
US 20030005398A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0005398A1

Cho et al. (43) Pub. Date: Jan. 2, 2003

(54) TIMING-DRIVEN GLOBAL PLACEMENT Publication Classification
BASED ON GEOMETRY-AWARE TIMING
BUDGETS (51) Int. Cl." ... G06F 9/45

(52) U.S. Cl. .. 716/8
(76) Inventors: Jun-Dong Cho, Millwood, NY (US);

David S. Kung, Chappaqua, NY (US) (57) ABSTRACT
A System and method for timing-closed placement which

Correspondence Address: also takes wirelength and congestion into consideration. In
Frank Chau one aspect, the System and method of timing driven place
F. CHAU & ASSOCIATES, LLP ment according to the present invention incorporates a
Suite 501 timing budget management technique which Satisfies tri
1900 Hempstead Turnpike angle parity and inequality, a timing-driven quadrisection
East Meadow, NY 11554 (US) placement Strategy based on flexible timing window con

figurations to minimize the wirelength and congestion dur
(21) Appl. No.: 09/832,623 ing each mincut quad-partition of top-down hierarchy, and a

linear programming formulation incorporating bin capacity,
(22) Filed: Apr. 11, 2001 channel capacity and congestion criticality.

Jan. 2, 2003. Sheet 1 of 16 US 2003/0005398 A1 Patent Application Publication

et I attle : tinning budget

Patent Application Publication Jan. 2, 2003 Sheet 2 of 16 US 2003/0005398 A1

26

l
Arid Definition

Circuit araph one bend global
routino

2-2

)
Cicut clustering

slack generation
arid
redistribution
satisfying
triangle parity
and inequalit

4-way incut
Partitioning

Op down
ecursion

quad - tree hierarchy it shed

Yss
Iodule O
redistribution

Yes

217 2s

F/G, 2.

Patent Application Publication Jan. 2, 2003 Sheet 3 of 16 US 2003/0005398 A1

FIG 2

Patent Application Publication Jan. 2, 2003 Sheet 4 of 16 US 2003/0005398 A1

fiG, 42

Patent Application Publication Jan. 2, 2003 Sheet 5 of 16 US 2003/0005398 A1

A9) 4, 23

lower and
upper bounds
of tinning
budget

Patent Application Publication Jan. 2, 2003 Sheet 6 of 16 US 2003/0005398 A1

401 est Y 406
GDN 1-c\ as a

Gu) N -->G)

FG, G (4

1
r (v)

\ty- v, w)
--als

r (uw)

1st, /* (w)

fiG. (eB

Patent Application Publication Jan. 2, 2003 Sheet 7 of 16 US 2003/0005398 A1

FG, 72.

Patent Application Publication Jan. 2, 2003 Sheet 8 of 16 US 2003/0005398 A1

Patent Application Publication Jan. 2, 2003 Sheet 9 of 16 US 2003/0005398 A1

(1,
o N-2 (h) 5..."

Patent Application Publication Jan. 2, 2003 Sheet 10 of 16 US 2003/0005398 A1

Patent Application Publication Jan. 2, 2003 Sheet 11 of 16 US 2003/0005398 A1

Patent Application Publication Jan. 2, 2003 Sheet 12 of 16 US 2003/0005398 A1

Patent Application Publication Jan. 2, 2003 Sheet 13 of 16 US 2003/0005398 A1

Patent Application Publication Jan. 2, 2003 Sheet 14 of 16 US 2003/0005398 A1

(b)
4

FIG, for

Patent Application Publication Jan. 2, 2003 Sheet 15 of 16 US 2003/0005398A1

as y a -a as

FIG., loc

Patent Application Publication Jan. 2, 2003 Sheet 16 of 16 US 2003/0005398 A1

US 2003/0005398 A1

TIMING-DRIVEN GLOBAL PLACEMENT BASED
ON GEOMETRY AWARE TIMING BUDGETS

BACKGROUND OF THE INVENTION

0001) 1. Technical Field
0002 The present invention relates generally to a system
and method for designing and placing circuitry on Semicon
ductor chips, and more particularly, to a System and method
for incorporating a timing-closed placement Solution into a
physical design process of integrated circuitry.

0003 2. Description of the Related Art
0004. The development of electronic manufacturing tech
nology has created the ability to build thousands of circuits
on a single chip. To take advantage of this technology,
thousands of circuits must by physically placed and con
nected on the chip. This can be a very time-consuming
process, especially when the actual process of designing,
placing and connecting the circuits on the chip can affect the
performance and timing requirements of the chip. Therefore,
it has become necessary to automate the design process by
using a computer to quickly place and wire predesigned
circuits into a functional chip.
0005 The basic problem with this automation technique
is that it Sacrifices the performance of the resulting circuit for
the ability to get a connected circuit in a reasonable amount
of computing time. When the functional chip being designed
is a central processing unit of a computer or other chip in
which performance is critical and design complexity high,
the performance Sacrificed is not acceptable and the auto
mation technique is not useful. This performance Sacrifice
usually manifests itself in the inability to obtain timing
closure in complicated logic. Timing closure is the differ
ence between the time allowed for processing information
on the chip as logically designed, and the time required for
processing information on the chip as physically designed.
Timing closure is not met when the chip as physically wired
and placed is not as fast as required by the logical design.
0006 With advances in VLSI technology, the size of
modules in integrated circuits is becoming Smaller and the
density of modules on a chip is increasing. Consequently,
intramodule delays are becoming Smaller, and the total delay
in the circuit is being dominated by delays in the intercon
nections between the modules. The communication
bounded nature of total circuit delay, along with more
Stringent timing requirements due to more aggressive design
Style, have made timing driven layout an important area of
Study. To meet the needs of a fast-expanding electronics
industry, high performance chips must be designed in a short
period. Accordingly, a design flow which incorporates tim
ing analysis and Verification into the physical design is
desirable. This motivates the development of layout tools
which optimize layout area and timing Simultaneously.
0007. The problem of timing-driven placement has been
Studied extensively over recent years. Existing timing
driven approaches can be broadly classified into net-based
methods and path-based methods. In a net-based algorithm,
timing constraints are first translated into physical con
Straints, Such as upper and lower bounds on the lengths of
nets. More specifically, net-based algorithms try to Satisfy
timing constraints by (1) assigning higher weights to nets
which are part of critical paths, or (2) by transforming timing

Jan. 2, 2003

requirements into a set of upper bounds on the net delayS. In
Scenario (1), minimizing the delay in a critical net may
increase the delay in other nets. This may result in additional
critical paths and the delays of the nets in these paths also
then have to be minimized. This again may result in an
excessive delay in the previous critical net. It is desirable to
prevent this oscillating effect. In Scenario (2) above, delay
constraints on the paths are translated into either length or
timing lower and upper bounds (slacks) for each net. The
bounds are then used to guide the placement and routing.
Timing driven placement optimization will not shorten nets
that are below the threshold, but nets near or above the
threshold are very Strongly weighted for improvement. A
major problem of these approaches is the Selection of the
weights or bounds. Also, the use of individual net bounds
may overconstrain the problem.
0008 Path-based methods consider timing requirements
explicitly, and try to Satisfy timing requirements and physi
cal requirements simultaneously during the placement
phase. A major difficulty encountered in path-based methods
is the enormous complexity of computation. Path-based
approaches overcome these difficulties via an optimization
process which models the problem using paths instead of
individual nets. The problem may be modeled as a linear
programming or transforming the quadratic programming
problem into a Lagrangian problem to reduce the number of
constraints. However, this optimization process becomes
very complex and time consuming in deep Sub-micron
designs.
0009. A legal (or feasible) solution to the timing-driven
placement problem should Satisfy the following placement
constraints: (1) Macros should be placed at legitimate loca
tions without overlapping, (2) there should be Sufficient
Space to implement interconnections, (3) timing constraints
should be satisfied for all logically possible paths in the
circuit, (4) region constraints should be satisfied, i.e., Some
modules may be placed only in an certain regions, for
example, (a) for movable I/O pins (input/output terminals):
Some I/O pins positions may be fixed, others may be
assigned to any of the available I/O pads.(b) locations of
Some modules may already be fixed.
0010. An input to a timing-driven placement problem is
a set of modules and a netlist, where each module has a fixed
shape and fixed terminal locations. The goal is to find the
best position for each module on the chip according to
appropriate cost functions. Timing driven placement incor
porates timing objective functions into the placement prob
lem. Nets that must Satisfy timing requirements are called
critical nets. In timing-driven placement, it is desirable to
make critical nets timing-efficient and other nets length- and
area-efficient.

0011. In a net-based timing-driven layout, timing require
ments are usually first translated into physical requirements.
Delay Slacks correspond to budget wiring delayS. Slack is
the difference between the designed (logical) delay and the
actual delay (after added wiring delay) from the wiring
program. A positive Slack implies that the current cycle-time
is fulfilled by the physical layout (i.e., the net meets the
design criteria), while a negative value indicates that the
layout violates the timing conditions. In addition, a large
positive value indicates that the cycle-time can be further
improved. Hence, the goal in timing-driven layout is to
maximize the min-Slack.

