA response characteristics.

The process of determining the n% darkest values is straightforward. It involves stepping
through the color plane’s histogram from the count for 0 upwards (i.e. 0, 1, 2, 3 etc.) until the n% total is
reached or we have travelled further than a set amount from 0. The highest of these values is
considered the low threshold of the color plane. Although there is a difference between these darkest
values, the difference can be considered expendable for the purposes of range expansion and color

balancing.

The process of determining the n% lightest values is similar. It involves stepping through the
color plane’s histogram from the count for 255 downwards (i.e. 255, 254, 253 etc.) until the n% total is
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reached or until we have travelled further than a set amount from 255. The lowest of these values is
considered the high threshold of the color plane. Although there is a difference between these lightest
values, the difference can be considered expendable for the purposes of range expansion and color

balancing.

The reason for stopping after a set distance from 0 or 255 is to compensate for two types of

images:
. where the original dynamic range is low, or
. where there is no white or black in an image

In these two cases, we don’t want to consider the entire n% of upper and lower values to be
expendable since we have a low range to begin with. We can safely set the high 73 and low 72
thresholds to be outside the range of pixel values actually sampled. The exact distance will depend on
the CFA, but will be two constants.

A sample color range for a color plane is shown in Figure 19. Note that although the entire 0-
255 range is possible for an image color piane’s pixels, this particular image has a smaller range. Note
also that the same n% histogram range 70, 71 is represented by a larger range in the low end 70 than
in the high end 71. This is because the histogram must contain more pixels with high values closer
together compared to the low end.

The high 73 and low 72 thresholds must be determined for each color plane individually. This
information will be used to calculate range scale and offset factors to be used in the iater white balance
and range expansion process.

The following pseudocode illustrates the process of determining either of the two thresholds
(to find the low threshold, startPosition = 255, and Delta = 1. To find the high threshold,
StartPosition = 0 and Delta = -1). The pseudocode assumes that Threshold is an 8-bit value that
wraps during addition.

Threshold = StartPosition

Total = 0

TotalDelta = 0

While ((TotalDelta < MaxDelta) AND (Total < MaxPixels))
Threshold = Threshold + Delta
Total = Total + Entry(Threshold)
TotalDelta = TotalDelta + 1

EndWhile

Return Threshold
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323 Rotate Image 61

Rotation of the image 61 is an optional step on both the Capture and Print and Reprint

processes.

Different print formats require the image to be rotated either 0 or 90 degrees relative to the
CFA orientation, as shown in Figure 13. The rotation amount depends on the currently selected print
format. Although the direction of rotation is unimportant (it can be clockwise or counter-clockwise since
the new orientation is only facilitating the printhead width), the rotation direction will affect the relative
registration of the 3 color planes. Table 7 summarizes the rotation required for each print format from
the original CFA orientation. '

Table 7. Rotations from CFA orientation for Print Formats

Print Format Rotation
Standard 30
Passport 31
Panoramic 33
Thumbnail 32

©l 8 8|8

Sin;:e we él;er &Jtatihg only 6y 0 or 90d;grees no information is lost during the rotation

process. For a rotation of 0, the image can be read row by row, and for a rotation of 90, the image can
be read column by column. Registration of the 3 color planes must take the rotation direction into
account.

3.24 White Balance 62 and Range Expansion 63

A photograph is seldom taken in ideal lighting conditions. Even the very notion of “perfect
lighting conditions” is fraught with subjectivity, both in terms of photographer and subject matter.
However, in all cases, the subject matter of a photograph is illuminated by light either from a light

source (such as the sun or indoor lighting), or its own light (such as a neon sign).

In most lighting conditions, what may appear to the photographer as “white” light, is usually
far from white. Indoor lighting for example, typically has a yellow cast, and this yellow cast will appear
on an uncorrected photograph. To most people, the yellow cast on the final uncorrected photograph is
wrong. Although it may match the viewing conditions at the time the photograph was taken, it does not
match the perceived color of the object. It is therefore crucial to perform white balance on a photograph
before printing it out.

In the same way, an image can be perceived to be of higher quality when the dynamic range
of the colors is expanded to match the full range in each color plane. This is particularly useful to do
before an image is resampled to a higher resolution. If the dynamic range is higher, intermediate values
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can be used in interpolated pixe! positions, avoiding a stepped or blocky image. Range expansion is
designed to give the full 256 value range to those values actually sampled. In the best case, the lowest
value is mapped to 0, and the highest value is mapped to 255. All the intermediate values are mapped
to proportionally intermediate values between 0 and 255.

Mathematically, the operation performed is a translation of LowThreshold 72 to 0 followed by
a scale. The formula is shown here:

Pixel' = (Pixel - LowThreshold) x RangeScaleFactor

256
(HighThreshold ~ LowThreshold)

where RangeScaleFactor =

Range ScaleFactor should be limited to a maximum value to reduce the risk of expanding the
range too far. For details on calculating LowThreshold, 72 see Section 3.2.2 "Gather Statistics™. These
values (LowThreshold and RangeScaleFactor) will be different for each color plane, and only need to
be calculated once per image.

Both tasks can be undertaken simultaneously, as shown in Figure 20:

Since this step involves a scaling process, we can be left with some fractional component in
the mapped value.e.g. the value 12 may map.to 5.25. Rather than discard the fractional.component, we
pass a 10 bit result (8 bits of integer, 2 of fraction) on to the next stage of the image processing chain.
We cannot afford the memory to store the entire image at more than 8-bits, but we can make good use
of the higher resolution in the resampling siage. Consequently the input image is 8-bits, and the output
image has 10-bits per color component. The logical process is shown in Figure 21.

It is important to have a floor of 0 during the subtraction so that all values below
LowThreshold 72 to be mapped to 0. Likewise, the multiplication must have a ceiling of 255 for the
integer portion of the result so that input values higher than HighThrashokd 73 will be mapped to 255.

3.25 Resample 64

The CFA only provides a single color component per pixel (x,y) coordinate. To produce the
final printed image we need to have the other color component values at each pixel. Uitimately we need
cyan, magenta, and yellow color components at each pixel, but to arrive at cyan, magenta, and yellow
we need red, green and blue. With our one-color-per-pixel, we may have the red component for a
particular position, but we need to estimate blue and green. Or we may have green, and need to
estimate red and blue.

Even if we did have the full red, green, and blue color components for each CFA resolution
pixel, the CFA resolution image is not the final output resolution. in addition, although the output format
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varies, the physical width of the printed image is constant (4 inches at 1600 dpi). The constant width of
the printhead is therefore 6400 dots.

There are two extreme cases to consider:

. Interpolate to CFA resolution (minimal interpolation), and then perform sharpening, color
conversion. Finally scale up to the print resolution. This has the advantage of a constant
sharpening kernel and color conversion at the low resolution. However it has the disadvan-
tage of requiring more than 8-bits per color component to be stored for the interpolated
image or intermediate values will be incorrectly interpolated during the final scale-up to print
resolution. It also has the disadvantage of requiring a scale-up unit that is capable of produc-
ing 1 print-res interpolated value per cycle.

° Interpolate to the print resolution, then perform sharpening and color conversion. This has
the advantage of only one resampling process, providing maximum accuracy. However it has
the disadvantage of requiring a scale-up unit that is capable of producing 1 bi-cubic interpo-
lated value per cycle as well as performing sharpening and color conversion, all on an aver-
age of a single cycle. The sharpening keme! must be large enough to apply the CFA-res
kernel to the high-res image. Worse still, for sharpening, there must be at least 3 windows

kept onto the output image (each containing a number of 6400 entry lines) since on a single
print cycle, the cyan, magenta, and yellow dots represent dots from 6 different lines.

Neither of these cases take into account the fact that the final print output is bilevel rather
than contone. Consequently we can strike a middle ground with regards to resampling, and achieve the
best from both methods.

The solution is to interpolate to an intermediate resolution. Sharpening and color conversion
occur at the intermediate resolution, followed by a scale-up to print resolution. The intermediate
resolution must be low enough to allow the advantages of small sharpening kernel size and color
conversion fiming. But the intermediate resolution must be high enough so that there is no loss of
quality scaling up to the print resolution bi-level image. The effect must be the same as if there was a
single interpolation to the print resolution (rather than two).

Since the print image is printed as 1600 dpi dithered bi-level dots, it can be safely
represented by a 320 dpi contone image. Consequently an intermediate resolution of 1280 contone
pixels provides no perceived loss of quality over 6400 bi-level dots. The later scaling from 1280 to 6400
is therefore an exact scaling ratio of 1.5.

To decide how best to resample, it is best to consider each color plane in relation to the CFA

resolution. This is shown in Figure 22 for a rotation of 0.
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3.25.1 Red45 and Blue 47

Looking at the red 45 and blue 47 planes, the full CFA resolution version of the color plane
can be created by scaling up the number of sampled pixels in each dimension by 2. The intermediate
pixels can be generated by means of a reconstruction filter (such as a Lanczos or Exponential filter).
Only one dimension in the kerel is required, since the kemel is symmetric. Since red and blue have
different offsets in terms of their initial representation within the CFA sample space, the initial positions

in the kerne! will be different.

The mapping of output coordinates (in 1280 space) to input coordinates depends on the
current rotation of the image, since the registration of pixels changes with rotation (either 0 or 90
degrees depending on print format). For red and blue then, the following relationship holds:

X' = (rﬁ) +k,

y = ('—n-%- +k2

where

X,y = coordinate in medium res space .

x'y' = coordinate in input space
mps=mediumrespixelsperinputspaee§ample
k4,2 = {0, -0.5} depending on rotation

This means that given a starting position in input space, we can generate a new line of
medium resolution pixels by adding a Ax and-Ay of 1/mps and 0 respectively 1279 times. The fractional
part of x and y in input space can be directly used for looking up the kemel coefficients for image
reconstruction and resampling.
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Note that k; and k; are 0 and -0.5 depending on whether the image has been rotated by 0 or

90 degrees. Table B shows the values for k; and k; in the red and blue planes, assuming that the

rotation of 90 degrees is anti-clockwise.

Table 8. Effect of Rotation on k1 and k2 (rotation is anti-clockwise)

Red Blue
5 Rotation From Original
Format CFA ky k2 kq k2
Standard 30 90 0 -0.5 -0.5 0
Passport 31 90 0 0.5 -0.5 0
Panoramic 33 90 0 0.5 -0.5 0
Thumbnail 32 0 0 0 -0.5 -0.5

The number of medium res pixels per sample, mps, depends on the print format. Given that
the planarized RGB image has the following red and blue planar resolutions when unrotated: R: 750 x
10 500, B: 750 x 500, the scale factors for the different output formats (see Figure 13 on page 17) are
shown in Table 9. Note that with the Passport image format, the entire image is resampled into 1/4 of
the output space.

Table 9. Red and Blue Scale Factors for Inage Formats

Format Mapping mps 1/mps
Standard 30 500 = 1280 | 256 0.390625
Passport 31 500 = 640 128 0.78125
15 Panoramic 33 250 = 1280 |5.12 0.1953125
Thumbnail 32 750 = 1280 | 1.7 0.5848

As can be seen in Table 9, the red and blue images are scaled up for all image formats.
Consequently there will not be any aliasing artifacts introduced by the resampling process.

3.25.2 Green 46

The green plane 46 cannot be simply scaled up in the same way as red or blue, since each

20 line of the green plane represents different pixels - either the odd or even pixels on altemnate lines.
Although in terms of the number of pixels it is representative to say the green image is 750 x 1000, the
image could equally be said to be 1500 x 500. This confusion arises because of the checkerboard
nature of the green pixels, where the distance between pixels is not equal in x and y dimensions, and
does not map well to image reconstruction or resampling. The number of interpolation methods used by
other systems for green plane reconstruction is testimony to this - from nearest neighbor replication to

linear interpolation to bi-linear interpolation and heuristic reconstruction.

25 .
The mapping of output coordinates (in 1280 space) to input coordinates is conceptually the

same for green as it is for red and blue. The mapping depends on the current rotation of the image,
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since the registration of pixels changes with rotation (either 0 or 90 degrees depending on print format).
For the green plane the following relationship holds:

X' = (Ls) +k,
mp.

y = (’—nz;— +k,

where

x,y = coordinate in medium res space

x'y' = coordinate in input space

mps = medium res pixels per input space sample
kq,2 = {0, -0.5} depending on rotation

As with the red 45 and blue 47 planes, the number of medium res pixels per sample, mps,
depends on the print format. Given that the planarized RGB image has the following planar resolutions
when unrotated: R: 750 x 500, B: 750 x 500, G: 750 x 1000, the scale factors for the different output
formats (see Figure 13) are shown in Table 10. Note that with-the Passport image format, the entire:
image is resampled into 1/4 of the output space.

- Table 10. Green Plane Scale Factors for Inage Formats

Format Mapping mps 1/mps
Standard 30 1000 = 1280 1.28 0.78125
Passport 31 1000 = 640 0.64 1.5625
Panoramic 33 500 = 1280 2.56 0.390625
Thumbnail 32 1500 = 1280 0.85 1.17648

These scale factors allow the mapping of coordinates between CFA resolution input space
and medium res space. However, once we have a coordinate in CFA resolution input space, we cannot
perform image reconstruction and resampling on the samples in the same way as red or blue due to the
checkerboard nature of the green plane 46.

Instead, for the purposes of high quality image reconstruction and resampling, we can
consider the green channel to be an image rotated by 45 degrees. When we look at the pixels in this
light, as shown in Figure 23, a high quality image reconstruction and resampling method becomes
clear.
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Looking at Figure 23, the distance between the sampled pixels in the X and Y directions is

now equal. The actual distance between sampled pixels is ,ﬁ , as illustrated in Figure 24.

The solution for the green channel then, is to perform image reconstruction and resampling
in rotated space. Although the same reconstruction filter is used as for resampling red and blue, the
kernel should be different. This is because the relationship between the sampling rate for green and the
highest frequency in the signal is different to the relationship for the red and blue planes. In addition, the
kernel should be normalized so that the V2 distance between samples becomes 1 as far as kemel
coordinates go (the unnormalized distances between resampling coordinates must still be used to
determine whether aliasing will occur however). Therefore we require two transformations:

. The first is to map unrotated CFA space into rotated CFA space. This can be abcomplished
by multiplying each ordinate by 12, since we are rotating by 45 degrees (cos45 = sin45 =
1\2).

. The second is to scale the coordinates to match the normalized kemel, which can be accom-

plished by multiplying each ordinate by 1/42.

These two transformations combine to create a multiplication factor of 1/2. Consequently, as

we advance in unrotated CFA space x by k, we increase by K2 in kernel x, and decrease by K2 in

kernel y. Similarly, as we advance in y by k, we increase by k/2 in kemel x and increase by k/2 in kernel

y.

The relationships between these different coordinate systems can be illustrated by
considering what occurs as we generate a line of medium resolution pixels from a CFA space input
image. Given a starting y ordinate in CFA input space, we begin at x=0, and advance 1280 times by
1/mps, generating a new pixel at each new location. The movement in unrotated CFA space by 1/mps
can be decomposed into a movement in x and a movement in y in rotated CFA space. The process is
shown in Figure 25.

