发明名称 埋设扩管用钢管及油井用钢管的埋设方法

摘要

(1) 一种钢管，是在被插入到油田等的井内的状态下被扩管的钢管，其特征在于扩管前的偏心率
E0(%)满足下式①E0≤30/(1+0.018a)…①其中
\[a = \frac{[(\text{扩管后的管的内径} - \text{扩管前的管的内径})/\text{扩管前的管的内径}] \times 100}{2}\]
(2) 一种钢管，是被插入到井的状态下被扩管的钢管，其特征在于偏心偏
厚率在10%以下。如果使用上述(1)或(2)的钢管实施埋设扩管法，则可防止被扩管的钢管的抗压强度
度的下降，且使钢管的弯曲变小。
1、一种钢管，是在被插入到井内的状态下被扩管的钢管，其特征在于扩管前的偏厚率为 E₀（%）满足下式①

\[E₀ = \frac{30}{(1+0.018\alpha)} \] \(\cdots \) ①

其中 \(\alpha \) 是根据下式②计算得到的扩管率（%）。

\[\alpha = \left(\frac{(\text{管后的管的内径} - \text{扩管前的管的内径})}{\text{扩管前的管的内径}}\right) \times 100 \] \(\cdots \) ②。

2、一种钢管，是在被插入到井内的状态下被扩管的钢管，其特征在于偏心偏厚率为 10%以下。

3、根据权利要求1或2所述的钢管，是以质量％计，C: 0.1～0.45％，Si: 0.1～1.5％，Mn: 0.1～3％，P: 0.03％以下，S: 0.01％以下，sol.Al: 0.05％以下，N: 0.01％以下，Ca: 0～0.005％，其余由Fe和杂质构成的钢管。

4、根据权利要求1或2所述的钢管，是以质量％计，C: 0.1～0.45％，Si: 0.1～1.5％，Mn: 0.1～3％，P: 0.03％以下，S: 0.01％以下，sol.Al: 0.05％以下，N: 0.01％以下，Ca: 0～0.005％，以及Cr: 0.2～1.5％、Mo: 0.1～0.8％、和V: 0.005～0.2％中的一种或两种以上，其余由Fe和杂质构成的钢管。

5、根据权利要求3或4所述的钢管，其中，代替一部分Fe，以质量％计含有Ti: 0.005～0.05％和Nb: 0.005～0.1％中的一种或两种。

6、一种油井用钢管的埋设方法，是在挖掘的井内埋设钢管，并进一步挖掘所埋设的钢管的前端部的地下，以使井更深，然后在所埋设的钢管内插入具有比该钢管内径更小的外径的钢管，将其埋设在变深的井内，并利用插入到管内的工具对该钢管进行扩管，以使其直径变大，然后挖掘所扩管的钢管的前端部的地下，以使井更深，接着在所扩管的钢管内插入具有比该钢管内径更小的外径的钢管，将其埋设在变深的井内进行扩管，反复进行这样的操作，以此，依次埋设直径更小的钢管的方法，其中作为扩管的钢管，使用了上述权利要求1～5的任意一项所述的钢管。
埋设扩管用钢管及油井用钢管的埋设方法

技术领域

本发明涉及被埋设在油井或气井（以下，将这些通称为油井）内的钢管以及将该钢管作为油井管进行埋设的方法。

背景技术

在将油井管从地表面埋设到地下油田时，首先进行挖掘，设置给定深度的井，并在其中埋设称作套管（casing）的油井管，以防止井壁的崩落。然后，从套管的前端进一步挖掘地下，作为更深的井，经过之前埋设的套管的内部而埋设新的套管。通过反复进行这样的操作，最后埋设了到达油田的油井管（敷设管道）。

图 1 是用于说明以往的油井管的埋设方法的图。以往，在埋设油井管时，如图 1 所示，首先从地表面 6 一直到 H1 深处，挖出直径比套管 1a 的直径大的井，并埋设套管 1a。然后，将套管 1a 的前端部的地下挖出 H2 深，并埋设套管 1b。按照这样的方法，埋设套管 1c、1d，最后埋设通入油或气体的油井管（敷设管道）2。

这时，因为用于通入油或气体的油井管 2 的直径已被确定，所以需要深度与油井直径成比例的不同的多种套管。这是因为在插入在先埋设的套管之后所被埋设的同心圆状的套管时要考虑钢管弯曲等形状不良，而在之前埋设的套管的内径和之后埋设的套管的外径之间需要留有一定程度的间隙 C。因此，在挖深井埋设油井管时，必须扩大井直径方向上的挖掘面积，从而使挖掘所需的费用升高。