US 2003/0005398 A1

0012. The delay budgeting problem seeks to allocate
delay Slacks before the placement and routing Steps. Thus, as
a result of delay budgeting, the performance-driven place
ment and routing Steps are given net delay bounds. Since the
delay SlackS equate with wiring delay, it is natural to expect
all nets to have positive slacks. Furthermore, the distribution
of these slacks determines the difficulty of finding a feasible
placement (and/or routing) Solution.
0013 Excessive local congestion gives rise to future
routing difficulty and also increases potential croSStalk noise
in high-speed signal lines. Furthermore, it increases power
dissipation due to coupling capacitance. In a timing analysis
of a prerouting design, the routing of a net is usually
assumed to be a minimal rectilinear Steiner tree. Due to the
congestion, the capacitance (i.e., wirelength) of this routing
tree is larger than the one with a minimal Steiner tree. Thus,
we need to avoid the timing-critical nets from the congested
CS.

0.014) Existing timing-driven flows lead to unpredictable
and Suspicious timing results. Their main flaw is a lack of
timing coverage which requires designers to spend days or
even weeks iterating between Synthesis and layout to
achieve timing closure. Extremely complex deep Submicron
designs requires a new placement algorithm being com
pleted with faster clockS.
0.015 There have been many works in timing-driven
placement in recent years. Recent results are mainly catego
rized as: A) Top-down hierarchical partitioning (slack
based), B) quadratic programming (path-based), and C)
constructive approaches.

A. Top-Down Hierarchical Partitioning
0016. In top-down hierarchical partitioning, the length of
all interconnections are estimated provided that entire cells
assigned to a partitioned region are located at the center of
the region. Therefore, after each cut of a min-cut algorithm,
a global routing is computed. See J. Garbers, B. Korte, H. J.
Promel, E. Schwietzke, and A. Seger, VLSI-Placement
Based on Routing and Timing Information, IEEE, 1990.
This provides an expected net length for every net. These net
lengths are Subsequently used to perform a timing analysis.
In particular, increasing the weight of Some nets should lead
to a shorter realization of these nets and thus should increase
the minimum Slack. In this algorithm, modules are not
placed at upper levels of the mincut partitioning; the exact
module placement is realized at the bottom of hierarchy.
Thus, it is hardly guaranteed that the expected net length
computed at each level of the hierarchy is consistent with the
net length obtained by final placement.
0017 FIG. 1 illustrates an exemplary conventional net
weight and mincut based placement approach. One example
of this approach, hierarchical mincut-based partitioning,
involves dividing a circuit into Smaller parts, recursively.
The object is to partition the circuit into parts Such that the
sizes of the partitions are within a prescribed range and the
number of connections between components is minimized at
each level of hierarchy. This results in minimizing the
number of global wires and accordingly, maximizing the
number of local wires, thus minimizing the total wirelength.
During the partitioning, if module ml in partition 100 is
moved to partition 102, the result is an undesirable solution
Since the critical net C with its timing budget of 1 unit is on

Jan. 2, 2003

the cutline 104 and thus may span the entire chip region in
a worst case Scenario. On the other hand, if module m2 is
moved, then the timing budget of net D becomes over
weighted in a Smaller wiring region. Therefore, there is a
need for a more insightful timing budget management
Strategy.

0018. In M. Marek-Sadowska and S. P. Lin, “Timing
Driven Placement", IEEE Conference, pp. 94-97, 1989, the
timing-driven placement problem was formulated as a facil
ity location problem, for example, for m old facilities
located on a plane, locations of additional n-m new facilities
are Sought. The objective is to minimize the Sum of weighted
(net-weight based) rectilinear distances between them. Solu
tions to the problem produce placements of cells only at
coordinates of the old facilities (for example, cells with fixed
locations such as input/output (I/O) pads). In order to
decompose cells into two partitions in the plane, fictitious
terminals are added at the cutline that partitions the netlist
into two equal-sized netlists.
0019 Usually, bi-partitioning and clustering-based parti
tioning approaches attempt to cluster critical nets in a local
region So that most of the critical nets can reside in close
proximity, but Some critical paths can easily be divided into
different partitions that span a timing-specifically
unbounded routing region (i.e., a region where timing is not
satisfied). In T. Koide, et al. “A New Performance Driven
Placement Method with the Elmore Delay Model for Row
Based VLSIs”, Hiroshima Univ. koide(Oecs.hiroshima
u.acip, during 4-way partitioning, while moving the cell,
Slack gain is computed, and the cells connecting nets with
large Slack gains on the cutline may span the timing Spe
cifically unbounded routing region. To decrease the delay
time of the paths, the cells are moved into clusters within a
partition So that nets connecting the cells will span a Smaller
routing region. However, this method does not guarantee
that the final layout of a net does not exceed the timing slack.

B. Quadratic Programming

0020 Lagrangian relaxation offers an alternative to simu
lated annealing for controlling the tradeoff between the
System cycle time and wirelength. A. Srinivasan, K.
Chaudhary, and E. S. Kuh, “RITUAL: A Performance
Driven Placement Algorithm”, IEEE Trans. on Circuits and
Systems II, Vol. 39, No. 11. pp. 825-840, Nov. 1992,
presented Such a mathematical programming approach Such
that the runtime is Smaller than Simulated annealing and the
quality of the results are reasonable. However, issues like
congestion analysis and routability factors are not consid
ered. Routability constraints are among the most difficult
because they are not analytical and are checked only by
means of routing. This is a major reason why the routability
constraints are not included into the mathematical program
ming formulations.
0021 Another technique involves an algorithm which
uses an iterative approach. See A. Mathus and C. L. Liu,
Compression-Realization: A New Approach to Timing
Driven Placement for Regular Architectures, IEEE TCAD,
Vol. 16, No. 6, June 1997. In each iteration, there is a
compression phase and a relaxation phase. The compression
phase attempts to make the placement delay feasible by
compressing the long paths that cause Some of the primary
output signals to arrive too late. However, the compression

US 2003/0005398 A1

phase may produce an infeasible placement with Some of the
Slots occupied by two modules. This allows the compression
phase more flexibility, and often allows it to achieve the
required decrease in delay. If an infeasible placement is
produced in the compression phase (path-based), the relax
ation phase (net-based), which carries out a timing-driven
reconfiguration of the infeasible placement to produce a
feasible Solution, will be executed. Forming a slack neigh
borhood graph, the delays in the critical paths are guaranteed
not to increase beyond a certain bound. It captures the
freedom of movement of the modules, without “violating the
timing constraints.” If the compression phase produces an
infeasible placement, the original modules occupying the
overcrowded slots need to be relocated. In the relaxation
phase, relocation is carried out Simultaneously for all of the
modules in Such a way that the delays do not increase by too
much. The Slack of an edge measures the amount by which
the delay of the edge can be increased without violating any
timing constraints. The Slacks of the edges incident to a
module determines the neighborhood within which the mod
ule can be moved without violating the timing requirements.
In any iterative algorithm for placement, it is initially
essential that the mobility of the modules be sufficiently
high. This ensures that a bad initial placement does not cause
the algorithm to get Stuck in a high-cost local minimum. In
order to prevent the mobility from being completely gov
erned by the slacks, a relaxation parameter was introduced
that allows the algorithm to increase the values of edge
slacks which will be referred to as relaxed slacks. In order
to incorporate a routability measure into the placement
process, each edge of the slack neighborhood graph (SNG)
is associated with a cost that measures the penalty, in terms
of an increase in congestion, that results from the move
asSociated with that edge. A reasonable measure of this
penalty is a congestion gradient that measures the difference
in congestion in different areas of the current placement.
This approach tries to Satisfy the timing constraints for most
critical paths, but after spreading out the overlapped mod
ules, it is not guaranteed that the final placement Satisfies the
timing constraints for entire critical nets.
0022. In most of these timing criticality-based
approaches, Some of the non-critical nets can turn into the
critical nets due to the unbounded treatment for the wire
length of non-critical nets. In recent aggressive designs,
most of the nets are critical and thus a priority-based
approach may not be effective.

C. Constructive Approaches

0023 A Successive augmentation approach has also been
proposed which adds one macro at a time to a partial
placement until all macroS are exhausted. There are two
Stages. The first technique involves adaptive changing of
parameters according to evaluations of partial Solutions. The
Second technique is carried out by an adaptive look-ahead
procedure for improving global characteristics of the place
ment. The adaptive algorithm uses adaptation of parameters
to handle a wider range of operating controls. A set of
adjustable parameterS Such as a timing budget are used to
control placement. This approach is effective when dynamic
adjustment process can be realized in a reasonable amount
of computation. However, this approach lacks global opti
mization.

