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TIMING-DRIVEN GLOBAL PLACEMENT BASED 
ON GEOMETRY AWARE TIMING BUDGETS 

BACKGROUND OF THE INVENTION 

0001) 1. Technical Field 
0002 The present invention relates generally to a system 
and method for designing and placing circuitry on Semicon 
ductor chips, and more particularly, to a System and method 
for incorporating a timing-closed placement Solution into a 
physical design process of integrated circuitry. 

0003 2. Description of the Related Art 
0004. The development of electronic manufacturing tech 
nology has created the ability to build thousands of circuits 
on a single chip. To take advantage of this technology, 
thousands of circuits must by physically placed and con 
nected on the chip. This can be a very time-consuming 
process, especially when the actual process of designing, 
placing and connecting the circuits on the chip can affect the 
performance and timing requirements of the chip. Therefore, 
it has become necessary to automate the design process by 
using a computer to quickly place and wire predesigned 
circuits into a functional chip. 
0005 The basic problem with this automation technique 
is that it Sacrifices the performance of the resulting circuit for 
the ability to get a connected circuit in a reasonable amount 
of computing time. When the functional chip being designed 
is a central processing unit of a computer or other chip in 
which performance is critical and design complexity high, 
the performance Sacrificed is not acceptable and the auto 
mation technique is not useful. This performance Sacrifice 
usually manifests itself in the inability to obtain timing 
closure in complicated logic. Timing closure is the differ 
ence between the time allowed for processing information 
on the chip as logically designed, and the time required for 
processing information on the chip as physically designed. 
Timing closure is not met when the chip as physically wired 
and placed is not as fast as required by the logical design. 
0006 With advances in VLSI technology, the size of 
modules in integrated circuits is becoming Smaller and the 
density of modules on a chip is increasing. Consequently, 
intramodule delays are becoming Smaller, and the total delay 
in the circuit is being dominated by delays in the intercon 
nections between the modules. The communication 
bounded nature of total circuit delay, along with more 
Stringent timing requirements due to more aggressive design 
Style, have made timing driven layout an important area of 
Study. To meet the needs of a fast-expanding electronics 
industry, high performance chips must be designed in a short 
period. Accordingly, a design flow which incorporates tim 
ing analysis and Verification into the physical design is 
desirable. This motivates the development of layout tools 
which optimize layout area and timing Simultaneously. 
0007. The problem of timing-driven placement has been 
Studied extensively over recent years. Existing timing 
driven approaches can be broadly classified into net-based 
methods and path-based methods. In a net-based algorithm, 
timing constraints are first translated into physical con 
Straints, Such as upper and lower bounds on the lengths of 
nets. More specifically, net-based algorithms try to Satisfy 
timing constraints by (1) assigning higher weights to nets 
which are part of critical paths, or (2) by transforming timing 
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requirements into a set of upper bounds on the net delayS. In 
Scenario (1), minimizing the delay in a critical net may 
increase the delay in other nets. This may result in additional 
critical paths and the delays of the nets in these paths also 
then have to be minimized. This again may result in an 
excessive delay in the previous critical net. It is desirable to 
prevent this oscillating effect. In Scenario (2) above, delay 
constraints on the paths are translated into either length or 
timing lower and upper bounds (slacks) for each net. The 
bounds are then used to guide the placement and routing. 
Timing driven placement optimization will not shorten nets 
that are below the threshold, but nets near or above the 
threshold are very Strongly weighted for improvement. A 
major problem of these approaches is the Selection of the 
weights or bounds. Also, the use of individual net bounds 
may overconstrain the problem. 
0008 Path-based methods consider timing requirements 
explicitly, and try to Satisfy timing requirements and physi 
cal requirements simultaneously during the placement 
phase. A major difficulty encountered in path-based methods 
is the enormous complexity of computation. Path-based 
approaches overcome these difficulties via an optimization 
process which models the problem using paths instead of 
individual nets. The problem may be modeled as a linear 
programming or transforming the quadratic programming 
problem into a Lagrangian problem to reduce the number of 
constraints. However, this optimization process becomes 
very complex and time consuming in deep Sub-micron 
designs. 
0009. A legal (or feasible) solution to the timing-driven 
placement problem should Satisfy the following placement 
constraints: (1) Macros should be placed at legitimate loca 
tions without overlapping, (2) there should be Sufficient 
Space to implement interconnections, (3) timing constraints 
should be satisfied for all logically possible paths in the 
circuit, (4) region constraints should be satisfied, i.e., Some 
modules may be placed only in an certain regions, for 
example, (a) for movable I/O pins (input/output terminals): 
Some I/O pins positions may be fixed, others may be 
assigned to any of the available I/O pads.(b) locations of 
Some modules may already be fixed. 
0010. An input to a timing-driven placement problem is 
a set of modules and a netlist, where each module has a fixed 
shape and fixed terminal locations. The goal is to find the 
best position for each module on the chip according to 
appropriate cost functions. Timing driven placement incor 
porates timing objective functions into the placement prob 
lem. Nets that must Satisfy timing requirements are called 
critical nets. In timing-driven placement, it is desirable to 
make critical nets timing-efficient and other nets length- and 
area-efficient. 

0011. In a net-based timing-driven layout, timing require 
ments are usually first translated into physical requirements. 
Delay Slacks correspond to budget wiring delayS. Slack is 
the difference between the designed (logical) delay and the 
actual delay (after added wiring delay) from the wiring 
program. A positive Slack implies that the current cycle-time 
is fulfilled by the physical layout (i.e., the net meets the 
design criteria), while a negative value indicates that the 
layout violates the timing conditions. In addition, a large 
positive value indicates that the cycle-time can be further 
improved. Hence, the goal in timing-driven layout is to 
maximize the min-Slack. 
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0012. The delay budgeting problem seeks to allocate 
delay Slacks before the placement and routing Steps. Thus, as 
a result of delay budgeting, the performance-driven place 
ment and routing Steps are given net delay bounds. Since the 
delay SlackS equate with wiring delay, it is natural to expect 
all nets to have positive slacks. Furthermore, the distribution 
of these slacks determines the difficulty of finding a feasible 
placement (and/or routing) Solution. 
0013 Excessive local congestion gives rise to future 
routing difficulty and also increases potential croSStalk noise 
in high-speed signal lines. Furthermore, it increases power 
dissipation due to coupling capacitance. In a timing analysis 
of a prerouting design, the routing of a net is usually 
assumed to be a minimal rectilinear Steiner tree. Due to the 
congestion, the capacitance (i.e., wirelength) of this routing 
tree is larger than the one with a minimal Steiner tree. Thus, 
we need to avoid the timing-critical nets from the congested 
CS. 

0.014) Existing timing-driven flows lead to unpredictable 
and Suspicious timing results. Their main flaw is a lack of 
timing coverage which requires designers to spend days or 
even weeks iterating between Synthesis and layout to 
achieve timing closure. Extremely complex deep Submicron 
designs requires a new placement algorithm being com 
pleted with faster clockS. 
0.015 There have been many works in timing-driven 
placement in recent years. Recent results are mainly catego 
rized as: A) Top-down hierarchical partitioning (slack 
based), B) quadratic programming (path-based), and C) 
constructive approaches. 

A. Top-Down Hierarchical Partitioning 
0016. In top-down hierarchical partitioning, the length of 
all interconnections are estimated provided that entire cells 
assigned to a partitioned region are located at the center of 
the region. Therefore, after each cut of a min-cut algorithm, 
a global routing is computed. See J. Garbers, B. Korte, H. J. 
Promel, E. Schwietzke, and A. Seger, VLSI-Placement 
Based on Routing and Timing Information, IEEE, 1990. 
This provides an expected net length for every net. These net 
lengths are Subsequently used to perform a timing analysis. 
In particular, increasing the weight of Some nets should lead 
to a shorter realization of these nets and thus should increase 
the minimum Slack. In this algorithm, modules are not 
placed at upper levels of the mincut partitioning; the exact 
module placement is realized at the bottom of hierarchy. 
Thus, it is hardly guaranteed that the expected net length 
computed at each level of the hierarchy is consistent with the 
net length obtained by final placement. 
0017 FIG. 1 illustrates an exemplary conventional net 
weight and mincut based placement approach. One example 
of this approach, hierarchical mincut-based partitioning, 
involves dividing a circuit into Smaller parts, recursively. 
The object is to partition the circuit into parts Such that the 
sizes of the partitions are within a prescribed range and the 
number of connections between components is minimized at 
each level of hierarchy. This results in minimizing the 
number of global wires and accordingly, maximizing the 
number of local wires, thus minimizing the total wirelength. 
During the partitioning, if module ml in partition 100 is 
moved to partition 102, the result is an undesirable solution 
Since the critical net C with its timing budget of 1 unit is on 
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the cutline 104 and thus may span the entire chip region in 
a worst case Scenario. On the other hand, if module m2 is 
moved, then the timing budget of net D becomes over 
weighted in a Smaller wiring region. Therefore, there is a 
need for a more insightful timing budget management 
Strategy. 

