

US010588554B2

(12) United States Patent

Poeze et al.

(54) MULTI-STREAM DATA COLLECTION SYSTEM FOR NONINVASIVE MEASUREMENT OF BLOOD CONSTITUENTS

(71) Applicant: Masimo Corporation, Irvine, CA (US)

(72) Inventors: Jeroen Poeze, Rancho Santa Margarita,
CA (US); Marcelo Lamego, Cupertino,
CA (US); Sean Merritt, Lake Forest,
CA (US); Cristiano Dalvi, Lake Forest,
CA (US); Hung Vo, Fountain Valley,
CA (US); Johannes Bruinsma,
Opeinde (NL); Ferdyan Lesmana,
Irvine, CA (US); Massi Joe E. Kiani,
Laguna Niguel, CA (US); Greg Olsen,
Lake Forest, CA (US)

(73) Assignee: Masimo Corporation, Irvine, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 16/544,713

(22) Filed: Aug. 19, 2019

(65) Prior Publication Data

US 2019/0365295 A1 Dec. 5, 2019

Related U.S. Application Data

- (63) Continuation of application No. 16/534,949, filed on Aug. 7, 2019, which is a continuation of application (Continued)
- (51) Int. Cl.

 A61B 5/1455 (2006.01)

 A61B 5/145 (2006.01)

 A61B 5/00 (2006.01)

(10) Patent No.: US 10,588,554 B2

(45) **Date of Patent:** *Mar. 17, 2020

(52) U.S. Cl. CPC *A61B 5/1455* (2013.01); *A61B 5/14532*

(2013.01); **A61B** 5/14546 (2013.01);

(Continued)

(58) Field of Classification Search

CPC A61B 5/1455; A61B 5/14551; A61B 5/14552; A61B 5/14532; A61B 5/6829;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

(Continued)

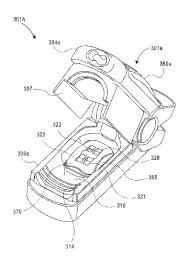
FOREIGN PATENT DOCUMENTS

CN 1270793 A 10/2000 CN 101484065 B 11/2011 (Continued)

OTHER PUBLICATIONS

US 8,845,543 B2, 09/2014, Diab et al. (withdrawn)

(Continued)


Primary Examiner — Eric F Winakur Assistant Examiner — Chu Chuan Liu

(74) Attorney, Agent, or Firm — Knobbe Martens Olson

& Bear LLP

(57) ABSTRACT

The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially (Continued)

linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.

28 Claims, 65 Drawing Sheets

Related U.S. Application Data

No. 16/409,515, filed on May 10, 2019, now Pat. No. 10,376,191, which is a continuation of application No. 16/261,326, filed on Jan. 29, 2019, now Pat. No. 10,292,628, which is a continuation of application No. 16/212,537, filed on Dec. 6, 2018, now Pat. No. 10,258,266, which is a continuation of application No. 14/981,290, filed on Dec. 28, 2015, now Pat. No. 10,335,068, which is a continuation of application No. 12/829,352, filed on Jul. 1, 2010, now Pat. No. 9,277,880, which is a continuation of application No. 12/534,827, filed on Aug. 3, 2009, now abandoned, said application No. 12/829,352 is a continuation-inpart of application No. 12/497,528, filed on Jul. 2, 2009, now Pat. No. 8,577,431, and a continuationin-part of application No. 29/323,408, filed on Aug. 25, 2008, now Pat. No. Des. 606,659, and a continuation-in-part of application No. 29/323,409, filed on Aug. 25, 2008, now Pat. No. Des. 621,516, said application No. 12/829,352 is a continuation-in-part of application No. 12/497,523, filed on Jul. 2, 2009, now Pat. No. 8,437,825, and a continuation-in-part of application No. 29/323,408, filed on Aug. 25, 2008, now Pat. No. Des. 606,659, and a continuation-in-part of application No. 29/323,409, filed on Aug. 25, 2008, now Pat. No. Des. 621,516.

(60) Provisional application No. 61/086,060, filed on Aug. 4, 2008, provisional application No. 61/086,108, filed on Aug. 4, 2008, provisional application No. 61/086,063, filed on Aug. 4, 2008, provisional application No. 61/086,057, filed on Aug. 4, 2008, provisional application No. 61/091,732, filed on Aug. 25, 2008, provisional application No. 61/078,228, filed on Jul. 3, 2008, provisional application No. 61/078,207, filed on Jul. 3, 2008.

(52) U.S. Cl.

CPC A61B 5/14552 (2013.01); A61B 5/6816 (2013.01); A61B 5/6826 (2013.01); A61B 5/6829 (2013.01); A61B 5/6838 (2013.01); A61B 5/6843 (2013.01); A61B 2562/0233 (2013.01); A61B 2562/04 (2013.01); A61B 2562/046 (2013.01); A61B 2562/146 (2013.01)

(58) Field of Classification Search

CPC ... A61B 5/6838; A61B 5/6816; A61B 5/6843; A61B 5/14546; A61B 5/6826; A61B 2562/00; A61B 2562/04; A61B 2562/046; A61B 2562/06; A61B 2562/063; A61B 2562/066

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,258,719 A 3/1981 Lewyn 4,267,844 A 5/1981 Yamanishi

3/1984 Stitt 4,438,338 A 4,444,471 A 4/1984 Ford et al. 4,653,498 A 3/1987 New, Jr. et al. 4,655,225 A 4/1987 Dahne et al. 4,684,245 A 8/1987 Goldring 4.709.413 A 11/1987 Forrest 4,755,676 A 7/1988 Gaalema et al. 4.781.195 A 11/1988 Martin 2/1989 4,805,623 A Jöbsis 4,825,872 A 5/1989 Tan et al. 4,880,304 A 11/1989 Jaeb et al. 4,960,128 A 10/1990 Gordon et al. 4,964,408 A 10/1990 Hink et al. 5,028,787 A 7/1991 Rosenthal et al. 5,035,243 A 7/1991 Muz 8/1991 5,041,187 A Hink et al. 8/1991 5.043.820 A Wyles et al. 5,069,213 A 12/1991 Polczynski 5,069,214 A 12/1991 Samaras et al. 5,077,476 A 12/1991 Rosenthal 2/1992 5,086,229 A Rosenthal et al. 5,099,842 A 3/1992 Mannheimer et al. D326,715 S 6/1992 Schmidt 5.122,925 A 6/1992 Inpyn 7/1992 5,131,391 Sakai et al. 8/1992 5,137,023 Mendelson et al. 5,159,929 A 11/1992 McMillen et al. 5,163,438 A 11/1992 Gordon et al. 5,222,295 6/1993 Dorris, Jr. 5,222,495 A 6/1993 Clarke et al. 5,222,496 A 6/1993 Clarke et al. 5.228.449 A 7/1993 Christ et al. 5,249,576 A 10/1993 Goldberger et al. 5,250,342 A 10/1993 Lang 5,278,627 A 1/1994 Aoyagi et al. 5,297,548 A 3/1994 Pologe 5,319,355 A 6/1994 Russek 5,333,616 A 8/1994 Mills et al. 5,337,744 A 8/1994 Branigan 5.337.745 A 8/1994 Benaron 8/1994 5,341,805 A Stavridi et al. 10/1994 5.358.519 A Grandiean 5,362,966 A 11/1994 Rosenthal et al. D353,195 S 12/1994 Savage et al. D353,196 S 12/1994 Savage et al. 5,377,676 A 1/1995 Vari et al. D356,870 S 3/1995 Ivers et al. D359,546 S 6/1995 Savage et al. 5,427,093 A 6/1995 Ogawa et al. 7/1995 5,431,170 A Mathews D361,840 S 8/1995 Savage et al. 5,437,275 A 8/1995 Amundsen et al. 5,441,054 A 8/1995 Tsuchiya D362,063 S 9/1995 Savage et al 5,452,717 A 9/1995 Branigan et al. D363,120 S 10/1995 Savage et al. 5,456,252 A 10/1995 Vari et al. 10/1995 5.462.051 A Oka et al. 1/1996 5,479,934 A Imran 5,482,034 A 1/1996 Lewis et al. 5,482,036 A 1/1996 Diab et al. 5,490,505 A 2/1996 Diab et al. 5,490,506 A 2/1996 Takatani et al 5,490,523 A 2/1996 Isaacson et al. 5,494,043 A 2/1996 O'Sullivan et al. 3/1996 5.497.771 Rosenheimer 5,511,546 A 4/1996 Hon 7/1996 5,533,511 A Kaspari et al. 5,534,851 A 7/1996 Russek 5,551,422 A 9/1996 Simonsen et al. 5,553,615 A 9/1996 Carim et al. 5,553,616 A 9/1996 Ham et al. 10/1996 Savage et al. 5,561,275 A 5,562,002 A 10/1996 Lalin 5,564,429 A 10/1996 Bornn et al. 5,584,296 A 12/1996 Cui et al. 5,590,649 A 1/1997 Caro et al. 2/1997 Wong et al. 5,601,079 A 5,602,924 A 2/1997 Durand et al.

D378.414 S 3 1997 Allen et al. 6.232.639 Bl. 52001 Diab et al. 6.232.639 Bl. 52001 Diab et al. 6.232.639 Bl. 52001 Diab et al. 6.232.6382 Bl. 52001 Diab et al. 6.242.638 Bl. 52001 Diab et al. 6.242.638 Bl. 62001 Macklem et al. 6.242.638 Bl. 62001 Diab et al. 6.263.6222 Bl. 72001 Diab et al. 6.263.6222 Bl. 72001 Diab et al. 6.263.6223 Bl. 72001 Diab et al. 6.263.6223 Bl. 72001 Diab et al. 6.263.623 Bl. 72001 Diab et al. 6.263.623 Bl. 72001 Diab et al. 6.263.623 Bl. 72001 Diab et al. 6.263.638 Bl. 72001 Diab et al. 6.278.638 Bl. 72001 Dia	(56)		Referen	ces Cited	6,206,830 6,223,063			Diab et al. Chaiken et al.
D378.414 S		U	S. PATENT	DOCUMENTS	6,229,856	B1	5/2001	Diab et al.
Section Sect								
September Sept								
Soigney Soig								
5.638,318 A			5/1997	Diab et al.				
5.645,440								
Sefficial Seff								
					6,278,522	B1		
D390.666 S 2.1908 Lagerlof 6.285.896 Bl 9.2001 Tobler et al.								
5,729,203 A 3/1998 Oka et al. 6,297,969 Bl 10,2001 Mortabed D393,830 S 4/1998 Tobler et al. 6,301,493 Bl 10,2001 War et al. 5,743,262 A 4/1998 Lepper, Jr. et al. 6,301,493 Bl 10,2001 War et al. 5,759,914 A 5/1998 Delonzor et al. 6,321,100 Bl 11,2001 Philips S,759,914 A 5/1998 Delonzor et al. 6,321,100 Bl 11,2001 Philips Dabe et al. 6,321,100 Bl 11,2001 Philips Dabe et al. 6,321,100 Bl 11,2001 Philips Dabe et al. 6,331,405 Bl 12,2001 Philips Dabe et al. 6,331,405 Bl 12,2001 Philips Dabe et al. 6,331,405 Bl 12,2001 Philips Dabe et al. 6,343,405 Bl 12,2002 Philips Dabe et al. 6,343,405 Bl 12,2002 Philips Dabe et al. 6,354,504 Bl 12,2002 Philips Dabe et al. 6,364,504 Bl 12,2002 Philips Dabe et al. 6,364,504 Bl 12,2002 Philips Dabe et al. 6,360,113 Bl 12,2002 Philips S,807,347 A 9,1998 Merchant et al. 6,360,115 Bl 3,2002 Dabe et al. 8,380,131 A 11/1998 Caro et al. 6,360,115 Bl 3,2002 Philips S,820,858 A 10/1998 Diab et al. 945,580,193 Philips Dabe et al. 6,360,115 Bl 3,2002 Philips S,830,131 A 11/1998 Caro et al. 6,360,115 Bl 3,2002 Philips S,830,131 A 11/1998 Caro et al. 6,360,115 Bl 3,2002 Philips Dabe et al. 6,360,360 Bl 3,2002 Philips Da								
5,743,262 A								
5,750,927 A								
5,752,914 A 5,1998 Daib et al. 5,760,910 A 6,1998 Lepper, Jr. et al. 5,760,910 A 6,1998 Lepper, Jr. et al. 5,760,913 A 6,1998 Kondo et al. 5,760,785 A 6,1998 Daib et al. 5,760,785 A 6,1998 Daib et al. 5,760,785 A 6,1998 Daib et al. 5,762,77 A 7,1998 Daib et al. 5,782,77 A 7,1998 Daib et al. 5,782,77 A 7,1998 Caro et al. 5,791,74 A 8,1998 Flaherty et al. 5,792,052 A 8,1998 Braherty et al. 5,792,052 A 8,1998 Braherty et al. 5,792,052 A 8,1998 Braherty et al. 5,792,052 A 8,1998 Brahert et al. 5,795,300 A 8,1998 Brahert et al. 5,795,300 A 8,1998 Brahert et al. 5,807,47 A 9,1998 Merchant et al. 5,807,47 A 9,1998 Caro et al. 5,803,481 A 11,1998 Caro et al. 5,803,491 A 12,1999 Manded et al. 5,803,491 A 12,1998 Manded et al. 5,803,491 A 12,1999 Mills et al. 5,803,491 A 12,199 Mills et al. 5,803,491 A 12,199 Mills et								
5,760,910 A								
S.766,131 A 6/1908 Kondo et al. 6.334,065 Bl 1/2002 Chin et al. 5.769,758 A 6/1908 Diab et al. 6.343,224 Bl 1/2002 Parker 5.785,657 A 7/1908 Diab et al. 6.343,224 Bl 1/2002 Parker 5.785,657 A 7/1908 Chin et al. 6.345,194 Bl 1/2002 Parker 5.785,657 A 7/1908 Char et al. 6.345,194 Bl 1/2002 Parker 6.375,750 A 8/1908 Flacherly et al. 6.345,293 Bl 1/2002 Chin et al. 5.790,1307 A 8/1908 Flacherly et al. 6.360,228 Bl 3/2002 Kiami et al. 5.790,5300 A 8/1908 Flacherly et al. 6.360,113 Bl 3/2002 Chilleck et al. 5.800,349 A 9/1908 Flacker et al. 6.360,114 Bl 3/2002 Diab et al. 6.360,114 Bl 3/2002 Diab et al. 6.360,114 Bl 3/2002 Diab et al. 6.360,113 Bl 3/2002 Diab et al. 6.377,829 Bl 4/2002 Caro et al. 6.377,829 Bl 4/2002 Caro et al. 6.360,133 Bl 3/2002 Schulz et al. 6.360,133 Bl 3/2002 S								
5,789,785 A 6/1998 Diab et al. 5,782,757 A 7/1998 Diab et al. 5,782,575 A 7/1998 Diab et al. 5,782,575 A 7/1998 Care et al. 5,792,052 A 7/1998 Care et al. 5,792,052 A 8/1998 Islanescon et al. 5,792,052 A 8/1998 Islanescon et al. 5,792,052 A 8/1998 Islanescon et al. 5,792,052 A 8/1998 Byars 5,800,349 A 9/1998 Byars 5,800,349 A 9/1998 Merchant et al. 5,800,349 A 9/1998 Merchant et al. 5,800,349 A 9/1998 Care et al. 5,800,349 A 10/1998 Diab et al. 5,830,037 A 10/1998 Diab et al. 5,830,037 A 10/1998 Diab et al. 5,830,037 A 10/1998 Care et al. 5,830,038 A 10/1998 Care et al. 5,830,137 A 11/1998 Care et al. 5,831,138 A 11/1999 Care et al. 5,831,139 A 11/1999 Care et al. 5,831,131 A 11/1999 Care et al. 5,931,131 A 11/1999 Care et al. 6,631,131 B 1 1/1000 Care et al. 6,631,131 B 1 1/1000 Care et								
5,785,659 A 7,1998 Cane et al. 6,345,194 Bl. 2,2002 Nelson et al. 5,791,307 A 8,1998 Flaherty et al. 6,349,228 Bl. 2,2002 Kimur et al. 5,792,052 A 8,1998 Flaherty et al. 6,356,203 Bl. 3,2002 Kimur et al. 5,795,300 A 8,1998 Bryan 6,356,203 Bl. 3,2002 Dettling 5,807,247 A 9,1998 Strackson et al. 6,360,113 Bl. 3,2002 Dettling 5,807,247 A 9,1998 Merchant et al. 6,360,114 Bl. 3,2002 Dettling 5,807,247 A 9,1998 Merchant et al. 6,360,115 Bl. 3,2002 Dettling 5,807,344 A 9,1998 Merchant et al. 6,360,115 Bl. 3,2002 Greenwald et al. 5,831,950 A 10,1998 Diab et al. 6,360,115 Bl. 3,2002 Greenwald et al. 5,831,950 A 10,1998 Diab et al. 6,360,115 Bl. 3,2002 Greenwald et al. 6,360,114 Bl. 3,2002 Care et al. 6,371,921 Bl. 4,2002 Al. All 1,360,114 Al								
S.791,347 A								
S.792,052 A								
S.800,349 A 9,1998 Macroant et al. 6,360,113 B1 3/2002 Detting S.807,247 A 9,1998 Merchant et al. 6,360,115 B1 3/2002 Diab et al. 5,820,838 A 0,1998 Diab et al. 6,360,115 B1 3/2002 Donars et al. 5,820,838 A 0,1998 Diab et al. 6,360,115 B1 3/2002 Donars et al. 5,830,131 A 1,1998 Caro et al. 6,368,233 B1 4/2002 Caro et al. 6,368,233 B1 4/2002 Caro et al. 6,371,829 B1 4/2002 Al-Ali 5,830,131 A 1,11998 Scharf 6,388,240 B2 5/2002 S/300,200 Al-Ali 5,833,618 A 1,11998 Caro et al. 6,397,991 B2 5/2002 Diab et al. 6,307,991 B2 5/2002 Diab et al. 6,407,893 B1 10/2002 Diab et al. 6,407,893 B1 10/2003 Diab et al. 6,407,893 B1 10/2003 D					6,353,750	B1		
S.807,247 A								
S.810.734 A								
5,826,885 A 10/1998 Helgeland 6,368,283 Bl 4/2002 Caro et al. 5,830,131 A 11/1998 Scharf 6,377,829 Bl 4/2002 Caro et al. 5,833,618 A 11/1998 Scharf 6,388,240 B2 5/2002 Schulz et al. 5,833,618 1/1998 Aronow 6,430,437 Bl 8/2002 Schulz et al. 5,860,919 A 1/1999 Kiani-Azarbayjany et al. 6,430,437 Bl 8/2002 Weber et al. 5,800,929 A 4/1999 Mills et al. D463,561 S 9,2002 Eukatsu et al. 5,902,3357 A 5/1999 Levia et al. 6,463,311 Bl 10/2002 Senute et al. 5,940,182 A 5/1999 Voblitmann et al. 6,470,893 Bl 10/2002 Soesen 5,940,182 A 5/1999 Lepte, Jr. et al. 6,475,153 Bl 12/2002 Sharan 5,957,840 A 9/1999					6,360,115	B1		
1.1998 Caro et al. 6.371.921 B1 4.2002 Caro et al. 5.830,137 A 11/1998 Scharf 6.377.829 B1 4.2002 A-Alii 5.833,618 A 11/1998 Caro et al. 6.388.240 B2 5.2002 Schulz et al. 5.851,178 A 12/1998 Aronow 6.430.437 B1 8.2002 Marro 5.860,919 A 17/1999 Mila et al. 6.430.325 B1 8.2002 Weber et al. 5.890,929 A 47/1999 Mills et al. 6.463,187 B1 10/2002 Diab et al. 5.902,235 A 57/1999 Colak 6.463,318 B1 10/2002 Baruch et al. 5.903,357 A 57/1999 Colak 6.463,318 B1 10/2002 Diab et al. 6.470,199 B1 10/2002 Caro et al. 6.470,199 B1 Caro et al. 6.590,595 B1 Caro et al. 6.590,595 B1 Caro et al. 6.590,493 B1 Caro et al. 6.590,493 B1 Caro et al. 6.470,493 B1 Caro et al. 6.470,493 B1 Caro								
5,830,137 A 11/1998 Carar et al. 6,337,829 B1 4,2002 Al-Ali 5,833,618 A 11/1998 Carar et al. 6,337,91 B2 5,2002 Schulz et al. 6,337,91 B2 5,2002 Mills et al. 6,337,91 B2 5,2002 Mills et al. 6,430,37 B1 8,2002 Mero et al. 5,860,919 A 1/1999 Mills et al. D463,561 S 9,2002 Fikatsu et al. 5,903,337 A 5/1999 Colak 6,463,187 B1 10/2002 Barnet et al. 5,903,337 A 5/1999 Wohltmann et al. 6,470,199 B1 10/2002 Boesen 5,934,925 A 5/1999 Wohltmann et al. 6,470,199 B1 10/2002 Boesen 5,934,925 A 8/1999 Diab 6,470,199 B1 10/2002 Boesen 5,934,925 A 8/1999 Diab 6,475,133 B1 10/2002 Boesen 5,934,925 A 8/1999 Loper, Jr. et al. RE37,922 E 12/2002 Sharan 5,957,840 A 9/1999 Terasawa et al. 6,491,647 B1 12/2002 Sharan 5,957,840 A 9/1999 Shristein et al. 6,501,975 B2 12/2002 Sharan 5,957,840 A 11/1999 Shristein et al. 6,501,975 B2 12/2002 Diab et al. 5,997,343 A 11/1999 Kinast 6,590,973,43 A 11/1999 Kinast 6,590,973,43 A 11/1999 Mills et al. 6,516,289 B2 2/2003 Mollias et al. 5,997,343 A 12/1999 Mills et al. 6,516,289 B2 2/2003 David et al. 6,018,673 A 12/1999 Mills et al. 6,516,289 B2 2/2003 Mills et al. 6,027,426 A 2/2000 Fiaberty et al. 6,522,321 B2 2/2003 Mills et al. 6,036,642 A 3/2000 Chin et al. 6,522,321 B2 2/2003 Mills et al. 6,045,309 A 4/2000 Cron et al. 6,541,756 B2 4/2003 Al-Ali et al. 6,604,727 A 4/2000 Cron et al. 6,584,356 B1 2/2003 Mills et al. 6,584,356 B1 2/2003 Mills et al. 6,599,393 B2 7/2003 Schulz et al. 6,124,597 A 9/2000 Cron et al. 6,606,509 B2 7/2003 Schulz et al. 6,124,597 A 9/2000 Diab et al. 6,599,393 B2 7/2003 Schulz et al. 6,124,597 A 9/2000 Diab et al. 6,606,509 B2 7/2003 Schulz et al. 6,124,597 A 9/2000 Cron et al. 6,606,509 B2 10/2003 Schulz et al. 6,124,597 A 9/2000 Cron et al. 6,606,509 B2 10/2003 Schulz et al. 6,124,597 A 9/2000 Cron et al. 6,606,509 B2 10/2003 Schulz et al. 6,124,597 A 9/2000 Cron et al. 6,606,509 B2 10/2003 Schulz et al. 6,124,577 B2 10/2003 Mills et								
D403,070 S 12/1998 Maeda et al. 6,397,091 B2 5/2002 Diab et al.								
5,851,178 A 12/1998 Aronow 6,430,437 Bl 8/2002 Marro 5,860,919 A 1/1999 Kiani-Azarbayjany et al. 6,430,525 Bl 8/2002 Weber et al. 5,902,235 A 5/1999 Lewis et al. 6,463,318 Bl 10/2002 Baruch et al. 5,904,654 A 5/1999 Wohltmann et al. 6,470,893 Bl 10/2002 Kopotic et al. 5,940,182 A 8/1999 Dobler et al. 6,475,153 Bl 11/2002 Khair et al. 5,940,182 A 8/1999 Tobler et al. RE37,922 E 12/2002 Sharan D414,870 S 10/1999 Saltzstein et al. 6,491,647 Bl 12/2002 Diab et al. 5,997,343 A 1/1999 Kinast 6,505,059 Bl 1/2002 Diab et al. 6,012,952 A 1/1999 Mills et al. 6,516,289 B2 2/2003 Bavid et al. 5,997,343 A								
5,860,919 A 1/1999 Kiani-Azarbayjany et al. D463,561 S 9/2002 Weber et al. 5,800,929 A 4/1999 Mills et al. D463,561 S 9/2002 Baruch et al. 5,902,235 A 5/1999 Colak 6,463,311 B1 10/2002 Baruch et al. 5,903,357 A 5/1999 Colak 6,463,311 B1 10/2002 Baruch et al. 6,470,199 B1 10/2002 Bosen 5,934,925 A 8/1999 Diab 6,470,893 B1 10/2002 Bosesn 5,934,925 A 8/1999 Diab 6,470,893 B1 10/2002 Bosesn 5,934,925 A 8/1999 Lepper, Jr. et al. 6,475,153 B1 11/2002 Bosesn 5,934,925 A 8/1999 Lepper, Jr. et al. RE37,922 E 12/2002 Sharan 8,5957,840 A 9/1999 Lepper, Jr. et al. RE37,922 E 12/2002 Bridger et al. 5,940,182 A 8/1999 Lepper, Jr. et al. 6,501,975 B2 12/2002 Bridger et al. 5,987,343 A 11/1999 Kinast 6,501,975 B2 12/2002 Bridger et al. 5,987,343 A 11/1999 Kinast 6,515,273 B2 2/2003 Al-Ali 5,997,343 A 11/1999 Mills et al. 6,516,289 B2 12/2003 B1 1/2003 Kollas et al. 6,002,952 A 12/1999 Diab et al. 6,516,289 B2 2/2003 David et al. 6,002,952 A 12/1999 Diab et al. 6,516,289 B2 2/2003 David et al. 6,002,952 A 12/1999 Diab et al. 6,519,487 B1 2/2003 Farker 6,002,952 A 12/1999 Diab et al. 6,525,386 B1 2/2003 Mills et al. 6,036,642 A 3/2000 Diab et al. 6,524,510 B1 2/2003 Kiani et al. 6,036,642 A 3/2000 Diab et al. 6,524,510 B1 2/2003 Kiani et al. 6,045,509 A 4/2000 Caro et al. 6,542,764 B1 4/2003 K-hali et al. 6,049,727 A 4/2000 Caro et al. 6,542,764 B1 4/2003 Schulz et al. 6,049,727 A 4/2000 Caro et al. 6,584,336 B1 6/2003 Schulz et al. 6,088,607 A 7/2000 Diab et al. 6,595,316 B2 7/2003 Kiani et al. 6,028,86 A 8/2000 Diab et al. 6,595,316 B2 7/2003 Kiani et al. 6,102,886 A 8/2000 Diab et al. 6,595,316 B2 7/2003 Kiani et al. 6,128,521 A 10/2000 Marro et al. 6,599,331 B2 7/2003 Kiani et al. 6,128,521 A 10/2000 Marro et al. 6,690,308 B1 6/2003 Schulz et al. 6,144,866 A 11/2000 Kiani-Azarbayjany et al. 6,630,368 B1 10/2003 Bab in al. 6,128,521 A 10/2000 Kiani-Azarbayjany et al. 6,630,368 B1 10/2003 Diab et al. 6,144,866 A 11/2000 Kiani-Azarbayjany et al. 6,630,979 B2 11/2003 Diab et al. 6,152,754 A 11/2000 Kiani-Azarbayjany et al. 6,664								
5,902,335 A								
Sy03,357 A Sy1999 Colak G.463,311 B1 10/2002 Diab								
5,904,654 A 5/1999 Diab 6,470,199 BI 10/2002 Boesen Kopotic et al. 5,919,134 A 7/1999 Diab 6,470,893 BI 11/2002 Boesen Kopotic et al. 5,934,182 A 8/1999 Tobbler et al. RE37,922 E 12/2002 Bridger et al. Sharan 5,957,840 A 9/1999 Terasawa et al. 6,491,647 BI 12/2002 Bridger et al. Sharan 5,957,343 A 11/1999 Kinast 6,501,975 B2 12/2002 Diab et al. 12/2003 Kollias et al. 5,997,343 A 12/1999 Mills et al. 6,516,289 B2 2/2003 Al-Ali 3,2700 Bovid et al. 6,002,952 A 12/1999 Diab et al. 6,516,289 B2 2/2003 Parker 6,011,986 A 1/2000 Diab et al. 6,522,521 B2 2/2003 Mils et al. 6,027,452 A 2/2000 Flaherty et al. 6,522,521 B2 2/2003 Mils et al. 6,036,642 A 3/2000 Diab et al. 6,541,756 B2 4/2003 Schulz et al. 6,045,509 A 4/2000 Caro et al. 6,541,756 B2 4/2003 Schulz et al. 6,067,462 A 5/2000 Diab et al. 6,580,868 B1 6/2003 Ali et al. 6,081,735 A 6/2000 Diab et al							10/2002	Diab
S.934,925 A		5,904,654 A	5/1999	Wohltmann et al.				
S.940,182 A								
D414,870 S 10/1999 Saltzstein et al. 6,501,975 B2 12/2002 Diab et al.					RE37,922	E	12/2002	Sharan
5,987,343 A 11/1999 Kinast 6,505,059 Bl 1/2003 Kollias et al. 5,995,855 A 11/1999 Kinai et al. 6,515,273 B2 2/2003 David et al. 6,002,952 A 12/1999 Diab et al. 6,516,289 B2 2/2003 David et al. 6,011,986 A 1/2000 Diab et al. 6,519,487 B1 2/2003 Mizuno et al. 6,018,673 A 1/2000 Chin et al. 6,522,521 B2 2/2003 Mizuno et al. 6,027,452 A 2/2000 Diab et al. 6,526,300 B1 2/2003 Kiani et al. 6,036,642 A 3/2000 Diab et al. 6,526,300 B1 2/2003 Kiani et al. 6,045,509 A 4/2000 Crothall 6,556,852 B1 4/2003 Schulz et al. 6,045,509 A 4/2000 Crothall 6,556,852 B1 4/2003 Schulz et al. 6,047,62 A 5/2000 Diab et al. 6,580,086 B1 6/2003 Schulz et al. 6,081,735 A 6/2000 Diab et al. 6,580,086 B1 6/2003 Schulz et al. 6,102,856 A 8/2000 Clarence et al. 6,597,932 B2 7/2003 Tian et al. 6,110,522 A 8/2000 Lepper, Jr. et al. 6,597,933 B2 7/2003 Kiani et al. 6,124,597 A 9/2000 Marro et al. 6,606,511 B1 8/2003 Ali et al. 6,129,675 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Kiani et al. <t< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
5,995,855 A 11/1999 Kiani et al. 6,515,273 B2 2/2003 Al-Ali 5,997,343 A 12/1999 Mills et al. 6,516,289 B2 2/2003 David et al. 6,002,952 A 12/1999 Diab et al. 6,519,487 B1 2/2003 Parker 6,011,986 A 1/2000 Diab et al. 6,522,521 B2 2/2003 Mils uno et al. 6,018,673 A 1/2000 Chin et al. 6,525,386 B1 2/2003 Kiani et al. 6,036,642 A 3/2000 Diab et al. 6,541,756 B2 4/2003 Kiani et al. 6,045,509 A 4/2000 Caro et al. 6,541,756 B2 4/2003 Al-Ali et al. 6,049,727 A 4/2000 Diab et al. 6,580,086 B1 6/2003 Schulz et al. 6,081,735 A 6/2000 Diab et al. 6,580,086 B1 6/2003 Schulz et al. 6,088,607 A 7/2000 Diab et al. 6,597,932 B2 7/2003 Cybulski et al. 6,102,856 A 8/2000 Clarence et al. 6,597,932 B2 7/2003 Kiani et al. 6,110,522 A 8/2000 Clarence et al. 6,597,932 B2 7/2003 Cybulski et al. 6,124,597 A 9/2000 Shehada 6,606,511 B1 8/2003 Schmitt 6,124,597 A 9/2000 Mar								
5,997,343 A 12/1999 Mills et al. 6,516,289 B2 2/2003 David et al. 6,002,952 A 12/1999 Diab et al. 6,519,487 B1 2/2003 Parker 6,011,986 A 1/2000 Diab et al. 6,525,318 B2 2/2003 Mizuno et al. 6,018,673 A 1/2000 Chin et al. 6,525,386 B1 2/2003 Mizuno et al. 6,027,452 A 2/2000 Flaherty et al. 6,526,300 B1 2/2003 Kiani et al. 6,036,642 A 3/2000 Diab et al. 6,541,756 B2 4/2003 Schulz et al. 6,045,509 A 4/2000 Caro et al. 6,541,756 B2 4/2003 Schulz et al. 6,049,727 A 4/2000 Crothall 6,556,852 B1 4/2003 Schulz et al. 6,067,462 A 5/2000 Diab et al. 6,580,086 B1 6/2003 Schulz et al. 6,081,735 A 6/2000 Diab et al. 6,584,336 B1 6/2003 Schulz et al. 6,081,735 A 6/2000 Diab et al. 6,584,336 B1 6/2003 Schulz et al. 6,102,856 A 8/2000 Clarence et al. 6,597,932 B2 7/2003 Cybulski et al. 6,110,522 A 8/2000 Clarence et al. 6,597,933 B2 7/2003 Kiani et al. 6,110,522 A 8/2000 Shehada 6,124,597 A 9/2000 Marro et al. 6,606,509 B2 8/2003 Schmitt 6,128,521 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Ali et al. 6,124,597 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Robinson 6,151,516 A 11/2000 Miesel et al. 6,632,181 B2 10/2003 Robinson 6,151,516 A 11/2000 Miesel et al. 6,639,668 B1 10/2003 Schmitt 6,157,850 A 12/2000 Diab et al. 6,639,668 B1 10/2003 Diab et al. 6,167,258 A 12/2000 Schmidt et al. 6,650,917 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Schmidt et al. 6,650,939 B2 11/2003 Diab et al. 6,175,752 B1 1/2001 Schmidt et al. 6,650,939 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Schmidt et al. 6,650,939 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Schmidt et al. 6,650,939 B2 11/2003 Diab et al. 6,184,858 B1 1/2001 Schmidt et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,851 B1 2/2001 Coffin, IV et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,851 B1 2/2001 Coffin, IV et al. 6,661,6161 B1 12/2003 Lanzo et al.					6,515,273	B2		
6,011,986 A 1/2000 Diab et al. 6,018,673 A 1/2000 Chin et al. 6,027,452 A 2/2000 Flaherty et al. 6,036,642 A 3/2000 Diab et al. 6,045,599 A 4/2000 Caro et al. 6,049,727 A 4/2000 Crothall 6,087,746 A 5/2000 Diab et al. 6,087,746 A 5/2000 Diab et al. 6,088,607 A 7/2000 Diab et al. 6,088,607 A 7/2000 Diab et al. 6,088,607 A 7/2000 Diab et al. 6,102,856 A 8/2000 Clarence et al. 6,110,522 A 8/2000 Clarence et al. 6,124,597 A 9/2000 Marro et al. 6,124,597 A 10/2000 Marro et al. 6,124,697 A 10/2000 Marro et al. 6,124,697 A 10/2000 Marro et al. 6,124,597 A 10/2000 Diab et al. 6,125,675 A 10/2000 Diab et al. 6,124,597 A 10/2000 Diab et al. 6,125,675 A 10/2000 Diab et al. 6,124,597 A 10/2000 Diab et al. 6,125,675 A 10/2000 Diab et al. 6,124,597 A 10/2000 Diab et al. 6,124,500 Diab et al. 6,632,768 B1 10/2003 Robinson 6,151,516 A 11/2000 Gerhardt et al. 6,632,633,638 B1 10/2003 Diab et al. 6,152,754 A 11/2000 Gerhardt et al. 6,634,530 B2 11/2003 Diab et al. 6,165,005 A 12/2000 Diab et al. 6,643,530 B2 11/2003 Diab et al. 6,175,752 B1 1/2001 Kley et al. 6,658,376 B2 12/2003 Diab et al. 6,181,958 B1 1/2001 Kley et al. 6,658,376 B2 12/2003 Diab et al. 6,184,521 B1 2/2001 Coffin, IV et al.								
6,018,673 A 1/2000 Chin et al. 6,027,452 A 2/2000 Flaherty et al. 6,027,452 A 3/2000 Diab et al. 6,036,642 A 3/2000 Caro et al. 6,045,509 A 4/2000 Crothall 6,049,727 A 4/2000 Diab et al. 6,049,727 A 4/2000 Diab et al. 6,067,462 A 5/2000 Diab et al. 6,081,735 A 6/2000 Diab et al. 6,088,607 A 7/2000 Diab et al. 6,088,607 A 7/2000 Diab et al. 6,102,856 A 8/2000 Clarence et al. 6,102,856 A 8/2000 Clarence et al. 6,102,856 A 8/2000 Diab et al. 6,124,597 A 9/2000 Shehada 6,128,521 A 10/2000 Marro et al. 6,129,675 A 10/2000 Miesel et al. 6,129,675 A 10/2000 Miesel et al. 6,144,866 A 11/2000 Miesel et al. 6,144,868 A 11/2000 Farker 6,151,516 A 11/2000 Gerhardt et al. 6,157,850 A 12/2000 Diab et al. 6,165,005 A 12/2000 Mills et al. 6,167,258 A 12/2000 Mills et al. 6,167,258 A 12/2000 Mills et al. 6,167,258 B1 1/2001 Steuer et al. 6,175,752 B1 1/2001 Steuer et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,666,161 B1 12/2003 Lanzo et al. 6,654,624 B2 11/2003 Diab et al. 6,654,624 B2 11/2003 Diab et al. 6,654,624 B2 11/2003 Kiani et al. 6,654,624 B2 11/2003 Diab et al. 6,184,521 B1 2/2001 Coffin, IV et al.								
6,036,642 A 3/2000 Diab et al. 6,541,756 B2 4/2003 Schulz et al. 6,045,509 A 4/2000 Caro et al. 6,542,764 B1 4/2003 Al-Ali et al. 6,049,727 A 4/2000 Diab et al. 6,586,852 B1 4/2003 Schulz et al. 6,067,462 A 5/2000 Diab et al. 6,580,086 B1 6/2003 Schulz et al. 6,081,735 A 6/2000 Diab et al. 6,584,336 B1 6/2003 Ali et al. 6,088,607 A 7/2000 Diab et al. 6,595,316 B2 7/2003 Cybulski et al. 6,102,856 A 8/2000 Clarence et al. 6,597,932 B2 7/2003 Tian et al. 6,102,856 A 8/2000 Lepper, Jr. et al. 6,597,933 B2 7/2003 Kiani et al. 6,104,597 A 9/2000 Shehada 6,606,509 B2 8/2003 Schmitt 6,128,521 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Ali et al. 6,129,675 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Nahm 6,144,866 A 11/2000 Miesel et al. 6,632,181 B2 10/2003 Flaherty et al. 6,152,754 A 11/2000 Kiani-Azarbayjany et al. 6,639,668 B1 10/2003 Trepagnier 6,152,754 A 11/2000 Gerhardt et al. 6,639,668 B1 10/2003 Diab et al. 6,165,005 A 12/2000 Mills et al. 6,640,116 B2 10/2003 Diab et al. 6,175,7850 A 12/2000 Mills et al. 6,650,939 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Schmidt et al. 6,650,939 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Schmidt et al. 6,650,939 B2 11/2003 Takpke, II et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,181,958 B1 1/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.								
6,045,509 A 4/2000 Caro et al. 6,045,762 A 4/2000 Crothall 6,049,727 A 4/2000 Diab et al. 6,067,462 A 5/2000 Diab et al. 6,081,735 A 6/2000 Diab et al. 6,088,607 A 7/2000 Diab et al. 6,102,856 A 8/2000 Clarence et al. 6,110,522 A 8/2000 Lepper, Jr. et al. 6,110,522 A 8/2000 Shehada 6,124,507 A 9/2000 Marro et al. 6,128,521 A 10/2000 Marro et al. 6,128,521 A 10/2000 Miesel et al. 6,144,866 A 11/2000 Miesel et al. 6,144,866 A 11/2000 Miesel et al. 6,152,754 A 11/2000 Kiani-Azarbayjany et al. 6,152,754 A 11/2000 Gerhardt et al. 6,157,850 A 12/2000 Mills et al. 6,167,258 A 12/2000 Schmidt et al. 6,167,752 B1 1/2001 Steuer et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,184,521 B1 2/2003 Lanzo et al. 6,168,576,827 B2 1/2003 Diab et al. 6,168,676,768 B1 1/2003 Diab et al. 6,666,161,161 B1 1/2003 Diab et al. 6,167,575 B1 1/2001 Steuer et al. 6,668,769 B2 11/2003 Diab et al. 6,167,575 B1 1/2001 Steuer et al. 6,668,769 B2 11/2003 Diab et al. 6,668,776 B2 11/2003 Diab et al. 6,668,776 B2 11/2003 Diab et al. 6,668,776 B2 11/2003 Diab et al. 6,175,752 B1 1/2001 Steuer et al. 6,668,769 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,668,769 B2 11/2003 Lanzo et al.								
6,049,727 A 4/2000 Crothall 6,556,852 B1 4/2003 Schulze et al. 6,067,462 A 5/2000 Diab et al. 6,580,086 B1 6/2003 Schulz et al. 6,081,735 A 6/2000 Diab et al. 6,584,336 B1 6/2003 Schulz et al. 6,088,607 A 7/2000 Diab et al. 6,595,316 B2 7/2003 Cybulski et al. 6,102,856 A 8/2000 Clarence et al. 6,597,932 B2 7/2003 Tian et al. 6,110,522 A 8/2000 Lepper, Jr. et al. 6,597,933 B2 7/2003 Kiani et al. 6,110,522 A 8/2000 Shehada 6,060,509 B2 8/2003 Schmitt 6,128,521 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Ali et al. 6,129,675 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Ali et al. 6,129,675 A 10/2000 Miesel et al. 6,632,181 B2 10/2003 Flaherty et al. 6,144,866 A 11/2000 Miesel et al. 6,632,181 B2 10/2003 Flaherty et al. 6,151,516 A 11/2000 Kiani-Azarbayjany et al. 6,639,668 B1 10/2003 Trepagnier 6,152,754 A 11/2000 Gerhardt et al. 6,639,867 B2 10/2003 Shim 6,157,850 A 12/2000 Diab et al. 6,640,116 B2 10/2003 Diab 6,165,005 A 12/2000 Mills et al. 6,640,116 B2 10/2003 Diab 6,167,258 A 12/2000 Schmidt et al. 6,650,917 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Kley et al. 6,650,939 B2 11/2003 Takpke, II et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Lanzo et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.								
6,081,735 A 6/2000 Diab et al. 6,088,607 A 7/2000 Diab et al. 6,102,856 A 8/2000 Clarence et al. 6,110,522 A 8/2000 Lepper, Jr. et al. 6,124,597 A 9/2000 Shehada 6,128,521 A 10/2000 Marro et al. 6,129,675 A 10/2000 Marro et al. 6,144,866 A 11/2000 Miesel et al. 6,151,516 A 11/2000 Kiani-Azarbayjany et al. 6,152,754 A 11/2000 Gerhardt et al. 6,157,850 A 12/2000 Diab et al. 6,165,005 A 12/2000 Mills et al. 6,167,258 A 12/2000 Shehidt et al. 6,167,258 A 12/2000 Shehidt et al. 6,167,258 B1 1/2001 Say et al. 6,175,752 B1 1/2001 Say et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,184,521 B1 2/2003 Lanzo et al. 6,666,1161 B1 1/2003 Ali et al. 6,584,336 B1 6/2003 Ali et al. 6,597,932 B2 7/2003 Kiani et al. 6,606,511 B1 8/2003 Ali et al. 6,606,511 B1 8/2003 Ali et al. 6,606,511 B1 8/2003 Nahm 6,663,181,459 S 10/2003 Nahm 6,632,181 B2 10/2003 Nahm 6,633,668 B1 10/2003 Flaherty et al. 6,639,668 B1 10/2003 Trepagnier 6,639,668 B1 10/2003 Diab et al. 6,640,116 B2 10/2003 Diab 6,167,258 A 12/2000 Shimidt et al. 6,650,939 B2 11/2003 Diab et al. 6,175,752 B1 1/2001 Say et al. 6,654,624 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,668,276 B2 12/2003 Kiani et al. 6,688,276 B2 12/2003 Kiani et al. 6,661,161 B1 12/2003 Lanzo et al.		6,049,727 A	4/2000	Crothall				
6,088,607 A 7/2000 Diab et al. 6,595,316 B2 7/2003 Cybulski et al. 6,102,856 A 8/2000 Clarence et al. 6,597,933 B2 7/2003 Tian et al. 6,110,522 A 8/2000 Lepper, Jr. et al. 6,597,933 B2 7/2003 Kiani et al. 6,110,522 A 9/2000 Shehada 6,606,509 B2 8/2003 Schmitt 6,124,597 A 9/2000 Shehada 6,606,509 B2 8/2003 Schmitt 6,129,675 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Ali et al. 6,129,675 A 10/2000 Jay D481,459 S 10/2003 Nahm 6,144,866 A 11/2000 Miesel et al. 6,632,181 B2 10/2003 Flaherty et al. 6,144,868 A 11/2000 Parker 6,151,516 A 11/2000 Kiani-Azarbayjany et al. 6,639,668 B1 10/2003 Trepagnier 6,152,754 A 11/2000 Gerhardt et al. 6,639,668 B1 10/2003 Shim 6,157,850 A 12/2000 Diab et al. 6,640,116 B2 10/2003 Diab 6,165,005 A 12/2000 Mills et al. 6,640,116 B2 10/2003 Diab 6,167,258 A 12/2000 Schmidt et al. 6,650,939 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Kley et al. 6,650,939 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Lanzo et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.					, ,			
6,102,856 A 8/2000 Clarence et al. 6,110,522 A 8/2000 Lepper, Jr. et al. 6,110,522 A 9/2000 Shehada 6,124,597 A 9/2000 Shehada 6,128,521 A 10/2000 Marro et al. 6,129,675 A 10/2000 Jay 6,144,866 A 11/2000 Miesel et al. 6,144,868 A 11/2000 Parker 6,151,516 A 11/2000 Kiani-Azarbayjany et al. 6,152,754 A 11/2000 Gerhardt et al. 6,157,850 A 12/2000 Diab et al. 6,165,005 A 12/2000 Mills et al. 6,167,258 A 12/2000 Schmidt et al. 6,167,258 A 12/2000 Schmidt et al. 6,167,258 B 1 1/2001 Schmidt et al. 6,172,743 B1 1/2001 Schmidt et al. 6,181,958 B1 1/2001 Steuer et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 1/2003 Tian et al. 6,597,932 B2 7/2003 Kiani et al. 6,606,509 B2 8/2003 Schmitt 6,606,509 B2 10/2003 Nahm 6,606,511 B1 8/2003 Nahm 6,632,181 B2 10/2003 Flaherty et al. 6,639,668 B1 10/2003 Trepagnier 6,639,668 B1 10/2003 Trepagnier 6,639,867 B2 10/2003 Diab 6,640,116 B2 10/2003 Diab 6,167,258 A 12/2000 Schmidt et al. 6,640,116 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Kley et al. 6,659,939 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al.								
6,124,597 A 9/2000 Shehada 6,606,509 B2 8/2003 Schmitt 6,128,521 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Ali et al. 6,129,675 A 10/2000 Jay D481,459 S 10/2003 Nahm 6,144,866 A 11/2000 Miesel et al. 6,632,181 B2 10/2003 Robinson 6,151,516 A 11/2000 Kiani-Azarbayjany et al. 6,639,668 B1 10/2003 Robinson 6,151,516 A 11/2000 Gerhardt et al. 6,639,867 B2 10/2003 Shim 6,157,850 A 12/2000 Diab et al. 6,639,867 B2 10/2003 Shim 6,165,005 A 12/2000 Mills et al. 6,640,116 B2 10/2003 Diab 6,167,258 A 12/2000 Mills et al. 6,643,530 B2 11/2003 Diab et al. 6,167,258 A 12/2000 Schmidt et al. 6,650,939 B2 11/2003 Diab et al. 6,175,752 B1 1/2001 Say et al. 6,650,939 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Say et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.		6,102,856 A	8/2000	Clarence et al.				
6,128,521 A 10/2000 Marro et al. 6,606,511 B1 8/2003 Ali et al. 6,129,675 A 10/2000 Jay D481,459 S 10/2003 Nahm 6,144,866 A 11/2000 Miesel et al. 6,632,181 B2 10/2003 Flaherty et al. 6,632,181 B2 10/2003 Robinson 6,151,516 A 11/2000 Kiani-Azarbayjany et al. 6,639,668 B1 10/2003 Trepagnier 6,152,754 A 11/2000 Gerhardt et al. 6,639,867 B2 10/2003 Shim 6,157,850 A 12/2000 Diab et al. 6,640,116 B2 10/2003 Diab 6,165,005 A 12/2000 Mills et al. 6,643,530 B2 11/2003 Diab et al. 6,167,258 A 12/2000 Schmidt et al. 6,650,917 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Kley et al. 6,650,939 B2 11/2003 Diab et al. 6,175,752 B1 1/2001 Say et al. 6,654,624 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.								
6,129,675 A 10/2000 Jay					6,606,511	B1		
6,144,868 A 11/2000 Parker 6,636,759 B2 10/2003 Robinson 6,151,516 A 11/2000 Kiani-Azarbayjany et al. 6,639,668 B1 10/2003 Trepagnier 6,152,754 A 11/2000 Gerhardt et al. 6,639,867 B2 10/2003 Shim 6,157,850 A 12/2000 Diab et al. 6,640,116 B2 10/2003 Diab 6,165,005 A 12/2000 Mills et al. 6,643,530 B2 11/2003 Diab et al. 6,167,258 A 12/2000 Schmidt et al. 6,650,917 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Kley et al. 6,650,939 B2 11/2003 Diab et al. 6,175,752 B1 1/2001 Say et al. 6,654,624 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.		6,129,675 A	10/2000		,			
6,151,516 A 11/2000 Kiani-Azarbayjany et al. 6,639,668 B1 10/2003 Trepagnier 6,152,754 A 11/2000 Gerhardt et al. 6,639,867 B2 10/2003 Shim 6,157,850 A 12/2000 Diab et al. 6,640,116 B2 10/2003 Diab 6,165,005 A 12/2000 Mills et al. 6,643,530 B2 11/2003 Diab et al. 6,167,258 A 12/2000 Schmidt et al. 6,650,917 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Kley et al. 6,650,939 B2 11/2003 Takpke, II et al. 6,175,752 B1 1/2001 Say et al. 6,654,624 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.								
6,152,754 A 11/2000 Gerhardt et al. 6,639,867 B2 10/2003 Shim 6,157,850 A 12/2000 Diab et al. 6,640,116 B2 10/2003 Diab 6,165,005 A 12/2000 Mills et al. 6,643,530 B2 11/2003 Diab et al. 6,167,258 A 12/2000 Schmidt et al. 6,650,917 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Kley et al. 6,650,939 B2 11/2003 Takpke, II et al. 6,175,752 B1 1/2001 Say et al. 6,654,624 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.					6,639,668	B1	10/2003	Trepagnier
6,165,005 A 12/2000 Mills et al. 6,643,530 B2 11/2003 Diab et al. 6,167,258 A 12/2000 Schmidt et al. 6,650,917 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Kley et al. 6,650,939 B2 11/2003 Takpke, II et al. 6,175,752 B1 1/2001 Say et al. 6,654,624 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.		6,152,754 A	11/2000	Gerhardt et al.				
6,167,258 A 12/2000 Schmidt et al. 6,650,917 B2 11/2003 Diab et al. 6,172,743 B1 1/2001 Kley et al. 6,650,939 B2 11/2003 Takpke, II et al. 6,175,752 B1 1/2001 Say et al. 6,654,624 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.								
6,172,743 B1 1/2001 Kley et al. 6,650,939 B2 11/2003 Takpke, II et al. 6,175,752 B1 1/2001 Say et al. 6,654,624 B2 11/2003 Diab et al. 6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.								
6,181,958 B1 1/2001 Steuer et al. 6,658,276 B2 12/2003 Kiani et al. 6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.		6,172,743 B	1/2001	Kley et al.	6,650,939	B2	11/2003	Takpke, II et al.
6,184,521 B1 2/2001 Coffin, IV et al. 6,661,161 B1 12/2003 Lanzo et al.								