Jan. 2, 2003

0024. Another technique involves a constructive
approach based on a path-delay timing window. See I. Lin
and D. H. C. Du, “Performance-Driven Constructive Place
ment”, Design Automation Conference, pp. 103-106, 1990.
This approach considered a path with a Sequence of modules
along the path. All modules in the path are bounded in a
rectangle called a window to Satisfy the timing requirement.
Even if all modules are inside the region, a Zig-Zag routing
may result. The basic idea is to define an area to guide the
placement of the first module in the window such that the
total interconnect delay can be minimized. The net con
Straints are used to reduce the placement constraints instead
of directly using complete path constraints. Once a cell
location is determined in a window, all associated paths are
broken into two Sub-paths.
0025 Previous works lacked the ability to deal with the
timing constraints in terms of paths.
0026. For example, a timing driven placement method
has been presented based on a path delay relaxation force
(PDRF) method. The delay of a timing-critical path having
a Small timing margin is minimized by placing the cells on
the path (called path core cells) at the center of gravity, and
this process is performed for other path core cells. However,
these approaches are only concerned with the timing-critical
paths. The cells on the non-critical paths must be treated
carefully Since their placement may cause further timing
problems in recent high performance designs. To deal with
this problem, the net constraint driven placement can be
utilized. However, the main problem with net constraints is
that timing constraints are path based, hence netbounds are
usually over-constraining, resulting in infeasible place
ments. As a result, methods of handling over-constrained net
bounds have been proposed but usually rely on re-budgeting
only after a physical design step (placement) is completed.
0027 Accordingly, there is a need for a system and
method for a very large Scale integration (VLSI) placement
that efficiently increaseS production capacity of integrated
circuits and accurately optimizes the integrated circuit
design.

SUMMARY OF THE INVENTION

0028. The present invention is directed to a system and
method for timing-closed placement which also takes wire
length and congestion into consideration. The System and
method of timing driven placement according to the present
invention incorporates a timing budget management tech
nique which Satisfies triangle parity and inequality, a timing
driven quadrisection placement Strategy based on flexible
timing window configurations to minimize the wirelength
and congestion during each mincut quad-partition of top
down hierarchy, and a linear programming formulation
incorporating bin capacity, channel capacity and congestion
criticality. Advantageously, these features allow good tim
ing-closed placement results to be achieved without exces
Sive computation time, thus accelerating the Sign-off-to
Silicon cycle for customers and increasing production
capacity.

0029. In an aspect of the present invention, a method for
placing circuit elements on Semiconductor chips is provided
comprising the Steps of: creating a circuit graph including
cutlines, said circuit graph comprising Said circuit elements
connected by nets for placement on a placement grid;

US 2003/0005398 A1

clustering critical nets in the circuit graph; assigning a
timing budget for each net using at least one of a plurality
of Slack distribution algorithms Satisfying at least one geo
metric constraint, partitioning the circuit graph using a
mincut algorithm; generating a timing window region on the
placement grid for each net which is less than or equal to
each net's respective timing budget; and assigning the
circuit elements attached to each net to each of their respec
tive timing window regions.
0.030. In another aspect of the present invention, a
method for determining placement of circuit elements is
provided comprising the Steps of: describing a circuit image
as a graph comprising circuit elements connected by edges,
assigning a timing budget for each edge using a geometry
aware Slack distribution algorithm which Satisfies at least
one geometric constraint, generating a timing window
region on a placement grid for each edge, Said timing
window region being equal to or less than the timing budget
for the respective edge; and assigning the circuit elements
attached to each edge to each of their respective timing
window regions.
0031. These and other aspects, features and advantages of
the present invention will be described or become apparent
from the following detailed description of the preferred
embodiments, which is to be read in connection with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0.032 FIG. 1 illustrates an exemplary conventional net
weight and mincut based placement approach.
0033 FIG. 2 illustrates a preferred embodiment of a
timing driven placement process with timing closure accord
ing to an aspect of the present invention.
0034 FIG. 3 illustrates an exemplary circuit graph com
prising nodes connected by edges having Slack values.
0.035 FIG. 4A illustrates an exemplary placement of a
Slack-weighted circuit graph which has its Slack modified to
Satisfy the triangle inequality rule and a parity rule according
to an aspect of the present invention.
0.036 FIG. 4B illustrates an exemplary placement of a
circuit graph which does not Satisfy the triangle inequality
rule.

0037 FIG. 5 illustrates an exemplary slack-weighted
circuit graph and a resulting feasible placement Solution and
an infeasible placement Solution.
0.038 FIG. 6A depicts exemplary illustrations of rebud
geting where positive gains on the timing margins are
realized.

0.039 FIG. 6B illustrates an exemplary circuit graph
depicting variables to be used for rebudgetting while pre
Serving triangle inequalities.

0040 FIGS. 7A-7B are exemplary illustrations of rebud
geting results using geometry-aware Slack distribution
(rebudgetting) algorithms applied to the circuit graph of
FIG. 3 according to an aspect of the present invention.
0041 FIG. 7C illustrates an exemplary slack reassign
ment Satisfying the triangle inequality rule according to an
aspect of the present invention, where the Slack is not
rebudgetted.

Jan. 2, 2003

0042 FIGS. 8A-F illustrate an exemplary overall appli
cation of a method of module placement according to an
aspect of the present invention.
0043 FIG. 9A depicts another example of an initial
circuit graph G=(V, E) comprising node labels V (V=1,
2, . . . , 8) attached by edges E.
0044 FIG. 9B illustrates an exemplary placement grid
having fixed labeling comprising bin and channel labels.
004.5 FIG. 9C illustrates an exemplary timing-driven
partitioning of the circuit graph of FIG. 9A into four
quadrants based on a min-Slack cut for maximizing resource
balancing.

0046 FIG. 9D illustrates an exemplary timing-closed
placement of the modules and edges of FIG. 9A onto the
placement grid of FIG. B according to an aspect of the
present invention
0047 FIGS. 10A-C illustrate exemplary steps of gener
ating a timing window for level i considering timing win
dows generated in previous levels i=1 and i=2.
0048 FIG. 11A and 11B illustrate exemplary formations
of circuit graphs associated with a multiple-unit cell Such
that there are imaginery edges between two adjacent basic
cells with a corresponding edge weight.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0049. It is to be understood that the exemplary system
modules and method steps described herein may be imple
mented in various forms of hardware, Software, firmware,
Special purpose processors, or a combination thereof. Pref
erably, the present invention is implemented in Software as
an application program tangibly embodied on one or more
program Storage devices.
0050. The application program may be executed by any
machine, device or platform comprising Suitable architec
ture. It is to be further understood that, because Some of the
constituent System modules and method StepS depicted in the
accompanying Figures are preferably implemented in Soft
ware, the actual connections between the System compo
nents (or the process steps) may differ depending upon the
manner in which the present invention is programmed.
Given the teachings herein, one of ordinary skill in the
related art will be able to contemplate these and similar
implementations or configurations of the present invention.
0051 Abasic design model applicable to a timing-driven
placement Solution according to the present invention
involves, for example, a microcell-library Sea of gates
technology which comprises the following features. A chip
has a regular pattern of basic gates. Routing tracks in both
directions are distributed between columns and rows and do
not produce concentrated routing channels but require over
the-cell routing. This design Style has a library of prede
signed macrocells in drastically different sizes having vary
ing heights and widths. The number of routing tracks
available for inter-macrocell connections depends on the
number of tracks utilized by intra-macrocell connections.
0.052 FIG. 2 illustrates a preferred embodiment of a
timing driven placement process with timing closure accord
ing to an aspect of the present invention. Initially, in Step 201

US 2003/0005398 A1

a circuit graph is created for later defining a timing budget
window for each net on a placement grid. The circuit graph
comprises, for example, modules (circuit elements) attached
to each other by edges (nets), wherein Some modules are
partitioned by cutlines. The timing budget window is a
timing-feasible rectangular area on the placement grid
within which modules can be placed without violating a
timing budget. Thus, the size of the placement grid affects
timing accuracy. One timing Slack unit corresponds to, for
example, a width of a basic grid size. For example, a timing
Slack Should be set to 1 or 2 if the placement grid forms a
2 by 2 array. In another example, the timing Slack can be an
integer value between 1 and 6 if the placement grid forms a
4 by 4 array (since a length of the diagonal of the 4 by 4 array
is 6).
0.053 A multiple of the basic grid size can also be used
as a grid size. In this case, a Slack should be redistributed
into its nearest (with lower slack) grid point. For example,
if the Size of a bin is 4 timing units, then the new slack value
becomes.

(e. - slack- sale 4

0054) Therefore, the finer (smaller) the grid, the greater
the timing budget, and thus the greater the flexibility of
placement for finding a feasible Solution; however, the
computation time is also increased.
0.055 For instances where the grid size is more than one
unit, a set of critical nets with Small timing budgets are
clustered into grid bins using a timing-driven clustering
algorithm in a bottom-up clustering stage (step 203). Tim
ing-driven clustering involves clustering cells with nets So as
to minimize the following function inside each cluster:

f(cluster)=timing budget/connectivity

0056. This results in a timing-aware connectivity-based
clustering, i.e., nets with a Small timing budget will be
clustered together into a Subgraph having a higher connec
tivity (density). After finding a set of clusters of the same
size, a cluster size corresponds to a grid size. Since the new
grid size is larger than the basic (Smallest) grid size, the
number of components is decreased for future computation.
Using this method with an appropriate bin Size will be
effective in order to reduce the computation time and to take
advantage of clustered critical nets.
0057 Next, an initial timing budget for each net is
determined using a geometry-concerned slack distribution
algorithm according to an aspect of the present invention,
where the timing budget Satisfies the triangle inequality rule
and triangle parity (step 205).
0058. In step 207, the circuit elements are divided into
Segments to minimize a number of global nets. Global nets
are nets which span multiple Segments. It is mandatory to
use a partitioning approach as design complexity continues
to increase. For example, the present invention preferably
uses a multi-level graph partitioning mincut algorithm in
step 207.
0059. In step 209, a timing window is generated within a
placement grid based on one-bend global routing. The
timing window is a rectangular area within which the
modules can be placed without violating their timing budget.