Since cos45 = sind5 = 1/42, movement in unrotated CFA space by 1/mps equates to equal
movement in x and y by 1/(mpsv2). This amount must now be scaled to match the normalized kemel.
The scaling equates to another multiplication by 12. Consequently, a movement of 1/mps in unrotated
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CFA space equates to a movement of 1/2mps in kemel x and kernel y. Table 11 lists the relationship
between the three coordinate systems for the different formats:.
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Table 11. Green Plane Kernel A Values for Image Formats

Format

Scale Factor
(mps)

Unrotated
CFA space A

1

mps

Rotated
CFA Space A

1
mps.J2

Kernel A
1

2mps

0.78125
1.5625
0.391
1.17648

0.391
0.781
0.195
0.601

Standard
Passport
Panoramic
Thumbnail

1.28
0.64
2.56
0.85

0.552
1.105
0.276
0.832

Table 11 shows that movement in kemel space is always by a number less than 1, but in
rotated CFA space, only the Passport image has a A value of greater than 1. As a result, aliasing will
occur for the Passport print format, but not for any of the others. However, given that the A is almost 1,
and that each of the 4 images is only 1/4 size, aliasing will not be noticeable, especially since we

assume ideal low pass filtering on the green during image capture.
3.25.3 Reconstruction Filter for Red, Blue and Green

The exact reconstruction filter to be used will depend on a number of issues. There Is always
a trade off between the number of samples used in constructing the original signal, the time taken for
signal reconstruction, and quality of the resampled image. A satisfactory trade-off in this case is 5 pixel
samples from the dimension being reconstructed, centered around the estimated position X i.e. X-2, X-
1, X, X+1, X+2. Due to the nature of reconstructing with 5 sample points, we only require 4 coefficients
for the entry in the convolution kernel.

We create a kernel coefficient lookup table with n entries for each color component. Each
entry has 4 coefficients. As we advance. in output space, we map the changes in output space to
changes in input space and kemel space. The most significant bits of the fractional component in the
current kemel space are used to index into the kemnel coefficients table. If there are 64 entries in the
kernel table, the first 6 fraction bits are used to look up the coefficients. 64 entries is quite sufficient for
the resampling in Printcam.

3.26 Sharpen 65

The image captured by the CFA must be sharpened before being printed. Ideally, the
sharpening filter should be applied in the CFA resolution domain. However, at the image capture
resolution we do not have the full color information at each pixel. Instead we only have red, blue or
green at a given pixel position. Sharpening each color plane independently gives rise to color shifts.
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Sharpening should instead be applied to the luminance channel of an image, so that the hue and

saturation of a given pixel will be unchanged.

Sharpening then, involves the translation of an RGB image into a color space where the
luminance is separated from the remainder of the color information (such as HLS or Lab) 80. The
luminance channel 81 can then be sharpened 82 (by adding in a proportion of the high-pass-filtered
version of the luminance). Finally, the entire image should be converted back to RGB 83 (or to CMY

since we are going to print out in CMY). The process is shown in Figure 26.

However we can avoid much of the color conversion steps if we consider the effect of adding
a high-passed-filtered L back into the image - the effect is a change in the luminance of thé image. A
change in the luminance of a given pixel can be well-approximated by an equal change in linear R, G,
and B. Therefore we simply generate L, high-pass-filter L, and apply a proportion of the result equally to
R, G, and B.

3.2.61 ConvertRGB tolL 80

We consider the CIE 1976 L*a*b* color space, where L is perceptually uniform. To convert
from RGB to L (the luminance channel) we average the minj@pm and maximyrm of R G, and B as

follows:

L = MIN(R, G, B) + MAX(R, G, B)
2

3.2.62 High PassFilterL 84

A high pass filter 84 can then be applied to the luminance information. Since we are filtering
in med-res space rather than CFA resolution space, the size of the sharpening kernel can be scaled up
or the high pass result can be scaled appropriately. The exact amount of sharpening will depend on the
CFA, but a 3x3 convolution kernel 85 will be sufficient to produce good results.

If we were to increase the size of the kemel, Table 12 shows the effective scaling 86 required
for a 3 x 3 convolution in CFA space as applied to 1280 resolution space, using the green channel as
the basis for scaling the kemel. From this table it is clear that a 7x7 sized kernel applied to the medium
resolution space will be adequate for all sharpening.

Table 12. Scale Factors for Convolution Fiiter

Format Scale 3x3 Kernel in Med-res (1280) Space
Standard 30 1.28 3.84 3x3 or 5x5
Passport 31 0.64 1.92 none, or 3x3
Panoramic 33 2.56 7.68 77
Thumbnail 32 0.85 2.55 none, or 3x3
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If a 3 x 3 filter 85 were applied on the med-res image, the result will be scaled 86 according to

the scale factor used in the general image scale operation. Given the amounts in Table 12 (particularly
the Standard print format), we can use a 3 x 3 filter 85, and then scale the results. The process of

producing a single filtered L pixel is shown in Figure 27.

The actual kemnel used can be any one of a set of standard highpass filter kernels. A basic
but satisfactory highpass filter is shown in this implementation of the PCP in Figure 50.

5
3.2.6.3 AddFiltered L to RGB
The next thing to do is to add some proportion of the resultant high pass filtered ijuminance
values back to the luminance channel. The image can then be converted back to RGB (or instead, to
CMY). However, a change in luminance can be reasonably approximated by an equal change in R, G,
and B (as long as the color space is linear). Consequently we can avoid the color conversions
altogether by adding an equal proportion of the high pass filtered luminance value to R, G, and B. The
10 exact proportion of the high-pass-filtered image can be defined by means of a scale factor.
If L is the high-pass-filtered luminance pixel, and k is the constant scale factor, we can define
the transformation of sharpening R, G, and B as follows:
R = R+kL
G = G+kL; (limitedto 255 each)
B = B+kL
15
Of course, the scale factor applied to L can be combined with the scale factor in the highpass
filter process (see Section 3.2.6.2) for a single scale factor.
Once the sharpening has been applied to the RGB pixel, the image can be converted to CMY
83 in order to be printed out.
3.2.7 Convert to CMY 83
20

In theoretical terms, the conversion from RGB to CMY is simply:

C=1-R
M=1-G
Y=1-B

However this conversion assumes that the CMY space has a linear response, which is
definitely not true of pigmented inks, and only partially true for dye-based inks. The individual color
profile of a particular device (input and output) can vary considerably. Consequently, to allow for
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accurate conversion, as well as to allow for future sensors, inks, and printers, a more accurate model is

required for Printcam.

The transformations required are shown in Figure 28. Lab is chosen because it is
perceptually uniform (unlike XYZ). With regards to the mapping from the image sensor gamut to the
printer gamut, the printer gamut is typically contained wholly within the sensor gamut.

Rather than perform these transformations exhaustively, excelient results can be obtained
via a tri-linear conversion based on 3 sets of 3D lookup tables. The lookup tables contain the resultant
transformations for the specific entry as indexed by RGB. Three tables are required: one table 90
mapping RGB to C, one table 91mapping RGB to M, and one table 92 mapping RGB to Y. Tridinear
interpolation can be used to give the final result for those entries not included in the tables. The process

is shown in Figure 29.

Tri-linear interpolation requires reading 8 values from the lookup table, and performing 7
linear interpolations (4 in the first dimension, 2 in the second, and 1 in the third). High precision can be
used for the intermediate values, although the output value is only 8 bits.

recommended size for each table in this application is 17 x 17 x 171, with each entry 8 bits. A 17 x 17 x
17 table is 4913 bytes (less than 5KB).

To index into the 17-per-dimension tables, the 8-bit input color components are treated as
fixed-point numbers (4:4). The 4 bits of integer give the index, and the 4 bits of fraction are used for
interpolation.

3.28 Up Interpolate 67

The medium resolution (1280 wide) CMY image must now be up-interpolated to the final print
resolution (6400 wide). The ratio is exactly 1:5 in both dimensions.

Although it is certainly possible to bi-linearly interpolate the 25 values (1:5 in both X and Y
dimensions), the resultant values will not be printed contone. The results will be dithered and printed bi-
level. Given that the contane 1600 dpi results will be tumed into dithered bi-level dots, the accuracy of
bi-linear interpolation from 320 dpi to 1600 dpi will not be visible (the medium resolution was chosen for
this very reason). Pixe! replication will therefore produce good resuits.

Pixel replication simply involves taking a single pixel, and using it as the value for a larger
area. In this case, we replicate a single pixel to 25 pixels (a 5 x 5 block). If each pixel were contone, the

1. Although a 17 x 17 x 17 table will give excellent results, it may be possiblc to get by with only a9 x 9 x 9 conversion table
(729 bytes). The exact size can be determined by simulation. The SK conservative-but-definite-results approach was cho-
sen for the purposes of this document.
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result may appear blocky, but since the pixels are to be dithered, the effect is that the 25 resultant bi-
level dots take on the contone value. The process is shown in Figure 30.

3.29 Halftone 68

The printhead 2 is only capable of printing dots in a bidevel fashion. We must therefore
convert from the contone CMY to a dithered CMY image. More specifically, we produce a dispersed dot
ordered dither using a stochastic dither cell, converting a contone CMY image into a dithered bi-level
CMY image.

The 8-bit 1600 dpi contone value is compared to the current position in the dither cell 93. If
the 80-bit contone value is greater than the dither cell value, an output bit of 1 is generated. Otherwise
an output bit of 0 is generated. This output bit will eventually be sent to the printhead and control a
single nozzle to produce a single C, M, or Y dot. The bit represents whether or not a particular nozzle
will fire for a given color and position.

The same position in the dither cell 93 can be used for C, M, and Y. This is because the
actual printhead 2 produces the C, M, and Y dots for different lines in the same print cycle. The
staggering of the different colored dots effectively gives us staggering in the dither cell.

The half-toning process can be seen in Figure 31.

The size of the dither cell 93 depends on the resolution of the output dots. Since we are
producing 1600 dpi dots, the cell size should be larger than 32 x 32. In addition, to allow the dot
processing order to match the printhead segments, the size of the dither cell should ideally divide
evenly into B0O (since there are 800 dots in each segment of the printhead).

A dither cell size of 50 x 50 is large enough to producs high quality results, and divides
evenly into 800 (16 times). Each entry of the dither cell is 8 bits, for a total of 2500 bytes (approximately
1.5 KB).

3.210 Reformat for Printer 69

The final process before being sent to the printer is for the dots to be formatted into the
correct order for being sent to the printhead. The dots must be sent to the printhead in the correct order
- 24 dots at a time as defined in Section 2.2.1.

If the dots can be produced in the correct order for printing (i.e. the up-interpoiate and dither
functions generate their data in the correct order), then those dot values (each value is 1 bit) can simply
be collected, and sent off in groups of 24. The process is shown in Figure 32.

The 24 bit groups can then be sent to the printhead 2 by the Memjet Interface 15.
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4 CPU CORE AND MEMORY

4.1 CPU CoRE 10

The PCP 3 incorporates a simple micro-controller CPU core 10 to synchronize the image
capture and printing image processing chains and to perform Printcam’s general operating system
duties including the user-interface. A wide variety of CPU cores are suitable: it can be any processor
core with sufficient processing power to perform the required calculations and control functions fast
enough to met consumer expectations.

Since all of the image processing is performed by dedicated hardware, the CPU does not
have to process pixels. As a result, the CPU can be extremely simple. However it must be fast enough
to run the stepper motor during a print (the stepper motor requires a 5KHz process). An example of a
suitable core is a Philips 8051 micro-controller running at about 1 MHz.

There is no need to maintain instruction set continuity between different Printcam models.
Different PCP chip designs may be fabricated by different manufacturers, without requiring to license or
port the CPU core. This device independence avoids the chip vendor lock-in such as has occurred in
the PC market with Intel.

Assaociated with the CPU Core is a Program ROM 13 and a small Program Scratch RAM 14,

The CPU 10 communicates with the other units within the PCP 3 via memory-mapped VO.
Particular address ranges map to particular units, and within each range, to particular registers within
that particular unit. This includes the serial and paralie! interfaces.

42 PROGRAM ROM 13

A small Program Flash ROM 13 is incorporated into the PCP 3. The ROM size depends on
the CPU chosen, but should not be more than 16-32KB.

4.3 PROGRAM RAM 14

Likewise, a small scratch RAM area 14 is incorporated into the PCP 3. Since Aihe program
code does not have to manipulate images, there is no need for a large scratch area. The RAM size
depends on the CPU chosen (e.g. stack mechanisms, subroutine calling conventions, register sizes
etc.), but should not be more than about 4 KB.

44 CPU MEMORY DECODER 16

The CPU Memory Decoder 16 is a simple decoder for satisfying CPU data accesses. The
Decoder translates data addresses into internal PCP register accesses over the intemal low speed bus,

and therefore allows for memory mapped 1/O of PCP registers.
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5 COMMUNICATION INTERFACES

541 USB SERIAL PORT INTERFACE 17

This is a standard USB serial port, connected to the internal chip low-speed bus 18. The USB
serial port is controlled by the CPU 10. The serial port allows the transfer of images to and from the
Printcam, and allows DPOF (Digital Print Order Format) printing of transferred photos under external
control.

52 QA CHIP SERIAL INTERFACE 19

This is two standard low-speed serial ports, connected to the internal chip low-speed bus 18.
The CPU-mediated protocol between the two is used to authenticate the print roll [1,2) and for the
following functions:

J Acquire ink characteristics
. Acquire the recommended drop volume
. Track the amount of paper printed and request new print roll when there is insufficient paper

to print the requested print format.

The reason for having two ports is to connect to both the on-camera QA Chip 4 and to the
print roli’s QA Chip 5 using separate lines. The two QA chips are implemented as Authentication Chips
[2]. If only a single line is used, a clone print rolt manufacturer could usurp- the -authentication-
mechanism [1}.

521  Print Roll's QA Chip 5

Each print roll consumable contains its own QA chip 5. The QA chip contains information
required for maintaining the best possible print quality, and is implemented using an Authentication
Chip[2]). The 256 bits of data are allocated as follows:

Table 13. Print roll’'s 256 bits (16

M]n) Access Description
0 RO? Basic Header, Flags sic. (16 bits)
1 RO Serial number (16 bits)

2 RO Batch number (16 bits)

3 pob Paper remaining in mm(16 bits)
4 RO Cyan ink properties (32 bits)

5 RO

6 RO Magenta ink properties (32 bits)
7 RO '
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Table 13. Print roll's 256 bits (16
M[n] Access Description
8 RO Yellow ink properties (32 bits)
9 RO
10-12 | RO For future expansion = 0 (48 bits)
13-15 | RO Random bits, different in each chip (48 bits)
5 a. Read Only

b. Decrement Only

Before each print, the amount of paper remaining is checked by the CPU to ensure that there
is enough for the cumently specified print format. After each print has started, the amount of paper
remaining must be decremented in the print roli's QA chip by the CPU.

53 PARALLEL INTERFACE 6

10 The parallel interface 6 connects the PCP 3 to individual static electrical signals. The CPU is
‘able to control each of these connections as memory-mapped /O via the low-speed bus. (See Section
4.4 for more details on memory-mapped 1/O).

Table 14 shows the connections to the parallel interface.

Table 14. Connections to Parallel Interface

Connection Direction Pins
15 Paper transport slepper motor Out 4
Guillotine motor . Out 1
Focus Motor Out 1
Capping solenoid Out 1
Flash trigger | Out 1
Status LCD segment drivers Out 7
Status LCD common drivers Out 4
Paper pull sensor In 1
20 Buttons In 4
TOTAL 24

54 JTAG INTERFACE 7

A standard JTAG (Joint Test Action Group) Interface 7 is included in the PCP 3 for testing
purposes. Due to the complexity of the chip, a variety of testing techniques are required, including BIST
{Built In Self Test) and functional block isolation. An overhead of 10% in chip area is assumed for

5 overall chip testing circuitry.
2
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6 IMAGE RAM 11

The image RAM 11 is used to store the captured image 42. The Image RAM is multi-level
Flash (2-bits per cell) so that the image is retained after the power has been shut off.

The total amount of memory required for the planarized linear RGB image is 1,500,000 bytes
(approximately 1.5 MB) arranged as follows:

. R: 750 x 500 =375,000 bytes
] B: 750 x 500 =375,000 bytes
. G: 750 x 1000 =750,000 bytes

The image is written by the Image Capture Unit, and read by both the Image Histogram Unit
8 and the Print Generator Unit 99. The CPU 10 does not have direct random access to this image
memory. It must access the image pixels via the Image Access Unit.

7 IMAGE CAPTURE UNIT 12

The Image Capture Unit contains all the functionality required by the Image Capture Chain,
as described in Section 3.1. The Image Capture Unit accepts pixel data via the Image Sensor Interface
98, linearizes the RGB data via a lookup table 96, and finally writes the linearized RGB image out to
RAM in planar format. The process is shown in Figure 33.

