A portion (118) or component (116) of a metal container (112) is provided with markings (114) or indicia using laser light (218). High-speed laser steering is used to position laser light or laser light pulses across a lateral and longitudinal extent in a relatively short time period selected so as to avoid slowing, stopping or otherwise interfering with other container or container component production processes. Tab stock (116) for container-opening tabs can be provided with 6 to 9 visible characters within 50 to 100 milliseconds. The size and resolution provided by the pulses are sufficient to permit legible and attractive formation of any standard typewriter characters, as well as other logos, designs, textures, backgrounds, or similar features.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>ES</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GF</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK</td>
<td>The former Yugoslavia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
METHOD AND APPARATUS FOR MARKING CONTAINERS USING LASER LIGHT

FIELD OF THE INVENTION

The present invention relates to the use of a laser for marking containers including container body end tab portions and in particular to a process that can rapidly achieve the desired amount of marking within a predetermined time such as a manufacturing process dwell time.

BACKGROUND OF THE INVENTION

As part of a container manufacturing, or in some cases, filling or sealing operation, markings may be placed on containers for a variety of purposes including identifying contents, identifying the location or date of manufacture or use, identifying the maker of the container or container component, the style or materials for the container, providing of trade names, advertising, promotion, or the like. In some situations, promotional information in the form of sweepstakes, contests, or other valuable tokens or indicia are placed or marked on container or container components.

A variety of devices and procedures have been used for marking containers. In some cases, embossing or incising processes have been used. Embossing or incising, e.g. via stamping, can require an undesirably large inventory of tools, e.g. for different kinds of lettering or symbols, and typically requires the need to shut down an assembly line and disassemble a press whenever it is desired to change tools (such as for changing the indicia being incised or embossed or for maintenance or repair purposes). Such shutdowns are particularly troublesome when it is desirable to change the symbols with relatively high frequency, such as when markings on containers are intended as part of a contest or sweepstakes in which there are preferably a relatively large number of different possible markings or indicia (e.g. when only some of which are "grand prize" winners). Furthermore, it has been difficult to accurately control the depth of embossing or incising and, in some cases, embossing or incising that is too deep has led to leakage or container failure.

Accordingly, it would be advantageous to provide for marking of containers or components in a fashion permitting markings or indicia to be changed with relatively high frequency but without the need to stop or slow down a production line for this purpose. It would also be useful to provide for marking containers while avoiding the need for
maintaining relatively large inventories of tools or dies, and preferably while avoiding container quality problems such as may arise from markings which are excessively deep.

Another process which has been used for placing markings on containers or components thereof, has been one or more printing processes. Contact or press printing is sometimes useful for decorating or placing markings on containers where it is desired to place a relatively large number of identical markings on containers. However, contact printing is believed impractical for many components, because of their shape or position (such as container-opening tabs) or when it is desired to change indicia with relatively high frequency (e.g. for sweepstake or contest purposes) because of the need to stop a production line and partially disassemble the contact print device in order to change the configuration of the items being printed on the containers.

In some situations, components of containers may be printed using a non-contact printing process such as an inkjet process. Although inkjets can be controlled to provide relatively frequent changes in indicia, inkjet processes and equipment have been found, in the past, to be relatively unreliable such as requiring frequent maintenance and repair. Inkjet processes have also been found to be subject to unwanted placement or positioning of ink such as resulting in a mist of ink which can interfere with the printing process, cause undesired markings on cans, or cause equipment malfunction. In some cases, it has been found that up to 20% or more of potential production time has been lost to the need for cleaning up, maintenance and/or repair when an ink jet process is used. Additionally, it has been found difficult to achieve reliable adhesion of the ink to containers or container components. Furthermore, when inkjet or other printing processes are used in connection with contest sweepstakes or providing other valuable tokens or indicia, since the process provides only surface markings (without forming indentations e.g. in the container itself) there is an undesirably large potential for counterfeiting or altering the markings e.g. in an attempt to claim a contest or sweepstakes prize. Furthermore, inkjet processes have been difficult to provide at high speed while maintaining quality, so as to mark letters or other indicia without distortion or the like.

Accordingly, it would be useful to provide for high quality marking of containers or container components while avoiding the cleanup, maintenance and repair time associated with inkjet or other printing processes, preferably while permitting relatively rapid changes of indicia.
Some or all of the above difficulties in previous container marking procedures are particularly troublesome for metallic containers or container components such as a typical aluminum alloy beverage container (e.g. of the type available from Ball Corporation, Broomfield, Colorado) or tabs or other components thereof. As compared with, e.g., plastic containers or container components, metal containers can be relatively difficult to mark, at least because it can be difficult to adhere ink to metal surfaces, because of the harder surface of metal containers, higher melting or softening point, and the like. Accordingly, devices and processes used in connection with some container materials are not necessarily applicable to others. In most situations, the functions or purposes for container markings will rarely justify use of procedures which would involve expenses which are substantially in excess of those involved with current processes. Accordingly, it would be useful to provide for procedures and devices for marking containers which can be achieved economically, preferably without substantially exceeding costs or expenses associated with current container production, filling or sealing processes.