(56) Refe	rences Cited	7,096,052 B2		Mason et al.
IIS PATE	NT DOCUMENTS	7,096,054 B2 7,113,815 B2		Abdul-Hafiz et al. O'Neil et al.
0.5. TATE	IVI DOCCIVIEIVIS	7,132,641 B2		Schulz et al.
6,671,526 B1 12/20	003 Aoyagi et al.	7,142,901 B2	11/2006	Kiani et al.
	003 Al-Ali et al.	7,149,561 B2	12/2006	
-,,	004 Diab et al.	D535,031 S		Barrett et al.
	004 Chaiken et al.	D537,164 S 7,186,966 B2	3/2007	Shigemori et al.
	004 Ali et al. 004 Parker	7,190,261 B2	3/2007	
	004 Al-Ali	7,215,984 B2	5/2007	
	004 Shehada et al.	7,215,986 B2	5/2007	
	004 Al-Ali	7,221,971 B2 7,225,006 B2	5/2007	Al-Ali et al.
	004 Diab et al. 004 Diab et al.	7,225,000 B2 7,225,007 B2	5/2007	
	004 Al-Ali et al.	RE39,672 E		Shehada et al.
	004 Diab et al.	7,227,156 B2		Colvin, Jr. et al.
	004 Trepagnier et al.	7,230,227 B2 D547,454 S	7/2007	Wilcken et al.
	004 Parker 004 Al-Ali	7,239,905 B2		Kiani-Azarbayjany et al.
	004 Kollias et al.	7,245,953 B1	7/2007	Parker
	004 Parker	D549,830 S		Behar et al.
, ,	004 Diab et al.	7,254,429 B2 7,254,431 B2	8/2007 8/2007	Schurman et al.
	004 O'Neil et al. 004 Al-Ali	7,254,431 B2 7,254,433 B2		Diab et al.
	004 Ali et al.	7,254,434 B2		Schulz et al.
	004 Kiani et al.	D550,364 S		Glover et al.
	004 Chance	D551,350 S	9/2007 9/2007	Lorimer et al.
	004 Diab et al.	7,272,425 B2 7,274,955 B2		Kiani et al.
	004 Mendelson 004 Palti et al.	D553,248 S	10/2007	
	004 Diab et al.	D554,263 S	10/2007	
	004 Seetharaman et al.	7,280,858 B2 7,289,835 B2		Al-Ali et al. Mansfield et al.
	004 Grubisic et al.	7,292,883 B2		De Felice et al.
	004 Diab 004 Al-Ali	7,295,866 B2	11/2007	
	004 Diab et al.	D562,985 S		Brefka et al.
6,830,711 B2 12/20	004 Mills et al.	7,328,053 B1		Diab et al.
	004 Paritsky et al.	7,332,784 B2 7,340,287 B2		Mills et al. Mason et al.
	005 Weber et al. 005 Al-Ali	7,341,559 B2		Schulz et al.
	005 Caro et al.	7,343,186 B2	3/2008	Lamego et al.
D502,655 S 3/20	005 Huang	D566,282 S		Al-Ali et al.
	005 Al-Ali	D567,125 S 7,355,512 B1	4/2008	Okabe et al.
	005 Khair et al. 005 Al-Ali et al.	7,356,365 B2		Schurman
	005 Rantala et al.	7,365,923 B2		Hargis et al.
	005 Al-Ali et al.	D569,001 S	5/2008	
	005 Behar et al.	D569,521 S 7,371,981 B2	5/2008 5/2008	Abdul-Hafiz
	005 Kiani-Azarbayjany et al. 005 Kiani et al.	7,373,193 B2		Al-Ali et al.
	005 Flaherty et al.	7,373,194 B2		Weber et al.
	005 Coffin, IV	7,376,453 B1		Diab et al.
	005 Al-Ali	7,377,794 B2 7,377,899 B2		Al Ali et al. Weber et al.
	005 Widener et al. 005 Diab	7,383,070 B2		Diab et al.
	005 Diab	7,395,189 B2		Qing et al.
	005 Al-Ali	7,415,297 B2		Al-Ali et al. Ali et al.
	006 Mason et al.	7,428,432 B2 7,438,683 B2		All et al. Al-Ali et al.
	006 Kiani et al. 006 Hariu	7,440,787 B2	10/2008	
	006 Mizuyoshi	7,454,240 B2		Diab et al.
6,996,427 B2 2/20	006 Ali et al.	7,467,002 B2 7,469,157 B2		Weber et al. Diab et al.
, ,	006 Weber et al.	7,469,137 B2 7,471,969 B2		Diab et al.
	006 Weber et al. 006 Diab et al.	7,471,971 B2		Diab et al.
7,015,451 B2 3/20	006 Dalke et al.	7,483,729 B2		Al-Ali et al.
	006 Ali et al.	7,483,730 B2 7,489,958 B2		Diab et al.
	006 Cranford	7,489,938 B2 7,496,391 B2		Diab et al. Diab et al.
	006 Al-Ali 006 Al-Ali	7,496,391 B2 7,496,393 B2		Diab et al.
	006 Al-Ali	D587,657 S	3/2009	Al-Ali et al.
7,041,060 B2 5/20	006 Flaherty et al.	7,499,741 B2		Diab et al.
	006 Diab	7,499,835 B2		Weber et al.
	006 Benni 006 Reuss et al.	7,500,950 B2 7,509,153 B2		Al-Ali et al. Blank et al.
	006 Maegawa et al.	7,509,153 B2 7,509,154 B2		Diab et al.
	006 Mills et al.	7,509,494 B2	3/2009	Al-Ali
7,092,757 B2 8/20	006 Larson et al.	7,510,849 B2		Schurman et al.

(56)		Referen	ces Cited	8,046,041 B2 8,046,042 B2		Diab et al. Diab et al.
	U.S.	PATENT	DOCUMENTS	8,048,040 B2	11/2011 11/2011	Kiani
	7.510.227 D2	4/2009	White	8,050,728 B2 8,071,935 B2		Al-Ali et al. Besko et al.
	7,519,327 B2 7,526,328 B2		Diab et al.	RE43,169 E	2/2012	Parker
	7,530,942 B1	5/2009		8,118,620 B2		Al-Ali et al.
	7,530,949 B2		Al Ali et al.	8,126,528 B2 8,126,531 B2		Diab et al. Crowley
	7,530,955 B2 7,563,110 B2		Diab et al. Al-Ali et al.	8,128,572 B2		Diab et al.
	7,596,398 B2		Al-Ali et al.	8,130,105 B2		Al-Ali et al.
	7,601,123 B2		Tweed et al.	8,145,287 B2		Diab et al.
	7,606,606 B2		Laakkonen	8,150,487 B2 8,175,672 B2	5/2012	Diab et al. Parker
	D603,966 S 7,618,375 B2		Jones et al. Flaherty	8,180,420 B2	5/2012	Diab et al.
	D606,659 S	12/2009	Kiani et al.	8,182,443 B1	5/2012	
	7,647,083 B2		Al-Ali et al.	8,185,180 B2 8,190,223 B2		Diab et al. Al-Ali et al.
	D609,193 S 7,657,294 B2		Al-Ali et al. Eghbal et al.	8,190,227 B2	5/2012	Diab et al.
	7,657,295 B2		Coakley et al.	8,203,438 B2		Kiani et al.
	7,657,296 B2		Raridan et al.	8,203,704 B2 8,204,566 B2	6/2012	Merritt et al. Schurman et al.
	D614,305 S RE41,317 E	5/2010	Al-Ali et al.	8,219,170 B2		Hausmann et al.
	7,726,209 B2		Ruotoistenmäki	8,219,172 B2		Schurman et al.
	7,729,733 B2		Al-Ali et al.	8,224,411 B2	7/2012 7/2012	Al-Ali et al.
	7,734,320 B2 7,740,588 B1	6/2010	Al-Ali Sciarra	8,228,181 B2 8,229,532 B2	7/2012	
	7,740,588 B1 7,740,589 B2		Maschke et al.	8,229,533 B2		Diab et al.
	7,761,127 B2	7/2010	Al-Ali et al.	8,233,955 B2		Al-Ali et al.
	7,761,128 B2		Al-Ali et al.	8,244,325 B2 8,244,326 B2		Al-Ali et al. Ninomiya et al.
	7,764,982 B2 D621,516 S		Dalke et al. Kiani et al.	8,255,026 B1	8/2012	
	7,791,155 B2	9/2010		8,255,027 B2		Al-Ali et al.
	7,801,581 B2	9/2010		8,255,028 B2 8,260,577 B2		Al-Ali et al. Weber et al.
	7,809,418 B2 7,822,452 B2	10/2010	Xu Schurman et al.	8,265,723 B1		McHale et al.
	RE41,912 E	11/2010		8,274,360 B2		Sampath et al.
	7,844,313 B2		Kiani et al.	8,280,473 B2 8,289,130 B2	10/2012	Al-Ali Nakajima et al.
	7,844,314 B2 7,844,315 B2	11/2010 11/2010		8,301,217 B2		Al-Ali et al.
	7,862,523 B2		Ruotoistenmaki	8,306,596 B2	11/2012	Schurman et al.
	7,865,222 B2		Weber et al.	8,310,336 B2		Muhsin et al. Al-Ali et al.
	7,869,849 B2		Ollerdessen et al. Weber et al.	8,315,683 B2 RE43,860 E	12/2012	
	7,873,497 B2 7,880,606 B2	2/2011		8,280,469 B2	12/2012	Baker, Jr.
	7,880,626 B2	2/2011	Al-Ali et al.	8,332,006 B2		Naganuma et al.
	7,884,314 B2		Hamada	8,337,403 B2 8,346,330 B2		Al-Ali et al. Lamego
	7,891,355 B2 7,894,868 B2		Al-Ali et al. Al-Ali et al.	8,353,842 B2	1/2013	Al-Ali et al.
	7,899,506 B2	3/2011	Xu et al.	8,355,766 B2	1/2013	MacNeish, III et al.
	7,899,507 B2		Al-Ali et al.	8,359,080 B2 8,364,223 B2		Diab et al. Al-Ali et al.
	7,899,510 B2 7,899,518 B2		Hoarau Trepagnier et al.	8,364,226 B2		Diab et al.
	7,904,132 B2	3/2011	Weber et al.	8,364,389 B2		Dorogusker et al.
	7,909,772 B2		Popov et al.	8,374,665 B2 8,380,272 B2		Lamego Barrett et al.
	7,910,875 B2 7,919,713 B2	3/2011 4/2011	Al-Ali et al.	8,385,995 B2		Al-ali et al.
	7,937,128 B2	5/2011		8,385,996 B2		Smith et al.
	7,937,129 B2		Mason et al.	8,388,353 B2 8,399,822 B2	3/2013	Kiani et al.
	7,937,130 B2 7,941,199 B2	5/2011	Diab et al.	8,401,602 B2	3/2013	
	7,951,086 B2		Flaherty et al.	8,405,608 B2		Al-Ali et al.
	7,957,780 B2		Lamego et al.	8,414,499 B2 8,418,524 B2	4/2013 4/2013	Al-Ali et al.
	7,962,188 B2 7,962,190 B1		Kiani et al. Diab et al.	8,421,022 B2		Rozenfeld
	7,976,472 B2	7/2011		8,423,106 B2		Lamego et al.
	7,988,637 B2	8/2011		8,428,674 B2 8,428,967 B2		Duffy et al. Olsen et al.
	7,990,382 B2 7,991,446 B2	8/2011	Kiani Ali et al.	8,428,967 B2 8,430,817 B1		Al-Ali et al.
	8,000,761 B2	8/2011		8,437,825 B2		Dalvi et al.
	8,008,088 B2	8/2011	Bellott et al.	8,452,364 B2		Hannula et al.
	RE42,753 E		Kiani-Azarbayjany et al.	8,455,290 B2 8,457,703 B2	6/2013 6/2013	Siskavich
	8,019,400 B2 8,028,701 B2		Diab et al. Al-Ali et al.	8,457,707 B2	6/2013	
	8,029,765 B2		Bellott et al.	8,463,349 B2		Diab et al.
	8,036,727 B2	10/2011	Schurman et al.	8,466,286 B2		Bellot et al.
	8,036,728 B2		Diab et al.	8,471,713 B2		Poeze et al. Kiani et al.
	8,044,998 B2 8,046,040 B2	10/2011	Ali et al.	8,473,020 B2 8,483,787 B2		Al-Ali et al.
	0,0 10,0 10 102	10,2011		5,105,707 DZ	2013	

(56)		Referen	ces Cited	8,801,613 E 8,821,397 E		Al-Ali et al. Al-Ali et al.
	U	J.S. PATENT	DOCUMENTS	8,821,415 E	9/2014	Al-Ali et al.
			****	8,830,449 E 8,831,700 E		Lamego et al. Schurman et al.
	8,489,364 H 8,498,684 H		Weber et al. Weber et al.	8,838,210 E		Wood et al.
	8,504,128 H		Blank et al.	8,840,549 E	9/2014	Al-Ali et al.
	8,509,867 H		Workman et al.	8,847,740 E 8,849,365 E		Kiani et al. Smith et al.
	8,515,509 H 8,523,781 H		Bruinsma et al.	8,852,094 E		Al-Ali et al.
	8,529,301 H	9/2013	Al-Ali et al.	8,852,994 E		Wojtczuk et al.
	8,532,727 H 8,532,728 H		Ali et al. Diab et al.	8,868,147 E 8,868,150 E		Stippick et al. Al-Ali et al.
	D692,145 S		Al-Ali et al.	8,870,792 E	32 10/2014	Al-Ali et al.
	8,547,209 H		Kiani et al.	8,886,271 E 8,888,539 E		Kiani et al. Al-Ali et al.
	8,548,548 H 8,548,549 H		Al-Ali Schurman et al.	8,888,708 E	32 11/2014	Diab et al.
	8,548,550 H	32 10/2013	Al-Ali et al.	8,892,180 E		Weber et al.
	8,560,032 H 8,560,034 H		Al-Ali et al. Diab et al.	8,897,847 E 8,909,310 E		Lamego et al.
	8,570,167 H			8,911,377 E	32 12/2014	Al-Ali
	8,570,503 H		Vo et al.	8,912,909 E 8,920,317 E		Al-Ali et al. Al-Ali et al.
	8,571,617 H 8,571,618 H		Reichgott et al. Lamego et al.	8,921,699 E		Al-Ali et al.
	8,571,619 H	32 10/2013	Al-Ali et al.	8,922,382 E		Al-Ali et al.
	8,577,431 H 8,581,732 H		Lamego et al. Al-Ali et al.	8,929,964 E 8,942,777 E		Al-Ali et al. Diab et al.
	8,584,345 H		Al-Ali et al.	8,948,834 E	32 2/2015	Diab et al.
	8,588,880 H		Abdul-Hafiz et al.	8,948,835 E 8,965,471 E		Diab Lamego
	8,600,467 H 8,602,971 H		Al-Ali et al.	8,983,564 E		
	8,606,342 H	32 12/2013	Diab	8,989,831 E		Al-Ali et al.
	8,615,290 H		Lin et al.	8,996,085 E 8,998,809 E		Kiani et al. Kiani
	8,626,255 H 8,630,691 H		Al-Ali et al. Lamego et al.	9,028,429 E	32 5/2015	Telfort et al.
	8,634,889 H	32 1/2014	Al-Ali et al.	9,037,207 E 9,060,721 E		Al-Ali et al. Reichgott et al.
	8,641,631 H 8,652,060 H		Sierra et al.	9,066,666 E		
	8,655,004 H	32 2/2014	Prest et al.	9,066,680 E		Al-Ali et al.
	8,663,107 H 8,666,468 H			9,072,437 E 9,072,474 E		Paalasmaa Al-Ali et al.
	8,667,967 H		Al-Ali et al.	9,078,560 E	32 7/2015	Schurman et al.
	8,670,811 H		O'Reilly	9,081,889 E 9,084,569 E		Ingrassia, Jr. et al. Weber et al.
	8,670,814 H 8,676,286 H		Diab et al. Weber et al.	9,095,316 E	8/2015	Welch et al.
	8,682,407 H	3/2014	Al-Ali	9,106,038 E		Telfort et al. Telfort et al.
	RE44,823 H RE44,875 H		Parker Kiani et al.	9,107,625 E 9,107,626 E		Al-Ali et al.
	8,688,183 H		Bruinsma et al.	9,113,831 E	8/2015	
	8,690,799 H		Telfort et al.	9,113,832 E 9,119,595 E		Al-Alı Lamego
	8,700,111 H 8,700,112 H		LeBoeuf et al. Kiani	9,131,881 E	9/2015	Diab et al.
	8,702,627 H	32 4/2014	Telfort et al.	9,131,882 E		Al-Ali et al. Al-Ali
	8,706,179 H 8,712,494 H		Parker MacNeish, III et al.	9,131,883 E 9,131,917 E		Telfort et al.
	8,715,206 H	32 5/2014	Telfort et al.	9,138,180 E		Coverston et al.
	8,718,735 H 8,718,737 H		Lamego et al. Diab et al.	9,138,182 E 9,138,192 E		Al-Ali et al. Weber et al.
	8,718,737 I		Blank et al.	9,142,117 E	9/2015	Muhsin et al.
	8,720,249 H			9,153,112 E 9,153,121 E		Kiani et al. Kiani et al.
	8,721,541 H 8,721,542 H		Al-Ali et al. Al-Ali et al.	9,161,696 E	32 10/2015	Al-Ali et al.
	8,723,677 H	31 5/2014	Kiani	9,161,713 E		Al-Ali et al.
	8,740,792 H 8,754,776 H		Kiani et al. Poeze et al.	9,167,995 E 9,176,141 E		Lamego et al. Al-Ali et al.
	8,755,535 H		Telfort et al.	9,186,102 E	32 11/2015	Bruinsma et al.
	8,755,856 H		Diab et al.	9,192,312 E 9,192,329 E		
	8,755,872 H 8,760,517 H		Marinow Sarwar et al.	9,192,351 E		Telfort et al.
	8,761,850 H	32 6/2014	Lamego	9,195,385 E		Al-Ali et al.
	8,764,671 H 8,768,423 H		Kiani Shakespeare et al.	9,210,566 E 9,211,072 E		Ziemianska et al. Kiani
	8,771,204 H	32 7/2014	Telfort et al.	9,211,095 E	12/2015	Al-Ali
	8,777,634 H		Kiani et al.	9,218,454 E		Kiani et al.
	8,781,543 H 8,781,544 H		Diab et al. Al-Ali et al.	9,226,696 E 9,241,662 E		Al-Ali et al.
	8,781,549 I	32 7/2014	Al-Ali et al.	9,245,668 E	31 1/2016	Vo et al.
	8,788,003 H		Schurman et al.	9,259,185 E		Abdul-Hafiz et al.
	8,790,268 H	32 7/2014	Al-Ali	9,267,572 E	32 2/2016	Barker et al.

(56)	Referer	ices Cited	9,730,640			Diab et al.
U.S	. PATENT	DOCUMENTS	9,743,887 9,749,232			Al-Ali et al. Sampath et al.
			9,750,442		9/2017	Olsen Smith et al.
9,277,880 B2 9,289,167 B2		Poeze et al. Diab et al.	9,750,443 9,750,461		9/2017	
9,295,421 B2	3/2016	Kiani et al.	9,775,545			Al-Ali et al.
9,307,928 B1 9,311,382 B2		Al-Ali et al. Varoglu et al.	9,775,546 9,775,570		10/2017	Diab et al. Al-Ali
9,323,894 B2	4/2016		9,778,079	B1	10/2017	Al-Ali et al.
D755,392 S		Hwang et al.	9,781,984 9,782,077			Baranski et al. Lamego et al.
9,326,712 B1 9,333,316 B2	5/2016 5/2016		9,782,110	B2	10/2017	Kiani
9,339,220 B2	5/2016	Lamego et al.	9,787,568 9,788,735		10/2017 10/2017	Lamego et al.
9,341,565 B2 9,351,673 B2		Lamego et al. Diab et al.	9,788,768	B2	10/2017	Al-Ali et al.
9,351,675 B2	5/2016	Al-Ali et al.	9,795,300 9,795,310		10/2017 10/2017	
9,357,665 B2 9,364,181 B2		Myers et al. Kiani et al.	9,795,358	B2		Telfort et al.
9,368,671 B2	6/2016	Wojtczuk et al.	9,795,739			Al-Ali et al.
9,370,325 B2 9,370,326 B2		Al-Ali et al. McHale et al.	9,801,556 9,801,588		10/2017 10/2017	Weber et al.
9,370,320 B2 9,370,335 B2		Al-Ali et al.	9,808,188	B1	11/2017	Perea et al.
9,375,185 B2		Ali et al.	9,814,418 9,820,691		11/2017 11/2017	Weber et al.
9,386,953 B2 9,386,961 B2		Al-Ali Al-Ali et al.	9,833,152	B2	12/2017	Kiani et al.
9,392,945 B2	7/2016	Al-Ali et al.	9,833,180 9,838,775			Shakespeare et al. Qian et al.
9,397,448 B2 9,408,542 B1		Al-Ali et al. Kinast et al.	9,839,379	B2		Al-Ali et al.
9,436,645 B2		Al-Ali et al.	9,839,381			Weber et al.
9,445,759 B1 9,466,919 B2		Lamego et al. Kiani et al.	9,847,002 9,847,749			Kiani et al. Kiani et al.
9,474,474 B2		Lamego et al.	9,848,800	B1	12/2017	Lee et al.
9,480,422 B2	11/2016		9,848,806 9,848,807			Al-Ali et al. Lamego
9,480,435 B2 9,489,081 B2	11/2016 11/2016	Anzures et al.	9,848,823	B2	12/2017	Raghuram et al.
9,492,110 B2	11/2016	Al-Ali et al.	9,861,298 9,861,304			Eckerbom et al. Al-Ali et al.
9,497,534 B2 9,510,779 B2		Prest et al. Poeze et al.	9,861,304			Weber et al.
9,517,024 B2	12/2016	Kiani et al.	9,866,671			Thompson et al.
9,526,430 B2 9,532,722 B2		Srinivas et al. Lamego et al.	9,867,575 9,867,578			Maani et al. Al-Ali et al.
9,538,949 B2		Al-Ali et al.	9,872,623	B2	1/2018	Al-Ali
9,538,980 B2		Telfort et al.	9,876,320 9,877,650	B2 B2		Coverston et al. Muhsin et al.
9,549,696 B2 9,553,625 B2		Lamego et al. Hatanaka et al.	9,877,686			Al-Ali et al.
9,554,737 B2	1/2017	Schurman et al.	9,891,079 9,895,107		2/2018	Dalvi Al-Ali et al.
9,560,996 B2 9,560,998 B2	2/2017 2/2017	Kiani Al-Ali et al.	9,893,107			Myers et al.
9,566,019 B2		Al-Ali et al.	9,913,617		3/2018	Al-Ali et al.
9,579,039 B2 9,591,975 B2		Jansen et al. Dalvi et al.	9,918,646 9,924,893			Singh Alvarado et al. Schurman et al.
9,593,969 B2	3/2017	King	9,924,897	B1	3/2018	Abdul-Hafiz
9,622,692 B2	4/2017	Lamego et al.	9,936,917 9,943,269			Poeze et al. Muhsin et al.
9,622,693 B2 D788,312 S	4/2017 5/2017	Al-Ali et al.	9,949,676	B2	4/2018	Al-Ali
9,636,055 B2	5/2017	Al-Ali et al.	9,952,095 9,955,937			Hotelling et al. Telfort
9,636,056 B2 9,649,054 B2		Al-Ali Lamego et al.	9,965,946		5/2018	
9,651,405 B1	5/2017	Gowreesunker et al.	9,980,667 D820,865			Kiani et al.
9,662,052 B2 9,668,676 B2		Al-Ali et al. Culbert	9,986,919			Muhsin et al. Lamego et al.
9,668,679 B2	6/2017	Schurman et al.	9,986,952	B2	6/2018	Dalvi et al.
9,668,680 B2		Bruinsma et al. Al-Ali	9,989,560 9,993,207			Poeze et al. Al-Ali et al.
9,668,703 B2 9,675,286 B2	6/2017		10,007,758	B2	6/2018	Al-Ali et al.
9,687,160 B2	6/2017		D822,215 D822,216			Al-Ali et al. Barker et al.
9,693,719 B2 9,693,737 B2		Al-Ali et al. Al-Ali	10,010,276			Al-Ali et al.
9,697,928 B2	7/2017	Al-Ali et al.	10,032,002			Kiani et al.
9,699,546 B2 9,700,249 B2		Qian et al. Johnson et al.	10,039,080 10,039,482			Miller et al. Al-Ali et al.
9,716,937 B2	7/2017	Qian et al.	10,052,037	B2	8/2018	Kinast et al.
9,717,425 B2		Kiani et al.	10,055,121			Chaudhri et al.
9,717,458 B2 9,723,997 B1		Lamego et al. Lamego	10,058,275 10,064,562		8/2018 9/2018	Al-Ali et al. Al-Ali
9,724,016 B1	8/2017	Al-Ali et al.	10,066,970	B2	9/2018	Gowreesunker et al.
9,724,024 B2		Al-Ali	10,076,257 10,078,052			Lin et al. Ness et al.
9,724,025 B1	8/2017	Kiani et al.	10,078,032	DΖ	9/2018	mess et al.

(56)	Refere	nces Cited		3,320 B2		Kiani et al.
-	U.S. PATENT	DOCUMENTS		5,804 B2 3,666 B2		Al-Ali et al.
),493 B2		Al-Ali et al.
10,086,138		Novak, Jr.		3,776 B2		Al-Ali Telfort et al.
10,092,200		Al-Ali et al. Kiani et al.		1,181 B1 3,844 B2		Al-Ali et al.
10,092,249 10,098,550		Al-Ali et al.		3,871 B2	2 10/2019	Al-Ali
10,098,591		Al-Ali et al.		5,038 B2		Lamego et al.
10,098,610		Al-Ali et al.		3,284 B2 3,340 B2		Al-Ali et al. Telfort et al.
D833,624 10,123,726		DeJong et al. Al-Ali et al.		0,695 B2		
10,123,726		Al-Ali et al.		1,159 B	11/2019	Lapotko et al.
10,130,291		Schurman et al.		3,107 B2		Kiani et al.
D835,282		Barker et al.	2002/004 2002/009			Alkawwas Pfeiffer et al.
D835,283 D835,284		Barker et al. Barker et al.	2002/009			Cook et al.
D835,285		Barker et al.	2003/003	6690 A		Geddes et al.
10,149,616		Al-Ali et al.	2003/015			Uchida et al.
10,154,815		Al-Ali et al.	2004/005 2004/011			Chance Spycher et al.
10,159,412 10,188,296		Lamego et al. Al-Ali et al.	2004/013		1 7/2004	Teller et al.
10,188,331		Al-Ali et al.	2005/002			Blondeau et al.
10,188,348	B2 1/2019	Kiani et al.	2005/005			
RE47,218		Ali-Ali	2005/011 2005/019			Goldreich Yamamoto et al.
RE47,244 RE47,249		Kiani et al. Kiani et al.	2006/000			Wang et al.
10,194,847		Al-Ali	2006/002			
10,194,848		Kiani et al.	2006/002 2006/016			Kiguchi et al. Reuss et al.
10,201,298 10,205,272		Al-Ali et al.	2006/016			Brady et al.
10,205,272		Kiani et al. Scruggs et al.	2006/025			Ortner et al.
10,213,108		Al-Ali	2007/007			Raridan
10,219,706		Al-Ali	2007/010 2007/014			Abreu Laakkonen
10,219,746 10,226,187		McHale et al. Al-Ali et al.	2007/020			Leclerc et al.
10,226,576		Kiani	2007/023	8955 A	1 10/2007	Tearney et al.
10,231,657	B2 3/2019	Al-Ali et al.	2007/024			Pesach et al.
10,231,670		Blank et al	2007/026 2007/029			Sliwa et al.
10,231,676 RE47,353		Al-Ali et al. Kiani et al.	2008/000			Walker et al.
10,251,585		Al-Ali et al.	2008/001			Bernreuter
10,251,586		Lamego	2008/007 2008/008			Hoarau Debreczeny
10,255,994 10,258,265		Sampath et al. Poeze et al.	2008/003			Yamamoto
10,258,266		Poeze et al.	2008/013			
10,271,748	B2 4/2019	Al-Ali	2008/019			Jaffe et al.
10,278,626		Schurman et al.	2008/022 2008/022			Baker et al. Baker
10,278,648 10,279,247		Al-Ali et al. Kiani	2009/003			
10,292,628		Poeze et al.	2009/004			Tschautscher et al.
10,292,657		Abdul-Hafiz et al.	2009/012 2009/016			Xiao et al. Barrett et al.
10,292,664 10,299,708		Al-Ali Poeze et al.	2009/017			Ma et al.
10,299,709		Perea et al.	2009/018			
10,305,775	B2 5/2019	Lamego et al.	2009/023			Gaspard et al.
10,307,111 10,325,681		Muhsin et al.	2009/024 2009/024			Suzuki et al. Lamego et al.
10,325,681		Sampath et al. Triman et al.	2009/025			Johnson et al.
10,327,713		Barker et al.	2009/027			
10,332,630		Al-Ali	2009/027 2009/027			
10,335,033 10,335,068		Al-Ali Poeze et al.	2009/027			Crowe et al.
10,335,072		Al-Ali et al.	2010/000		1 1/2010	Vo et al.
10,342,470	B2 7/2019	Al-Ali et al.	2010/003			Poeze et al.
10,342,487		Al-Ali et al.	2010/003 2010/011			Yang et al.
10,342,497 10,349,895		Al-Ali et al. Telfort et al.	2010/013			Ozawa et al.
10,349,898		Al-Ali et al.	2010/021			Holley et al.
10,354,504		Kiani et al.	2010/030			Bedard et al.
10,357,206 10,357,209		Weber et al. Al-Ali	2011/000 2011/000			Kiani et al. Al-Ali et al.
10,337,209	B2 7/2019	Sampath et al.	2011/000			Iwamiya et al.
10,368,787		Reichgott et al.	2011/008			Poeze et al.
10,376,190	B1 8/2019	Poeze et al.	2011/008			Guyon et al.
10,376,191		Poeze et al.	2011/010			Kiani et al.
10,383,520 10,383,527		Wojtczuk et al. Al-Ali	2011/010 2011/012			Yu et al. Telfort et al.
10,383,327		Muhsin et al.	2011/012			Welch et al.
10,500,120	0,2017		2011/020			

(56)	Referer	nces Cited	2014/0330099 2014/0333440		11/2014 11/2014	Al-Ali et al.
U.S	. PATENT	DOCUMENTS	2014/0335440		11/2014	Shakespeare et al.
			2014/0343436		11/2014	
2011/0213212 A1 2011/0230733 A1		Al-Ali Al-Ali	2014/0357966 2015/0005600			Al-Ali et al. Blank et al.
2011/0230733 A1 2011/0237911 A1		Lamego et al.	2015/0011907	$\mathbf{A}1$	1/2015	Purdon et al.
2012/0059267 A1		Lamego et al.	2015/0018650 2015/0032029			Al-Ali et al. Al-Ali et al.
2012/0165629 A1 2012/0179006 A1		Merritt et al. Jansen et al.	2015/0032029			Dalvi et al.
2012/0209084 A1		Olsen et al.	2015/0073235			Kateraas et al.
2012/0227739 A1	9/2012		2015/0080754 2015/0087936			Purdon et al. Al-Ali et al.
2012/0283524 A1 2012/0296178 A1		Kiani et al. Lamego et al.	2015/0094546		4/2015	Al-Ali
2012/0319816 A1	12/2012	Al-Ali	2015/0099950			Al-Ali et al.
2012/0330112 A1 2013/0023775 A1		Lamego et al. Lamego et al.	2015/0101844 2015/0106121			Al-Ali et al. Muhsin et al.
2013/0041591 A1		Lamego et al.	2015/0173671			Paalasmaa et al.
2013/0045685 A1	2/2013		2015/0196249 2015/0216459			Brown et al. Al-Ali et al.
2013/0046204 A1 2013/0060147 A1		Lamego et al. Welch et al.	2015/0238722		8/2015	Al-Ali
2013/0096405 A1	4/2013	Garfio	2015/0255001			Haughav et al.
2013/0096936 A1 2013/0190581 A1		Sampath et al. Al-Ali et al.	2015/0257689 2015/0281424			Al-Ali et al. Vock et al.
2013/0190381 A1 2013/0197328 A1		Diab et al.	2015/0318100	A1	11/2015	Rothkopf et al.
2013/0211214 A1	8/2013		2015/0351697 2015/0351704			Weber et al. Kiani et al.
2013/0243021 A1 2013/0296672 A1		Siskavich O'Neil et al.	2015/0366472		12/2015	
2013/0324808 A1		Al-Ali et al.	2015/0366507		12/2015	
2013/0331660 A1		Al-Ali et al.	2015/0374298 2015/0380875			Al-Ali et al. Coverston et al.
2013/0331670 A1 2013/0338461 A1	12/2013 12/2013	Lamego et al.	2016/0000362			Diab et al.
2014/0012100 A1	1/2014	Al-Ali et al.	2016/0007930			Weber et al.
2014/0034353 A1 2014/0051953 A1		Al-Ali et al. Lamego et al.	2016/0019360 2016/0023245			Pahwa et al. Zadesky et al.
2014/0051933 A1 2014/0058230 A1		Abdul-Hafiz et al.	2016/0029932	A1	2/2016	Al-Ali
2014/0077956 A1		Sampath et al.	2016/0029933 2016/0038045			Al-Ali et al. Shapiro
2014/0081100 A1 2014/0081175 A1		Muhsin et al. Telfort	2016/0038043		2/2016	Kiani
2014/0094667 A1	4/2014	Schurman et al.	2016/0051157		2/2016	
2014/0100434 A1		Diab et al.	2016/0051158 2016/0051205		2/2016 2/2016	Silva Al-Ali et al.
2014/0114199 A1 2014/0120564 A1		Lamego et al. Workman et al.	2016/0058302	A1	3/2016	Raghuram et al.
2014/0121482 A1	5/2014	Merritt et al.	2016/0058309 2016/0058312		3/2016	Han Han et al.
2014/0121483 A1 2014/0127137 A1	5/2014 5/2014	Kiani Bellott et al.	2016/0058338		3/2016	
2014/0129702 A1		Lamego et al.	2016/0058356			Raghuram et al.
2014/0135588 A1		Al-Ali et al.	2016/0058370 2016/0066823		3/2016	Raghuram et al. Al-Ali et al.
2014/0142401 A1 2014/0163344 A1	6/2014	Al-Ali et al. Al-Ali	2016/0066824	$\mathbf{A}1$	3/2016	Al-Ali et al.
2014/0163402 A1	6/2014	Lamego et al.	2016/0066879 2016/0071392		3/2016	Telfort et al. Hankey et al.
2014/0166076 A1 2014/0171146 A1		Kiani et al. Ma et al.	2016/0071392		3/2016	Kiani et al.
2014/0171763 A1	6/2014		2016/0073967			Lamego et al.
2014/0180154 A1		Sierra et al.	2016/0081552 2016/0095543			Wojtczuk et al. Telfort et al.
2014/0180160 A1 2014/0187973 A1		Brown et al. Brown et al.	2016/0103598	$\mathbf{A}1$	4/2016	Al-Ali et al.
2014/0194709 A1		Al-Ali et al.	2016/0113527 2016/0143548		4/2016 5/2016	Al-Ali et al.
2014/0194711 A1 2014/0194766 A1		Al-Ali Al-Ali et al.	2016/0154950			Nakajima et al.
2014/0206963 A1		Al-Ali	2016/0157780			Rimminen et al.
2014/0213864 A1		Abdul-Hafiz et al.	2016/0166210 2016/0192869		6/2016 7/2016	Al-Alı Kiani et al.
2014/0243627 A1 2014/0266790 A1		Diab et al. Al-Ali et al.	2016/0196388		7/2016	Lamego
2014/0275808 A1	9/2014	Poeze et al.	2016/0197436			Barker et al.
2014/0275835 A1 2014/0275871 A1		Lamego et al. Lamego et al.	2016/0213281 2016/0213309			Eckerbom et al. Sannholm et al.
2014/0275871 A1 2014/0275872 A1		Merritt et al.	2016/0228043	A1	8/2016	O'Neil et al.
2014/0275881 A1		Lamego et al.	2016/0256058 2016/0256082			Pham et al. Ely et al.
2014/0288400 A1 2014/0296664 A1		Diab et al. Bruinsma et al.	2016/0250082		9/2016	•
2014/0303520 A1	10/2014	Telfort et al.	2016/0270735	$\mathbf{A}1$	9/2016	Diab et al.
2014/0316217 A1		Purdon et al.	2016/0283665			Sampath et al. Han et al.
2014/0316218 A1 2014/0316228 A1		Purdon et al. Blank et al.	2016/0287181 2016/0287786		10/2016	
2014/0323825 A1	10/2014	Al-Ali et al.	2016/0296173	A1	10/2016	Culbert
2014/0323897 A1		Brown et al.	2016/0296174			Isikman et al.
2014/0323898 A1 2014/0330098 A1		Purdon et al. Merritt et al.	2016/0310027 2016/0314260		10/2016 10/2016	
201.000000 711	11.2017				10.2010	