.14 IMAGE SENSOR INTERFACE 98

" The Image Sensor Interface (ISI) 98 is a state machine that sends control information to the
CMOS Image Sensor, including frame sync pulses and pixel clock pulses in order to read the image.
Most of the ISI is likely to be a sourced cell from the image sensor manufacturer. The IS] is itself
controlled by the Image Capture Unit State Machine 97.

711 Image Sensor Format

Although a variety of image sensors are available, we only consider the Bayer color fiiter
array (CFA). The Bayer CFA has a number of attributes which are defined here.

The image captured by the CMOS sensor (via a taking lens) is assumed to have been
sufficiently filtered so as to remove any aliasing artifacts. The sensor itself has an aspect ratio of 3:2,
with a resolution of 1500 x 1060 samples. The most likely pixel arrangement is the Bayer color filter
array (CFA), with each 2 x 2 pixel block arranged in a 2G mosaic as shown in Figure 15:

Each contone sample of R, G, or B (corresponding to red, green, and blue respectively) is
10-bits. Note that each pixel of the mosaic contains information about only one of R, G, or B. Estimates
of the missing color information must be made before the image can be printed out.
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The CFA is considered to perform some amount of fixed pattern noise (FPN) suppression.

Additional FPN suppression may required.
7.2 Lookup TABLE 96

The lookup table 96 is a ROM mapping the sensor's RGB to a linear RGB. It matches the
Linearize RGB process 40 described in Section 3.1.2. As such, the ROM is 3 KBytes (3 x 1024 x 8-
bits). 10 bits of address come from the 1SI, while the 2 bits of TableSelect are generated by the Iimage
Capture Unit's State Machine 97.

7.3 STATE MACHINE 97

The Image Capture Unit's State Machine 97 generates control signals for the image Sensor
Interface 1, and generates addresses for linearizing the RGB 40 and for planarizing the image data 41.

The control signals sent to the 1SI 98 inform the ISI to start capturing pixels, stop capturing

pixels etc.

The 2-bit address sent to the Lookup Table 96 matches the current line being read from the

ISI. For even lines (0, 2, 4 etc.), the 2-bit address is Red, Green, Red, Green etc. For odd lines (1,3,5

etc.), the 2-bit address is Green, Blue, Green, Blue. This is true regardless of the orientation of the
camera.

The 21-bit address sent to the Image RAM 11 is the write address for the image. Three
registers hold the current address for each of the red, green, and blue planes. The addresses
increment as pixels are written to each plane.

7.31 Registers
The Image Capture Unit contains a number of registers:

Table 15. Registers in Image Capture Unit

Name Bits Description
MaxPixels 12 Number of pixels each row
MaxRows 12 Number of rows of pixels in image
CurrentPixel | 12 Pixel currently being fetched
CurrentRow | 12 Row currently being processed
NextR 21 The address in image RAM to store the next Red pixel. Set to start

address of red plane before image capture. After image capture, this
register will point to the byte afler the red plane.

NextG 21 The address in Image RAM to store the next Green pixel. Set to start
address of green plane before image capture. After image capture,
this register will point to the byte after the green plane.
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Table 15. Registers in Image Capture Unit

Name Bits Description

NextB 21 The address in Image RAM to store the next Blue pixel. Set to start
address of blue plane before image capture. After image capture, this
register will point to the byte after the blue plane.

EvenEven 2 Address to use for even rows / even pixels

EvenOdd 2 Address to use for even rows / odd pixels

OddEven 2 Address to use for odd rows / even pixels

0ddOdd 2 Address to use for odd rows / odd pixels

Go 1 Wiriting a 1 here starts the capture. Writing a 0 here stops the image

capture. A 0 is written here automatically by the state machine after

MaxRows of MaxPixels have ben captured.

in addition, the Image Sensor Interface 98 contains a number of registers. The exact
registers will depend on the Image Sensor 1 chosen.

8 IMAGE ACCESS UNIT 9

The Image Access Unit 9 produces the means for the CPU 10 to access the image in
IimageRAM 11. The CPU 10 can read pixels from the image in ImageRAM 11 and write pixels back.

Pixels could be read for the purpose of image storage (e.g. via the USB) 17, or for simple
image processing. Pixels could be written to ImageRAM 11 after the image processing, as a previously
saved image (loaded via USB), or images for test pattern purposes. Test patterns could be synthetic
images, specific test images (loaded via the USB) or could be 24-bit nozzle firing values to be directly
loaded into the printhead via the test mode of the Print Generator Unit 99.

The Image Access Unit 9 is a straightforward access mechanism to ImageRAM 11, and
operates quite simply in terms of 3 registers as shown in Table 16.

Table 16. IAU Registers

Name Bits Description
ImageAddress 21 Address to read or write in imageRAM
Mode 3 0 = Read from ImageAddress into Value.
1 = Write Value to ImageAddress.
Value 8 Value stored at ImageAddress (if Mode = Read)
’ Value to store at ImageAddress (if Mode = Write)

The structure of the Image Access Unit is very simple, as shown in Figure 35.

The State Machine 101 simply performs the read/write from/to ImageRAM 11 whenever the
CPU 10 writes to the Mode register.
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9 IMAGE HISTOGRAM UNIT 8

The Image Histogram Unit (IHU) 8 is designed to generate histograms of images as required
by the Print Image Processing Chain described in Section 3.2.2. The IHU only generates histograms for
planar format images with samples of 8 bits each.

The Image Histogram Unit 8 is typically used three times per print. Three different histograms
are gathered, one per color plane. Each time a histogram is gathered, the results are analyzed in order
to determine the low and high thresholds, scaling factors etc. for use in the remainder of the print
process. For more information on how the histogram should be used, see Section 3.2.2.2 and Section
3.24.

9.1 HISTOGRAM RAM 10_2

The histogram itself is stored in a 256-entry RAM 102, each entry being 20 bits. The
histogram RAM is only accessed from within the IHU. Individual entries are read from and written to as
20-bit quantities.

9.2 STATE MACHINE AND REGISTERS 103

The State Machine 103 follows the pseudocode described in Section 3.2.2.1. It is controlled
by the registers shown in Table 17.

Table 17. Registers in image Histogram Unit

Name _ Bits Description

TotalPixels 20 The number of pixels to count (decrements until 0)

StartAddress 21 Where to start counting from

PixelsRemaining 20 How many pixels remain to be counted

Pixelvalue 8 A write to this register loads PixelCount with the PixelValue
entry from the histogram.

PixelCount 20 The number of PixelValue pixels counted in the current his-
togram. It is valid after a write to PixelValue.

ClearCount 1 Determines whether the histogram count will be cleared at

the start of the histogram process. A 1 causes the counts to
be cleared, and a 0 causes the counts to remain untouched
(i.e. the next histogram adds to the existing counts).

Go 1 Writing a 1 here starts the histogram process. Writing a 0
here stops the histogram process. A 0 is written here auto-
matically by the state machine after TotalPixels has counted
down to 0.

The typical usage of the registers is to set up TotalPixels with the total number of pixels to
include in the count (e.g. 375,000 for red), StartAddress with the address of the red plane, ClearCount
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with 1, and write a 1 to the Go register. Once the count has finished, the individual values in the
histogram can be determined by writing 0-255 to PixelValue and reading the corresponding PixelCount.

10 PRINTHEAD INTERFACE 105

The Printhead Interface (PHI) 105 is the means by which the PCP 3 loads the Memjet
printhead 2 with the dots to be printed, and controls the actual dot printing process. The PHI is a logical
wrapper for a number of units, namely:

. a Memjet Interface (MJI) ‘i5, which transfers data to the Memjet printhead, and controls the
nozzle firing sequences during a print.

U a Print Generato;' Unit (PGU) 99 is an implementation of most of the Print Chain described in
Section 3.2 on page 24, as well as providing a means of producing test patterns. The PGU
takes a planarized linear RGB obtained from a CFA format captured image from the Imag-
eRAM 11, and produces a 1600 dpi dithered CMY image in real time as required by the
Memjet Interface 15. In addition, the PGU has a Test Pattern mode, which enabies the CPU
10 to specify precisely which nozzles are fired during a print.

The units within the PH! are controlied by a number of registers that are programmed by the
CPU.

The internal structure of the Printhead Interface is shown in Figure 37.
101 MEMJET INTERFACE 15

. The Memijet Interface (MJI) 15 connects the PCP to the external Memjet printhead, providing
both data and appropriate signals to control the nozzle loading and firing sequences during a print.

The Memijet Interface 15 is simply a State Machine 106 (see Figure 38) which follows the
printhead loading and firing order described in Section 2.2, and includes the functionality of the Preheat
cycle and Cleaning cycle as described in Section 2.4.1 and Section 2.4.2.

The MJI 15 loads data into the printhead from a choice of 2 data sources:

° All 1s. This means that all nozzles will fire during a subsequent Print cycle, and is the stan-
dard mechanism for loading the printhead for a Preheat or Cleaning cycle.

. From the 24-bit input held in the Transfer register of the PGU 99. This is the standard means
of printing an image, whether it be a captured photo or test pattern. The 24-bit value from the
PGU is directly sent to the printhead and a 1-bit ‘Advance’ control pulse is sent to the PGU.
At the end of each line, a 1-bit ‘AdvanceLine’ pulse is also sent to the PGU.

The MJI 15 must be started after the PGU 99 has already prepared the first 24-bit transfer
value. This is so the 24-bit data input will be valid for the first transfer to the printhead.
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The MJI 15 is therefore directly connected to the Print Generator Unit 99 and the external
printhead 2. The basic structure is shown in Figure 38.
TN
10.1.1  Connections to Prinwiéad
The MJI 15 has the following connections to the printhead 2, with the sense of input and
output with respect to the MJI 15. The names match the pin connections on the printhead (see Section

5 2.
Table 18. Printhead Connections
Name #Pins Vo Description

Chromapod- | 4 o Select which chromapod will fire (0-9)

Select

NozzleSelect | 4 (o) Select which nozzle from the pod will fire (0-9)

AEnable 1 o Firing pulse for phasegroup A

10 | BEnable 1 (0] Firing pulse for phasegroup B

CDatain[0-7] | 8 o Cyan output to cyan shift register of segments 0-7

MDatain[0-7] | 8 O Magenta input to magenta shift register of segments 0-7

YDatain[0-7]) | 8 o Yeliow input to yellow shift register of segments 0-7

- SRClock 1 1O | Apulse on SRClock (ShiftRegisterClock) loads the current |

values from CDataln[0-7], MDataln[0-7] and YDatain[0-7]
into the 24 shift registers of the printhead

PTransfer 1 o Parallel transfer of data from the shift registers to the print-
head's internal NozzieEnabile bits (one per nozzle).

15 | SenseSeg- 1 (o) A pulse on SenseSegEnable ANDed with data on

Enable CDataln[n] selects the sense lines for segment n.

Tsense 1 [ Temperature sense

Vsense 1 | Voltage sense

Rsense 1 | Resistivity sense

Wsense 1 I Width sense

TOTAL 41

20 10.1.2 Firing Pulse Duration

The duration of firing pulses on the AEnable and BEnable lines depend on the viscosity of
the ink (which is dependent on temperature and ink characteristics) and the amount of power available
to the printhead. The typical pulse duration range is 1.3 to 1.8 pus. The MJI therefore contains a
programmable pulse duration table, indexed by feedback from the printhead. The table of pulse
durations allows the use of a lower cost power supply, and aids in maintaining more accurate drop
ejection.

25 The Pulse Duration table has 256 entries, and is indexed by the current Vsense and Tsense

settings. The upper 4-bits of address come from Vsense, and the lower 4-bits of address come from
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Tsense. Each entry is 8 bits, and represents a fixed point value in the range of 0-4us. The process of
generating the AEnable and BEnable lines is shown in Figure 39.

The 256-byte table is written by the CPU 10 before printing the photo. Each 8-bit pulse
duration entry in the table combines:

° Brightness settings

L Viscosity curve of ink (from the QA Chip) 5
] Rsense

. Wsense

. Tsense

. Vsense

10.1.3 Dot Counts

The MJI 15 maintains a count of the number of dots of each color fired from the printhead 2.
The dot count for each color is a 32-bit value, individually cleared under processor control. Each dot
count can hold a maximum coverage dot count of 69 6-inch prints, although in typical usage, the dot
count will be read and cleared after each print.

While in the initial Printcam product, the consumable contains both paper and ink, it is
conceivable that. a different Printcam model has a replaceable ink-only consumable. The initial
Printcam product can countdown the amount of millimeters remaining of paper (stored in the QA chip 5
- see Section 5.2) to know whether there is enough paper available to print the desired format. There is
enough ink for full coverage of all supplied paper. In the alternative Prinicam product, the dot counts
can be used by the CPU 10 to update the QA chip 5 in order to predict when the ink cartridge runs out
of ink. The processor knows the volume of ink in the cartridge for each of C, M, and Y from the QA chip
5. Counting the number of drops eliminates the need for ink sensors, and prevents the ink channels
from running dry. An updated drop count is written to the QA chip 5 after each print. A new photo will
not be printed unless there is enough ink left, and allows the user to change the ink without getting a
dud photo which must be reprinted.

The layout of the dot counter for cyan is shown in Figure 40. The remaining 2 dot counters
(MDotCount and YDotCount, for magenta and yellow respectively) are identical in structure.

10.1.4 Registers

The CPU 10 communicates with the MJl 15 via a register set. The registers allow the CPU to
parameterize a print as well as receive feedback about print progress. '
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The following registers are contained in the MJl:

Table 19. Memjet Interface Registers

Register Name Description

Print Parameters

NumTransfers The number of transfers required to load the printhead (usually 800). This
is the number of pulses on the SRClock and the number of 24-bit data
values to transfer for a given line.

PuiseDuration Fixed point number to determine the duration of a single pulse on the Col-
orEnable lines. Duration range =0 -6 us.

NumLines The number of Load/Print cycles to perform.

Monitoring the Print

Status The Memijet Interface’s Status Register -

LinesRemaining

The number of lines remaining to be printed. Only valid while Go=1.
Starting value is NumLines.

TransfersRemain-
ing

The number of transfers remaining before the Printhead is considered
loaded for the current line. Only valid while Go=1.

SenseSegment

The 8-bit value to place on the Cyan data lines during a subsequent feed-
back SenseSegSelect pulse. Only 1 of the 8 bits should be set, corre-
sponding to one of the 8 segments.

-SetAliNozzles —

process is 'aII 1s, so that all nozzles will be fired during the subsequent
PrintDots process. This is used during the preheat and cleaning cycles.
If 0, the 24-bit value written to the printhead comes from the Print Gener-
ator Unit. This is the case during the actual printing of the photo and any
test images.

Actions

Reset

A write to this register resets the MJI, stops any loading or printing pro-
cesses, and loads all registers with 0.

SenseSegSelect

A write to this register with any value clears the Feedback bit of the Sta-
tus register, and sends a pulse on the SenseSegSelect line if the Load-
ingDots and PrintingDots status bits are all 0. If any of the status bits are
set, the Feedback bit is cleared and nothing more is done.

Once the various sense lines have been tested, the values are placed in
the Tsense, Vsense, Rsense, and Wsense registers, and then the Feed-
back bit of the Status register is set. The feedback continues during any

subsequent print operations.

Go

A write of 1 to this bit starts the LoadDots / PrintDots cycles. A total of
NumLines lines are printed, each containing NumTransfers 24-bit trans-
fers. As each line is printed, LinesRemaining decrements, and Transfer-
sRemaining is reloaded with NumTransfers again. The status register
contains print status information. Upon completion of NumLines, the load-
ing/printing process stops and the Go bit is cleared. During the final print
cycle, nothing is loaded into the printhead.