Jan. 2, 2003

A one-bend global routing (a wire having one bend between
modules) is preferable to, for example, a two-bend routing,
Since the more the number of bends, the more Vias and thus,
the more delayS.
0060 Next, the modules are assigned to their respective
timing window regions on the placement grid (step 211).
Preferably, each module is assigned to a more general rather
than Specific bin on the placement grid. The exact placement
of the modules are deferred to a lower level of hierarchy.
This flexibility leads to a better mincut solution in the
Successive levels of hierarchy.
0061. To minimize congestion during the module assign
ment process, timing-feasible regions for each module are
determined by Selecting the region (or bin) which best
distributes wires evenly over the cutlines.
0062) The larger the size of the timing windows, the
greater the probability of finding a feasible Solution (i.e., a
Solution which reduces the possibility of cell overlaps), and
thus, the more flexibility of reducing the total wirelength
during top-down partitioning hierarchy. In addition, Straight
connections between the modules are desirable to reduce the
possibility of congestions (cell/module overlap) and the
number of bends. Thus, the objective is to maximize the
timing window Sizes and the number of Straight-line con
nections.

0063. Following module assignment, it is ascertained
whether the recursive top-down partitioning is finished, i.e.,
whether all levels of the top down hierarchy have been
processed and all modules in the circuit graph are assigned
(step 212). If not, the System goes to the next level of
hierarchy and repeats the process Starting from Step 207
again.

0064. If the top-down recursion is finished, it is then
ascertained whether the module assignments are legal, i.e.,
whether the module capacity of each bin is not exceeded
(step 213). If yes, then the process ends (step 217). Other
wise, a module relocation technique is executed (step 215).
The above steps of the overall method will now be described
in more detail below.

I. Net Delay Model and Slack Redistribution
0065. It is desirable to determine the initial timing budget
for each module before Synthesis since good initial timing
budgeting should shorten the number of resynthesis itera
tions and thus Speed up the entire design proceSS. For
example, initially, the total timing slack (budget) in the path
can be distributed equally over the nets in each path. If a path
does not meet its constraint, all the nets in the path are
targeted for improvement until the path as a whole falls
below a threshold constraint.

0066. In a budget refinement problem, paths may have
positive or negative Slacks as a result of a given placement.
Since the budgeting results are heuristic in nature and may
be overtight (i.e., overly constraining), it is necessary to
provide a method by which the budgeting algorithm can
adjust the timing budget based on, for example, information
on results from a failed placement. Given a directed acyclic
graph with timing constraints, the object of budget manage
ment is to assign to each vertex an incremental delay Such
that the total sum of these delays is maximized without
Violating given constraints. A maximum effective budget can

US 2003/0005398 A1

maximize the flexibility and freedom all Signal nets can have
during layout while keeping within the timing constraints,
which is desirable for most placers and routers.
0067 FIG. 3 illustrates an exemplary circuit graph com
prising nodes 301 connected by edges or nets 303 having
slack values 305. The total slack here (does not include
values for the dotted line) is for example, 18. A timing
analysis as illustrated, for example, in Youssef, E.
Shragowiz, and L. C. Bening, “Critical path issue in VLSI
designs, in Proc. Int. Conf. on Computer-Aided Design, pp.
520-523, 1989, can be performed to identify a set of critical
nets. A critical net is a net which belongs to at least one
critical path. A net weight is Set proportional to the fre
quency of appearance of a critical net in a set of critical
paths. The net weights are then used to weigh the driving
Strength of the nets. Weight implies a measure of priority,
and a Smaller timing budget implies critical nets. Therefore,
a critical net will be characterized by a higher value on the
timing weight and a lower value on a budget.

0068 The critical path of a very large circuit contains a
hundred-pin net, which causes more than 50% of the entire
maximum path delay. AS Seen from an Elmore delay model,
one long wire in a multi-terminal net will affect the delay of
the entire net. Therefore, it is desirable to put Special
emphasis on reducing the lengths of nets with high numbers
of pins (terminals). Thus, a lower timing budget is assigned
in proportion to a greater number of terminals of the net.

0069. The most critical net may contain a buffer chain
and/or drives large fanouts. Therefore, the criticality (i.e.,
timing budget) of neti, T(i), in pathi is measured as follows:

n(i)

0070 where is t() is total-timing-budget of path j, n(i)
the number of nets in a pathi, m(i) is the multiplicity of net
i and p(i) is the frequency factor associated with net i. Here,
C. and fare the relative weights between m(i) and p(i) Such
that C+f3=1. The delay budget S (e) on an edge e can be
transformed on the wirelength 1 (e) by using the Elmore
delay model, R(cl(e)+C)+1/2crl(e)+rl(e)C =S(e), where
R is the driver resistance, C is the load capacitance, and c
and r is the unit capacitance and resistance respectively.

0071. After slacks are generated, slack redistribution is
performed by initially determining a maximum effective
Slack for each path segment. This can be done by: 1)
computing all slacks, and 2) distributing the Slacks along the
path Segment based on the criticality measures, i.e., a net
with a higher criticality measure will have a lower timing
budget. For example, a net (edge) shared by two different
paths is assigned a lower timing budget than a net which is
part of a single path. The above two steps are repeated until
there are no positive Slacks on any nodes.

0.072 A set of critical nets can be identified either prior to
module placement (static method) or during module place
ment (dynamic method). In a static method, the set of
controlled critical nets does not change during the layout
proceSS. Preferably, instead of using the time-consuming

Jan. 2, 2003

dynamic method, the method of the present invention adopts
a Static timing budget management technique which uses a
lookahead function to determine a feasible placement.

0073. To ensure that a final module placement results in
a feasible Solution in terms of timing constraints while
Simultaneously minimizing wirelengths, the placement Sat
isfying the timing budget is realized by careful treatment for
instances where a circuit includes cycles in its corresponding
circuit graph. Since wires are connected rectilinearly, the
following triangle parity inequality rule must be Satisfied
prior to placement:

0074 where P (w) is the weight parity (i.e., edge weight
is even or odd) of edge i with its weight wi, and C is a cycle
in the graph G. Equivalently, if (ww)mod2=w.mod2, then
P (w-w)=P(W). To have one-bend routing for every net
in a cycle, every cycle of length three (referred to as a
3-cycle) should comply with the triangle inequality rule.
Otherwise, a placement problem will result in which the
timing budget will not be Satisfied. The triangle property of
an undirected cycle is a property that a complete weighted
cycle Satisfies S(u, v)s S(u, w)+S(w, V) for all vertices u, V, W,
where S(i, j) is the timing slack (margin) for the net con
necting two cells i and j. This holds for any graph repre
Senting points in both Euclidean and rectilinear (Manhattan)
metric space, for example, a placement graph. Therefore,
both the triangle inequality rule and a parity rule should be
met for Satisfying timing constraints.

0075 FIG. 4A illustrates an exemplary placement of a
Slack-weighted circuit graph which has its Slack modified to
Satisfy the triangle inequality rule and a parity rule according
to an aspect of the present invention. Circuit graph 401 is an
exemplary cycle of length three which is not feasible for
placement due to its edges having weights which do not
Satisfy the triangle inequality rule or the parity rule. The
parity rule involves an integer quality (i.e., whether an edge
weight is an odd or even number). For example, for the
parity rule to be Satisfied in a 3 cycle circuit graph, adding
any two edges should result in a number which has a same
parity/quality (i.e., odd or even) as the third edge. In
addition, the triangle inequality rule is not Satisfied in 401.
To satisfy the triangle inequality rule (which applies only to
3 cycle graphs), when the weights of any two edges are
added, their Sum should be greater than or equal to a weight
of the third edge.
0076 Circuit graph 403 is an exemplary cycle of length
three which Satisfies both the triangle inequality rule and the
parity rule, and is thus feasible for placement. The triangle
inequality rule is Satisfied Since the Sum of any two edges in
401 is greater than or equal to the third edge. For example,
the sum of the values of edges a-b and b-c (which is 4) is
greater than the value of the edge a-c (which is 2). To
illustrate the satisfaction of the parity rule in graph 403, if
the values of edges a-c and a-b are added (2+1), they will
equal an odd number (3) which is a same parity as the third
edge b-c (also an odd number).
0077 Placement graph 405 illustrates an exemplary rec
tilinear-wired placement of circuit graph 403 using one-bend
routing. For example, there is one-bend 406 in the wire
between nodes b and c. One-bend routing is preferable for
placement Since it results in a shortest path and thus a shorter

US 2003/0005398 A1

wirelength. The circuit graph 403 can also be placed using
two-bend routing (407). However, it is very time-consuming
to formulate the two-bend routing in Linear Programming.
Furthermore, the more bends, the greater the wirelength and
detours and thus the more delayS. Thus, two-bend intercon
nections between modules are preferably avoided, if poS
sible.