SUMMARY OF THE INVENTION

The present invention provides for using laser light for marking metal containers or container components (including, e.g., container bodies, container ends and container end tabs). In one embodiment, a laser is provided with rapid-acting beam-steering and control to permit the marking of a relatively large number of characters or symbols (such as 6 or more, preferably 9 or more) in a relatively short period of time (such as less than about 100 milliseconds, preferably less than a normal component production dwell time e.g. of about 50 milliseconds) so that the desired marking can be achieved without stopping or slowing current container or container component fabrication procedures or machines.

In one embodiment, steering of a laser beam is achieved with high rapidity by reducing the mass of one or more steering mirrors. The resultant device delivers sufficient power density to form visible marks in a metal (e.g. aluminum) container component despite the decreased beam size or aperture associated with the smaller mirror size.

Preferably, the laser light is delivered to the container region or component as a series of high intensity laser pulses. Each pulse forms a visible ablated area or dot and the pattern of dots together make up the desired symbol or image. Accordingly, to achieve
a desired number of characters or symbols in less than a predetermined period of time, the device must be capable of delivering all of the pulses needed for forming all of the desired characters within the predetermined time period. In one embodiment, a laser device is provided which delivers pulses at a frequency of at least about 12 kiloHertz (kHz) while providing sufficient power that substantially all such pulses produce the desired spot ablation of the metal container component.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a partial perspective view of a container end with a tab marked according to an embodiment of the present invention;

Fig. 2A is a block diagram depicting components of a container tab stock marking device according to an embodiment of the present invention;

Fig. 2B is a block diagram of steering components of the device of Fig. 2A;

Fig. 3 is a partial plan view of partially-marked tab stock according to an embodiment of the present invention; and

Fig. 4 is a flow chart depicting a marking process according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Although the present invention can be used in marking many portions of a container or a container component and marking many shapes and styles of containers, Fig. 1 depicts one example of a container 112 having a marking 114 positioned on a container-opening tab. In the depicted embodiment, the tab 116 includes a covered or web area 118 in the central digit-grasping portion of the tab 116 and, in this embodiment, it is a portion of the web region 118 which bears the marking 114. Fig. 1 shows a configuration in which the tab 116 has been lifted 122 to a vertical position, revealing the underside of the tab (the surface visible in Fig. 1) and, in the process, forming an opening 124 in the can end 126. In the embodiment of Fig. 1, the underside of the tab which is visible in Fig. 1 would normally be nonvisible prior to opening the container, i.e. would be maintained adjacent the outer (public) surface of the container end 126. The upper surface of the tab is not visible in the view of Fig. 1 but would be visible prior to opening
the container. Accordingly, the embodiment of Fig. 1 can be used in connection with providing prize or other promotional indicia or other situations in which it is not desired or not necessary for the markings to be visible prior to opening the container. The present invention, however, can be used in connection with marking other surfaces of the container including portions of the underside of the tab other than the central web 118, portions of the upper surface of the tab, portions of inner or outer surfaces of the container end 126 (and/or the opposite end, not shown in the partial view of Fig. 1), and/or inner or outer surfaces of the container body 128.

When it is desired to provide markings on one or more regions of a container-opening tab 116, the markings, in one embodiment, are provided in conjunction with a tab-forming process. In many situations, tab-forming is accomplished by feeding a web of tab stock into a forming machine which uses well known metalworking procedures for forming the substantially flat tab stock into the desired tab shape. Examples of some of the metalworking procedures which may be used include stamping, coining, folding, cutting and the like. For economy of expression, references below to tab-stamping or tab-forming should be understood to include these and other well known tab-forming processes and machines.

As depicted in Fig. 3, in one embodiment the tab stock 312 has a width 314 (i.e. a lateral or x dimension 316) sufficient to form three tabs from a predetermined longitudinal length 318 a,b,c,d,e of tab stock 312 (i.e. a length along the longitudinal or y dimension 322). Although the tab stock 312 may have great longitudinal length, such as a web with a length of 3000 meters or more, the tab stock 312 is dimensioned, and in particular, has a width 314 such that each predetermined length 318a, 318e contains sufficient material to form a plurality of tabs, and in the depicted embodiment, sufficient material to form three tabs. Thus, predetermined length 318a can be used to form one tab from each of three laterally arranged regions 324 a,b,c.