近年来，为了降低油井的挖掘费用，提出了将油井管理设在地下之后，将其内径同样地扩大的扩管方法（特表平 7—507610 号公报）。另外，在 W098/00626 号国际公开公报中，提出了将不引起缩颈或延展性破坏且可产生应变硬化的由可锻性的钢种构成的钢管，插入到预先埋设的套
管内，并利用由非金属材料构成的具有圆锥面的芯轴（mandrel），使套管扩大的方法。

图2是用于说明通过扩管进行埋设的方法的图。在该埋设方法中，如图2所述，在挖出的井中埋设钢管1，接着挖掘钢管1的前端使井变深，并在埋设的钢管1内插入钢管3。接着，例如利用由钢管3的下部的油压，使插入在钢管3内的工具4上升，进行扩管。依序反复进行该操作，最后完成将油或气体汲取上来的钢管（敷设管道）2的埋设。

图3是表示通过扩管法埋设有敷设管道2的状态的图。通过采用该扩管埋设方法，如图3所示，由于能够使埋设后的钢管之间的间隙变小，所以能够减少挖掘面积，从而大幅度地减少挖掘费用。

但是，在上述的扩管法中存在以下的问题。第一个问题是，所埋设的被扩管的钢管对地下外压的耐塌陷性能，即抗压强度显著降低。另一个问题是，在扩管的钢管产生弯曲。

在钢管中几乎不可避免地存在偏厚现象。偏厚是指，在管的横截面上的厚度的不均匀。如果对具有厚度差异的钢管进行扩管，则厚度薄的部分比厚度厚的部分加工率变大，从而使偏厚率扩大。这将导致抗压强度的下降。另外，由于扩管加工，厚度厚的部分和厚度薄的部分在圆周方向的扩大量上出现差异，这将成为长度方向上的收缩量的差异，因此，钢管会弯曲。如果套管或敷设管道发生弯曲，则会在钢管之间的接合部即螺丝部作用不均匀的应力，发生气体泄漏。

基于以上的理由，在引入埋设扩管法这种新技术时，需要即使在扩管的情况下抗压强度也不下降且弯曲小的钢管。

发明内容

本发明的目的之一是提供一种，即使在插入到井的状态下进行扩管，抗压强度的下降也较小的钢管。更具体地讲提供一种，将厚度均匀的管的扩管后的抗压强度（C0）作为1时，扩管后的油井管的实测抗压强度（C1）在0.8以上的即C1/C2≥0.8的钢管。

本发明的目的之二在于提供一种，即使在插入到井中的状态下进行扩管，弯曲较小的钢管。
本发明的目的之三在于提供一种，使用上述钢管的油井管的埋设方法。

本发明人等调查了埋设钢管进行扩管时，抗压强度下降的原因和发生弯曲的原因，其结果得到了如下的见解。

（a）如果将厚度不等的钢管扩管，则偏厚现象将进一步扩大。该偏厚现象成为抗压强度下降的原因。其理由在于，由于扩管，材料被拉向管周方向而产生厚度的变薄，从而厚度薄的部分的厚度将更加变薄。

（b）只要是扩管前的偏厚率 E0 满足下记①的钢管，则扩管后的抗压强度就不成问题。

\[E0 \equiv 30/(1+0.018\alpha) \]

该式①的 \(\alpha \) 是管的扩管率（%），用下式②进行计算。

\[\alpha = [(\text{扩管后的管的内径}-\text{扩管前的管的内径})/\text{扩管前的管的内径}] \times 100 \]

\[E0 \] 是扩管前的偏厚率（%），用下式③进行计算。

\[E0 = [(\text{扩管前的管的最大壁厚}-\text{扩管前的管的最小壁厚})/\text{扩管前的管的平均壁厚}] \times 100 \]

另外，扩管后的偏厚率 E1（%）是用下式④进行计算。

\[E1 = [(\text{扩管后的管的最大壁厚}-\text{扩管后的管的最小壁厚})/\text{扩管后的管的平均壁厚}] \times 100 \]

c)如果进行扩管加工，则由于原来存在的管的偏厚现象，钢管上会产生弯曲。若由于扩管，管向周边被拉，则厚度薄的部分比厚度厚的部分更加向圆周伸长，因此长度比壁厚的部分减少得更多。这就是发生管的弯曲的原因。若要减小这种由于扩管而引起的管的弯曲，重要的不是单纯减小管的偏厚率，而是减小上述的偏芯偏厚率。