0078 However, there are cases where two-bend routing
must be used. FIG. 4B illustrates an exemplary placement of
a circuit graph which does not satisfy the triangle inequality
rule. Circuit graph 410 is infeasible since it does not satisfy
either the triangle inequality of parity rules. Note that the
weight of an edge (b,c) in graph 410 should be set to less
than 3 to hold the triangle inequality property of placement.
Circuit graph 412 Satisfies a triangle parity rule, and thus is
feasible for placement. However, in this case, we need to
two-bend wire for the edge (b,c) as shown in placement
graphs 414 and 416. If a legal Solution Satisfying channel
capacity constraints cannot be found with one-bend routing,
than two-bend wires are permitted to be used.
0079. It is important to note that in both FIGS. 4A and
4B, during placement, the triangle inequality must be Satis
fied. FIG. 5 illustrates an exemplary slack-weighted circuit
graph 501 and resulting feasible and infeasible placement
Solutions. Graph 501 comprises three cycles (a,b,c),(b,c,d)
and (b,d,e) and a cutline 503 for partitioning the modules d
and e from a, c and b during placement. EdgeS c,b and b.d
include upper and lower bounds of a timing budget. It is
desirable to maintain the triangle inequality for each cycle
during placement, while the original slack values of each
edge can be used to provide wiring flexibility.
0080 Placement 507 represents an exemplary placement
of modules b,c,d,e of graph 501 using a lookahead timing
budgeting of edge b,c in which the triangle inequality
property is Satisfied during placement. Placement cutline
507 is analogous to the cutline 503 for partitioning the
modules b,c and e.d in different partitions. Placement 507
results in a timing-legal placement for module a. Placement
510 illustrates an exemplary infeasible placement solution
where the triangle inequality rule is not Satisfied during
placement. Here, there is no feasible placement for module
a which would Satisfy the timing constraints given in graph
501.

0081. Given a directed graph with timing and geometric
(triangle inequality and parity) constraints, the object of
budget management according to an aspect of the present
invention is to assign to each node an incremental delay Such
that the total Sum of these slack delays is maximized without
Violating given constraints. A maximum effective budget
advantageously increases the flexibility and freedom of all
Signal nets during layout while keeping within the timing
constraints. Initially, an optimal algorithm for budget man
agement is used to identify the edges that have initial Slack
values which need to be reduced or transferred. Then, a
rebudgetting Strategy is employed to maximize the total
Slack values.

0082 To compute the timing budget assignment comply
ing with the triangle inequality rule and timing (path)
constraints (referred to as Triangle-based Rebudgetting)
according to an aspect of the present invention, either of the
following algorithms can be applied: 1) Geometry-con
Strained Slack Reassignment, or 2) Geometry-constrained

Jan. 2, 2003

Rebudgetting. The first algorithm does not allow for a net to
increase its originally assigned timing margins, but only to
reduce their values, while Satisfying triangle inequality for
every cycle. The Second algorithm aims to maximize the
total timing margins while preserving the triangle inequali
ties. Thus, in the Second algorithm, timing margins assigned
to nets are allowed to be increased.

0083. The basic idea of the first algorithm is to build a
Spanning tree from a graph where during the tree construc
tion, edge weights are checked and updated (re-assigned) to
Satisfy both triangle inequality and triangle parity. Basically,
in Timing Budget Reassignment, Deque(O) is to extract the
cheapest (lowest weighted) edge (u, v) in a graph G from a
priority queue Q, and Enque (Q, S(u, w)) is to insert a new
value S(u, w) to Q.
0084. The overall Timing Budget Reassignment algo
rithm is as follows:

0085 Geometry-Constrained Slack
(GSRA):
0086). Until Q is empty,

0087) 1. s(u, v)=Deque(Q);
0088 2. If the edge (u, v) is incident to another edge

(v, w) that is already traversed and they both form a
cycle with another edge (u, w) (that has not yet been
traversed) in G and S(u, w)2S(V, w)+S(u, v), then the
following is Set: S(u, w)=S(V, w)+S(u, v) and Enque

0089) 3. If the edge (u, v) is incident to another edge
(v, w) that is already traversed and they both form a
cycle with another edge (u, w) (that has not yet been
traversed) in G and S (u, w)ss (V, w)+S (u, v) and S
(u, w)mod2z(s(v, w)+s(u, v))mod2, then the follow
ing is Set: S(u,w)=S(u, w)-1 and Enque(O, S(u, w));

Reassignment

0090 4. If the edge (u, v) is incident to another edge
(V, w) traversed so far and there is no edge (u, w) in
G, then a dummy edge (u, w) is added to the graph
G and the following is Set: S(u, w)=S(V, w)+S(u, v)
and Enque(O, S(u,w));

0091 5. If the edge (u, v) creates a cycle with two
edges, S(V, w) and S(u, w) already traversed in G,
then the following is Set: S(u, v)=S(V, w)+S(u, w) and
Enque(OS(u, v));

0092 At each step in the above algorithm, a cheapest
edge is Selected. A cycle-completing edge is more expensive
than any previously added edge, thus the edge weight can be
updated to Satisfy the triangle inequality rule without chang
ing other edges in the cycle that have already been traversed.
The above algorithm for Budget Reassignment takes at most
O(|E|log|E+N) amount of time, where E is the number of
edges and N is the number of nodes in the graph.
0093 Given an initial budget assignment, when budget
increases on Some edges are not allowed, the Timing Budget
Re-assignment algorithm finds an optimal Solution for incre
mental budget assigning Such that every cycle in the graph
Satisfies the triangle inequality rule.
0094. It may be necessary to minimize the amount of
timing budget updating through the timing budget assign
ment algorithm Since it results in a tighter timing budget, and

US 2003/0005398 A1

thus, there will be less possibility of finding a legal timing
driven placement Solution. avoid reducing the total timing
budgets, the following rebudgetting Strategy can be used:

0.095 Rebudgetting is a labeling of the node r:V->Z,
where Z is the Set of integers. The rebudgetting label
r(v) for a node V represents the amount of timing
SlackS moved from its output toward its inputs. The
weight of an edge (u,v) after rebudgetting is denoted
by:

0.096 Let the total timing slacks of a circuit after rebud
getting be denoted by

e

0097. The maximum rebudgetting problem can be stated
as maximizing', Subject to timing constraints. One can
rewrite:

I0098 where and are the number of fanins and
fanouts of node V. The maximum rebudgetting problem can
then be formulated as the following linear program.

0099 Minimize:

01.00) Subject to:

S(u, v)+r(v)-f(u)2O

0101 The objective function above represents the timing
margin gains added to the rebudgetted circuit in relation to
the original circuit. The constraint ensures that the S(e) for
each edge e after rebudgetting is non-negative. This is
referred to as a positive Slack constraint.

0102) The maximum rebudgetting problem can be
reduced to the minimum cost network flow problem. Each
edge (u,v) can be regarded as a network flow arc having
infinite capacity and cost S(u,v) per unit of flow. The goal of
the linear programming problem given asks that each edge
is assigned a non-negative flow f(u,v) Such that:

0103) Maximize:

(ii)

Jan. 2, 2003

0104 Subject to:

0105 FIG. 6A depicts exemplary illustrations of rebud
geting where positive gains on the timing margins are
realized. Rebudgeting with positive gains on the timing
margins can be done using the following two operators:
forward and backward rebudgetting. For example:
01.06 1. If?(2' (forward rebudgetting) then,

0108) 2. If >() (backward rebudgetting) then

0110 Path 601 illustrates an example of backward rebud
getting where r(u) (that is, an edge value of u,v) is rebud
getted to each of its fanin edges iu and iu. This results in
a positive gain on the total timing margin. Path 605 illus
trates an example of forward rebudgetting where r(v) is
rebudgetted to each of its fanout edges (V.O.) and (V.O.). If
either of these backward or forward rebudgetting techniques
are used, then the overall timing budgets will be increased
to g(v)=(FI(v)-FO(v))r(v) and g(v)=(FI(v)-FO(v))(-
r(v)), respectively.
0111 Based on the above rebudgetting strategy, a Geom
etry-Constrained Rebudgetting problem that Satisfies the
triangle inequality S(u,v)>S(v,w)+S(w,u) for every cycle in
graph G can then be formulated as the integer linear program
below. In this case, a new variable w must be introduced to
create r(u,v), r(v,w), r(w,u) in addition to r(u), r(v), r(w).
FIG. 6B illustrates an exemplary circuit graph depicting
variables to be used for rebudgetting while preserving
triangle inequalities. These variables are required to find a
Solution Satisfying triangle inequalities.
0112 Therefore, Geometry-Constrained Rebudgetting is
a labeling of the node r: V->Z and the edge r: E->Z in a
directed circuit graph G=(V, E), where Z is the set of
integers. Here, it is assumed that a graph G' is given that
has been triangulated, for example, by performing Geom
etry-constrained Slack Reassignment.
0113) Geometry-Constrained Slack Rebudgetting (G°R)
0114 Maximize:

0118 Subject to: (here, considering the case of triangle
(u,v,w) in FIG. 6B)
0119) Constraint 1:

US 2003/0005398 A1

0120 where

0125 Here s(W.PI) is the sum of timing margins on the
edges in the shortest path from w to primary inputs,and S(w,
PO) is the Sum of timing margins on the edges in the shortest
path from w to primary outputs. This value is used as a lower
and upper bound for each of the retimed variables r(e).
0.126 The second and third constraints ensure that the
S(e) for each edge e after rebudgetting is non-negative.
Constraint 2 and Constraint 3 are redundant Since Constraint
1 implies Constraint 2 (by adding two inequalities in Con
Straint 1), and Constraint 2 implies Constraint 3, respec
tively. Therefore, only Constraint 1 is needed.