In one configuration, the tab stock 312 is fed or advanced to a tab-stamping device in an intermittent fashion. According to such intermittent feeding, the tab stock 312 is advanced longitudinally a distance equal to the predetermined distances 318 a,b,c,d,e during a first (or "advancement") period. Thereafter, the tab stock 312 is held substantially stationary for a second (or "dwell") period, during which stamping and other operations are performed on one or more predetermined lengths of the tab stock to form,
e.g., three tabs. Thus, each cycle of the tab-stamping device includes an advancement period and a dwell period. These cycles are repeated, one after another, preferably forming a plurality of tabs (such as three tabs) at each cycle or stroke of the stamping machine. It should be understood that the stamping machine may be configured to have a plurality of stations or operations e.g. such that, during any one cycle, a first predetermined length 318 is undergoing a first operation, such as cutting, while preceding predetermined lengths 318b, 318c, 318d, etc. are undergoing other operations such as coining, folding, and the like.

Preferably, the tab-stamping cycles are relatively short such as defining a cycle time of less than about 150 milliseconds, preferably less than about 100 milliseconds, in at least one embodiment, a cycle time of about 87 milliseconds (equivalent to a stamping machine having 700 strokes per minute). In one embodiment, the dwell time is about 2/3 of the cycle time and accordingly, the dwell time may be, e.g., about 100 milliseconds, preferably about 50 milliseconds or less.

In one embodiment, the desired markings are formed on the tab stock prior to reaching the stamping operations (i.e. the markings on any given region of the tab stock are formed before that region reaches the stamping device). By configuring the marking operation in conjunction with the stamping operation, registering or positioning the markings on the tab stock so as to reside at the desired region of a finished tab is facilitated.

In order to avoid distortion of the markings that might otherwise be associated with the relatively high acceleration curves used during the advancement phase of the cycle, it is preferred to achieve at least some, and, preferably substantially all of the marking during the stationary or dwell phase of each cycle. Accordingly, in this embodiment, the dwell time defines the length of time (or "window") available for making the desired markings on any given predetermined length 318a, 318b, 318c, 318d, 318e of the tab stock 312. According to the present invention, markings 326a-f are made on the tab stock 312 using laser light. Preferably the laser light is pulsed light, with each pulse being available for forming a single spot or dot such that a plurality of spots are positioned to, together, give the appearance or image of the desired characters or other markings. For example, for aluminum alloys typically used for tab stock, it is believed that delivering laser pulses with a power density of at least about 4 - 5 watts per mm² will suffice to
deliver sufficient power to achieve the ablation of aluminum necessary to provide visible spots. In one embodiment, the tab stock is formed of an alloy available under the trade designation 5042, e.g. from Aluminum Company of America or Kaiser Aluminium. Accordingly, the present invention is configured to achieve delivery of laser pulses, each with sufficient power to make a visible dot, sufficient in number to form the desired number and size of characters (with the desired quality or resolution) within the dwell time available for such marking considering any pulse non-application or blanking time e.g. used for accommodating relatively larger mirror movements such as movements between characters or between sets of characters.

In one embodiment, the device delivers pulses at a rate of about 12 kHz and produces at least 6, preferably at least nine characters of the desired quality with a character or letter height 332 of about 0.125 inches (about 3 mm) over a lateral range 334 of about 1 inch (about 2.5 cm).

Thus, in addition to providing a sufficient number of dots within the time window to form the desired size and quality of characters, the present invention is also configured to position those dots, as needed, across an area of tab stock having a lateral extent 334 of about 1 inch and a longitudinal extent 332 of about 0.125 inches, i.e., over an area of about 0.125 square inches.

Fig. 2A depicts one embodiment of an apparatus which can be used for making such markings within a time window of less than about 100 milliseconds, preferably less than about 50 milliseconds. A portion 212 of the device shown in Fig. 2 is used for generating a pulsed laser beam 214 which is then steered by a portion of the device 216 to output a laser beam 218 along a path so as to position pulses of the beam for forming markings 326 as described above. The laser includes a light source/pumping component 222 positioned between mirrors 224a,b to define a laser cavity. Preferably a safety valve 226 interrupts light output e.g. in the event of failure or container breach. A chopper 228 provides the light in a pulsed or intermittent form. In one embodiment, a Nd:YAG laser provides an output of about 40 to 50 watts (applied power), with about 80% of such power being delivered to the tab stock target. Preferably the laser is configured to output laser light pulses which are relatively stable in the sense that there is relatively little variation in power from one pulse to the next and, preferably substantially all pulses have sufficient power to vaporize or ablate the metal target sufficiently to produce a visible spot.
or mark. Laser devices that can be used in this regard include those available from Lee Laser of Orlando, Florida. A cooling unit 232 is coupled 234 to the laser generation region 212 to maintain the proper operating temperature of the laser generating unit. A computer 236 which may be, e.g., a workstation-type computer preferably having a Pentium® or Pentium II® processor, outputs control signals 238a, 238b for controlling an x-steering galvanometer 242a and a y-steering galvanometer 242b, respectively, as described more fully below. One example of galvanometers that can be used for this purpose include galvanometers available Cambridge Technology, Inc. of Watertown, MA. The tab stock 312 is held at the desired distance from the laser and preferably in a vibration-free manner such as coupling guidance/advancement components 244 to a relatively vibration-free pedestal 246 such as a concrete-filled or other high-mass pedestal, vibration-isolation mounting or the like. In this way, a portion of the tab stock 312 can be held stationary during the dwell period for marking. As described above, during the advancement period of each cycle, the tab stock is advanced, using, e.g., drive rollers or the like, toward a stamping unit 248 as it is withdrawn from a tab stock coil 252 or similar source.