A write of 0 to this bit stops the print process, but does not clear any other
registers.
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Table 19. Memjet interface Registers

Register Name Description

ClearCounts A write to this register clears the CDotCount, MDotCount, and YDot-
Count, registers if bits 0, 1, or 2 respectively are set. Consequently a
write of 0 has no effect.

Feedback

Tsense Read only feedback of Tsense from the last SenseSegSelect pulse sent

5 to segment SenseSegment. Is only valid if the FeedbackValid bit of the

Status register is set.

Vsense Read only feedback of Vsense from the last SenseSegSelect pulse sent

to segment SenseSegment. Is only valid if the FeedbackValid bit of the
Status register is set.

Rsense . Read only feedback of Rsense from the last SenseSegSelect pulse sent
to segment SenseSegment. Is only valid if the FeedbackValid bit of the
Status register is set.

Wsense Read only feedback of Wsense from the last SenseSegSelect pulse sent
to segment SenseSegment. Is only valid if the FeedbackValid bit of the

10 Status register is set.
CDotCount Read only 32-bit count of cyan dots sent to the printhead.
MDotCount Read only 32-bit count of magenta dots sent to the printhead.
YDotCount Read only 32-bit count of yellow dots sent to the printhead.
The MJi’s Status Register is a 16-bit register with bit interpretations as follows:
Table 20. MJI Status.Register
Name Bits Description
S MlcadingDots 3 If set, the MJI is currently loading dots, with the number of dots
remaining fo be transferred in TransfersRemaining.
If clear, the MJI is not currently loading dots
PrintingDots 1 If set, the MJl is currently printing dots.
If clear, the MJI is not currently printing dots.
PrintingA 1 This bit is set while there is a pulse on the AEnable line
PrintingB 1 This bit is set while there is a puise on the BEnable line
FeedbackValid 1 This bit is set while the feedback values Tsense, Vsense,
20 Rsense, and Wsense are valid.
Reserved 3 -
PrintingChromapod | 4 This holds the current chromapod being fired while the Printing-
Dots status bit is set.
PrintingNozzles 4 This holds the current nozzle being fired white the PrintingDots
status bit is set.

10.1.5 Preheat and Cleaning Cycles

The Cleaning and Preheat cycles are simply accomplished by setting appropriate registers:
° SetAliNozzies = 1

25
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] Set the PulseDuration register to either a low duration (in the case of the preheat mode) or to

an appropriate drop ejection duration for cleaning mode.

) Set NumL.ines to be the number of times the nozzles should be fired
° Set the Go bit and then wait for the Go bit to be cleared when the print cycles have com-
pleted.

10.2 PRINT GENERATOR UniT 99

The Print Generator Unit (PGU) 99 is an implementation of most of the Print Chain described

in Section 3.2, as well as providing a means of producing test pattems.

From the simplest point of view, the PGU provides the interface between the image RAM 11
and the Memjet Interface 15, as shown in Figure 41. The PGU takes a planarized linear RGB obtained
from a CFA format captured image from the ImageRAM, and produces a 1600 dpi dithered CMY image
in real time as required by the Memjet Interface. In addition, the PGU 89 has a Test Pattern mode,
which enables the CPU 10 to specify precisely which nozzles are fired during a print. The MJI 15
provides the PGU 99 with an Advance pulse once the 24-bits have been used, and an Advanceline
pulse at the end of the line.

The PGU 99 has 2 image processing chains. The first, the Test Pattern mode, simply reads
data directly from Image RAM 11, and formats it in a buffer ready for output to the MJi. The second
contains the majority of Print Chain functions (see Section 3.2). The Print Chain shown in Fig. 18
contains the functions:

. Gather Statistics 60

L] Rotate Image 61

] White Balance 62

] Range Expansion 63

° Resample 64

. Sharpen 65

. Convert to CMY 66

] Up-Interpolate 67

. Halftone 68

. Reformat for Printer 69

The PGU 99 contains all of these functions with the exception of Gather Statistics 60. To
perform the Gather Statistics step, the CPU 10 calls the Image Histogram Unit 8 three times (once per
color channel), and applies some simpie algorithms. The remainder of the functions are the domain of
the PGU 99 for reasons of accuracy and speed: accuracy, because there would be too much memory



10

15

20

25

WO 01/20549 PCT/AU00/01075

.49-
required to hold the entire image at high accuracy, and speed, because a simple CPU 10 cannot keep
up with the real-time high-speed demands of the Memjet printhead 2.

The PGU 99 takes as input a variety of parameters, including RGB to CMY conversion
tables, constants for performing white balance and range expansion, scale factors for resampling, and
image access parameters that allow for rotation.

The two process chains can be seen in Figure 20. The most direct chain goes from the
Image RAM 11 to Buffer 5 via the Test Pattern Access process110. The other chain consists of 5
processes, all running in parallel. The first process 111 performs Image Rotation, White Balance and
Range Expansion. The second process 112 performs Resampling. The third process 65 performs
sharpening, the fourth process 66 performs color conversion. The final process 113 performs the up-
interpolation, halftoning, and reformatting for the printer. The processes are connected via buffers, only
a few bytes between some processes, and a few kilobytes for others.

‘We look at these processes and bufters in a primarily reverse order, since the timing for the
printhead drives the entire process. Timings for particular processes and buffer size requirements are
then more apparent. In summary however, the buffer sizes are shown in Table 21.

Table 21. Buffer sizes for Print Generator Unit

Size
Buffer (bytas) Composition of Buffer
Buffer 1 188 | Red Buffer = 8 lines of 6 entries @ 10-bits each = 45 bytes

Blue Buffer = 6 lines of 6 entries @ 10-bits each = 45 bytes
Green Buffer = 13 lines of 6 entries @ 10-bits each = 97.5 bytes
Buffer 2 24 | 6 x4 RAM

3 lines of 4 entries of L @ 8-bits each = 12 bytes

3 colors x 4 entries @ 8-bits each = 12 bytes

Buffer 3 3 | 3 colors(RGB) @ 8-bits each

Buffer 4 23,040 | 3 colors(CMY) x 6 lines x.1280 contone pixels @ 8-bits each
Buffer 5 9 | 3 x 24 bits

TOTAL 23,264

Apart from a number of registers, some of the processes have significant lookup tables or
memory components. These are summarized in Table 22.

Table 22. Memory requirements within PGU Processes

Unit (bsy'tz:s) Composition of Requirements
Rotate/ White Balance / Range 0
Expand
Resample / Convertto L 1,152 | 3 kernels, each 64x4x12-bits
Sharpen 0 '
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Table 22. Memory requirements within PGU Processes
Size
Unit (bytes) Composition of Requirements
Convert to CMY 14,739 | 3 conversion tables, each 17x17x17x8-bits
Upinterpolate / Halftone / Reformat 2,500 | Dither Cell, 50x50x8-bits
Test Pattern Access 0
TOTAL 18,391

10.2.1 Test Pattern Access

The Test Pattern Access process 110 is the means by which test patterns are produced.

* Under normal user circumstances, this process will not be used. It is primarily for diagnostic purposes.

The Test Pattern Access 110 reads the Image RAM 11 and passes the 8-bit values directly
to Buffer 5 118 for output to the Memjet Interface. it does not modify the 8-bit values in any way. The
data in the Image RAM 11 would be produced by the CPU 10 using the Image Access Unit 9.

The data read from Image RAM 11 is read in a very simple wraparound fashion. Two
registers are used to describe the test data: the start address of the first byte, and the number of bytes.

__When the end of the data is reached, the data is read again from the beginning.

The structure of the Test Pattern A~~ess Unit 110 is shown in Figure 43.

As can be seen in Figure 43, the Test Pattern Access Unit 110 is littte more than an Address
Generator 118. When started, and with every Advanceline signal, the generator reads 3 bytes,
produces a TransferWriteEnable pulse, reads the next 3 bytes, and then waits for an Advance pulse. At
the Advance pulse, the TransferWriteEnable pulse is given, the next 3 bytes are read, and the wait
occurs again. This continues until the AdvancelLine pulse, whereupon the process begins again from

the current address.

In terms of reading 3 bytes, the Address Generator 119 simply reads three B-bit values from
ImageRAM 11 and writes them to Buffer 5 118. The first 8-bit value is written to Buffer 5's 8-bit address
0, the next is written to Buffer 5's 8-bit address 1, and the third is written to Buffer 5’s 8-bit address 2.
The Address Generator 119 then waits for an Advance pulse before doing the same thing again.

The addresses generated for the Image RAM 11 are based on a start address and a byte

count as shown in Table 23.

Table 23. Test Pattern Access Registers

Register Name Description
TestModeEnabled ¥ 1, TestMode is enabled.
K 0, TestMode is not enabled.
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Table 23. Test Pattern Access Registers
Register Name Description
DataStart Start Address of test data in Image RAM
Datalength Number of 3 bytes in test data

The following pseudocode illustrates the address generation. The AdvanceLine and Advance

pulses are not shown.

Do Forever
Adr = DataStart
Remaining = DataLength
Read Adr into Buffer 5 (0), Adr=Adr+l
Read Adr into Buffer 5 (1), Adr=Adr+l
Read Adr into Buffer 5 (2), AdrsAdr+l
Remaining = Remaining-1
if (Remaining = 0)
Remaining = DataLength
Endbo

Itis the responsibility of the CPU 10 to ensure that the data is meaningful for the printhead 2.
Byte 0 is the nozzle-fire data for the 8 segments of cyan (bit 0 = segment 0 etc.), Byte 1 is the same for
magenta, and Byte 2 for yellow. Altemate sets of 24 bits are for odd/even pixels separated by 1
horizontal dot line.

10.2.2 Buffer 5118

Buffer 5 118 holds the generated dots from the entire Print Generation process. Buffer 5§
consists of a 24-bit shift register to hoid dots generated one at a time from the UHRU 113
(Upinterpolate-Halftone and Reformat Unit), 3 8-bit registers to hold the data generated from the TPAU

. (Test Pattern AccessUnit), and a 24-bit register used as the buffer for data transfer to the MJI (Memjet

Interface). The Advance pulse from the MJI loads _the 24-bit Transfer register with all 24-bits, either
from the 3 8-bit registers or the single 24-bit shift register.

Buffer 5 therefore acts as a double buffering mechanism for the generated dots, and has a
structure as shown in Figure 44.

10.2.3 Buffer 4117

Buffer 4 117 holds the calculated CMY intermediate resolution (1280-res) contone image.
Buffer 4 is generated by the Color Conversion process 66, and accessed by the Up-interpolate,
Halftone and Reformat process 113 in order to generate output dots for the printer.
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The size of the Contone Buffer is dependent on the physical distance between the nozzles
on the printhead. As dots for one color are being generated for one physical line, dots for a different
color on a different line are being generated. The net effect is that 6 different physical lines are printed
at the one time from the printer - odd and even dots from different output lines, and different lines per
color. This concept is explained and the distances are defined in Section 2.1.1.

The practical upshot is that there is a given distance in high-res dots from the even cyan dots
through the magenta dots to the odd yellow dots. In order to minimize generation of RGB and hence
CMY, the medium res contone pixels that generate those high-res dots are buffered in Buffer 4.

Since the ratio of medium-res lines to high-res lines is 1:5, each medium res line is sampled
5 times in each dimension. For the purposes of buffer lines, we are only concerned with 1 dimension,
so only consider 5 dot lines coming from a single pixel line. The distance between nozzles of different
colors is 4-8 dots (depending on Memjet parameters). We therefore assume 8, which gives a
separation distance of 16 dots, or 17 dots in inclusive distance. The worst case scenario is that the 17
dot lines includes the last dot line from a given pixel line. This implies 5 pixel lines, with dot lines
generated as 1, 5, 5, 5, 1, and allows an increase of nozzle separation to 10.

“To ensure that the contone generation process writing-to the buffer-doesnot-interfere with
the dot generation process reading from the buffer, we add an extra medium-res line per color, for a

total of 6 lines per color.

The contone buffer is therefore 3 colors of 6 lines, each line containing 1280 8-bit contone
values. The total memory required is 3 x 6 x 1280 = 23040 bytes (22.5 KBytes). The memory only
requires a single 8-bit read per cycle, and a single 8-bit write avery 25 cycles (each contone pixel is
read 25 times). The structure of Buffer 4 is shown in Figure 45.

Buffer 4 can be implemented as single cycle double access (read and write) RAM running at
the nominal speed of the printhead dot generation process, or can be implemented as RAM running 4%
faster with only a single read or write access per cycle.

Buffer 4 is set to white (all 0) before the start of the print process.

10.2.4 Upinterpolate, Halftone, and Reformat For Printer

Although the Up-Interpolate, Halftone, and Reformat For Printer tasks 113 are defined as
separate tasks by Section 3.2.8, Section 3.2.9 and Section 3.2.10 respectively, they are implemented
as a single process in the hardware implementation of the PCP 3.

The input to the Up-interpolate, Halftone and Reformat Unit (UHRU) 113 is the contone
buffer (Buffer 4) 117 containing the pre-caiculated CMY 1280-res (intermediate resoiution) image. The
output is a set of 24-bit values in the correct order to be sent to the Memjet Interface 15 for subsequent
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output to the printhead via Buffer 5 118. The 24 output bits are generated 1 bit at a time, and sent to the
24-bit shift register in Buffer 5 118.

The control of this process occurs from the Advance and Advanceline signals from the MJI
15. When the UHRU 113 starts up, and after each AdvancelLine pulse, 24 bits are produced, and are
clocked into the 24-bit shift register of Buffer 5 by a ShiftWriteEnable signal. After the 24th bit has been
clocked in, a TransferWriteEnabie pulse is given, and the next 24 bits are generated. After this, the
UHRU 113 waits for the Advance pulse from the MJl. When the Advance pulse arrives, the
TransferWriteEnable pulse is given to Buffer 5 118, and the next 24 bits are calculated before waiting
again. In practice, once the first Advance pulse is given, synchronization has occurred and future
Advance pulses will occur every 24 cycles thereafter.

The Upinterpolate, Halftone and Reformat process can be seen in Figure 46.

The Halftone task is undertaken by the simple 8-bit unsigned comparator 120. The two inputs
to the comparator come from the Staggered Dither Cell 121 and Buffer 4 117. The order that these
values are presented to the Unsigned Comparator 120 is determined by the Address Generator State
Machine 122, which ensures that the addresses into the 1280-res image match the segment-oriented
order required for the printhead. The Address Generator State Machine 122 therefore undertakes the
Up-Interpolation and Reformatting for Printer tasks. Rather than simply access an entire line at a time
at high resolution, and then reformat the line according to the printer lookup requirements (as described..
in Section 3.2.10), the reformatting is achieved by the appropriate addressing of the contone buffer
(Buffer 4) 117, and ensuring that the comparator 120 uses the correct lookup from the dither cell 121 to
match the staggered addresses.

The Halftoning task is the same as described by Section 3.2.9. However, since the dot
outputs are generated in the correct order for the printhead, the size of the Dither Cell 121 is chosen so
that it divides evenly into 800. Consequently a given position in the dither cell for one segment will be
the same for the remaining 7 segments. A 50x50 dither cell provides a satisfactory result. As described
in Section 3.2.9, the same position in the dither cell can be used for different colors due to the fact that

. different lines are being generated at the same time for each of the colors. The addressing for the dither

cell is therefore quite simple. We start at a particular row in the Staggered Dither cell (e.g. row 0). The
first dither cell entry used is Entry 0. We use that entry 24 times (24 cycles) to generate the 3 colors for
all 8 segments, and then advance to Entry 1 of row 0. After Entry 49, we revert back to Entry 0. This
continues for all 19,200 cycles in order to generate all 19,200 dots. The Halftone Unit then stops and
waits for the Advanceline pulse which causes the address generator to advance to the next row in the
dither cell.