0127. A host node h is introduced that sources all “pri
mary inputs and Sinks all "primary outputs with dummy
edges (edges having Zero weight) connecting the host node
with all primary inputs and primary outputs. A vertex u is
Strongly connected to V if two paths exist: one from a to b
and another from b to a. Then:

0128 Lemma 1
0129. The graph G'(V,E), where V'-VUh, and E'=EU(h,
i),Wi ePI, U(h,o), WoePO is a strongly connected graph.
0130 Corollary 1
0131) If G=(V,E) is a strongly connected graph, then
r(u,v)2.0,V(u,v)eE of G.

Jan. 2, 2003

0132) Lemma 2
0133. In graph G'(V,E), a feasible solution can be found
without explicitly specifying lower and upper bounds for the
retimed variables in the following LP formulation.
0134) Note that the original circuit graph G=(V,E) is
usually neither a strongly connected graph nor a triangulated
graph. Graph G is transformed into: G^=(V=(VUh).E^ =
(E-UE), where E are the augmented imaginary edges
connecting the host node with primary and primary outputs,
and E is the augmented imaginary edge after graph trian
gulation. The graph triangulation (forming a complete
graph) can be done by running the Geometry-constrained
Slack Reassignment algorithm (however, at this time with
out updating the Slack values).
0135) If there are still timing problems, the following
algorithm (Satisfying both triangle inequality and parity) can
be applied:
0.136 Geometry-Aware
G,GSRB(GR)
0137 Maximize:

(0138 where g(u)=(FI(u)|-|FO(u)r(u).g(v)=(FI(v)-
FO(v))r(v), and r(w)=(FI(w)|-|FO(w))r(w), and FI(i) (resp.
FO(i)) is the number of fanins (resp. fanouts of ieV of G.
0139 Subject to:

r(i)-r(h)20, Wie PI
r(h)-r(o)20, Woe PO

Slack Re-Budgetting on

0140 where if (u,v), (v,w), (W,u)eE then

0141 else if (i,j)eE, then J

0142 Here the variable r(i), Wie(VUh) is unconstrained,
but the value is always positive because of introducing the
host node, the variable r(i,j)20, W(i,j)eE, and the variable
d(i,j)20, W(i,j)eE^. PI(G) (resp. PO(G)) is defined as the set
of nodes that has no incoming (resp. outgoing arcs) arcs in
G. The last constraint is required to avoid cell overlaps in the
Same location.

0143 FIGS. 7A-7B are exemplary illustrations of rebud
geting results using geometry-aware Slack distribution
(rebudgetting) algorithms applied to the circuit graph of
FIG. 3 according to an aspect of the present invention. The
goal in rebudgetting the SlackS is to maximize the total Slack
while satisfying the triangle inequality rule. FIG. 7A illus
trates Slack rebudgetting which Satisfies the triangle inequal
ity rule. Here, the total slack is increased to 21. Host node
h (701) is introduced to propagate a retimed value of 5 from
a fanin edge h, 1 to fanout edges 1,5 and 1.3, and So forth (the
rebudgetting is done through all the paths in a continuous
loop). The values in boxes 703 represent the retimed slack

US 2003/0005398 A1

results for each node using the GSRB algorithm. It is to be
noted that the total Slack amount of 21 does not include the
values 703.

014.4 FIG. 7B illustrates slack rebudgetting which sat
isfies both the triangle inequality rule and parity. Here, for
example, the total slack is increased to 20. FIG. 7C illus
trates an exemplary Slack reassignment Satisfying the tri
angle inequality rule without rebudgetting the Slack.
Although the slack reassigment algorithm is a much faster
algorithm, it does not maximize the total slack; in fact, it
reduces it (for example, here the total slack is 15).
0145 Compared with the initial circuit graph of FIG. 3,
applying the GSRB algorithm results in a Slack gain of 3
units (from 21 to 18), while applying GSRA reduces the total
slacks by 3 units (from 18 to 15). Note that triangulization
does not affect the total timing SlackS Since the total SlackS
are maximized on circuit edges (shown in Solid lines in
FIGS. 7A-7C) only.
0146 To incorporate the triangle parity constraints men
tioned above, for each cycle (u,v,w) in graph G, the follow
ing additional constraints are needed:

0147 where ao, a, . . . a, bo, b, ... b are 0,1 variables,
and k is the maximum value Such that a 2+a2+a 22--
a2+...+a is less than the maximum slack in G.
0148 Since the overall timing budgets on each path has
not been increased, we have a situation where both GSRA
and GSRB generate a Solution which Satisfies timing con
Straints.

II. Timing-Driven 4-Way Multi-Level Mincut
Partitioning

0149 Once a timing budget is assigned for each net, the
circuits are divided into Segments in a partitioning Step
using, for example, a multilevel partitioning mincut algo
rithm. The objective of the mincut partitioning Step is to
divide the circuits into a required number of Segments to
minimize the number of global nets (i.e., nets which span
multiple segments). It is mandatory to use Some partitioning
approach as design complexity continues to increase. The
partitioning problem can be formed as follows:
0150 Given a graph G=(V,E) with weights on the edges
and vertices and a parameter (p, find a partitioning of the
Vertices of G into (p Sets in Such a way that the Sums of the
vertex weights in each Set are as equal as possible, and the
Sum of the weights of edges crossing between Sets is
minimized.

0151. A brief description of an overall partitioning algo
rithm is as follows:

0152 Algorithm multilevel timing-concerned partition
ing (MTP):

0153 1. Perform Connectivity-aware Slack Reas
signment (CSRA) on G=(V,E).

0154) 2. Until G is small enough (e.g., IV=5000):
0155 G=coarsen(G); (i.e., minimize the timing
budget by clustering)

Jan. 2, 2003

0156 3. Perform GSRA or GSRB on the coarsened
graph G and perform Congestion-Aware Timing
Driven Partitioning CAP(i) on G.

O157 4. Until the coarsened graph G=original graph
G:

0158 uncoarsen the graph;
0159 partition the uncoarsened graph as
described in Step 3 using CAP(i).

0160 Mincut is effective for minimizing the number of
nets crossing the cutline (cut nets) in the upper level of
hierarchy, thus the wirelength can be decreased for the
highly connected networks in the Smaller region of the lower
level of hierarchy. (The graph formed by the cut nets will be
referred to as G).
0.161 There are three different stages in a multilevel
graph partitioning algorithm. Initially, a Sequence of Smaller
and Smaller graphs is created from the original graph (coars
ening). Then, the Smallest graph in the Sequence is parti
tioned carefully (partitioning). Next, the partition is propa
gated back through the Sequence of grids (uncoarsening),
with an occasional local refinement. A Solution is approxi
mated using a fast heuristic Such that the computational
costs of constructing coarse graphs and the local improve
ment algorithms are both proportional to the number of
edges in the graph.
0162 Cell congestion (i.e., cell overlaps) is closely
related to the partitioning Strategy. By maximizing the
minimum timing budget of the nets crossing the cutlines
during partitioning, advantageously, the probability of find
ing a legal (i.e., where cells have no overlap) Solution is
increased. Cycles having a Smaller radius (slack margin of
the net crossing cutline diagonally) and a Smaller diameter
(Sum of slack margins assigned to nets in the cycle) formed
by paths crossing cutlines result in cell overlaps. These
cycles are known as critical cycles. To reduce the possibility
of cell overlaps, during partitioning, Such critical cycles are
minimized.

0163 Maximizing the timing budget during partitioning
can be done during timing-driven clustering in the multilevel
partitioning. That is, cell congestion (cell overlap) is corre
lated with slack distribution. In order to minimize the
possibility of cell overlaps (and thus maximize the porosity),
the following weighted cell overlap contribution metric can
be used:

Smax 1 doi = ceil X. S = 1 yes's

0164 where Y(s)=S(2s+2), the number of grids in the
rectilinear circle with rectilinear radius minus 1. Here, the:

y(s)

0.165 indicates the probability of cell overlaps. The same
result can be obtained by using a clustering, thus d is not
included in cost function of partitioning. Thus, a new

US 2003/0005398 A1

congestion-driven mincut cost incorporating wire and cell
congestion will be C= dx+(1)d, where C is a cost
function and measures the relative importance between
di and del, and can be found by linear regression from
the result of routing.