In the embodiment of Fig. 2B, the first steering galvanometer (e.g., a y-steering galvanometer 242a) is coupled to a movable, e.g., pivotable, mirror 254. Galvanometer 242a is coupled to the mirror 254 so that the mirror 254 is pivoted 256 about a pivot axis 258 (perpendicular to the plane of the paper in the view of Fig. 2B) in such a manner that the mirror 254, receiving the laser pulses, will reflect the pulses (to provide first reflected laser light pulses) at an angle whose magnitude depends on the pivoted position of the mirror 254. The first reflected laser light pulses are received by the second mirror 260 which is coupled to a second galvanometer 242b (e.g., an x-steering galvanometer 242b) so as to permit selectable pivoting about a second pivot axis 262 (parallel to the plane of the paper in the view of Fig. 2B) for reflecting the pulsed laser beam (to provide second reflected laser light pulses) toward the desired region of the tab stock 312. In the view of Fig. 2B, the pivot position of the y-steering mirror 254 determines the position of the beam, (with respect to the tab stock 312) in a longitudinal or y direction 322 while pivoting of the x-steering mirror 260 about the second axis 262 determines the position of the laser pulses (with respect to the tab stock 312) in the lateral or x direction 316.
In order to position the laser pulses as needed across the entire lateral extent 334 and longitudinal extent 332 needed to form a set of characters 326a, 326b, 326c as desired, within the dwell period, such as within about 50 milliseconds, the mirrors 254, 260, and particularly the x-steering mirror 260 (responsible for positioning through the relatively larger x range) must be moved quite rapidly. It is believed that previous steering devices have been incapable of, at a reasonable cost, providing such rapid mirror positioning. According to one embodiment of the present invention, rapid mirror positioning is facilitated by providing relatively low mass mirrors. The mirrors, in one embodiment, are provided in a lightweight configuration primarily by providing a relatively small surface or reflective area of the mirrors. In one embodiment, the mirrors have a nominal size or diameter of about 5 mm, such as being a square or rectangle with at least one edge having a length less than or equal to about 5 mm. The low mass mirrors provide a low moment of inertia to assist in rapid mirror movement. Preferably, each of the mirrors presents a moment of inertia to the respective galvanometers of less than about 0.2 g/cm², preferably less than about 0.1 g/cm², and more preferably less than or equal to about 0.08 g/cm².

Because the reflective surface area of the steering mirrors is reduced, the beam size or aperture of the laser light which can be effectively delivered to the tab stock is relatively small. In one embodiment the diameter of the beam upon reaching the tab stock 312 is less than about 5 mm in diameter, preferably less than about 3 mm in diameter.

In order to position the laser pulses, which are preferably being delivered at a rate of about 12kHz, to the desired position, it is necessary to provide x and y control signals 238a, 238b which control the galvanometers 242a, 242b also at a rate of about 12 kHz. Preferably the computer 236 is configured (programmed) to output control signals to achieve the desired positioning at this rate as well as being controlled to retrieve, create or select the desired characters or indicia 326a-326d as needed for the particular application (e.g. random or pseudo-random indicia for certain contest or promotion purposes) and to make the character or indicia selections rapidly enough to provide a new set of selections during each cycle of the stamping device 248. Although it is at least theoretically possible to increase the lateral range 334 or longitudinal range 332 of the beam position by increasing the distance e.g. of the tab stock 312 from one or both mirrors, such increase in distance also increases the effect of beam divergence and, thus
affects power density delivered at the tab stock. For example, by decreasing divergence by 50% (e.g. by positioning the tab stock closer), spot size at the tab stock is reduced to half the spot diameter, thus halving the power delivered, but, because area is proportional to the square of radius, doubling the power density. However, increasing power density by providing for closer positioning of the tab stock requires more rapid mirror movements to maintain the same marking speed (for a given range of character placement). Thus, in one embodiment, the tab stock 312 is positioned such that the spot size of the laser pulses as delivered to this tab stock has a diameter of about 3 mm and a power density of about 4 to 5 watts per mm².

In operation, as depicted in Fig. 4, during one portion of the stamping cycle, the computer 236 selects the next nine characters which are to be marked on the tab stock 412. When the dwell period of the stamping cycle is reached, the tab stock is held stationary 414 and the laser light output is activated while the computer generates control signals to place laser pulses at the desired respective x and y positions to render the desired visible markings 416. After the desired markings have been made, the laser pulses are interrupted 418 and, during the advancement portion of the cycle, the tab stock is advanced a predetermined longitudinal increment toward the stamping machine. Thereafter, the cycle is repeated 424 as needed to provide the desired number of marked tabs or until the tab stock is depleted.