U.S. PATENT DOCUMENTS 2018/012489 A 1 52018 A-Ali et al. 2016/012488 A1 112016 Ober 2018/012490 A1 52018 Weber et al. 2016/037889 A1 112016 Ober 2018/012490 A1 52018 Weber et al. 2016/037889 A1 122016 Barbi et al. 2016/037889 A1 122016 Barbi et al. 2016/037897 A1 122016 Rothbopf 2018/01490 A1 52018 Kinai et al. 2016/037897 A1 122016 Rothbopf 2018/01490 A1 122017 Date et al. 2017/0007183 A1 122017 Date et al. 2017/00024748 A1 122017 Date et al. 2017/00024748 A1 122017 Date et al. 2017/00024748 A1 122017 Mushis 2017/00024748 A1 122017 Al-Ali et al. 2017/00024748 A1 122017 Al-Ali et al. 2017/00024748 A1 122017 Cate et al. 2017/00024748 A1 122017 Cate et al. 2017/000488 A1 2018 Al-Ali et al. 2017/000488 A1 2018 Al-Ali et al. 2017/000488 A1 2019 Al-Ali et al. 2017/0005882 A1 32017 Al-Ali et al. 2017/0008883 A1 32017 Cate et al. 2017/0008689 A1 32017 Al-Ali et al. 2017/0008689 A1 32017 Mermel et al. 2017/0008689 A1 32017 Al-Ali et al. 2017/0008689 A1 32017 Mermel et al. 2017/0008691 A1 22017 Mermel et al. 2017/0008691 A1 32017 Mermel et al. 2017/0008691 A1 32018 Mermel et al. 2017/0008691 A1 32018 Mermel et al. 2017/0008691 A1 32018 Mermel et al. 2017/	(56) R	deferences Cited	2018/0110469			Maani et al.
2016/03/2488 A1	U.S. PA	TENT DOCUMENTS				
2016/03/17/3 Al 12/2016 Oalry's et al. 2018/01/46/90 Al 5/2018 Kaini et al. 2016/03/17/3 Al 12/2016 Oalry's et al. 2018/01/46/90 Al 5/2018 Kaini et al. 2016/03/87/3 Al 12/2017 Oalry's et al. 2018/01/34/4 Al 6/2018 Kuini et al. 2016/03/87/3 Al 12/2017 Al-Ali et al. 2018/01/34/4 Al 6/2018 Eckerbom et al. 2018/01/34/4 Al 6/2018 Eckerbom et al. 2018/01/34/4 Al 6/2018 Calledom et al. 2018/01/34/4 Al 6/2018 Called	0.0.11					
2016/037809 Al 12/2016 Rothkopf 2018/0153418 Al 62/018 Saliva et al. 2016/037809 Al 12/2016 Rothkopf 2018/0153418 Al 62/018 Saliva et al. 2016/037809 Al 12/2017 Al-Aii et al. 2018/0153442 Al 62/018 Saliva et al. 2017/00097183 Al 12/2017 Dusan et al. 2018/0153447 Al 62/018 Kami et al. 2018/0153447 Al 62/018 Kami et al. 2018/0153447 Al 62/018 Kami et al. 2018/0163447 Al 62/018 Kami et al. 2018/016343 Al 62/018 Kami et al. 2018/016343 Al 62/018 Kami et al. 2018/016483 Al 72/018 Kami et al. 2018/016493 Al 72/018 Ka						
2016/037809 Al 12/2016 Roshkopf 2018/015344 Al 62018 Schrömer al 2016/037807 Al 12/2016 Roshkopf 2018/015344 Al 62018 Schrömer al 2017/0000384 Al 12/2017 Dusan et al 2018/015344 Al 62018 Al-Ali et al 2018/015344 Al 62018 Al-Ali et al 2017/000183 Al 12/2017 Prest et al 2018/015344 Al 62018 Al-Ali et al 2017/0001488 Al 12/2017 Disb et al 2018/015344 Al 62018 Al-Ali et al 2017/0001488 Al 22/2017 Baider 2018/016340 Al 62/2018 Al-Ali et al 2017/0001488 Al 22/2017 Muhsin et al 2018/016340 Al 62/2018 Al-Ali et al 2017/00055887 Al 22/2017 Al-Ali et al 2018/016340 Al 62/2018 Al-Ali et al 2018/016340 Al 62/2018 Al-Ali et al 2018/016340 Al 62/2018 Al-Ali et al 2018/016340 Al 72/2018 Schrömer al 2017/00055887 Al 32/2017 Al-Ali et al 2018/0169293 Al 72/2018 Schrömer al 2017/0006689 Al 32/2017 Al-Ali et al 2018/016934 Al 72/2018 Schrömer al 2017/0006687 Al 32/2017 Schrömer al 2018/000675 Al 72/2018 Al-Ali et al 2018/0169354 Al 72/20						
2016/0007889 Al 2017 2018 201			2018/0153418	A1	6/2018	Sullivan et al.
2017/00/07183 Al 1/2017 Dusan et al. 2018/01/5344 Al 62018 Al-Ali et al. 2018/01/535 Al 7/2018 Al-Ali	2016/0378071 A1 12	2/2016 Rothkopf				
2017/0910858 Al 1/2017 Prest et al. 2018/015448 Al 62018 Weber et al. 2017/0916498 Al 1/2017 Disb et al. 2018/016499 Al 62018 Al-Alit et al. 2018/016493 Al 62018 Al-Alit et al. 2018/0164853 Al 62018 Al-Alit et al. 2018/0164853 Al 62018 Al-Alit et al. 2018/0165887 Al 3/2017 Al-Alit et al. 2018/016490 Al 62018 Al-Alit et al. 2018/0165887 Al 3/2017 Al-Alit et al. 2018/0162924 Al 7/2018 Al-Alit et al. 2018/0165887 Al 3/2017 Al-Alit et al. 2018/0169234 Al 7/2018 Al-Alit et al. 2018/016938 Al 7/2018 A						
2017/0014938 Al 1/2017 Diab et al. 2018/016149 Al. 6/2018 Al-Ali et al. 2017/00042488 Al 2/2017 Haider 2018/0168493 Al. 6/2018 Al-Ali et al. 2018/0168491 Al. 7/2018 Kaini 2017/00055887 Al. 3/2017 Al-Ali et al. 2018/0168491 Al. 7/2018 Kaini 2017/0005588 Al. 3/2017 Al-Ali et al. 2018/012925 Al. 7/2018 Al-Ali et al. 2018/012935 Al. 7/2018 Al-Ali et al. 2018/0126679 Al. 7/2018 Al-Ali et al. 2018/0126679 Al. 7/2018 Al-Ali et al. 2018/012663 Al. 7/2018 Al-Ali et al. 2018/012638 Al. 7/2018 Al-Ali et al. 2018/012639 Al. 8/2018 Al-Ali et						
2017/0043488 Al 2/2017 Mahsin 2018/0168491 Al 6/2018 Al-Ali cal 2018/0169393 Al 7/2018 Kain 2017/0055887 Al 3/2017 Al-Ali cal 2018/0169393 Al 7/2018 Kain 2017/0065887 Al 3/2017 Al-Ali cal 2018/0169393 Al 7/2018 Al-Ali 2018/016931 Al 7/2018 Al-Ali 2018/016931 Al 7/2018 Al-Ali 2017/0068689 Al 3/2017 Al-Ali cal 2018/016931 Al 7/2018 Al-Ali 2017/0086673 Al 3/2017 Al-Ali cal 2018/0266793 Al 7/2018 Al-Ali 2017/008673 Al 3/2017 Al-Ali cal 2018/0266793 Al 7/2018 Al-Ali 2017/008673 Al 3/2017 Al-Ali cal 2018/0266793 Al 7/2018 Al-Ali 2017/008673 Al 3/2017 Al-Ali cal 2018/0266793 Al 7/2018 Al-Ali 2017/008673 Al 3/2017 Al-Ali cal 2018/0266793 Al 7/2018 Al-Ali 2017/008673 Al 3/2017 Al-Ali cal 2018/0216370 Al 8/2018 Al-Ali cal 2018/0216370 Al 8/2018 Al-Ali cal 2018/0216370 Al 8/2018 Al-Ali cal 2018/021892 Al 8/2018 Al-Ali cal 2018/021893 Al 8/2018 Al-Ali cal	2017/0014083 A1	1/2017 Diab et al.				
2017/0055882 Al 3/2017 Al-Ali et al. 2018/0169924 Al 7/2018 Al-Ali 2017/0055886 Al 3/2017 Al-Ali et al. 2018/0109254 Al 7/2018 Al-Ali 2017/0058896 Al 3/2017 Al-Ali et al. 2018/0109514 Al 7/2018 Shreim et al. 2017/0084133 Al 3/2017 Cardinali et al. 2018/0109514 Al 7/2018 Shreim et al. 2017/0086738 Al 3/2017 Shui et al. 2018/0206795 Al 7/2018 Al-Ali 2017/0086734 Al 3/2017 Shui et al. 2018/0206795 Al 7/2018 Pauley et al. 2017/0086742 Al 3/2017 Harrison-Noonan et al. 2018/0206815 Al 7/2018 Telfort 2017/0086743 Al 3/2017 Tue et al. 2018/0215883 Al 7/2018 Telfort 2017/0043284 Al 5/2017 Tue et al. 2018/0215893 Al 7/2018 Shight et al. 2017/0143281 Al 5/2017 Shai et al. 2018/0215390 Al 8/2018 Shight et al. 2017/0143284 Al 6/2017 Al-Ali et al. 2018/021590 Al 8/2018 Shight et al. 2017/0145620 Al 6/2017 Al-Ali et al. 2018/021894 Al 8/2018 Show et al. 2017/0145624 Al 6/2017 Al-Ali et al. 2018/021894 Al 8/2018 Show et al. 2017/0145624 Al 6/2017 Al-Ali et al. 2018/021891 Al 8/2018 Show et al. 2017/0126494 Al 7/2017 Al-Ali et al. 2018/021891 Al 8/2018 Show et al. 2017/0126494 Al 7/2017 Al-Ali et al. 2018/021891 Al 8/2018 Show et al. 2017/0126494 Al 7/2017 Al-Ali et al. 2018/021891 Al 8/2018 Show et al. 2017/0126494 Al 7/2017 Al-Ali et al. 2018/024923 Al 8/2018 Mubsin et al. 2017/0218979 Al 8/2017 Shreim et al. 2018/024923 Al 8/2018 Mubsin et al. 2017/0218979 Al 9/2017 Shreim et al. 2018/024923 Al 8/2018 Mubsin et al. 2017/0218979 Al 9/2017 Al-Ali et al. 2018/024923 Al 8/2018 Mubsin et al. 2017/0218979 Al 9/2017 Al-Ali et al. 2018/024929 Al 18/2018 Mubsin et al. 2017/0218979 Al 1/2017 Al-Ali et al. 2018/024929 Al 18/2018 Ali et al. 2017/0218979 Al 1/2017 Al-Ali et al. 2018/024929 Al 18/2018 Ali et al. 2017/0218979 Al 9/2017 Ali et al. 2018/024929 Al 18/2018 Ali et al. 2017/0218979 Al 9/2017 Ali et al. 2018/024929 Al 18/2018 Ali e						
2017/0055887 Al 3/2017 Al-Ali 2018/0192935 Al 7/2018 Al-Ali 2017/0074897 Al 3/2017 Al-Ali at 2018/0192535 Al 7/2018 Alei at 2017/008689 Al 3/2017 Al-Ali at 2018/0196514 Al 7/2018 Alei at 2017/0086683 Al 3/2017 Al-Ali at 2018/0196514 Al 7/2018 Alei at 2017/0086673 Al 3/2017 Al-Ali at 2018/0206815 Al 7/2018 Alei at 2017/008673 Al 3/2017 Al-Ali at 2018/0206815 Al 7/2018 Alei at 2017/008673 Al 3/2017 Al-Ali at 2018/0214031 Al 8/2018 Al-Ali at 2017/008673 Al 3/2017 Bushnell at Al 2018/0214031 Al 8/2018 Al-Ali at 2017/004873 Al 3/2017 To tet al 2018/0214031 Al 8/2018 Al-Ali at 2017/0147774 Al 5/2017 Al-Ali at 2018/0216370 Al 8/2018 Al-Ali at 2017/014774 Al 5/2017 Al-Ali at 2018/0216370 Al 8/2018 Al-Ali at 2017/014774 Al 5/2017 Al-Ali at 2018/021872 Al 8/2018 Al-Ali at 2017/014774 Al 5/2017 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2017/014774 Al 5/2017 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2017/014774 Al 5/2017 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2017/014774 Al 5/2017 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2017/0128516 Al 8/2017 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2017/0128516 Al 8/2017 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2017/0128516 Al 8/2017 Al-Ali at 2018/0218734 Al 8/2018 Al-Ali at 2017/0128516 Al 8/2018 Al-Ali at 2018/012733 Al 8/2018 Al-Ali at 2017/0128516 Al 8/2018 Al-Ali at 2018/012733 Al 8/2018 Al-Ali at 2017/0128516 Al 8/2018 Al-Ali at 2018/012733 Al 8/2018 Al-Ali at 2017/0128516 Al 2017/0128516 Al 2017/012851						
2017/00/4897 Al 3/2017 Mermel et al. 2018/01995/14 Al 7/2018 Allec et al. 2018/01995/14 Al 7/2018 Allec et al. 2018/01995/14 Al 7/2018 All-Ali 2018/01995/14 Al 7/2018 All-Ali 2018/01995/14 Al 7/2018 All-Ali 2018/01908/14 Al 7/2018 All-Ali 2018/01908/14 Al 7/2018 All-Ali 2018/01908/14 Al 3/2017 All-Ali et al. 2018/0206815 Al 7/2018 Al-Ali 2018/01908/14 Al 3/2017 Bushnell et al. 2018/021493 Al Al 8/2018 Al-Ali et al. 2018/021493 Al 8/2018 Al-Ali et al. 2018/022596 Al 8/2018 Al-Ali et al. 2018/024593 Al 1/2018 Al-Ali et al. 2018/024593 Al 1/2018 Al-Ali et al. 2018/024593 Al 1/2018 Al-Ali et al. 2018/034593 Al 1/2018 Al-Ali et al. 2018/034593 Al 1/2018 Al-Ali et a						
2017/09/84133 Al 3/2017 Cardinali et al. 2018/01/9871 Al 7/2018 Paulcy et al. 2017/09/86723 Al 3/2017 Shoit et al. 2018/02/08753 Al 7/2018 Al-Ali color 2017/09/86724 Al 3/2017 Harrison-Noonan et al. 2018/02/08/15 Al 7/2018 Al-Ali color 2017/09/86743 Al 3/2017 Harrison-Noonan et al. 2018/02/18/33 Al 7/2018 Al-Ali color 2017/09/86743 Al 3/2017 Harrison-Noonan et al. 2018/02/18/33 Al 7/2018 Al-Ali color 2017/09/86743 Al 3/2017 Harrison-Noonan et al. 2018/02/18/37 Al-Ali color 2017/09/8774 Al-7/2017 Tu et al. 2018/02/18/370 Al-3/2018 Kiani et al. 2018/02/18/370 Al-3/2018 Kiani et al. 2018/02/18/370 Al-3/2018 Al-Ali color 2017/01/18/38 Al 5/2017 Culbert et al. 2018/02/28/96 Al 3/2018 Al-Ali color 2017/01/18/38 Al 6/2017 Al-Ali color 2017/01/18/38 Al-Ali color 2017/01/18/38 Al-3/2018 Al-Ali color 2017/01/18/38 Al-Ali color 2017/01/18/38 Al-3/2018 Al-Ali color 2017/01/18/38 Al-Ali colo						
2017/086689 A1 3/2017 Shui et al. 2018/0206915 A1 7/2018 Al-Ali						
2017/0085742 Al 32017 Harrison-Noonan et al. 2018/021588 Al 7/2018 Al-Ali 2017/0084745 Al 32017 Bushnell et al. 2018/0214090 Al 82018 Al-Ali et al. 2017/01084774 Al 32017 Tu et al. 2018/0214090 Al 82018 Al-Ali et al. 2017/0147774 Al 5/2017 Kiani 2018/0218792 Al 8/2018 Al-Ali et al. 2017/0164884 Al 6/2017 Culbert et al. 2018/0228414 Al 8/2018 Shao et al. 2017/0164835 Al 6/2017 Al-Ali et al. 2018/0228414 Al 8/2018 Shao et al. 2017/0196464 Al 7/2017 Lansen et al. 2018/0238734 Al 8/2018 Balvi 2017/0196467 Al 7/2017 Lansen et al. 2018/02438734 Al 8/2018 Balvi 2017/0128916 Al 8/2017 Sampath et al. 2018/0242921 Al 8/2018 Al-Ali et al. 2017/023816 Al 8/2017 Sampath et al. 2018/0242921 Al 8/2018 Al-Ali et al. 2017/0248446 Al 8/2017 Shreim et al. 2018/0242926 Al 8/2018 Al-Ali et al. 2017/0251975 Al 9/2017 Shreim et al. 2018/0247932 Al 9/2018 Al-Ali et al. 2017/0231091 Al 9/2017 Shreim et al. 2018/0247932 Al 9/2018 Al-Ali et al. 2017/0231091 Al 9/2017 Al-Ali et al. 2018/0247932 Al 9/2018 Al-Ali et al. 2017/0231091 Al 9/2017 Al-Ali et al. 2018/0247932 Al 9/2018 Al-Ali et al. 2017/0231091 Al 1/2017 Al-Ali et al. 2018/0256087 Al 9/2018 Al-Ali et al. 2017/0231092 Al 1/2017 Al-Ali et al. 2018/0256087 Al 9/2018 Al-Ali et al. 2017/0331091 Al 1/2017 Al-Ali et al. 2018/0256087 Al 9/2018 Al-Ali et al. 2017/0330774 Al 1/2017 Al-Ali et al. 2018/0330852 Al 1/2018 Al-Ali et al. 2017/0330774 Al 1/2017 Al-Ali et al. 2018/0330852 Al 1/2018 Al-Ali et al. 2017/0330754 Al 1/2017 Al-Ali et al. 2018/0330852 Al 1/2018 Al-Ali et al. 2017/0330754 Al 1/2017 Al-Ali et al. 2018/033085 Al 1/2018 Al-Ali et al. 2017/0330754 Al 1/2017 Al-Ali et al. 2018/0330852 Al 1/2018 Al-Ali et al. 2017/						
2017/0086745 Al 32017 Bushnell et al. 2018/0214031 Al 8/2018 Kiani et al. 2017/0086745 Al 32017 Tu et al. 2018/0216370 Al 8/2018 Shighing et al. 2017/0143281 Al 5/2017 Cilbert et al. 2018/0216370 Al 8/2018 Shighing et al. 2017/014374 Al 5/2017 Cilbert et al. 2018/0218792 Al 8/2018 Shighing et al. 2017/0136620 Al 6/2017 Cilbert et al. 2018/02238718 Al 8/2018 Al-Ali et al. 2018/02388718 Al 8/2018 Shao et al. 2017/0136821 Al 6/2017 Al-Ali et al. 2018/02388718 Al 8/2018 Shao et al. 2018/02388718 Al 8/2018 Shao et al. 2018/024853 Al 8/2018 Shao et al. 2018/0242853 Al 8/2018 Shao et al. 2018/0242853 Al 8/2018 Shao et al. 2018/0242853 Al 8/2018 Shao et al. 2018/0242923 Al 8/2018 Shao et al. 2018/024923 Al 8/2018 Shao et al. 2018/025996 Al 8/2018 Shao e						
2017/004450 A1 3/2017 To et al. 2018/0214690 A1 8/2018 Al-Ali et al. 2017/0147774 A1 5/2017 Olsen 2018/021670 A1 8/2018 Biguro et al. 2018/0218792 Al 8/2018 Muhsin et al. 2018/0218792 Al 8/2018 Muhsin et al. 2018/0218793 Al 8/2018 Al-Ali et al. 2018/0218793 Al 8/2018 Shao et al. 2017/0164884 Al 6/2017 Al-Ali et al. 2018/0228414 Al 8/2018 Shao et al. 2017/0196464 Al 7/2017 Jamsen et al. 2018/0238734 Al 8/2018 Hotelling et al. 2018/0248783 Al 8/2018 Al-Ali et al. 2018/0248921 Al 8/2018 Al-Ali et al. 2018/0242921 Al 8/2018 Al-Ali et al. 2018/0242921 Al 8/2018 Al-Ali et al. 2018/0242923 Al 8/2018 Al-Ali et al. 2018/0242924 Al 8/2018 Al-Ali et al. 2018/0242924 Al 8/2018 Al-Ali et al. 2018/0242924 Al 8/2018 Al-Ali et al. 2018/024793 Al 9/2018 Al-Ali et al. 2018/024793 Al 9/2018 Al-Ali et al. 2018/0256687 Al 9/2018 Al-Ali et al. 2018/035894 Al 10/2018 Housel et al. 2018/033893 Al 10/2018 Housel et al. 2018/033893 Al 10/2018 Al-Ali et al. 2018						
2017/0147773 Al 52017 Kiani 2018/0218792 Al 8/2018 Mubsin et al. 2017/0164824 Al 62017 Culbert et al. 2018/0228414 Al 8/2018 Shao et al. 2017/0164824 Al 62017 Culbert et al. 2018/0238734 Al 8/2018 Shao et al. 2017/0196464 Al 7/2017 Jamsen et al. 2018/0238734 Al 8/2018 Shao et al. 2017/0196464 Al 7/2017 Jamsen et al. 2018/0243873 Al 8/2018 Al-Ali et al. 2017/0248516 Al 8/2017 Sampath et al. 2018/0242921 Al 8/2018 Al-Ali et al. 2017/0248516 Al 8/2017 Sampath et al. 2018/0242923 Al 8/2018 Al-Ali et al. 2017/0248790 Al 8/2017 Goversunker et al. 2018/0242923 Al 8/2018 Al-Ali et al. 2017/0248791 Al 9/2017 Shreim et al. 2018/024793 Al 8/2018 Mubsin et al. 2017/0248793 Al 9/2017 Shreim et al. 2018/0247313 Al 8/2018 Mubsin et al. 2017/0231973 Al 9/2017 Shreim et al. 2018/0247313 Al 9/2018 Al-Ali et al. 2017/023199 Al 9/2017 Alvarado et al. 2018/0247312 Al 8/2018 Mubsin et al. 2017/023199 Al 1/2017 Shreim et al. 2018/0289325 Al 9/2018 Al-Ali et al. 2017/033199 Al 1/2017 Kiani et al. 2018/0289325 Al 1/2018 Housel et al. 2017/0332976 Al 1/2017 Al-Ali et al. 2018/0380919 Al 1/2018 Housel et al. 2017/0334976 Al 1/2017 Al-Ali et al. 2018/030919 Al 1/2018 Shreim et al. 2017/0347838 Al 1/2017 Al-Ali et al. 2018/0333883 Al 1/2018 Shreim et al. 2017/0347832 Al 1/2017 Al-Ali et al. 2018/031883 Al 1/2018 Al-Ali et al. 2017/0347832 Al 1/2017 Al-Ali et al. 2018/030919 Al 1/2018 Al-Ali et al. 2017/0347832 Al 1/2017 Al-Ali et al. 2018/031883 Al 1/2018 Al-Ali et al. 2017/0347833 Al 1/2017 Al-Ali et al. 2018/0318784 Al 1/2018 Al-Ali et al. 2017/034793 Al 1/2017 Al-Ali et al. 2018/0318784 Al 1/2018 Al-Ali et al. 2017/034793 Al 1/2017 Al-Ali et al. 2018/0367874 Al 1/2018 Al-Ali						
2017/01365820 Al						
2017/0164884 Al 6/2017 Culbert et al. 2018/0228178 Al 8/2018 Dalvi 2017/0196464 Al 7/2017 Jansen et al. 2018/0238734 Al 8/2018 Dalvi 2017/0196464 Al 7/2017 Jansen et al. 2018/024823 Al 8/2018 Dalvi 2017/0245790 Al 8/2017 Sampath et al. 2018/0242921 Al 8/2018 Al-Ali et al. 2018/0242923 Al 8/2018 Al-Ali et al. 2017/0245790 Al 8/2017 Surpeath et al. 2018/0242923 Al 8/2018 Al-Ali et al. 2017/0245790 Al 8/2017 Surpeath et al. 2018/0242923 Al 8/2018 Al-Ali et al. 2017/0231974 9/2017 Shreim et al. 2018/024733 Al 8/2018 Al-Ali et al. 2017/0231974 9/2017 Shreim et al. 2018/024733 Al 8/2018 Al-Ali et al. 2017/0231974 9/2017 Alvarado et al. 2018/0245087 Al 9/2018 Muhsin et al. 2017/023024 Al 10/2017 Narasimhan et al. 2018/0259087 Al 9/2018 Muhsin et al. 2017/0332973 Al 10/2017 Klaassen et al. 2018/0259094 Al 10/2018 Muhsin et al. 2017/0332574 Al 11/2017 Al-Ali et al. 2018/0289325 Al 10/2018 Muhsin et al. 2017/0332974 Al 11/2017 Al-Ali et al. 2018/0309094 Al 10/2018 Muhsin et al. 2017/0340209 Al 11/2017 Al-Ali et al. 2018/0309094 Al 10/2018 Muhsin et al. 2017/0340209 Al 11/2017 Al-Ali et al. 2018/0310822 Al 11/2018 Muhsin et al. 2017/0340209 Al 11/2017 Al-Ali et al. 2018/0310823 Al 11/2018 Muhsin et al. 2018/0310823 Al 11/2018 Muhsin et al. 2018/0310823 Al 11/2018 Muhsin et al. 2018/0310823 Al 11/2017 Al-Ali et al. 2018/0310823 Al 11/2018 Muhsin et al. 2018/0310824 Al 11/2018 Muhsin et al. 2018/0310835 Al 11/2018 Muhsin et al. 2018/0310835 Al						
			2018/0228414	A1		
2017/0294790 Al						
2017/0228516 A1						
2017/0245790 A1 8/2017 Governmer et al. 2018/0242926 A1 8/2018 Mushin et al. 2017/0251974 A1 9/2017 Shreim et al. 2018/0247935 A1 8/2018 Mushin et al. 2018/0247936 A1 8/2018 Mushin et al. 2018/0253947 A1 9/2017 Shreim et al. 2018/0253947 A1 9/2018 Mushin et al. 2018/0253947 A1 9/2018 Mushin et al. 2018/0256087 A1 10/2018 Mushin et al. 2018/0259668 A1 10/2018 Mushin et al. 2018/0259668 A1 10/2018 Mushin et al. 2018/0259668 A1 10/2018 Mushin et al. 2018/03596 A1 10/2018 Mushin et al. 2018/03596 A1 10/2018 Mushin et al. 2018/035966 A1 11/2017 A1-A1i et al. 2018/03510822 A1 11/2018 Mushin et al. 2018/03517826 A1 11/2018 Mushin et al. 2018/0353085 A1 11/2018 A1-A1i et al. 2018/03517826 A1 11/2018 Mushin et al. 2018/0353085 A1 11/2			2018/0242921	A1	8/2018	Muhsin et al.
2017/0251974 A1 9/2017 Shreim et al. 2018/0247712 A1 8/2018 Al-Ali et al. 2018/0247712 A1 9/2018 Muhsin et al. 2017/0251974 A1 9/2017 Shreim et al. 2018/0253947 A1 9/2018 Muhsin et al. 2017/0281024 A1 10/2017 Narasimhan et al. 2018/0253947 A1 9/2018 Muhsin et al. 2017/023727 A1 10/2017 Narasimhan et al. 2018/025694 A1 10/2018 Muhsin et al. 2017/0311891 A1 11/2017 Kiani et al. 2018/0289325 A1 10/2018 Housel et al. 2018/02853294 A1 10/2018 Housel et al. 2018/0289325 A1 10/2018 Housel et al. 2018/032976 A1 11/2017 Allee et al. 2018/030991 A1 10/2018 Muhsin et al. 2017/034029 A1 11/2017 All-Ali et al. 2018/0310822 A1 11/2018 Muhsin et al. 2017/034029 A1 11/2017 Sullivan et al. 2018/0310822 A1 11/2018 Muhsin et al. 2017/034029 A1 11/2017 Sullivan et al. 2018/0318823 A1 12/2017 Tan et al. 2018/0318823 A1 12/2017 Tan et al. 2018/0313854 A1 12/2017 Tan et al. 2018/0333057 A1 11/2018 Muhsin et al. 2017/0358239 A1 12/2017 Blahnik et al. 2018/0333057 A1 11/2018 Muhsin et al. 2017/035824 A1 12/2017 Thompson et al. 2019/0000317 A1 11/2019 Muhsin et al. 2017/0360310 A1 12/2017 Kiani et al. 2019/0005828 A1 12/2017 Thompson et al. 2019/0058281 A1 21/2019 Al-Ali et al. 2019/0058281 A1 21/2019 Al-Ali et al. 2019/0058280 A1 12/2017 Kiani et al. 2019/0058281 A1 21/2019 Al-Ali et al. 2019/0058281 A1 21/2019 Al-Ali et al. 2019/0058281 A1 21/2019 Al-Ali et al. 2019/0058281 A1 21/2018 Al-Ali et al. 2019/0058281 A1 21/2019 Al-Ali et al. 2019/0058281 A1 21/2018 Al-Ali et al. 2019/0058281 A1 21/2019 Al-Ali et al. 2018/0055390 A1 21/2018 Al-Ali et al. 2019/0017303 A1 41/2019 Al-A	2017/0245790 A1	8/2017 Al-Ali et al.				
2017/0251975 A1 9/2017 Shreim et al. 2018/0247712 A1 8/2018 Muhsin et al. 2017/0273619 A1 9/2018 Al-Ali et al. 2018/0253947 A1 9/2018 Muhsin et al. 2018/025087 A1 9/2018 Muhsin et al. 2017/0293727 A1 10/2017 Klaassen et al. 2018/0256087 A1 9/2018 Muhsin et al. 2017/0325698 Al 11/2017 Klaassen et al. 2018/0289094 Al 10/2018 Waydo et al. 2017/0325698 Al 11/2017 Allec et al. 2018/0289094 Al 10/2018 Poeze et al. 2017/032574 Al 11/2017 Allec et al. 2018/030991 Al 10/2018 Poeze et al. 2017/0340296 Al 11/2017 Allec et al. 2018/030991 Al 10/2018 Muhsin et al. 2017/0340290 Al 11/2017 Allec et al. 2018/0310822 Al 11/2018 Muhsin et al. 2017/0340293 Al 11/2017 Al-Ali et al. 2018/0310823 Al 11/2018 Al-Ali et al. 2018/031832 Al 11/2018 Al-Ali et al. 2018/031832 Al 11/2018 Al-Ali et al. 2018/0333055 Al 11/2018 Muhsin 2017/0354332 Al 12/2017 Al-Ali et al. 2018/0333055 Al 11/2018 Al-Ali et al. 2017/0358240 Al 12/2017 Blahnik et al. 2018/0333057 Al 11/2018 Al-Ali et al. 2018/0333055 Al 11/2018 Al-Ali et al. 2017/0358240 Al 12/2017 Blahnik et al. 2019/0000317 Al 1/2019 Muhsin et al. 2017/0358240 Al 12/2017 Blahnik et al. 2019/0000317 Al 1/2019 Muhsin et al. 2017/0358240 Al 12/2017 Blahnik et al. 2019/0009354 Al 1/2019 Muhsin et al. 2017/0356657 Al 12/2017 Kiani et al. 2019/0009354 Al 1/2019 Muhsin et al. 2019/0009354 Al 1/2019 Al-Ali et al. 2019/0009357 Al 1/2019 Al-Ali et al. 2019/0009357 Al 1/2019 Al-Ali et al. 2019/000935824 Al 1/2018 Al-Ali et al. 2019/0009357 Al 1/2019 Al-Ali et al. 2018/0005390 Al 1/2018 Al-Ali et al. 2019/0009357 Al 1/2018 Al-Ali et al. 2018/0053390 Al 1/2018 Al-Ali et al. 2019/00173352 Al 1/20						
2017/0273619 Al 9/2017 Alvarado et al. 2018/025594 Al 9/2018 Al-Ali et al. 2017/0293727 Al 10/2017 Narasimhan et al. 2018/025098 Al 10/2018 Mydo et al. 2018/0255098 Al 10/2018 Poeze et al. 2018/0255098 Al 10/2018 Poeze et al. 2018/0259325 Al 10/2018 Poeze et al. 2017/03325744 Al 11/2017 Alce et al. 2018/0309919 Al 10/2018 Poeze et al. 2017/0340209 Al 11/2017 Alcali et al. 2018/0300919 Al 10/2018 Mydos et al. 2017/0340209 Al 11/2017 Sullivan et al. 2018/0310822 Al 11/2018 Al-Ali et al. 2018/0310822 Al 11/2018 Al-Ali et al. 2018/0310823 Al 11/2018 Al-Ali et al. 2018/0310823 Al 11/2018 Al-Ali et al. 2018/0310823 Al 11/2018 Al-Ali et al. 2018/0313833 Al 11/2018 Al-Ali et al. 2018/03133335 Al 11/2018 Al-Ali et al. 2018/0333087 Al 11/2018 Al-Ali et al. 2018/0333087 Al 11/2018 Al-Ali et al. 2017/0358249 Al 12/2017 Blahnik et al. 2018/0333087 Al 11/2018 Al-Ali et al. 2017/0358240 Al 12/2017 Blahnik et al. 2019/0000362 Al 12/2017 Mydosin et al. 2019/0000362 Al 12/2017 Mydosin et al. 2019/0005823 Al 12/2019 Mydosin et al. 2019/0005828 Al 12/2017 Alrasimhan et al. 2019/0005828 Al 12/2019 Monfre 2017/036667 Al 12/2017 Narasimhan et al. 2019/0058288 Al 22/2019 Al-Ali et al. 2018/001562 Al 12/2018 Al-Ali et al. 2019/0058288 Al 22/2019 Al-Ali et al. 2018/001562 Al 12/2018 Al-Ali et al. 2019/0058288 Al 22/2019 Al-Ali et al. 2018/001562 Al 12/2018 Al-Ali et al. 2019/0069818 Al 3/2019 Al-Ali et al. 2018/0055375 Al 12/2018 Al-Ali et al. 2019/0076028 Al 3/2019 Al-Ali et al. 2018/0055375 Al 3/2018 Al-Ali et al. 2019/001703 Al 4/2019 Al-Ali et al. 2018/0055375 Al 3/2018 Al-Ali et al. 2019/001703 Al 4/2019 Al-Ali					8/2018	Muhsin et al.
2017/0293727 Al 10/2017 National et al. 2018/0279956 Al 10/2018 Waydo et al. 2017/031894 Al 11/2017 Klaassen et al. 2018/0289325 Al 10/2018 Poeze et al. 2017/0325698 Al 11/2017 Allee et al. 2018/0308919 Al 10/2018 Poeze et al. 2017/0325694 Al 11/2017 Allee et al. 2018/0308919 Al 10/2018 Shreim et al. 2017/0332976 Al 11/2017 Al-Ali et al. 2018/030919 Al 10/2018 Shreim et al. 2017/0340209 Al 11/2017 Al-Ali et al. 2018/0310822 Al 11/2018 Muhsin et al. 2017/0340293 Al 11/2017 Sullivan et al. 2018/0317846 Al 11/2018 Al-Ali et al. 2018/0317846 Al 11/2018 Al-Ali et al. 2017/0347885 Al 12/2017 Tan et al. 2018/0317846 Al 11/2018 Novak, Jr. 2017/0354332 Al 12/2017 Lamego 2018/0333087 Al 11/2018 Al-Ali et al. 2017/0358239 Al 12/2017 Arney et al. 2019/000317 Al 11/2018 Al-Ali et al. 2017/0358240 Al 12/2017 Narasimhan et al. 2019/000317 Al 12/2019 Muhsin et al. 2017/0360310 Al 12/2017 Narasimhan et al. 2019/0002578 Al 12/2019 Monfre 2017/0360310 Al 12/2017 Narasimhan et al. 2019/00058280 Al 12/2017 Narasimhan et al. 2019/00058280 Al 12/2017 Al-Ali et al. 2019/00058280 Al 22/2017 Al-Ali et al. 2019/0058281 Al 22/2019 Al-Ali et al. 2018/001502 Al 12/2018 Al-Ali et al. 2019/0058288 Al 22/2019 Al-Ali et al. 2018/0058288 Al 22/2018 Al-Ali et al. 2019/0069813 Al 3/2019 Al-Ali et al. 2018/0058288 Al 22/2018 Al-Ali et al. 2018/0058288 Al 22/2018 Al-Ali et al. 2018/0058288 Al 22/2018 Al-Ali et al. 2018/0058289 Al 3/2018 Al-Ali et al. 2018/005839 Al 3/2018 Markime et al. 2019/001730 Al 4/2019 A	2017/0273619 A1	9/2017 Alvarado et al.				
2017/0311891 AI 11/2017 Kiani et al. 2018/0285094 AI 10/2018 Poeze et al. 2017/0325744 AI 11/2017 Allee et al. 2018/0300919 AI 10/2018 Shreim et al. 2017/0332976 AI 11/2017 Al-Ali et al. 2018/0300919 AI 10/2018 Shreim et al. 2017/0340209 AI 11/2017 Al-Ali et al. 2018/0300919 AI 11/2018 Indorf et al. 2018/0300919 AI 11/2018 Indorf et al. 2018/0310822 AI 11/2018 Indorf et al. 2018/0310823 AI 11/2018 Indorf et al. 2017/0340219 AI 11/2017 Sullivan et al. 2018/0310823 AI 11/2018 Indorf et al. 2017/0347885 AI 12/2017 Al-Ali et al. 2018/0317841 AI 11/2018 Muhsin et al. 2017/0343785 AI 12/2017 Lamego 2018/0333055 AI 11/2018 Muhsin et al. 2017/0354332 AI 12/2017 Lamego 2018/0333087 AI 11/2018 Al-Ali et al. 2017/0358239 AI 12/2017 Arney et al. 2019/0000317 AI 12/2018 Al-Ali et al. 2019/0000317 AI 12/2018 Al-Ali et al. 2019/0003267 AI 12/2019 Kiani et al. 2017/0360306 AI 12/2017 Narasimhan et al. 2019/0029578 AI 12/2019 Al-Ali et al. 2019/0029578 AI 12/2019 Al-Ali et al. 2018/003186 AI 12/2017 Thompson et al. 2019/0058280 AI 2/2019 Al-Ali et al. 2018/003818 AI 2/2019 Al-Ali et al. 2018/003818 AI 2/2018 Al-Ali et al. 2019/0058280 AI 2/2019 Al-Ali et al. 2018/0058280 AI 2/2018 Al-Ali et al. 2019/0058280 AI 2/2019 Al-Ali et al. 2018/0058280 AI 2/2019 Al-Ali et al. 2018/0058280 AI 2/2018 Al-Ali et al. 2019/0058280 AI 2/2019 Al-Ali et al. 2018/0058280 AI 2/2018 Al-Ali et al. 2019/0058280 AI 2/2019 Al-Ali et al. 2018/0058390 AI 3/2018 Al-Ali et al. 2019/0090764 AI 3/2019 Al-Ali et al. 2018/0053390 AI 3/2018 Al-Ali et al. 2019/017703 AI 4/2019 Al-Ali et al. 2018/0053390 AI 3/2018 Al-Ali et al. 2019/017703						
2017/0325698 A1						
2017/0332976 A1 11/2017 Al-Ali et al. 2018/0300919 Al 10/2018 Muhsin et al. 2017/0340209 Al 11/2017 Al-Ali et al. 2018/0310823 Al 11/2018 Indorf et al. 2017/0340203 Al 11/2017 Al-Ali et al. 2018/0317826 Al 11/2018 Muhsin Al-Ali et al. 2017/0340293 Al 11/2017 Al-Ali et al. 2018/0317826 Al 11/2018 Muhsin Al-Ali et al. 2017/0347885 Al 12/2017 Tan et al. 2018/0317826 Al 11/2018 Muhsin Al-Ali et al. 2017/0354795 Al 12/2017 Tan et al. 2018/0333055 Al 11/2018 Al-Ali et al. 2017/0354795 Al 12/2017 Arney et al. 2019/0000317 Al 11/2018 Al-Ali et al. 2017/0358242 Al 12/2017 Arney et al. 2019/0000362 Al 1/2019 Muhsin et al. 2017/0358242 Al 12/2017 Thompson et al. 2019/0000362 Al 1/2019 Monfre 2017/0360310 Al 12/2017 Thompson et al. 2019/0029574 Al 1/2019 Monfre Al-Ali et al. 2019/0360310 Al 12/2017 Thompson et al. 2019/0029574 Al 1/2019 Monfre Al-Ali et al. 2018/0308146 Al 12/2017 Thompson et al. 2019/0058280 Al 2/2019 Al-Ali et al. 2018/0008146 Al 1/2018 Al-Ali et al. 2019/0058281 Al 2/2019 Al-Ali et al. 2018/0008146 Al 1/2018 Al-Ali et al. 2019/0069813 Al 3/2019 Al-Ali et al. 2018/0025287 Al 1/2018 Al-Ali et al. 2019/0069813 Al 3/2019 Al-Ali et al. 2018/0025287 Al 1/2018 Mathew et al. 2019/0069613 Al 3/2019 Al-Ali et al. 2018/0025537 Al 2/2018 Singh Alvarado et al. 2019/0090760 Al 3/2019 Al-Ali et al. 2018/0055390 Al 3/2018 Al-Ali et al. 2019/0017140 Al 4/2019 Al-Ali et al. 2018/0055393 Al 3/2018 Al-Ali et al. 2019/01739 Al 4/2019 Al-Ali et al. 2018/0055393 Al 3/2018 Al-Ali et al. 2019/01739 Al 4/2019 Al-Ali et al. 2018/0055393 Al 3/2018 Al-Ali et al. 2019/01739 Al 4/2019 Al-Ali et al. 2018/0055393 Al 3/2018 Al-Ali et al. 2019/01739 Al 4/2019 Al-Ali et al. 2018/00						
2017/0340209 A1						
2017/0340219 A1						
2017/0347885 A1 12/2017 Tan et al. 2018/0313845 A1 11/2018 Novak, Jr. 2017/0354332 A1 12/2017 Lamego 2018/0333087 A1 11/2018 Al-Ali 2017/0358240 A1 12/2017 Blahnik et al. 2019/0000317 A1 1/2019 Muhsin et al. 2017/0358244 A1 12/2017 Blahnik et al. 2019/0000317 A1 1/2019 Muhsin et al. 2017/0358242 A1 12/2017 Thompson et al. 2019/00015023 A1 1/2019 Monfre 2017/0360310 A1 12/2017 Narasimhan et al. 2019/0029574 A1 1/2019 Monfre 2017/0360310 A1 12/2017 Thompson et al. 2019/0029578 A1 1/2019 Al-Ali et al. 2019/0029578 A1 1/2019 Al-Ali et al. 2019/0058280 A1 2/2019 Al-Ali et al. 2019/0058280 A1 2/2019 Al-Ali et al. 2019/0058281 A1 2/2019 Al-Ali et al. 2018/0014752 A1 1/2018 Al-Ali et al. 2019/006814 A1 3/2019 Al-Ali et al. 2018/0014752 A1 1/2018 Al-Ali et al. 2019/006821A A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Al-Ali et al. 2019/006821A A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Al-Ali et al. 2019/00608214 A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Al-Ali et al. 2019/0090760 A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Al-Ali et al. 2019/0090760 A1 3/2019 Al-Ali et al. 2018/0052528 A1 2/2018 Al-Ali et al. 2019/0090760 A1 3/2019 Al-Ali et al. 2018/0052535 A1 3/2018 Al-Ali et al. 2019/0117107 A1 4/2019 Al-Ali et al. 2018/0055390 A1 3/2018 Kiani 2018/0055390 A1 3/2018 Kiani 2018/0055393 A1 3/2018 Kiani 2018/0055393 A1 3/2018 Al-Ali et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055393 A1 3/2018 Al-Ali et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055393 A1 3/2018 Al-Ali et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055393 A1 3/2018 Al-Ali et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055393 A1 3/2018 Al-Ali et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055393 A1 3/2018 Al-Ali et al. 2019/012763 A1 4	2017/0340219 A1 1	1/2017 Sullivan et al.				
2017/0354332 A1 12/2017 Lamego 2018/0333055 A1 11/2018 Lamego et al. 2017/0358249 A1 12/2017 Blahnik et al. 2019/0000317 A1 1/2019 Muhsin et al. 2017/0358240 A1 12/2017 Blahnik et al. 2019/0000362 A1 1/2019 Muhsin et al. 2017/0358242 A1 12/2017 Thompson et al. 2019/00029574 A1 1/2019 Monfre 2017/0360306 A1 12/2017 Narasimhan et al. 2019/0029574 A1 1/2019 Schurman et al. 2019/0360657 A1 1/2019 Schurman et al. 2019/0366657 A1 12/2017 Thompson et al. 2019/0029578 A1 1/2019 Schurman et al. 2019/0366657 A1 12/2017 Thompson et al. 2019/0029578 A1 1/2019 Al-Ali et al. 2019/0058280 A1 2/2019 Al-Ali et al. 2019/0058281 A1 2/2019 Al-Ali et al. 2019/0058281 A1 2/2019 Al-Ali et al. 2019/0069813 A1 3/2019 Al-Ali et al. 2019/0069813 A1 3/2019 Al-Ali et al. 2019/0069814 A1 3/2019 Al-Ali et al. 2019/0076028 A1 3/2019 Al-Ali et al. 2019/0076028 A1 3/2018 Al-Ali et al. 2019/017707 A1 4/2019 Al-Ali et al. 2019/0055390 Al 3/2018 Al-Ali et al. 2019/017703 Al 4/2019 Al-Ali et al. 2018/0055390 Al 3/2018 Al-Ali et al. 2019/017303 Al 4/2019 Al-Ali et al. 2018/0055390 Al 3/2018 Al-Ali et al. 2019/0133525 Al 3/2018 Al-Ali et al. 2019/0133525 Al 3/2018 Al-Ali et al.						
2017/0358239						
2017/0358240 A1 12/2017 Blahnik et al. 2019/0000362 A1 1/2019 Monfre 2017/0358242 A1 12/2017 Narasimhan et al. 2019/0015023 A1 1/2019 Monfre 2017/0360300 A1 12/2017 Narasimhan et al. 2019/0029574 A1 1/2019 Schurman et al. 2017/0366657 A1 12/2017 Thompson et al. 2019/0058280 A1 2/2019 Al-Ali et al. 2018/0008146 A1 1/2018 Al-Ali et al. 2019/0058281 A1 2/2019 Al-Ali et al. 2018/0013562 A1 1/2018 Haider et al. 2019/0069813 A1 3/2019 Al-Ali et al. 2018/0014752 A1 1/2018 Al-Ali et al. 2019/0069813 A1 3/2019 Al-Ali et al. 2018/0014781 A1 1/2018 Clavelle et al. 2019/0069814 A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Mathew et al. 2019/0076028 A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Mathew et al. 2019/0076028 A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Shahparnia et al. 2019/0090760 A1 3/2019 Al-Ali et al. 2018/0049556 A1 2/2018 Shahparnia et al. 2019/0090760 A1 3/2019 Al-Ali et al. 2018/0059035 A1 2/2018 Shahparnia et al. 2019/011707 A1 4/2019 Al-Ali et al. 2018/0055375 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055330 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055430 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055430 A1 3/2018 Narasimha Rao et al. 2019/0117263 A1 4/2019 Al-Ali et al. 2018/0078151 A1 3/2018 Narasimha Rao et al. 2019/0167616 A1 6/2019 Al-Ali et al. 2018/0078151 A1 3/2018 Al-Ali et al. 2019/0150856 A1 5/2019 Al-Ali et al. 2018/0078151 A1 3/2018 Al-Ali et al. 2019/0150856 A1 5/2019 Al-Ali et al. 2018/0078151 A1 3/2018 Al-Ali et al. 2019/0150856 A1 5/2019 Al-Ali et al. 2018/0078151 A1 3/2018 Al-Ali et al. 2019/0167161 A1 6/2019 Al-Ali et al. 2018/0078152 A1 3/2018 Al-Ali	2017/0354795 A1 12	2/2017 Blahnik et al.				
2017/0358242						
2017/0360306 A1 12/2017 Narasimhan et al. 2019/0029578 A1 1/2019 Al-Ali et al. 2017/0360310 A1 12/2017 Kiani et al. 2019/0029578 A1 1/2019 Al-Ali et al. 2019/0058280 A1 2/2019 Al-Ali et al. 2018/0008146 A1 1/2018 Al-Ali et al. 2019/0058281 A1 2/2019 Al-Ali et al. 2018/0013562 A1 1/2018 Al-Ali et al. 2019/0069813 A1 3/2019 Al-Ali et al. 2018/0014752 A1 1/2018 Al-Ali et al. 2019/0069813 A1 3/2019 Al-Ali et al. 2018/0014752 A1 1/2018 Al-Ali et al. 2019/0069814 A1 3/2019 Al-Ali et al. 2018/0014781 A1 1/2018 Al-Ali et al. 2019/0076028 A1 3/2019 Al-Ali et al. 2018/0028124 Al 2/2018 Al-Ali et al. 2019/0082979 Al 3/2019 Al-Ali et al. 2018/0028124 Al 2/2018 Al-Ali et al. 2019/0090760 Al 3/2019 Al-Ali et al. 2018/0042556 Al 2/2018 Shahparnia et al. 2019/0090760 Al 3/2019 Al-Ali et al. 2018/0045536 Al 2/2018 Singh Alvarado et al. 2019/0090764 Al 4/2019 Al-Ali et al. 2018/0055375 Al 3/2018 Martinez et al. 2019/0117139 Al 4/2019 Al-Ali et al. 2018/0055330 Al 3/2018 Martinez et al. 2019/0117140 Al 4/2019 Al-Ali et al. 2018/0055330 Al 3/2018 Martinez et al. 2019/0117140 Al 4/2019 Al-Ali et al. 2018/0055330 Al 3/2018 Diab et al. 2019/0117139 Al 4/2019 Al-Ali et al. 2018/0055430 Al 3/2018 Narasimha Rao et al. 2019/0117140 Al 4/2019 Al-Ali et al. 2018/0056129 Al 3/2018 Shakespeare et al. 2019/0142283 Al 5/2019 Al-Ali et al. 2018/007867 Al 3/2018 Al-Ali et al. 2019/0142283 Al 5/2019 Al-Ali et al. 2018/0078151 Al 3/2018 Al-Ali et al. 2019/0142344 Al 5/2019 Al-Ali et al. 2018/0078667 Al 3/2018 Al-Ali et al. 2019/0175019 Al 6/2019 Al-Ali et al. 2018/0082767 Al 3/2018 Al-Ali et al. 2019/0175019 Al 6/2019 Al-Ali et al. 2018/0087937 Al 3/2018 Al-Ali et al. 2019/0200941 Al 7/2019 Chandran et al. 2018/010374 A			2019/0015023	A1		
2017/0366657 A1 12/2017 Thompson et al. 2019/0058280 A1 2/2019 Al-Ali et al. 2018/0008146 A1 1/2018 Al-Ali et al. 2019/0069813 A1 3/2019 Al-Ali et al. 2018/0013562 A1 1/2018 Haider et al. 2019/0069813 A1 3/2019 Al-Ali et al. 2018/0014752 A1 1/2018 Al-Ali et al. 2019/0069814 A1 3/2019 Al-Ali et al. 2018/0014781 A1 1/2018 Al-Ali et al. 2019/0076028 A1 3/2019 Al-Ali et al. 2018/0028124 A1 2/2018 Al-Ali et al. 2019/0082979 A1 3/2019 Al-Ali et al. 2018/0042556 A1 2/2018 Al-Ali et al. 2019/0090760 A1 3/2019 Al-Ali et al. 2018/0049694 A1 2/2018 Shahparnia et al. 2019/017070 A1 4/2019 Al-Ali et al. 2018/0050325 A1 2/2018 Singh Alvarado et al. 2019/0117139 A1 4/2019 Al-Ali et al. 2018/0055375 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055340 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055439 A1 3/2018 Diab et al. 2019/0117930 A1 4/2019 Al-Ali et al. 2018/00564381 A1 3/2018 Narasimha Rao et al. 2019/0122763 A1 4/2019 Al-Ali et al. 2018/007867 A1 3/2018 Narasimha Rao et al. 2019/0133525 A1 5/2019 Al-Ali et al. 2018/007867 A1 3/2018 Al-Ali et al. 2019/0142283 A1 5/2019 Al-Ali et al. 2018/0078151 A1 3/2018 Allee et al. 2019/0150856 A1 5/2019 Al-Ali et al. 2018/0078152 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/01075019 A1 6/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/01075019 A1 6/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/01075019 A1 6/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/02001623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee	2017/0360306 A1 12	2/2017 Narasimhan et al.				
2018/0008146 A1 1/2018 A1-Ali et al. 2019/0058281 A1 2/2019 A1-Ali et al. 2018/0013562 A1 1/2018 A1-Ali et al. 2019/0069813 A1 3/2019 A1-Ali et al. 2018/0014752 A1 1/2018 A1-Ali et al. 2019/0076028 A1 3/2019 A1-Ali et al. 2018/0025287 A1 1/2018 A1-Ali et al. 2019/0076028 A1 3/2019 A1-Ali et al. 2018/0025287 A1 1/2018 A1-Ali et al. 2019/0082979 A1 3/2019 A1-Ali et al. 2018/0025287 A1 1/2018 A1-Ali et al. 2019/0082979 A1 3/2019 A1-Ali et al. 2018/0025287 A1 1/2018 A1-Ali et al. 2019/0090760 A1 3/2019 A1-Ali et al. 2018/0049694 A1 2/2018 Shahparnia et al. 2019/0090764 A1 3/2019 A1-Ali et al. 2018/0050235 A1 2/2018 Singh Alvarado et al. 2019/0117070 A1 4/2019 A1-Ali et al. 2018/0055375 A1 3/2018 A1-Ali et al. 2019/0117140 A1 4/2019 A1-Ali et al. 2018/0055390 A1 3/2018 Kiani 2019/0117141 A1 4/2019 A1-Ali et al. 2018/0055430 A1 3/2018 Biab et al. 2019/0117930 A1 4/2019 A1-Ali et al. 2018/0056129 A1 3/2018 Bham et al. 2019/01172763 A1 4/2019 A1-Ali et al. 2018/0078129 A1 3/2018 Smith et al. 2019/0142283 A1 5/2019 A1-Ali et al. 2018/0078151 A1 3/2018 Smith et al. 2019/0142344 A1 5/2019 A1-Ali et al. 2018/0078151 A1 3/2018 A1-Ali et al. 2019/0150856 A1 5/2019 A1-Ali et al. 2018/0078151 A1 3/2018 A1-Ali et al. 2019/0167161 A1 6/2019 A1-Ali et al. 2018/0078152 A1 3/2018 A1-Ali et al. 2019/0167161 A1 6/2019 A1-Ali et al. 2018/0082767 A1 3/2018 A1-Ali et al. 2019/0167161 A1 6/2019 A1-Ali et al. 2018/0087937 A1 3/2018 A1-Ali et al. 2019/0200941 A1 A1/2019 Chandran et al. 2018/0087937 A1 3/2018 A1-Ali et al. 2019/020041 A1 A1/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 A1/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1						
2018/0013562 A1 1/2018 Haider et al. 2019/0069813 A1 3/2019 Al-Ali 2018/0014752 A1 1/2018 Al-Ali et al. 2019/0076028 A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Mathew et al. 2019/0082979 A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Mathew et al. 2019/0082979 A1 3/2019 Al-Ali et al. 2018/0025287 Al 1/2018 Mathew et al. 2019/0090760 A1 3/2019 Al-Ali et al. 2018/004954 Al 2/2018 Shahparnia et al. 2019/0090764 Al 3/2019 Al-Ali et al. 2018/0049694 Al 2/2018 Singh Alvarado et al. 2019/0117070 Al 4/2019 Muhsin et al. 2018/0055375 Al 3/2018 Martinez et al. 2019/0117140 Al 4/2019 Al-Ali et al. 2018/0055390 Al 3/2018 Kiani 2019/0117140 Al 4/2019 Al-Ali et al. 2018/0055430 Al 3/2018 Diab et al. 2019/0117193 Al 4/2019 Al-Ali et al. 2018/0056129 Al 3/2018 Pham et al. 2019/0133525 Al 2/2019 Al-Ali et al. 2018/0064381 Al 3/2018 Shakespeare et al. 2019/0142283 Al 5/2019 Al-Ali et al. 2018/007867 Al 3/2018 Smith et al. 2019/0150856 Al 5/2019 Al-Ali et al. 2018/0078151 Al 3/2018 Al-Ali et al. 2019/0150856 Al 5/2019 Al-Ali et al. 2018/0078151 Al 3/2018 Al-Ali et al. 2019/0150856 Al 5/2019 Al-Ali et al. 2018/0078151 Al 3/2018 Al-Ali et al. 2019/0150856 Al 5/2019 Al-Ali et al. 2018/0078151 Al 3/2018 Al-Ali et al. 2019/0150856 Al 5/2019 Al-Ali et al. 2018/0082767 Al 3/2018 Al-Ali et al. 2019/01509761 Al 6/2019 Al-Ali et al. 2018/0085068 Al 3/2018 Al-Ali et al. 2019/0109076 Al 6/2019 Al-Ali et al. 2018/0085068 Al 3/2018 Al-Ali et al. 2019/0109076 Al 6/2019 Al-Ali et al. 2018/0085068 Al 3/2018 Al-Ali et al. 2019/0109076 Al 6/2019 Al-Ali et al. 2018/0085068 Al 3/2018 Al-Ali et al. 2019/0200941 Al 7/2019 Chandran et al. 2018/0103874 Al 4/2018 Lee et al. 2019/0200623 Al 7/2019 Chandran et			2019/0058281	A1	2/2019	Al-Ali et al.
2018/0014781 A1 1/2018 Clavelle et al. 2019/0076028 A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Mathew et al. 2019/0082979 A1 3/2019 Al-Ali et al. 2018/0028124 A1 2/2018 Al-Ali et al. 2019/0090760 A1 3/2019 Kinast et al. 2018/0042556 A1 2/2018 Shahparnia et al. 2019/0090764 A1 3/2019 Al-Ali et al. 2018/0049694 A1 2/2018 Singh Alvarado et al. 2019/0117070 A1 4/2019 Muhsin et al. 2018/0050335 A1 2/2018 Tan et al. 2019/0117139 A1 4/2019 Al-Ali et al. 2018/0055375 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055430 A1 3/2018 Kiani 2019/0117141 A1 4/2019 Al-Ali 2018/0055430 A1 3/2018 Diab et al. 2019/0117930 A1 4/2019 Al-Ali 2018/0055439 A1 3/2018 Pham et al. 2019/0122763 A1 4/2019 Sampath et al. 2018/0056129 A1 3/2018 Narasimha Rao et al. 2019/0133525 A1 5/2019 Al-Ali et al. 2018/0064381 A1 3/2018 Smith et al. 2019/0142283 A1 5/2019 Lamego et al. 2018/007867 A1 3/2018 Smith et al. 2019/0150856 A1 5/2019 Kiani et al. 2018/0078151 A1 3/2018 Al-Ali et al. 2019/0150856 A1 5/2019 Kiani et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/0150856 A1 5/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Telfort 2019/0192076 A1 6/2019 Al-Ali et al. 2018/0087937 A1 3/2018 Telfort 2019/0192076 A1 6/2019 McHale et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0192076 A1 6/2019 McHale et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0192076 A1 6/2019 McHale et al. 2018/019374 A1 4/2018 Lee et al. 2019/0200941 A1 7/2019 Kiani et al. 2018/019374 A1 4/2018 Lee et al. 2019/0200623 A1 7/2019 Kiani et al. 2018/019374 A1 4/2018 Lee et al. 2019/0200961 A1 7/2019 Kiani et al. 2018/019374 A1 4/2018 Lee et al. 2019/0200623 A1 7/2019 Kiani et al. 2018/019374 A1 4/2018 Lee et al. 2019/0200623 A1 7/2019 Kiani et al. 2018/019374 A1 4/2018 Lee et al. 2019						
2018/0025287 A1 1/2018 Mathew et al. 2019/0082979 A1 3/2019 Al-Ali et al. 2018/0025287 A1 1/2018 Mathew et al. 2019/0090760 A1 3/2019 Al-Ali et al. 2018/0042556 A1 2/2018 Shahparnia et al. 2019/0090764 A1 3/2019 Al-Ali et al. 2018/0042556 A1 2/2018 Shahparnia et al. 2019/0117070 A1 4/2019 Al-Ali et al. 2018/0050235 A1 2/2018 Tan et al. 2019/0117139 A1 4/2019 Al-Ali et al. 2018/0055375 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055390 A1 3/2018 Kiani 2019/0117141 A1 4/2019 Al-Ali et al. 2018/0055430 A1 3/2018 Diab et al. 2019/0117930 A1 4/2019 Al-Ali 2018/0055439 A1 3/2018 Pham et al. 2019/0122763 A1 4/2019 Al-Ali et al. 2018/0056129 A1 3/2018 Narasimha Rao et al. 2019/0133525 A1 5/2019 Al-Ali et al. 2018/0064381 A1 3/2018 Shakespeare et al. 2019/0142283 A1 5/2019 Al-Ali et al. 2018/0078151 A1 3/2018 Smith et al. 2019/0150856 A1 5/2019 Kiani et al. 2018/0078151 A1 3/2018 Al-Ali et al. 2019/0150856 A1 5/2019 Al-Ali et al. 2018/0078152 A1 3/2018 Al-Ali et al. 2019/0150856 A1 5/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/015019 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Al-Ali et al. 2019/0190760 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Al-Ali et al. 2019/0190760 A1 6/2019 Al-Ali et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Ch						
2018/0028124 A1 2/2018 Al-Ali et al. 2019/0090760 A1 3/2019 Kinast et al. 2018/0042556 Al 2/2018 Shahparnia et al. 2019/017070 Al 4/2019 Al-Ali 2018/0050235 Al 2/2018 Tan et al. 2019/0117130 Al 4/2019 Al-Ali 4/2019 Al-Ali 2018/0055375 Al 3/2018 Martinez et al. 2019/0117140 Al 4/2019 Al-Ali et al. 2018/0055390 Al 3/2018 Kiani 2019/0117141 Al 4/2019 Al-Ali et al. 2018/0055430 Al 3/2018 Diab et al. 2019/011730 Al 4/2019 Al-Ali 2018/0055439 Al 3/2018 Diab et al. 2019/012763 Al 4/2019 Al-Ali 2018/0056129 Al 3/2018 Narasimha Rao et al. 2019/0133525 Al 5/2019 Al-Ali et al. 2018/0064381 Al 3/2018 Shakespeare et al. 2019/0142283 Al 5/2019 Al-Ali et al. 2018/0078151 Al 3/2018 Smith et al. 2019/0150856 Al 5/2019 Kiani et al. 2018/0078151 Al 3/2018 Al-Ali et al. 2019/0150856 Al 5/2019 Kiani et al. 2018/0082767 Al 3/2018 Al-Ali et al. 2019/01501501 Al 6/2019 Al-Ali et al. 2018/0085068 Al 3/2018 Al-Ali et al. 2019/0190760 Al 6/2019 Al-Ali et al. 2018/0085068 Al 3/2018 Telfort 2019/019076 Al 6/2019 Al-Ali et al. 2018/0085068 Al 3/2018 Telfort 2019/019076 Al 6/2019 Al-Ali et al. 2018/0087937 Al 3/2018 Al-Ali et al. 2019/0109076 Al 6/2019 Al-Ali et al. 2018/0103874 Al 4/2018 Lee et al. 2019/0200941 Al 7/2019 Chandran et al. 2018/0103874 Al 4/2018 Lee et al. 2019/0201623 Al 7/2019 Chandran et al. 2018/0103874 Al 4/2018 Lee et al. 2019/0201623 Al 7/2019 Chandran et al. 2018/0103874 Al 4/2018 Lee et al. 2019/0201623 Al 7/2019 Chandran et al. 2018/0103874 Al 4/2018 Lee et al. 2019/0201623 Al 7/2019 Chandran et al. 2018/0103874 Al 4/2018 Lee et al. 2019/0201623 Al 7/2019 Chandran et al. 2018/0103874 Al 4/2018 Lee et al. 2019/0201623 Al 7/2019 Chandran et al. 2					3/2019	Al-Ali et al.
2018/0049694 A1 2/2018 Singh Alvarado et al. 2019/0117070 A1 4/2019 Muhsin et al. 2018/0050235 A1 2/2018 Tan et al. 2019/0117139 A1 4/2019 Al-Ali et al. 2018/0055375 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055390 A1 3/2018 Kiani 2019/0117141 A1 4/2019 Al-Ali et al. 2018/0055430 A1 3/2018 Diab et al. 2019/0117930 A1 4/2019 Al-Ali 2018/0055439 A1 3/2018 Pham et al. 2019/0112763 A1 4/2019 Al-Ali 2018/0056129 A1 3/2018 Pham et al. 2019/0122763 A1 4/2019 Al-Ali 2018/0064381 A1 3/2018 Shakespeare et al. 2019/0133525 A1 5/2019 Al-Ali et al. 2018/0078151 A1 3/2018 Smith et al. 2019/0142283 A1 5/2019 Telfort et al. 2018/0078151 A1 3/2018 Allec et al. 2019/0150856 A1 5/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Telfort 2019/0192076 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Telfort 2019/0192076 A1 6/2019 Al-Ali et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0192076 A1 6/2019 McHale et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani A1 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7	2018/0028124 A1	2/2018 Al-Ali et al.				
2018/0050335 A1 2/2018 Tan et al. 2019/0117139 A1 4/2019 Al-Ali et al. 2018/0055375 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055390 A1 3/2018 Kiani 2019/0117141 A1 4/2019 Al-Ali et al. 2018/0055430 A1 3/2018 Diab et al. 2019/0117930 A1 4/2019 Al-Ali 2018/0055439 A1 3/2018 Pham et al. 2019/0122763 A1 4/2019 Al-Ali 2018/0056129 A1 3/2018 Pham et al. 2019/0122763 A1 4/2019 Al-Ali et al. 2018/0064381 A1 3/2018 Shakespeare et al. 2019/0133525 A1 5/2019 Al-Ali et al. 2018/007867 A1 3/2018 Shakespeare et al. 2019/0142283 A1 5/2019 Lamego et al. 2018/0078151 A1 3/2018 Al-Ali et al. 2019/0150856 A1 5/2019 Kiani et al. 2018/0078182 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Telfort 2019/0192076 A1 6/2019 McHale et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani A1 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani A1 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani A1 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani A1 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Le						
2018/0055375 A1 3/2018 Martinez et al. 2019/0117140 A1 4/2019 Al-Ali et al. 2018/0055390 A1 3/2018 Kiani 2019/0117141 A1 4/2019 Al-Ali 2018/0055430 A1 3/2018 Diab et al. 2019/0117930 A1 4/2019 Al-Ali 2018/0055439 A1 3/2018 Pham et al. 2019/0122763 A1 4/2019 Sampath et al. 2018/0056129 A1 3/2018 Narasimha Rao et al. 2019/0133525 A1 5/2019 Al-Ali et al. 2018/0064381 A1 3/2018 Shakespeare et al. 2019/0142283 A1 5/2019 Lamego et al. 2018/0078151 A1 3/2018 Smith et al. 2019/0150856 A1 5/2019 Telfort et al. 2018/0078182 A1 3/2018 Chen et al. 2019/0150856 A1 5/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2018/0055430 A1 3/2018 Diab et al. 2019/0117930 A1 4/2019 Al-Ali 2018/0055439 A1 3/2018 Pham et al. 2019/0122763 A1 4/2019 Sampath et al. 2018/0056129 A1 3/2018 Narasimha Rao et al. 2019/0133525 A1 5/2019 Al-Ali et al. 2018/0064381 A1 3/2018 Shakespeare et al. 2019/0142283 A1 5/2019 Lamego et al. 2018/0070867 A1 3/2018 Smith et al. 2019/0142344 A1 5/2019 Telfort et al. 2018/0078151 A1 3/2018 Allec et al. 2019/0150856 A1 5/2019 Kiani et al. 2018/0082767 A1 3/2018 Chen et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0192076 A1 6/2019 MeHale et al. 2018/013874 A1 4/2018 Lee et al. 2019/0200941 A1 7/2019 Chandran et al.	2018/0055375 A1	3/2018 Martinez et al.				
2018/0055439 A1 3/2018 Pham et al. 2019/0122763 A1 4/2019 Sampath et al. 2018/0056129 A1 3/2018 Narasimha Rao et al. 2019/0133525 A1 5/2019 Al-Ali et al. 2018/0064381 A1 3/2018 Shakespeare et al. 2019/0142283 A1 5/2019 Lamego et al. 2018/007867 A1 3/2018 Smith et al. 2019/0142344 A1 5/2019 Telfort et al. 2018/0078151 A1 3/2018 Allec et al. 2019/0150856 A1 5/2019 Kiani et al. 2018/0078182 A1 3/2018 Chen et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0192076 A1 6/2019 McHale et al. 2018/013874 A1 4/2018 Lee et al. 2019/0200623 A1 7/2019 Chandran et al.						
2018/0056129 A1 3/2018 Narasimha Rao et al. 2019/0133525 A1 5/2019 Al-Ali et al. 2018/0064381 A1 3/2018 Shakespeare et al. 2019/0142283 A1 5/2019 Lamego et al. 2018/0078067 A1 3/2018 Smith et al. 2019/0142344 A1 5/2019 Telfort et al. 2018/0078182 A1 3/2018 Allec et al. 2019/0150856 A1 5/2019 Kiani et al. 2018/0082767 A1 3/2018 Chen et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Al-Ali et al. 2019/0192076 A1 6/2019 Al-Ali et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani						
2018/0070867 A1 3/2018 Smith et al. 2019/0142344 A1 5/2019 Telfort et al. 2018/0078151 A1 3/2018 Allec et al. 2019/0150856 A1 5/2019 Kiani et al. 2018/0078182 A1 3/2018 Chen et al. 2019/0167161 A1 6/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Telfort 2019/0192076 A1 6/2019 McHale et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/013874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani	2018/0056129 A1	3/2018 Narasimha Rao et al.				
2018/0078151 A1 3/2018 Allec et al. 2019/0150856 A1 5/2019 Kiani et al. 2018/0078182 A1 3/2018 Chen et al. 2019/0167161 A1 6/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Telfort 2019/0192076 A1 6/2019 McHale et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/013874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani						
2018/0078182 A1 3/2018 Chen et al. 2019/0167161 A1 6/2019 Al-Ali et al. 2018/0082767 A1 3/2018 Al-Ali et al. 2019/0175019 A1 6/2019 Al-Ali et al. 2018/0085068 A1 3/2018 Telfort 2019/0192076 A1 6/2019 McHale et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/013874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani						
2018/0085068 A1 3/2018 Telfort 2019/0192076 A1 6/2019 McHale et al. 2018/0087937 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani						
2018/0087937 A1 3/2018 Al-Ali et al. 2019/0200941 A1 7/2019 Chandran et al. 2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani						
2018/0103874 A1 4/2018 Lee et al. 2019/0201623 A1 7/2019 Kiani						