本发明是基于上述见解而完成的，其宗旨是下式(1)和(2)的钢管以及(3)的钢管的埋设方法。

(1)一种钢管，是在被插入于井内的状态下被扩管，其特征在于扩管前的偏厚率 E0（%）满足下式①。

\[E0 \equiv 30/(1+0.018\alpha) \]

其中， \(\alpha \) 是用上述式②算出的扩管率（%）。
（2）一种钢管，是在被插入于井内的状态下被扩管，其特征在于偏芯偏厚率为10%以下。

上述（1）或（2）的钢管，优选是以下（a）、（b）或（c）的化学组成的钢管。下面，关于成分含量的%是质量%。

（a）C：0.1～0.45%、Si：0.1～1.5%、Mn：0.1～3%、P：0.03%以下、S：0.01%以下、sol.Al：0.05%以下、N：0.01%以下、Ca：0～0.005%、其余由Fe和杂质构成的钢管。

（b）C：0.1～0.45%，Si：0.1～1.5%，Mn：0.1～3%，P：0.03%以下，S：0.01%以下，sol.Al：0.05%以下，N：0.01%以下，Ca：0～0.005%、以及Cr：0.2～1.5%、Mo：0.1～0.8%、和V：0.005～0.2%中的1种或2种以上，其余由Fe和杂质构成的钢管。

（c）代替一部分Fe，含有Ti：0.005～0.05%和Nb：0.005～0.1%中的一种或两种的上述（a）或（b）的钢管。

（3）一种油井用钢管的埋设方法，是在挖掘的井内埋设钢管，并进一步挖掘所埋设的钢管的前端部的地下，以使井更深，然后在所埋设的钢管内插入具有比该钢管内径更小的外径的钢管，将其埋设在变深的井内，并利用插入到管内的工具对该钢管进行扩管，以使其直径变大，然后挖掘所扩管的钢管的前端部的地下，以使井更深，接着在所扩管的钢管内插入具有比该钢管内径更小的外径的钢管，将其埋设在变深的井内并进行扩管，反复进行这样的操作，以此，依次埋设直径更小的钢管的方法，其中作为扩管的钢管使用了上述（1）或（2）的钢管。

1. 防止抗压强度的下降

图7是用于说明偏厚的图，图7（a）是油井管的侧视图，图7（b）是横截面图。如图7（a）和（b）所示，将管的长度方向上的某一位置的横截面以22.5度的间隔分成16等分，并利用超声波法等测定各位置上的管的厚度。由该测定结果，分别求出其横截面的最大厚度、最小厚度以及平均厚度，并由下式⑤算出偏厚度（%）。

偏厚百分率（%） = [(最大壁厚 - 最小壁厚)] / 平均壁厚] × 100

... ⑤

所述的E0和E1是分别对扩管前的钢管和扩管后的钢管，通过式⑤求
出的扩管率。如图7（a）所示，从1根管的管端在长度方向上，以500mm的间隔对10处的横截面求出上述的偏厚度，并将其中最大的偏厚度作为该管的偏厚度。

所述式①是根据以下所示的试验求出的。

使用以重量％计具有C: 0.24％、Si: 0.31％、Mn: 1.35％、P: 0.011％以下、S: 0.003％、sol.Al: 0.035％以下、N: 0.006％，其余由Fe和杂质构成的化学组成，且外径为139.7mm、壁厚为10.5mm、长度为10m的无接头钢管（API-L80级别的等效品）进行扩管试验。

利用试验机采用钢管芯棒拔管法，扩管各油井管。扩管率是以管坯内径的扩大率分为10％、20％和30％的3种。

在扩管前和扩管之后，利用超声波测定器（UST）测定管的壁厚度分布，并由测定的壁厚求出偏厚度。接着，测定扩管加工后的油井管的抗压强度。抗压强度（PSI）是根据API规格的RP37测定的。

图5表示了扩管前的偏厚度和扩管后的偏厚度之间的关系。由图5可知，扩管后的偏厚度大于扩管前的管的偏厚度。另外，扩管后的管的偏厚度与扩管前的管的偏厚度近似成比例关系，其比例系数是根据扩管率而不同。如果要将各扩管率的E1和E0的关系（图5中的实线）用一个式子表示，则就是下式⑥。

\[E1 = (1 + 0.018 \alpha)E0 \quad \cdots \quad (6) \]