In light of the information provided herein, a number of advantages can be seen. The present invention is able to achieve markings of containers or container components at a relatively rapid rate, and, preferably, sufficiently rapidly to keep pace with other container or container component forming processes so that the marking can be achieved without slowing or interfering with such processes. The present invention makes it practical and feasible to provide markings which can be readily changed or customized, including markings which are different for each container or container component in a sequence of containers or components. The present invention can achieve such rapid markings substantially without distortion or deformation of the markings and without weakening, piercing or damaging the container or container component. The present invention makes it practical and feasible to provide six or more, preferably nine or more, legible, 0.125 inches tall or larger characters distributed or positioned across the width of tab stock in connection with a tab-forming process during a relatively short time period.
such as a tab-forming dwell time, preferably within about 100 milliseconds and more preferably within about 50 milliseconds. The present invention makes it possible to steer the positioning of laser pulses having sufficient power to mark or ablate metal across a lateral extent of about one inch and a longitudinal extent of about .125 inches within a time period of less than 100 milliseconds, preferably less than about 50 milliseconds. The present invention provides for container or container component marking which is less maintenance-intensive or more reliable than other marking procedures and devices and permits changes to markings without the need to stop or slow a container or container component fabrication device or process. The present invention facilitates implementation of contests, sweepstakes or other promotions which involve providing indicia on components or containers preferably on an undersurface of tabs coupled to containers, preferably so as to be non-visible prior to opening a container, e.g. awarding at least a first prize (indicated one of such indicia) to a customer upon verifying presence of the prize indicium e.g. on a tab. Because the characters, indicia, symbols and the like to be marked can be designed/created entirely (potentially) in software (i.e. without the need for ordering or creating dies or the like) the lead time involved between design of a promotion, game, or the like, taking of an order or other initiation event, and the time in which production can begin is substantially shortened compared to hardware-dependent procedures such as incising or embossing.

A number of variations and modifications of the invention can be used. Although the present invention provides for a cost-effective procedure and device which may include a laser that delivers sufficiently-powered pulses at a rate of about 12 kHz, it is also possible to use the present invention in connection with other lasers, including lasers that have a higher pulse rate or higher power, preferably with each (or substantially each) pulse delivering sufficient power to ablate or vaporize aluminum or other metal such as to provide a visible mark. Although a galvanometer-based beam steering procedure and device has been described, other steering may be used including acoustico-optical steering in place of or in addition to galvanometer based steering, which offers the potential for steering which is at least partially independent of the mass of mirrors or other components and, thus, potentially more rapid. Although a computer has been described in connection with providing control or control signals for laser steering, other devices and procedures for providing control signals can be used including digital signal processors (DSP) which
are believed to offer the potential for generating control signals at a relatively high rate, at least partially because of the elimination or reduction of rate dependency based on bus speed or the like.

Although embodiments have been described in regard to marking of stock used for forming tabs, the present invention can be used in connection with marking other portions of metal containers such as ends or end caps, body or sidewall portions, container bottom portions and the like.

Although a particular container end shape as depicted in Fig. 1, the present invention can be used in connection with a wide variety of metal containers including beverage containers, food containers, aerosol containers and the like. Although the present invention has been described in connection with marking of aluminum container or container components, the present invention can also be used in connection with marking other types of metal containers such as steel containers. Although the present invention has been described in connection with ablating or vaporizing portions of the metal of a metal container, it is also possible to use the present invention in connection with ablating or vaporizing some or all portions of coatings placed on a metal container, so as to provide markings that are visible by way of a contrasting color or texture. For example, it is possible to provide a metal container or container component which has been coated with a colored coating (such as by printing or painting) and to use the present invention to selectively remove or vaporize portions of such coatings to reveal at least some of the metal portion (or another coating) underneath. In this situation, it may be possible to use a lower-powered laser such as a CO$_2$ laser.

Although the embodiment of Fig. 1 depicts a tab having a web in the finger grasp region, it is also possible to use the present invention in connection with a tab in which a finger hole is provided in the finger grasp region and in which markings are positioned on other portions of the tab.

Although the present invention has been described in connection with certain markings which will typically be viewed or visible to consumers such as promotional or contest marking, advertising, logos, etc., it is also possible to use the present invention in connection with markings which will typically be concealed such as being concealed under a fold of the tab or other container component. As one example, concealed markings may be used for security or verification purposes, e.g. to verify that a prize-indicating marking
is genuine and not counterfeit. Although the present invention has been described in connection with providing markings during a stationary or dwell time, it is also possible to use the present invention to make some or all markings during movement of the tab stock or other target substrate, particularly when the markings are security or internal markings or otherwise will not normally be seen or used by the ordinary consumer (such that a certain amount of distortion may be acceptable).