(56)	Referen	nces Cited	KR 20070061122 A 6/2007
	U.S. PATENT	DOCUMENTS	KR 100755079 B1 9/2007 WO WO 1993/12712 7/1993
2019/021	4778 A.1 7/2010	Scruggs et al.	WO WO 94/23643 A1 10/1994 WO WO 1995/000070 A1 1/1995
2019/021		Poeze et al.	WO WO 1996/27325 9/1996
2019/021 2019/022		Al-Ali et al. Kiani et al.	WO WO 1997/009923 A1 3/1997 WO WO 1999/000053 1/1999
2019/022	3804 A1 7/2019	Blank et al.	WO WO 1999/01704 7/1999
2019/023 2019/023		Al-Ali et al. Al-Ali et al.	WO WO 1999/063883 A1 12/1999 WO WO 2000/25112 5/2000
2019/023	1270 A1 8/2019	Abdul-Hafiz et al.	WO WO 2000/028892 A1 5/2000 WO WO 2001/09589 2/2001
2019/023 2019/023		Pauley et al. Muhsin et al.	WO WO 2001/09589 2/2001 WO WO 2006/060949 A1 6/2006
2019/025	4578 A1 8/2019	Lamego	WO WO 2006/079862 A2 8/2006 WO WO 2006/090371 A2 8/2006
2019/026 2019/026		Al-Ali Al-Ali et al.	WO WO 2007/004083 A1 1/2007
2019/027	4606 A1 9/2019	Kiani et al.	WO WO 2007/017266 A2 2/2007 WO WO 2008/107238 A1 9/2008
2019/027- 2019/027-		Al-Ali et al. Al-Ali et al.	WO WO 2006/10/238 A1 9/2008 WO WO 2010/003134 1/2010
2019/029	0136 A1 9/2019	Dalvi et al.	WO WO 2014/149781 9/2014 WO WO 2014/158820 10/2014
2019/029 2019/030		Al-Ali et al. Sampath et al.	WO WO 2014/130620 10/2014
2019/030	4605 A1 10/2019	Al-Âli	OTHER PUBLICATIONS
2019/030 2019/032		Perea et al. Olsen	77.0
2019/032	0959 A1 10/2019	Al-Ali	U.S. Appl. No. 12/534,827, Multi-Stream Data Collection System for Noninvasive Measurement of Blood Constituents, filed Aug. 3,
2019/032 2019/032		Ahmed et al. Kiani et al.	2009.
2019/035			U.S. Appl. No. 16/449,143, Multi-Stream Data Collection System
2019/035 2019/035		Poeze et al. Poeze et al.	for Noninvasive Measurement of Blood Constituents, filed Jun. 21, 2019.
2019/036 2019/037		Poeze et al. Poeze et al.	U.S. Appl. No. 16/534,956, Multi-Stream Data Collection System
2015/05/	1133 111 12,2019	rozze et m.	for Noninvasive Measurement of Blood Constituents, filed Aug. 7, 2019.
	FOREIGN PATE	ENT DOCUMENTS	U.S. Appl. No. 16/534,949, Multi-Stream Data Collection System
EP	419223	3/1991	for Noninvasive Measurement of Blood Constituents, filed Aug. 7,
EP	0630208 A1	12/1994	2019. U.S. Appl. No. 16/541,987, Multi-Stream Data Collection System
EP EP	0770349 A1 0 781 527	5/1997 7/1997	for Noninvasive Measurement of Blood Constituents, filed Aug. 15,
EP EP	0880936 A2 0922432 A1	12/1998 6/1999	2019. U.S. Appl. No. 16/544,755, Multi-Stream Data Collection System
EP	0985373 A1	3/2000	for Noninvasive Measurement of Blood Constituents, filed Aug. 19,
EP EP	1 518 494 1526805 A1	3/2005 5/2005	2019.
EP	1124609 B1	8/2006	U.S. Appl. No. 14/064,055, Multi-Stream Sensor for Noninvasive Measurement of Blood Constituents, filed Oct. 25, 2013.
EP EP	1860989 A1 1875213 A2	12/2007 1/2008	U.S. Appl. No. 15/660,743, Noise Shielding for a Noninvasive
EP EP	1880666 A1	1/2008	Device, filed Jul. 26, 2017. U.S. Appl. No. 12/497,506, Heat Sink for Noninvasive Medical
EP EP	2165196 A1 2 277 440	3/2010 1/2011	Sensor, filed Jul. 2, 2009.
GB JP	2243691 A 05-325705 A	11/1991 12/1993	U.S. Appl. No. 15/195,199, Advanced Pulse Oximetry Sensor, filed Jun. 28, 2016.
JР	08-185864	7/1996	U.S. Appl. No. 16/226,249, Advanced Pulse Oximetry Sensor, filed
JP JP	H 09257508 A H 10314133 A	10/1997 12/1998	Dec. 19, 2018. U.S. Appl. No. 16/532,061, Advanced Pulse Oximetry Sensor, filed
JР	H 1170086 A	3/1999	Aug. 5, 2019.
JP JP	2919326 B2 H11235320 A	7/1999 8/1999	U.S. Appl. No. 16/532,065, Advanced Pulse Oximetry Sensor, filed Aug. 5, 2019.
JP JP	2001-66990	3/2001	PCT International Search Report, App. No. PCT/US2010/047899,
JP	2001-087250 A 2002-500908 A	4/2001 1/2002	Date of Actual Completion of Search: Jan. 26, 2011, 4 pages.
JP JP	2003-024276 A 2003-508104 A	1/2003 3/2003	International Search Report and Written Opinion for PCT/US2009/ 049638, dated Jan. 7, 2010.
JР	2003-265444 A	9/2003	International Search Report issued in Application No. PCT/US2009/
JP JP	2003-508104 A 2004329406 A	9/2003 11/2004	052756, dated Feb. 10, 2009 in 14 pages. International Preliminary Report on Patentability and Written Opin-
JP	2005160641 A	6/2005	ion of the International Searching Authority issued in Application
JP JP	2005270543 A 3741147 B2	10/2005 2/2006	No. PCT US2009/049638, dated Jan. 5, 2011 in 9 pages. International Prelimnary Report on Patentability and Written Opin-
JР	2006102164 A	4/2006	ion of the International Searching Authority issued in Application
JP JP	2006-177837 A 2006-198321 A	7/2006 8/2006	No. PCT/US2009/052756, dated Feb. 8, 2011 in 8 pages.
JP JP	3803351 B2 2007-389463 A	8/2006 11/2007	International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2016/040190, dated
JP	2007319232 A	12/2007	Jan. 2, 2018, in 7 pages.
JP JP	2008-099222 A 5756752	4/2008 6/2015	Burritt, Mary F.; Current Analytical Approaches to Measuring Blood Analytes; vol. 36; No. 8(B); 1990.
			•

(56) References Cited

OTHER PUBLICATIONS

Hall, et al., Jeffrey W.; Near-Infrared Spectrophotometry: A New Dimension in Clinical Chemistry; vol. 38; No. 9; 1992.

Kuenstner, et al., J. Todd; Measurement of Hemoglobin in Unlysed Blood by Near-Infrared Spectroscopy; vol. 48; No. 4, 1994.

Manzke, et al., B., Multi Wavelength Pulse Oximetry in the Measurement of Hemoglobin Fractions; SPIE, vol. 2676, Apr. 24, 1996. Naumenko, E. K.; Choice of Wavelengths for Stable Determination of Concentrations of Hemoglobin Derivatives from Absorption Spectra of Erythrocytes; vol. 63; No. 1; pp. 60-66 Jan.-Feb. 1996; Original article submitted Nov. 3, 1994.

Schmitt, Joseph M.; Simple Photon Diffusion Analysis of the Effects of Multiple Scattering on Pulse Oximetry; Mar. 14, 1991; revised Aug. 30, 1991.

Schmitt, et al., Joseph M.; Measurement of Blood Hematocrit by Dual-Wavelength near-IR Photoplethysmography; vol. 1641; 1992. Schnapp, et al., L.M.; Pulse Oximetry. Uses and Abuses.; Chest 1990; 98; 1244-1250 DOI 10.1378/Chest.98.5.1244.

http://www.masimo.com/rainbow/pronto.htm Noninvasive & Immediate Hemoglobin Testing, printed on Aug. 20, 2009.

http://www.masimo.com/pulseOximeter/Rad5.htm; Signal Extraction Pulse Oximeter, printed on Aug. 20, 2009.

http://blogderoliveira.blogspot.com/2008_02_01_archive.html; Ricardo Oliveira, printed on Aug. 20, 2009.

http://www.masimo.com/rad-57/; Noninvasive Measurement of Methemoglobin, Carboxyhemoglobin and Oxyhemoglobin in the blood. Printed on Aug. 20, 2009.

http://amivital.ugr.es/blog/?tag+spo2; Monitorizacion de la hemoglobina . . . y mucho mas, printed on Aug. 20, 2009.

http://www.masimo.com/spco/; Carboxyhemoglobin Noninvasive > Continuous > Immediate, printed on Aug. 20, 2009.

http://www.masimo.com/PARTNERS/WELCHALLYN.htm; Welch Allyn Expands Patient Monitor Capabilities with Masimo Pulse Oximetry Technology, printed on Aug. 20, 2009.

http://www.masimo.com/pulseOximeter/PPO.htm; Masimo Personal Pulse Oximeter, printed on Aug. 20, 2009.

http://www.masimo.com/generalFloor/system.htm; Masimo Patient SafetyNet System at a Glance, printed on Aug. 20, 2009.

http://www.masimo.com/partners/GRASEBY.htm; Graseby Medical Limited, printed on Aug. 20, 2009.

Japanese Office Action, re JP Application No. 2011-516895, dated Sep. 2, 2014, with translation.

Japanese Notice of Allowance, re JP Application No. 2011-516895, dated May 12, 2015, no translation.

European Office Action issued in application No. 10763901.5 dated Jan. 11, 2013.

European Office Action issued in application No. 10763901.5 dated Aug. 27, 2014.

European Office Action issued in application No. 10763901.5 dated Aug. 6, 2015.

European Office Action issued in Application No. 09791157.2, dated Jun. 20, 2016.

Kanukurthy et al., "Data Acquisition Unit for an Implantable Multi-Channel Optical Glucose Sensor", Electro/Information Technology Conference, Chicago, IL, USA, May 17-20, 2007, pp. 1-6. Konig et al., "Reflectance Pulse Oximetry—Principles and Obstetric Application in the Zurich System", Journal of Clinical Monitoring and Computing, vol. 14, No. 6, Aug. 1998, pp. 403-412.

Smith, "The Pursuit of Noninvasive Glucose: 'Hunting the Deceitful Turkey'", 2006.

Small et al., "Data Handling Issues for Near-Infrared Glucose Measurements", http://www.ieee.org/organizations/pubs/newsletters/leos/apr98/datahandling.htm, accessed Nov. 27, 2007.

U.S. Appl. No. 16/594980, Multi-Stream Data Collection System for Noninvasive Measurement of Blood Constituents, filed Oct. 7, 2019.

D. C. Zheng and Y. T. Zhang, "A ring-type device for the noninvasive measurement of arterial blood pressure," Proceedings of the 25th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (IEEE Cat. No. 03CH37439), Sep. 17-21, 2003, Cancun, pp. 3184-3187 vol. 4.

U.S. Appl. No. 16/725,478, Multi-Stream Data Collection System for Noninvasive Measurement of Blood Constituents, filed Dec. 23, 2019.

U.S. Appl. No. 16/725,292, Multi-Stream Data Collection System for Noninvasive Measurement of Blood Constituents, filed Dec. 23, 2019

L. Grajales et al., "Wearable multisensor heart rate monitor," International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06), Cambridge, MA, 2006, pp. 4-157.

N. Townsend, "Pulse Oximetry," Medical Electronics, 2001, pp. 32-42.

Nonin Medical, Inc., "Operator's Manual—Models 8600F0 and 8600F0M Pulse Oximeters," 2005, 25 pages.

C. J. Pujary, "Investigation of Photodetector Optimization in Reducing Power Consumption by a Noninvasive Pulse Oximeter Sensor," Worcester Polytechnic Institute, Jan. 16, 2004, 133 pages.

B. McGarry et al., "Reflections on a candidate design of the user-interface for a wireless vital-signs monitor," Proceedings of DARE 2000 on Designing Augmented Reality Environments, Jan. 2000, pp. 33-40.

J. C. D. Conway et al., "Wearable computer as a multi-parametric monitor for physiological signals," Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering, Arlington, VA, USA, 2000, pp. 236-242.

J. A. Tamada et al., "Noninvasive Glucose Monitoring: Comprehensive Clinical Results," JAMA, Nov. 17, 1999, vol. 282, No. 19, pp. 1839-1844.

B.-H. Yang et al., "Development of the ring sensor for healthcare automation," Robotics and Autonomous Systems, 2000, pp. 273-281

Laukkanen RM et al., "Heart Rate Monitors: State of the Art," Journal of Sports Science, Jan. 1998, pp. S3-S7.

S. Warren et al., "Designing Smart Health Care Technology into the Home of the Future," Workshops on Future Medical Devices: Home Care Technologies for the 21st Century, Apr. 1999, 19 pages.

A. C. M. Dassel et al., "Reflectance Pulse Oximetry at the Forehead Improves by Pressure on the Probe," Journal of Clinical Monitoring, vol. 11, No. 4, Jul. 1995, pp. 237-244.

B-H. Yang et al., "A Twenty-Four Hour Tele-Nursing System Using a Ringer Sensor," Proceedings of 1998 IEEE International Conference on Robotics and Automation, May 16-20, 1998, 6 pages.

S. Rhee et al., "The Ring Sensor: a New Ambulatory Wearable Sensor for Twenty-Four Hour Patient Monitoring," Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct. 29-Nov. 1, 1998, 4 pages. S. Rhee et al., "Design of a Artifact-Free Wearable Plethysmographic Sensor," 21st Annual International Conference IEEE Engineering in

Medicine and Biology Society, Oct. 13-16, 1999, p. 786. T. Martin et al., "Issues in Wearable Computing for Medical Montioring Applications: A Case Study of a Wearable ECG Moni-

toring Device," In Proceedings of International Symposium of Wearable Computers (ISWC'00), Feb. 2000, pp. 43-49. S. Rhee et al., "Artifact-Resistant, Power Efficient Design of Finger-

Ring Plethysmographic Sensors, Part I: Design and Analysis," 22nd Annual International Conference IEEE Engineering in Medicine and Biology Society, Jul. 23-28, 2000, pp. 2792-2795.

C. Pujary et al., "Photodetector Size Considerations in the Design of a Noninvasive Reflectance Pulse Oximeter for Telemedicine Applications," Proceedings of IEEE Annual Northeast Bioengineering Conference, 2003, pp. 148-149.

M. Savage et al., "Optimizing Power Consumption in the Design of a Wearable Wireless Telesensor: Comparison of Pulse Oximeter Modes," Proceedings of IEEE 29th Annual Nonheust Bioengineering Conference, 2003, pp. 150-151.

A. Tura et al., "A Wearable Device with Wireless Bluetooth-based Data Transmission," Measurement Science Review, vol. 3, Sec. 2, 2003, pp. 1-4.

R. Paradiso, "Wearable Health Care System for Vital Signs Monitoring," In Proceedings of IEEE International Conference on Information Technology Applications in Biomedicine, May 2003, pp. 283-286.

(56) References Cited

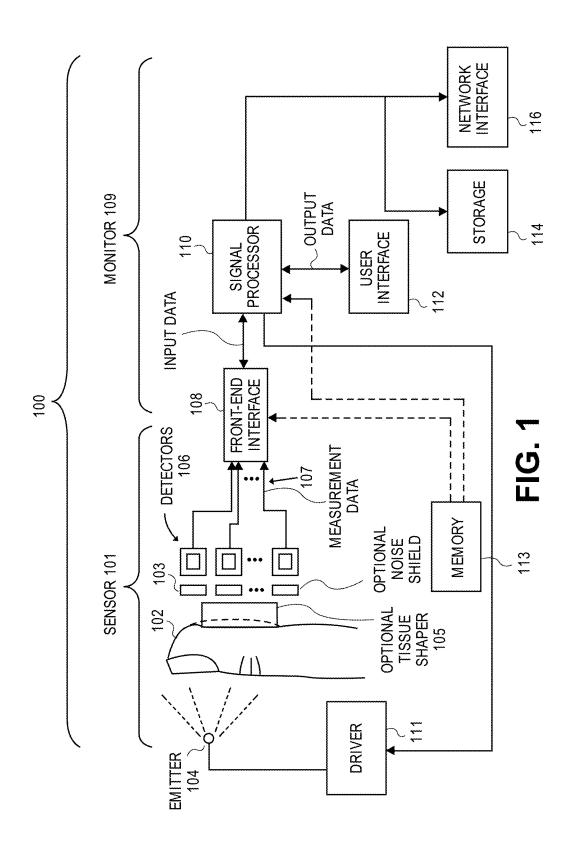
OTHER PUBLICATIONS

- H.H. Asada et al., "Mobile Monitoring with Wearable Photoplethysmographic Biosensors," IEEE Engineering in Medicine and Biology Magazine, May/Jun. 2003, pp. 28-40.
- Y. Mendelson et al., "Minimization of LED Power Consumption in the Design of a Wearable Pulse Oximeter," Proceedings of the IASTED International Conference Biomedical Engineering, Jun. 25-27, 2003, 6 pages.
- Y. Mendelson et al., "Measurement Site and Photodetector Size Considerations in Optimizing Power Consumption of a Wearable Reflectance Pulse Oximeter," Proceedings of the 25th Annual International Conference of the IEEE EMBS, Sep. 17-21, 2003, pp. 3016-3019.
- D. Marculescu et al., "Ready to Ware," IEEE Spectrum, vol. 40, Issue 10, Oct. 2003, pp. 28-32.
- P. Celka et al., "Motion Resistant Earphone Located Infrared Based Hearth Rate Measurement Device," In Proceeding of the 2nd International Conference on Biomedical Engineering, Innsbruck, Austria, Feb. 16-18, 2004, pp. 582-585.
- D. Konstantas et al., "Mobile Patient Monitoring: The MobiHealth System," In Proceedings of International Conference on Medical and Care Compunetics, NCC'04, Feb. 2004, 8 pages.
- S. Pentland, "Healthwear: Medical Technology Becomes Wearable," IEEE Computer Society, vol. 37, Issue 5, May 2004, pp. 34-41
- P. Branche et al., "Signal Quality and Power Consumption of a New Prototype Reflectance Pulse Oximeter Sensor," Proceeding of the 31th Annual Northeast Bioengineering Conference, Hoboken, NJ, IEEE, 2005, pp. 1-2.
- U. Anliker et al., "AMON: A Wearable Multiparameter Medical Monitoring and Alert System," IEEE Transactions on Information Technology in Biomedicine, Jan. 2005, pp. 1-11.
- P. T. Gibbs et al., "Active Motion Artifact Cancellation for Wearable Health Monitoring Sensors Using Collocated MEMS Accelerometers," Proceedings of SPIE Smart Structures and Materials: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, May 17, 2005, pp. 811-819.
- C. W. Mundt et al., "A Multiparameter Wearable Physiologic Monitoring System for Space and Terrestrial Applications," IEEE Transactions on Information Technology in Biomedicine, vol. 9, No. 3, Sep. 2005, pp. 382-391.
- Y. Mendelson et al., "A Wearable Reflectance Pulse Oximeter for Remote Physiological Monitoring," Proceedings of the 28th IEEE EMBS Annual International Conference, Aug. 30-Sep. 3, 2006, pp. 912-915
- B-S. Lin et al., "RTWPMS: A Real-Time Wireless Physiological Monitoring System," IEEE Transactions on Information Technology in Biomedicine, vol. 10, No. 4, Oct. 2006, pp. 647-656.
- T. Torfs et al., "Body-Heat Powered Autonomous Pulse Oximeter," IEEE Sensors 2006, EXCO, Oct. 22-25, 2006, pp. 427-430.
- P.S. Pandian et al., "Smart Vest: Wearable Multi-Parameter Remote Physiological Monitoring System," Medical Engineering & Physics 30, 2008. pp. 466-477.
- G. Tamannagari, "Power Efficient Design of Finder-Ring Sensor for Patient Monitoring," Master of Science in Electrical Engineering, The University of Texas at San Antonio, College of Engineering, Department of Electrical Engineering, Dec. 2008, 74 pages.
- M. Yamashita et al., "Development of a Ring-Type Vital Sign Telemeter," Biotelemetry XIII, Mar. 26-31, 1995, pp. 145-150.
- P. Renevey et al., "Wrist-Located Pulse Detection Using IR Signals, Activity and Nonlinear Artifact Cancellation," Proceedings of the 23rd Annual EMBS International Conference, Oct. 25-28, 2001, pp. 3030-3033
- Y. Mendelson et al., "A Mobile PDA-Based Wireless Pulse Oximeter," Proceedings of the IASTED International Conference Telehealth, Jul. 19-21, 2005, pp. 1-6.
- P. Shaltis et al., "Novel Design for a Wearable, Rapidly Depolyable, Wireless Noninvasive Triage Sensor," Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference, Sep. 1-4, 2005, pp. 3567-3570.

- Y-S. Yan et al., An Efficient Motion-Resistant Method for Wearable Pulse Oximeter, IEEE Transactions on Information Technology in Biomedicine, vol. 12, No. 3, May 2008, pp. 399-405.
- P. C. Branche et al., "Measurement Reproducibility and Sensor Placement Considerations in Designing a Wearable Pulse Oximeter for Military Applications," IEEE, 2004, pp. 216-217.
- G. Comtois, "A Comparative Evaluation of Adaptive Noise Cancellation Algorithms for Minimizing Motion Artifacts in a Forehead-Mounted Wearable Pulse Oximeter," Proceedings of the 29th Annual international Conference of the IEEE EMBS, Aug. 23-26, 2007, pp. 1528-1531.
- G. Comtois et al., "A Noise Reference Input to an Adaptive Filter Algorithm for Signal Processing in a Wearable Pulse Oximeter," IEEE, 2007, pp. 106-107.
- R. P. Dresher et al., "A New Reflectance Pulse Oximeter Housing to Reduce Contact Pressure Effects," IEEE, 2006, pp. 49-50.
- R. P. Dresher et al., "Reflectance Forehead Pulse Oximetry: Effects on Contact Pressure During Walking," Proceedings of the 28th IEEE EMBS Annual International Conference, Aug. 30-Sep. 3, 2006, pp. 3529-3532.
- W. S. Johnston et al., "Extracting Breathing Rate Information from a Wearable Reflectance Pulse Oximeter Sensor," Proceedings of the 26th Annual International Conference of the IEEE EMBS, Sep. 1-5, 2004, pp. 5388-5391.
- W. Johnston et al., "Extracting Heart Rate Variability from a Wearable Reflectance Pulse Oximeter," IEEE, 2005, pp. 1-2.
- W. S. Johnston et al., "Investigation of Signal Processing Algorithms for an Embedded Microcontroller-Based Wearable Pulse Oximeter," Proceedings of the 28th IEEE EMBS Annual International Conference, Aug. 30-Sep. 3, 2006, pp. 5888-5891.
- P. Lukowicz et al., "AMON: A Wearable Medical Computer for High Risk Patient," Proceedings of the 6th International Symposium on Wearable Computers (ISWC'02), 2002, pp. 1-2.
- P. Lukowicz et al., "The WearARM Modular, Low-Power Computing Core," IEEE Micro, May-Jun. 2001, pp. 16-28.
- Y. Mendelson et al., "Accelerometery-Based Adaptive Noise Cancellation for Remote Physiological Monitoring by a Wearable Pulse Oximeter," Proceedings of the 3rd IASTED International Conference Telehealth, May 31-Jun. 1, 2007, pp. 28-33. Sokwoo Rhee et al., "Artifact-Resistant Power-Efficient Design of
- Sokwoo Rhee et al., "Artifact-Resistant Power-Efficient Design of Finger-Ring Plethysmographic Sensors," IEEE Transactions on Biomedical Engineering, Jul. 2001, pp. 795-805, vol. 48, No. 7.
- L. Xu et al., "An integrated wrist-worn routine monitoring system for the elderly using BSN," 2008 5th International Summer School and Symposium on Medical Devices and Biosensors, Hong Kong, 2008, pp. 45-48.
- J Kraiff et al., "An optical device to measure blood components by a photoplethysmographic method," Journal of Optics A: Pure and Applied Optics. 7, 2005, pp. S318-S324.
- K. Nakajima et al., "Monitoring of heart and respiratory rates by photoplethysmography using digital filtering technique," Med. Eng. Phy. vol. 18, No. 5, pp. 365-372, 1996.
- Russell Dresher, "Wearable Forehead Pulse Oximetry: Minimization of Motion and Pressure Artifacts," May 3, 2006, 93 pages.
- Sonnia Maria López Silva et al., "Near-infrared transmittance pulse oximetry with laser diodes," Journal of Biomedical Optics vol. 8 No. 3, Jul. 2003, pp. 525-533.
- Fabio Buttussi et al., "MOPET: A context-aware and user-adaptive wearable system for fitness training," Artificial Intelligence in Medicine 42, 2008, pp. 153-163.
- Stephen A. Mascaro et al., "Photoplethysmograph Fingernail Sensors for Measuring Finger Forces Without Haptic Obstruction," IEEE Transactions on Robotics and Automation, vol. 17, No. 5, Oct. 2001, pp. 698-708.
- Stephen A. Mascaro et al., "Measurement of Finger Posture and Three-Axis Fingertip Touch Force Using Fingernail Sensors," IEEE International Conference on Robotics and Automation, 2002, pp. 1-11.
- Akira Sakane et al., "Estimating Arterial Wall Impedance using a Plethysmogram," IEEE 2003, pp. 580-585.
- Nuria Oliver et al., "HealthGear: A Real-time Wearable System for Monitoring and Analyzing Physiological Signals," Proceedings of

(56) References Cited

OTHER PUBLICATIONS


the International Workshop on Wearable and Implantable Body Sensor Networks 2006 IEEE, pp. 1-4.

Yuan-Hsiang Lin et al., "A wireless PDA-based physiological monitoring system for patient transport," IEEE Transactions on Information Technology in Biomedicine, vol. 8, No. 4, pp. 439-447, Dec. 2004.

R. Fensli et al., "A Wireless ECG System for Continuous Event Recording and Communication to a Clinical Alarm Station," Conf Proc IEEE Eng Med Biol Soc, 2004, pp. 1-4.

E. Higurashi et al., "An integrated laser blood flowmeter," Journal of Lightwave Technology, vol. 21, No. 3, pp. 591-595, Mar. 2003. T. Kiyokura et al., "Wearable Laser Blood Flowmeter for Ubiquitous Healthcare Service," 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, Hualien, 2007, pp. 4-5. Takumi Morita et al., "Integrated Blood Flowmeter Using Micromachining Technology," Dec. 2004, pp. 77-80.

Eiji Higurashi et al., "Hybrid integration technologies for optical micro-systems", Proc. SPIE 5604, Optomechatronic Micro/Nano Components, Devices, and Systems, Oct. 25, 2004, pp. 67-73. Jan. 9, 2020 Complaint for (1) Patent Infringement (2) Trade Secret Misappropriation and (3) Ownership of Patents and Demand for Jury Trial, Masimo Corporation and Cercacor Laboratories, Inc. v. Apple Inc. , Case No. 8:20-cv-00048, 64 pages.

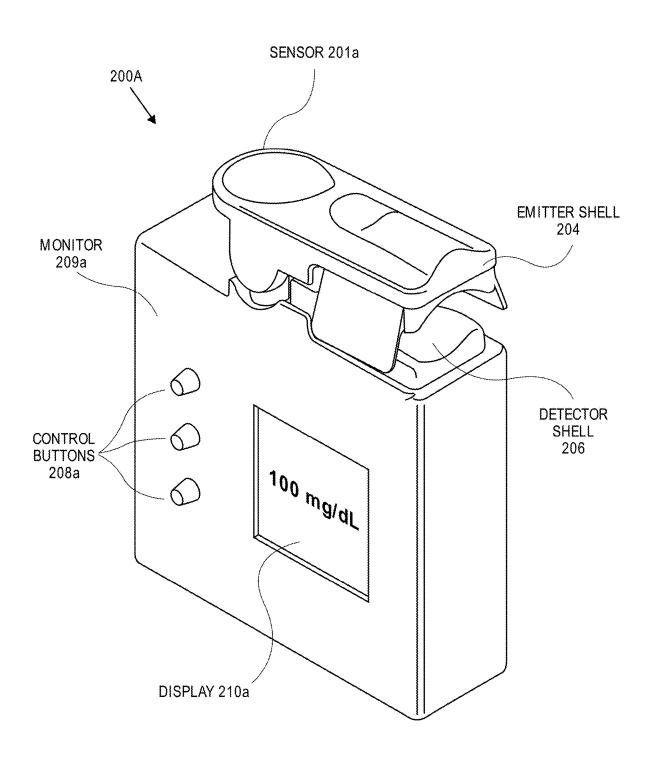
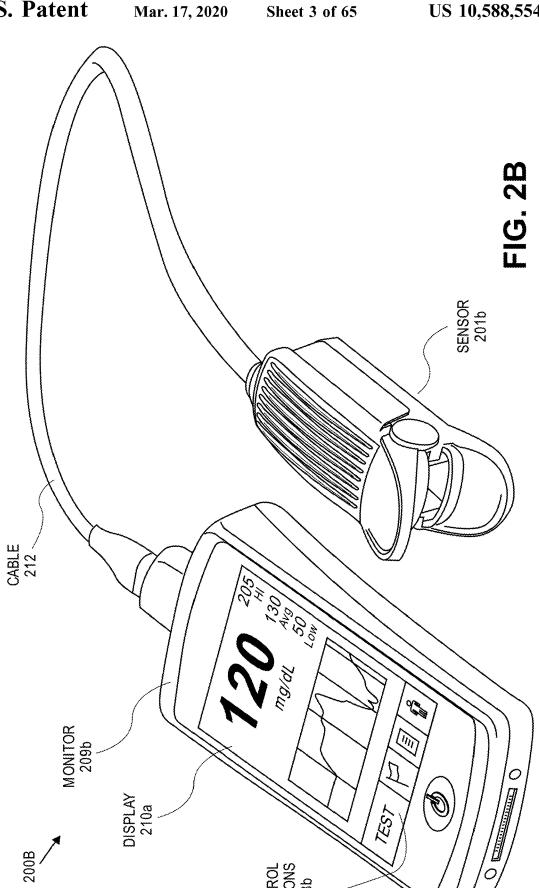



FIG. 2A



FIG. 2C

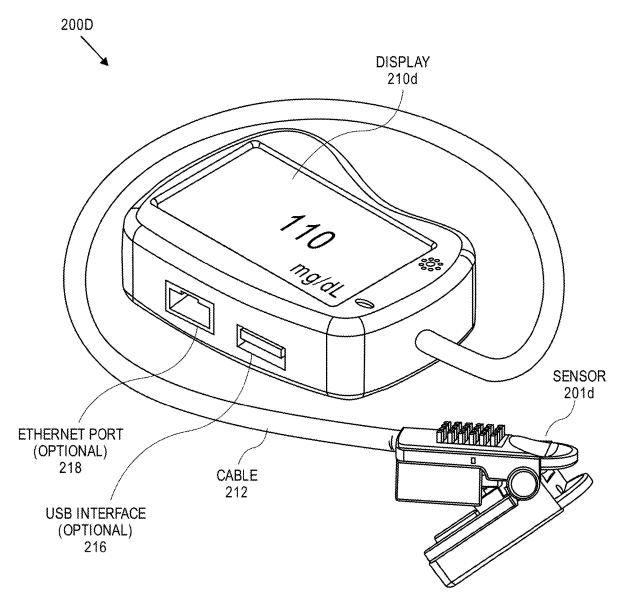


FIG. 2D

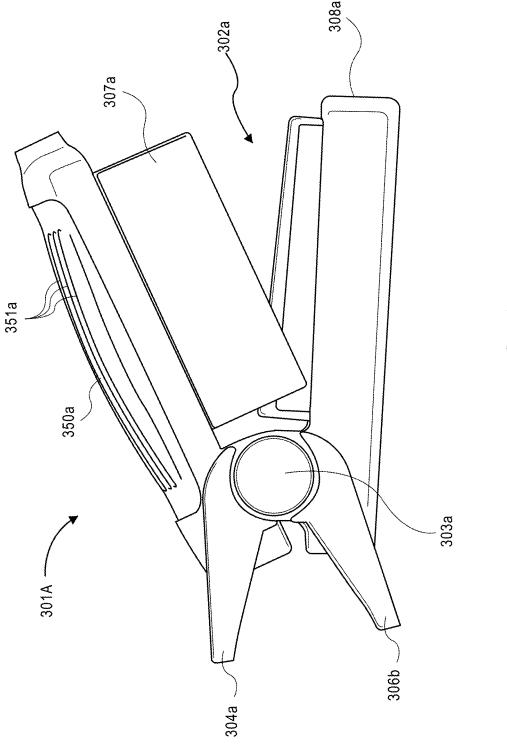
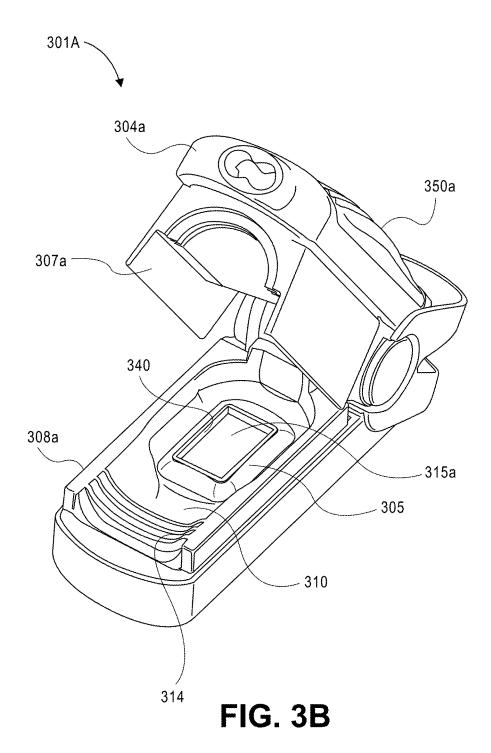



FIG. 3A

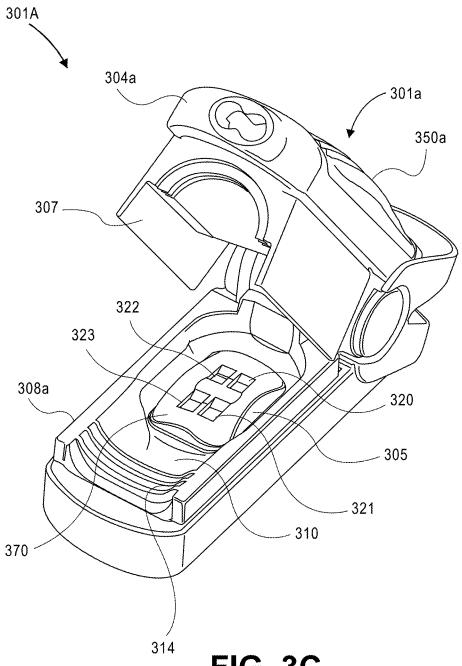


FIG. 3C

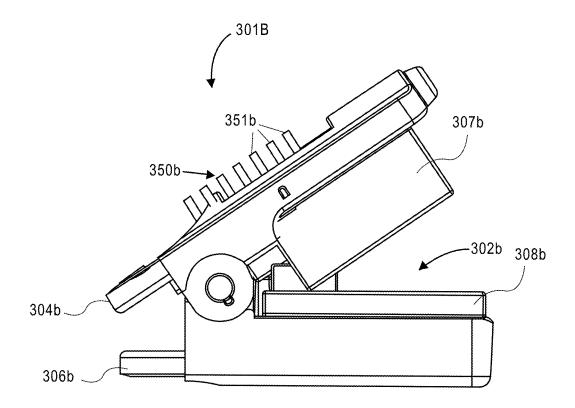


FIG. 3D

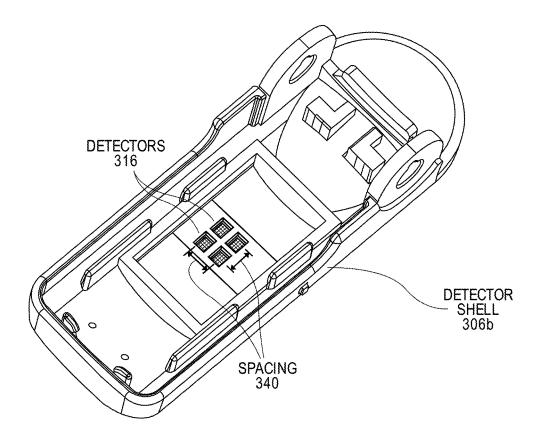
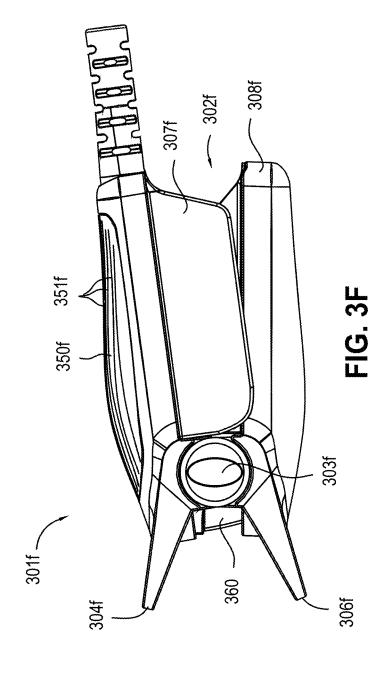