0018. In M. Marek-Sadowska and S. P. Lin, “Timing 
Driven Placement", IEEE Conference, pp. 94-97, 1989, the 
timing-driven placement problem was formulated as a facil 
ity location problem, for example, for m old facilities 
located on a plane, locations of additional n-m new facilities 
are Sought. The objective is to minimize the Sum of weighted 
(net-weight based) rectilinear distances between them. Solu 
tions to the problem produce placements of cells only at 
coordinates of the old facilities (for example, cells with fixed 
locations such as input/output (I/O) pads). In order to 
decompose cells into two partitions in the plane, fictitious 
terminals are added at the cutline that partitions the netlist 
into two equal-sized netlists. 
0019 Usually, bi-partitioning and clustering-based parti 
tioning approaches attempt to cluster critical nets in a local 
region So that most of the critical nets can reside in close 
proximity, but Some critical paths can easily be divided into 
different partitions that span a timing-specifically 
unbounded routing region (i.e., a region where timing is not 
satisfied). In T. Koide, et al. “A New Performance Driven 
Placement Method with the Elmore Delay Model for Row 
Based VLSIs”, Hiroshima Univ. koide(Oecs.hiroshima 
u.acip, during 4-way partitioning, while moving the cell, 
Slack gain is computed, and the cells connecting nets with 
large Slack gains on the cutline may span the timing Spe 
cifically unbounded routing region. To decrease the delay 
time of the paths, the cells are moved into clusters within a 
partition So that nets connecting the cells will span a Smaller 
routing region. However, this method does not guarantee 
that the final layout of a net does not exceed the timing slack. 

B. Quadratic Programming 

0020 Lagrangian relaxation offers an alternative to simu 
lated annealing for controlling the tradeoff between the 
System cycle time and wirelength. A. Srinivasan, K. 
Chaudhary, and E. S. Kuh, “RITUAL: A Performance 
Driven Placement Algorithm”, IEEE Trans. on Circuits and 
Systems II, Vol. 39, No. 11. pp. 825-840, Nov. 1992, 
presented Such a mathematical programming approach Such 
that the runtime is Smaller than Simulated annealing and the 
quality of the results are reasonable. However, issues like 
congestion analysis and routability factors are not consid 
ered. Routability constraints are among the most difficult 
because they are not analytical and are checked only by 
means of routing. This is a major reason why the routability 
constraints are not included into the mathematical program 
ming formulations. 
0021 Another technique involves an algorithm which 
uses an iterative approach. See A. Mathus and C. L. Liu, 
Compression-Realization: A New Approach to Timing 
Driven Placement for Regular Architectures, IEEE TCAD, 
Vol. 16, No. 6, June 1997. In each iteration, there is a 
compression phase and a relaxation phase. The compression 
phase attempts to make the placement delay feasible by 
compressing the long paths that cause Some of the primary 
output signals to arrive too late. However, the compression 
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phase may produce an infeasible placement with Some of the 
Slots occupied by two modules. This allows the compression 
phase more flexibility, and often allows it to achieve the 
required decrease in delay. If an infeasible placement is 
produced in the compression phase (path-based), the relax 
ation phase (net-based), which carries out a timing-driven 
reconfiguration of the infeasible placement to produce a 
feasible Solution, will be executed. Forming a slack neigh 
borhood graph, the delays in the critical paths are guaranteed 
not to increase beyond a certain bound. It captures the 
freedom of movement of the modules, without “violating the 
timing constraints.” If the compression phase produces an 
infeasible placement, the original modules occupying the 
overcrowded slots need to be relocated. In the relaxation 
phase, relocation is carried out Simultaneously for all of the 
modules in Such a way that the delays do not increase by too 
much. The Slack of an edge measures the amount by which 
the delay of the edge can be increased without violating any 
timing constraints. The Slacks of the edges incident to a 
module determines the neighborhood within which the mod 
ule can be moved without violating the timing requirements. 
In any iterative algorithm for placement, it is initially 
essential that the mobility of the modules be sufficiently 
high. This ensures that a bad initial placement does not cause 
the algorithm to get Stuck in a high-cost local minimum. In 
order to prevent the mobility from being completely gov 
erned by the slacks, a relaxation parameter was introduced 
that allows the algorithm to increase the values of edge 
slacks which will be referred to as relaxed slacks. In order 
to incorporate a routability measure into the placement 
process, each edge of the slack neighborhood graph (SNG) 
is associated with a cost that measures the penalty, in terms 
of an increase in congestion, that results from the move 
asSociated with that edge. A reasonable measure of this 
penalty is a congestion gradient that measures the difference 
in congestion in different areas of the current placement. 
This approach tries to Satisfy the timing constraints for most 
critical paths, but after spreading out the overlapped mod 
ules, it is not guaranteed that the final placement Satisfies the 
timing constraints for entire critical nets. 
0022. In most of these timing criticality-based 
approaches, Some of the non-critical nets can turn into the 
critical nets due to the unbounded treatment for the wire 
length of non-critical nets. In recent aggressive designs, 
most of the nets are critical and thus a priority-based 
approach may not be effective. 

C. Constructive Approaches 

0023 A Successive augmentation approach has also been 
proposed which adds one macro at a time to a partial 
placement until all macroS are exhausted. There are two 
Stages. The first technique involves adaptive changing of 
parameters according to evaluations of partial Solutions. The 
Second technique is carried out by an adaptive look-ahead 
procedure for improving global characteristics of the place 
ment. The adaptive algorithm uses adaptation of parameters 
to handle a wider range of operating controls. A set of 
adjustable parameterS Such as a timing budget are used to 
control placement. This approach is effective when dynamic 
adjustment process can be realized in a reasonable amount 
of computation. However, this approach lacks global opti 
mization. 

Jan. 2, 2003 

0024. Another technique involves a constructive 
approach based on a path-delay timing window. See I. Lin 
and D. H. C. Du, “Performance-Driven Constructive Place 
ment”, Design Automation Conference, pp. 103-106, 1990. 
This approach considered a path with a Sequence of modules 
along the path. All modules in the path are bounded in a 
rectangle called a window to Satisfy the timing requirement. 
Even if all modules are inside the region, a Zig-Zag routing 
may result. The basic idea is to define an area to guide the 
placement of the first module in the window such that the 
total interconnect delay can be minimized. The net con 
Straints are used to reduce the placement constraints instead 
of directly using complete path constraints. Once a cell 
location is determined in a window, all associated paths are 
broken into two Sub-paths. 
0025 Previous works lacked the ability to deal with the 
timing constraints in terms of paths. 
0026. For example, a timing driven placement method 
has been presented based on a path delay relaxation force 
(PDRF) method. The delay of a timing-critical path having 
a Small timing margin is minimized by placing the cells on 
the path (called path core cells) at the center of gravity, and 
this process is performed for other path core cells. However, 
these approaches are only concerned with the timing-critical 
paths. The cells on the non-critical paths must be treated 
carefully Since their placement may cause further timing 
problems in recent high performance designs. To deal with 
this problem, the net constraint driven placement can be 
utilized. However, the main problem with net constraints is 
that timing constraints are path based, hence netbounds are 
usually over-constraining, resulting in infeasible place 
ments. As a result, methods of handling over-constrained net 
bounds have been proposed but usually rely on re-budgeting 
only after a physical design step (placement) is completed. 
0027 Accordingly, there is a need for a system and 
method for a very large Scale integration (VLSI) placement 
that efficiently increaseS production capacity of integrated 
circuits and accurately optimizes the integrated circuit 
design. 

SUMMARY OF THE INVENTION 

0028. The present invention is directed to a system and 
method for timing-closed placement which also takes wire 
length and congestion into consideration. The System and 
method of timing driven placement according to the present 
invention incorporates a timing budget management tech 
nique which Satisfies triangle parity and inequality, a timing 
driven quadrisection placement Strategy based on flexible 
timing window configurations to minimize the wirelength 
and congestion during each mincut quad-partition of top 
down hierarchy, and a linear programming formulation 
incorporating bin capacity, channel capacity and congestion 
criticality. Advantageously, these features allow good tim 
ing-closed placement results to be achieved without exces 
Sive computation time, thus accelerating the Sign-off-to 
Silicon cycle for customers and increasing production 
capacity. 