Although the present invention has been described in connection with beam steering which utilizes two separate mirrors, it is possible to provide for beam steering which uses a single mirror (e.g. which is pivotal with respect to two independently controllable axes, and/or which is deflectable or deformable). Although the present invention has been described in connection with a process which uses a single laser for writing all the desired markings during any given cycle (believed to be particularly useful when it is desired to provide markings in a low-cost manner), it is nevertheless also possible to use the present invention in connection with a system having two or more lasers such as for writing different characters or different portions of characters so as to achieve a higher number of characters in a given amount of time. Although the present invention has been described in connection with a procedure providing at least six legible characters, preferably at least nine legible characters per cycle, the present invention can also be used in connection with devices or procedures which produce more or fewer characters.

In general, it is possible to use some aspects of the invention without using others. For example, it is possible to provide for rapid marking of characters or other indicia without providing for randomly or otherwise changing the indicia with each cycle. For example, in view of the ability to rapidly change or modify the nature of the indicia or markings provided, the present invention can be used to provide markings which indicate time and/or date of manufacture, filling, sealing and the like. Although the present invention has been described in connection with making markings e.g. for promotional, advertising, identification or similar purposes, it is also possible to use the present invention in connection with making lines, grooves, or other formations which may be at least partially functional or structural such as by using the present invention to create opening-defining scores in container ends and the like. Although the present invention has been described in connection with placing markings on tab stock before the tab stock is
formed, cut or attached to containers or container ends, it is possible to provide the steps in other orders such as marking tabs e.g. after folding but before cutting, after cutting but before attachment to containers, or after attachment to containers.

The present invention, in various embodiments, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. The present invention, in various embodiments, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments hereof, including in the absence of such items as may have been used in previous devices or processes, e.g. for achieving ease and reducing cost of implementation.

The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. Although the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g. as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended the appended claims be construed to include alternative embodiments to the extent permitted.
What is claimed is:

1. A method for making metallic containers having selectable patterns thereon, comprising:
 providing a container body and a container end;
 controlling laser light so as to ablate desired regions of at least one of a component of said container body and a component of said container end wherein said selectable patterns are placed on said desired regions.

2. A method as claimed in claim 1 wherein said desired regions are positioned on said component of said container end and wherein said component of said container end is a container-opening tab.

3. A method as claimed in claim 2 further comprising attaching said container-opening tab to said container end after said patterns are placed on said desired regions.

4. A method as claimed in claim 2 wherein said tab is formed using a process which defines a dwell time during which a workpiece, containing a region which is to be formed into said tab, is substantially stationary and wherein all said patterns for at least one tab are produced by said laser light during said dwell time.

5. A method as claimed in claim 2 wherein said tab is formed using a process which defines a dwell time during which a workpiece, containing a region which is to be formed into said tab, is substantially stationary, wherein said workpiece has a width, wherein a first set of N tabs are formed from said width of said workpiece, N being greater than one, and wherein all said patterns for said first set of N tabs are produced by said laser light during said dwell time.

6. A method as claimed in claim 5 wherein N is at least 3.

7. A method as claimed in claim 5 further comprising controlling said laser light to produce all said patterns for a second set of N tabs within a period less than about 150 milliseconds after providing patterns on said first set of N tabs.

8. A method as claimed in claim 1 wherein said step of controlling said laser light comprises using a computer to output control signals for controlling a path of said laser light.
9. A method as claimed in claim 1 wherein said step of controlling said laser light comprises using a digital signal processor to output control signals for controlling a path of said laser light.

10. A method as claimed in claim 1 wherein said patterns include at least a first set of M characters and wherein said M characters are produced by said laser light in a period less than about 100 milliseconds.

11. A method as claimed in claim 10 wherein at least one of said characters is at least 0.125 inches in height.

12. A method as claimed in claim 10 wherein step of controlling comprises controlling said laser light such that said M characters can be arbitrarily selected.

13. A method as claimed in claim 10 further comprising repeating said step of controlling said laser light to produce at least a second set of M characters wherein said second set of M characters can be arbitrarily selected to be different from said first set of M characters.

14. A method as claimed in claim 13 wherein the period of time between producing said first set of M characters and producing said second set of M characters is less than about 150 milliseconds.

15. A method as claimed in claim 1 wherein said patterns define a lateral range of at least about one inch and wherein said patterns are produced by said laser light in a period of about 50 milliseconds.

16. A method as claimed in claim 1 wherein said one of said container body component and said container end component is formed from a metal and wherein said laser light delivers at least enough power to ablate a sufficient amount of said metal to incise said metal so as to produce visible indicia.

17. A method as claimed in claim 16 wherein said metal comprises an aluminum alloy.

18. Apparatus for marking a portion of an aluminum container, comprising: means for outputting a laser beam, wherein said means for outputting defines a first aperture; means for moving at least said portion of said aluminum container past a marking station; and
means for steering said laser beam in the region of said marking station to ablate aluminum so as to form at least nine characters on said portion of said aluminum container in less than about 100 milliseconds.