The Staggered Dither cell 121 is so called because it differs from a regular dither cell by
having the odd and even lines staggered. This is because we generate odd and even pixels (starting



10

15

20

25

WO 01/20549 PCT/AUM0/01075

.54 -
from pixel 0) on different lines, and saves the Address Generator 122 from having to advance to the
next row and back again on alternative sets of 24 pixels. Figure 25 shows a simple dither cell 93, and
how to map it to a staggered dither cefl 121 of the same size. Note that for determining the “oddness” of
a given position, we number the pixels in a given row 0, 1, 2 etc.

The 8-bit value from Buffer 4 117 Is compared (unsigned) to the 8-bit value from the
Staggered Dither Cell 121. If the Buffer 4 pixe! value is grealer than or equal to the dither cell value, a
“1” bit is output to the shift register of Buffer 5 118. Otherwise a “0” bit is output to the shift register of
Buffer 5.

In order to halftone 19,200 contone pixels, 19,200 contone pixels must be read in. The
Address Generator Unit 122 performs this task, generating the addresses into Buffer 4 117, effectively
implementing the Upinterpolate task. The address generation for reading. Buffer 4 is slightly more
complicated than the address generation for the dither cell, but not overly so.

The Address Generator for reading Buffer 4 only begins once the first row of Buffer 4 has
been written. The remaining rows of Buffer 4 are 0, so they will effectively be white (no printed dots).

Each of the 6 effective output lines has a register with an integer and fractional component.

The integer portion of the register is used to select which Buffer line will be read to effectively
upinterpolate the color for that particular color's odd and even pixels. 3 pixel counters are used to

‘maintain the current position within segment 0, and a single temporary counter P_ADR (pixel address)

is used to offset into the remaining 7 segments.

Iin summary then, address generation for reading Buffer 4 requires the following registers, as
shown in Table 24.

Table 24. Registers Required for Reading Buffer 4

Register Name Size

CyanEven 6 bits (3:3)

CyanOdd 6 bits (3:3)

MagentaEven 6 bits (3:3)

MagentaOdd 6 bits (3:3)

YellowEven 6 bits (3:3)

YeliowOdd 6 bits (3:3)

Cyan_P_ADR 14 bits (11:3
Magenta_P_ADR 14 bits (11:3
Yellow_P_ADR 14 bits (11:3

P_ADR 11 bits (only holds integer portion of X_P_ADR)

The initial values for the 6 buffer line registers is the physical dot distance between nozzles
(remember that the fractional component is effectively a divide by 5). For example, if the odd and even
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output dots of a color are separated by a distance of 1 dot, and nozzles of one color are separated from
the nozzles of the next by 8 dots, the initial values would be as shown in First Line column in Table 25.
Once each set of 19,200 dots has been generated, each of these counters must increment by 1
fractional component, representing the fact that we are sampling each pixel 5 times in the vertical
dimension. The resultant values will then be as shown in Second Line column in Table 25. Note that 5:4
+ 1 = 0:0 since there are only 6 buffer lines.

Table 25. Example Inital Setup and Second Line Values for the 6 Buffer Line Registers

First Line Second Line
Name Calculation Value Buff Value Buff

CyanEven Initial Position 0:0 0 0:1 0
CyanOdd CyanEven+0:1 " 0:1 0 0:2 0
MagentaEven CyanOdd+1:3 (8) 14 1 2:0 2
MagentaOdd MagentaEven+0:1 2:0 2 2:1 2
‘YellowEven 1 MagentaOdd+1:3(8) || 3:3 3 34 3
YeliowOdd YeliowEven+0:1 3.4 3 4.0 4

The 6 buffer line registers then, determine which of the buffer lines is to be read for a given
color’s odd or even pixels. To determine which of the 1280 medium res pixels are read from the specific
line of Buffer 4, we use 3 Pixel Address counters, one for each color, and a single temporary counter
(P_ADR) which-is used to index into each segment- Each segment is separated frony the next by 800
dots. In medium res pixels this distance is 160. Since 800 is divisible exactly by 5, we only need use the
integer portion of the 3 Pixel Address counters. We generate the 8 addresses for the even cyan pixels,
then the 8 addresses for the even magenta, and finally the 8 addresses for the even yellow. We then do
the same for the odd cyan, magenta, and yellow pixels. This process of two sets of 24 bits - 24 even
then 24 odd, is performed 400 times. We can then reset the Pixel-Address counters (X_P_ADR) to 0
and advance the 6 buffer line registers. Every 5 line advances, the next buffer line is now free and

- ready for updating (by the Convert to CMY process). Table 26 lists the steps in a simple form.

Table 26. Address Generation for Reading Buffer 4

# Address Calculation , Comment

- P_ADR = Generate address for aven pixel in
Cyan_P_ADR Cyan segment 0 and advance to next
Cyan_P_ADR += 1 pixel for cyan
(modS)

1 CyanEven:P_ADR P_ADR += 160 Advance to segment 1 (cyan)

2 CyanEven:P_ADR P_ADR += 160 Advance to segment 2 (cyan)

3 CyanEven:P_ADR P_ADR += 160 Advance to segment 3 (cyan)

4 CyanEven:P_ADR P_ADR += 160 Advance to segment 4 {cyan)

5 CyanEven:P_ADR P_ADR += 160 Advance to segment 5 (cyan)
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Table 26. Address Generation for Reading Buffer 4
# Address Calculation Comment

6 CyanEven:P_ADR P_ADR += 160 Advance to segment 6 (cyan)

7 CyanEven:P_ADR P_ADR += 160 Advance to segment 7 (cyan)

8 CyanEven:P_ADR P_ADR = Generate address for even pixel in
Magenta_P_ADR Magenta segment 0 and advance to

5 Magenta_P_ADR +=1 | next pixel for magenta

(mod5)

9 MagentaEven:P_ADR P_ADR += 160 Advance to segment 1 (magenta)

10 MagentaEven:P_ADR | P_ADR += 160 Advance to segment 2 (magenta)

11 MagentaEven:P_ADR P_ADR += 160 Advance to segment 3 (magenta)

12 MagentaEven:P_ADR P_ADR += 160 Advance to segment 4 (magenta)

13 MagentaEven:P_ADR P_ADR += 160 Advance to segment 5§ (magenta)

14 MagentaEven:P_ADR P_ADR += 160 Advance to segment 6 (magenta)

15 MagentaEven:P_ADR P_ADR += 160 Advance to segment 7 (magenta)

10 [1g MagentaEven:P_ADR P_ADR = Generate address for even pixel in

Yellow_P_ADR Yellow segment 0 and advance to next
Yellow_P_ADR += 1 pixel for yellow
(mod 5)

17 YellewEven:P-ADR- | P-ADR+=160- -Advance to segment 1-{yellow}———1 -

18 YellowEven:P_ADR P_ADR += 160 Advance to segment 2 (yellow)

19 YellowEven:P_ADR P_ADR += 160 Advance to segment 3 (yellow)

20 ‘YellowEven:P_ADR P_ADR += 160 - Advance to segment 4 (yellow)

15 21 YellowEven:P_ADR P_ADR += 160 Advance to segment 5 (yellow)

22 YellowEven:P_ADR P_ADR += 160 Advance to segment 6 (yellow)

23 YellowEven:P_ADR P_ADR += 160 Advance to segment 7 (yellow)

24 YellowEven:P_ADR P_ADR= Generate address for even pixel in
Cyan_P_ADR Cyan segment 0 and advance to next
Cyan_P_ADR +=1 pixel for cyan
(mod5)

25 CyanOdd:P_ADR P_ADR += 160 Advance to segment 1 (cyan)

etc.

20 The pseudocode for generating the Buffer 4 117 addresses is shown here. Note that it is
listed as a sequential set of steps. Table 26 shows a better view of the paralle! nature of the operations
during the address generation.

% Calculate start positions
CyanEven = 0:0
CyanOdd = CyanEven + 0:1

25 MagentaEven = CyanOdd + 1:3

MagentaOdd = MagentaEven + 0:1
YellowEven = MagentaOdd + 1:3
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YellowOdd = YellowEven + 0:1

Do N times (depends on print size)
Cyan_P_ADR = 0
Magenta_P_ADR = 0
Yellow_P_ADR = 0
Do 400 times
% generate the even pixels for the first set of 24 bits
P_ADR = Integer portion of Cyan_P_ADR
Cyan_P_ADR += 0:1
Do 8 times
ReadBuffer4 {line=CyanEven, pixel=P_ADR)
P_ADR += 160
EndDo
P_ADR = Integer portion of Magenta_P_ADR
Magenta P_Adr += 0:1
Do 8 times
ReadBuffer4 (lineaMagentakEven, pixel=P_ADR)
P_ADR += 160
EndDo
P_ADR = Integer portion of Yellow P_ADR
Yellow P _Adr += 0:1
Do 8 times
ReadBufferd (line=YellowEven, pixel=P_ADR)
P_ADR += 160
EndDo

% generate the odd pixels for the fixst set of 24 bits
P_ADR = Integer portion of Cyan_P_ADR
Cyan_P_ADR += O:1
Do 8 times
ReadBuffer4 (l1ine=CyanOdd, pixel=P_ADR)
P_ADR += 160
EndDo
P_ADR = Integer portion of Magenta_P_ADR
Magenta P _Adr += 0:1
Do 8 times
ReadBuffer4 (line=MagentaOdd, pixel=P_ADR)
P_ADR += 160
EndDo
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P_ADR = Integer portion of Yellow P ADR
Yellow _P_Adr += 0:1l
Do B times
ReadBuffer4 (line=YellowOodd, pixel=P_ADR)
P_ADR += 160
EndDo

% Now can advance to next *line”
CyanEven += 0:1
Cyanodd += 0:1
MagentaEven += 0:1
MagentaOdd += 0:1
YellowEven += 0:1
YellowOdd += 0:1
EndDo
EndDo

10.2.5 Buffer 3 116

Buffer 3 is a straightforward set of 8-bit R, G, B values. These RGB values are the sharpened
medium res (1280-res) pixels generated by the Sharpen process 65, and read by the Convert o CMY
process 66.

it is not necessary to double buffer Buffer 3 116. This is because the read (Convert to CMY)
process 68 only requires the RGB values for the first 39 cycles, while the write (Sharpen) process 65
takes 49 cycles before being ready to actually update the RGB values.

10.2.6 Convertto CMY 66

The conversion from RGB to CMY is performed in the medium resolution space (1280-res)
as described in Section 3.2.7.

The conversion process 66must produce the contone buffer pixels (Buffer 4) 117 at a rate
fast enough to keep up with the Upinterpolate-Halftone-Reformat process 113. Since each contone
value is used for 25 cycles (5 times in each of the x and y dimensions), the conversion process can take
up to 25 cycles. This totals 75 cycles for all 3 color components.

The process as described here only requires 14 cycles per color component, with the input
RGB values actually freed after 39 cycles. If the process is implemented with logic that requires access
to the input RGB values for more than 49 cycles, then Buffer 3 116 will require double-buffering, since
they are updated by the Sharpening process 65 after this time.
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The conversion is performed as tri-linear interpolation. Three 17 x 17 x 17 lookup tables are
used for the conversion process: RGB to Cyan 890, RGB to Magenta 91, and RGB to Yellow 92.
However, since we have 25 cycles to perform each fri-linear interpolation, there is no need for a fast tri-
linear interpolation unit. Instead, 8 calls to a linear interpolation process 130 is more than adequate.

Address generation for indexing into the lookup tables is straightforward. We use the 4 most
significant bits of each 8-bit color component for address generation, and the 4 least significant bits of
each 8-bit color component for interpolating between values retrieved from the conversion tables. The
addressing into the lookup table requires an adder due to the fact that the lookup table has dimensions
of 17 rather than 16. Fortunately, multiplying a 4-bit number X by 17 is an 8-bit number XX, and
therefore does not require an adder or multiplier, and multiplying a 4 bit number by 172 (289) is only
slightly more complicated, requiring a single add.

Although the interpolation could be performed faster, we use a single adder to generate
addresses and have a single cycle interpolation unit. Consequently we are able to calculate the
interpolation for generating a single color component from RGB in 14 cycles, as shown in Table 27. The
process must be repeated 3 times in order to generate cyan, magenta, and yellow. Faster methods are
possibie, but not necessary.

Table 27. Trilinear interpolation for color conversion

Cycle | Load Effective Fetch Adjust ADR register: interpolate-

1 ADR = 289R

2 ADR = ADR +17G

3 ADR=ADR+8B

4 P1 RGB ADR=ADR +1

5 P2 RGB+1 ADR=ADR + 16

6 P1 RG+1B ADR=ADR + 1 P3=P1toP2byB
7 P2 RG+1B+1 ADR = ADR + 271

8 P1 R+1GB ADR=ADR + 1 P4=PitoP2byB
9 P2 R+1GB+1 ADR = ADR + 16 P5=P3toP4byG
10 P1 R+1G+1B ADR=ADR +1 P3=PitoP2byB
1 P2 R+1G+1B+1

12 P4=P1toP2byB
13 P6=P3toP4by G
14 V=P5to P6by R

As shown in Table 27, a single ADR register and adder can be used for address generation
into the lookup tables. 6 sets of 8-bit registers can be used to hold intermediate results - 2 registers hold
values loaded from the lookup tables, and 4 registers are used for the output from the interpolation unit.
Note that the input to the linear interpolation unit is always a pair of 8-bit registers P1/P2, P3/P4, and
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P5/P6. This is done deliberately to reduce register selection logic. In cycle 14, the “V” register 131holds
the 8-bit value finally calculated. The 8-bit result can be written to the appropriate location in Buffer 4
117during the next cycle.

A block diagram of the Convert to CMY process 66 can be seen in Figure 48.

Assuming the process is first run to generate cyan, the resultant cyan contone pixel is stored
into the cyan 1280-res contone buffer. The process is then run again on the same RGB input to
generate the magenta pixel. This magenta contone pixel is stored into the magenta 1280-res contone
buffer. Finally, the yellow contone pixel is generated from the same RGB input, and the resuitant yellow
pixel is stored into the yellow 1280-res contone buffer).

The address generation for writing to the contone buffer (Buffer 4) 117 is straightforward. A
single address (and accompanying ColorSelect bits) is used to write to each of the three color buffers.
The Cyan buffer is written to on cycle 15, the Magenta on cycle 30, and Yellow on cycle 45. The pixel
address is incremented by 1 every 75 cycles (after all 3 colors have been written). The line being
written to increments with wrapping once every 5 Advanceline pulses. The order of lines being written
to is simply 0-1-2-3-4-5-0-1-2-3 etc... Thus the writes (25 x 1280 x 3) balance out with the reads (19200

<5 — S

10.2.7 Buffer2115

Buffer 2 accepts the output from the Resample-CreateLuminance process 112, where a
complete RGB and L pixel is generated for a given pixel coordinate. The output from Buffer 2 115 goes
to the Sharpen process 65, which requires a 3 x 3 set of luminance vaiues 135 centered on the pixel
being sharpened.

Consequently, during the sharpening process 65, there is need for access to the 3 x 3 array
of luminance values, as well as the corresponding RGB value 136for the center luminance pixel. At the
same time, the next 3 luminance values and the corresponding RGB center value must be calculated
by the Resample-CreateLuminance process 112. The logical view of accesses to Buffer 2 115 is shown
in Figure 49.

The actual implementation of Buffer 2 115 is simply as a 4 x 6 (24 entry) 8-bit RAM, with the
addressing on read and write providing the effective shifting of values. A 2-bit column counter can be
incremented with wrapping to provide a cyclical buffer, which effectively implements the equivalent of
shifting the entire buffer's data by 1 column position. The fact that we don’t require the fourth column of
RGB data is not relevant, and merely uses 3 bytes at the saving of not having to implement complicated
shift and read/write logic. In a given cycle, the RAM can either be written to or read from. The read and
write processes have 75 cycles in which to complete in order to keep up with the printhead.
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10.2.8 Sharpen

The Sharpen Unit 65 performs the sharpening task described in Section 3.2.6. Since the
sharpened RGB pixels are stored into Buffer 3 116, the Sharpen Unit 65 must keep up with the Convert
to CMY process 66, which implies a complete RGB pixel must be sharpened within 75 cycles.