FIG. 3E

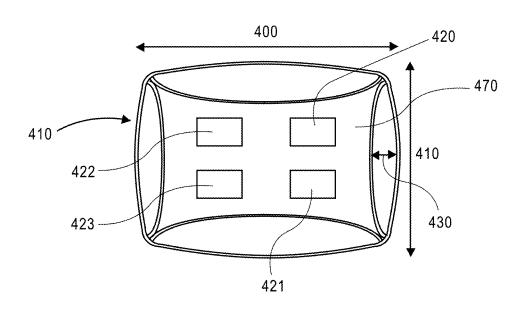


FIG. 4A

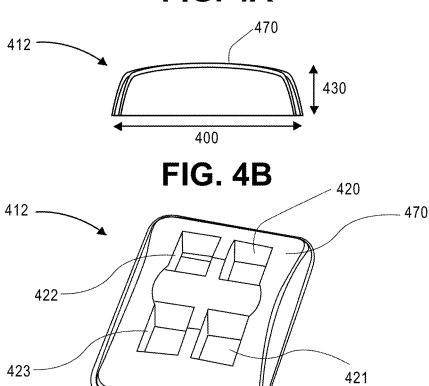
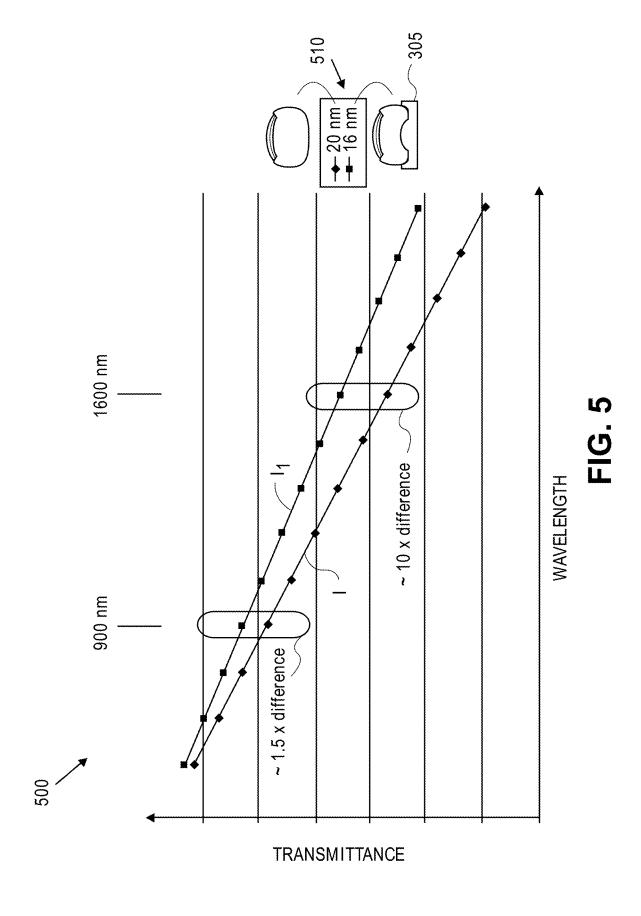



FIG. 4C

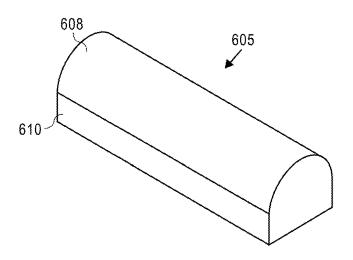
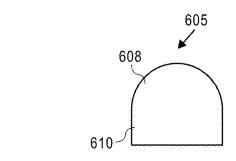



FIG. 6A

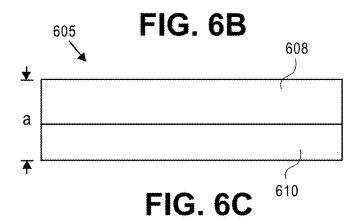
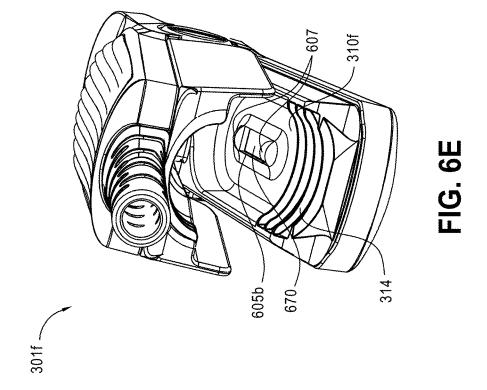



FIG. 6D

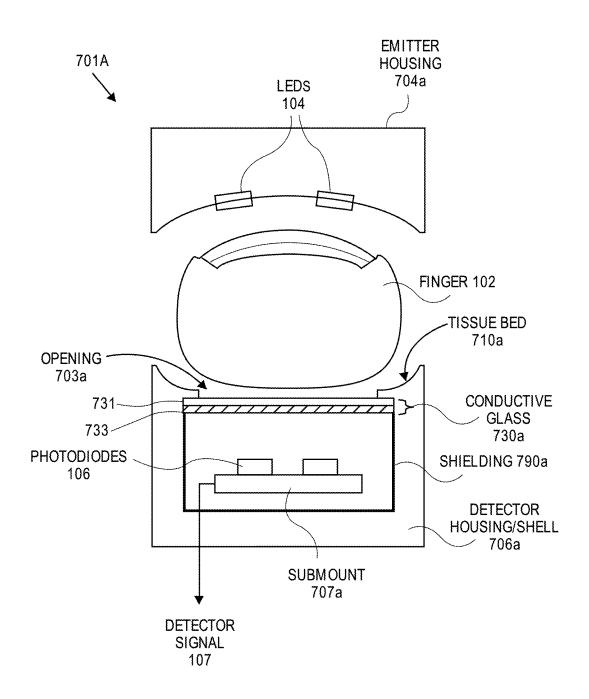


FIG. 7A

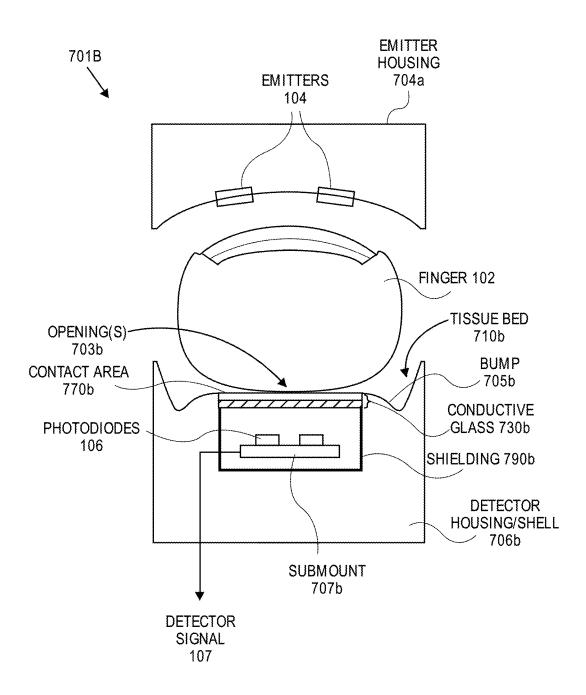


FIG. 7B

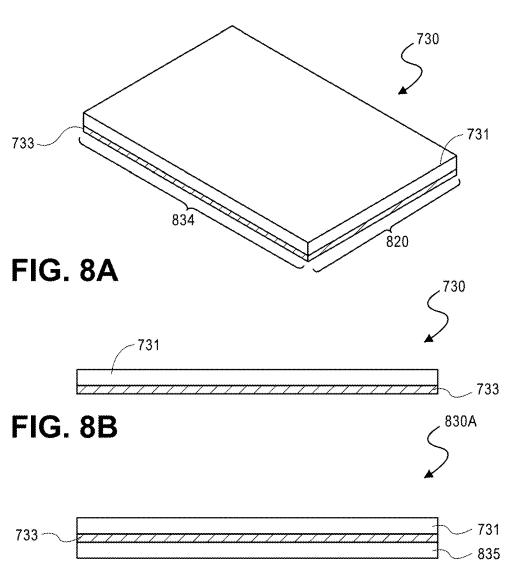
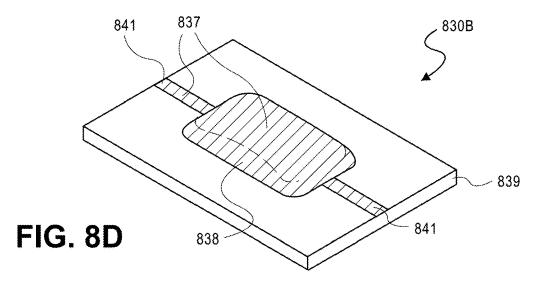
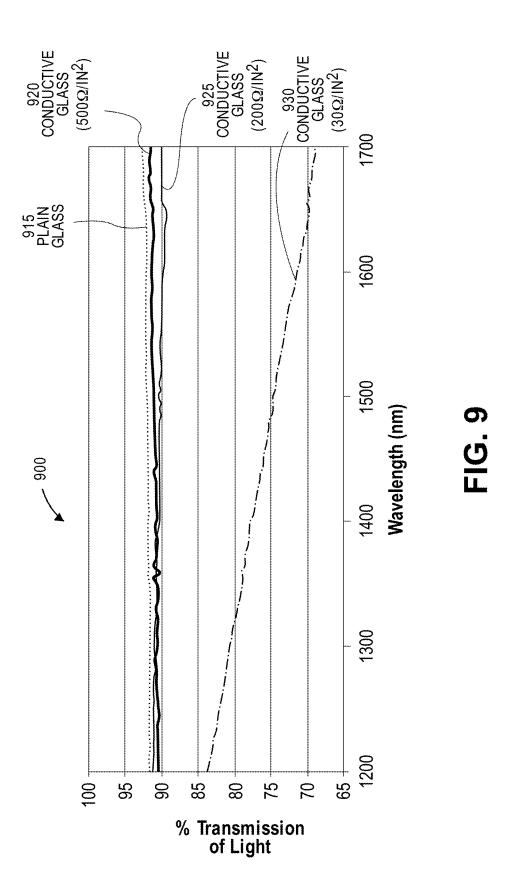
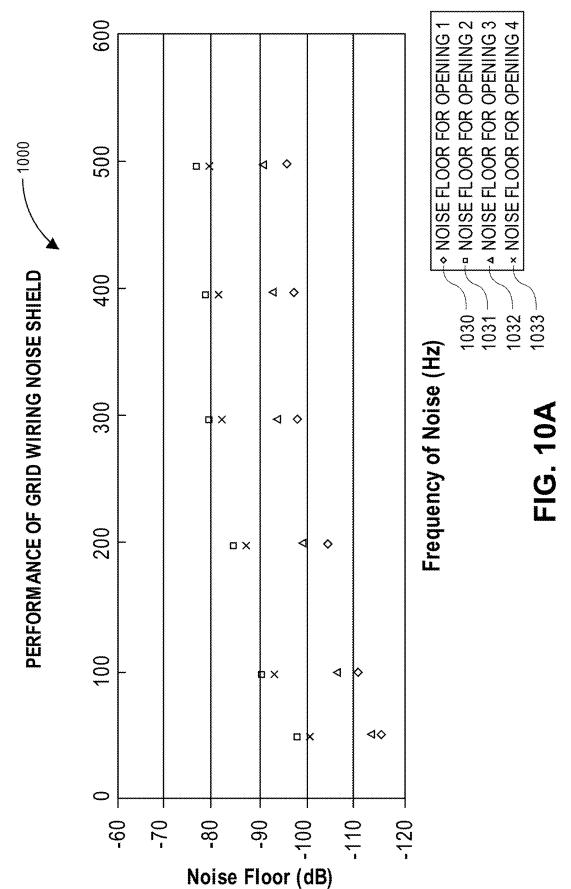
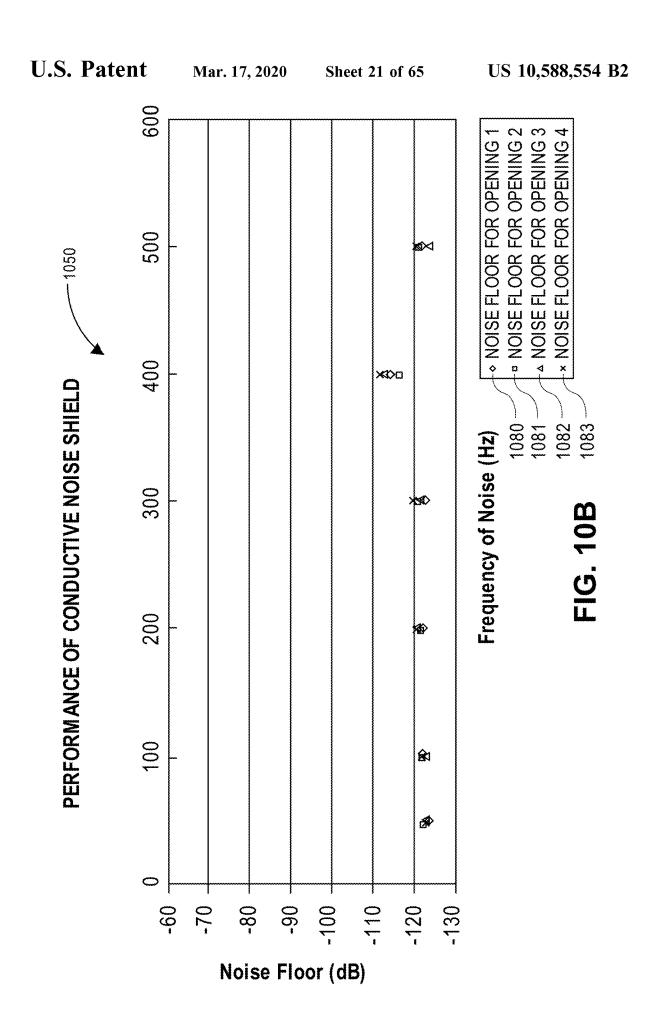
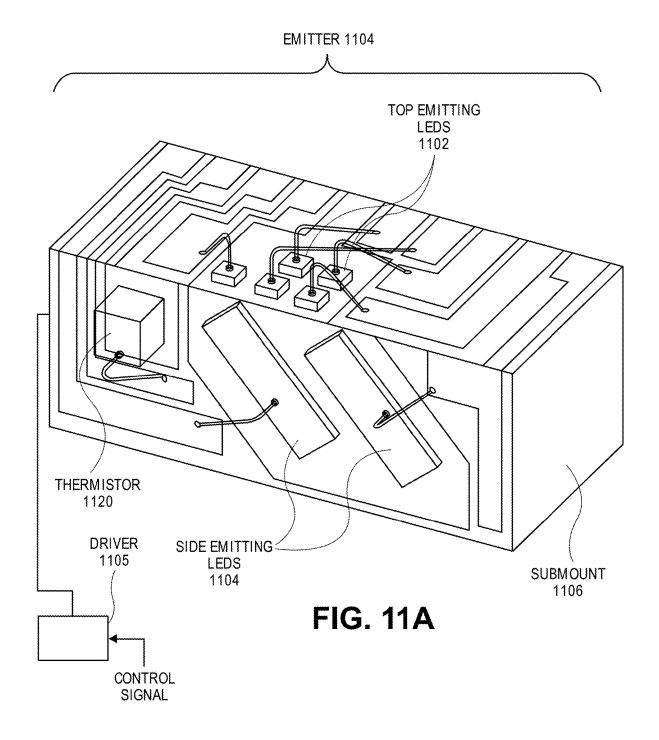
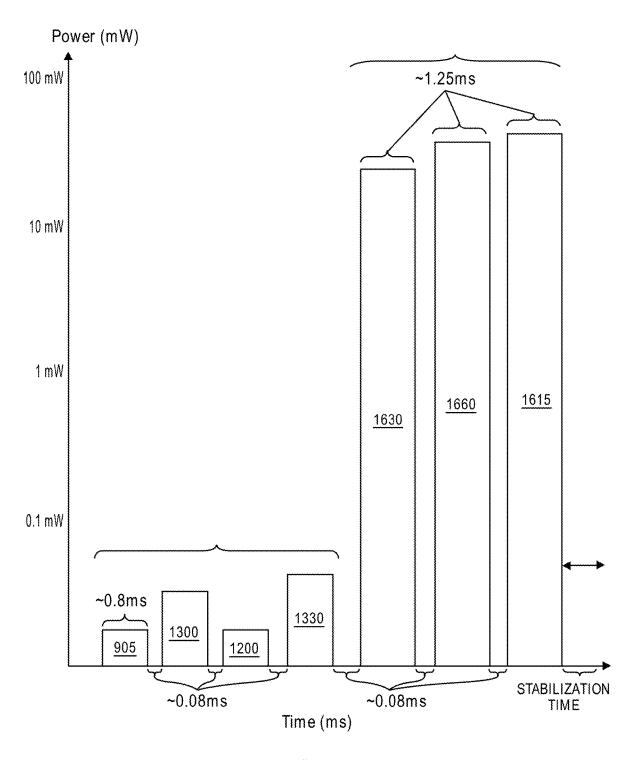




FIG. 8C

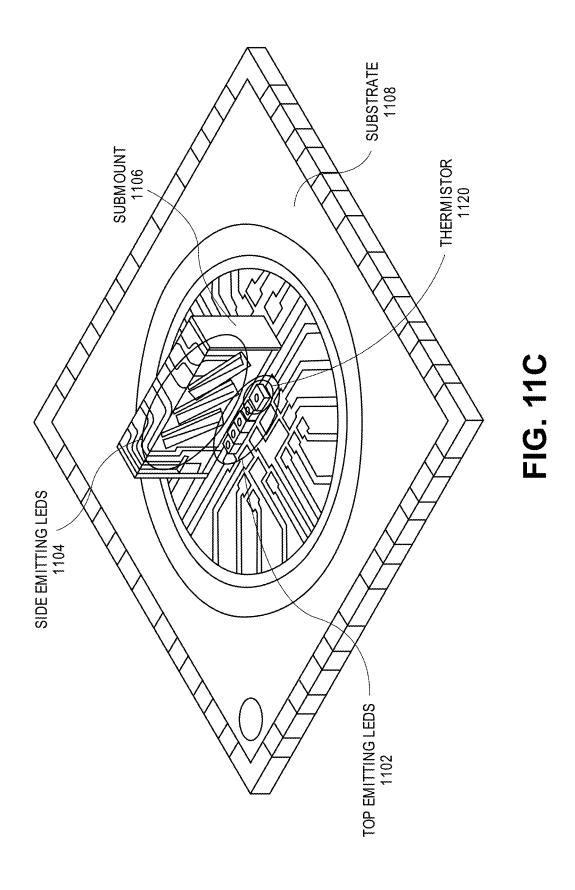


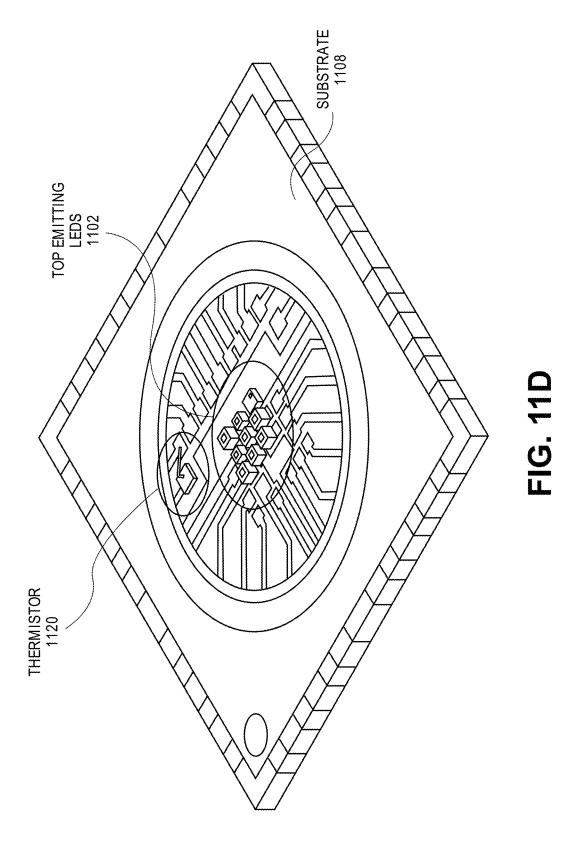


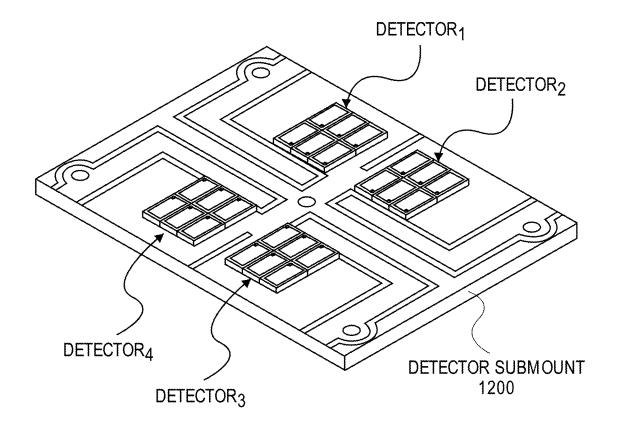



Sheet 20 of 65

US 10,588,554 B2







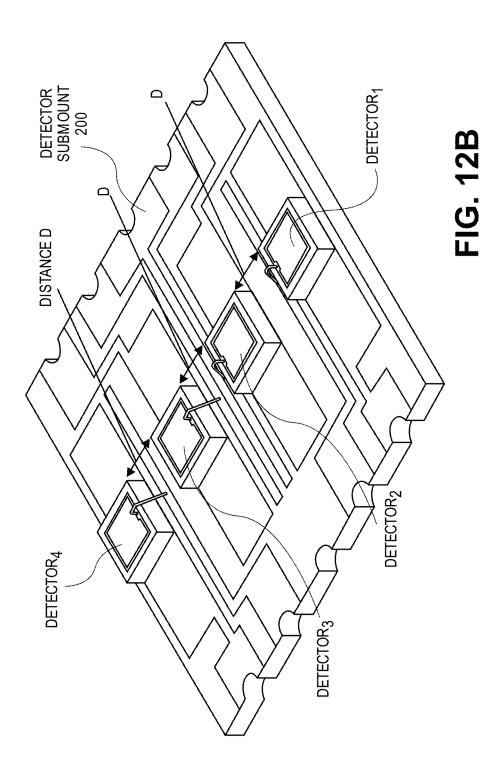

FIG. 11B

FIG. 12A

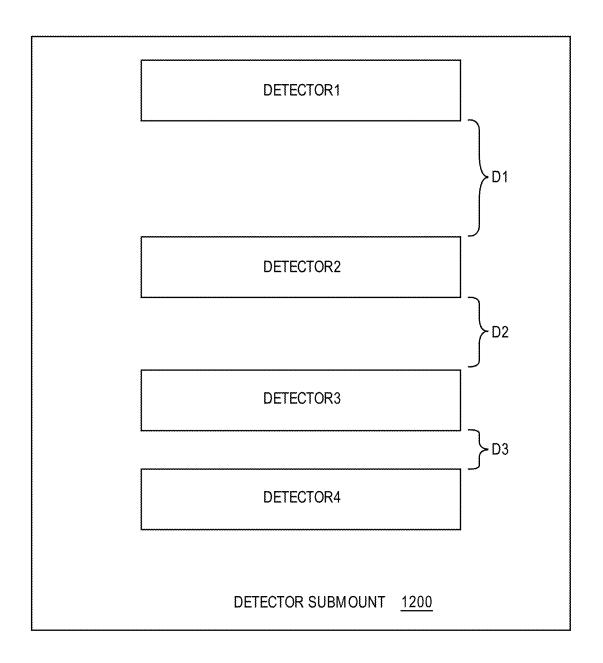


FIG. 12C

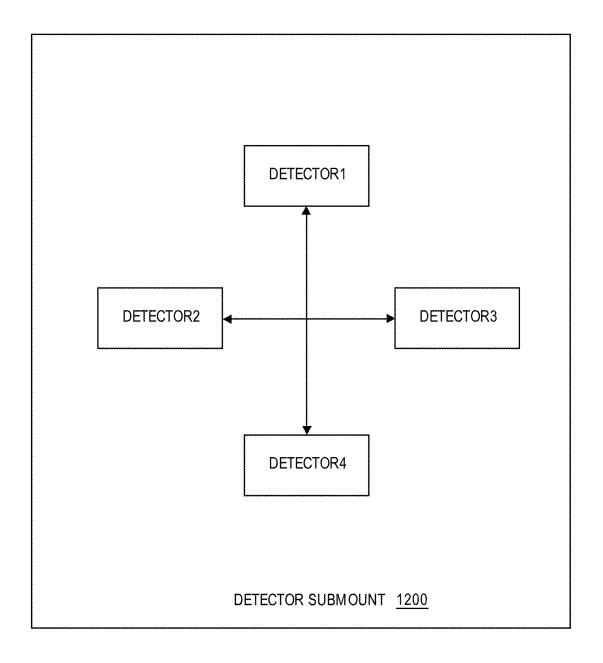


FIG. 12D

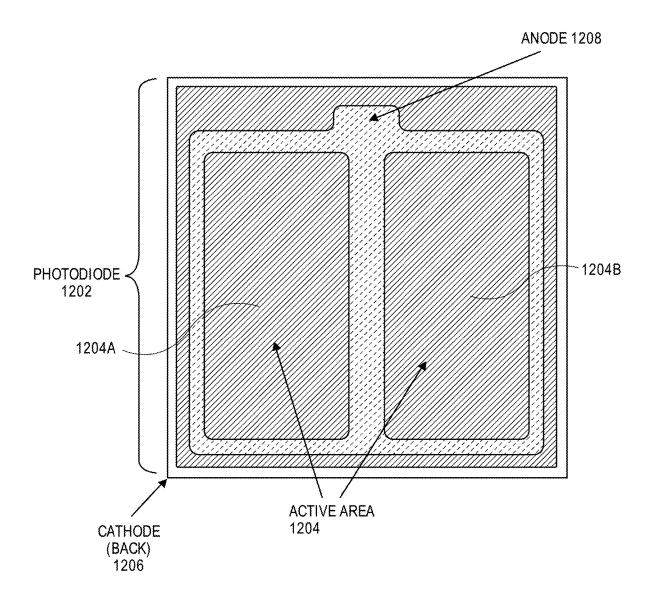


FIG. 12E

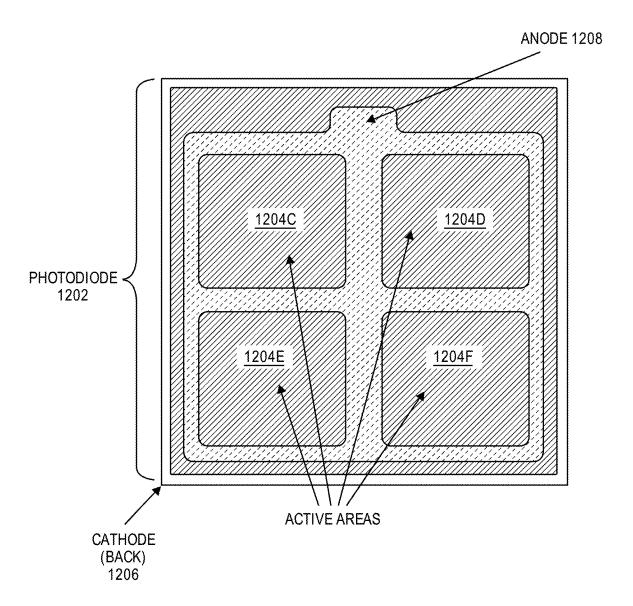


FIG. 12F

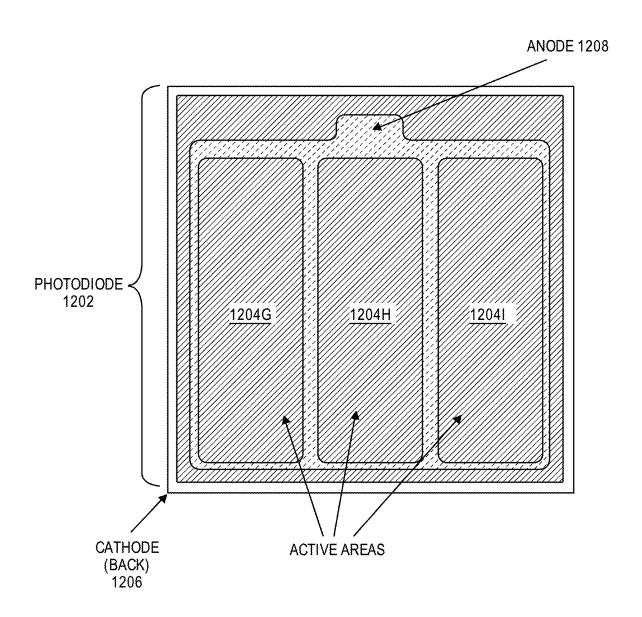


FIG. 12G

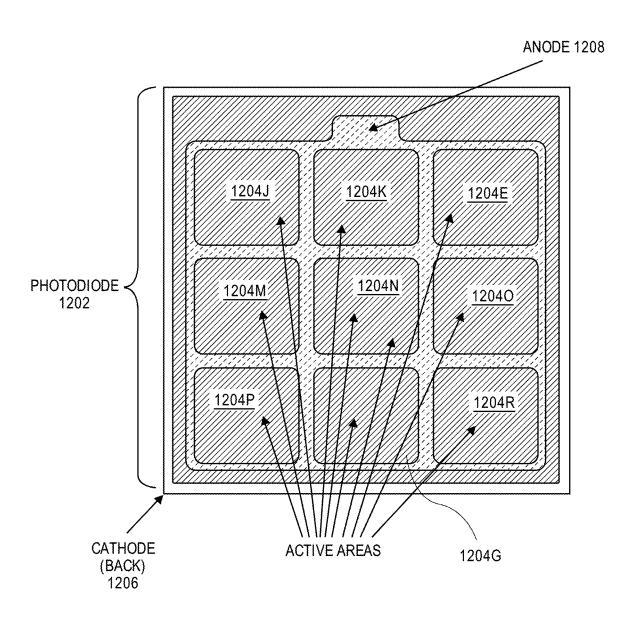
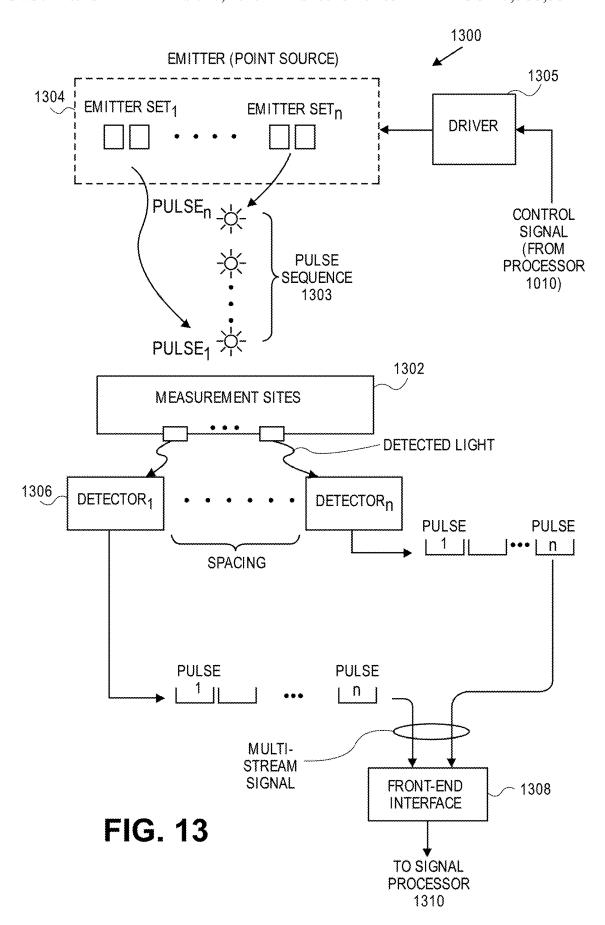
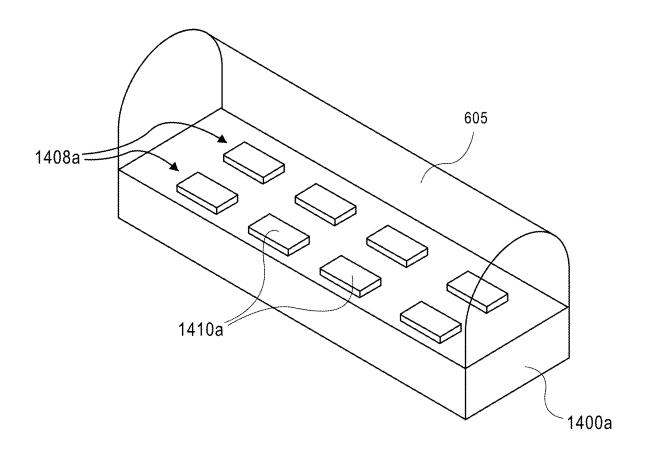




FIG. 12H

FIG. 14A

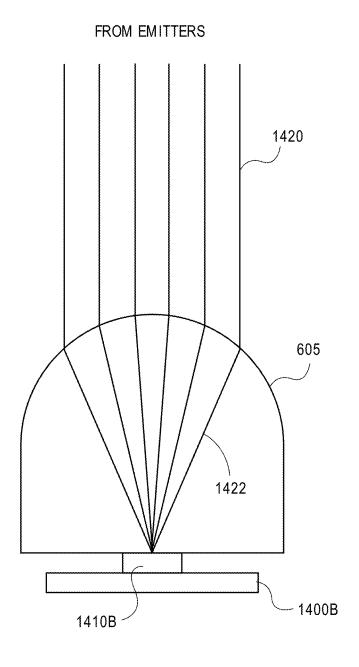


FIG. 14B

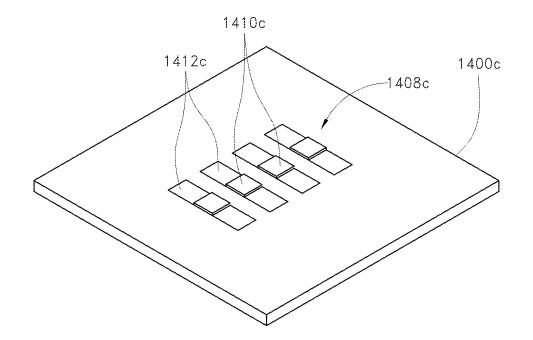


FIG. 14C

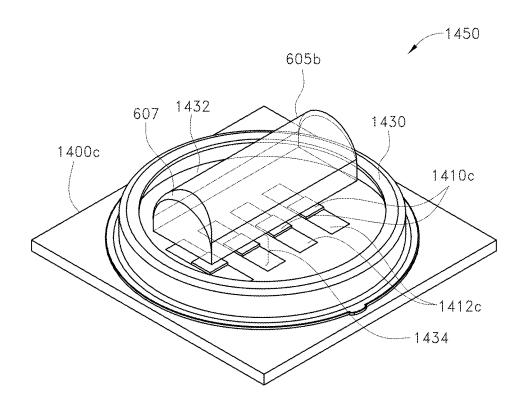


FIG. 14D

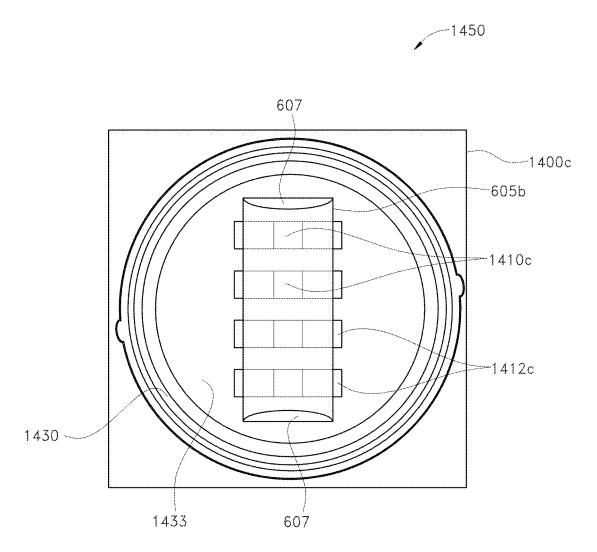


FIG. 14E

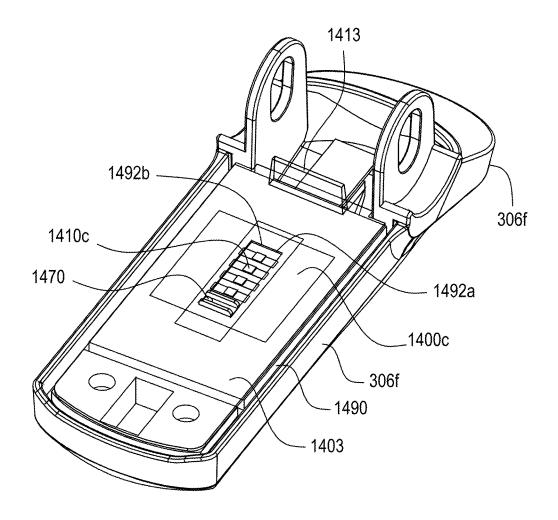


FIG. 14F

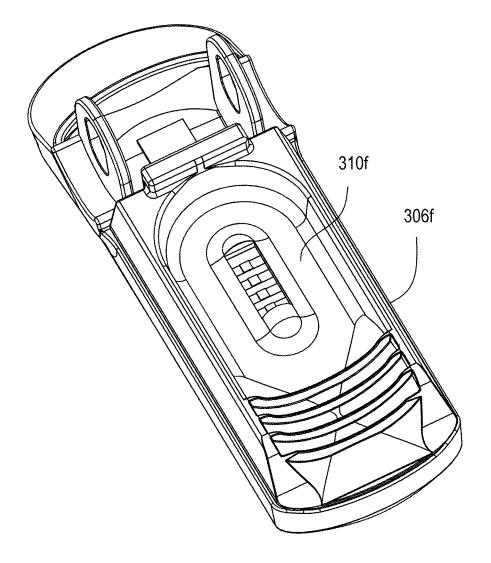


FIG. 14G

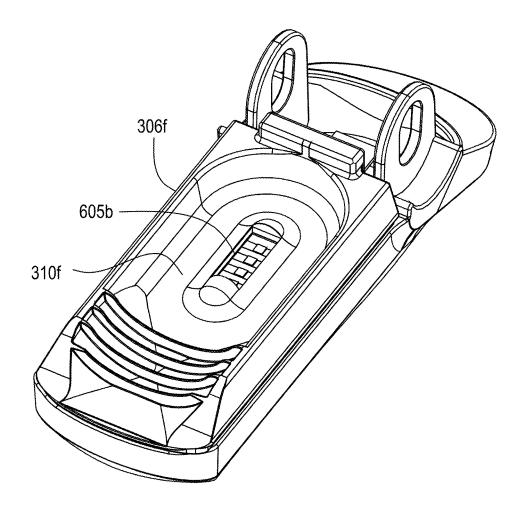


FIG. 14H

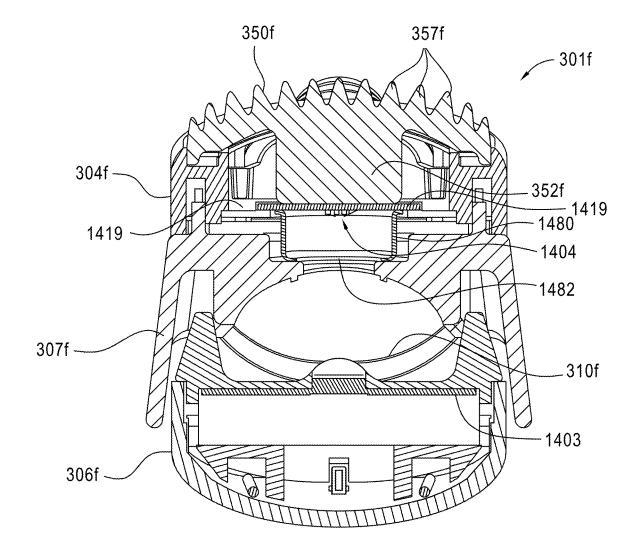
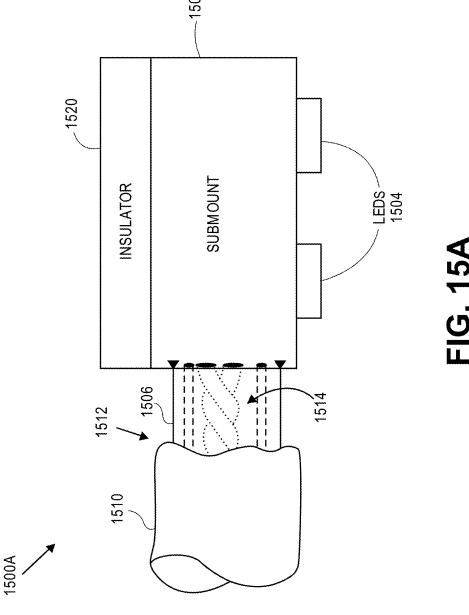
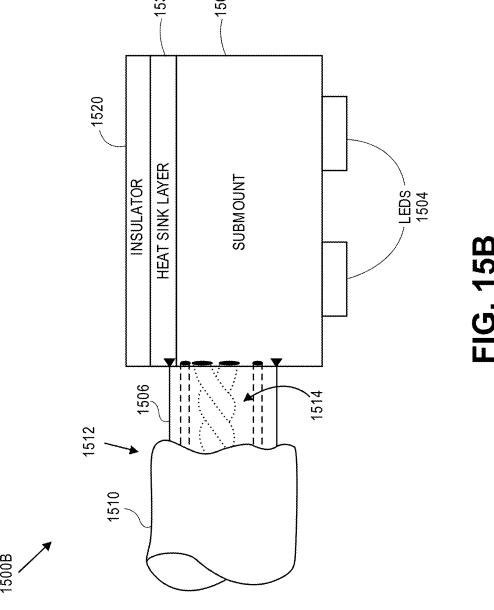
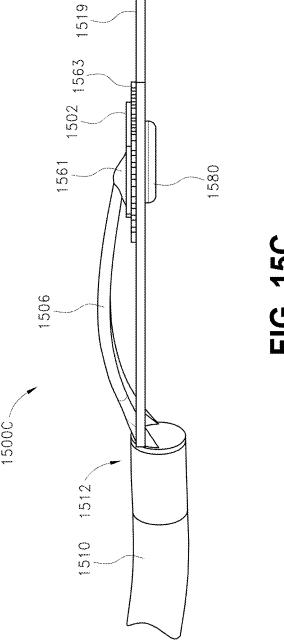
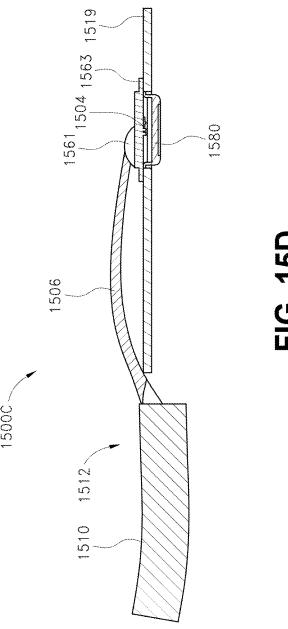
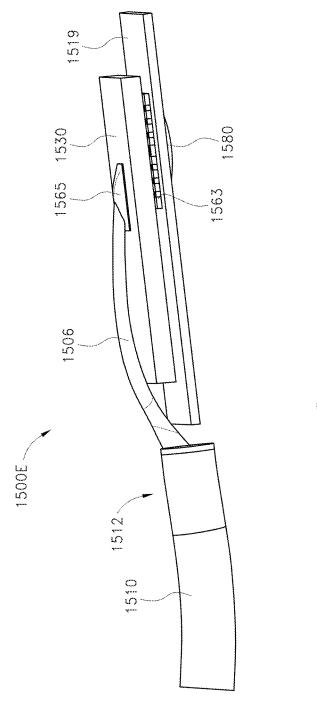
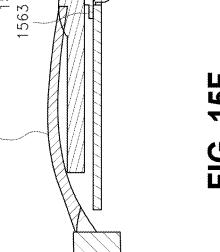
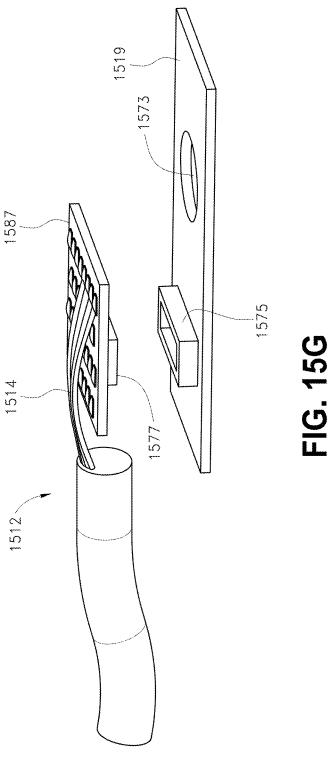
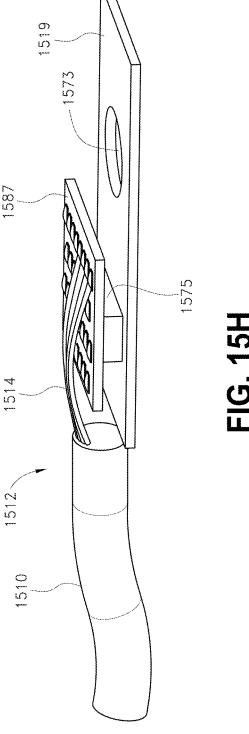






FIG. 141


FIG. 15E


1500E

1510 1512

1580

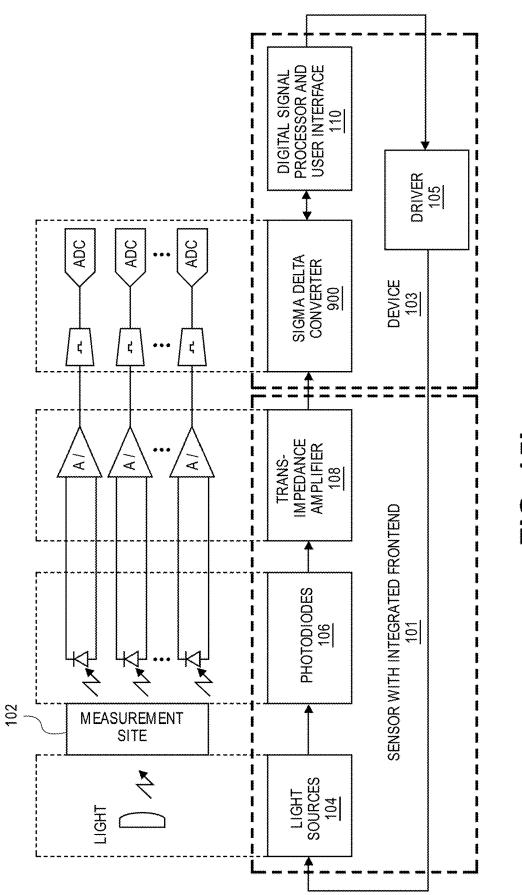
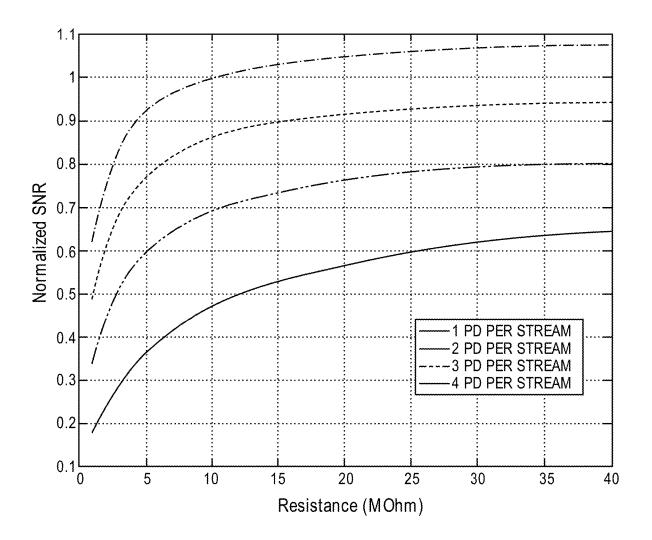
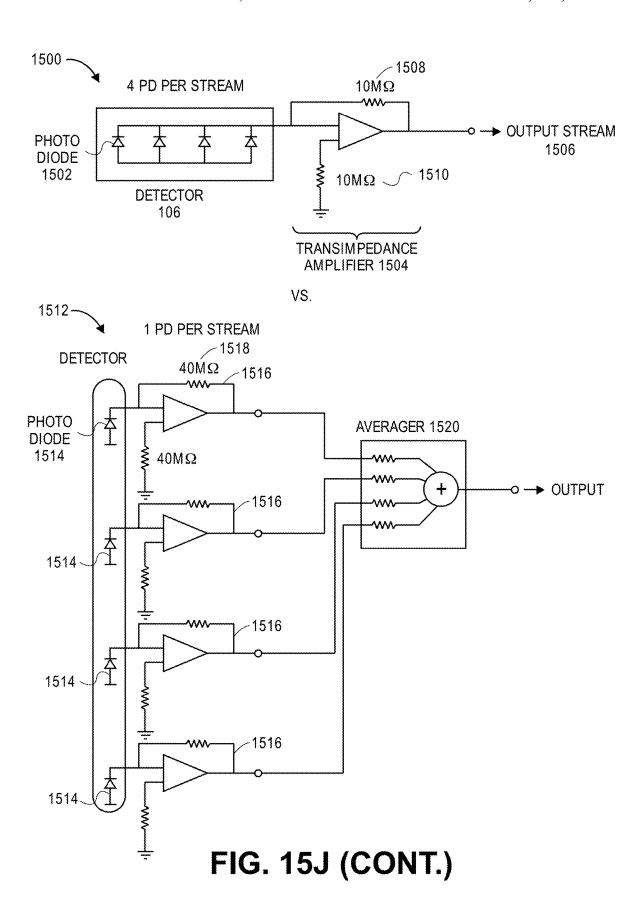
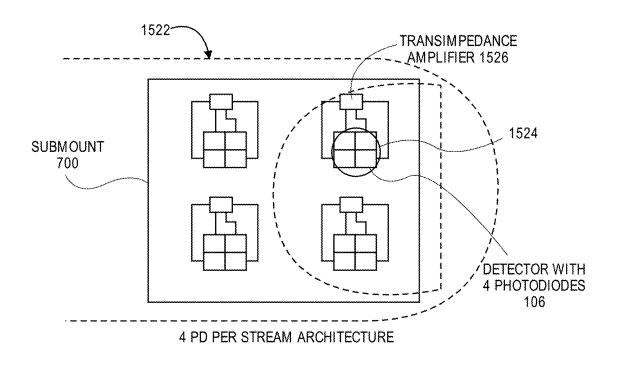
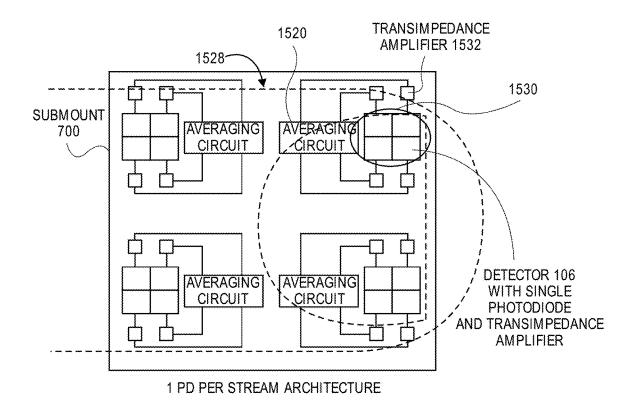


FIG. 151

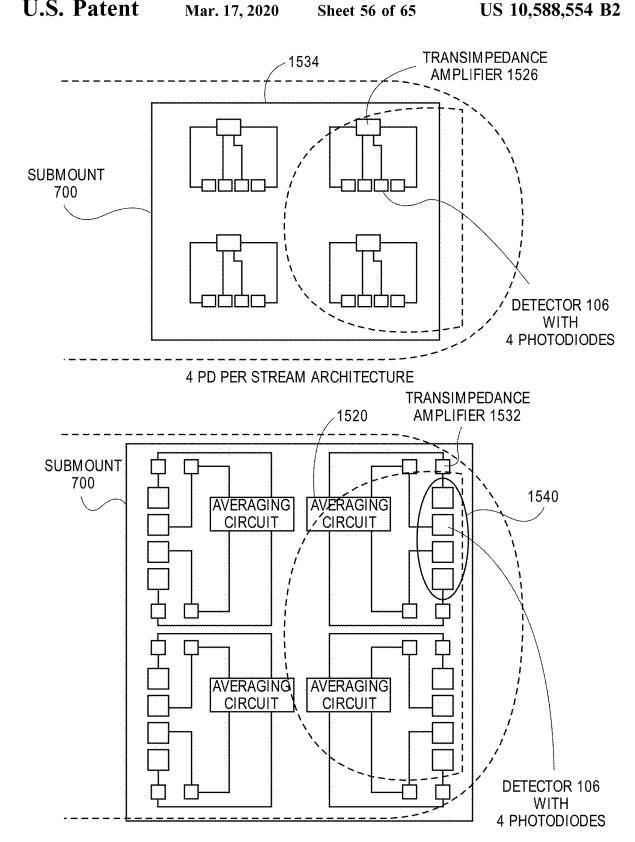

FIG. 15J

FIG. 15K

1 PD PER STREAM ARCHITECTURE

FIG. 15K (CONT.)