0029. In an aspect of the present invention, a method for 
placing circuit elements on Semiconductor chips is provided 
comprising the Steps of: creating a circuit graph including 
cutlines, said circuit graph comprising Said circuit elements 
connected by nets for placement on a placement grid; 
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clustering critical nets in the circuit graph; assigning a 
timing budget for each net using at least one of a plurality 
of Slack distribution algorithms Satisfying at least one geo 
metric constraint, partitioning the circuit graph using a 
mincut algorithm; generating a timing window region on the 
placement grid for each net which is less than or equal to 
each net's respective timing budget; and assigning the 
circuit elements attached to each net to each of their respec 
tive timing window regions. 
0.030. In another aspect of the present invention, a 
method for determining placement of circuit elements is 
provided comprising the Steps of: describing a circuit image 
as a graph comprising circuit elements connected by edges, 
assigning a timing budget for each edge using a geometry 
aware Slack distribution algorithm which Satisfies at least 
one geometric constraint, generating a timing window 
region on a placement grid for each edge, Said timing 
window region being equal to or less than the timing budget 
for the respective edge; and assigning the circuit elements 
attached to each edge to each of their respective timing 
window regions. 
0031. These and other aspects, features and advantages of 
the present invention will be described or become apparent 
from the following detailed description of the preferred 
embodiments, which is to be read in connection with the 
accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0.032 FIG. 1 illustrates an exemplary conventional net 
weight and mincut based placement approach. 
0033 FIG. 2 illustrates a preferred embodiment of a 
timing driven placement process with timing closure accord 
ing to an aspect of the present invention. 
0034 FIG. 3 illustrates an exemplary circuit graph com 
prising nodes connected by edges having Slack values. 
0.035 FIG. 4A illustrates an exemplary placement of a 
Slack-weighted circuit graph which has its Slack modified to 
Satisfy the triangle inequality rule and a parity rule according 
to an aspect of the present invention. 
0.036 FIG. 4B illustrates an exemplary placement of a 
circuit graph which does not Satisfy the triangle inequality 
rule. 

0037 FIG. 5 illustrates an exemplary slack-weighted 
circuit graph and a resulting feasible placement Solution and 
an infeasible placement Solution. 
0.038 FIG. 6A depicts exemplary illustrations of rebud 
geting where positive gains on the timing margins are 
realized. 

0.039 FIG. 6B illustrates an exemplary circuit graph 
depicting variables to be used for rebudgetting while pre 
Serving triangle inequalities. 

0040 FIGS. 7A-7B are exemplary illustrations of rebud 
geting results using geometry-aware Slack distribution 
(rebudgetting) algorithms applied to the circuit graph of 
FIG. 3 according to an aspect of the present invention. 
0041 FIG. 7C illustrates an exemplary slack reassign 
ment Satisfying the triangle inequality rule according to an 
aspect of the present invention, where the Slack is not 
rebudgetted. 
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0042 FIGS. 8A-F illustrate an exemplary overall appli 
cation of a method of module placement according to an 
aspect of the present invention. 
0043 FIG. 9A depicts another example of an initial 
circuit graph G=(V, E) comprising node labels V (V=1, 
2, . . . , 8) attached by edges E. 
0044 FIG. 9B illustrates an exemplary placement grid 
having fixed labeling comprising bin and channel labels. 
004.5 FIG. 9C illustrates an exemplary timing-driven 
partitioning of the circuit graph of FIG. 9A into four 
quadrants based on a min-Slack cut for maximizing resource 
balancing. 

0046 FIG. 9D illustrates an exemplary timing-closed 
placement of the modules and edges of FIG. 9A onto the 
placement grid of FIG. B according to an aspect of the 
present invention 
0047 FIGS. 10A-C illustrate exemplary steps of gener 
ating a timing window for level i considering timing win 
dows generated in previous levels i=1 and i=2. 
0048 FIG. 11A and 11B illustrate exemplary formations 
of circuit graphs associated with a multiple-unit cell Such 
that there are imaginery edges between two adjacent basic 
cells with a corresponding edge weight. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

0049. It is to be understood that the exemplary system 
modules and method steps described herein may be imple 
mented in various forms of hardware, Software, firmware, 
Special purpose processors, or a combination thereof. Pref 
erably, the present invention is implemented in Software as 
an application program tangibly embodied on one or more 
program Storage devices. 
0050. The application program may be executed by any 
machine, device or platform comprising Suitable architec 
ture. It is to be further understood that, because Some of the 
constituent System modules and method StepS depicted in the 
accompanying Figures are preferably implemented in Soft 
ware, the actual connections between the System compo 
nents (or the process steps) may differ depending upon the 
manner in which the present invention is programmed. 
Given the teachings herein, one of ordinary skill in the 
related art will be able to contemplate these and similar 
implementations or configurations of the present invention. 
0051 Abasic design model applicable to a timing-driven 
placement Solution according to the present invention 
involves, for example, a microcell-library Sea of gates 
technology which comprises the following features. A chip 
has a regular pattern of basic gates. Routing tracks in both 
directions are distributed between columns and rows and do 
not produce concentrated routing channels but require over 
the-cell routing. This design Style has a library of prede 
signed macrocells in drastically different sizes having vary 
ing heights and widths. The number of routing tracks 
available for inter-macrocell connections depends on the 
number of tracks utilized by intra-macrocell connections. 
0.052 FIG. 2 illustrates a preferred embodiment of a 
timing driven placement process with timing closure accord 
ing to an aspect of the present invention. Initially, in Step 201 
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a circuit graph is created for later defining a timing budget 
window for each net on a placement grid. The circuit graph 
comprises, for example, modules (circuit elements) attached 
to each other by edges (nets), wherein Some modules are 
partitioned by cutlines. The timing budget window is a 
timing-feasible rectangular area on the placement grid 
within which modules can be placed without violating a 
timing budget. Thus, the size of the placement grid affects 
timing accuracy. One timing Slack unit corresponds to, for 
example, a width of a basic grid size. For example, a timing 
Slack Should be set to 1 or 2 if the placement grid forms a 
2 by 2 array. In another example, the timing Slack can be an 
integer value between 1 and 6 if the placement grid forms a 
4 by 4 array (since a length of the diagonal of the 4 by 4 array 
is 6). 
0.053 A multiple of the basic grid size can also be used 
as a grid size. In this case, a Slack should be redistributed 
into its nearest (with lower slack) grid point. For example, 
if the Size of a bin is 4 timing units, then the new slack value 
becomes. 

(e. - slack- sale 4 

0054) Therefore, the finer (smaller) the grid, the greater 
the timing budget, and thus the greater the flexibility of 
placement for finding a feasible Solution; however, the 
computation time is also increased. 
0.055 For instances where the grid size is more than one 
unit, a set of critical nets with Small timing budgets are 
clustered into grid bins using a timing-driven clustering 
algorithm in a bottom-up clustering stage (step 203). Tim 
ing-driven clustering involves clustering cells with nets So as 
to minimize the following function inside each cluster: 

f(cluster)=timing budget/connectivity 

0056. This results in a timing-aware connectivity-based 
clustering, i.e., nets with a Small timing budget will be 
clustered together into a Subgraph having a higher connec 
tivity (density). After finding a set of clusters of the same 
size, a cluster size corresponds to a grid size. Since the new 
grid size is larger than the basic (Smallest) grid size, the 
number of components is decreased for future computation. 
Using this method with an appropriate bin Size will be 
effective in order to reduce the computation time and to take 
advantage of clustered critical nets. 
0057 Next, an initial timing budget for each net is 
determined using a geometry-concerned slack distribution 
algorithm according to an aspect of the present invention, 
where the timing budget Satisfies the triangle inequality rule 
and triangle parity (step 205). 
0058. In step 207, the circuit elements are divided into 
Segments to minimize a number of global nets. Global nets 
are nets which span multiple Segments. It is mandatory to 
use a partitioning approach as design complexity continues 
to increase. For example, the present invention preferably 
uses a multi-level graph partitioning mincut algorithm in 
step 207. 
0059. In step 209, a timing window is generated within a 
placement grid based on one-bend global routing. The 
timing window is a rectangular area within which the 
modules can be placed without violating their timing budget. 
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A one-bend global routing (a wire having one bend between 
modules) is preferable to, for example, a two-bend routing, 
Since the more the number of bends, the more Vias and thus, 
the more delayS. 
0060 Next, the modules are assigned to their respective 
timing window regions on the placement grid (step 211). 
Preferably, each module is assigned to a more general rather 
than Specific bin on the placement grid. The exact placement 
of the modules are deferred to a lower level of hierarchy. 
This flexibility leads to a better mincut solution in the 
Successive levels of hierarchy. 
0061. To minimize congestion during the module assign 
ment process, timing-feasible regions for each module are 
determined by Selecting the region (or bin) which best 
distributes wires evenly over the cutlines. 
0062) The larger the size of the timing windows, the 
greater the probability of finding a feasible Solution (i.e., a 
Solution which reduces the possibility of cell overlaps), and 
thus, the more flexibility of reducing the total wirelength 
during top-down partitioning hierarchy. In addition, Straight 
connections between the modules are desirable to reduce the 
possibility of congestions (cell/module overlap) and the 
number of bends. Thus, the objective is to maximize the 
timing window Sizes and the number of Straight-line con 
nections. 

0063. Following module assignment, it is ascertained 
whether the recursive top-down partitioning is finished, i.e., 
whether all levels of the top down hierarchy have been 
processed and all modules in the circuit graph are assigned 
(step 212). If not, the System goes to the next level of 
hierarchy and repeats the process Starting from Step 207 
again. 

0064. If the top-down recursion is finished, it is then 
ascertained whether the module assignments are legal, i.e., 
whether the module capacity of each bin is not exceeded 
(step 213). If yes, then the process ends (step 217). Other 
wise, a module relocation technique is executed (step 215). 
The above steps of the overall method will now be described 
in more detail below. 