The sharpening process involves a highpass filter of L (a generated channel from the RGB
data and stored in Buffer 2) and adding the filtered L back into the RGB components, as described in
Table 12 within Section 3.2.6.2 on page 35. The highpass filter used is a basic highpass filter using a
3x3 convolution kemnel, as shown in Figure 50.

The high pass filter is calculated over 10 cycles. The first cycle loads the temporary register
140 with 8 times the center pixel value (the center pixel shifted left by 3 bits). The next 8 cycles subtract
the remaining 8 pixel values, with a floor of 0. Thus the entire procedure can be accomplished by an
adder. Cycle 10 involves the multiplication of the result by a constant 141. This constant is the
representation of 1/9, but is a register to aliow the amount to altered by software by some scale factor.

The total amount is then added to the R, G, and B values (with a celling of 255) and written to
Buffer 3 during cycles 72, 73, and 74. Calculating/writing the sharpened RGB values during the last 3
cycles of the 75 cycle set removes the need for double buffering in Buffer 3.

The structure of the Sharpen unit can be seen in Figure 51.

The adder unit 142 connected to Buffer 2 115 is a subtractor with a floor of 0. TMP 140 is
loaded with 8 x the first L value during cycle 0 (of 75), and then the next 8 L values are subtracted from
it. The result is not signed, since the subtraction has a floor of 0.

During the 10th cycle (Cycle 9), the 11 bit total in TMP 140 is multiplied by a scale factor
(typically 1/9, but under software control so that the factor can be adjusted) and written back to TMP
140. Only 8 integer bits of the result are written to TMP (the fraction is truncated), so the limit from the
multiply unit is 255. If a scale factor of 1/8 is used, the maximum value written will be 226 (255 x 8 / 9).
The scale factor is 8 bits of fraction, with the high bit representing 1/8. The variable scale factor can
take account of the fact that different print formats are the result of scaling the CFA image by a different
amount (and thus the 3x3 convolution will produce correspondingly scaled results).

The sharpened values for red, green, and blue are calculated during Cycle 72, Cycle 73, and
Cycle 74, and written to the R, G, and B registers of Buffer 3 116, one write per cycle. The calculation
performed in these 3 cycles is simply the addition of TMP to Buffer 2's R, G, and B corresponding to the
center pixel.

Address Generation is straightforward. Writing to Buffer 3 116 is simply R, G, and B in cycles
72, 73, and 74 respectively. Reading from Buffer 2 115 makes use of the cyclical nature of Buffer2. The
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address consists of a 2-bit column component (representing which of the 4 columns should be read),
and a 3-bit value representing L1, L2, L3, R, G, or B. The column number starts at 1 each line and
increments (with wrapping) every 75 cycles. The order of reading Buffer 2 is shown in Table 28. The C
register is the 2-bit column component of the address. All addition on C is modulo 4 (wraps within 2
bits).

Table 28. Read Access to Buffer 2 during 75 Cycle set

Cycle Address Update C
0 C L2 C=C-1

1 C L

2 C L2

3 C L3 C=C+1

4 C L1

5 C.L3 C=C+1

6 C, L1

7 c L

8 c.L C=C-1

9-71 No access

. o R - —

73 C,G

74 c.B C=C-1

After Cycle 74, the C register holds the column number for the next calculation set, thus
making the fetch during the next Cycie 0 valid.

Sharpening can only begin when there have been sufficient L and RGB pixels written to
Buffer 2 (so that the highpass filter is valid). The sharpen process must therefore stall until the Buffer 2
write process has advanced by 3 columns.

10.2.9 Buffer1 114

Buffer 1 holds the white-balanced and range-expanded pixels at the original capture spatial
resolution. Each pixel is stored with 10 bits of color resolution, compared to the image RAM image
storage color resolution of 8 bits per pixel.

Buffer 1 is arranged as 3 separately addressable buffers - one for each color plane of red
145, green 146, and blue 147. A simple overview of the buffers is shown in Figure 52.

During the course of 75 cycles, 16 entries are read from each of the 3 buffers 3 times by the
Resampling process 112, and up to 29 new values are written to the 3 buffers (the exact number
depends on the scale factor and the current sub-pixel position during resampling).
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The buffers must be wide enough so that the reading and writing can occur without

interfering with one another. During the read process, 4 pixels are read from each of 6 rows. If the scale

factor is very large {(e.g. we are scaling up to Panoramic), the same input pixels can be read muiltiple

times (using a different kemel position for resampling). Eventually, however, the next pixels will be

required. If we are not scaling up so much, the new pixels may be required before the next pixel

generation cycle (i.e. within 75 clock cycles).

Looking at the scale factors in Table 9 and Table 11, the worst case for scaling is the

Passport format 31:

The green plane has a A value for Passport of 1.5625, indicating that 4 locations can be con-
tained within 6 CFA pixel positions. However, each row of green samples only holds every
altemate pixel. This means that only 4 samples are required per row (worst case is 4, not 3,
due to a worst case initial position). Movement in Y indicates the requirement of an additional
sample column, making 5. Finally, an additional sample column is required for writing. This
gives a total of 6 samples per row. 7 rows are required for a single sample. To generate the 3
sets of RGB pixels for each x position, the maximum movement in y will be 4 rows (3.125 = 2
x 1.6625). Movement X adds one sample row above and below. Consequently a total of 13
rows are required. For more details see Section 10.2.10.

The red and blue planes have a A value for Passport of 0.78125, indicating that 4 locations
can be contained within 4 samples. An additional sample is required for writing while the
remaining 4 are being read. This gives a total of 5 samples per row, which is further
increased to 6 samples to match the green plane (for startup purposes). 6 rows are required
to cater for movement in y. For more details see Section 10.2.10.

Each sub-buffer is implemented as a RAM with decoding to read or write a single 10-bit

sample per cycle. The sub-buffers are summarized in Table 29, and consume less than 200 bytes.

Table 29. Sub-Buffer Summary

Buffer Composition Bits

Red Buffer 6 rows x 6 samples x 10-bits 360
Blue Buffer 6 rows x 6 samples x 10-bits 360
Green Buffer 13 rows x 6 samples x 10 bits 780
TOTAL 1500

10.2.10 Resample and Create Luminance Channel

The Resample and Create Luminance Channel process 112 is résponsible for generating the

RGB pixel value in medium resolution space by appropriate resampling the white-balanced and range-
expanded R, G, and B planar images, as described in Section 3.2.5 on page 28. In addition, the
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luminance values for the given RGB pixel, as well as the luminance values for the pixel above and

below the RGB pixel must be generated for use in the later sharpening process.

The time allowed for producing the RGB value and 3 L values is 75 cycles. Given that L is
simply the average of the minimum and maximum of R, G, and B for a given pixel location (see Section
3.2.6.1), we must effectively ‘produce RGB values for 3 pixel coordinates - the pixel in question, and the
pixel above and below. Thus we have 75 cycles in which to calculate the 3 medium res RGB samples
and their corresponding L values.

Buffering L values (and hence RGB values) to save recalculation requires too much memory,
and in any case, we have sufficient time to generate the RGB values. Buffer 4 117 contains medium res
pixels, but cannot be used since it holds sharpened CMY pixels (instead of unsharpened RGB pixels).

10.2.10.1 Resampling

The resampling process can be seen as 3 sets of RGB generation, each of which must be
completed within 25 cycles (for a total maximum elapsed time of 75 cycles). The process of generating
a single RGB value can in turn be seen as 3 processes performed in parallel: the calculation of R, the

_ calculation of G, and the calculation of B, all for a given medium resc..  : pixel coordinate. The theory

for generating each of these véiues can be found in Section 3.2.5,' but the upshot is effectively runniné
three image reconstruction filters, one on each channel of the image. In the case of the PCP, we
‘perform image reconstruction with ‘5 sample points, requiring 4 coefficients in the convolution kernel
(since one coefficient is always 0 and thus the sample point is not required).

Consequently, calculation of the medium resolution R pixel is achieved by running an image
reconstruction filter on the R data. Calculation of the medium resolution G pixel is achieved by running
an image reconstruction filter on the G data, and calculation of the medium resolution B pixel is
achieved by running an image reconstruction fiiter on the B data. Although the kemels are symmetric in
x and y, they are not the same for each color plane. R and B are likely to be the same kemnel due to
their similar image characteristics, but the G plane, due to the rotation required for image
reconstruction, must have a different kemel. The high level view of the process can be seen in Figure
53. Address generation is not shown.

The resampling process can only begin when there are enough pixels in Buffert for the
current pixel line being generated. This will be the case once 4 columns of data have been written to

each of the color planes in Buffer 1 114. The Resampling process 112 must stall until that time.

To calculate a given color plane’s medium resolution pixel value, we have 25 cycles
available. To apply the kernel to the 4x4 sample area, we apply the 1D kernel (indexed by x) on each of
the 4 rows of 4 input samples. We then apply the 1D kemel (indexed by y) on the resultant 4 pixel

values. The final result is the output resampled pixel. Applying a single coefficient each cycle gives a
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total of 16 cycles to generate the 4 intermediate values, and 4 cycles to generate the final pixel value,
for a total of 20 cycles.

With regards to precision, the input pixels are each 10 bits (8:2), and kemel coefficients are
12 bits. We keep 14 bits of precision during the 4 steps of each application of the kemel (8:6), but only
save 10 bits for the result (8:2). Thus the same convolve engine can be used when convolving in x and
y. The final output or R, G, or B is 8 bits.

The heart of the resampling process is the Convolve Unit 150, as shown in Figure 54.

The process of resampling then, involves 20 cycles, as shown in Table 30. Note that the Row
1, Pixel 1 etc. refers to the input from Buffer 1 114, and is taken care of by the addressing mechanism
(see below).

Table 30. The 20 Cycle Resample

Cycle Kemel | ApplyKemelto: | Store Resultin

1 X[1] Row 1, Pixel 1 ™P

2 X[2] Row 1, Pixel 2 T™MP

3 X3} Row 1, Pixel 3 T™MP

4 X[4) Row 1, Pixel 4 TMP, V1
5 X[1] Row 2, Pixel 1 T™P

6 X[2) Row 2, Pixel 2 T™MP

7 X[3] Row 2, Pixel 3 T™MP

8 X[4] Row 2, Pixel 4 TMP, V2
9 X[1] Row 3, Pixel 1 T™MP

10 X2} Row 3, Pixel 2 TMP

1 X[3] Row 3, Pixel 3 T™P

12 X[4] Row 3, Pixel 4 T™MP, V3
13 X1 Row 4, Pixel 1 TMP

14 X(2] Row 4, Pixel 2 T™P

15 X[3) Row 4, Pixel 3 TMP

16 X{4) Row 4, Pixel 4 TMP, V4
17 A (L)] \'2| TMP

18 Y[2] V2 TMP

19 Y[3] V3 . T™MP

20 Y[4] V4 TMP (for output)

10.2.10.2 Generation of L 8-

As described in Section 3.2.6.1, we must convert 80 from RGB to L for the subsequent
sharpening process. We consider the CIE 1976 L*a*b* color space, where L is perceptually uniform. To
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convert from RGB to L (the luminance channel) we average the minimum and maximum of R, G, and B
as follows:

1 = MIN(R,G, B) + MAX(R, G, B)
2

The generation of a given pixel's R, G, and B values is performed in parallel, taking 20
cycles. The total time for the generation of L as described here, is 4 cycles. This makes the total time of
generating an RGBL pixel set 24 cycles, with 1 cycle to spare (since the process must be completed
within 25 cycles).

The value for L can thus be safely written out to Buffer 2 115 in the 25th cycle. Address

generation is described below.

A single 8-bit comparator can produce 3 bits in 3 cycles, which can subsequently be used for
selecting the 2 inputs to the adder, as shown in Table 31. The division by 2 can simply be incorporated

in the adder.
Table 31. Selection of Min and Max based on 3 comparisons
T wN 1 —max— “R>G — — G>B 4+ pB 4+ -
R B 1 1 x2
R G 1 0 1
G R 0 1 0
G B 0 1 1
B R | 0 0 X
B G | 1 0 0

Since the add merely adds the minimum to the maximum value, the order is unimportant.
Consequently, of the 2 inputs to the adder, Input1 can be a choice between R and G, while Input2 is a
choice of G and B. The logic is a minimization of the appropriate bit patterns from Table 31.

10.2.10.3 Address Generation for Buffer 2

The output from the Resampler is a single RGB pixel, and 3 luminance (L) pixels centered
vertically on the RGB pixel. The 3 L values can be written to Buffer2, one each 25 cycles. The R, G, and
B values must be written after cycle 45 and before cycle 50, since the second pixel generated is the
center pixel whose RGB values must be kept. The Buffer2 address consists of a 2-bit column
component (representing which of the 4 columns is to be written to), and a 3 bit value representing L1,
L2, L3, R, G, or B. The column number starts at O each line, and increments (with wrapping) every 75
cycles (i.e. éfter writing out L3).
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10.2.10.4 Address Generation for Kernel Lookup

The method of calculating the kemel address is the same as described at the end of Section
3.2.5 on page 28. Each kernel is 1 dimensional, with 64 entries in the table. The 6 most significant bits
(truncated) of the fractional component in the current kernel space are used to index into the kemel
coefficients table. For the first 16 cycles, the X ordinate is used to index the kemel, while in the next 4
cycles, the Y ordinate is used. Since the kemel is symmetric, the same kernel can be used for both X
and Y.

For each of the 1280 resampled values, we need to produce 3 pixels - the pixel in question
161, and the pixels above 160 and below 162 that pixel. Rather than generate a center pixel and then
move up and down from that center pixel, we generate a pixel 160 and generate the two pixels 161,
162 below, it. The second pixel 161 generated is taken to be the center pixel. We then return to the
original row and generate the next 3 pixels in the next output position. In this way, as shown in Figure
55, we generate 3 pixels for each of the 1280 positions.

Thus we have a current position in kernel space. As we advance to the next pixel in X or Y in
original input space, we add appropriate delta values to these kemnel coordinates. Looking at Figure 56,
we see the two cases for rotated and unrotated input space,

We consider the movement in X and Y as AX and AY, with their values dependent on the
print format, and hence the value of mps (see Section 3.2.5). For the green channel, AX = AY = 1/2mps.
For the red and blue channels, AX = 1/mps and AY = 0. See Table 9 and Table 11 for appropriate
values of AX and AY.

We can now apply the AX and AY values to movement within the kemel. Consequently, when
we advance in X, we add AX to X and subtract AY from Y. In the unrotated case, this merely subtracts

* 0 from Y. Likewise, when we advance in Y, we add AY to X and AX to Y. We can do this because

movement in X and Y differs by 90 degrees.'

The address generation for kernel lookup assumes a starting position set by software, and
two deltas AX and AY with respect to movement in Y in kernel space. The address generation logic is
shown in the following pseudocode:

ColumnKernelY = StartKernelY

ColumnKernelX = StartKernelX

Do NLines times (however many output lines there are to process)
KernelX = ColumnKernelX
KernelY = ColumnKernelY
Do 1280 times

GeneratePixel
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KernelX KernelX + DeltaY (movement in Y)

KernelY = KernelY + DeltaX {(movement in Y)

Generate Pixel

KernelX = KernelX + DeltaY (movement in Y)

KernelY = KernelY + DeltaX (movement in Y)

GeneratePixel

KernelX = ColumnKernelX + DeltaX (movement in X)

KernelY = ColumnKernelY - DeltaY (movement in X)
EndDo
ColumnKernelY = ColumnKernelY + DeltaX (movement in Y)
ColumnKernelX = ColumnKernelX + DeltaY (movement in Y)

EndDo

As shown in the pseudocode, the generation of 3 pixels occurs 1280 times. Associated with
the generation of each pixel is 2 additions, which can be performed during the course of the
GeneratePixel 25 cycle task. Each GeneratePixel task is 25 cycles, consisting of 4 sets of 4 cycles
indexing the kemnel via Kernelx (coefficients 0, 1, 2, 3), followed by 4 cycles indexing the kernel via

Note that all values are positive and fractional only. The two carmy outs from the updating of
the X and Y kemel values are output to the address generation of Buffer 1 (see Section 10.2.10.5 on
page 71 below). These camry out flags simply indicate whether or not the particular ordinates for the
kernel wrapped during the mathematical operation. Wrapping can be either above 1 or below 0, but the
result is always positive.