19. Apparatus as claimed in claim 18 wherein said aperture has a diameter so as to produce a beam diameter at the target of about 3mm

20. Apparatus as claimed in claim 18 wherein said means for steering comprises at least a first movable mirror, said mirror having a nominal dimension less than about 5 mm, said first mirror being movable through an angle at least sufficient to position said characters across a lateral range of at least one inch.

21. Apparatus as claimed in claim 18 wherein said means for steering comprises at least a first movable mirror and further comprising means for controlling positioning of said mirror to a sequential plurality of positions wherein at least two of said sequential plurality of positions occur less than about 0.1 milliseconds apart.

22. Apparatus as claimed in claim 18 wherein said means for steering comprises an acoustico-optical steering device.

23. Apparatus as claimed in claim 18 wherein said means for outputting a laser beam includes means for outputting said laser beam in a pulsed form having a pulse frequency of at least about 12 kHz.

24. Apparatus for forming markings on a portion of an aluminum container, comprising:

 a laser system which outputs laser light;
 a light path deflection system configured to receive said laser light and position said laser light along a path, toward said portion of said aluminum container at a marking station;
 a drive which moves said portion of an aluminum container away from said marking station, at least after said laser light has marked said portion of said aluminum container.

25. Apparatus as claimed in claim 24 wherein said laser system outputs said laser light as a series of pulses.

26. Apparatus as claimed in claim 24 wherein said laser light, at said marking station, provides at least enough power to ablate sufficient aluminum to produce a visible mark on said portion of said container.
27. Apparatus, as claimed in claim 24 wherein said light path deflection system comprises a mirror for reflecting laser light toward said marking station.

28. Apparatus, as claimed in claim 24, wherein said laser light, at said marking station, has a diameter of about 3 mm.

29. Apparatus, as claimed in claim 24 wherein said light path deflection system comprises:

 a first mirror located to receive said laser light;

 a galvanometer coupled to said first mirror to position said first mirror, in response to a first control signal, to reflect said laser light along a first reflected path, toward a second mirror;

 a galvanometer coupled to said second mirror to position said second mirror, in response to a second control signal, to reflect said laser light along a second reflected path, toward said marking station.

30. Apparatus as claimed in claim 29 wherein each of said first mirror and said second mirror has a nominal dimension of no more than about 5 mm.

31. Apparatus as claimed in claim 24 wherein said portion of said container is a container-opening tab.

32. Apparatus as claimed in claim 24 further comprising means for forming tabs which defines a dwell time during which tab stock, containing regions which are to be formed into said tabs, are substantially stationary and wherein all said markings for at least one tab are produced by said laser during said dwell time.

33. Apparatus as claimed in claim 24 further comprising means for forming tabs which defines a dwell time during which tab stock, containing regions which are to be formed into said tabs, are substantially stationary, wherein said tab stock has a width, wherein a first set of N tabs are formed from said width of said workpiece, N being greater than one, and wherein all said markings for said first set of N tabs are produced by said laser during said dwell time.

34. Apparatus as claimed in claim 33 wherein N is at least 3.

35. Apparatus as claimed in claim 34 further comprising means for controlling the path of said laser light to produce all said markings for a second set of N tabs within a period less than about 150 milliseconds after producing markings for said first set of N tabs.
36. Apparatus as claimed in claim 24 wherein said markings include at least a first set of M characters and wherein said M characters are produced by said laser in a period of about 100 milliseconds.

37. Apparatus as claimed in claim 36 wherein at least one of said characters is at least 0.125 inches in height.

38. Apparatus as claimed in claim 36 wherein said light deflection system comprises means for controlling said laser such that said M characters can be arbitrarily selected.

39. Apparatus as claimed in claim 36 further comprising means for controlling said laser light path to produce at least a second set of M characters wherein said second set of M characters can be arbitrarily selected to be different from said first set of M characters.

40. Apparatus as claimed in claim 39 wherein the period of time between producing said first set of M characters and producing said second set of M characters is less than about 150 milliseconds.

41. Apparatus as claimed in claim 24 wherein said markings define a lateral range of at least about one inch and wherein said markings are produced by said laser in a period of about 50 milliseconds.

42. Apparatus as claimed in claim 31 wherein said tab is configured for grasping at least a first region by a human digit, and wherein said first region is at least partially covered.

43. Apparatus as claimed in claim 42 wherein at least some of said markings are positioned on said first region.

44. Apparatus as claimed in claim 31 wherein said tab is configured with an underside which is normally non-visible prior to opening said container and wherein at least some said markings are positioned to be located on said underside.

45. Apparatus as claimed in claim 24 wherein said portion of said container is coated and wherein providing said markings comprises ablating selected portions of said coating to provide visible markings.