I. Net Delay Model and Slack Redistribution 
0065. It is desirable to determine the initial timing budget 
for each module before Synthesis since good initial timing 
budgeting should shorten the number of resynthesis itera 
tions and thus Speed up the entire design proceSS. For 
example, initially, the total timing slack (budget) in the path 
can be distributed equally over the nets in each path. If a path 
does not meet its constraint, all the nets in the path are 
targeted for improvement until the path as a whole falls 
below a threshold constraint. 

0066. In a budget refinement problem, paths may have 
positive or negative Slacks as a result of a given placement. 
Since the budgeting results are heuristic in nature and may 
be overtight (i.e., overly constraining), it is necessary to 
provide a method by which the budgeting algorithm can 
adjust the timing budget based on, for example, information 
on results from a failed placement. Given a directed acyclic 
graph with timing constraints, the object of budget manage 
ment is to assign to each vertex an incremental delay Such 
that the total sum of these delays is maximized without 
Violating given constraints. A maximum effective budget can 
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maximize the flexibility and freedom all Signal nets can have 
during layout while keeping within the timing constraints, 
which is desirable for most placers and routers. 
0067 FIG. 3 illustrates an exemplary circuit graph com 
prising nodes 301 connected by edges or nets 303 having 
slack values 305. The total slack here (does not include 
values for the dotted line) is for example, 18. A timing 
analysis as illustrated, for example, in Youssef, E. 
Shragowiz, and L. C. Bening, “Critical path issue in VLSI 
designs, in Proc. Int. Conf. on Computer-Aided Design, pp. 
520-523, 1989, can be performed to identify a set of critical 
nets. A critical net is a net which belongs to at least one 
critical path. A net weight is Set proportional to the fre 
quency of appearance of a critical net in a set of critical 
paths. The net weights are then used to weigh the driving 
Strength of the nets. Weight implies a measure of priority, 
and a Smaller timing budget implies critical nets. Therefore, 
a critical net will be characterized by a higher value on the 
timing weight and a lower value on a budget. 

0068 The critical path of a very large circuit contains a 
hundred-pin net, which causes more than 50% of the entire 
maximum path delay. AS Seen from an Elmore delay model, 
one long wire in a multi-terminal net will affect the delay of 
the entire net. Therefore, it is desirable to put Special 
emphasis on reducing the lengths of nets with high numbers 
of pins (terminals). Thus, a lower timing budget is assigned 
in proportion to a greater number of terminals of the net. 

0069. The most critical net may contain a buffer chain 
and/or drives large fanouts. Therefore, the criticality (i.e., 
timing budget) of neti, T(i), in pathi is measured as follows: 

n(i) 

0070 where is t() is total-timing-budget of path j, n(i) 
the number of nets in a pathi, m(i) is the multiplicity of net 
i and p(i) is the frequency factor associated with net i. Here, 
C. and fare the relative weights between m(i) and p(i) Such 
that C+f3=1. The delay budget S (e) on an edge e can be 
transformed on the wirelength 1 (e) by using the Elmore 
delay model, R(cl(e)+C)+1/2crl(e)+rl(e)C =S(e), where 
R is the driver resistance, C is the load capacitance, and c 
and r is the unit capacitance and resistance respectively. 

0071. After slacks are generated, slack redistribution is 
performed by initially determining a maximum effective 
Slack for each path segment. This can be done by: 1) 
computing all slacks, and 2) distributing the Slacks along the 
path Segment based on the criticality measures, i.e., a net 
with a higher criticality measure will have a lower timing 
budget. For example, a net (edge) shared by two different 
paths is assigned a lower timing budget than a net which is 
part of a single path. The above two steps are repeated until 
there are no positive Slacks on any nodes. 

0.072 A set of critical nets can be identified either prior to 
module placement (static method) or during module place 
ment (dynamic method). In a static method, the set of 
controlled critical nets does not change during the layout 
proceSS. Preferably, instead of using the time-consuming 
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dynamic method, the method of the present invention adopts 
a Static timing budget management technique which uses a 
lookahead function to determine a feasible placement. 

0073. To ensure that a final module placement results in 
a feasible Solution in terms of timing constraints while 
Simultaneously minimizing wirelengths, the placement Sat 
isfying the timing budget is realized by careful treatment for 
instances where a circuit includes cycles in its corresponding 
circuit graph. Since wires are connected rectilinearly, the 
following triangle parity inequality rule must be Satisfied 
prior to placement: 

0074 where P (w) is the weight parity (i.e., edge weight 
is even or odd) of edge i with its weight wi, and C is a cycle 
in the graph G. Equivalently, if (ww)mod2=w.mod2, then 
P (w-w)=P(W). To have one-bend routing for every net 
in a cycle, every cycle of length three (referred to as a 
3-cycle) should comply with the triangle inequality rule. 
Otherwise, a placement problem will result in which the 
timing budget will not be Satisfied. The triangle property of 
an undirected cycle is a property that a complete weighted 
cycle Satisfies S(u, v)s S(u, w)+S(w, V) for all vertices u, V, W, 
where S(i, j) is the timing slack (margin) for the net con 
necting two cells i and j. This holds for any graph repre 
Senting points in both Euclidean and rectilinear (Manhattan) 
metric space, for example, a placement graph. Therefore, 
both the triangle inequality rule and a parity rule should be 
met for Satisfying timing constraints. 

0075 FIG. 4A illustrates an exemplary placement of a 
Slack-weighted circuit graph which has its Slack modified to 
Satisfy the triangle inequality rule and a parity rule according 
to an aspect of the present invention. Circuit graph 401 is an 
exemplary cycle of length three which is not feasible for 
placement due to its edges having weights which do not 
Satisfy the triangle inequality rule or the parity rule. The 
parity rule involves an integer quality (i.e., whether an edge 
weight is an odd or even number). For example, for the 
parity rule to be Satisfied in a 3 cycle circuit graph, adding 
any two edges should result in a number which has a same 
parity/quality (i.e., odd or even) as the third edge. In 
addition, the triangle inequality rule is not Satisfied in 401. 
To satisfy the triangle inequality rule (which applies only to 
3 cycle graphs), when the weights of any two edges are 
added, their Sum should be greater than or equal to a weight 
of the third edge. 
0076 Circuit graph 403 is an exemplary cycle of length 
three which Satisfies both the triangle inequality rule and the 
parity rule, and is thus feasible for placement. The triangle 
inequality rule is Satisfied Since the Sum of any two edges in 
401 is greater than or equal to the third edge. For example, 
the sum of the values of edges a-b and b-c (which is 4) is 
greater than the value of the edge a-c (which is 2). To 
illustrate the satisfaction of the parity rule in graph 403, if 
the values of edges a-c and a-b are added (2+1), they will 
equal an odd number (3) which is a same parity as the third 
edge b-c (also an odd number). 
0077 Placement graph 405 illustrates an exemplary rec 
tilinear-wired placement of circuit graph 403 using one-bend 
routing. For example, there is one-bend 406 in the wire 
between nodes b and c. One-bend routing is preferable for 
placement Since it results in a shortest path and thus a shorter 
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wirelength. The circuit graph 403 can also be placed using 
two-bend routing (407). However, it is very time-consuming 
to formulate the two-bend routing in Linear Programming. 
Furthermore, the more bends, the greater the wirelength and 
detours and thus the more delayS. Thus, two-bend intercon 
nections between modules are preferably avoided, if poS 
sible. 

0078 However, there are cases where two-bend routing 
must be used. FIG. 4B illustrates an exemplary placement of 
a circuit graph which does not satisfy the triangle inequality 
rule. Circuit graph 410 is infeasible since it does not satisfy 
either the triangle inequality of parity rules. Note that the 
weight of an edge (b,c) in graph 410 should be set to less 
than 3 to hold the triangle inequality property of placement. 
Circuit graph 412 Satisfies a triangle parity rule, and thus is 
feasible for placement. However, in this case, we need to 
two-bend wire for the edge (b,c) as shown in placement 
graphs 414 and 416. If a legal Solution Satisfying channel 
capacity constraints cannot be found with one-bend routing, 
than two-bend wires are permitted to be used. 
0079. It is important to note that in both FIGS. 4A and 
4B, during placement, the triangle inequality must be Satis 
fied. FIG. 5 illustrates an exemplary slack-weighted circuit 
graph 501 and resulting feasible and infeasible placement 
Solutions. Graph 501 comprises three cycles (a,b,c),(b,c,d) 
and (b,d,e) and a cutline 503 for partitioning the modules d 
and e from a, c and b during placement. EdgeS c,b and b.d 
include upper and lower bounds of a timing budget. It is 
desirable to maintain the triangle inequality for each cycle 
during placement, while the original slack values of each 
edge can be used to provide wiring flexibility. 
0080 Placement 507 represents an exemplary placement 
of modules b,c,d,e of graph 501 using a lookahead timing 
budgeting of edge b,c in which the triangle inequality 
property is Satisfied during placement. Placement cutline 
507 is analogous to the cutline 503 for partitioning the 
modules b,c and e.d in different partitions. Placement 507 
results in a timing-legal placement for module a. Placement 
510 illustrates an exemplary infeasible placement solution 
where the triangle inequality rule is not Satisfied during 
placement. Here, there is no feasible placement for module 
a which would Satisfy the timing constraints given in graph 
501. 