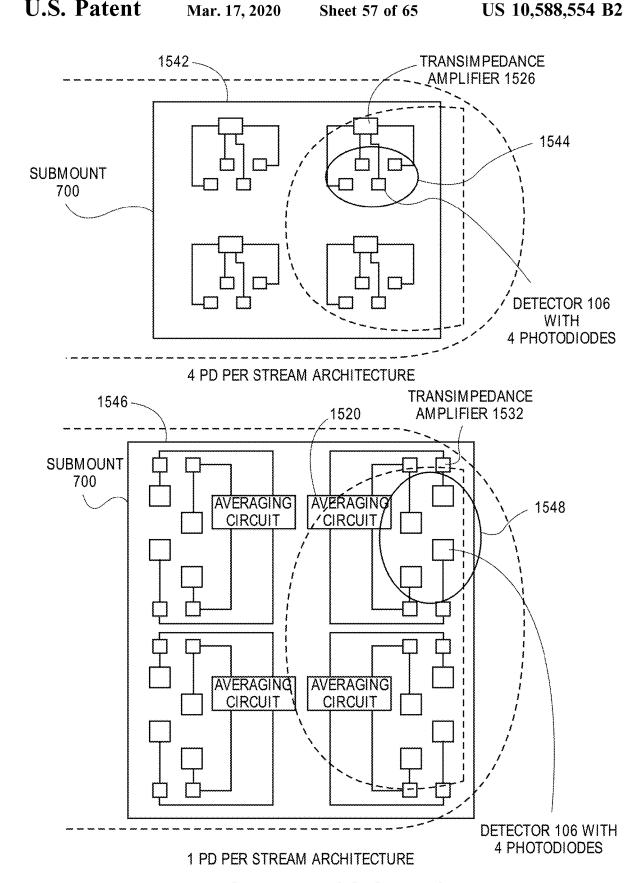
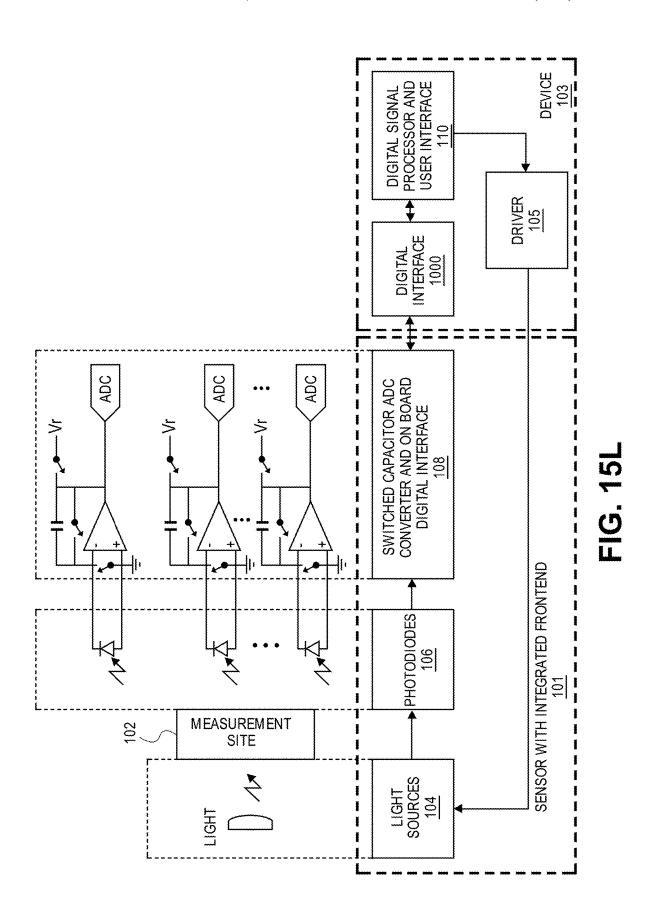
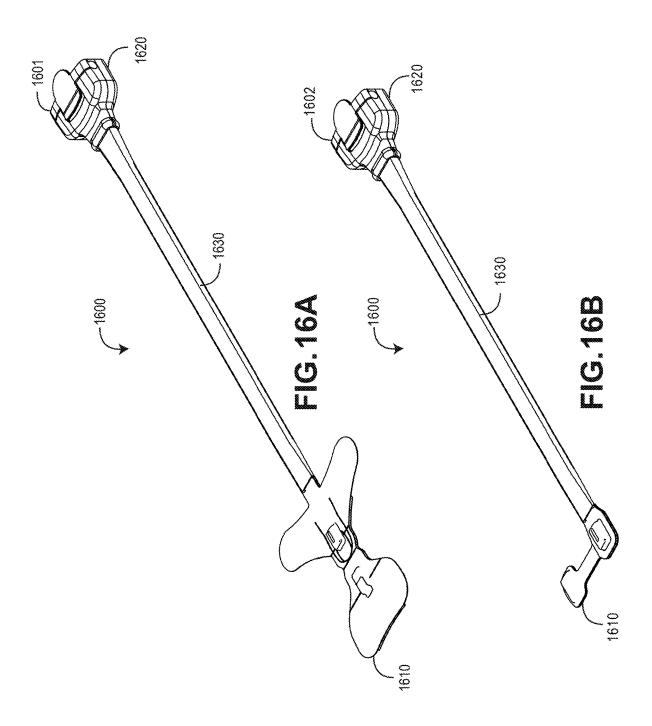
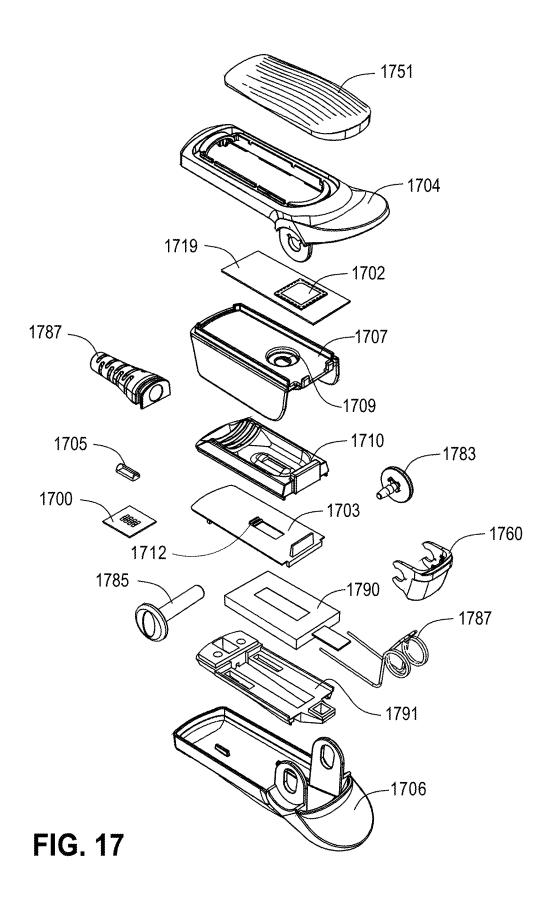





FIG. 15K (CONT.)

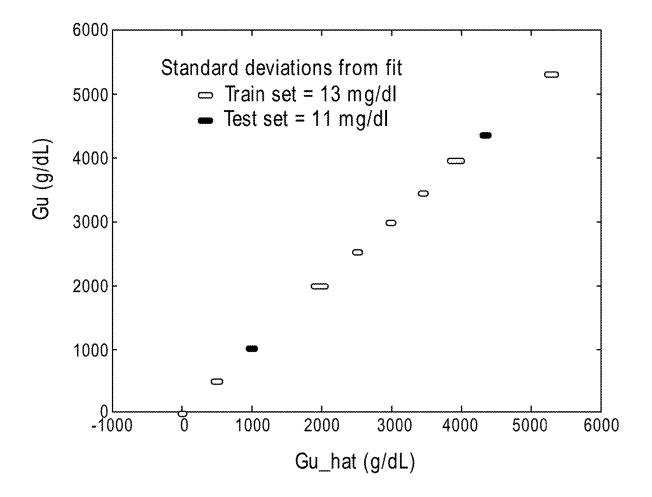


FIG. 18

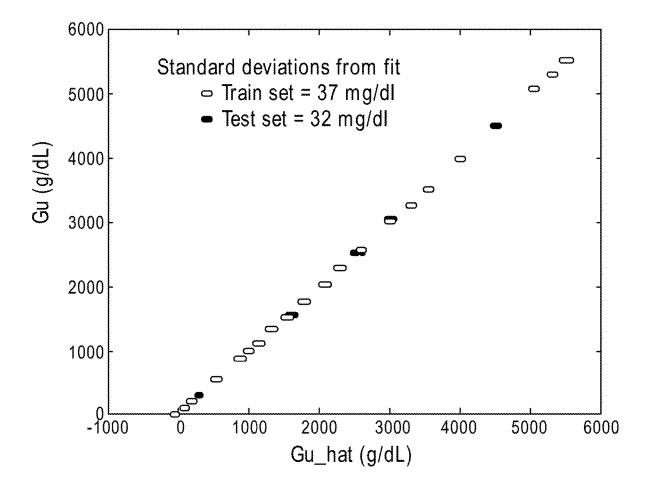


FIG. 19

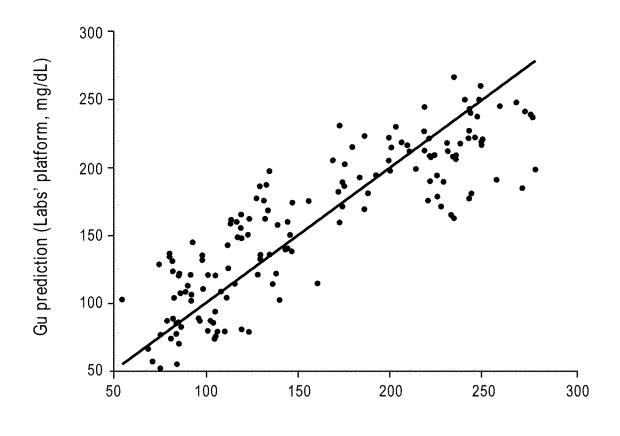


FIG. 20

Gu reference (YSI, mg/dL)

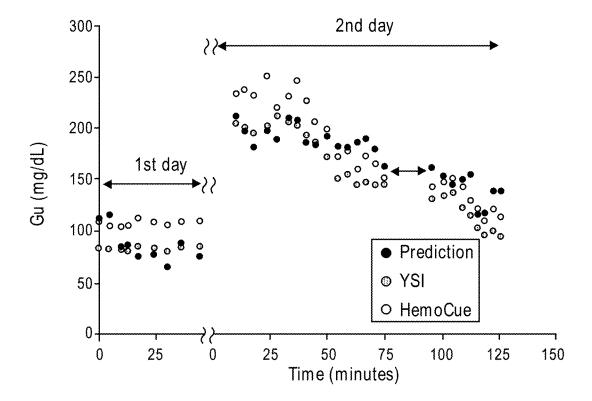


FIG. 21

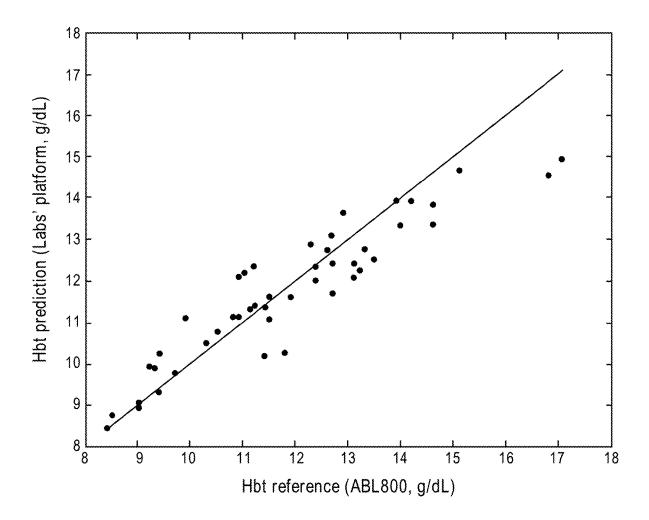


FIG. 22

MULTI-STREAM DATA COLLECTION SYSTEM FOR NONINVASIVE MEASUREMENT OF BLOOD CONSTITUENTS

RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/534,949, filed Aug. 7, 2019, which is a continuation of U.S. patent application Ser. No. 16/409,515, filed May 10, 2019, which is a continuation of U.S. patent application Ser. No. 16/261,326, filed Jan. 29, 2019, which is a continuation of U.S. patent application Ser. No. 16/212, 537, filed Dec. 6, 2018, which is a continuation of U.S. patent application Ser. No. 14/981,290 filed Dec. 28, 2015, which is a continuation of U.S. patent application Ser. No. 12/829,352 filed Jul. 1, 2010, which is a continuation of U.S. patent application Ser. No. 12/534,827 filed Aug. 3, 2009, which claims the benefit of priority under 35 U.S.C. § 119(e) of the following U.S. Provisional Patent Application Nos. 61/086,060 filed Aug. 4, 2008, 61/086,108 filed Aug. 4, 2008, 61/086,063 filed Aug. 4, 2008, 61/086,057 filed Aug. 4, 2008, and 61/091,732 filed Aug. 25, 2008. U.S. patent application Ser. No. 12/829,352 is also a continuation-inpart of U.S. patent application Ser. No. 12/497,528 filed Jul. 2, 2009, which claims the benefit of priority under 35 U.S.C. § 119(e) of the following U.S. Provisional Patent Application Nos. 61/086,060 filed Aug. 4, 2008, 61/086,108 filed Aug. 4, 2008, 61/086,063 filed Aug. 4, 2008, 61/086,057 filed Aug. 4, 2008, 61/078,228 filed Jul. 3, 2008, 61/078,207 filed Jul. 3, 2008, and 61/091,732 filed Aug. 25, 2008. U.S. patent application Ser. No. 12/497,528 also claims the benefit of priority under 35 U.S.C. § 120 as a continuationin-part of the following U.S. Design patent application No. 29/323,409 filed Aug. 25, 2008 and Ser. No. 29/323,408 filed Aug. 25, 2008. U.S. patent application Ser. No. 12/829, 352 is also a continuation-in-part of U.S. patent application Ser. No. 12/497,523 filed Jul. 2, 2009, which claims the benefit of priority under 35 U.S.C. § 119(e) of the following U.S. Provisional Patent Application Nos. 61/086,060 filed Aug. 4, 2008, 61/086,108 filed Aug. 4, 2008, 61/086,063 filed Aug. 4, 2008, 61/086,057 filed Aug. 4, 2008, 61/078, 228 filed Jul. 3, 2008, 61/078,207 filed Jul. 3, 2008, and 61/091,732 filed Aug. 25, 2008. U.S. patent application Ser. No. 12/497,523 also claims the benefit of priority under 35 U.S.C. § 120 as a continuation-in-part of the following U.S. Design patent application No. 29/323,409 filed Aug. 25, 2008 and Ser. No. 29/323,408 filed Aug. 25, 2008.

This application is related to the following U.S. Patent Applications:

application Ser. No.	Filing Date	Title
12/497,528 12/497,523	Jul. 2, 2009 Jul. 2, 2009	Noise Shielding for Noninvasive Device Contoured Protrusion for Improving Spectroscopic Measurement of Blood Constituents
12/497,506	Jul. 2, 2009	Heat Sink for Noninvasive Medical Sensor
12/534,812	Aug. 3, 2009	Multi-Stream Sensor Front Ends for Non-Invasive Measurement of Blood Constituents
12/534,823	Aug. 3, 2009	Multi-Stream Sensor for Non-Invasive Measurement of Blood Constituents
12/534,825	Aug. 3, 2009	Multi-Stream Emitter for Non-Invasive Measurement of Blood Constituents

2

The foregoing applications are hereby incorporated by reference in their entirety.

BACKGROUND

The standard of care in caregiver environments includes patient monitoring through spectroscopic analysis using, for example, a pulse oximeter. Devices capable of spectroscopic analysis generally include a light source(s) transmitting optical radiation into or reflecting off a measurement site, such as, body tissue carrying pulsing blood. After attenuation by tissue and fluids of the measurement site, a photodetection device(s) detects the attenuated light and outputs a detector signal(s) responsive to the detected attenuated light. A signal processing device(s) process the detector(s) signal(s) and outputs a measurement indicative of a blood constituent of interest, such as glucose, oxygen, met hemoglobin, total hemoglobin, other physiological parameters, or other data or combinations of data useful in determining a state or trend of wellness of a patient.

In noninvasive devices and methods, a sensor is often adapted to position a finger proximate the light source and light detector. For example, noninvasive sensors often include a clothespin-shaped housing that includes a con25 toured bed conforming generally to the shape of a finger.

SUMMARY

This disclosure describes embodiments of noninvasive methods, devices, and systems for measuring a blood constituent or analyte, such as oxygen, carbon monoxide, methemoglobin, total hemoglobin, glucose, proteins, glucose, lipids, a percentage thereof (e.g., saturation) or for measuring many other physiologically relevant patient characteristics. These characteristics can relate, for example, to pulse rate, hydration, trending information and analysis, and the like.

In an embodiment, the system includes a noninvasive sensor and a patient monitor communicating with the non-invasive sensor. The non-invasive sensor may include different architectures to implement some or all of the disclosed features. In addition, an artisan will recognize that the non-invasive sensor may include or may be coupled to other components, such as a network interface, and the like. Moreover, the patient monitor may include a display device, a network interface communicating with any one or combination of a computer network, a handheld computing device, a mobile phone, the Internet, or the like. In addition, embodiments may include multiple optical sources that emit light at a plurality of wavelengths and that are arranged from the perspective of the light detector(s) as a point source.

In an embodiment, a noninvasive device is capable of producing a signal responsive to light attenuated by tissue at a measurement site. The device may comprise an optical source and a plurality of photodetectors. The optical source is configured to emit optical radiation at least at wavelengths between about 1600 nm and about 1700 nm. The photodetectors are configured to detect the optical radiation from said optical source after attenuation by the tissue of the measurement site and each output a respective signal stream responsive to the detected optical radiation.

In an embodiment, a noninvasive, physiological sensor is capable of outputting a signal responsive to a blood analyte present in a monitored patient. The sensor may comprise a sensor housing, an optical source, and photodetectors. The optical source is positioned by the housing with respect to a tissue site of a patient when said housing is applied to the

patient. The photodetectors are positioned by the housing with respect to said tissue site when the housing is applied to the patient with a variation in path length among at least some of the photodetectors from the optical source. The photodetectors are configured to detect a sequence of optical radiation from the optical source after attenuation by tissue of the tissue site. The photodetectors may be each configured to output a respective signal stream responsive to the detected sequence of optical radiation. An output signal responsive to one or more of the signal streams is then usable to determine the blood analyte based at least in part on the variation in path length.

In an embodiment, a method of measuring an analyte based on multiple streams of optical radiation measured from a measurement site is provided. A sequence of optical radiation pulses is emitted to the measurement site. At a first location, a first stream of optical radiation is detected from the measurement site. At least at one additional location different from the first location, an additional stream of optical radiation is detected from the measurement site. An output measurement value indicative of the analyte is then determined based on the detected streams of optical radiation.

In various embodiments, the present disclosure relates to 25 an interface for a noninvasive sensor that comprises a front-end adapted to receive an input signals from optical detectors and provide corresponding output signals. In an embodiment, the front-end is comprised of switched-capacitor circuits that are capable of handling multiple streams of 30 signals from the optical detectors. In another embodiment, the front-end comprises transimpedance amplifiers that are capable of handling multiple streams of input signals. In addition, the transimpedance amplifiers may be configured based on the characteristics of the transimpedance amplifier 35 itself, the characteristics of the photodiodes, and the number of photodiodes coupled to the transimpedance amplifier.

In disclosed embodiments, the front-ends are employed in noninvasive sensors to assist in measuring and detecting various analytes. The disclosed noninvasive sensor may also 40 include, among other things, emitters and detectors positioned to produce multi-stream sensor information. An artisan will recognize that the noninvasive sensor may have different architectures and may include or be coupled to other components, such as a display device, a network 45 interface, and the like. An artisan will also recognize that the front-ends may be employed in any type of noninvasive sensor

In an embodiment, a front-end interface for a noninvasive, physiological sensor comprises: a set of inputs configured to 50 receive signals from a plurality of detectors in the sensor; a set of transimpedance amplifiers configured to convert the signals from the plurality of detectors into an output signal having a stream for each of the plurality of detectors; and an output configured to provide the output signal.

In an embodiment, a front-end interface for a noninvasive, physiological sensor comprises: a set of inputs configured to receive signals from a plurality of detectors in the sensor; a set of switched capacitor circuits configured to convert the signals from the plurality of detectors into a digital output 60 signal having a stream for each of the plurality of detectors; and an output configured to provide the digital output signal.

In an embodiment, a conversion processor for a physiological, noninvasive sensor comprises: a multi-stream input configured to receive signals from a plurality of detectors in 65 the sensor, wherein the signals are responsive to optical radiation from a tissue site; a modulator that converts the

4

multi-stream input into a digital bit-stream; and a signal processor that produces an output signal from the digital bit-stream.

In an embodiment, a front-end interface for a noninvasive, physiological sensor comprises: a set of inputs configured to receive signals from a plurality of detectors in the sensor; a set of respective transimpedance amplifiers for each detector configured to convert the signals from the plurality of detectors into an output signal having a stream for each of the plurality of detectors; and an output configured to provide the output signal.

In certain embodiments, a noninvasive sensor interfaces with tissue at a measurement site and deforms the tissue in a way that increases signal gain in certain desired wavelengths.

In some embodiments, a detector for the sensor may comprise a set of photodiodes that are arranged in a spatial configuration. This spatial configuration may allow, for example, signal analysis for measuring analytes like glucose. In various embodiments, the detectors can be arranged across multiple locations in a spatial configuration. The spatial configuration provides a geometry having a diversity of path lengths among the detectors. For example, the detector in the sensor may comprise multiple detectors that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction.

In an embodiment, a physiological, noninvasive detector is configured to detect optical radiation from a tissue site. The detector comprises a set of photodetectors and a conversion processor. The set of photodetectors each provide a signal stream indicating optical radiation from the tissue site. The set of photodetectors are arranged in a spatial configuration that provides a variation in path lengths between at least some of the photodetectors. The conversion processor that provides information indicating an analyte in the tissue site based on ratios of pairs of the signal streams.

The present disclosure, according to various embodiments, relates to noninvasive methods, devices, and systems for measuring a blood analyte, such as glucose. In the present disclosure, blood analytes are measured noninvasively based on multi-stream infrared and near-infrared spectroscopy. In some embodiments, an emitter may include one or more sources that are configured as a point optical source. In addition, the emitter may be operated in a manner that allows for the measurement of an analyte like glucose. In embodiments, the emitter may comprise a plurality of LEDs that emit a sequence of pulses of optical radiation across a spectrum of wavelengths. In addition, in order to achieve the desired SNR for detecting analytes like glucose, the emitter may be driven using a progression from low power to higher power. The emitter may also have its duty cycle modified to achieve a desired SNR.

In an embodiment, a multi-stream emitter for a noninvasive, physiological device configured to transmit optical radiation in a tissue site comprises: a set of optical sources arranged as a point optical source; and a driver configured to drive the at least one light emitting diode and at least one optical source to transmit near-infrared optical radiation at sufficient power to measure an analyte in tissue that responds to near-infrared optical radiation.

In an embodiment, an emitter for a noninvasive, physiological device configured to transmit optical radiation in a tissue site comprises: a point optical source comprising an optical source configured to transmit infrared and near-infrared optical radiation to a tissue site; and a driver configured to drive the point optical source at a sufficient

power and noise tolerance to effectively provide attenuated optical radiation from a tissue site that indicates an amount of glucose in the tissue site.

In an embodiment, a method of transmitting a stream of pulses of optical radiation in a tissue site is provided. At least one pulse of infrared optical radiation having a first pulse width is transmitted at a first power. At least one pulse of near-infrared optical radiation is transmitted at a power that is higher than the first power.

In an embodiment, a method of transmitting a stream of $\,^{10}$ pulses of optical radiation in a tissue site is provided. At least one pulse of infrared optical radiation having a first pulse width is transmitted at a first power. At least one pulse of near-infrared optical radiation is then transmitted, at a second power that is higher than the first power.

For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accor- 20 dance with any particular embodiment of the inventions disclosed herein. Thus, the inventions disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can 25 be taught or suggested herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers can be re- 30 used to indicate correspondence between referenced elements. The drawings are provided to illustrate embodiments of the inventions described herein and not to limit the scope

FIG. 1 illustrates a block diagram of an example data 35 collection system capable of noninvasively measuring one or more blood analytes in a monitored patient, according to an embodiment of the disclosure;

FIGS. 2A-2D illustrate an exemplary handheld monitor and an exemplary noninvasive optical sensor of the patient 40 monitoring system of FIG. 1, according to embodiments of the disclosure;

FIGS. 3A-3C illustrate side and perspective views of an exemplary noninvasive sensor housing including a finger bed protrusion and heat sink, according to an embodiment of 45 the disclosure:

FIG. 3D illustrates a side view of another example noninvasive sensor housing including a heat sink, according to an embodiment of the disclosure;

FIG. 3E illustrates a perspective view of an example 50 noninvasive sensor detector shell including example detectors, according to an embodiment of the disclosure;

FIG. 3F illustrates a side view of an example noninvasive sensor housing including a finger bed protrusion and heat sink, according to an embodiment of the disclosure;

FIGS. 4A through 4C illustrate top elevation, side and top perspective views of an example protrusion, according to an embodiment of the disclosure;

FIG. 5 illustrates an example graph depicting possible effects of a protrusion on light transmittance, according to an 60 embodiment of the disclosure;

FIGS. 6A through 6D illustrate perspective, front elevation, side and top views of another example protrusion, according to an embodiment of the disclosure;

FIG. 6E illustrates an example sensor incorporating the 65 protrusion of FIGS. 6A through 6D, according to an embodiment of the disclosure;

6

FIGS. 7A through 7B illustrate example arrangements of conductive glass that may be employed in the system of FIG. 1, according to embodiments of the disclosure;

FIGS. 8A through 8D illustrate an example top elevation view, side views, and a bottom elevation view of the conductive glass that may be employed in the system of FIG. 1. according to embodiments of the disclosure:

FIG. 9 shows example comparative results obtained by an embodiment of a sensor;

FIGS. 10A and 10B illustrate comparative noise floors of various embodiments of the present disclosure;

FIG. 11A illustrates an exemplary emitter that may be employed in the sensor, according to an embodiment of the

FIG. 11B illustrates a configuration of emitting optical radiation into a measurement site for measuring blood constituents, according to an embodiment of the disclosure;

FIG. 11C illustrates another exemplary emitter that may be employed in the sensor according to an embodiment of the disclosure;

FIG. 11D illustrates another exemplary emitter that may be employed in the sensor according to an embodiment of the disclosure;

FIG. 12A illustrates an example detector portion that may be employed in an embodiment of a sensor, according to an embodiment of the disclosure;

FIGS. 12B through 12D illustrate exemplary arrangements of detectors that may be employed in an embodiment of the sensor, according to some embodiments of the disclosure;

FIGS. 12E through 12H illustrate exemplary structures of photodiodes that may be employed in embodiments of the detectors, according to some embodiments of the disclosure;

FIG. 13 illustrates an example multi-stream operation of the system of FIG. 1, according to an embodiment of the disclosure:

FIG. 14A illustrates another example detector portion having a partially cylindrical protrusion that can be employed in an embodiment of a sensor, according to an embodiment of the disclosure;

FIG. 14B depicts a front elevation view of the partially cylindrical protrusion of FIG. 14A;

FIGS. 14C through 14E illustrate embodiments of a detector submount;

FIGS. 14F through 14H illustrate embodiment of portions of a detector shell:

FIG. 14I illustrates a cutaway view of an embodiment of

FIGS. 15A through 15F illustrate embodiments of sensors that include heat sink features;

FIGS. 15G and 15H illustrate embodiments of connector features that can be used with any of the sensors described herein:

FIG. 15I illustrates an exemplary architecture for a transimpedance-based front-end that may be employed in any of the sensors described herein;

FIG. 15J illustrates an exemplary noise model for configuring the transimpedance-based front-ends shown in FIG. 15I;

FIG. 15K shows different architectures and layouts for various embodiments of a sensor and its detectors;

FIG. 15L illustrates an exemplary architecture for a switched-capacitor-based front-end that may be employed in any of the sensors described herein;

FIGS. 16A and 16B illustrate embodiments of disposable optical sensors;

FIG. 17 illustrates an exploded view of certain components of an example sensor; and

FIGS. 18 through 22 illustrate various results obtained by an exemplary sensor of the disclosure.

DETAILED DESCRIPTION

The present disclosure generally relates to non-invasive medical devices. In the present disclosure, a sensor can measure various blood constituents or analytes noninvasively using multi-stream spectroscopy. In an embodiment, the multi-stream spectroscopy can employ visible, infrared and near infrared wavelengths. As disclosed herein, the sensor is capable of noninvasively measuring blood analytes or percentages thereof (e.g., saturation) based on various 15 combinations of features and components.

In various embodiments, the present disclosure relates to an interface for a noninvasive glucose sensor that comprises a front-end adapted to receive an input signals from optical detectors and provide corresponding output signals. The 20 front-end may comprise, among other things, switched capacitor circuits or transimpedance amplifiers. In an embodiment, the front-end may comprise switched capacitor circuits that are configured to convert the output of sensor's detectors into a digital signal. In another embodiment, the 25 front-end may comprise transimpedance amplifiers. These transimpedance amplifiers may be configured to match one or more photodiodes in a detector based on a noise model that accounts for characteristics, such as the impedance, of the transimpedance amplifier, characteristics of each photodiode, such as the impedance, and the number of photodiodes coupled to the transimpedance amplifier.

In the present disclosure, the front-ends are employed in a sensor that measures various blood analytes noninvasively using multi-stream spectroscopy. In an embodiment, the 35 multi-stream spectroscopy can employ visible, infrared and near infrared wavelengths. As disclosed herein, the sensor is capable of noninvasively measuring blood analytes, such as glucose, total hemoglobin, methemoglobin, oxygen content, and the like, based on various combinations of features and 40 components.

In an embodiment, a physiological sensor includes a detector housing that can be coupled to a measurement site, such as a patient's finger. The sensor housing can include a curved bed that can generally conform to the shape of the 45 measurement site. In addition, the curved bed can include a protrusion shaped to increase an amount of light radiation from the measurement site. In an embodiment, the protrusion is used to thin out the measurement site. This allows the light radiation to pass through less tissue, and accordingly is 50 attenuated less. In an embodiment, the protrusion can be used to increase the area from which attenuated light can be measured. In an embodiment, this is done through the use of a lens which collects attenuated light exiting the measurement site and focuses onto one or more detectors. The 55 protrusion can advantageously include plastic, including a hard opaque plastic, such as a black or other colored plastic, helpful in reducing light noise. In an embodiment, such light noise includes light that would otherwise be detected at a photodetector that has not been attenuated by tissue of the 60 measurement site of a patient sufficient to cause the light to adequately included information indicative of one or more physiological parameters of the patient. Such light noise includes light piping.

In an embodiment, the protrusion can be formed from the 65 curved bed, or can be a separate component that is positionable with respect to the bed. In an embodiment, a lens

8

made from any appropriate material is used as the protrusion. The protrusion can be convex in shape. The protrusion can also be sized and shaped to conform the measurement site into a flat or relatively flat surface. The protrusion can also be sized to conform the measurement site into a rounded surface, such as, for example, a concave or convex surface. The protrusion can include a cylindrical or partially cylindrical shape. The protrusion can be sized or shaped differently for different types of patients, such as an adult, child, or infant. The protrusion can also be sized or shaped differently for different measurement sites, including, for example, a finger, toe, hand, foot, ear, forehead, or the like. The protrusion can thus be helpful in any type of noninvasive sensor. The external surface of the protrusion can include one or more openings or windows. The openings can be made from glass to allow attenuated light from a measurement site, such as a finger, to pass through to one or more detectors. Alternatively, some of all of the protrusion can be a lens, such as a partially cylindrical lens.

The sensor can also include a shielding, such as a metal enclosure as described below or embedded within the protrusion to reduce noise. The shielding can be constructed from a conductive material, such as copper, in the form of a metal cage or enclosure, such as a box. The shielding can include a second set of one or more openings or windows. The second set of openings can be made from glass and allow light that has passed through the first set of windows of the external surface of the protrusion to pass through to one or more detectors that can be enclosed, for example, as described below.

In various embodiments, the shielding can include any substantially transparent, conductive material placed in the optical path between an emitter and a detector. The shielding can be constructed from a transparent material, such as glass, plastic, and the like. The shielding can have an electrically conductive material or coating that is at least partially transparent. The electrically conductive coating can be located on one or both sides of the shielding, or within the body of the shielding. In addition, the electrically conductive coating can be uniformly spread over the shielding or may be patterned. Furthermore, the coating can have a uniform or varying thickness to increase or optimize its shielding effect. The shielding can be helpful in virtually any type of non-invasive sensor that employs spectroscopy.

In an embodiment, the sensor can also include a heat sink. In an embodiment, the heat sink can include a shape that is functional in its ability to dissipate excess heat and aesthetically pleasing to the wearer. For example, the heat sink can be configured in a shape that maximizes surface area to allow for greater dissipation of heat. In an embodiment, the heat sink includes a metalicized plastic, such as plastic including carbon and aluminum to allow for improved thermal conductivity and diffusivity. In an embodiment, the heat sink can advantageously be inexpensively molded into desired shapes and configurations for aesthetic and functional purposes. For example, the shape of the heat sink can be a generally curved surface and include one or more fins, undulations, grooves or channels, or combs.

The sensor can include photocommunicative components, such as an emitter, a detector, and other components. The emitter can include a plurality of sets of optical sources that, in an embodiment, are arranged together as a point source. The various optical sources can emit a sequence of optical radiation pulses at different wavelengths towards a measurement site, such as a patient's finger. Detectors can then detect optical radiation from the measurement site. The optical sources and optical radiation detectors can operate at

any appropriate wavelength, including, as discussed herein, infrared, near infrared, visible light, and ultraviolet. In addition, the optical sources and optical radiation detectors can operate at any appropriate wavelength, and such modifications to the embodiments desirable to operate at any such 5 wavelength will be apparent to those skilled in the art.

In certain embodiments, multiple detectors are employed and arranged in a spatial geometry. This spatial geometry provides a diversity of path lengths among at least some of the detectors and allows for multiple bulk and pulsatile measurements that are robust. Each of the detectors can provide a respective output stream based on the detected optical radiation, or a sum of output streams can be provided from multiple detectors. In some embodiments, the sensor can also include other components, such as one or more heat sinks and one or more thermistors.

The spatial configuration of the detectors provides a geometry having a diversity of path lengths among the detectors. For example, a detector in the sensor may comprise multiple detectors that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction. In addition, walls may be used to separate individual photodetectors and prevent mixing of detected optical radiation between the different locations on 25 the measurement site. A window may also be employed to facilitate the passing of optical radiation at various wavelengths for measuring glucose in the tissue.

In the present disclosure, a sensor may measure various blood constituents or analytes noninvasively using spectroscopy and a recipe of various features. As disclosed herein, the sensor is capable of non-invasively measuring blood analytes, such as, glucose, total hemoglobin, methemoglobin, oxygen content, and the like. In an embodiment, the spectroscopy used in the sensor can employ visible, infrared and near infrared wavelengths. The sensor may comprise an emitter, a detector, and other components. In some embodiments, the sensor may also comprise other components, such as one or more heat sinks and one or more thermistors.

In various embodiments, the sensor may also be coupled 40 to one or more companion devices that process and/or display the sensor's output. The companion devices may comprise various components, such as a sensor front-end, a signal processor, a display, a network interface, a storage device or memory, etc.

A sensor can include photocommunicative components, such as an emitter, a detector, and other components. The emitter is configured as a point optical source that comprises a plurality of LEDs that emit a sequence of pulses of optical radiation across a spectrum of wavelengths. In some 50 embodiments, the plurality of sets of optical sources may each comprise at least one top-emitting LED and at least one super luminescent LED. In some embodiments, the emitter comprises optical sources that transmit optical radiation in the infrared or near-infrared wavelengths suitable for detecting blood analytes like glucose. In order to achieve the desired SNR for detecting analytes like glucose, the emitter may be driven using a progression from low power to higher power. In addition, the emitter may have its duty cycle modified to achieve a desired SNR.

The emitter may be constructed of materials, such as aluminum nitride and may include a heat sink to assist in heat dissipation. A thermistor may also be employed to account for heating effects on the LEDs. The emitter may further comprise a glass window and a nitrogen environment 65 to improve transmission from the sources and prevent oxidative effects.

10

The sensor can be coupled to one or more monitors that process and/or display the sensor's output. The monitors can include various components, such as a sensor front end, a signal processor, a display, etc.

The sensor can be integrated with a monitor, for example, into a handheld unit including the sensor, a display and user controls. In other embodiments, the sensor can communicate with one or more processing devices. The communication can be via wire(s), cable(s), flex circuit(s), wireless technologies, or other suitable analog or digital communication methodologies and devices to perform those methodologies. Many of the foregoing arrangements allow the sensor to be attached to the measurement site while the device is attached elsewhere on a patient, such as the patient's arm, or placed at a location near the patient, such as a bed, shelf or table. The sensor or monitor can also provide outputs to a storage device or network interface.

Reference will now be made to the Figures to discuss embodiments of the present disclosure.

FIG. 1 illustrates an example of a data collection system 100. In certain embodiments, the data collection system 100 noninvasively measure a blood analyte, such as oxygen, carbon monoxide, methemoglobin, total hemoglobin, glucose, proteins, glucose, lipids, a percentage thereof (e.g., saturation) or for measuring many other physiologically relevant patient characteristics. The system 100 can also measure additional blood analytes and/or other physiological parameters useful in determining a state or trend of wellness of a patient.

The data collection system 100 can be capable of measuring optical radiation from the measurement site. For example, in some embodiments, the data collection system 100 can employ photodiodes defined in terms of area. In an embodiment, the area is from about 1 mm²-5 mm² (or higher) that are capable of detecting about 100 nanoamps (nA) or less of current resulting from measured light at full scale. In addition to having its ordinary meaning, the phrase "at full scale" can mean light saturation of a photodiode amplifier (not shown). Of course, as would be understood by a person of skill in the art from the present disclosure, various other sizes and types of photodiodes can be used with the embodiments of the present disclosure.

The data collection system 100 can measure a range of approximately about 2 nA to about 100 nA full scale. The data collection system 100 can also include sensor frontends that are capable of processing and amplifying current from the detector(s) at signal-to-noise ratios (SNRs) of about 100 decibels (dB) or more, such as about 120 dB in order to measure various desired analytes. The data collection system 100 can operate with a lower SNR if less accuracy is desired for an analyte like glucose.

The data collection system 100 can measure analyte concentrations, including glucose, at least in part by detecting light attenuated by a measurement site 102. The measurement site 102 can be any location on a patient's body, such as a finger, foot, ear lobe, or the like. For convenience, this disclosure is described primarily in the context of a finger measurement site 102. However, the features of the embodiments disclosed herein can be used with other measurement sites 102.

In the depicted embodiment, the system 100 includes an optional tissue thickness adjuster or tissue shaper 105, which can include one or more protrusions, bumps, lenses, or other suitable tissue-shaping mechanisms. In certain embodiments, the tissue shaper 105 is a flat or substantially flat surface that can be positioned proximate the measurement site 102 and that can apply sufficient pressure to cause the

tissue of the measurement site 102 to be flat or substantially flat. In other embodiments, the tissue shaper 105 is a convex or substantially convex surface with respect to the measurement site 102. Many other configurations of the tissue shaper 105 are possible. Advantageously, in certain embodiments, the tissue shaper 105 reduces thickness of the measurement site 102 while preventing or reducing occlusion at the measurement site 102. Reducing thickness of the site can advantageously reduce the amount of attenuation of the light because there is less tissue through which the light must travel. Shaping the tissue in to a convex (or alternatively concave) surface can also provide more surface area from which light can be detected.

The embodiment of the data collection system **100** shown also includes an optional noise shield 103. In an embodiment, the noise shield 103 can be advantageously adapted to reduce electromagnetic noise while increasing the transmittance of light from the measurement site 102 to one or more detectors 106 (described below). For example, the noise 20 shield 103 can advantageously include a conductive coated glass or metal grid electrically communicating with one or more other shields of the sensor 101 or electrically grounded. In an embodiment where the noise shield 103 includes conductive coated glass, the coating can advanta- 25 geously include indium tin oxide. In an embodiment, the indium tin oxide includes a surface resistivity ranging from approximately 30 ohms per square inch to about 500 ohms per square inch. In an embodiment, the resistivity is approximately 30, 200, or 500 ohms per square inch. As would be 30 understood by a person of skill in the art from the present disclosure, other resistivities can also be used which are less than about 30 ohms or more than about 500 ohms. Other conductive materials transparent or substantially transparent to light can be used instead.

In some embodiments, the measurement site 102 is located somewhere along a non-dominant arm or a non-dominant hand, e.g., a right-handed person's left arm or left hand. In some patients, the non-dominant arm or hand can have less musculature and higher fat content, which can 40 result in less water content in that tissue of the patient. Tissue having less water content can provide less interference with the particular wavelengths that are absorbed in a useful manner by blood analytes like glucose. Accordingly, in some embodiments, the data collection system 100 can be used on 45 a person's non-dominant hand or arm.

The data collection system 100 can include a sensor 101 (or multiple sensors) that is coupled to a processing device or physiological monitor 109. In an embodiment, the sensor 101 and the monitor 109 are integrated together into a single 50 unit. In another embodiment, the sensor 101 and the monitor 109 are separate from each other and communicate one with another in any suitable manner, such as via a wired or wireless connection. The sensor 101 and monitor 109 can be attachable and detachable from each other for the convenience of the user or caregiver, for ease of storage, sterility issues, or the like. The sensor 101 and the monitor 109 will now be further described.

In the depicted embodiment shown in FIG. 1, the sensor 101 includes an emitter 104, a tissue shaper 105, a set of 60 detectors 106, and a front-end interface 108. The emitter 104 can serve as the source of optical radiation transmitted towards measurement site 102. As will be described in further detail below, the emitter 104 can include one or more sources of optical radiation, such as LEDs, laser diodes, 65 incandescent bulbs with appropriate frequency-selective filters, combinations of the same, or the like. In an embodi-

12

ment, the emitter 104 includes sets of optical sources that are capable of emitting visible and near-infrared optical radiation.

In some embodiments, the emitter 104 is used as a point optical source, and thus, the one or more optical sources of the emitter 104 can be located within a close distance to each other, such as within about a 2 mm to about 4 mm. The emitters 104 can be arranged in an array, such as is described in U.S. Publication No. 2006/0211924, filed Sep. 21, 2006, titled "Multiple Wavelength Sensor Emitters," the disclosure of which is hereby incorporated by reference in its entirety. In particular, the emitters 104 can be arranged at least in part as described in paragraphs [0061] through [0068] of the aforementioned publication, which paragraphs are hereby incorporated specifically by reference. Other relative spatial relationships can be used to arrange the emitters 104.

For analytes like glucose, currently available non-invasive techniques often attempt to employ light near the water absorbance minima at or about 1600 nm. Typically, these devices and methods employ a single wavelength or single band of wavelengths at or about 1600 nm. However, to date, these techniques have been unable to adequately consistently measure analytes like glucose based on spectroscopy.

In contrast, the emitter 104 of the data collection system 100 can emit, in certain embodiments, combinations of optical radiation in various bands of interest. For example, in some embodiments, for analytes like glucose, the emitter 104 can emit optical radiation at three (3) or more wavelengths between about 1600 nm to about 1700 nm. In particular, the emitter 104 can emit optical radiation at or about 1610 nm, about 1640 nm, and about 1665 nm. In some circumstances, the use of three wavelengths within about 1600 nm to about 1700 nm enable sufficient SNRs of about 100 dB, which can result in a measurement accuracy of about 20 mg/dL or better for analytes like glucose.

In other embodiments, the emitter 104 can use two (2) wavelengths within about 1600 nm to about 1700 nm to advantageously enable SNRs of about 85 dB, which can result in a measurement accuracy of about 25-30 mg/dL or better for analytes like glucose. Furthermore, in some embodiments, the emitter 104 can emit light at wavelengths above about 1670 nm. Measurements at these wavelengths can be advantageously used to compensate or confirm the contribution of protein, water, and other non-hemoglobin species exhibited in measurements for analytes like glucose conducted between about 1600 nm and about 1700 nm. Of course, other wavelengths and combinations of wavelengths can be used to measure analytes and/or to distinguish other types of tissue, fluids, tissue properties, fluid properties, combinations of the same or the like.

For example, the emitter **104** can emit optical radiation across other spectra for other analytes. In particular, the emitter **104** can employ light wavelengths to measure various blood analytes or percentages (e.g., saturation) thereof. For example, in one embodiment, the emitter **104** can emit optical radiation in the form of pulses at wavelengths about 905 nm, about 1050 nm, about 1200 nm, about 1300 nm, about 1330 nm, about 1610 nm, about 1640 nm, and about 1665 nm. In another embodiment, the emitter **104** can emit optical radiation ranging from about 860 nm to about 950 nm, about 1250 nm to about 1100 nm, about 1100 nm to about 1270 nm, about 1250 nm to about 1350 nm, about 1300 nm to about 1360 nm, and about 1590 nm to about 1700 nm. Of course, the emitter **104** can transmit any of a variety of wavelengths of visible or near-infrared optical radiation.

Due to the different responses of analytes to the different wavelengths, certain embodiments of the data collection

system 100 can advantageously use the measurements at these different wavelengths to improve the accuracy of measurements. For example, the measurements of water from visible and infrared light can be used to compensate for water absorbance that is exhibited in the near-infrared wavelengths.

As briefly described above, the emitter 104 can include sets of light-emitting diodes (LEDs) as its optical source. The emitter 104 can use one or more top-emitting LEDs. In particular, in some embodiments, the emitter 104 can include top-emitting LEDs emitting light at about 850 nm to 1350 nm

The emitter 104 can also use super luminescent LEDs (SLEDs) or side-emitting LEDs. In some embodiments, the emitter 104 can employ SLEDs or side-emitting LEDs to emit optical radiation at about 1600 nm to about 1800 nm. Emitter 104 can use SLEDs or side-emitting LEDs to transmit near infrared optical radiation because these types of sources can transmit at high power or relatively high 20 power, e.g., about 40 mW to about 100 mW. This higher power capability can be useful to compensate or overcome the greater attenuation of these wavelengths of light in tissue and water. For example, the higher power emission can effectively compensate and/or normalize the absorption sig- 25 nal for light in the mentioned wavelengths to be similar in amplitude and/or effect as other wavelengths that can be detected by one or more photodetectors after absorption. However, the embodiments of the present disclosure do not necessarily require the use of high power optical sources. 30 For example, some embodiments may be configured to measure analytes, such as total hemoglobin (tHb), oxygen saturation (SpO₂), carboxyhemoglobin, methemoglobin, etc., without the use of high power optical sources like side emitting LEDs. Instead, such embodiments may employ 35 other types of optical sources, such as top emitting LEDs. Alternatively, the emitter 104 can use other types of sources of optical radiation, such as a laser diode, to emit nearinfrared light into the measurement site 102.