0166 To meet the objective of congestion mitigation
being consistent in terms of wirelength, we first apply a
mincut algorithm with the cost function C and apply the
GSRB algorithm to G with a new objective function such
that we maximize the timing budgets on G and minimize
the timing budgets on G-G. In this manner, strongly
connected clusters are assigned lower timing budgets and
weakly connected clusters are assigned greater timing bud
gets. This slack budget management is referred to as Con
nectivity-aware Slack Re-assignment (CSRA).

0167. After applying the above multilevel partitioning
algorithm (MTP), critical cycles are evenly distributed over
the plane and appear in the low level of the top-down
partitioning hierarchy. Alleviating the congestion in a local
area is equivalent to evenly distributing the layout resource
elements (cells and wires) over the entire chip area. Thus, at
each level of top-down hierarchy, a quad-tree partitioning
Strategy is performed:

0168 Quad-tree partitioning is an approach to region
representation based on the Successive Subdivision of a
plane into quadrants. This process can be represented by a
quad-tree. A root node corresponds to the entire plane. Each
Son of a root node represents a quadrant. Each root node
comprises four quadrants labeled in counter clock-wise
order Q, Q, Q, and Q, from the right upper quadrant and
four cutlines C (between Q and Q), C (between Q and
Q), C (between Q and Q) and C (between Q and Q).
The total timing Slacks assigned on nets in q during parti
tioning is denoted by S(q). The total cell area assigned in q
during partitioning is denoted by aci). The capacity of cutline
ci is denoted by d(c.). The total timing slacks assigned on the
nets crossing the cutline ci is denoted by S(ci), and the total
number of nets crossing the cutline c is denoted by n(c.).
Leaf nodes of the quad tree correspond to a grid cell or a
region with a functional block for which no further Subdi
Vision is necessary. A leaf node is occupied by basic cells,
functional block, or clusters.

0169 Q(i) denotes the quadrant region where cell i is
assigned to and w(i.p.) denotes the timing window region
generated by S(i.p.), which is the timing slack between cell i
and I/O cell p.

0170 The timing-driven partitioning problem can be
effectively Solved by an assignment technique in which each
module and net is assigned to one of the four timing-closed
quadrants.

0171 The assignment technique can be formulated as a
linear programming algorithm (described below). The
Smaller the total Slacks on the cutlines, the higher the
probability of finding a feasible solution, which reduces the
possibility of cell overlaps in future placements at a lower
level of the top-down partitioning hierarchy, and thus the
more flexibility in reducing total wirelength during the
top-down partitioning hierarchy.

Jan. 2, 2003

0172 Congestion-Aware
(CAP(i)) on G=(V,E):
0173 Minimize

Timing-Driven Partitioning

4.

n(i)
i=

0174 Subject to:
0.175 Cutline Capacity Constraints:

n(i)sd(c),i=(1,2,3,4)
0176 Cut-nets Distribution Constraints:

0177 where the right hand side is the low bound on
channel capacity, n is the number of nets and m is the chip
size.

0178 Bin Capacity Constraints
ab(i) savgAU, i=(1,2,3,4)

0179 where ab(i)=area-modules(q)+

area(ci : cutlines adjacent to gi)
area - modules(q) + 2 + area - nets(q)

0180 +area-nets(q) and avgAU=

avg AU = 4

0181 where ws is wire unit are, S is the total slacks in G,
and wb is cell unit area and B is the total number of modules
in G. The upper-bound avgAU=aVgAU+a.

0182 Bin Resources Distribution Constraints:
ab(i)2 avgAL, i=(1,2,3,4)

0183 The lower-bound: avgAL=avgA-a.
0.184 Timing Constraints:

q(i)?hw(iP)z0,ie V

0185. The overall placement algorithm is as follows:
0186 Geometry-Aware Top-down Placement (GTP)
0187 1. Partition a circuit graph into 4 subgraphs by
performing a multilevel timing-concerned partitioning
(MTP) to find a mincut and to assign each of the subgraphs
into a quadrant So as to Satisfy the timing constraints
between already placed cells (e.g., I/O pads) in a previous
level of the top-down hierarchy and Subgraphs.

0188 2. Perform Timing Window Generation and Mod
ule ASSignment (described in the following Section) for nets
crossing 4 cutlines. ASSign each net to channels on the four
cutlines creating a pseudo-terminal. The fixed channel loca
tion of the pseudo terminal on the cutlines acts as an I/O pad
for the quadrants, q1, q2, q3, and q (i.e., terminal propaga
tion).

US 2003/0005398 A1

0189 3. Repeat the above procedures for each subgraph
q until a leaf node of the quad-tree is reached.
0190. In step 1 above, path slacks between the already
placed cell in a previous level and the cell in the current level
of the top-down hierarchy need to be checked. In the Second
iteration of GTP, one of the partitioning constraints ÖS(qi), as
described above, is adjusted to further alleviate congestion.

III. Timing Window Generation and Module
ASSignment

0191 Next, a module assignment algorithm is performed
at each level of the mincut hierarchy. FIGS. 8A-F illustrate
an exemplary overall application of a method of module
placement according to an aspect of the present invention.
Initially, in FIG. 8A, a circuit graph is provided comprising
modules 800 connected by edges 801, the edges having
Slack values assigned according to the geometry aware Slack
distribution algorithm of the present invention. In addition,
clusters 802 are formed from critical nets. In FIG. 8B, a
mincut is performed to reduce the number of edges crossing
cutlines 803 at a first level of hierarchy (top level 1). Next,
FIG. 8C illustrates timing windows 805 generated for each
module 800 on a placement grid 807, where each of the
modules are assigned to their respective timing window at
level 1 of the hierarchy. It is important to note that the cycle
(f,b,c) was placed simultaneously at level 1. Once the
modules in the first hierarchy are placed, mincut is per
formed in FIG. 8D on the set of edges on the cutlines
(represented by dotted lines) at a next level of hierarchy
(level 2). Then, in FIG.8E the modules attached to the nets
(represented by solid lines in FIG. 8D) are placed on the
placement grid 807. FIG. 8F illustrates a next level of
hierarchy (level 3) of the top-down placement process. Note
that module c is not assigned to an exact location until this
lower level (level 3) of hierarchy is processed.
0.192 FIG. 9A depicts another example of an initial
circuit graph G=(V,E) 901 comprising node labels V 903
(V=1,2,..., 8) attached by edges E 905. Each edge 905
includes an edge label comprising an edge ID 907 (E=1,
2, ... 12) and a given feasible slack value 909. Each slack
value is assigned using, for example, a geometry-aware
Slack distribution algorithm according to an aspect of the
present invention Satisfying geometric constraints Such as
triangle parity and inequality.
0193 FIG. 9B illustrates an exemplary placement grid
910 having fixed labeling comprising bin and channel labels
(addresses). Each quadrant comprises 9 bins; for example,
quadrant 912 includes bins 1, 5, 6, 7, 8, 21, 22, 23 and 24.
Bin 1 includes bins 21-24, bin 5 includes 21 and 22, bin 7
includes bins 23 and 24, bin 6 includes bins 22 and 23, and
bin 8 includes bins 21 and 24. Each bin is labeled in a
counter-clockwise fashion within each quadrant, bins 1-4
are also labeled in a counter-clockwise fashion Starting from
quadrant 912. Placement grid includes channel labels for
labeling each of the four cutlines Separating each quadrant
(C=c, c12, . . . c-12)
0194 FIG. 9C illustrates an exemplary timing-driven
partitioning of the circuit graph 901 into four quadrants 914,
916, 918 and 920 based on a min-slack cut for maximizing
resource balancing. The circuit graph is partitioned into
Segments Such that global nets (nets which span multiple
segments) are minimized. FIG. 9D illustrates an exemplary

Jan. 2, 2003

timing-closed placement of the modules 903 onto the place
ment grid 910 and nets (edges) into channels according to an
aspect of the present invention (the bin and channel labels
here are not shown). Each module is placed into a target
timing-closed window region, for example, module 1 is
placed in bin 5, module 2 in bin 6, module 4 in bin 28, etc.
The placement is situated Such that Straight connections and
window sizes are maximized. Note that in the FIG. 9D,
module 1 is allocated to bin 5 rather than assigning to an
exact basic bin location. The exact module placements are
deferred to a lower level of hierarchy.
0.195 The goal is to assign each module to a target
timing-closed window region. A linear programming algo
rithm can be used to find an assignment of the modules.