0081. Given a directed graph with timing and geometric 
(triangle inequality and parity) constraints, the object of 
budget management according to an aspect of the present 
invention is to assign to each node an incremental delay Such 
that the total Sum of these slack delays is maximized without 
Violating given constraints. A maximum effective budget 
advantageously increases the flexibility and freedom of all 
Signal nets during layout while keeping within the timing 
constraints. Initially, an optimal algorithm for budget man 
agement is used to identify the edges that have initial Slack 
values which need to be reduced or transferred. Then, a 
rebudgetting Strategy is employed to maximize the total 
Slack values. 

0082 To compute the timing budget assignment comply 
ing with the triangle inequality rule and timing (path) 
constraints (referred to as Triangle-based Rebudgetting) 
according to an aspect of the present invention, either of the 
following algorithms can be applied: 1) Geometry-con 
Strained Slack Reassignment, or 2) Geometry-constrained 
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Rebudgetting. The first algorithm does not allow for a net to 
increase its originally assigned timing margins, but only to 
reduce their values, while Satisfying triangle inequality for 
every cycle. The Second algorithm aims to maximize the 
total timing margins while preserving the triangle inequali 
ties. Thus, in the Second algorithm, timing margins assigned 
to nets are allowed to be increased. 

0083. The basic idea of the first algorithm is to build a 
Spanning tree from a graph where during the tree construc 
tion, edge weights are checked and updated (re-assigned) to 
Satisfy both triangle inequality and triangle parity. Basically, 
in Timing Budget Reassignment, Deque(O) is to extract the 
cheapest (lowest weighted) edge (u, v) in a graph G from a 
priority queue Q, and Enque (Q, S(u, w)) is to insert a new 
value S(u, w) to Q. 
0084. The overall Timing Budget Reassignment algo 
rithm is as follows: 

0085 Geometry-Constrained Slack 
(GSRA): 
0086). Until Q is empty, 

0087) 1. s(u, v)=Deque(Q); 
0088 2. If the edge (u, v) is incident to another edge 

(v, w) that is already traversed and they both form a 
cycle with another edge (u, w) (that has not yet been 
traversed) in G and S(u, w)2S(V, w)+S(u, v), then the 
following is Set: S(u, w)=S(V, w)+S(u, v) and Enque 

0089) 3. If the edge (u, v) is incident to another edge 
(v, w) that is already traversed and they both form a 
cycle with another edge (u, w) (that has not yet been 
traversed) in G and S (u, w)ss (V, w)+S (u, v) and S 
(u, w)mod2z(s(v, w)+s(u, v))mod2, then the follow 
ing is Set: S(u,w)=S(u, w)-1 and Enque(O, S(u, w)); 

Reassignment 

0090 4. If the edge (u, v) is incident to another edge 
(V, w) traversed so far and there is no edge (u, w) in 
G, then a dummy edge (u, w) is added to the graph 
G and the following is Set: S(u, w)=S(V, w)+S(u, v) 
and Enque(O, S(u,w)); 

0091 5. If the edge (u, v) creates a cycle with two 
edges, S(V, w) and S(u, w) already traversed in G, 
then the following is Set: S(u, v)=S(V, w)+S(u, w) and 
Enque(OS(u, v)); 

0092 At each step in the above algorithm, a cheapest 
edge is Selected. A cycle-completing edge is more expensive 
than any previously added edge, thus the edge weight can be 
updated to Satisfy the triangle inequality rule without chang 
ing other edges in the cycle that have already been traversed. 
The above algorithm for Budget Reassignment takes at most 
O(|E|log|E+N) amount of time, where E is the number of 
edges and N is the number of nodes in the graph. 
0093 Given an initial budget assignment, when budget 
increases on Some edges are not allowed, the Timing Budget 
Re-assignment algorithm finds an optimal Solution for incre 
mental budget assigning Such that every cycle in the graph 
Satisfies the triangle inequality rule. 
0094. It may be necessary to minimize the amount of 
timing budget updating through the timing budget assign 
ment algorithm Since it results in a tighter timing budget, and 
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thus, there will be less possibility of finding a legal timing 
driven placement Solution. avoid reducing the total timing 
budgets, the following rebudgetting Strategy can be used: 

0.095 Rebudgetting is a labeling of the node r:V->Z, 
where Z is the Set of integers. The rebudgetting label 
r(v) for a node V represents the amount of timing 
SlackS moved from its output toward its inputs. The 
weight of an edge (u,v) after rebudgetting is denoted 
by: 

0.096 Let the total timing slacks of a circuit after rebud 
getting be denoted by 

e 

0097. The maximum rebudgetting problem can be stated 
as maximizing', Subject to timing constraints. One can 
rewrite: 

I0098 where and are the number of fanins and 
fanouts of node V. The maximum rebudgetting problem can 
then be formulated as the following linear program. 

0099 Minimize: 

01.00) Subject to: 

S(u, v)+r(v)-f(u)2O 

0101 The objective function above represents the timing 
margin gains added to the rebudgetted circuit in relation to 
the original circuit. The constraint ensures that the S(e) for 
each edge e after rebudgetting is non-negative. This is 
referred to as a positive Slack constraint. 

0102) The maximum rebudgetting problem can be 
reduced to the minimum cost network flow problem. Each 
edge (u,v) can be regarded as a network flow arc having 
infinite capacity and cost S(u,v) per unit of flow. The goal of 
the linear programming problem given asks that each edge 
is assigned a non-negative flow f(u,v) Such that: 

0103) Maximize: 

(ii) 
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0104 Subject to: 

0105 FIG. 6A depicts exemplary illustrations of rebud 
geting where positive gains on the timing margins are 
realized. Rebudgeting with positive gains on the timing 
margins can be done using the following two operators: 
forward and backward rebudgetting. For example: 
01.06 1. If?(2' (forward rebudgetting) then, 

0108) 2. If >() (backward rebudgetting) then 

0110 Path 601 illustrates an example of backward rebud 
getting where r(u) (that is, an edge value of u,v) is rebud 
getted to each of its fanin edges iu and iu. This results in 
a positive gain on the total timing margin. Path 605 illus 
trates an example of forward rebudgetting where r(v) is 
rebudgetted to each of its fanout edges (V.O.) and (V.O.). If 
either of these backward or forward rebudgetting techniques 
are used, then the overall timing budgets will be increased 
to g(v)=(FI(v)-FO(v))r(v) and g(v)=(FI(v)-FO(v))(- 
r(v)), respectively. 
0111 Based on the above rebudgetting strategy, a Geom 
etry-Constrained Rebudgetting problem that Satisfies the 
triangle inequality S(u,v)>S(v,w)+S(w,u) for every cycle in 
graph G can then be formulated as the integer linear program 
below. In this case, a new variable w must be introduced to 
create r(u,v), r(v,w), r(w,u) in addition to r(u), r(v), r(w). 
FIG. 6B illustrates an exemplary circuit graph depicting 
variables to be used for rebudgetting while preserving 
triangle inequalities. These variables are required to find a 
Solution Satisfying triangle inequalities. 
0112 Therefore, Geometry-Constrained Rebudgetting is 
a labeling of the node r: V->Z and the edge r: E->Z in a 
directed circuit graph G=(V, E), where Z is the set of 
integers. Here, it is assumed that a graph G' is given that 
has been triangulated, for example, by performing Geom 
etry-constrained Slack Reassignment. 
0113) Geometry-Constrained Slack Rebudgetting (G°R) 
0114 Maximize: 

0118 Subject to: (here, considering the case of triangle 
(u,v,w) in FIG. 6B) 
0119) Constraint 1: 
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0120 where 

0125 Here s(W.PI) is the sum of timing margins on the 
edges in the shortest path from w to primary inputs,and S(w, 
PO) is the Sum of timing margins on the edges in the shortest 
path from w to primary outputs. This value is used as a lower 
and upper bound for each of the retimed variables r(e). 
0.126 The second and third constraints ensure that the 
S(e) for each edge e after rebudgetting is non-negative. 
Constraint 2 and Constraint 3 are redundant Since Constraint 
1 implies Constraint 2 (by adding two inequalities in Con 
Straint 1), and Constraint 2 implies Constraint 3, respec 
tively. Therefore, only Constraint 1 is needed. 