In addition, in some embodiments, in order to assist in 40 achieving a comparative balance of desired power output between the LEDs, some of the LEDs in the emitter 104 can have a filter or covering that reduces and/or cleans the optical radiation from particular LEDs or groups of LEDs. For example, since some wavelengths of light can penetrate 45 through tissue relatively well, LEDs, such as some or all of the top-emitting LEDs can use a filter or covering, such as a cap or painted dye. This can be useful in allowing the emitter 104 to use LEDs with a higher output and/or to equalize intensity of LEDs.

The data collection system 100 also includes a driver 111 that drives the emitter 104. The driver 111 can be a circuit or the like that is controlled by the monitor 109. For example, the driver 111 can provide pulses of current to the emitter 104. In an embodiment, the driver 111 drives the 55 emitter 104 in a progressive fashion, such as in an alternating manner. The driver 111 can drive the emitter 104 with a series of pulses of about 1 milliwatt (mW) for some wavelengths that can penetrate tissue relatively well and from about 40 mW to about 100 mW for other wavelengths that 60 tend to be significantly absorbed in tissue. A wide variety of other driving powers and driving methodologies can be used in various embodiments.

The driver 111 can be synchronized with other parts of the sensor 101 and can minimize or reduce jitter in the timing of 65 pulses of optical radiation emitted from the emitter 104. In some embodiments, the driver 111 is capable of driving the

14

emitter 104 to emit optical radiation in a pattern that varies by less than about 10 parts-per-million.

The detectors 106 capture and measure light from the measurement site 102. For example, the detectors 106 can capture and measure light transmitted from the emitter 104 that has been attenuated or reflected from the tissue in the measurement site 102. The detectors 106 can output a detector signal 107 responsive to the light captured or measured. The detectors 106 can be implemented using one or more photodiodes, phototransistors, or the like.

In addition, the detectors 106 can be arranged with a spatial configuration to provide a variation of path lengths among at least some of the detectors 106. That is, some of the detectors 106 can have the substantially, or from the perspective of the processing algorithm, effectively, the same path length from the emitter 104. However, according to an embodiment, at least some of the detectors 106 can have a different path length from the emitter 104 relative to other of the detectors 106. Variations in path lengths can be helpful in allowing the use of a bulk signal stream from the detectors 106. In some embodiments, the detectors 106 may employ a linear spacing, a logarithmic spacing, or a two or three dimensional matrix of spacing, or any other spacing scheme in order to provide an appropriate variation in path lengths.

The front end interface 108 provides an interface that adapts the output of the detectors 106, which is responsive to desired physiological parameters. For example, the front end interface 108 can adapt a signal 107 received from one or more of the detectors 106 into a form that can be processed by the monitor 109, for example, by a signal processor 110 in the monitor 109. The front end interface 108 can have its components assembled in the sensor 101, in the monitor 109, in connecting cabling (if used), combinations of the same, or the like. The location of the front end interface 108 can be chosen based on various factors including space desired for components, desired noise reductions or limits, desired heat reductions or limits, and the like.

The front end interface 108 can be coupled to the detectors 106 and to the signal processor 110 using a bus, wire, electrical or optical cable, flex circuit, or some other form of signal connection. The front end interface 108 can also be at least partially integrated with various components, such as the detectors 106. For example, the front end interface 108 can include one or more integrated circuits that are on the same circuit board as the detectors 106. Other configurations can also be used.

The front end interface 108 can be implemented using one or more amplifiers, such as transimpedance amplifiers, that 50 are coupled to one or more analog to digital converters (ADCs) (which can be in the monitor 109), such as a sigma-delta ADC. A transimpedance-based front end interface 108 can employ single-ended circuitry, differential circuitry, and/or a hybrid configuration. A transimpedance-based front end interface 108 can be useful for its sampling rate capability and freedom in modulation/demodulation algorithms. For example, this type of front end interface 108 can advantageously facilitate the sampling of the ADCs being synchronized with the pulses emitted from the emitter 104.

The ADC or ADCs can provide one or more outputs into multiple channels of digital information for processing by the signal processor 110 of the monitor 109. Each channel can correspond to a signal output from a detector 106.

In some embodiments, a programmable gain amplifier (PGA) can be used in combination with a transimpedance-based front end interface 108. For example, the output of a

transimpedance-based front end interface 108 can be output to a PGA that is coupled with an ADC in the monitor 109. A PGA can be useful in order to provide another level of amplification and control of the stream of signals from the detectors 106. Alternatively, the PGA and ADC components 5 can be integrated with the transimpedance-based front end interface 108 in the sensor 101.

In another embodiment, the front end interface 108 can be implemented using switched-capacitor circuits. A switched-capacitor-based front end interface 108 can be useful for, in 10 certain embodiments, its resistor-free design and analog averaging properties. In addition, a switched-capacitor-based front end interface 108 can be useful because it can provide a digital signal to the signal processor 110 in the monitor 109.

As shown in FIG. 1, the monitor 109 can include the signal processor 110 and a user interface, such as a display 112. The monitor 109 can also include optional outputs alone or in combination with the display 112, such as a storage device 114 and a network interface 116. In an 20 embodiment, the signal processor 110 includes processing logic that determines measurements for desired analytes, such as glucose, based on the signals received from the detectors 106. The signal processor 110 can be implemented using one or more microprocessors or subprocessors (e.g., 25 cores), digital signal processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), combinations of the same, and the like.

The signal processor 110 can provide various signals that control the operation of the sensor 101. For example, the 30 signal processor 110 can provide an emitter control signal to the driver 111. This control signal can be useful in order to synchronize, minimize, or reduce jitter in the timing of pulses emitted from the emitter 104. Accordingly, this control signal can be useful in order to cause optical radia- 35 tion pulses emitted from the emitter 104 to follow a precise timing and consistent pattern. For example, when a transimpedance-based front end interface 108 is used, the control signal from the signal processor 110 can provide synchronization with the ADC in order to avoid aliasing, cross-talk, 40 and the like. As also shown, an optional memory 113 can be included in the front-end interface 108 and/or in the signal processor 110. This memory 113 can serve as a buffer or storage location for the front-end interface 108 and/or the signal processor 110, among other uses.

The user interface 112 can provide an output, e.g., on a display, for presentation to a user of the data collection system 100. The user interface 112 can be implemented as a touch-screen display, an LCD display, an organic LED display, or the like. In addition, the user interface 112 can be 50 manipulated to allow for measurement on the non-dominant side of patient. For example, the user interface 112 can include a flip screen, a screen that can be moved from one side to another on the monitor 109, or can include an ability to reorient its display indicia responsive to user input or 55 device orientation. In alternative embodiments, the data collection system 100 can be provided without a user interface 112 and can simply provide an output signal to a separate display or system.

A storage device 114 and a network interface 116 represent other optional output connections that can be included in the monitor 109. The storage device 114 can include any computer-readable medium, such as a memory device, hard disk storage, EEPROM, flash drive, or the like. The various software and/or firmware applications can be stored in the 65 storage device 114, which can be executed by the signal processor 110 or another processor of the monitor 109. The

16

network interface 116 can be a serial bus port (RS-232/RS-485), a Universal Serial Bus (USB) port, an Ethernet port, a wireless interface (e.g., WiFi such as any 802.1x interface, including an internal wireless card), or other suitable communication device(s) that allows the monitor 109 to communicate and share data with other devices. The monitor 109 can also include various other components not shown, such as a microprocessor, graphics processor, or controller to output the user interface 112, to control data communications, to compute data trending, or to perform other operations

Although not shown in the depicted embodiment, the data collection system 100 can include various other components or can be configured in different ways. For example, the sensor 101 can have both the emitter 104 and detectors 106 on the same side of the measurement site 102 and use reflectance to measure analytes. The data collection system 100 can also include a sensor that measures the power of light emitted from the emitter 104.

FIGS. 2A through 2D illustrate example monitoring devices 200 in which the data collection system 100 can be housed. Advantageously, in certain embodiments, some or all of the example monitoring devices 200 shown can have a shape and size that allows a user to operate it with a single hand or attach it, for example, to a patient's body or limb. Although several examples are shown, many other monitoring device configurations can be used to house the data collection system 100. In addition, certain of the features of the monitoring devices 200 shown in FIGS. 2A through 2D can be combined with features of the other monitoring devices 200 shown.

Referring specifically to FIG. 2A, an example monitoring device 200A is shown, in which a sensor 201a and a monitor 209a are integrated into a single unit. The monitoring device 200A shown is a handheld or portable device that can measure glucose and other analytes in a patient's finger. The sensor 201a includes an emitter shell 204a and a detector shell 206a. The depicted embodiment of the monitoring device 200A also includes various control buttons 208a and a display 210a.

The sensor **201***a* can be constructed of white material used for reflective purposes (such as white silicone or plastic), which can increase the usable signal at the detector **106** by forcing light back into the sensor **201***a*. Pads in the emitter shell **204***a* and the detector shell **206***a* can contain separated windows to prevent or reduce mixing of light signals, for example, from distinct quadrants on a patient's finger. In addition, these pads can be made of a relatively soft material, such as a gel or foam, in order to conform to the shape, for example, of a patient's finger. The emitter shell **204***a* and the detector shell **206***a* can also include absorbing black or grey material portions to prevent or reduce ambient light from entering into the sensor **201***a*.

In some embodiments, some or all portions of the emitter shell 204a and/or detector shell 206a can be detachable and/or disposable. For example, some or all portions of the shells 204a and 206a can be removable pieces. The removability of the shells 204a and 206a can be useful for sanitary purposes or for sizing the sensor 201a to different patients. The monitor 209a can include a fitting, slot, magnet, or other connecting mechanism to allow the sensor 201c to be removably attached to the monitor 209a.

The monitoring device **200***a* also includes optional control buttons **208***a* and a display **210***a* that can allow the user to control the operation of the device. For example, a user can operate the control buttons **208***a* to view one or more measurements of various analytes, such as glucose. In

addition, the user can operate the control buttons **208***a* to view other forms of information, such as graphs, histograms, measurement data, trend measurement data, parameter combination views, wellness indications, and the like. Many parameters, trends, alarms and parameter displays could be 5 output to the display **210***a*, such as those that are commercially available through a wide variety of noninvasive monitoring devices from Masimo® Corporation of Irvine, Calif.

Furthermore, the controls **208***a* and/or display **210***a* can provide functionality for the user to manipulate settings of the monitoring device **200***a*, such as alarm settings, emitter settings, detector settings, and the like. The monitoring device **200***a* can employ any of a variety of user interface designs, such as frames, menus, touch-screens, and any type of button

FIG. 2B illustrates another example of a monitoring device 200B. In the depicted embodiment, the monitoring device 200B includes a finger clip sensor 201b connected to a monitor 209b via a cable 212. In the embodiment shown, the monitor 209b includes a display 210b, control buttons 208b and a power button. Moreover, the monitor 209b can advantageously include electronic processing, signal processing, and data storage devices capable of receiving signal data from said sensor 201b, processing the signal data to determine one or more output measurement values indicative of one or more physiological parameters of a monitored patient, and displaying the measurement values, trends of the measurement values, combinations of measurement values, and the like.

The cable 212 connecting the sensor 201b and the monitor 30 209b can be implemented using one or more wires, optical fiber, flex circuits, or the like. In some embodiments, the cable 212 can employ twisted pairs of conductors in order to minimize or reduce cross-talk of data transmitted from the sensor 201b to the monitor 209b. Various lengths of the 35 cable 212 can be employed to allow for separation between the sensor 201b and the monitor 209b. The cable 212 can be fitted with a connector (male or female) on either end of the cable 212 so that the sensor 201b and the monitor 209b can be connected and disconnected from each other. Alternatively, the sensor 201b and the monitor 209b can be coupled together via a wireless communication link, such as an infrared link, radio frequency channel, or any other wireless communication protocol and channel.

The monitor **209***b* can be attached to the patient. For 45 example, the monitor **209***b* can include a belt clip or straps (see, e.g., FIG. **2**C) that facilitate attachment to a patient's belt, arm, leg, or the like. The monitor **209***b* can also include a fitting, slot, magnet, LEMO snap-click connector, or other connecting mechanism to allow the cable **212** and sensor 50 **201***b* to be attached to the monitor **209**B.

The monitor **209***b* can also include other components, such as a speaker, power button, removable storage or memory (e.g., a flash card slot), an AC power port, and one or more network interfaces, such as a universal serial bus 55 interface or an Ethernet port. For example, the monitor **209***b* can include a display **210***b* that can indicate a measurement for glucose, for example, in mg/dL. Other analytes and forms of display can also appear on the monitor **209***b*.

In addition, although a single sensor 201b with a single 60 monitor 209b is shown, different combinations of sensors and device pairings can be implemented. For example, multiple sensors can be provided for a plurality of differing patient types or measurement sites or even patient fingers.

FIG. 2C illustrates yet another example of monitoring 65 device 200C that can house the data collection system 100. Like the monitoring device 200B, the monitoring device

18

200C includes a finger clip sensor 201c connected to a monitor 209c via a cable 212. The cable 212 can have all of the features described above with respect to FIG. 2B. The monitor 209c can include all of the features of the monitor 200B described above. For example, the monitor 209c includes buttons 208c and a display 210c. The monitor 209c shown also includes straps 214c that allow the monitor 209c to be attached to a patient's limb or the like.

FIG. 2D illustrates yet another example of monitoring device 200D that can house the data collection system 100. Like the monitoring devices 200B and 200C, the monitoring device 200D includes a finger clip sensor 201d connected to a monitor 209d via a cable 212. The cable 212 can have all of the features described above with respect to FIG. 2B. In addition to having some or all of the features described above with respect to FIGS. 2B and 2C, the monitoring device 200D includes an optional universal serial bus (USB) port 216 and an Ethernet port 218. The USB port 216 and the Ethernet port 218 can be used, for example, to transfer information between the monitor 209d and a computer (not shown) via a cable. Software stored on the computer can provide functionality for a user to, for example, view physiological data and trends, adjust settings and download firmware updates to the monitor 209b, and perform a variety of other functions. The USB port 216 and the Ethernet port 218 can be included with the other monitoring devices 200A, 200B, and 200C described above.

FIGS. 3A through 3C illustrate more detailed examples of embodiments of a sensor 301a. The sensor 301a shown can include all of the features of the sensors 100 and 200 described above.

Referring to FIG. 3A, the sensor 301a in the depicted embodiment is a clothespin-shaped clip sensor that includes an enclosure 302a for receiving a patient's finger. The enclosure 302a is formed by an upper section or emitter shell 304a, which is pivotably connected with a lower section or detector shell 306a. The emitter shell 304a can be biased with the detector shell 306a to close together around a pivot point 303a and thereby sandwich finger tissue between the emitter and detector shells 304a, 306a.

In an embodiment, the pivot point 303a advantageously includes a pivot capable of adjusting the relationship between the emitter and detector shells 304a, 306a to effectively level the sections when applied to a tissue site. In another embodiment, the sensor 301a includes some or all features of the finger clip described in U.S. Publication No. 2006/0211924, incorporated above, such as a spring that causes finger clip forces to be distributed along the finger. Paragraphs [0096] through [0105], which describe this feature, are hereby specifically incorporated by reference.

The emitter shell 304a can position and house various emitter components of the sensor 301a. It can be constructed of reflective material (e.g., white silicone or plastic) and/or can be metallic or include metalicized plastic (e.g., including carbon and aluminum) to possibly serve as a heat sink. The emitter shell 304a can also include absorbing opaque material, such as, for example, black or grey colored material, at various areas, such as on one or more flaps 307a, to reduce ambient light entering the sensor 301a.

The detector shell **306***a* can position and house one or more detector portions of the sensor **301***a*. The detector shell **306***a* can be constructed of reflective material, such as white silicone or plastic. As noted, such materials can increase the usable signal at a detector by forcing light back into the tissue and measurement site (see FIG. 1). The detector shell

306a can also include absorbing opaque material at various areas, such as lower area 308a, to reduce ambient light entering the sensor 301a.

Referring to FIGS. 3B and 3C, an example of finger bed 310 is shown in the sensor 301b. The finger bed 310 includes a generally curved surface shaped generally to receive tissue, such as a human digit. The finger bed 310 includes one or more ridges or channels 314. Each of the ridges 314 has a generally convex shape that can facilitate increasing traction or gripping of the patient's finger to the finger bed. 10 Advantageously, the ridges 314 can improve the accuracy of spectroscopic analysis in certain embodiments by reducing noise that can result from a measurement site moving or shaking loose inside of the sensor 301a. The ridges 314 can be made from reflective or opaque materials in some 15 embodiments to further increase SNR. In other implementations, other surface shapes can be used, such as, for example, generally flat, concave, or convex finger beds 310.

Finger bed 310 can also include an embodiment of a tissue thickness adjuster or protrusion 305. The protrusion 305 20 includes a measurement site contact area 370 (see FIG. 3C) that can contact body tissue of a measurement site. The protrusion 305 can be removed from or integrated with the finger bed 310. Interchangeable, different shaped protrusions 305 can also be provided, which can correspond to 25 different finger shapes, characteristics, opacity, sizes, or the like

Referring specifically to FIG. 3C, the contact area 370 of the protrusion 305 can include openings or windows 320, 321, 322, and 323. When light from a measurement site 30 passes through the windows 320, 321, 322, and 323, the light can reach one or more photodetectors (see FIG. 3E). In an embodiment, the windows 320, 321, 322, and 323 mirror specific detector placements layouts such that light can impinge through the protrusion 305 onto the photodetectors. 35 Any number of windows 320, 321, 322, and 323 can be employed in the protrusion 305 to allow light to pass from the measurement site to the photodetectors.

The windows 320, 321, 322, and 323 can also include shielding, such as an embedded grid of wiring or a conduc- 40 tive glass coating, to reduce noise from ambient light or other electromagnetic noise. The windows 320, 321, 322, and 323 can be made from materials, such as plastic or glass. In some embodiments, the windows 320, 321, 322, and 323 can be constructed from conductive glass, such as indium tin 45 oxide (ITO) coated glass. Conductive glass can be useful because its shielding is transparent, and thus allows for a larger aperture versus a window with an embedded grid of wiring. In addition, in certain embodiments, the conductive glass does not need openings in its shielding (since it is 50 transparent), which enhances its shielding performance. For example, some embodiments that employ the conductive glass can attain up to an about 40% to about 50% greater signal than non-conductive glass with a shielding grid. In addition, in some embodiments, conductive glass can be 55 useful for shielding noise from a greater variety of directions than non-conductive glass with a shielding grid.

Turning to FIG. 3B, the sensor 301a can also include a shielding 315a, such as a metal cage, box, metal sheet, perforated metal sheet, a metal layer on a non-metal material, or the like. The shielding 315a is provided in the depicted embodiment below or embedded within the protrusion 305 to reduce noise. The shielding 315a can be constructed from a conductive material, such as copper. The shielding 315a can include one or more openings or windows (not shown). The windows can be made from glass or plastic to thereby allow light that has passed through the

20

windows 320, 321, 322, and 323 on an external surface of the protrusion 305 (see FIG. 3C) to pass through to one or more photodetectors that can be enclosed or provided below (see FIG. 3E).

In some embodiments, the shielding cage for shielding 315a can be constructed in a single manufactured component with or without the use of conductive glass. This form of construction may be useful in order to reduce costs of manufacture as well as assist in quality control of the components. Furthermore, the shielding cage can also be used to house various other components, such as sigma delta components for various embodiments of front end interfaces 108.

In an embodiment, the photodetectors can be positioned within or directly beneath the protrusion 305 (see FIG. 3E). In such cases, the mean optical path length from the emitters to the detectors can be reduced and the accuracy of blood analyte measurement can increase. For example, in one embodiment, a convex bump of about 1 mm to about 3 mm in height and about 10 mm² to about 60 mm² was found to help signal strength by about an order of magnitude versus other shapes. Of course other dimensions and sizes can be employed in other embodiments. Depending on the properties desired, the length, width, and height of the protrusion 305 can be selected. In making such determinations, consideration can be made of protrusion's 305 effect on blood flow at the measurement site and mean path length for optical radiation passing through openings 320, 321, 322, and 323. Patient comfort can also be considered in determining the size and shape of the protrusion.

In an embodiment, the protrusion 305 can include a pliant material, including soft plastic or rubber, which can somewhat conform to the shape of a measurement site. Pliant materials can improve patient comfort and tactility by conforming the measurement site contact area 370 to the measurement site. Additionally, pliant materials can minimize or reduce noise, such as ambient light. Alternatively, the protrusion 305 can be made from a rigid material, such as hard plastic or metal.

Rigid materials can improve measurement accuracy of a blood analyte by conforming the measurement site to the contact area 370. The contact area 370 can be an ideal shape for improving accuracy or reducing noise. Selecting a material for the protrusion 305 can include consideration of materials that do not significantly alter blood flow at the measurement site. The protrusion 305 and the contact area 370 can include a combination of materials with various characteristics.

The contact area 370 serves as a contact surface for the measurement site. For example, in some embodiments, the contact area 370 can be shaped for contact with a patient's finger. Accordingly, the contact area 370 can be sized and shaped for different sizes of fingers. The contact area 370 can be constructed of different materials for reflective purposes as well as for the comfort of the patient. For example, the contact area 370 can be constructed from materials having various hardness and textures, such as plastic, gel, foam, and the like.

The formulas and analysis that follow with respect to FIG. 5 provide insight into how selecting these variables can alter transmittance and intensity gain of optical radiation that has been applied to the measurement site. These examples do not limit the scope of this disclosure.

Referring to FIG. 5, a plot 500 is shown that illustrates examples of effects of embodiments of the protrusion 305 on the SNR at various wavelengths of light. As described above, the protrusion 305 can assist in conforming the tissue

and effectively reduce its mean path length. In some instances, this effect by the protrusion 305 can have significant impact on increasing the SNR.

According to the Beer Lambert law, a transmittance of light (I) can be expressed as follows: I=I_o*e^-m*b*c, where I_o is the initial power of light being transmitted, m is the path length traveled by the light, and the component "b*c" corresponds to the bulk absorption of the light at a specific wavelength of light. For light at about 1600 nm to about 1700 nm, for example, the bulk absorption component is 10 generally around 0.7 mm $^{-1}$. Assuming a typical finger thickness of about 12 mm and a mean path length of 20 mm due to tissue scattering, then I=I_o*e(-20*0.7).

In an embodiment where the protrusion 305 is a convex bump, the thickness of the finger can be reduced to 10 mm 15 (from 12 mm) for some fingers and the effective light mean path is reduced to about 16.6 mm from 20 mm (see box 510). This results in a new transmittance, $I_1 = I_o e^{(-16.6*0.7)}$. A curve for a typical finger (having a mean path length of 20 mm) across various wavelengths is shown in the plot 500 of FIG. 20 5. The plot 500 illustrates potential effects of the protrusion 305 on the transmittance. As illustrated, comparing I and I_1 results in an intensity gain of $e^{(-16.6*0.7)}/e^{(-20*0.7)}$, which is about a 10 times increase for light in the about 1600 nm to about 1700 nm range. Such an increase can affect the SNR 25 at which the sensor can operate. The foregoing gains can be due at least in part to the about 1600 nm to about 1700 nm range having high values in bulk absorptions (water, protein, and the like), e.g., about 0.7 mm⁻¹. The plot **500** also shows improvements in the visible/near-infrared range (about 600 30 nm to about 1300 nm).

Turning again to FIGS. 3A through 3C, an example heat sink 350a is also shown. The heat sink 350a can be attached to, or protrude from an outer surface of, the sensor 301a, thereby providing increased ability for various sensor com- 35 ponents to dissipate excess heat. By being on the outer surface of the sensor 301a in certain embodiments, the heat sink 350a can be exposed to the air and thereby facilitate more efficient cooling. In an embodiment, one or more of the emitters (see FIG. 1) generate sufficient heat that inclusion 40 of the heat sink 350a can advantageously allows the sensor 301a to remain safely cooled. The heat sink 350a can include one or more materials that help dissipate heat, such as, for example, aluminum, steel, copper, carbon, combinations of the same, or the like. For example, in some 45 embodiments, the emitter shell 304a can include a heat conducting material that is also readily and relatively inexpensively moldable into desired shapes and forms.

In some embodiments, the heat sink 350a includes metalicized plastic. The metalicized plastic can include alumi- 50 num and carbon, for example. The material can allow for improved thermal conductivity and diffusivity, which can increase commercial viability of the heat sink. In some embodiments, the material selected to construct the heat sink 350a can include a thermally conductive liquid crystalline 55 polymer, such as CoolPoly® D5506, commercially available from Cool Polymers®, Inc. of Warwick, R.I. Such a material can be selected for its electrically non-conductive and dielectric properties so as, for example, to aid in electrical shielding. In an embodiment, the heat sink 350a 60 provides improved heat transfer properties when the sensor **301***a* is active for short intervals of less than a full day's use. In an embodiment, the heat sink 350a can advantageously provide improved heat transfers in about three (3) to about four (4) minute intervals, for example, although a heat sink 350a can be selected that performs effectively in shorter or longer intervals.

22

Moreover, the heat sink 350a can have different shapes and configurations for aesthetic as well as for functional purposes. In an embodiment, the heat sink is configured to maximize heat dissipation, for example, by maximizing surface area. In an embodiment, the heat sink 350a is molded into a generally curved surface and includes one or more fins, undulations, grooves, or channels. The example heat sink 350a shown includes fins 351a (see FIG. 3A).

An alternative shape of a sensor 301b and heat sink 350b is shown in FIG. 3D. The sensor 301b can include some or all of the features of the sensor 301a. For example, the sensor 301b includes an enclosure 302b formed by an emitter shell 304b and a detector shell 306b, pivotably connected about a pivot 303a. The emitter shell 304b can also include absorbing opaque material on one or more flaps 307b, and the detector shell 306a can also include absorbing opaque material at various areas, such as lower area 308b.

However, the shape of the sensor 301b is different in this embodiment. In particular, the heat sink 350b includes comb protrusions 351b. The comb protrusions 351b are exposed to the air in a similar manner to the fins 351a of the heat sink 350a, thereby facilitating efficient cooling of the sensor 301b

FIG. 3E illustrates a more detailed example of a detector shell 306b of the sensor 301b. The features described with respect to the detector shell 306b can also be used with the detector shell 306a of the sensor 301a.

As shown, the detector shell 306b includes detectors 316. The detectors 316 can have a predetermined spacing 340 from each other, or a spatial relationship among one another that results in a spatial configuration. This spatial configuration can purposefully create a variation of path lengths among detectors 316 and the emitter discussed above.

In the depicted embodiment, the detector shell 316 can hold multiple (e.g., two, three, four, etc.) photodiode arrays that are arranged in a two-dimensional grid pattern. Multiple photodiode arrays can also be useful to detect light piping (e.g., light that bypasses measurement site 102). In the detector shell 316, walls can be provided to separate the individual photodiode arrays to prevent or reduce mixing of light signals from distinct quadrants. In addition, the detector shell 316 can be covered by windows of transparent material, such as glass, plastic, or the like, to allow maximum or increased transmission of power light captured. In various embodiments, the transparent materials used can also be partially transparent or translucent or can otherwise pass some or all of the optical radiation passing through them. As noted, this window can include some shielding in the form of an embedded grid of wiring, or a conductive layer or coating.

As further illustrated by FIG. 3E, the detectors 316 can have a spatial configuration of a grid. However, the detectors 316 can be arranged in other configurations that vary the path length. For example, the detectors 316 can be arranged in a linear array, a logarithmic array, a two-dimensional array, a zig-zag pattern, or the like. Furthermore, any number of the detectors 316 can be employed in certain embodiments.

FIG. 3F illustrates another embodiment of a sensor 301f. The sensor 301f can include some or all of the features of the sensor 301a of FIG. 3A described above. For example, the sensor 301f includes an enclosure 302f formed by an upper section or emitter shell 304f, which is pivotably connected with a lower section or detector shell 306f around a pivot point 303f. The emitter shell 304f can also include absorbing opaque material on various areas, such as on one or more flaps 307f, to reduce ambient light entering the sensor 301f.

The detector shell **306***f* can also include absorbing opaque material at various areas, such as a lower area **308***f*. The sensor **301***f* also includes a heat sink **350***f*, which includes fins **351***f*.

In addition to these features, the sensor 301f includes a 5 flex circuit cover 360, which can be made of plastic or another suitable material. The flex circuit cover 360 can cover and thereby protect a flex circuit (not shown) that extends from the emitter shell 304f to the detector shell 306f. An example of such a flex circuit is illustrated in U.S. 10 Publication No. 2006/0211924, incorporated above (see FIG. 46 and associated description, which is hereby specifically incorporated by reference). The flex circuit cover 360 is shown in more detail below in FIG. 17.

In addition, sensors 301a-f has extra length—extends to 15 second joint on finger—Easier to place, harder to move due to cable, better for light piping.

FIGS. 4A through 4C illustrate example arrangements of a protrusion 405, which is an embodiment of the protrusion 305 described above. In an embodiment, the protrusion 405 can include a measurement site contact area 470. The measurement site contact area 470 can include a surface that molds body tissue of a measurement site, such as a finger, into a flat or relatively flat surface.

The protrusion **405** can have dimensions that are suitable 25 for a measurement site such as a patient's finger. As shown, the protrusion **405** can have a length **400**, a width **410**, and a height **430**. The length **400** can be from about 9 to about 11 millimeters, e.g., about 10 millimeters. The width **410** can be from about 7 to about 9 millimeters, e.g., about 8 millimeters. The height **430** can be from about 0.5 millimeters to about 3 millimeters, e.g., about 2 millimeters. In an embodiment, the dimensions **400**, **410**, and **430** can be selected such that the measurement site contact area **470** includes an area of about 80 square millimeters, although 35 larger and smaller areas can be used for different sized tissue for an adult, an adolescent, or infant, or for other considerations

The measurement site contact area **470** can also include differently shaped surfaces that conform the measurement 40 site into different shapes. For example, the measurement site contact area **470** can be generally curved and/or convex with respect to the measurement site. The measurement site contact area **470** can be other shapes that reduce or even minimize air between the protrusion **405** and/or the measurement site. Additionally, the surface pattern of the measurement site contact area **470** can vary from smooth to bumpy, e.g., to provide varying levels of grip.

In FIGS. 4A and 4C, openings or windows 420, 421, 422, and 423 can include a wide variety of shapes and sizes, 50 including for example, generally square, circular, triangular, or combinations thereof. The windows 420, 421, 422, and 423 can be of non-uniform shapes and sizes. As shown, the windows 420, 421, 422, and 423 can be evenly spaced out in a grid like arrangement. Other arrangements or patterns of 55 arranging the windows 420, 421, 422, and 423 are possible. For example, the windows 420, 421, 422, and 423 can be placed in a triangular, circular, or linear arrangement. In some embodiments, the windows 420, 421, 422, and 423 can be placed at different heights with respect to the finger bed 60 310 of FIG. 3. The windows 420, 421, 422, and 423 can also mimic or approximately mimic a configuration of, or even house, a plurality of detectors.

FIGS. 6A through 6D illustrate another embodiment of a protrusion 605 that can be used as the tissue shaper 105 described above or in place of the protrusions 305, 405 described above. The depicted protrusion 605 is a partially

24

cylindrical lens having a partial cylinder 608 and an extension 610. The partial cylinder 608 can be a half cylinder in some embodiments; however, a smaller or greater portion than half of a cylinder can be used. Advantageously, in certain embodiments, the partially cylindrical protrusion 605 focuses light onto a smaller area, such that fewer detectors can be used to detect the light attenuated by a measurement site.

FIG. **6**A illustrates a perspective view of the partially cylindrical protrusion **605**. FIG. **6**B illustrates a front elevation view of the partially cylindrical protrusion **605**. FIG. **6**C illustrates a side view of the partially cylindrical protrusion **605**. FIG. **6**D illustrates a top view of the partially cylindrical protrusion **605**.

Advantageously, in certain embodiments, placing the partially cylindrical protrusion 605 over the photodiodes in any of the sensors described above adds multiple benefits to any of the sensors described above. In one embodiment, the partially cylindrical protrusion 605 penetrates into the tissue and reduces the path length of the light traveling in the tissue, similar to the protrusions described above.

The partially cylindrical protrusion 605 can also collect light from a large surface and focus down the light to a smaller area. As a result, in certain embodiments, signal strength per area of the photodiode can be increased. The partially cylindrical protrusion 605 can therefore facilitate a lower cost sensor because, in certain embodiments, less photodiode area can be used to obtain the same signal strength. Less photodiode area can be realized by using smaller photodiodes or fewer photodiodes (see, e.g., FIG. 14). If fewer or smaller photodiodes are used, the partially cylindrical protrusion 605 can also facilitate an improved SNR of the sensor because fewer or smaller photodiodes can have less dark current.

The dimensions of the partially cylindrical protrusion 605 can vary based on, for instance, a number of photodiodes used with the sensor. Referring to FIG. 6C, the overall height of the partially cylindrical protrusion 605 (measurement "a") in some implementations is about 1 to about 3 mm. A height in this range can allow the partially cylindrical protrusion 605 to penetrate into the pad of the finger or other tissue and reduce the distance that light travels through the tissue. Other heights, however, of the partially cylindrical protrusion 605 can also accomplish this objective. For example, the chosen height of the partially cylindrical protrusion 605 can be selected based on the size of the measurement site. whether the patient is an adult or child, and so on. In an embodiment, the height of the protrusion 605 is chosen to provide as much tissue thickness reduction as possible while reducing or preventing occlusion of blood vessels in the tissue.

Referring to FIG. 6D, the width of the partially cylindrical protrusion 605 (measurement "b") can be about 3 to about 5 mm. In one embodiment, the width is about 4 mm. In one embodiment, a width in this range provides good penetration of the partially cylindrical protrusion 605 into the tissue to reduce the path length of the light. Other widths, however, of the partially cylindrical protrusion 605 can also accomplish this objective. For example, the width of the partially cylindrical protrusion 605 can vary based on the size of the measurement site, whether the patient is an adult or child, and so on. In addition, the length of the protrusion 605 could be about 10 mm, or about 8 mm to about 12 mm, or smaller than 8 mm or greater than 12 mm.

In certain embodiments, the focal length (f) for the partially cylindrical protrusion 605 can be expressed as:

$$f = \frac{R}{n-1},$$

where R is the radius of curvature of the partial cylinder 608 and n is the index of refraction of the material used. In certain embodiments, the radius of curvature can be between about 1.5 mm and about 2 mm. In another embodiment, the partially cylindrical protrusion 605 can include a material, such as nBK7 glass, with an index of refraction of around 1.5 at 1300 nm, which can provide focal lengths of between about 3 mm and about 4 mm.

A partially cylindrical protrusion 605 having a material with a higher index of refraction such as nSF11 glass (e.g., 15 n=1.75 at 1300 nm) can provide a shorter focal length and possibly a smaller photodiode chip, but can also cause higher reflections due to the index of refraction mismatch with air. Many types of glass or plastic can be used with index of refraction values ranging from, for example, about 1.4 to about 1.9. The index of refraction of the material of the protrusion 605 can be chosen to improve or optimize the light focusing properties of the protrusion 605. A plastic partially cylindrical protrusion 605 could provide the cheapest option in high volumes but can also have some undesired light absorption peaks at wavelengths higher than 1500 nm. Other focal lengths and materials having different indices of refraction can be used for the partially cylindrical protrusion 605.

Placing a photodiode at a given distance below the partially cylindrical protrusion 605 can facilitate capturing some or all of the light traveling perpendicular to the lens within the active area of the photodiode (see FIG. 14). Different sizes of the partially cylindrical protrusion 605 can 35 use different sizes of photodiodes. The extension 610 added onto the bottom of the partial cylinder 608 is used in certain embodiments to increase the height of the partially cylindrical protrusion 605. In an embodiment, the added height is such that the photodiodes are at or are approximately at the 40 focal length of the partially cylindrical protrusion 605. In an embodiment, the added height provides for greater thinning of the measurement site. In an embodiment, the added height assists in deflecting light piped through the sensor. This is because light piped around the sensor passes through the 45 side walls of the added height without being directed toward the detectors. The extension 610 can also further facilitate the protrusion 605 increasing or maximizing the amount of light that is provided to the detectors. In some embodiments, the extension 610 can be omitted.

FIG. 6E illustrates another view of the sensor 301f of FIG. 3F, which includes an embodiment of a partially cylindrical protrusion 605b. Like the sensor 301A shown in FIGS. 3B and 3C, the sensor 301f includes a finger bed 310f. The finger bed 310f includes a generally curved surface shaped 55 generally to receive tissue, such as a human digit. The finger bed 310f also includes the ridges or channels 314 described above with respect to FIGS. 3B and 3C.

The example of finger bed 310f shown also includes the protrusion 605b, which includes the features of the protrusion 605 described above. In addition, the protrusion 605b also includes chamfered edges 607 on each end to provide a more comfortable surface for a finger to slide across (see also FIG. 14D). In another embodiment, the protrusion 605b could instead include a single chamfered edge 607 proximal 65 to the ridges 314. In another embodiment, one or both of the chamfered edges 607 could be rounded.

The protrusion 605b also includes a measurement site contact area 670 that can contact body tissue of a measurement site. The protrusion 605b can be removed from or integrated with the finger bed 310f. Interchangeable, differently shaped protrusions 605b can also be provided, which can correspond to different finger shapes, characteristics, opacity, sizes, or the like.

FIGS. 7A and 7B illustrate block diagrams of sensors 701 that include example arrangements of conductive glass or conductive coated glass for shielding. Advantageously, in certain embodiments, the shielding can provide increased SNR. The features of the sensors 701 can be implemented with any of the sensors 101, 201, 301 described above. Although not shown, the partially cylindrical protrusion 605 of FIG. 6 can also be used with the sensors 701 in certain embodiments.

For example, referring specifically to FIG. 7A, the sensor 701a includes an emitter housing 704a and a detector housing 706. The emitter housing 704a includes LEDs 104. The detector housing 706a includes a tissue bed 710a with an opening or window 703a, the conductive glass 730a, and one or more photodiodes for detectors 106 provided on a submount 707a.

During operation, a finger 102 can be placed on the tissue bed 710a and optical radiation can be emitted from the LEDs 104. Light can then be attenuated as it passes through or is reflected from the tissue of the finger 102. The attenuated light can then pass through the opening 703a in the tissue bed 710a. Based on the received light, the detectors 106 can provide a detector signal 107, for example, to the front end interface 108 (see FIG. 1).

In the depicted embodiment, the conductive glass 730 is provided in the opening 703. The conductive glass 730 can thus not only permit light from the finger to pass to the detectors 106, but it can also supplement the shielding of the detectors 106 from noise. The conductive glass 730 can include a stack or set of layers. In FIG. 7A, the conductive glass 730a is shown having a glass layer 731 proximate the finger 102 and a conductive layer 733 electrically coupled to the shielding 790a.

In an embodiment, the conductive glass 730a can be coated with a conductive, transparent or partially transparent material, such as a thin film of indium tin oxide (ITO). To supplement electrical shielding effects of a shielding enclosure 790a, the conductive glass 730a can be electrically coupled to the shielding enclosure 790a. The conductive glass 730a can be electrically coupled to the shielding 704a based on direct contact or via other connection devices, such as a wire or another component.

The shielding enclosure **790***a* can be provided to encompass the detectors **106** to reduce or prevent noise. For example, the shielding enclosure **790***a* can be constructed from a conductive material, such as copper, in the form of a metal cage. The shielding or enclosure a can include an opaque material to not only reduce electrical noise, but also ambient optical noise.

In some embodiments, the shielding enclosure **790***a* can be constructed in a single manufactured component with or without the use of conductive glass. This form of construction may be useful in order to reduce costs of manufacture as well as assist in quality control of the components. Furthermore, the shielding enclosure **790***a* can also be used to house various other components, such as sigma delta components for various embodiments of front end interfaces **108**.

Referring to FIG. 7B, another block diagram of an example sensor 701b is shown. A tissue bed 710b of the

sensor **701***b* includes a protrusion **705***b*, which is in the form of a convex bump. The protrusion **705***b* can include all of the features of the protrusions or tissue shaping materials described above. For example, the protrusion **705***b* includes a contact area **370** that comes in contact with the finger **102** 5 and which can include one or more openings **703***b*. One or more components of conductive glass **730***b* can be provided in the openings **703**. For example, in an embodiment, each of the openings **703** can include a separate window of the conductive glass **730***b*. In an embodiment, a single piece of the conductive glass **730***b* can used for some or all of the openings **703***b*. The conductive glass **730***b* is smaller than the conductive glass **730***a* in this particular embodiment.

A shielding enclosure 790b is also provided, which can have all the features of the shielding enclosure 790a. The 15 shielding enclosure 790b is smaller than the shielding enclosure 790a; however, a variety of sizes can be selected for the shielding enclosures 790.

In some embodiments, the shielding enclosure **790***b* can be constructed in a single manufactured component with or 20 without the use of conductive glass. This form of construction may be useful in order to reduce costs of manufacture as well as assist in quality control of the components. Furthermore, the shielding enclosure **790***b* can also be used to house various other components, such as sigma delta 25 components for various embodiments of front end interfaces **108**.

FIGS. 8A through 8D illustrate a perspective view, side views, and a bottom elevation view of the conductive glass described above with respect to the sensors 701a, 701b. As 30 shown in the perspective view of FIG. 8A and side view of FIG. 8B, the conductive glass 730 includes the electrically conductive material 733 described above as a coating on the glass layer 731 described above to form a stack. In an embodiment where the electrically conductive material 733 35 includes indium tin oxide, surface resistivity of the electrically conductive material 733 can range approximately from 30 ohms per square inch to 500 ohms per square inch, or approximately 30, 200, or 500 ohms per square inch. As would be understood by a person of skill in the art from the 40 present disclosure, other resistivities can also be used which are less than 30 ohms or more than 500 ohms. Other transparent, electrically conductive materials can be used as the material 733.

Although the conductive material **733** is shown spread 45 over the surface of the glass layer **731**, the conductive material **733** can be patterned or provided on selected portions of the glass layer **731**. Furthermore, the conductive material **733** can have uniform or varying thickness depending on a desired transmission of light, a desired shielding 50 effect, and other considerations.

In FIG. 8C, a side view of a conductive glass 830a is shown to illustrate an embodiment where the electrically conductive material 733 is provided as an internal layer between two glass layers 731, 835. Various combinations of 55 integrating electrically conductive material 733 with glass are possible. For example, the electrically conductive material 733 can be a layer within a stack of layers. This stack of layers can include one or more layers of glass 731, 835, as well as one or more layers of conductive material 733. The 60 stack can include other layers of materials to achieve desired characteristics.

In FIG. **8**D, a bottom perspective view is shown to illustrate an embodiment where a conductive glass **830***b* can include conductive material **837** that occupies or covers a 65 portion of a glass layer **839**. This embodiment can be useful, for example, to create individual, shielded windows for

detectors 106, such as those shown in FIG. 3C. The conductive material 837 can be patterned to include an area 838 to allow light to pass to detectors 106 and one or more strips 841 to couple to the shielding 704 of FIG. 7.

28

Other configurations and patterns for the conductive material can be used in certain embodiments, such as, for example, a conductive coating lining periphery edges, a conductive coating outlaid in a pattern including a grid or other pattern, a speckled conductive coating, coating outlaid in lines in either direction or diagonally, varied thicknesses from the center out or from the periphery in, or other suitable patterns or coatings that balance the shielding properties with transparency considerations.

FIG. 9 depicts an example graph 900 that illustrates comparative results obtained by an example sensor having components similar to those disclosed above with respect to FIGS. 7 and 8. The graph 900 depicts the results of the percentage of transmission of varying wavelengths of light for different types of windows used in the sensors described above

A line 915 on the graph 900 illustrates example light transmission of a window made from plain glass. As shown, the light transmission percentage of varying wavelengths of light is approximately 90% for a window made from plain glass. A line 920 on the graph 900 demonstrates an example light transmission percentage for an embodiment in which a window is made from glass having an ITO coating with a surface resistivity of 500 ohms per square inch. A line 925 on the graph 900 shows an example light transmission for an embodiment in which a window is made from glass that includes a coating of ITO oxide with a surface resistivity of 200 ohms per square inch. A line 930 on the graph 900 shows an example light transmission for an embodiment in which a window is made from glass that includes a coating of ITO oxide with a surface resistivity of 30 ohms per square inch.

The light transmission percentage for a window with currently available embedded wiring can have a light transmission percentage of approximately 70%. This lower percentage of light transmission can be due to the opacity of the wiring employed in a currently available window with wiring. Accordingly, certain embodiments of glass coatings described herein can employ, for example, ITO coatings with different surface resistivity depending on the desired light transmission, wavelengths of light used for measurement, desired shielding effect, and other criteria.

FIGS. 10A through 10B illustrate comparative noise floors of example implementations of the sensors described above. Noise can include optical noise from ambient light and electro-magnetic noise, for example, from surrounding electrical equipment. In FIG. 10A, a graph 1000 depicts possible noise floors for different frequencies of noise for an embodiment in which one of the sensors described above included separate windows for four (4) detectors 106. One or more of the windows included an embedded grid of wiring as a noise shield. Symbols 1030-1033 illustrate the noise floor performance for this embodiment. As can be seen, the noise floor performance can vary for each of the openings and based on the frequency of the noise.

In FIG. 10B, a graph 1050 depicts a noise floor for frequencies of noise 1070 for an embodiment in which the sensor included separate openings for four (4) detectors 106 and one or more windows that include an ITO coating. In this embodiment, a surface resistivity of the ITO used was about 500 ohms per square inch. Symbols 1080-1083 illustrate the noise floor performance for this embodiment. As can be seen, the noise floor performance for this embodi-

ment can vary less for each of the openings and provide lower noise floors in comparison to the embodiment of FIG.

FIG. 11A illustrates an example structure for configuring the set of optical sources of the emitters described above. As shown, an emitter 104 can include a driver 1105, a thermistor 1120, a set of top-emitting LEDs 1102 for emitting red and/or infrared light, a set of side-emitting LEDs 1104 for emitting near infrared light, and a submount 1106.

The thermistor 1120 can be provided to compensate for 10 temperature variations. For example, the thermistor 1120 can be provided to allow for wavelength centroid and power drift of LEDs 1102 and 1104 due to heating. In addition, other thermistors (not shown) can be employed, for example, to measure a temperature of a measurement site. 15 The temperature can be displayed on a display device and used by a caregiver. Such a temperature can also be helpful in correcting for wavelength drift due to changes in water absorption, which can be temperature dependent, thereby providing more accurate data useful in detecting blood 20 analytes like glucose. In addition, using a thermistor or other type of temperature sensitive device may be useful for detecting extreme temperatures at the measurement site that are too hot or too cold. The presence of low perfusion may also be detected, for example, when the finger of a patient 25 has become too cold. Moreover, shifts in temperature at the measurement site can alter the absorption spectrum of water and other tissue in the measurement cite. A thermistor's temperature reading can be used to adjust for the variations in absorption spectrum changes in the measurement site.

The driver 1105 can provide pulses of current to the emitter 1104. In an embodiment, the driver 1105 drives the emitter 1104 in a progressive fashion, for example, in an alternating manner based on a control signal from, for the driver 1105 can drive the emitter 1104 with a series of pulses to about 1 milliwatt (mW) for visible light to light at about 1300 nm and from about 40 mW to about 100 mW for light at about 1600 nm to about 1700 nm. However, a wide number of driving powers and driving methodologies can be 40 used. The driver 1105 can be synchronized with other parts of the sensor and can minimize or reduce any jitter in the timing of pulses of optical radiation emitted from the emitter 1104. In some embodiments, the driver 1105 is capable of driving the emitter 1104 to emit an optical radiation in a 45 pattern that varies by less than about 10 parts-per-million; however other amounts of variation can be used.

The submount 1106 provides a support structure in certain embodiments for aligning the top-emitting LEDs 1102 and the side-emitting LEDs 1104 so that their optical radiation is 50 transmitted generally towards the measurement site. In some embodiments, the submount 1106 is also constructed of aluminum nitride (AlN) or beryllium oxide (BEO) for heat dissipation, although other materials or combinations of materials suitable for the submount 1106 can be used.

FIG. 11B illustrates a configuration of emitting optical radiation into a measurement site for measuring a blood constituent or analyte like glucose. In some embodiments, emitter 104 may be driven in a progressive fashion to minimize noise and increase SNR of sensor 101. For 60 example, emitter 104 may be driven based on a progression of power/current delivered to LEDs 1102 and 1104.

In some embodiments, emitter 104 may be configured to emit pulses centered about 905 nm, about 1050 nm, about 1200 nm, about 1300 nm, about 1330 nm, about 1610 nm, 65 about 1640 nm, and about 1665 nm. In another embodiment, the emitter 104 may emit optical radiation ranging from

30

about 860 nm to about 950 nm, about 950 nm to about 1100 nm, about 1100 nm to about 1270 nm, about 1250 nm to about 1350 nm, about 1300 nm to about 1360 nm, and about 1590 nm to about 1700 nm. Of course, emitter 104 may be configured to transmit any of a variety of wavelengths of visible, or near-infrared optical radiation.