0196. The linear program described below has the fol
lowing constraints with (0,1) variable of yibj, xibi, and Xic,
where yibj=1 if a cell i is assigned to timing window j,
Xibj=1 if a net i is assigned to bin j, and Xic=1 if a net i is
assigned to cut-channelj. To assign cells to bins and nets to
channels, the labels as shown in FIG. 9B are used here for
illustrative purposes.
0.197 Linear Programming Algorithm: Module Assign
ment

0198 Maximize TW+ST, where TW is the size of timing
windows assigned to nodes and ST is the Set of configura
tions for Straight connections. That is: max:

0200) Subject to:
0201 Assignment Constraint: All Possible Configura
tions Inside Timing-Windows

0206

0207

0208)

0209)

US 2003/0005398 A1
13

0223) This constraints represents a netlist associated with
module assignment. Here all assignments is needed to be
timing-closed So that all delays between the nodes Satisfies
the timing constraints. Thus we need the following con
Straints:

0224 Timing Resolution Constraint 0249 Channel Capacity Constraint

US 2003/0005398 A1
14

0260 Straight Connections Constraint

X11 ca.1+

0277 / not allowing two-turn detours; LHS is maxi
mized by cost function*/yb5+y 1b21+y 1b22+y3b9.--
y3b25+y3b262x1c11;

(0s,8 2.2523-y224-yabiliyab27. y aXZC

(0.3 2 y735-y736-ysbistysb31: y eXC-54

Jan. 2, 2003

0293 These constraints removes the two-bend (two-turn)
detours.

0294 Bin Capacity Constraint

0312 FIGS. 10A-C illustrate exemplary steps of gener
ating a timing window for level i considering timing win
dows generated in previous levels i=1 and i=2. FIG. 10A
illustrates a given Subgraph of an edge (a,b) having a slack
value of 4. FIG. 10B illustrates a timing window 1000
generated at level i-2 (here, a highest level of hierarchy) for
module a, and a timing window 1002 generated for module
b at level i-1 (a next lower level of hierarchy). FIG. 10B
includes cut lines generated at level i-2 (1004), cut lines

US 2003/0005398 A1

generated at level i-1 (1006) and cutlines at level i (1008).
The timing window for edge (a,b) is generated at a current
level i such that O(a)?nO (a)2() and O(b)?nO (b)z ()
(we refer to the constraints as timing window closure
constraints), where O (a) denotes the timing window for
node a at level i of the top-down partition. A top-down
partition is used here to get a more exact location for each
module in the lower levels of the hierarchy. Here, module a
for example, is assigned to an address in the highest level of
hierarchy, but not to an exact location. In the current level i,
module a is assigned to the upper right bin of timing window
1000. FIG. 10C illustrates an exemplary timing window
1010 generated for edge (a,b) at level i.
0313 Note that the lower level of hierarchy where the
possibility of overflow is increased has a Smaller configu
ration Space. Therefore, a feasible Solution can be found by
using a set of different Slack distributions as well as increas
ing the number of timing window configurations.
0314. Thus, an effective timing-driven placement that
also takes the routing congestion and wirelength into con
sideration is reached where all nets meet timing constraints
with absolute timing budgets. Based on these features, good
global placement results can be achieved without excessive
computation time.
0315. It is to be noted that the basic algorithms described
in this paper can be easily extended to cells with different
sizes Such that cell width and height are multiples of basic
units. For example, as shown in FIG. 11A, a graph 1103
associated with a multiple-unit cell 1101 can be formed such
that there are imaginery edges between two adjacent basic
cells with a corresponding edge weight. For example, here
the edge weight corresponds to a fixed timing budget (one
grid unit corresponds to a unit timing budget).
0316) In FIG. 11B, the graph 1105 can generate different
shapes (e.g., a straight or bended shape). To generate a
particular shape of a multiple-sizes cell 1106, an edge can be
assigned an attribute which regards to its corresponding
shape. For example, graph 1105 corresponds to an alternate
placement configuration Such that cella is above cell b and
cell c is to the right of cell b. Here, the attributes can be, for
example, (a,c):L, (a,b):, (b,c):-, where “L”, “” and “-”
correspond to L-shaped, horizontal and Vertical placement
respectively, of two cells.
0317. Although illustrative embodiments of the present
invention have been described herein with reference to the
accompanying drawings, it is to be understood that the
present invention is not limited to those precise embodi
ments, and that various other changes and modifications
maybe affected therein by one skilled in the art without
departing from the Scope or Spirit of the invention. All Such
changes and modifications are intended to be included
within the Scope of the invention as defined by the appended
claims.

What is claimed is:
1. A method for placing circuit elements on Semiconduc

tor chips comprising the Steps of:
a) creating a circuit graph including cutlines, said circuit

graph comprising Said circuit elements connected by
nets for placement on a placement grid;

b) clustering critical nets in the circuit graph;

Jan. 2, 2003

c) assigning a timing budget for each net using at least one
of a plurality of Slack distribution algorithms Satisfying
at least one geometric constraint;

d) partitioning the circuit graph using a mincut algorithm;
e) generating a timing window region on the placement

grid for each net which is less than or equal to each
net's respective timing budget; and

f) assigning the circuit elements attached to each net to
each of their respective timing window regions.

2. The method of claim 1, wherein the geometric con
Straint is a triangle inequality rule or a triangle parity rule.

3. The method of claim 1, wherein the step of partitioning
further comprises:

performing a connectivity aware Slack reassignment on
the circuit graph to assign densely connected clusters a
lower timing budget and weakly connected clusters a
higher timing budget; and

partitioning the circuit graph into four Subgraphs to
reduce a number of edges crossing cutlines at a first
level of hierarchy.

4. The method of claim 1, wherein the placement grid
comprises a plurality of bins for placement of the circuit
elements, and channels for placement of the nets.

5. The method of claim 2, wherein the Step of assigning
a timing budget further comprises using a geometry con
Strained Slack reassignment algorithm for assigning timing
budgets which Satisfy the triangle inequality rule for every
cycle in the circuit graph.

6. The method of claim 2, wherein the Step of assigning
a timing budget further comprises using a geometry con
Strained slack rebudgetting algorithm for assigning timing
budgets which Satisfy the triangle inequality rule for every
cycle in the circuit graph.

7. The method of claim 2, wherein the Step of assigning
a timing budget further comprises using a geometry con
Strained slack rebudgetting algorithm for assigning timing
budgets which Satisfy the triangle inequality rule and the
triangle parity rule.

8. The method of claim 2, wherein the triangle inequality
rule provides that a Sum of the timing budgets of any two
edges of a cycle is equal to or greater than the timing budget
of the third edge.

9. The method of claim 2, wherein the triangle parity rule
provides that a Sum of the timing budgets of any two edges
of a cycle is of a Same parity as the timing budget of the third
edge.

10. A method for determining placement of circuit ele
ments comprising the Steps of

describing a circuit image as a graph comprising circuit
elements connected by edges,

assigning a timing budget for each edge using a geometry
aware Slack distribution algorithm which Satisfies at
least one geometric constraint;

generating a timing window region on a placement grid
for each edge, Said timing window region being equal
to or less than the timing budget for the respective edge;
and

assigning the circuit elements attached to each edge to
each of their respective timing window regions.

US 2003/0005398 A1

11. The method of claim 10, wherein the geometric
constraint is a triangle inequality rule or a triangle parity
rule.

12. A program Storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform the method steps for placing circuit
elements on Semiconductor chips, the method comprising
the Steps of:

a) creating a circuit graph including cutlines, said circuit
graph comprising Said circuit elements connected by
nets for placement on a placement grid;

b) clustering critical nets in the circuit graph;
c) assigning a timing budget for each net using at least one

of a plurality of Slack distribution algorithms Satisfying
at least one geometric constraint;

d) partitioning the circuit graph using a mincut algorithm;
e) generating a timing window region on the placement

grid for each net which is less than or equal to each
net's respective timing budget; and

f) assigning the circuit elements attached to each net to
each of their respective timing window regions.

13. The program Storage device of claim 12, wherein the
geometric constraint is a triangle inequality rule or a triangle
parity rule.

14. The program Storage device of claim 12, wherein the
Step of partitioning further comprises:

performing a connectivity aware slack reassignment on
the circuit graph to assign densely connected clusters a
lower timing budget and weakly connected clusters a
higher timing budget; and

Jan. 2, 2003

partitioning the circuit graph into four Subgraphs to
reduce a number of edges crossing cutlines at a first
level of hierarchy.

15. The program Storage device of claim 12, wherein the
placement grid comprises a plurality of bins for placement
of the circuit elements, and channels for placement of the
netS.

16. The program Storage device of claim 13, wherein the
Step of assigning a timing budget further comprises using a
geometry constrained Slack reassignment algorithm for
assigning timing budgets which Satisfy the triangle inequal
ity rule for every cycle in the circuit graph.

17. The program storage device of claim 13, wherein the
Step of assigning a timing budget further comprises using a
geometry constrained slack rebudgetting algorithm for
assigning timing budgets which Satisfy the triangle inequal
ity rule for every cycle in the circuit graph.

18. The program storage device of claim 13, wherein the
Step of assigning a timing budget further comprises using a
geometry constrained slack rebudgetting algorithm for
assigning timing budgets which Satisfy the triangle inequal
ity rule and the triangle parity rule.

19. The program storage device of claim 13, wherein the
triangle inequality rule provides that a Sum of the timing
budgets of any two edges of a cycle is equal to or greater
than the timing budget of the third edge.

20. The program storage device of claim 13, wherein the
triangle parity rule provides that a Sum of the timing budgets
of any two edges of a cycle is of a Same parity as the timing
budget of the third edge.