0127. A host node h is introduced that sources all “pri 
mary inputs and Sinks all "primary outputs with dummy 
edges (edges having Zero weight) connecting the host node 
with all primary inputs and primary outputs. A vertex u is 
Strongly connected to V if two paths exist: one from a to b 
and another from b to a. Then: 

0128 Lemma 1 
0129. The graph G'(V,E), where V'-VUh, and E'=EU(h, 
i),Wi ePI, U(h,o), WoePO is a strongly connected graph. 
0130 Corollary 1 
0131) If G=(V,E) is a strongly connected graph, then 
r(u,v)2.0,V(u,v)eE of G. 
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0132) Lemma 2 
0133. In graph G'(V,E), a feasible solution can be found 
without explicitly specifying lower and upper bounds for the 
retimed variables in the following LP formulation. 
0134) Note that the original circuit graph G=(V,E) is 
usually neither a strongly connected graph nor a triangulated 
graph. Graph G is transformed into: G^=(V=(VUh).E^ = 
(E-UE), where E are the augmented imaginary edges 
connecting the host node with primary and primary outputs, 
and E is the augmented imaginary edge after graph trian 
gulation. The graph triangulation (forming a complete 
graph) can be done by running the Geometry-constrained 
Slack Reassignment algorithm (however, at this time with 
out updating the Slack values). 
0135) If there are still timing problems, the following 
algorithm (Satisfying both triangle inequality and parity) can 
be applied: 
0.136 Geometry-Aware 
G,GSRB(GR) 
0137 Maximize: 

(0138 where g(u)=(FI(u)|-|FO(u)r(u).g(v)=(FI(v)- 
FO(v))r(v), and r(w)=(FI(w)|-|FO(w))r(w), and FI(i) (resp. 
FO(i)) is the number of fanins (resp. fanouts of ieV of G. 
0139 Subject to: 

r(i)-r(h)20, Wie PI 
r(h)-r(o)20, Woe PO 

Slack Re-Budgetting on 

0140 where if (u,v), (v,w), (W,u)eE then 

0141 else if (i,j)eE, then J 

0142 Here the variable r(i), Wie(VUh) is unconstrained, 
but the value is always positive because of introducing the 
host node, the variable r(i,j)20, W(i,j)eE, and the variable 
d(i,j)20, W(i,j)eE^. PI(G) (resp. PO(G)) is defined as the set 
of nodes that has no incoming (resp. outgoing arcs) arcs in 
G. The last constraint is required to avoid cell overlaps in the 
Same location. 

0143 FIGS. 7A-7B are exemplary illustrations of rebud 
geting results using geometry-aware Slack distribution 
(rebudgetting) algorithms applied to the circuit graph of 
FIG. 3 according to an aspect of the present invention. The 
goal in rebudgetting the SlackS is to maximize the total Slack 
while satisfying the triangle inequality rule. FIG. 7A illus 
trates Slack rebudgetting which Satisfies the triangle inequal 
ity rule. Here, the total slack is increased to 21. Host node 
h (701) is introduced to propagate a retimed value of 5 from 
a fanin edge h, 1 to fanout edges 1,5 and 1.3, and So forth (the 
rebudgetting is done through all the paths in a continuous 
loop). The values in boxes 703 represent the retimed slack 
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results for each node using the GSRB algorithm. It is to be 
noted that the total Slack amount of 21 does not include the 
values 703. 

014.4 FIG. 7B illustrates slack rebudgetting which sat 
isfies both the triangle inequality rule and parity. Here, for 
example, the total slack is increased to 20. FIG. 7C illus 
trates an exemplary Slack reassignment Satisfying the tri 
angle inequality rule without rebudgetting the Slack. 
Although the slack reassigment algorithm is a much faster 
algorithm, it does not maximize the total slack; in fact, it 
reduces it (for example, here the total slack is 15). 
0145 Compared with the initial circuit graph of FIG. 3, 
applying the GSRB algorithm results in a Slack gain of 3 
units (from 21 to 18), while applying GSRA reduces the total 
slacks by 3 units (from 18 to 15). Note that triangulization 
does not affect the total timing SlackS Since the total SlackS 
are maximized on circuit edges (shown in Solid lines in 
FIGS. 7A-7C) only. 
0146 To incorporate the triangle parity constraints men 
tioned above, for each cycle (u,v,w) in graph G, the follow 
ing additional constraints are needed: 

0147 where ao, a, . . . a, bo, b, ... b are 0,1 variables, 
and k is the maximum value Such that a 2+a2+a 22-- 
a2+...+a is less than the maximum slack in G. 
0148 Since the overall timing budgets on each path has 
not been increased, we have a situation where both GSRA 
and GSRB generate a Solution which Satisfies timing con 
Straints. 

II. Timing-Driven 4-Way Multi-Level Mincut 
Partitioning 

0149 Once a timing budget is assigned for each net, the 
circuits are divided into Segments in a partitioning Step 
using, for example, a multilevel partitioning mincut algo 
rithm. The objective of the mincut partitioning Step is to 
divide the circuits into a required number of Segments to 
minimize the number of global nets (i.e., nets which span 
multiple segments). It is mandatory to use Some partitioning 
approach as design complexity continues to increase. The 
partitioning problem can be formed as follows: 
0150 Given a graph G=(V,E) with weights on the edges 
and vertices and a parameter (p, find a partitioning of the 
Vertices of G into (p Sets in Such a way that the Sums of the 
vertex weights in each Set are as equal as possible, and the 
Sum of the weights of edges crossing between Sets is 
minimized. 

0151. A brief description of an overall partitioning algo 
rithm is as follows: 

0152 Algorithm multilevel timing-concerned partition 
ing (MTP): 

0153 1. Perform Connectivity-aware Slack Reas 
signment (CSRA) on G=(V,E). 

0154) 2. Until G is small enough (e.g., IV=5000): 
0155 G=coarsen(G); (i.e., minimize the timing 
budget by clustering) 
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0156 3. Perform GSRA or GSRB on the coarsened 
graph G and perform Congestion-Aware Timing 
Driven Partitioning CAP(i) on G. 

O157 4. Until the coarsened graph G=original graph 
G: 

0158 uncoarsen the graph; 
0159 partition the uncoarsened graph as 
described in Step 3 using CAP(i). 

0160 Mincut is effective for minimizing the number of 
nets crossing the cutline (cut nets) in the upper level of 
hierarchy, thus the wirelength can be decreased for the 
highly connected networks in the Smaller region of the lower 
level of hierarchy. (The graph formed by the cut nets will be 
referred to as G). 
0.161 There are three different stages in a multilevel 
graph partitioning algorithm. Initially, a Sequence of Smaller 
and Smaller graphs is created from the original graph (coars 
ening). Then, the Smallest graph in the Sequence is parti 
tioned carefully (partitioning). Next, the partition is propa 
gated back through the Sequence of grids (uncoarsening), 
with an occasional local refinement. A Solution is approxi 
mated using a fast heuristic Such that the computational 
costs of constructing coarse graphs and the local improve 
ment algorithms are both proportional to the number of 
edges in the graph. 
0162 Cell congestion (i.e., cell overlaps) is closely 
related to the partitioning Strategy. By maximizing the 
minimum timing budget of the nets crossing the cutlines 
during partitioning, advantageously, the probability of find 
ing a legal (i.e., where cells have no overlap) Solution is 
increased. Cycles having a Smaller radius (slack margin of 
the net crossing cutline diagonally) and a Smaller diameter 
(Sum of slack margins assigned to nets in the cycle) formed 
by paths crossing cutlines result in cell overlaps. These 
cycles are known as critical cycles. To reduce the possibility 
of cell overlaps, during partitioning, Such critical cycles are 
minimized. 

0163 Maximizing the timing budget during partitioning 
can be done during timing-driven clustering in the multilevel 
partitioning. That is, cell congestion (cell overlap) is corre 
lated with slack distribution. In order to minimize the 
possibility of cell overlaps (and thus maximize the porosity), 
the following weighted cell overlap contribution metric can 
be used: 

Smax 1 doi = ceil X. S = 1 yes's 

0164 where Y(s)=S(2s+2), the number of grids in the 
rectilinear circle with rectilinear radius minus 1. Here, the: 

y(s) 

0.165 indicates the probability of cell overlaps. The same 
result can be obtained by using a clustering, thus d is not 
included in cost function of partitioning. Thus, a new 



US 2003/0005398 A1 

congestion-driven mincut cost incorporating wire and cell 
congestion will be C= dx+(1)d, where C is a cost 
function and measures the relative importance between 
di and del, and can be found by linear regression from 
the result of routing. 

0166 To meet the objective of congestion mitigation 
being consistent in terms of wirelength, we first apply a 
mincut algorithm with the cost function C and apply the 
GSRB algorithm to G with a new objective function such 
that we maximize the timing budgets on G and minimize 
the timing budgets on G-G. In this manner, strongly 
connected clusters are assigned lower timing budgets and 
weakly connected clusters are assigned greater timing bud 
gets. This slack budget management is referred to as Con 
nectivity-aware Slack Re-assignment (CSRA). 