For purposes of illustration, FIG. 11B shows a sequence of pulses of light at wavelengths of around 905 nm, around 1200 nm, around 1300 nm, and around 1330 nm from top emitting LEDs 1102. FIG. 11B also shows that emitter 104 may then emit pulses centered at around 1630 nm, around 1660 nm, and around 1615 nm from side emitting LEDs 1104. Emitter 104 may be progressively driven at higher power/current. This progression may allow driver circuit 105 to stabilize in its operations, and thus, provide a more stable current/power to LEDs 1102 and 1104.

For example, as shown in FIG. 11B, the sequence of optical radiation pulses are shown having a logarithmic-like progression in power/current. In some embodiments, the timing of these pulses is based on a cycle of about 400 slots running at 48 kHz (e.g. each time slot may be approximately 0.02 ms or 20 microseconds). An artisan will recognize that term "slots" includes its ordinary meaning, which includes a time period that may also be expressed in terms of a frequency. In the example shown, pulses from top emitting LEDs 1102 may have a pulse width of about 40 time slots (e.g., about 0.8 ms) and an off period of about 4 time slots in between. In addition, pulses from side emitting LEDs 1104 (e.g., or a laser diode) may have a pulse width of about 60 time slots (e.g., about 1.25 ms) and a similar off period of about 4 time slots. A pause of about 70 time slots (e.g. 1.5) ms) may also be provided in order to allow driver circuit 1105 to stabilize after operating at higher current/power.

As shown in FIG. 11B, top emitting LEDs 1102 may be example, a processor (e.g., the processor 110). For example, 35 initially driven with a power to approximately 1 mW at a current of about 20-100 mA. Power in these LEDs may also be modulated by using a filter or covering of black dye to reduce power output of LEDs. In this example, top emitting LEDs 1102 may be driven at approximately 0.02 to 0.08 mW. The sequence of the wavelengths may be based on the current requirements of top emitting LEDs 502 for that particular wavelength. Of course, in other embodiments, different wavelengths and sequences of wavelengths may be output from emitter 104.

> Subsequently, side emitting LEDs 1104 may be driven at higher powers, such as about 40-100 mW and higher currents of about 600-800 mA. This higher power may be employed in order to compensate for the higher opacity of tissue and water in measurement site 102 to these wavelengths. For example, as shown, pulses at about 1630 nm, about 1660 nm, and about 1615 nm may be output with progressively higher power, such as at about 40 mW, about 50 mW, and about 60 mW, respectively. In this embodiment, the order of wavelengths may be based on the optical 55 characteristics of that wavelength in tissue as well as the current needed to drive side emitting LEDs 1104. For example, in this embodiment, the optical pulse at about 1615 nm is driven at the highest power due to its sensitivity in detecting analytes like glucose and the ability of light at this wavelength to penetrate tissue. Of course, different wavelengths and sequences of wavelengths may be output from emitter 104.

As noted, this progression may be useful in some embodiments because it allows the circuitry of driver circuit 1105 to stabilize its power delivery to LEDs 1102 and 1104. Driver circuit 1105 may be allowed to stabilize based on the duty cycle of the pulses or, for example, by configuring a

variable waiting period to allow for stabilization of driver circuit 1105. Of course, other variations in power/current and wavelength may also be employed in the present disclosure.

Modulation in the duty cycle of the individual pulses may 5 also be useful because duty cycle can affect the signal noise ratio of the system 100. That is, as the duty cycle is increased so may the signal to noise ratio.

Furthermore, as noted above, driver circuit 1105 may monitor temperatures of the LEDs 1102 and 1104 using the 10 thermistor 1120 and adjust the output of LEDs 1102 and 1104 accordingly. Such a temperature may be to help sensor 101 correct for wavelength drift due to changes in water absorption, which can be temperature dependent.

FIG. 11C illustrates another exemplary emitter that may 15 be employed in the sensor according to an embodiment of the disclosure. As shown, the emitter 104 can include components mounted on a substrate 1108 and on submount 1106. In particular, top-emitting LEDs 1102 for emitting red and/or infrared light may be mounted on substrate 1108. 20 Side emitting LEDS 1104 may be mounted on submount 1106. As noted, side-emitting LEDs 1104 may be included in emitter 104 for emitting near infrared light.

As also shown, the sensor of FIG. 11C may include a thermistor 1120. As noted, the thermistor 1120 can be 25 provided to compensate for temperature variations. The thermistor 1120 can be provided to allow for wavelength centroid and power drift of LEDs 1102 and 1104 due to heating. In addition, other thermistors (not shown) can be employed, for example, to measure a temperature of a 30 measurement site. Such a temperature can be helpful in correcting for wavelength drift due to changes in water absorption, which can be temperature dependent, thereby providing more accurate data useful in detecting blood analytes like glucose.

In some embodiments, the emitter 104 may be implemented without the use of side emitting LEDs. For example, certain blood constituents, such as total hemoglobin, can be measured by embodiments of the disclosure without the use of side emitting LEDs. FIG. 11D illustrates another exemplary emitter that may be employed in the sensor according to an embodiment of the disclosure. In particular, an emitter 104 that is configured for a blood constituent, such as total hemoglobin, is shown. The emitter 104 can include components mounted on a substrate 1108. In particular, topeemitting LEDs 1102 for emitting red and/or infrared light may be mounted on substrate 1108.

As also shown, the emitter of FIG. 11D may include a thermistor 1120. The thermistor 1120 can be provided to compensate for temperature variations. The thermistor 1120 50 can be provided to allow for wavelength centroid and power drift of LEDs 1102 due to heating.

FIG. 12A illustrates a detector submount 1200 having photodiode detectors that are arranged in a grid pattern on the detector submount 1200 to capture light at different 55 quadrants from a measurement site. One detector submount 1200 can be placed under each window of the sensors described above, or multiple windows can be placed over a single detector submount 1200. The detector submount 1200 can also be used with the partially cylindrical protrusion 605 60 described above with respect to FIG. 6.

The detectors include photodiode detectors 1-4 that are arranged in a grid pattern on the submount **1200** to capture light at different quadrants from the measurement site. As noted, other patterns of photodiodes, such as a linear row, or 65 logarithmic row, can also be employed in certain embodiments.

32

As shown, the detectors 1-4 may have a predetermined spacing from each other, or spatial relationship among one another that result in a spatial configuration. This spatial configuration can be configured to purposefully create a variation of path lengths among detectors 106 and the point light source discussed above.

Detectors may hold multiple (e.g., two, three, four, etc.) photodiode arrays that are arranged in a two-dimensional grid pattern. Multiple photodiode arrays may also be useful to detect light piping (i.e., light that bypasses measurement site 102). As shown, walls may separate the individual photodiode arrays to prevent mixing of light signals from distinct quadrants. In addition, as noted, the detectors may be covered by windows of transparent material, such as glass, plastic, etc., to allow maximum transmission of power light captured. As noted, this window may comprise some shielding in the form of an embedded grid of wiring, or a conductive layer or coating.

FIGS. 12B through 12D illustrate a simplified view of exemplary arrangements and spatial configurations of photodiodes for detectors 106. As shown, detectors 106 may comprise photodiode detectors 1-4 that are arranged in a grid pattern on detector submount 1200 to capture light at different quadrants from measurement site 102.

As noted, other patterns of photodiodes may also be employed in embodiments of the present disclosure, including, for example, stacked or other configurations recognizable to an artisan from the disclosure herein. For example, detectors 106 may be arranged in a linear array, a logarithmic array, a two-dimensional array, and the like. Furthermore, an artisan will recognize from the disclosure herein that any number of detectors 106 may be employed by embodiments of the present disclosure.

For example, as shown in FIG. 12B, detectors 106 may comprise photodiode detectors 1-4 that are arranged in a substantially linear configuration on submount 1200. In this embodiment shown, photodiode detectors 1-4 are substantially equally spaced apart (e.g., where the distance D is substantially the same between detectors 1-4).

In FIG. 12C, photodiode detectors 1-4 may be arranged in a substantially linear configuration on submount 1200, but may employ a substantially progressive, substantially logarithmic, or substantially semi-logarithmic spacing (e.g., where distances D1>D2>D3). This arrangement or pattern may be useful for use on a patient's finger and where the thickness of the finger gradually increases.

In FIG. 12D, a different substantially grid pattern on submount 1200 of photodiode detectors 1-4 is shown. As noted, other patterns of detectors may also be employed in embodiments of the present invention.

FIGS. 12E through 12H illustrate several embodiments of photodiodes that may be used in detectors 106. As shown in these figures, a photodiode 1202 of detector 106 may comprise a plurality of active areas 1204. These active areas 204 may be coupled together via a common cathode 1206 or anode 1208 in order to provide a larger effective detection area.

In particular, as shown in FIG. 12E, photodiode 1202 may comprise two (2) active areas 1204a and 1204b. In FIG. 12F, photodiode 1202 may comprise four (4) active areas 1204c-f. In FIG. 12G, photodiode 1202 may comprise three (3) active areas 1204g-i. In FIG. 12H, photodiode 1202 may comprise nine (9) active areas 1204j-r. The use of smaller active areas may be useful because smaller active areas can be easier to fabricate and can be fabricated with higher

purity. However, one skilled in the art will recognize that various sizes of active areas may be employed in the photodiode 1202.

FIG. 13 illustrates an example multi-stream process 1300. The multi-stream process 1300 can be implemented by the 5 data collection system 100 and/or by any of the sensors described above. As shown, a control signal from a signal processor 1310 controls a driver 1305. In response, an emitter 1304 generates a pulse sequence 1303 from its emitter (e.g., its LEDs) into a measurement site or sites 10 1302. As described above, in some embodiments, the pulse sequence 1303 is controlled to have a variation of about 10 parts per million or less. Of course, depending on the analyte desired, the tolerated variation in the pulse sequence 1303 can be greater (or smaller).

In response to the pulse sequence 1300, detectors 1 to n (n being an integer) in a detector 1306 capture optical radiation from the measurement site 1302 and provide respective streams of output signals. Each signal from one of detectors 1-n can be considered a stream having respective 20 time slots corresponding to the optical pulses from emitter sets 1-n in the emitter 1304. Although n emitters and n detectors are shown, the number of emitters and detectors need not be the same in certain implementations.

A front end interface 1308 can accept these multiple 25 streams from detectors 1-n and deliver one or more signals or composite signal(s) back to the signal processor 1310. A stream from the detectors 1-n can thus include measured light intensities corresponding to the light pulses emitted from the emitter 1304.

The signal processor 1310 can then perform various calculations to measure the amount of glucose and other analytes based on these multiple streams of signals. In order to help explain how the signal processor 1310 can measure analytes like glucose, a primer on the spectroscopy 35 employed in these embodiments will now be provided.

Spectroscopy is premised upon the Beer-Lambert law. According to this law, the properties of a material, e.g., glucose present in a measurement site, can be deterministically calculated from the absorption of light traveling 40 through the material. Specifically, there is a logarithmic relation between the transmission of light through a material and the concentration of a substance and also between the transmission and the length of the path traveled by the light. As noted, this relation is known as the Beer-Lambert law. 45

The Beer-Lambert law is usually written as:

Absorbance A=m*b*c, where:

m is the wavelength-dependent molar absorptivity coefficient (usually expressed in units of M⁻¹ cm⁻¹);

b is the mean path length; and

c is the analyte concentration (e.g., the desired parameter). In spectroscopy, instruments attempt to obtain the analyte concentration (c) by relating absorbance (A) to transmittance (T). Transmittance is a proportional value defined as: 55

 $T=I/I_o$, where:

I is the light intensity measured by the instrument from the measurement site; and

I_o is the initial light intensity from the emitter.

Absorbance (A) can be equated to the transmittance (T) by the equation:

 $A = -\log T$

Therefore, substituting equations from above:

 $A = -\log(I/I_o)$

34

In view of this relationship, spectroscopy thus relies on a proportional-based calculation of $-\log(1/I_o)$ and solving for analyte concentration (c).

Typically, in order to simplify the calculations, spectroscopy will use detectors that are at the same location in order to keep the path length (b) a fixed, known constant. In addition, spectroscopy will employ various mechanisms to definitively know the transmission power (I_o), such as a photodiode located at the light source. This architecture can be viewed as a single channel or single stream sensor, because the detectors are at a single location.

However, this scheme can encounter several difficulties in measuring analytes, such as glucose. This can be due to the high overlap of absorption of light by water at the wavelengths relevant to glucose as well as other factors, such as high self-noise of the components.

Embodiments of the present disclosure can employ a different approach that in part allows for the measurement of analytes like glucose. Some embodiments can employ a bulk, non-pulsatile measurement in order to confirm or validate a pulsatile measurement. In addition, both the non-pulsatile and pulsatile measurements can employ, among other things, the multi-stream operation described above in order to attain sufficient SNR. In particular, a single light source having multiple emitters can be used to transmit light to multiple detectors having a spatial configuration.

A single light source having multiple emitters can allow for a range of wavelengths of light to be used. For example, visible, infrared, and near infrared wavelengths can be employed. Varying powers of light intensity for different wavelengths can also be employed.

Secondly, the use of multiple-detectors in a spatial configuration allow for a bulk measurement to confirm or validate that the sensor is positioned correctly. This is because the multiple locations of the spatial configuration can provide, for example, topology information that indicates where the sensor has been positioned. Currently available sensors do not provide such information. For example, if the bulk measurement is within a predetermined range of values, then this can indicate that the sensor is positioned correctly in order to perform pulsatile measurements for analytes like glucose. If the bulk measurement is outside of a certain range or is an unexpected value, then this can indicate that the sensor should be adjusted, or that the pulsatile measurements can be processed differently to compensate, such as using a different calibration curve or adjusting a calibration curve. This feature and others allow the embodiments to achieve noise cancellation and noise reduction, which can be several times greater in magnitude 50 that what is achievable by currently available technology.

In order to help illustrate aspects of the multi-stream measurement approach, the following example derivation is provided. Transmittance (T) can be expressed as:

 $T=e^{-m*b*c}$

In terms of light intensity, this equation can also be rewritten as:

 $I/I_{o} = e^{-m*b*c}$

60

Or, at a detector, the measured light (I) can be expressed as:

 $I=I_{c}*e^{-m*b*c}$

As noted, in the present disclosure, multiple detectors (1 to n) can be employed, which results in $I_1 ldots I_n$ streams of measurements. Assuming each of these detectors have their

own path lengths, $b_1 \dots b_n$, from the light source, the measured light intensities can be expressed as:

$$I_n = I_c * e^{-m * b_n * c}$$

The measured light intensities at any two different detectors can be referenced to each other. For example:

$$I_1/I_n = (I_o * e^{-mb_1c})/(I_o * e^{-mb_nc})$$

As can be seen, the terms, I_o , cancel out and, based on exponent algebra, the equation can be rewritten as:

$$I_1/I_n = e^{-m(b_1-b_n)c}$$

From this equation, the analyte concentration (c) can now be derived from bulk signals $I_1 \ldots I_n$ and knowing the 15 respective mean path lengths b_1 and b_n . This scheme also allows for the cancelling out of I_o , and thus, noise generated by the emitter 1304 can be cancelled out or reduced. In addition, since the scheme employs a mean path length difference, any changes in mean path length and topological 20 variations from patient to patient are easily accounted. Furthermore, this bulk-measurement scheme can be extended across multiple wavelengths. This flexibility and other features allow embodiments of the present disclosure to measure blood analytes like glucose.

For example, as noted, the non-pulsatile, bulk measurements can be combined with pulsatile measurements to more accurately measure analytes like glucose. In particular, the non-pulsatile, bulk measurement can be used to confirm or validate the amount of glucose, protein, etc. in the pulsatile 30 measurements taken at the tissue at the measurement site(s) 1302. The pulsatile measurements can be used to measure the amount of glucose, hemoglobin, or the like that is present in the blood. Accordingly, these different measurements can be combined to thus determine analytes like blood glucose. 35

FIG. **14**A illustrates an embodiment of a detector submount **1400***a* positioned beneath the partially cylindrical protrusion **605** of FIG. **6** (or alternatively, the protrusion **605***b*). The detector submount **1400***a* includes two rows **1408***a* of detectors **1410***a*. The partially cylindrical protrusion **605** can facilitate reducing the number and/or size of detectors used in a sensor because the protrusion **605** can act as a lens that focuses light onto a smaller area.

To illustrate, in some sensors that do not include the partially cylindrical protrusion 605, sixteen detectors can be 45 used, including four rows of four detectors each. Multiple rows of detectors can be used to measure certain analytes, such as glucose or total hemoglobin, among others. Multiple rows of detectors can also be used to detect light piping (e.g., light that bypasses the measurement site). However, using 50 more detectors in a sensor can add cost, complexity, and noise to the sensor.

Applying the partially cylindrical protrusion **605** to such a sensor, however, could reduce the number of detectors or rows of detectors used while still receiving the substantially 55 same amount of light, due to the focusing properties of the protrusion **605** (see FIG. **14B**). This is the example situation illustrated in FIG. **14**—two rows **1408***a* of detectors **1410***a* are used instead of four. Advantageously, in certain embodiments, the resulting sensor can be more cost effective, have 60 less complexity, and have an improved SNR, due to fewer and/or smaller photodiodes.

In other embodiments, using the partially cylindrical protrusion **605** can allow the number of detector rows to be reduced to one or three rows of four detectors. The number 65 of detectors in each row can also be reduced. Alternatively, the number of rows might not be reduced but the size of the

36

detectors can be reduced. Many other configurations of detector rows and sizes can also be provided.

FIG. 14B depicts a front elevation view of the partially cylindrical protrusion 605 (or alternatively, the protrusion 605b) that illustrates how light from emitters (not shown) can be focused by the protrusion 605 onto detectors. The protrusion 605 is placed above a detector submount 1400b having one or more detectors 1410b disposed thereon. The submount 1400b can include any number of rows of detectors 1410, although one row is shown.

Light, represented by rays 1420, is emitted from the emitters onto the protrusion 605. These light rays 1420 can be attenuated by body tissue (not shown). When the light rays 1420 enter the protrusion 605, the protrusion 605 acts as a lens to refract the rays into rays 1422. This refraction is caused in certain embodiments by the partially cylindrical shape of the protrusion 605. The refraction causes the rays 1422 to be focused or substantially focused on the one or more detectors 1410b. Since the light is focused on a smaller area, a sensor including the protrusion 605 can include fewer detectors to capture the same amount of light compared with other sensors.

FIG. 14C illustrates another embodiment of a detector submount 1400c, which can be disposed under the protrusion 605b (or alternatively, the protrusion 605). The detector submount 1400c includes a single row 1408c of detectors 1410c. The detectors are electrically connected to conductors 1412c, which can be gold, silver, copper, or any other suitable conductive material.

The detector submount 1400c is shown positioned under the protrusion 605b in a detector subassembly 1450 illustrated in FIG. 14D. A top-down view of the detector subassembly 1450 is also shown in FIG. 14E. In the detector subassembly 1450, a cylindrical housing 1430 is disposed on the submount 1400c. The cylindrical housing 1430 includes a transparent cover 1432, upon which the protrusion 605b is disposed. Thus, as shown in FIG. 14D, a gap 1434 exists between the detectors 1410c and the protrusion 605b. The height of this gap 1434 can be chosen to increase or maximize the amount of light that impinges on the detectors 1410c.

The cylindrical housing 1430 can be made of metal, plastic, or another suitable material. The transparent cover 1432 can be fabricated from glass or plastic, among other materials. The cylindrical housing 1430 can be attached to the submount 1400c at the same time or substantially the same time as the detectors 1410c to reduce manufacturing costs. A shape other than a cylinder can be selected for the housing 1430 in various embodiments.

In certain embodiments, the cylindrical housing 1430 (and transparent cover 1432) forms an airtight or substantially airtight or hermetic seal with the submount 1400c. As a result, the cylindrical housing 1430 can protect the detectors 1410c and conductors 1412c from fluids and vapors that can cause corrosion. Advantageously, in certain embodiments, the cylindrical housing 1430 can protect the detectors 1410c and conductors 1412c more effectively than currently-available resin epoxies, which are sometimes applied to solder joints between conductors and detectors.

In embodiments where the cylindrical housing 1430 is at least partially made of metal, the cylindrical housing 1430 can provide noise shielding for the detectors 1410c. For example, the cylindrical housing 1430 can be soldered to a ground connection or ground plane on the submount 1400c, which allows the cylindrical housing 1430 to reduce noise. In another embodiment, the transparent cover 1432 can include a conductive material or conductive layer, such as

conductive glass or plastic. The transparent cover 1432 can include any of the features of the noise shields 790 described above.

The protrusion **605***b* includes the chamfered edges **607** described above with respect to FIG. **6**E. These chamfered 5 edges **607** can allow a patient to more comfortably slide a finger over the protrusion **605***b* when inserting the finger into the sensor **301***f*.

FIG. 14F illustrates a portion of the detector shell 306f, which includes the detectors 1410c on the substrate 1400c. 10 The substrate 1400c is enclosed by a shielding enclosure 1490, which can include the features of the shielding enclosures 790a, 790b described above (see also FIG. 17). The shielding enclosure 1490 can be made of metal. The shielding enclosure 1490 includes a window 1492a above the 15 detectors 1410c, which allows light to be transmitted onto the detectors 1410c.

A noise shield 1403 is disposed above the shielding enclosure 1490. The noise shield 1403, in the depicted embodiment, includes a window 1492a corresponding to the 20 window 1492a. Each of the windows 1492a, 1492b can include glass, plastic, or can be an opening without glass or plastic. In some embodiments, the windows 1492a, 1492b may be selected to have different sizes or shapes from each other.

The noise shield 1403 can include any of the features of the conductive glass described above. In the depicted embodiment, the noise shield 1403 extends about three-quarters of the length of the detector shell 306f. In other embodiments, the noise shield 1403 could be smaller or 30 larger. The noise shield 1403 could, for instance, merely cover the detectors 1410c, the submount 1400c, or a portion thereof. The noise shield 1403 also includes a stop 1413 for positioning a measurement site within the sensor 301f. Advantageously, in certain embodiments, the noise shield 35 1403 can reduce noise caused by light piping.

A thermistor 1470 is also shown. The thermistor 1470 is attached to the submount 1400c and protrudes above the noise shield 1403. As described above, the thermistor 1470 can be employed to measure a temperature of a measurement site. Such a temperature can be helpful in correcting for wavelength drift due to changes in water absorption, which can be temperature dependent, thereby providing more accurate data useful in detecting blood analytes like glucose.

In the depicted embodiment, the detectors 1410c are not enclosed in the cylindrical housing 1430. In an alternative embodiment, the cylindrical housing 1430 encloses the detectors 1410c and is disposed under the noise shield 1403. In another embodiment, the cylindrical housing 1430 50 encloses the detectors 1410c and the noise shield 1403 is not used. If both the cylindrical housing 1403 and the noise shield 1403 are used, either or both can have noise shielding features

FIG. **14**G illustrates the detector shell **306**f of FIG. **14**F, 55 with the finger bed **310**f disposed thereon. FIG. **14**H illustrates the detector shell **306**f of FIG. **14**G, with the protrusion **605**b disposed in the finger bed **310**f.

FIG. 14I illustrates a cutaway view of the sensor 301f. Not all features of the sensor 301f are shown, such as the 60 protrusion 605b. Features shown include the emitter and detector shells 304f, 306f, the flaps 307f, the heat sink 350f and fins 351f, the finger bed 310f, and the noise shield 1403.

In addition to these features, emitters 1404 are depicted in the emitter shell 304f. The emitters 1404 are disposed on a 65 submount 1401, which is connected to a circuit board 1419. The emitters 1404 are also enclosed within a cylindrical

38

housing 1480. The cylindrical housing 1480 can include all of the features of the cylindrical housing 1430 described above. For example, the cylindrical housing 1480 can be made of metal, can be connected to a ground plane of the submount 1401 to provide noise shielding, and can include a transparent cover 1482.

The cylindrical housing 1480 can also protect the emitters 1404 from fluids and vapors that can cause corrosion. Moreover, the cylindrical housing 1480 can provide a gap between the emitters 1404 and the measurement site (not shown), which can allow light from the emitters 1404 to even out or average out before reaching the measurement site.

The heat sink 350f, in addition to including the fins 351f, includes a protuberance 352f that extends down from the fins 351f and contacts the submount 1401. The protuberance 352f can be connected to the submount 1401, for example, with thermal paste or the like. The protuberance 352f can sink heat from the emitters 1404 and dissipate the heat via the fins 351f.

FIGS. 15A and 15B illustrate embodiments of sensor portions 1500A, 15008 that include alternative heat sink features to those described above. These features can be incorporated into any of the sensors described above. For example, any of the sensors above can be modified to use the heat sink features described below instead of or in addition to the heat sink features of the sensors described above.

The sensor portions 1500A, 1500B shown include LED emitters 1504; however, for ease of illustration, the detectors have been omitted. The sensor portions 1500A, 1500B shown can be included, for example, in any of the emitter shells described above.

The LEDs 1504 of the sensor portions 1500A, 1500B are connected to a substrate or submount 1502. The submount 1502 can be used in place of any of the submounts described above. The submount 1502 can be a non-electrically conducting material made of any of a variety of materials, such as ceramic, glass, or the like. A cable 1512 is attached to the submount 1502 and includes electrical wiring 1514, such as twisted wires and the like, for communicating with the LEDs 1504. The cable 1512 can correspond to the cables 212 described above.

Although not shown, the cable **1512** can also include electrical connections to a detector. Only a portion of the cable **1512** is shown for clarity. The depicted embodiment of the cable **1512** includes an outer jacket **1510** and a conductive shield **1506** disposed within the outer jacket **1510**. The conductive shield **1506** can be a ground shield or the like that is made of a metal such as braided copper or aluminum.

The conductive shield **1506** or a portion of the conductive shield **1506** can be electrically connected to the submount **1502** and can reduce noise in the signal generated by the sensor **1500A**, **1500B** by reducing RF coupling with the wires **1514**. In alternative embodiments, the cable **1512** does not have a conductive shield. For example, the cable **1512** could be a twisted pair cable or the like, with one wire of the twisted pair used as a heat sink.

Referring specifically to FIG. 15A, in certain embodiments, the conductive shield 1506 can act as a heat sink for the LEDs 1504 by absorbing thermal energy from the LEDs 1504 and/or the submount 1502. An optional heat insulator 1520 in communication with the submount 1502 can also assist with directing heat toward the conductive shield 1506. The heat insulator 1520 can be made of plastic or another suitable material. Advantageously, using the conductive shield 1506 in the cable 1512 as a heat sink can, in certain embodiments, reduce cost for the sensor.

Referring to FIG. 15B, the conductive shield 1506 can be attached to both the submount 1502 and to a heat sink layer 1530 sandwiched between the submount 1502 and the optional insulator 1520. Together, the heat sink layer 1530 and the conductive shield 1506 in the cable 1512 can absorb 5 at least part of the thermal energy from the LEDs and/or the submount 1502.

FIGS. 15C and 15D illustrate implementations of a sensor portion 1500C that includes the heat sink features of the sensor portion 1500A described above with respect to FIG. 10 15A. The sensor portion 1500C includes the features of the sensor portion 1500A, except that the optional insulator 1520 is not shown. FIG. 15D is a side cutaway view of the sensor portion 1500C that shows the emitters 1504.

The cable **1512** includes the outer jacket **1510** and the 15 conductive shield **1506**. The conductive shield **1506** is soldered to the submount **1502**, and the solder joint **1561** is shown. In some embodiments, a larger solder joint **1561** can assist with removing heat more rapidly from the emitters **1504**. Various connections **1563** between the submount **1502** and a circuit board **1519** are shown. In addition, a cylindrical housing **1580**, corresponding to the cylindrical housing **1480** of FIG. **14I**, is shown protruding through the circuit board **1519**. The emitters **1504** are enclosed in the cylindrical housing **1580**.

FIGS. 15E and 15F illustrate implementations of a sensor portion 1500E that includes the heat sink features of the sensor portion 1500B described above with respect to FIG. 15B. The sensor portion 1500E includes the heat sink layer 1530. The heat sink layer 1530 can be a metal plate, such as 30 a copper plate or the like. The optional insulator 1520 is not shown. FIG. 15F is a side cutaway view of the sensor portion 1500E that shows the emitters 1504.

In the depicted embodiment, the conductive shield 1506 of the cable 1512 is soldered to the heat sink layer 1530 35 instead of the submount 1502. The solder joint 1565 is shown. In some embodiments, a larger solder joint 1565 can assist with removing heat more rapidly from the emitters 1504. Various connections 1563 between the submount 1502 and a circuit board 1519 are shown. In addition, the cylindrical housing 1580 is shown protruding through the circuit board 1519. The emitters 1504 are enclosed in the cylindrical housing 1580.

FIGS. 15G and 15H illustrate embodiments of connector features that can be used with any of the sensors described 45 above with respect to FIGS. 1 through 15F. Referring to FIG. 15G, the circuit board 1519 includes a female connector 1575 that mates with a male connector 1577 connected to a daughter board 1587. The daughter board 1587 includes connections to the electrical wiring 1514 of the cable 1512. 50 The connected boards 1519, 1587 are shown in FIG. 15H. Also shown is a hole 1573 that can receive the cylindrical housing 1580 described above.

Advantageously, in certain embodiments, using a daughter board **1587** to connect to the circuit board **1519** can 55 enable connections to be made more easily to the circuit board **1519**. In addition, using separate boards can be easier to manufacture than a single circuit board **1519** with all connections soldered to the circuit board **1519**.

FIG. 15I illustrates an exemplary architecture for frontend interface 108 as a transimpedance-based front-end. As noted, front-end interfaces 108 provide an interface that adapts the output of detectors 106 into a form that can be handled by signal processor 110. As shown in this figure, sensor 101 and front-end interfaces 108 may be integrated 65 together as a single component, such as an integrated circuit. Of course, one skilled in the art will recognize that sensor

40

101 and front end interfaces 108 may comprise multiple components or circuits that are coupled together.

Front-end interfaces 108 may be implemented using transimpedance amplifiers that are coupled to analog to digital converters in a sigma delta converter. In some embodiments, a programmable gain amplifier (PGA) can be used in combination with the transimpedance-based front-ends. For example, the output of a transimpedance-based front-end may be output to a sigma-delta ADC that comprises a PGA. A PGA may be useful in order to provide another level of amplification and control of the stream of signals from detectors 106. The PGA may be an integrated circuit or built from a set of micro-relays. Alternatively, the PGA and ADC components in converter 900 may be integrated with the transimpedance-based front-end in sensor 101.

Due to the low-noise requirements for measuring blood analytes like glucose and the challenge of using multiple photodiodes in detector 106, the applicants developed a noise model to assist in configuring front-end 108. Conventionally, those skilled in the art have focused on optimizing the impedance of the transimpedance amplifiers to minimize noise.

However, the following noise model was discovered by the applicants:

Noise=
$$\sqrt{aR+bR^2}$$
, where:

aR is characteristic of the impedance of the transimpedance amplifier; and

bR² is characteristic of the impedance of the photodiodes in detector and the number of photodiodes in detector 106.

The foregoing noise model was found to be helpful at least in part due to the high SNR required to measure analytes like glucose. However, the foregoing noise model was not previously recognized by artisans at least in part because, in conventional devices, the major contributor to noise was generally believed to originate from the emitter or the LEDs. Therefore, artisans have generally continued to focus on reducing noise at the emitter.

However, for analytes like glucose, the discovered noise model revealed that one of the major contributors to noise was generated by the photodiodes. In addition, the amount of noise varied based on the number of photodiodes coupled to a transimpedance amplifier. Accordingly, combinations of various photodiodes from different manufacturers, different impedance values with the transimpedance amplifiers, and different numbers of photodiodes were tested as possible embodiments.

In some embodiments, different combinations of transimpedance to photodiodes may be used. For example, detectors 1-4 (as shown, e.g., in FIG. 12A) may each comprise four photodiodes. In some embodiments, each detector of four photodiodes may be coupled to one or more transimpedance amplifiers. The configuration of these amplifiers may be set according to the model shown in FIG. 15J.

Alternatively, each of the photodiodes may be coupled to its own respective transimpedance amplifier. For example, transimpedance amplifiers may be implemented as integrated circuits on the same circuit board as detectors 1-4. In this embodiment, the transimpedance amplifiers may be grouped into an averaging (or summing) circuit, which are known to those skilled in the art, in order to provide an output stream from the detector. The use of a summing amplifier to combine outputs from several transimpedance amplifiers into a single, analog signal may be helpful in improving the SNR relative to what is obtainable from a single transimpedance amplifier. The configuration of the

transimpedance amplifiers in this setting may also be set according to the model shown in FIG. 15J.

As yet another alternative, as noted above with respect to FIGS. **12**E through **12**H, the photodiodes in detectors **106** may comprise multiple active areas that are grouped 5 together. In some embodiments, each of these active areas may be provided its own respective transimpedance. This form of pairing may allow a transimpedance amplifier to be better matched to the characteristics of its corresponding photodiode or active area of a photodiode.

As noted, FIG. 15J illustrates an exemplary noise model that may be useful in configuring transimpedance amplifiers. As shown, for a given number of photodiodes and a desired SNR, an optimal impedance value for a transimpedance amplifier could be determined.

For example, an exemplary "4 PD per stream" sensor 1502 is shown where detector 106 comprises four photodiodes 1502. The photodiodes 1502 are coupled to a single transimpedance amplifier 1504 to produce an output stream 1506. In this example, the transimpedance amplifier comprises 10 M Ω resistors 1508 and 1510. Thus, output stream 1506 is produced from the four photodiodes (PD) 1502. As shown in the graph of FIG. 15J, the model indicates that resistance values of about 10 M Ω may provide an acceptable SNR for analytes like glucose.

However, as a comparison, an exemplary "1 PD per stream" sensor **1512** is also shown in FIG. **15**J. In particular, sensor **1512** may comprise a plurality of detectors **106** that each comprises a single photodiode **1514**. In addition, as shown for this example configuration, each of photodiodes 30 **1514** may be coupled to respective transimpedance amplifiers **1516**, e.g., 1 PD per stream. Transimpedance amplifiers are shown having 40 M Ω resistors **1518**. As also shown in the graph of FIG. **15**J, the model illustrates that resistance values of 40 M Ω for resistors **1518** may serve as an 35 alternative to the 4 photodiode per stream architecture of sensor **1502** described above and yet still provide an equivalent SNR.

Moreover, the discovered noise model also indicates that utilizing a 1 photodiode per stream architecture like that in 40 sensor 1512 may provide enhanced performance because each of transimpedance amplifiers 1516 can be tuned or optimized to its respective photodiodes 1518. In some embodiments, an averaging component 1520 may also be used to help cancel or reduce noise across photodiodes 1518.

For purposes of illustration, FIG. 15K shows different architectures (e.g., four PD per stream and one PD per stream) for various embodiments of a sensor and how components of the sensor may be laid out on a circuit board or substrate. For example, sensor 1522 may comprise a "4 50 PD per stream" architecture on a submount 700 in which each detector 106 comprises four (4) photodiodes 1524. As shown for sensor 1522, the output of each set of four photodiodes 1524 is then aggregated into a single transimpedance amplifier 1526 to produce a signal.

As another example, a sensor 1528 may comprise a "1 PD per stream" architecture on submount 700 in which each detector 106 comprises four (4) photodiodes 1530. In sensor 1528, each individual photodiode 1530 is coupled to a respective transimpedance amplifier 1532. The output of the 60 amplifiers 1532 may then be aggregated into averaging circuit 1520 to produce a signal.

As noted previously, one skilled in the art will recognize that the photodiodes and detectors may be arranged in different fashions to optimize the detected light. For 65 example, sensor 1534 illustrates an exemplary "4 PD per stream" sensor in which the detectors 106 comprise photo-

42

diodes **1536** arranged in a linear fashion. Likewise, sensor **1538** illustrates an exemplary "1 PD per stream" sensor in which the detectors comprise photodiodes **1540** arranged in a linear fashion.

Alternatively, sensor **1542** illustrates an exemplary "4 PD per stream" sensor in which the detectors **106** comprise photodiodes **1544** arranged in a two-dimensional pattern, such as a zig-zag pattern. Sensor **1546** illustrates an exemplary "1 PD per stream" sensor in which the detectors comprise photodiodes **1548** also arranged in a zig-zag pattern.

FIG. 15L illustrates an exemplary architecture for a switched-capacitor-based front-end. As shown, front-end interfaces 108 may be implemented using switched capacitor circuits and any number of front-end interfaces 108 may be implemented. The output of these switched capacitor circuits may then be provided to a digital interface 1000 and signal processor 110. Switched capacitor circuits may be useful in system 100 for their resistor free design and analog averaging properties. In particular, the switched capacitor circuitry provides for analog averaging of the signal that allows for a lower smaller sampling rate (e.g., 2 KHz sampling for analog versus 48 KHz sampling for digital designs) than similar digital designs. In some embodiments, the switched capacitor architecture in front end interfaces 108 may provide a similar or equivalent SNR to other front end designs, such as a sigma delta architecture. In addition, a switched capacitor design in front end interfaces 108 may require less computational power by signal processor 110 to perform the same amount of decimation to obtain the same

FIGS. 16A and 16B illustrate embodiments of disposable optical sensors 1600. In an embodiment, any of the features described above, such as protrusion, shielding, and/or heat sink features, can be incorporated into the disposable sensors 1600 shown. For instance, the sensors 1600 can be used as the sensors 101 in the system 100 described above with respect to FIG. 1. Moreover, any of the features described above, such as protrusion, shielding, and/or heat sink features, can be implemented in other disposable sensor designs that are not depicted herein.

The sensors 1600 include an adult/pediatric sensor 1610 for finger placement and a disposable infant/neonate sensor 1602 configured for toe, foot or hand placement. Each sensor 1600 has a tape end 1610 and an opposite connector end 1620 electrically and mechanically interconnected via a flexible coupling 1630. The tape end 1610 attaches an emitter and detector to a tissue site. Although not shown, the tape end 1610 can also include any of the protrusion, shielding, and/or heat sink features described above. The emitter illuminates the tissue site and the detector generates a sensor signal responsive to the light after tissue absorption, such as absorption by pulsatile arterial blood flow within the tissue site.

The sensor signal is communicated via the flexible coupling 1630 to the connector end 1620. The connector end 1620 can mate with a cable (not shown) that communicates the sensor signal to a monitor (not shown), such as any of the cables or monitors shown above with respect to FIGS. 2A through 2D. Alternatively, the connector end 1620 can mate directly with the monitor.

FIG. 17 illustrates an exploded view of certain of the components of the sensor 301f described above. A heat sink 1751 and a cable 1781 attach to an emitter shell 1704. The emitter shell attaches to a flap housing 1707. The flap housing 1707 includes a receptacle 1709 to receive a cylin-

drical housing 1480/1580 (not shown) attached to an emitter submount 1702, which is attached to a circuit board 1719.

A spring 1787 attaches to a detector shell 1706 via pins 1783, 1785, which hold the emitter and detector shells 1704, 1706 together. A support structure 1791 attaches to the 5 detector shell 1706, which provides support for a shielding enclosure 1790. A noise shield 1713 attaches to the shielding enclosure 1790. A detector submount 1700 is disposed inside the shielding enclosure 1790. A finger bed 1710 provides a surface for placement of the patient's finger. 10 Finger bed 1710 may comprise a gripping surface or gripping features, which may assist in placing and stabilizing a patient's finger in the sensor. A partially cylindrical protrusion 1705 may also be disposed in the finger bed 1710. As shown, finger bed 1710 attaches to the noise shield 1703. 15 The noise shield 1703 may be configured to reduce noise, such as from ambient light and electromagnetic noise. For example, the noise shield 1703 may be constructed from materials having an opaque color, such as black or a dark blue, to prevent light piping.

Noise shield 1703 may also comprise a thermistor 1712. The thermistor 1712 may be helpful in measuring the temperature of a patient's finger. For example, the thermistor 1712 may be useful in detecting when the patient's finger is reaching an unsafe temperature that is too hot or too cold. In 25 addition, the temperature of the patient's finger may be useful in indicating to the sensor the presence of low perfusion as the temperature drops. In addition, the thermistor 1712 may be useful in detecting a shift in the characteristics of the water spectrum in the patient's finger, which 30 can be temperature dependent.

Moreover, a flex circuit cover 1706 attaches to the pins 1783, 1785. Although not shown, a flex circuit can also be provided that connects the circuit board 1719 with the submount 1700 (or a circuit board to which the submount 35 1700 is connected). A flex circuit protector 1760 may be provided to provide a barrier or shield to the flex circuit (not shown). In particular, the flex circuit protector 1760 may also prevent any electrostatic discharge to or from the flex circuit. The flex circuit protector 1760 may be constructed 40 from well known materials, such as a plastic or rubber materials.

FIG. 18 shows the results obtained by an exemplary sensor 101 of the present disclosure that was configured for measuring glucose. This sensor 101 was tested using a pure 45 water ex-vivo sample. In particular, ten samples were prepared that ranged from 0-55 mg/dL. Two samples were used as a training set and eight samples were then used as a test population. As shown, embodiments of the sensor 101 were able to obtain at least a standard deviation of 13 mg/dL in the 50 training set and 11 mg/dL in the test population.

FIG. 19 shows the results obtained by an exemplary sensor 101 of the present disclosure that was configured for measuring glucose. This sensor 101 was tested using a turbid ex-vivo sample. In particular, 25 samples of water/glucose/55 Liposyn were prepared that ranged from 0-55 mg/dL. Five samples were used as a training set and 20 samples were then used as a test population. As shown, embodiments of sensor 101 were able to obtain at least a standard deviation of 37 mg/dL in the training set and 32 mg/dL in the test 60 population.

FIGS. 20 through 22 shows other results that can be obtained by an embodiment of system 100. In FIG. 20, 150 blood samples from two diabetic adult volunteers were collected over a 10-day period. Invasive measurements were 65 taken with a YSI glucometer to serve as a reference measurement. Noninvasive measurements were then taken with

44

an embodiment of system 100 that comprised four LEDs and four independent detector streams. As shown, the system 100 obtained a correlation of about 85% and Arms of about 31 mg/dL.

In FIG. 21, 34 blood samples were taken from a diabetic adult volunteer collected over a 2-day period. Invasive measurements were also taken with a glucometer for comparison. Noninvasive measurements were then taken with an embodiment of system 100 that comprised four LEDs in emitter 104 and four independent detector streams from detectors 106. As shown, the system 100 was able to attain a correlation of about 90% and Arms of about 22 mg/dL.

The results shown in FIG. 22 relate to total hemoglobin testing with an exemplary sensor 101 of the present disclosure. In particular, 47 blood samples were collected from nine adult volunteers. Invasive measurements were then taken with a CO-oximeter for comparison. Noninvasive measurements were taken with an embodiment of system 100 that comprised four LEDs in emitter 104 and four independent detector channels from detectors 106. Measurements were averaged over 1 minute. As shown, the testing resulted in a correlation of about 93% and Arms of about 0.8 mg/dI.

Conditional language used herein, such as, among others, "can," "could," "might," "may," "e.g.," and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.

While certain embodiments of the inventions disclosed herein have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Indeed, the novel methods and systems described herein can be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein can be made without departing from the spirit of the inventions disclosed herein. The claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of certain of the inventions disclosed herein.

What is claimed is:

- 1. A physiological measurement system comprising:
- a physiological sensor device comprising:
 - a plurality of emitters configured to emit light into tissue of a user;
 - at least four detectors, wherein each of the at least four detectors has a corresponding window that allows light to pass through to the detector;
 - a wall that surrounds at least the at least four detectors;
 - a cover that operably connects to the wall and that is configured to be located between tissue of the user and the at least four detectors when the physiological sensor device is worn by the user, wherein:
 - the cover comprises a single protruding convex surface, and
 - at least a portion of the cover is sufficiently rigid to cause tissue of the user to conform to at least a

- portion of a shape of the single protruding convex surface when the physiological sensor device is worn by the user; and
- a handheld computing device in wireless communication with the physiological sensor device, wherein the handheld computing device comprises:
 - one or more processors configured to wirelessly receive one or more signals from the physiological sensor device, the one or more signals responsive to at least a physiological parameter of the user;
 - a touch-screen display configured to provide a user interface,

wherein:

- the user interface is configured to display indicia responsive to measurements of the physiological 15 parameter, and
- an orientation of the user interface is configurable responsive to a user input; and
- a storage device configured to at least temporarily store
- 2. The physiological measurement system of claim 1, wherein the at least four detectors comprise at least eight detectors.
- 3. The physiological measurement system of claim 2, 25 wherein at least part of the single protruding convex surface is light permeable to provide at least one optical path to at least one of the at least four detectors.
- 4. The physiological measurement system of claim 3, wherein the physiological sensor device further comprises: 30 trend of wellness of the user. an at least partially opaque layer blocking one or more optical paths to at least one of the at least four detectors, wherein the at least partially opaque layer comprises the windows that allow light to pass through to the corresponding detectors.
- 5. The physiological measurement system of claim 4, wherein the physiological sensor device further comprises: a substrate having a first surface, wherein the at least four detectors are arranged on the first surface.
- 6. The physiological measurement system of claim 5, 40 wherein:
 - the wall surrounds at least the at least four detectors on the first surface,
 - the wall operably connects to the substrate on one side of the wall, and
 - the wall operably connects to the cover on an opposing side of the wall.
- 7. The physiological measurement system of claim 6, wherein the wall creates one or more gaps between the first surface of the substrate and a surface of the cover that is 50 interior to the physiological sensor device, and wherein the at least four detectors are positioned on the first surface of the substrate within the one or more gaps.
- 8. The physiological measurement system of claim 6, wherein the substrate, the wall, and the cover together 55 hermetically seal the at least four detectors.
- 9. The physiological measurement system of claim 8, wherein a surface of the handheld computing device positions the touch-screen display.
- 10. The physiological measurement system of claim 9, 60 wherein the physiological parameter comprises at least one of: pulse rate, glucose, oxygen, oxygen saturation, methemoglobin, total hemoglobin, carboxyhemoglobin, or carbon monoxide.
- 11. The physiological measurement system of claim 10, 65 wherein the single protruding convex surface protrudes a height between 1 millimeter and 3 millimeters.

46

- 12. The physiological measurement system of claim 11, wherein at least one of the detectors is configured to detect light that has been attenuated by tissue of the user.
- 13. The physiological measurement system of claim 12, wherein the displayed indicia are further responsive to temperature.
- 14. The physiological measurement system of claim 13, wherein a portion of the physiological sensor device comprises one of at least two sizes, the two sizes intended to be appropriate for larger users and smaller users.
- 15. The physiological measurement system of claim 14, wherein the at least four detectors are arranged such that a first detector and a second detector of the least four detectors are arranged across from each other on opposite sides of a central point along a first axis, and a third detector and a fourth detector of the least four detectors are arranged across from each other on opposite sides of the central point along a second axis which is different from the first axis.
- 16. The physiological measurement system of claim 15, at least the measurements of the physiological 20 wherein the first axis is perpendicular to the second axis, and wherein the first, second, third and fourth detectors form a cross pattern about the central point.
 - 17. The physiological measurement system of claim 16, wherein the single protruding convex surface protrudes a height greater than 2 millimeters and less than 3 millimeters.
 - **18**. The physiological measurement system of claim **17**, wherein the attenuated light is reflected by the tissue.
 - 19. The physiological measurement system of claim 9, wherein the physiological parameter comprises a state or
 - 20. A physiological measurement system comprising: a physiological sensor device comprising:

 - a plurality of emitters configured to emit light into tissue of a user;
 - at least four detectors, wherein each of the at least four detectors has a corresponding window that allows light to pass through to the detector;
 - a wall that surrounds at least the at least four detectors;
 - a cover comprising a single protruding convex surface, wherein the single protruding convex surface is configured to be located between tissue of the user and the at least four detectors when the physiological sensor device is worn by the user, wherein at least a portion of the single protruding convex surface is sufficiently rigid to cause tissue of the user to conform to at least a portion of a shape of the single protruding convex surface when the physiological sensor device is worn by the user, and wherein the cover operably connects to the wall; and
 - a handheld computing device in wireless communication with the physiological sensor device.
 - 21. The physiological measurement system of claim 20, wherein the handheld computing device comprises:
 - one or more processors configured to wirelessly receive one or more signals from the physiological sensor device, the one or more signals responsive to at least a physiological parameter of the user;
 - a touch-screen display configured to provide a user interface, wherein:
 - the user interface is configured to display indicia responsive to measurements of the physiological parameter, and
 - an orientation of the user interface is configurable responsive to a user input; and
 - a storage device configured to at least temporarily store at least the measurements of the physiological parameter.

- 22. The physiological measurement system of claim 21, wherein the at least four detectors comprise at least eight detectors.
- 23. The physiological measurement system of claim 22, wherein at least part of the single protruding convex surface 5 is light permeable to allow light to reach at least one of the at least four detectors.
- 24. The physiological measurement system of claim 23, wherein the physiological sensor device further comprises: an at least partially opaque layer blocking one or more 10 optical paths to at least one of the at least four detectors, wherein the at least partially opaque layer comprises the windows that allow light to pass through to the corresponding detectors.
- 25. The physiological measurement system of claim 24, 15 wherein the physiological sensor device further comprises: a substrate having a first surface, wherein the at least four detectors are arranged on the first surface, and wherein the wall surrounds at least the at least four detectors on the first surface,

48

wherein:

the wall operably connects to the substrate on one side of the wall, and

the wall operably connects to the cover on an opposing side of the wall.

- **26**. The physiological measurement system of claim **25**, wherein a surface of the handheld computing device positions the touch-screen display.
- 27. The physiological measurement system of claim 26, wherein the physiological parameter comprises at least one of: pulse rate, glucose, oxygen, oxygen saturation, methemoglobin, total hemoglobin, carboxyhemoglobin, carbon monoxide, or a state or trend of wellness of the user.
- 28. The physiological measurement system of claim 27, wherein the single protruding convex surface protrudes a height greater than 2 millimeters and less than 3 millimeters.

* * * * *