The two carry out bits are also sent to the Rotate/WhiteBalance/RangeExpansion Unit for
use in determining the relative input lines from the image.

10.2.10.5 Address Generation for Buffer 1

The Resampler 112 reads from Buffer1 114, which consists of 3 individually addressable

buffers 145, 146 and 147 - one for each color plane. Each buffer can either be read from or written to
during each cycle. [ = MINR,G, B) + MAX(R, G, B)
2
The reading process of 75 cycles is broken down into 3 sets of 25 cycles, one set of 25

cycles for the generation of each pixel. Each 25 cycle set involves 16 reads from Buffer 1 followed by 9
cycles with no access. Buffer 1 is written to during these 9 cycles. The 16 reads from Buffer 1 114 are
effectively 4 sets of 4 reads, and coincide with 4 groups of 4 reads to the kemel for each color plane.
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The address generation then, involves generating 16 addresses for calculating the first pixel

(followed by 9 wait cycles), generating 16 addresses for calculating the second pixel (followed by 9 wait
cycles), and finally generating the 16 addresses for the third pixel (followed by 9 wait cycles).

Each color plane has its own starting Bufferi address parameters. As the 3 sets of 16
addresses are generated for each of the 1280 positions along the line, and as the sampler advances
from one line of 1280 samples to the next, the two carry out bits from the Kemnel Address Generation
Unit are used to update these Buffer 1 address parameters.

10.2.10.6 Green buffer 146

Address generation for the green sub-buffer 146 within Buffer 1 114 is more complicated
than the red sub-buffer 145 and blue sub-buffer 147 for two main reasons:

] the green channel represents a checkerboard pattern in the CFA. Alternate lines consist of
odd or even pixels only. To resample the green channel, we must effectively rotate the chan-
nel by 45 degrees.

° there are twice as many green pixels than red or blue pixels. Resampling means the reading
of more samples in the same amount of time - there are still 16 samples read to generate
each pixel in medium res space, but there is a higher likelihood of advancing the buffer each
time. The exact likelihood depends on the scale factor used.

However, the same concept of using a RAM as a cyclical buffer is used for the green
channel. The green sub-buffer is a 78 entry RAM with a logical arrangement of 13 rows, each
containing 6 entries. The relationship between RAM address and logical position is shown in Figure 57.

The samples in Buffer 1 146 represent a checkerboard pattern in the CFA. Consequently,
sampiles in one row (e.g. addresses 0, 13, 26, 39, 52, 65) may represent odd or even pixels, &epending
on the current line within the entire image, and whether or not the image had been rotated by 90
degrees or not. This is illustrated in Figure 58.

Consequently, when we map a 4x4 sampling area onto the buffer, there are two possibilities
for the interpretation of the samples. As a result there are two types of addressing, depending on
whether the current line is represented by odd or even pixels. This means that even rows with image
rotation O will have the same addressing as odd rows with image rotation 80 since they both hold odd
pixels. Likewise, the odd rows with image rotation 0 will have the same addressing as even rows with
image rotation 90 since they both hold even pixels. The decision is summarized in Table 32.

Table 32. Determining Sampling Type

Rotation Current Line Pixels Type
0 Even Line 8 Odd Type 2
0 Odd Line 8 Even Type 1
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Table 32. Datermining Sampling Type

Rotation Current Line Pixels Type
90 Even Line 8 Even Type 1
90 Odd Line 8 Odd Type 2

The actual 4x4 sampling window is the way we effectively rotate the buffer by 45 degrees.
The 45 degree rotation is necessary for effective resampling, as described in Section 3.2.5.

Assuming for the moment that we only need to generate a single resample, we consider the
buffer addressing by examining the two types of 4x4 sampling windows as shown in Figure 59.

Although the two 4x4 sampling types look similar, the difference comes from the way in
which the 4x4 mapping is represented in the planar image. Figure 60 illustrates the mapping of the
Type 1 4x4 sampling to the green sub-buffer. Only the top 7 rows and right-most 4 columns are shown
since the 4x4 sample area is contained wholly within this area.

The mapping of buffer pixels to sample rows for the Type 2 sampling process is very similar,
and can be seen in Figure 61.

In both Type 1 and Type 2 addressing of the 16 samples there are two ways of processing a

row. Processing of Rows 1 and 3 of Type 1 addressing is the same (relatively speaking) as processing
rows 2 and 3 of Type 2. Likewise, processing rows 2 and 4 of Type 1 is the same (relatively speaking)
as processing rows 1 and 3 of Type 2. We will call these row addressing methods Type A 170 and Type
B 171, as shown in Figure 62.

Given a starting position for the 4x4 window (windowsStartadr) and a starting type
(WindowStartType), we can generate the addresses for the 16 samples by means of an 8 entry table
(for traversing the two sets of 4 samples). When we read the first sample value we add an offset from
the table to arrive at the next sample position. The offset will depend on the type (A, B = 0, 1). The
offset from the fourth sample is the amount needed to arrive at the first sample point for the next line
(and must take account of the number of sample columns). After generating each row of 4 samples, we
swap between TypeA and TypeB. The logic for generating the addresses for a single set of 16 samples
is shown in the following pseudocode. The addition modulo 78 caters for the cyclical buffer.

Adr = WindowStartAdr
TypeAB = WindowStartType
Do 4 times
For N = 0 to 4
Fetch Adr
Adr = (Adr + Table[TypeAB,N]) mod 78
EndFor
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TypeAB = NOT TypeAB
EndDo

The lookup table consists of 8 entries - 4 for Type A 170, and 4 for Type B 171 address offset

generation. The offsets are all relative to the current sample position (adr).

Table 33. Offset Values for 16-Sample Address Generation

TypeAB N Offset
0 0 14
0 1 1
0 2 14
0 3 37
1 0 1
1 1 14
1 2 11
1 3 37

At the end of the 18 reads, the TypeaB bit will be the same as the original value (loaded from

WindowStartType).

Reading a single set of 16 samples is not enough. Three sets of 16 samples must be read
(representing 3 different positions in Y in unrotated input space). At the end of the first and second set
of 16 samples, the kernel positions are updated by the kemel address generator. The carry bits from
this update are used to set the window for the next set of 16 samples. The two carry bits index into a
table containing an offset and a 1-bit flag. The offset is added to the windowStartadr, and the flag is
used to determine whether or not to invert windowstartType. The values for the table are shown in
Table 34.

Table 34. Updating WindowStartAdr and WindowStartType

KernelX KernelY

CarryOut CarryOut Offset’ Type
0 0 0 No change
0 1 1 Invert
1 0 14 Invert
1 1 2 No change

At the end of the third set of 16 samples, the kernel positions are updated to compensate for
advancement in X in unrotated input space. This time, a different motion direction is produced, so a
different offset/TypeAB modifying table is used. We cannot add these offsets to the current
WindowStartAdr value, because that represents a position two movements in Y away from where we
want to start the movement. Consequently we load windowStartAdr and WindowStartType from
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another set of variables: TopstartAdr and TopStartAdr, representing the first entry in the current line
of 1280. The two camy out flags from the Kernel address generator are used to lookup Table 35 to
determine the offset to add to TopStartAdr and whether or not to invert TopStartType. As before, the
addition is modulo 78 (the size of the green RAM). The results are copied to windowsStartAdr and
windowStartType for use in generating the next 3 sets of 16 samples.

Table 35. Updating TopStartAdr and TopStartType

KernelX KernelY

CarryOut CarryOut Offset’ Type
0 0 0 No change
0 1 12 Invert
1 0 14 Invert
1 1 13 No change

After processing the 1280 sets of 3 sets of 16 samples, the next line of 1280 begins.
However the address of the first sample for position 0 within the next line must be determined. Since
the samples are always loaded into the correct places in Buffer 1, we can always start from exactly the
same position in Buffer1 (i.e. Topstartadr can be loaded from a constant Positionohdr). However,

advanced. Consequently we have an initial Position0Type which must be updated depending on the

carry out flags from the kernel address generator. Since we are moving in unrotated Y input space, the
logic used is the same as for updating windowstartType, except that it is performed on
Position0Type instead. The new value for PositionOType is copied into TopstartType, and
WwindowStartAdr t0 begin sampling of the first position of the new fine.

The sampling process for a given 1280 position line cannot begin until there are enough
entries in Buffer 1, placed there by the Rotate/WhiteBalance/RangeExpansion Unit. This will occur 128
cycles after the start of each new line (see Section 10.2.11).

10.2.10.7 Red and Blue buffers

Buffer 1's red sub-buffer 145 and blue sub-buffer 147 are simply 2 RAMs accessed as
cyclical buffers. Each buffer is 30 bytes, but has a logical arrangement of 6 rows, each containing 6
entries. The relationship between RAM address and logical position is shown in Figure 63.

For red and blue, the first 16 samples to be read are always the top 4x4 entries. The
remaining two columns of samples are not accessed by the reading algorithm at this stage.

The address generation for these first 16 samples is simply a starting position (in this case 0)
followed by 16 steps of addition modulo 36, as shown in the following pseudocode:

ADR = StartADR
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Do 4 times
Do 4 times
ADR = ADR + 6 MOD 36
End Do
ADR = ADR + 13 MOD 36
End Do

_ However, this address generation mechanism is different from the green channel. Rather
than design two addressing mechanisms, it is possible to apply the green addressing scheme to the red
and blue channels, and simply use different values in the tables. This reduces design complexity. The
only difference then, becomes the addition modulo 36, instead of addition modulo 78. This can be

catered for by a simple multiplexor.

Looking at the various address generation tables for green, and considering them as applied
to red and blue, it is apparent that there is no requirement for a Type, since both the red and the biue
channels do not need to be rotated 45 degrees. So that we can safely ignore the Type value, the
red/blue equivalent of Table 33, shown in Table 36, has two sets of identical 4 entries.

Table 36. Offset Values for 16-Sample A-dress Generation (Red/Blue)

TypeAB N ‘Offset
0 0 6
0 1 6
0 2 6
0 3 13
1 0 6
1 1 6
1 2 6
1 3 13

As with green address generation, we move twice in Y before advancing to the next entry of
1280. For red and biue there is no scaling between movement in kemnel space and movement in the
input space. There is also no rotation. As we move in Y, the AY of 0 is added to kernelx (see kemel
address generation in Section 10.2,10.4 on page 69). As a result, the carry out from Kernelx will never
be set. Looking at Table 34, the oniy possible occurrences are Kernelx/Kernely values of 00 or 01. In
the case of 00, the green solution is no change to either WindowStartAdr or WindowStartType, so this
is correct for red and blue also. in the case of 01, we want to add 1 to WindowStartAdr, and don't care
about WindowStariType. The green values can therefore be safely used for red and blue. The worst
case is advancement by 1 in address both times, resulting in an overlapping worst case as shown in
Figure 65.
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At the end of the third set of 16 samples, TopstartAdr and TopStartType must be updated.
Since we are moving in X (and adding AY=0 to kernelY), the carry out from kernely will always be 0.

The red/blue equivalent of Table 35 is shown here in Table 37. Note that there is no Type column, since

Type is not important for Red or Blue.

Table 37. Updating TopStartAdr and TopStartType (Red/Blue)

KernelX KernelY
CarryOut CaryOut Offset"

=1 =010
=210 =10

The process of advancing from one line of 1280 sets of 3 pixels to the next is the same as for
green. The Position0oAdr will be the same for the first set of 16 samples for a given line
(Positionoadr = O for red and blue), and Type is irrelevant. Generation of the next line cannot begin
until there are enough samples in Buffer1. Red and blue generation must start af the same time as
green generation, so cannot begin until 128 cycles after the start of a new line (see Section 10.2.11).

10.2.11 Rotate, White Balance and Range Expansion 111

The actual task of loading Buffert 114 from the Image RAM 11 involves the steps of rotation,
white balance, and range expansion 111, as described by Section 3.2.3 and Section 3.2.4. The pixels
must be produced for Buffer1 fast enough for their use by the Resampling process 112. This means
that during a single group of 75 cycles, this unit must be able to read, process, and store 6 red pixels, 6
blue pixels, and 13 green pixels.

The optional rotation step is undertaken by reading pixels in the appropriate order. Once a
given pixel has been read from the appropriate plane in the image store, it must be white balanced and
its value adjusted according to the range expansion calculation defined in Section 3.2.4. The process
simply involves a single subtraction (floor 0), and a multiply (255 ceiling), both against color specific
constants. The structure of this unit is shown in Figure 66.

The red, green and blue low thresholds 72, together with the red, green, and biue scale
factors 173 are determined by the CPU 10 after generating the histograms for each color piane via the
Image Histogram unit 8 (see Section 9).

Depending on whether the current pixel being processed in the pipeline is red, green, or biue,
the appropriate low threshold and scale factor is multiplexed into the subtract unit and muiltiply unit, with
the output written to the appropriate color plane in Buffer 1.
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The Subtract unit 172 subtracts the 8-bit low Threshold value from the 8-bit Image RAM pixel

value, and has a floor of 0. The 8-bit result is passed on to the specialized 8 x 8 multiply unit, which

multiplies the 8-bit value by the 8-bit scale factor (8 bits of fraction, integer=1). Only the top 10 bits of

the result are kept, and represent 8 bits of integer and 2 bits of fraction. The multiplier 174 has a result

ceiling of 255, so if any bit higher than bit 7 would have been set as a result of the multiply, the entire 8-
bit integer result is set to 1s, and the fractional part set to 0.

Apart from the subtraction unit 172 and multiply unit 174, the majority of work in this unit is
performed by the Address Generator 175, which is effectively the state machine for the unit. The
address generation is governed by two factors: on a given cycle, only one access can be mada to the
Image RAM 11, and on a given cycle, only one access can be made to Buffer 1 114. Of the 75 available
cycles, 3 sets of 16 cycles are used for reading Buffer 1. The actual usage is 3 sets of 25 cycles, with
16 reads followed by 9 wait cycles. That gives a total of 27 available cycles for 25 writes (6 red, 6 biue,
6 green). This means the two constraints are satisfied if the timing of the writes to Buffer1 coincide with
the wait cycles of the Resampler 112,

10.2.11.1 Address Generation for Buffer1

Once the resampling process is running, we are only concerned with writing to Buffer1 during
the period when the Resampler 112 is not reading from it. Since the Resampler has 3 sets of 16 reads
each 75 cycle period, there are 27 cycles available for writing. When the resampler is not running, we
want to load up Buffer1 as fast as possible, which means a write ‘to Buffer1 114 each cycle. Address
Generation for Buffer1 consequently runs off a state machine that takes these two cases into account.
Whenever a value is loaded from ImageRAM 11, the adjusted value is written to the appropriate color in
Buffer1 one cycle later.

Address Generation for Buffer1 therefore involves a single address counter for each of the
red, blue and green sub-buffers. The initial address for Redadr, BlueAdr and Greenadr is O at the start
of each line in each case, and after each write to Buffer1, the address increments by 1, with wrapping at
36 or 78, depending on whether the buffer being written to is red, green or blue. Not all colors are
written each 75-cycle period. A column of green will typically require replenishing at twice the rate of red

or biue, for example.

The logic is shown in the following pseudocode:

If the color to write is Red
Write to Red Bufferl at RedAdr
RedAdr = RedAdr + 1 mod 36

Else

If the color to write is Blue
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Write to Blue Bufferl at BlueAdr
BlueAdr = BlueAdr + 1 mod 36
Else
If the color to write is Green
Rrite to Green Bufferl at GreenAdr
GreenAdr = GreenAdr + 1 mod 78

EndIf

10.2.11.2 Address Generation for image RAM

Each plane can be read in one of two orientations - rotated by 0 or 90 degrees (anti-
clockwise). This translates effectively as row-wise or column-wise read access to the planar image. In
addition, we allow edge pixel replication or constant color for reads outside image bounds, as well as
image wrapping for such print formats as Passport 31.

