发明名称

全自动冰箱门密封条生产线

摘要

本发明公开了一种全自动冰箱门密封条生产线，包括挤出机、切割机、穿磁机、焊接机、机械手、双抓和传送带，且焊接机包括有模具。其中，该2对双抓之间设有夹具装置，且该2对双抓分别抓紧位于焊接机前端的密封条的前端和后端后，该夹具装置将密封条送入模具中。优化后，穿磁装置包括穿磁机，穿磁机包括穿磁口、磁条位移台以及密封条固定台，穿磁口的上方设有导磁条，密封条固定台处设有导磁条；密封条固定台的上侧部设有夹手，同时，密封条固定台的下侧设有负压吸口；模具可以采取三层模；焊接机上位于模具的前方设有导磁条；焊接机为四角焊机。本发明的优点是，各个部件衔接的准确率较高，利于该生产线的推广普及。
1. 全自动冰箱门密封条生产线，包括挤出机、切割机、穿磁机（21）、焊接机（30）、机械手（10）和传送履带，且焊接机（30）包括有模具（31），其中，挤出机挤出密封条（200）后，切割机对密封条（200）进行切割，之后机械手（10）将密封条（200）搬运至穿磁机（21），穿磁机（21）将磁条（100）穿入密封条（200）中，接着，机械手（10）将密封条（200）送入焊接机（30）的模具（31）中进行焊接，最后，机械手（10）将焊接成型后的密封条（200）取出并放置到传送履带上输出出流水线，其特征在于：所述全自动冰箱门密封条生产线包括有2对双抓（41），该2对双抓（41）之间设有变距装置，且该2对双抓（41）分别抓紧位于焊接机前端的密封条（200）的前端和后端后，该变距装置启动将密封条（200）送入模具（31）中。

2. 根据权利要求1所述的全自动冰箱门密封条生产线，其特征在于：所述穿磁机（21）包括穿磁口（211）、磁条位移台（212）以及密封条固定台（213），且穿磁口（211）的上方设有导磁压条（214），密封条固定台（213）处设有导磁针（215）。

3. 根据权利要求2所述的全自动冰箱门密封条生产线，其特征在于：所述密封条固定台（213）的上侧部设有抓手（216），同时，密封条固定台（213）的入口部下侧设有负压吸口（217）。

4. 根据权利要求1所述的全自动冰箱门密封条生产线，其特征在于：所述模具（31）包括相互配合的左上模（311）、下模（312）和右模（313），且左上模（311）的下侧设有左上模腔（3111），下模（312）的右上侧设有左下模腔（3121），右模（313）的左中部设有右模腔（3131），且左上模（311）、下模（312）和右模（313）合拢后，左上模腔（3111）、下左模腔（3121）、右模腔（3131）围成的空间和密封条（200）相配。

5. 根据权利要求4所述的全自动冰箱门密封条生产线，其特征在于：所述左上模（311）的右部上侧设有左斜面（3112），右模（313）的左上部设有右斜面（3132），且左斜面（3112）和右斜面（3132）相配。

6. 根据权利要求1所述的全自动冰箱门密封条生产线，其特征在于：所述模具（31）的前方设有导向模（32）。

7. 根据权利要求1至6中任一项所述的全自动冰箱门密封条生产线，其特征在于：所述焊接机（30）为四角焊机。
全自动冰箱门密封条生产线

技术领域
[0001] 本发明涉及冰箱制备技术领域，尤其是涉及一种全自动冰箱门密封条生产线。

背景技术
[0002] 当前生产冰箱时，多采用人工将磁条穿入密封条中，然后人工进行密封条的焊接。这样的方式效率极低，质量不够稳定，且存在安全隐患。为此，出现了全自动冰箱门密封条生产线，在该生产线上，机械手抓取搬运磁条和密封条后，依次进行将磁条穿入密封条中和对密封条进行焊接的操作，极大地提高了生产效率，降低了生产中的安全隐患。但是由于磁条和密封条均为极长、极软的材质，且磁条和密封条的运动速度均较快，使该生产线中存在着磁条不易对准密封条的入口部、密封条不易入模等各个部件衔接的准确率偏低的缺陷，使该全自动冰箱门密封条生产线无法普及推广。