46. Apparatus for forming markings on aluminum tabs, said tabs configured for coupling to containers for opening said containers, the apparatus comprising:
tab-forming means for receiving an elongated strip of aluminum tab stock and
outputting formed tabs, said tab stock having a width and a longitudinal axis, said width
being sufficient for forming sets of three tabs from predetermined lengths of said tab
stock, said tab-forming means including means for holding said tab stock stationary during
a dwell period, during which period at least one tab-forming process is performed on at
least a first portion of said tab stock, said tab-forming means also including means for
advancing said tab stock by an amount equal to said predetermined length, wherein three
tabs are output during each of a plurality of cycles of said tab-forming means, each cycle
of said tab-forming means including operation of said means for holding and said means
for advancing;

a computer programmed to output at least first and second control signals;

a laser system which outputs a series of pulses of laser light at a frequency of at
least about 12 kHz;

a first mirror located to receive said laser light;

a first galvanometer coupled to said first mirror to position said first mirror, in
response to said first control signal, to reflect said laser light along a first reflected path,
toward a second mirror, wherein said first mirror presents a moment of inertia to said first
galvanometer of less than about 0.1 g / cm²;

a second galvanometer coupled to said second mirror to position said second
mirror, in response to said second control signal, to reflect said laser light along a second
reflected path, toward a second portion of said tab stock, spaced from said first portion
wherein said second mirror presents a moment of inertia to said second galvanometer of
less than about 0.1 g / cm²;

wherein said laser light, at said second portion, has a diameter of about 3 mm, and

wherein each said pulse of said laser light, provides at least enough power, at said second
portion, to ablate sufficient aluminum to produce a visible mark;

wherein each of said first mirror and said second mirror has a nominal dimension
of less than about 5 mm;

wherein all said markings for said first set of three tabs are produced by said laser
during said dwell time, said dwell time being less than about 100 milliseconds wherein said
markings include at least a first set of 9 characters at least 0.125 inches in height, wherein
said 9 characters are positioned across the width of said tab stock to define a lateral range of at least about one inch, and wherein said 9 characters can be arbitrarily selected further comprising means for controlling movement of said tab stock and the path of said laser light to produce a second set of 9 characters for a second set of 3 tabs within a period less than about 150 milliseconds after producing said first set of 9 characters for said first set of 3 tabs, wherein said second set of 9 characters can be arbitrarily selected to be different from said first set of 9 characters.

47. A process for promoting sales to customers, comprising:

using a laser to place indicia on a plurality of container-opening tabs, including placing at least a first prize indicium on an under surface of at least a first of said plurality of tabs;

coupling said plurality of tabs with respect to a plurality of containers, wherein at least said first tab is coupled so that said under side is non-visible prior to opening said container; and

awarding said prize to a customer upon verifying the presence of said prize indicium on said first tab.
Fig 4

1. Select N9 characters to mark

2. Hold tab stock stationary

3. Actuate laser and signal control of linear motion to place laser pulses at desired X and Y positions

4. Interrupt laser pulses

5. Advancing tab stock a longitudinal increment toward tab stripping machine
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- **IPC(6):** B23K 26/08
- **US CL:** 219/121.68, 121.69

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

- **Minimum documentation searched (classification system followed by classification symbols):**
 - U.S.: 219/121.68, 121.69, 121.61, 121.74, 121.8, 121.82

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- **Electronic data base consulted during the international search (name of data base and, where practicable, search terms used):**

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4,635,545 A (KUBACKI ET AL) 13 January 1987 (13/01/87), col. 3, lines 50-62.</td>
<td>1-3, 8-17, 24, 26, 27, 31, 42-45</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,653,900 A (CLEMENT ET AL) 05 August 1997 (05/08/97), Figure 3, entire document.</td>
<td>18-31, 36-45</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,235,454 A (IWASAKI) 10 August 1993 (10/08/93), col. 6, lines 20-25.</td>
<td>20, 30</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,719,372 A (TOGARI ET AL) 17 February 1998 (17/02/98), col. 5, lines 40-45.</td>
<td>23</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 - **A** document defining the general state of the art which is not considered to be of particular relevance
 - **E** earlier document published on or after the international filing date
 - **L** document which may throw double on priority claim(s) or which is cited to establish the publication date of another invention or other special reason (as specified)
 - **O** document referring to an oral disclosure, use, exhibition or other mean
 - **P** document published prior to the international filing date but later than the priority date claimed

- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **K** document member of the same patent family

Date of the actual completion of the international search

01 SEPTEMBER 1999

Date of mailing of the international search report

26 OCT 1999

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

GREGORY MILLS

Telephone No. (703) 308-0651

Form PCT/ISA/210 (second sheet)(July 1992)*
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [x] Claims Nos.: 47
 because they relate to subject matter not required to be searched by this Authority, namely:

 Claim 47 is directed to a method of doing business and is thus subject matter which the International Searching Authority is not required to search under Article 17(2)(a)(ii) and Rule 39(iii).

2. Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest.

☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))/July 1992)•