At the start of each print line we must read the ImageRAM 11 to load up Buffer1 114 as fast
as possible. This equates to a single access to a sample each cycle. Resampling can only occur once
5 columns have been loaded, which means 5 columns of 6, 6, and 13 samples, for a total of 125 cycles.

15

20

25

Pius an extra cycle for the final value to be written out to Buffer1t 114 after being loaded from
ImageRAM 11. To make the counting easier, we round up to 128 cycles.

After the first 128 cycles, the checking for the requirement to load the next column of
samples for each of the 3 colors occurs each 75 cycles, with the appropriate samples loaded during the
subsequent 75 cycles. However, the initial setting of whether to load during the first set of 75 cycles is
always 1 for each color. This enables the final 6th column of each color within Buffer 1 to be filled.

At the end of each 75 cycle period, the kernelxcarryout flag from each color plane of the
Kemel Address Generator in the Resampler 112 is checked to determine if the next column of samples
should be read. Similarly, an Advanceline pulse restarts the process on the following line if the
KernelYCarryout flag is set.

Since each ‘read’ effectively becomes 6 or 13 reads to fill a column in Buffer1, we keep a
starting position in order to advance to the next ‘read’. We also keep a coordinate value to allow the
generation of out-of-bounds coordinates to enable edge pixel replication, constant color, and image

wrap.

We consider the active image 180 as being within a particular bounds, with certain actions to
be taken when coordinates are outside the active area. The coordinates can either be before the
image, inside the image, or after the image, both in terms of lines and pixels. This is shown in Figure

67, although the space outside the active area has been exaggerated for clarity:
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Note that since we use (0, 0) as the start of coordinate generation, MaxPixel and MaxLine
are also pixel and line counts. However, since address generation is run from kemel carry outs and
AdvanceLine pulses from the MJI 15, these outer bounds are not required. Address generation for a
line simply continues until the AdvancelLine pulse is received, and may involve edge replication,
constant colors for out of bounds, or image pixel wrapping.

if we have an address, adr, of the current sample, and want to move to the next sample,
either on the next line or on the same line, the sample’s coordinate will change as expected, but the

way in which the address changes depends on whether we are wrapping around the active image, and
must produce edge pixel replication when needed.

When there is no wrapping of the image (i.e. all print formats except Passport 31), we
perform the actions in Table 38 as we advance in line or pixel. To rotate an image by 90 degrees, the
CPU 10 simply swaps the ALine and APixel values.

Looking at Table 38, the only time that ADR changes is by APixel when PixelSense is 0, and
by ALine when LineSense is 0. By foliowing these simple rules adr will be valid for edge pixel
replication. Of course, if a constant color is desired for out of bounds coordinates, that value can be
selected in instead of the value stored at the appropriate address.

.To allow wrapping, we simply compare the previous sense (-,0,+) for Line and Pixel with the

Table 38. Actions to Perform when Advancing in Pixel or Line

Line® Pixel® Pixel Change Line Change
- 0 Adr = Adr + APixel
- +
0 - Adr = Adr +ALine
0 0 Adr = Adr + APixel Adr = Adr +ALine
0 + Adr = Adr +ALine
Y -
+ 0 Adr = Adr + APixel
+ +

a. We compare the current Line ordinate with ActiveStartLine and ActiveEndLine.
If Line < ActiveStartLine, we call the value “-°.
if ActiveStartLine < Line < ActiveEndLine, we call the value “0".
If ActiveEndLine < Line, we call the value “+".

b. We compare the current Pixel ordinate with ActiveStartPixel and ActiveEndPixel.
if Pixel < ActiveStartPixel, we call the value *-*.

If ActiveStartPixel < Line < ActiveEndPixel, we call the value “0".
If ActiveEndPixel < Pixel, we call the value *+°.

new sense. When the sense is “-” we use the advancement as described in Table 38, but when the
ordinate becomes out of bounds (i.e. moving from O to +), we update the adr with a new value not
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based on a delta. Assuming we keep the start address for the current line so that we can advance to
the start of the next line once the current line has been generated, we can do the following:

° if a change is in Pixel, and the pixel sense changes from 0 to + (indicating we have gone past
the edge of the image), we replace Adr with the LineStartAdr and replace Pixel with Active-
StartPixel. Line remains the same.

. If a change is in Line, and the line sense changes from 0 to + (indicating we have gone past
the edge of the image), we subtract DeltaColumn from Adr and replace Line with ActiveStart-
Line. Pixel remains the same. DeltaColumn is the address offset for generating the address
of (Pixel, ActiveStartLine) from (Pixel, ActiveEndLine-1).

The logic for loading the set number of samples (either 6 or 13, depending on color) is shown
in the following pseudocode:

line = FirstSampleLine
pixel = FirstSamplePixel
adr = FPirstSampleAdr
Do N times (6 or 13)
oldPixelSense = PixelSense(pixel)

oldLineSense = LineSense (gLine)
inActive = ((oldLineSense == InActive) AND (oldPixelSense == InActive))
If ((NOT inActive) AND UseConstant)
Sample = ConstantColor
else
Sample = Fetch (adr)
EndIf
line = line + 1
If ((LineSense(line) == "+%) AND wrapImage)
adr = adr - DeltaColumn
line = ActiveStartLine
ElseIf ((LineSense(line) == *0") AND ((oldLineSense == "“0”))
adr = adr + DeltakLine
EndIf
EndDo

The setting for such variables as FirstSamplelLine, FirstSamplePixel, and
FirstSampleadr is in the address generator section that responds to camy out flags from the Kemel
Address Generator, as well as Advanceline pulses from the MJI. The logic for this part of the address
generation is shown in the following pseudocode:
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FirstSamplePixel = 0
FirstSampleLine = 0

FirstSampleAdr = FirstLineSampleAdr = ActiveStartAddress
count = 0 .
Do Forever
If ((KernelXCarryOut) OR (Advanceline AND KernelYCarryOut) OR (count < 5))
Do N Samples for this color plane (see pseudocode above)
Endlf
oldrPixelSense = PixelSense(FirstSamplePixel)
oldLineSense = LineSense (FirstSampleLine)
If (AdvanceLine AND KernelYCarryOut)
count = 0
FirstSampleLine = FirstSampleLine + 1
FirstSamplePixel = 0
If ((LineSense(FirstSampleLine) == *+7) AND wraplmage)
FirstLineSampleAdr = StartAddress
FirstSampleLine = ActiveStartLine
Elself ((LineSense(FirstSampleLine) == *0%) AND (oldLineSense == *“0"))
FirstLineSampleAdr = FirstLineSampleAdr + DeltaLine
BEndIf
FirstSampleAdr = FirstLineSampleAdr
Elself (KernelXCarryOut OR (count < 5}))
FirstSamplePixel = FirstSamplePixel + 1
count = count + 1 i
If ((PixelSense(FiratSamplePixel) == “+*) AND wraplmage)
FirstSampleAdr = FirstLineSampleAdr
FirstSamplePixel = ActiveStartPixel
ElseIf ((PixelSense(FirstSamplePixel) == “0%) AND (oldPixelSense ==
*0~))
FirstSampleAdr = FirstSampleAdr + DeltaPixel
Endif
EndIf
EndDo
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10.2.11.3 Register Summary

There are a number of registers that must be set before printing an image. They are
summarized here in Table 39. To rotate an image by 90 degrees, simply exchange the DeltaLine and

DeltaPixel values, and provide a new DeitaColumn value.

Table 39. Registers Required to be set by Caller before Printing

Register Name

Description

Image Access Parameters

Wrapimage Tile image reads to replicate image when out of image bounds
UseConstant if 0, image edge replication or wrapping occurs on reads out of image
bounds.
if 1, a constant color is returned.
Red
ActiveStartAddressR | The address of red sample (ActiveStartPixel, ActiveStartLine) in
ImageRAM
ActiveStartLineR The first valid line for the image in red space (in relation to line 0)
ActiveEndLineR The first line out of bounds for the image in red space
ActiveStartPixelR The first valid pixel for the image in red space (in relation to pixel 0)

| ActiveEndPixelR | The first pixel out of bounds for the image in red space

DeitaLineR The amount to add to the current address to move from one line to the
next in red space

DeltaPixelR The amount to add to the current address to move from one pixel to
the next on the same line in red space

DeitaColumnR The amount to add to the current address to move from a pixe! in the
last line of the Active image area to the same pixel on the first line of
-the Active image area in red space.

ConstantColorR Red color value to use if address out of bounds and UseConstant=1

Green

ActiveStartAddressG | The address of green sample (ActiveStartPixel, ActiveStartLine) in
ImageRAM

ActiveStartLineG The first valid line for the image in green space (in relation to line 0)

ActiveEndLineG The first line out of bounds for the image in green space

ActiveStartPixelG The first valid pixel for the image in green space (in relation to pixel 0)

ActiveEndPixelG The first pixel out of bounds for the image in green space

DeltaLineG The amount to add to the current address to move from one line to the
next in green space

DeltaPixelG The amount to add to the current address to move from one pixel to
the next on the same line in green space

DeitaColumnG The amount to add to the current address to move from a pixel in the
last line of the Active image area to the same pixel on the first line of
the Active image area in green space.

ConstantColorG Green color value to use if address out of bounds and UseConstant=1

Blue
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Table 39. Registers Required to be set by Caller before Printing
Register Name Description

ActiveStartAddressB | The address of blue sample (ActiveStartPixel, ActiveStartLine) in
ImageRAM

ActiveStartLineB The first valid line for the image in blue space (in relation to line 0)

ActiveEndLineB The first line out of bounds for the image in blue space

ActiveStartPixelB The first valid pixel for the image in blue space (in relation to pixel 0)

ActiveEndPixelB The first pixel out of bounds for the image in blue space

DeltaLineB The amount to add to the current address to move from one line to the
next in blue space

DeltaPixelB The amount to add to the current address to move from one pixel to
the next on the same line in blue space

DeltaColumnB The amount to add to the current address to move from a pixel in the
last line of the Active image area to the same pixel on the first line of
the Active image area in blue space.

ConstantColorB Blue color value to use if address out of bounds and UseConstant=1

White Balance and Range Expansion Parameters

RedlLowThreshold 8-bit value subtracted from red input values

GreenLowThreshold | 8-bit value subtracted from green input values

BlueLowThreshold 8-bit value subtracted from blue input values

RedScaleFactor 8-bit scale factor used for range expansion of red pixels

GreenScaleFactor 8-bit scale factor used for range expansion of green pixels

BlueScaleFactor 8-bit scale factor used for range expansion of blue pixels

11 REFERENCES
[1] Silverbrook Research, 1998, Authentication of Consumables.

[2) Silverbrook Research, 1998, Authentication Chip.

Although the invention has been described with reference to specific examples, it will be
appreciated, by those skilled in the art, that it may be embodied in many other forms. The following
numbered paragraphs provide the addressee with a further indication of the scope of the invention,
aithough other novel and inventive features and combination of features will also be clear from the
disclosure therein.
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We.claim:

1. A method of providing an image for printing at a predetermined bi-level dot resolution
which corresponds to a predetermined continuous tone resolution, the method including the steps of:

receiving a first data set indicative of the image, the data set being in a Bayer format of
a first resolution;

converting the first data set into a second data set of the predetermined continuous
tone resolution;

converting the second data set into a third data set of the predetermined bi-level dot
resolution; and

making the third data set available to a printer at the predetermined bi-level dot

resolution.

2. A method according to claim 1 wherein the first resolution matches the predetermined
10 DbiHevel dot resolution.

3. A method according to claim 1 wherein the first resolution is greater than the
predetermined bi-level dot resolution.

4. A method according to claim 1 wherein the first resolution is less than the
predetermined bi-level dot resolution.

5. A method according to claim 1 wherein the first data set is in a red, green and blue

15 (RGB) format and the printer is responsive to a cyan, magenta and yellow (CMY) format, and the

method includes the additional step of converting the third data set from an RGB format to a CMY
format.

6. A method according to claim 1 including the step of sharpening the second data set.
7. A method according to claim 1 including the step of sharpening the first data set.

8. A method according to claim 1 wherein the first data set is obtained from a sensor
20 device and the method includes the step of compensating the first data set for non-linearities in the
sensor device.

9. A method according to claim 8 wherein the step of compensating includes converting
the first data set from a plurality of x bit samples to a plurality of y bit samples, where x > y.

10. A method according to claim 8 where x=10and y = 8.

11. A method according to claim 1 including the step of planarising the first data set into a
25 e plane, a green plane and a blue plane.

12. A method according to claim 1 including the further steps of:
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determining for the first data set the m% of darkest pixels and the n% of the lightest pixels;

adjusting the first data set to equate the m% of darkest pixels; and
adjusting the first data set to equate the n% of lightest pixels.

13. A method according to claim 1 including the additional step of adjusting the first data
set to provide a predetermined white balance.

14. A method according to claim 1 including the additional step of adjusting the first data
set to provide a predetermined range expansion.

16. A method according to claim 13 or claim 14 wherein the color resolution of the first

data set is increased while maintaining the same spatial resolution.

16. A method according to claim 1 wherein the first data set is selectively adjusted for
providing the image in a predetermined rotational orientation.

17. An apparatus for providing an image for printing at a predetermined bi-level dot
resolution which corresponds to a predetermined continuous tone resolution, the apparatus including:

input means for receiving a first data set indicative of the image, the data set being in a

Bayer format of a first resolution;
~sampling means for converting the first data set into a second data set of the

predetermined continuous tone resolution;

processing means for converting the second data set into a third data set of the
predetermined bi-level dot resolution; and

making the third data set available to a printer for printing at the predetermined bi-level
dot resolution.

18. An apparatus according to claim 17 wherein the first resolution matches the
predetermined bi-level dot resolution.

19. An apparatus according to claim 17 wherein the first resolution is greater than the
predetermined bi-level dot resolution.

20. An apparatus according to claim 17 wherein the first resolution is less than the
predetermined bi-level dot resolution.

21. An apparatus according to claim 17 wherein the first data set is in a red, green and
blue (RGB) format and the printer is responsive to a cyan, magenta and yellow (CMY) format, the
processing means converting the third data set from an RGB format to a CMY format.

22. An apparatus according to claim 17 including the step of sharpening the second data
set.
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23. An apparatus according to claim 17 including the step of sharpening the first data set.

24. An apparatus according to claim 17 wherein the first data set is obtained from a sensor

device and the input means compensates the first data set for non-inearities in the sensor device.

25. An apparatus according to claim 24 wherein the compensation for non-linearities
includes converting the first data set from a plurality of x bit samples to a plurality of y bit samples,
where x > y.

26. An apparatus according to claim 25 where x= 10 and y = 8.

27. An apparatus according to claim 17 wherein the input means planarises the first data
set into a red plane, a green plane and a blue plane.

28. An apparatus according to claim 17 wherein the input means:
determines for the first data set the m% of darkest pixels and the n% of lightest pixels;
adjusts the first data set to equate the m% of darkest pixels; and
adjusts the first data set to equate the n% of lightest pixels.

29. An apparatus according to claim 17 wherein the input means adjusts the first data set

30. An apparatus according to claim 17 wherein the input means adjusts the first data set
to provide a predetermined range expansion.

31. An apparatus according to claim 29 or claim 30 wherein the input means increases the
color resolution of the first data set while maintaining the same spatial resolution.

32. An apparatus according to claim 17 wherein the input means selectively adjusts the
first data set for providing the image in a predetermined rotational orientation.

33. Acamera includiné:

a CCD array for providing a Bayer image;

a printer for selectively providing‘a printed image; and

an apparatus according to claim 17 for receiving the Bayer image and providing the
printer with the third data set such that the printed image is produced.
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