发明内容
[0003] 本发明的目的是提供一种全自动冰箱门密封条生产线，它具有各个部件衔接的准确率较高，从而利于该生产线的推广普及的特点。
[0004] 为了实现上述目的，本发明所采用的技术方案是：全自动冰箱门密封条生产线，包括挤出机、切割机、穿磁机、焊接机、机械手和传送履带，且焊接机包括有模具，其中，挤出机挤出密封条后，切割机对密封条进行切割，之后机械手将密封条搬运至穿磁机，穿磁机将磁条穿入密封条中，接着，机械手将密封条送入焊接机的模具中进行焊接，最后，机械手将焊接成型后的密封条取出并放置到传送履带上输出到流水线，所述全自动冰箱门密封条生产线包括有对双抓，该对双抓之间设有变距装置，且该对双抓分别抓紧位于焊接机前端的密封条的前端和后端后，该变距装置启动将密封条送入模具中。
[0005] 所述穿磁装置包括穿磁机，穿磁机包括穿磁口、磁条位移台以及密封条固定台，且穿磁口的上方设有导磁压条，密封条固定台处设有导磁针。
[0006] 所述密封条固定台的上侧部设有抓手，同时，密封条固定台的入口部下侧设有负压吸口。
[0007] 所述模具位于焊接机上，该模具包括相互配合的左上模、左下模和右模，且左上模的右下侧设有左上模腔，左下模的右上侧设有左下模腔，右模的左模中部设有右模腔，且左上模、左下模和右模合拢后，左上模腔、左下模腔、右模腔围成的空间和密封条相配。
[0008] 所述左上模的右上侧设有左斜面，右模的左上部设有右斜面，且左斜面和右斜面相配。
[0009] 所述焊接机上设有模具的前方设有导向模。
[0010] 所述焊接机为四角焊机。
[0011] 采用上述结构后，本发明和现有技术相比所具有的优点是：各个部件衔接的准确率较高，从而利于该生产线的推广普及。本发明的全自动冰箱门密封条生产线的穿磁机和焊接机之间设有变距装置，变距装置设有双抓，机械手抓持密封条之后，密封条自身具有
进入模具的势能，则降低了密封条入模的难度。同时，密封条前、后端分别由双抓紧紧，避免了密封条端部翘起的情况，增加了密封条入模的准确度。优化后，本发明从以下几方面进一步提高了各个部件衔接操作的准确度：1. 导磁压条限制磁条的前端产生较大的上下位移、导磁针限制磁条的前端部产生较大的左右位移、抓手限制密封条产生较大的上下位移、负压吸口限制密封条的端部产生较大的上下和左右位移。这些措施均较好的提高了部件衔接的准确度。2. 焊接用的模具采取三分模的方式，则模具打开后，机械手的操作空间较大，利于机械手将密封条送入模具中。同时，导引模在机械手撤离后，仍然夹持密封条，提高了密封条入模的准确度。

附图说明
[0012] 下面结合附图和实施例对本发明进一步说明：
[0013] 图 1 是本发明的实施例的工作流程示意框图；
[0014] 图 2a 是本发明的密封条处于弯曲状态时双抓的立体结构示意图；
[0015] 图 2b 是本发明的密封条处于平直状态时双抓的立体结构示意图；
[0016] 图 3a 是本发明的导磁压条的工作状态的立体结构示意图；
[0017] 图 3b 是本发明的导磁压条的工作原理示意图；
[0018] 图 4a 是本发明的导磁针的工作状态的俯视结构示意图；
[0019] 图 4b 是本发明的磁条未进入密封条时的导磁针的工作状态图；
[0020] 图 4c 是本发明的磁条进入密封条时的导磁针的工作状态图；
[0021] 图 4d 是图 4a 的 A 部局部放大示意图；
[0022] 图 5 是本发明的抓手和负压吸口的工作状态的立体结构示意图；
[0023] 图 6 是本发明的模具分开状态的主视结构示意图；
[0024] 图 7a 是本发明的导引模的工作状态的立体结构示意图；
[0025] 图 7b 是本发明的导引模的分开状态的立体结构示意图；
[0026] 图 8 是本发明的四角焊机的俯视示意图。
[0027] 图中：100、磁条、200、密封条；10、机械手；21、穿磁机、211、穿磁口、212、磁条位移台、213、密封条固定台、214、导磁压条、215、导磁针、216、抓手、217、负压吸口；30、焊接机、31、模具、311、左上模、3111、左上模腔、3112、左下模、312、左下模、3121、左下模腔、313、右模、3131、右模腔、3132、右斜面、32、导向模、321、左导向模、322、右导向模，33、密封条固定夹，34、工作台；41、双抓。

具体实施方式
[0028] 以下所述仅为本发明的较佳实施例，并不因此而限定本发明的保护范围。
[0029] 实施例，见图 1、图 2a、图 2b 所示：全自动冰箱门密封条生产线，包括挤出机，切割机，穿磁机、焊接机 30，机械手 10 和传送带，且焊接机 30 包括有模具 31。具体的工作流程为，挤出机挤出密封条 200 后，切割机将密封条 200 切割为段状。之后，机械手 10 将密封条 200 搬运至穿磁机 21，穿磁机 21 将磁条 100 穿入密封条 200 中。接着，机械手 10 将密封条 200 送入焊接机 30 的模具 31 中进行焊接。最后，机械手 10 将焊接成圆后的密封条 200 取出并放置到传送带带上输送出流水线。为了便于密封条 200 进入模具 31 中，全自动
冰箱门密封条生产线包括有 2 对双抓 41，该 2 对双抓 41 之间通过变距装置连接。同时，该 2 对双抓 41 分别抓紧位于焊接机前端的密封条 200 的前端和后端后，该变距装置启动，从而密封条 200 中部隆起，具有了向前进入模具 31 的势能，而双抓 41 保证了密封条 200 的端部不会翘起。这样，双抓 41 将密封条 200 准确的送入模具 31 中。