0167. After applying the above multilevel partitioning 
algorithm (MTP), critical cycles are evenly distributed over 
the plane and appear in the low level of the top-down 
partitioning hierarchy. Alleviating the congestion in a local 
area is equivalent to evenly distributing the layout resource 
elements (cells and wires) over the entire chip area. Thus, at 
each level of top-down hierarchy, a quad-tree partitioning 
Strategy is performed: 

0168 Quad-tree partitioning is an approach to region 
representation based on the Successive Subdivision of a 
plane into quadrants. This process can be represented by a 
quad-tree. A root node corresponds to the entire plane. Each 
Son of a root node represents a quadrant. Each root node 
comprises four quadrants labeled in counter clock-wise 
order Q, Q, Q, and Q, from the right upper quadrant and 
four cutlines C (between Q and Q), C (between Q and 
Q), C (between Q and Q) and C (between Q and Q). 
The total timing Slacks assigned on nets in q during parti 
tioning is denoted by S(q). The total cell area assigned in q 
during partitioning is denoted by aci). The capacity of cutline 
ci is denoted by d(c.). The total timing slacks assigned on the 
nets crossing the cutline ci is denoted by S(ci), and the total 
number of nets crossing the cutline c is denoted by n(c.). 
Leaf nodes of the quad tree correspond to a grid cell or a 
region with a functional block for which no further Subdi 
Vision is necessary. A leaf node is occupied by basic cells, 
functional block, or clusters. 

0169 Q(i) denotes the quadrant region where cell i is 
assigned to and w(i.p.) denotes the timing window region 
generated by S(i.p.), which is the timing slack between cell i 
and I/O cell p. 

0170 The timing-driven partitioning problem can be 
effectively Solved by an assignment technique in which each 
module and net is assigned to one of the four timing-closed 
quadrants. 

0171 The assignment technique can be formulated as a 
linear programming algorithm (described below). The 
Smaller the total Slacks on the cutlines, the higher the 
probability of finding a feasible solution, which reduces the 
possibility of cell overlaps in future placements at a lower 
level of the top-down partitioning hierarchy, and thus the 
more flexibility in reducing total wirelength during the 
top-down partitioning hierarchy. 
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0172 Congestion-Aware 
(CAP(i)) on G=(V,E): 
0173 Minimize 

Timing-Driven Partitioning 

4. 

n(i) 
i= 

0174 Subject to: 
0.175 Cutline Capacity Constraints: 

n(i)sd(c),i=(1,2,3,4) 
0176 Cut-nets Distribution Constraints: 

0177 where the right hand side is the low bound on 
channel capacity, n is the number of nets and m is the chip 
size. 

0178 Bin Capacity Constraints 
ab(i) savgAU, i=(1,2,3,4) 

0179 where ab(i)=area-modules(q)+ 

area(ci : cutlines adjacent to gi) 
area - modules(q) + 2 + area - nets(q) 

0180 +area-nets(q) and avgAU= 

avg AU = 4 

0181 where ws is wire unit are, S is the total slacks in G, 
and wb is cell unit area and B is the total number of modules 
in G. The upper-bound avgAU=aVgAU+a. 

0182 Bin Resources Distribution Constraints: 
ab(i)2 avgAL, i=(1,2,3,4) 

0183 The lower-bound: avgAL=avgA-a. 
0.184 Timing Constraints: 

q(i)?hw(iP)z0,ie V 

0185. The overall placement algorithm is as follows: 
0186 Geometry-Aware Top-down Placement (GTP) 
0187 1. Partition a circuit graph into 4 subgraphs by 
performing a multilevel timing-concerned partitioning 
(MTP) to find a mincut and to assign each of the subgraphs 
into a quadrant So as to Satisfy the timing constraints 
between already placed cells (e.g., I/O pads) in a previous 
level of the top-down hierarchy and Subgraphs. 

0188 2. Perform Timing Window Generation and Mod 
ule ASSignment (described in the following Section) for nets 
crossing 4 cutlines. ASSign each net to channels on the four 
cutlines creating a pseudo-terminal. The fixed channel loca 
tion of the pseudo terminal on the cutlines acts as an I/O pad 
for the quadrants, q1, q2, q3, and q (i.e., terminal propaga 
tion). 
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0189 3. Repeat the above procedures for each subgraph 
q until a leaf node of the quad-tree is reached. 
0190. In step 1 above, path slacks between the already 
placed cell in a previous level and the cell in the current level 
of the top-down hierarchy need to be checked. In the Second 
iteration of GTP, one of the partitioning constraints ÖS(qi), as 
described above, is adjusted to further alleviate congestion. 

III. Timing Window Generation and Module 
ASSignment 

0191 Next, a module assignment algorithm is performed 
at each level of the mincut hierarchy. FIGS. 8A-F illustrate 
an exemplary overall application of a method of module 
placement according to an aspect of the present invention. 
Initially, in FIG. 8A, a circuit graph is provided comprising 
modules 800 connected by edges 801, the edges having 
Slack values assigned according to the geometry aware Slack 
distribution algorithm of the present invention. In addition, 
clusters 802 are formed from critical nets. In FIG. 8B, a 
mincut is performed to reduce the number of edges crossing 
cutlines 803 at a first level of hierarchy (top level 1). Next, 
FIG. 8C illustrates timing windows 805 generated for each 
module 800 on a placement grid 807, where each of the 
modules are assigned to their respective timing window at 
level 1 of the hierarchy. It is important to note that the cycle 
(f,b,c) was placed simultaneously at level 1. Once the 
modules in the first hierarchy are placed, mincut is per 
formed in FIG. 8D on the set of edges on the cutlines 
(represented by dotted lines) at a next level of hierarchy 
(level 2). Then, in FIG.8E the modules attached to the nets 
(represented by solid lines in FIG. 8D) are placed on the 
placement grid 807. FIG. 8F illustrates a next level of 
hierarchy (level 3) of the top-down placement process. Note 
that module c is not assigned to an exact location until this 
lower level (level 3) of hierarchy is processed. 
0.192 FIG. 9A depicts another example of an initial 
circuit graph G=(V,E) 901 comprising node labels V 903 
(V=1,2,..., 8) attached by edges E 905. Each edge 905 
includes an edge label comprising an edge ID 907 (E=1, 
2, ... 12) and a given feasible slack value 909. Each slack 
value is assigned using, for example, a geometry-aware 
Slack distribution algorithm according to an aspect of the 
present invention Satisfying geometric constraints Such as 
triangle parity and inequality. 
0193 FIG. 9B illustrates an exemplary placement grid 
910 having fixed labeling comprising bin and channel labels 
(addresses). Each quadrant comprises 9 bins; for example, 
quadrant 912 includes bins 1, 5, 6, 7, 8, 21, 22, 23 and 24. 
Bin 1 includes bins 21-24, bin 5 includes 21 and 22, bin 7 
includes bins 23 and 24, bin 6 includes bins 22 and 23, and 
bin 8 includes bins 21 and 24. Each bin is labeled in a 
counter-clockwise fashion within each quadrant, bins 1-4 
are also labeled in a counter-clockwise fashion Starting from 
quadrant 912. Placement grid includes channel labels for 
labeling each of the four cutlines Separating each quadrant 
(C=c, c12, . . . c-12) 
0194 FIG. 9C illustrates an exemplary timing-driven 
partitioning of the circuit graph 901 into four quadrants 914, 
916, 918 and 920 based on a min-slack cut for maximizing 
resource balancing. The circuit graph is partitioned into 
Segments Such that global nets (nets which span multiple 
segments) are minimized. FIG. 9D illustrates an exemplary 
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timing-closed placement of the modules 903 onto the place 
ment grid 910 and nets (edges) into channels according to an 
aspect of the present invention (the bin and channel labels 
here are not shown). Each module is placed into a target 
timing-closed window region, for example, module 1 is 
placed in bin 5, module 2 in bin 6, module 4 in bin 28, etc. 
The placement is situated Such that Straight connections and 
window sizes are maximized. Note that in the FIG. 9D, 
module 1 is allocated to bin 5 rather than assigning to an 
exact basic bin location. The exact module placements are 
deferred to a lower level of hierarchy. 
0.195 The goal is to assign each module to a target 
timing-closed window region. A linear programming algo 
rithm can be used to find an assignment of the modules. 

0196. The linear program described below has the fol 
lowing constraints with (0,1) variable of yibj, xibi, and Xic, 
where yibj=1 if a cell i is assigned to timing window j, 
Xibj=1 if a net i is assigned to bin j, and Xic=1 if a net i is 
assigned to cut-channelj. To assign cells to bins and nets to 
channels, the labels as shown in FIG. 9B are used here for 
illustrative purposes. 
0.197 Linear Programming Algorithm: Module Assign 
ment 

0198 Maximize TW+ST, where TW is the size of timing 
windows assigned to nodes and ST is the Set of configura 
tions for Straight connections. That is: max: 

0200) Subject to: 
0201 Assignment Constraint: All Possible Configura 
tions Inside Timing-Windows 

0206 

0207 

0208) 

0209) 
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0223) This constraints represents a netlist associated with 
module assignment. Here all assignments is needed to be 
timing-closed So that all delays between the nodes Satisfies 
the timing constraints. Thus we need the following con 
Straints: 

0224 Timing Resolution Constraint 0249 Channel Capacity Constraint 
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0260 Straight Connections Constraint 

X11 ca.1+ 

0277 / not allowing two-turn detours; LHS is maxi 
mized by cost function*/yb5+y 1b21+y 1b22+y3b9.-- 
y3b25+y3b262x1c11; 

(0s,8 2.2523-y224-yabiliyab27. y aXZC 

(0.3 2 y735-y736-ysbistysb31: y eXC-54 
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0293 These constraints removes the two-bend (two-turn) 
detours. 

0294 Bin Capacity Constraint 

0312 FIGS. 10A-C illustrate exemplary steps of gener 
ating a timing window for level i considering timing win 
dows generated in previous levels i=1 and i=2. FIG. 10A 
illustrates a given Subgraph of an edge (a,b) having a slack 
value of 4. FIG. 10B illustrates a timing window 1000 
generated at level i-2 (here, a highest level of hierarchy) for 
module a, and a timing window 1002 generated for module 
b at level i-1 (a next lower level of hierarchy). FIG. 10B 
includes cut lines generated at level i-2 (1004), cut lines 
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generated at level i-1 (1006) and cutlines at level i (1008). 
The timing window for edge (a,b) is generated at a current 
level i such that O(a)?nO (a)2() and O(b)?nO (b)z () 
(we refer to the constraints as timing window closure 
constraints), where O (a) denotes the timing window for 
node a at level i of the top-down partition. A top-down 
partition is used here to get a more exact location for each 
module in the lower levels of the hierarchy. Here, module a 
for example, is assigned to an address in the highest level of 
hierarchy, but not to an exact location. In the current level i, 
module a is assigned to the upper right bin of timing window 
1000. FIG. 10C illustrates an exemplary timing window 
1010 generated for edge (a,b) at level i. 
0313 Note that the lower level of hierarchy where the 
possibility of overflow is increased has a Smaller configu 
ration Space. Therefore, a feasible Solution can be found by 
using a set of different Slack distributions as well as increas 
ing the number of timing window configurations. 
0314. Thus, an effective timing-driven placement that 
also takes the routing congestion and wirelength into con 
sideration is reached where all nets meet timing constraints 
with absolute timing budgets. Based on these features, good 
global placement results can be achieved without excessive 
computation time. 
0315. It is to be noted that the basic algorithms described 
in this paper can be easily extended to cells with different 
sizes Such that cell width and height are multiples of basic 
units. For example, as shown in FIG. 11A, a graph 1103 
associated with a multiple-unit cell 1101 can be formed such 
that there are imaginery edges between two adjacent basic 
cells with a corresponding edge weight. For example, here 
the edge weight corresponds to a fixed timing budget (one 
grid unit corresponds to a unit timing budget). 
0316) In FIG. 11B, the graph 1105 can generate different 
shapes (e.g., a straight or bended shape). To generate a 
particular shape of a multiple-sizes cell 1106, an edge can be 
assigned an attribute which regards to its corresponding 
shape. For example, graph 1105 corresponds to an alternate 
placement configuration Such that cella is above cell b and 
cell c is to the right of cell b. Here, the attributes can be, for 
example, (a,c):L, (a,b):, (b,c):-, where “L”, “” and “-” 
correspond to L-shaped, horizontal and Vertical placement 
respectively, of two cells. 
0317. Although illustrative embodiments of the present 
invention have been described herein with reference to the 
accompanying drawings, it is to be understood that the 
present invention is not limited to those precise embodi 
ments, and that various other changes and modifications 
maybe affected therein by one skilled in the art without 
departing from the Scope or Spirit of the invention. All Such 
changes and modifications are intended to be included 
within the Scope of the invention as defined by the appended 
claims. 

What is claimed is: 
1. A method for placing circuit elements on Semiconduc 

tor chips comprising the Steps of: 
a) creating a circuit graph including cutlines, said circuit 

graph comprising Said circuit elements connected by 
nets for placement on a placement grid; 

b) clustering critical nets in the circuit graph; 
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c) assigning a timing budget for each net using at least one 
of a plurality of Slack distribution algorithms Satisfying 
at least one geometric constraint; 

d) partitioning the circuit graph using a mincut algorithm; 
e) generating a timing window region on the placement 

grid for each net which is less than or equal to each 
net's respective timing budget; and 

f) assigning the circuit elements attached to each net to 
each of their respective timing window regions. 

2. The method of claim 1, wherein the geometric con 
Straint is a triangle inequality rule or a triangle parity rule. 

3. The method of claim 1, wherein the step of partitioning 
further comprises: 

performing a connectivity aware Slack reassignment on 
the circuit graph to assign densely connected clusters a 
lower timing budget and weakly connected clusters a 
higher timing budget; and 

partitioning the circuit graph into four Subgraphs to 
reduce a number of edges crossing cutlines at a first 
level of hierarchy. 

4. The method of claim 1, wherein the placement grid 
comprises a plurality of bins for placement of the circuit 
elements, and channels for placement of the nets. 

5. The method of claim 2, wherein the Step of assigning 
a timing budget further comprises using a geometry con 
Strained Slack reassignment algorithm for assigning timing 
budgets which Satisfy the triangle inequality rule for every 
cycle in the circuit graph. 

6. The method of claim 2, wherein the Step of assigning 
a timing budget further comprises using a geometry con 
Strained slack rebudgetting algorithm for assigning timing 
budgets which Satisfy the triangle inequality rule for every 
cycle in the circuit graph. 

7. The method of claim 2, wherein the Step of assigning 
a timing budget further comprises using a geometry con 
Strained slack rebudgetting algorithm for assigning timing 
budgets which Satisfy the triangle inequality rule and the 
triangle parity rule. 

8. The method of claim 2, wherein the triangle inequality 
rule provides that a Sum of the timing budgets of any two 
edges of a cycle is equal to or greater than the timing budget 
of the third edge. 

9. The method of claim 2, wherein the triangle parity rule 
provides that a Sum of the timing budgets of any two edges 
of a cycle is of a Same parity as the timing budget of the third 
edge. 

10. A method for determining placement of circuit ele 
ments comprising the Steps of 

describing a circuit image as a graph comprising circuit 
elements connected by edges, 

assigning a timing budget for each edge using a geometry 
aware Slack distribution algorithm which Satisfies at 
least one geometric constraint; 

generating a timing window region on a placement grid 
for each edge, Said timing window region being equal 
to or less than the timing budget for the respective edge; 
and 

assigning the circuit elements attached to each edge to 
each of their respective timing window regions. 
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11. The method of claim 10, wherein the geometric 
constraint is a triangle inequality rule or a triangle parity 
rule. 

12. A program Storage device readable by a machine, 
tangibly embodying a program of instructions executable by 
the machine to perform the method steps for placing circuit 
elements on Semiconductor chips, the method comprising 
the Steps of: 

a) creating a circuit graph including cutlines, said circuit 
graph comprising Said circuit elements connected by 
nets for placement on a placement grid; 

b) clustering critical nets in the circuit graph; 
c) assigning a timing budget for each net using at least one 

of a plurality of Slack distribution algorithms Satisfying 
at least one geometric constraint; 

d) partitioning the circuit graph using a mincut algorithm; 
e) generating a timing window region on the placement 

grid for each net which is less than or equal to each 
net's respective timing budget; and 

f) assigning the circuit elements attached to each net to 
each of their respective timing window regions. 

13. The program Storage device of claim 12, wherein the 
geometric constraint is a triangle inequality rule or a triangle 
parity rule. 

14. The program Storage device of claim 12, wherein the 
Step of partitioning further comprises: 

performing a connectivity aware slack reassignment on 
the circuit graph to assign densely connected clusters a 
lower timing budget and weakly connected clusters a 
higher timing budget; and 
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partitioning the circuit graph into four Subgraphs to 
reduce a number of edges crossing cutlines at a first 
level of hierarchy. 

15. The program Storage device of claim 12, wherein the 
placement grid comprises a plurality of bins for placement 
of the circuit elements, and channels for placement of the 
netS. 

16. The program Storage device of claim 13, wherein the 
Step of assigning a timing budget further comprises using a 
geometry constrained Slack reassignment algorithm for 
assigning timing budgets which Satisfy the triangle inequal 
ity rule for every cycle in the circuit graph. 

17. The program storage device of claim 13, wherein the 
Step of assigning a timing budget further comprises using a 
geometry constrained slack rebudgetting algorithm for 
assigning timing budgets which Satisfy the triangle inequal 
ity rule for every cycle in the circuit graph. 

18. The program storage device of claim 13, wherein the 
Step of assigning a timing budget further comprises using a 
geometry constrained slack rebudgetting algorithm for 
assigning timing budgets which Satisfy the triangle inequal 
ity rule and the triangle parity rule. 

19. The program storage device of claim 13, wherein the 
triangle inequality rule provides that a Sum of the timing 
budgets of any two edges of a cycle is equal to or greater 
than the timing budget of the third edge. 

20. The program storage device of claim 13, wherein the 
triangle parity rule provides that a Sum of the timing budgets 
of any two edges of a cycle is of a Same parity as the timing 
budget of the third edge. 