[0030] 见图 3a、图 3b 所示；穿磁条 21 包括穿磁条 211、穿磁条位移 212 以及密封条固定台 213。其中，磁条 100 经由磁条位移 212 穿入固定于密封条固定台 213 上的密封条 200 内，为了限制磁条 100 的端部产生上下方向上的位移，穿磁条 211 的上方设有导向磁条 214。

[0031] 见图 4a、图 4b、图 4c、图 4d 所示：密封条固定台 213 处设有导磁针 215。具体的，导磁针 215 位于密封条 200 的进磁条口的一侧，从而该导磁针 215 在磁条 100 进入密封条 200 的一刹那，挤压磁条 100 的一侧，使磁条 100 减小了左右方向上的自由位移。同时，导磁针 215 的横截面较小，其自由端能够随同磁条 100 进入密封条 200 中。导磁针 215 可以连接有气动件。当导磁针 215 完成一次导引任务后，在气动件的作用下能够及时复位，为下一次导引做好准备。

[0032] 见图 5 所示，密封条固定台 213 的上侧部设有抓手 216。该抓手 216 压迫密封条 200 使之紧密接触于密封条固定台 213，限制密封条 200 产生上下方向上的位移。同时，密封条固定台 213 的入口部下侧设有负压吸口 217。该负压吸口 217 将密封条 200 的磁条入口部贴紧于密封条固定台 213 上，限制密封条 200 产生自由位移。

[0033] 见图 6 所示，模具 31 可以采用三分模的方式。具体的，模具 31 位于焊接机 30 上，该模具 31 包括相互配合的上左模 311、下左模 312 和右模 313，且上左模 311 的右下侧设有右上模腔 3111，左下模 312 和右下侧设有上左模腔 3121，右模 313 的左侧中部设有右模腔 3131。这样，上左模 311、下左模 312 和右模 313 合拢后，上左模 3111、下左模腔 3121、右模腔 3131 组成的空间和密封条 200 相配。即，左上模 311、左下模 312 和右模 313 可以分开，从而具有较大的机械手操作空间，利于密封条 200 的入模。而密封条 200 入模后，上左模 311、下左模 312 和右模 313 合拢。为了保证左上模 311、下左模 312 和右模 313 合拢时的精确度，左上模 311 的右下侧设有左斜面 3112，右模 313 的左侧上部设有右斜面 3132，且左斜面 3112 和右斜面 3132 相配。即，左上模 311、左下模 312 和右模 313 合拢时，左斜面 3112 和右斜面 3132 紧密接触，从而保证左上模 311、下左模 312 和右模 313 位置的相对固定。

[0034] 见图 7a、图 7b 所示：焊接机 30 上位于模具 31 的前方设有导向模 32。显然，导向模 32 分为两部分，分别是左导向模 321 和右导向模 322。左导向模 321 和右导向模 322 可以分开，且分别具有内腔。在左导向模 321 和右导向模 322 合拢时，他们的内腔形成夹持密封条 200 的空间。这样，密封条 200 在机械手 10 的夹持下，先行进入导向模 32 中，当机械手 10 撤离后，密封条 200 仍然受到导向模 32 的夹持，从而能够顺利进入模具 31 内。

[0035] 见图 8 所示：由于密封条 200 多位 4 条首尾连接进行焊接，则焊接机 30 可以是为四角焊机。所谓四角焊机指的是工作台 34 上设有密封条固定夹 33 和四个焊接机 30，且密封条固定夹 33 和焊接机 30 两两相邻设置。当然，该焊接机 30 包括有效具 31。密封条 200 固定于该密封条固定夹 33 上，且在模具 31 内进行焊接。采用四角焊机的优点是：1）相对于一台焊接机 30 而言，焊接速度至少提高了 4 倍。而且，无需多次定位密封条 200 的位置，使焊接速度进一步得到提高。2）焊接质量较好。四台焊接机 30 同时进行焊接，则每条密封
条 200 的端部均同时受到焊接变形，避免了一端变形的情况，从而焊接质量较好。且只需进行一次密封条 200 的定位，避免了屡次定位而造成的密封条 200 位置变化的情况，提高了焊接精度。