其中，E0是扩管前的管的偏厚度（％），E1是扩管后的管的偏厚度（％），\(\alpha \)是管的扩管率（％）。根据该式⑥，可以在扩管之前预测出扩管后的偏厚度。

在图6中表示了由上述试验所得到的[实测抗压强度/通过计算得到的扩管后的厚度均匀管的抗压强度]和扩管后的偏厚度之间的关系。通过计算求出的扩管后的厚度均匀的管的抗压强度（CO）是根据以下式⑦求出的计算值。

\[CO = 2 \sigma y \left[\frac{(D/t)-1)}{(D/t)^2} \right] \left[1 + \frac{1.47}{(D/t)-1} \right] \quad \cdots \quad (7) \]

式⑦中的\(\sigma y \)是管的圆周方向的屈服强度（单位：MPa），D是扩管后的管的外径（单位：mm），t是扩管后的管的厚度（单位：mm）。另外，对于式⑦，在塑性和加工、第30卷、第338号（1989）、第385～390页中有说
明。

由图6可知，当扩管率为10%和20%时，如果扩管后的管的偏厚率达到30%以上，则压弯程度将显著下降，其压弯程度比壁厚均匀的管的压弯程度下降2成以上。另外，当扩管率为30%时，若扩管后的偏厚率达到25%以上，则压弯程度比没有厚度偏厚现象的钢管的压弯程度降低2成以上。

压弯程度像所述那样下降的原因在于，如果由扩管而变大的偏厚率超过25%～30%，则管的圆度会明显变差，进而该壁厚和圆度恶化的协同效果会对压弯程度带来不好的影响。另外，以30%以上的高扩管率进行了扩管时，若扩管后的偏厚率超过10%，则压弯程度的下降会增大。但是，若要将[实测压弯程度/厚度均匀管的压弯程度]保持在0.80以上，则只要使扩管后的偏厚率在30%以下就可以。

如前所述，扩管后的管的偏厚率E1是可以用式⑧进行预测。因此，使该E1在30%以下的条件下满足下式⑧。

\[E_1 = (1 + 0.018 \alpha) E_0 \leq 30 \quad \cdots \quad ⑧ \]

由下式⑧，可以得到以下式①。

\[E_0 \leq 30 / (1 + 0.018 \alpha) \quad \cdots \quad ① \]

由图6可知，E1的值越小，越优选。因此，E0优选满足下式①－1，更优选满足式①－2。

\[E_0 \leq 25 / (1 + 0.018 \alpha) \quad \cdots \quad ①－1 \]
\[E_0 \leq 10 / (1 + 0.018 \alpha) \quad \cdots \quad ①－2 \]

2、防止由扩管引起的管的弯曲

为了详细调查钢管的偏厚和扩管后的弯曲之间的关系，研究了扩管前的钢管的偏厚的形态。因钢管通过各种工序制造而得，所以会在各种工序中产生各种偏厚。如图8（b）所示，除了360度周期的偏厚（称作1元偏厚）以外，还有180度周期的偏厚（称作2元偏厚）、120度周期的偏厚（称作3元偏厚）、90度周期的偏厚（称作4元偏厚）以及60度周期的偏厚（称作6元偏厚）。这些偏厚可以正弦波函数用数学式表示。

如图8（a）所示，钢管的实际截面形状是上述各种不同偏厚重叠而成的。也就是说，钢管的实际偏厚是将用正弦波表示的各次元的偏厚叠...
加起来的。因此，若要求出 k 元的偏厚量，只要以一定间隔测定管截面的壁厚，并根据下式(9)将其厚度曲线（profile）进行傅立叶变换即可。在这里，k 元偏厚量定义为，在 k 元偏厚成分的最大壁厚和在 k 元偏厚成分的最小壁厚之差。

\[G(k) = 4\sqrt{R^2(k) + I^2(k)} \quad \cdots (9) \]

\[R(k) = \frac{1}{N} \sum_{i=1}^{N} \{WT(i) \cdot \cos(2\pi / N \cdot k \cdot (i - 1))\} \]

\[I(k) = -\frac{1}{N} \sum_{i=1}^{N} \{WT(i) \cdot \sin(2\pi / N \cdot k \cdot (i - 1))\} \]

这里，N 表示管截面的壁厚测定点数，WT(i) 是被测定的壁厚曲线，其中 i=1, 2, ..., N。

如在后述的[实施例 2]中的说明，调查了钢管的偏厚率和由于扩管而发生的弯曲之间的关系。这时，将扩管前的钢管的偏厚分离为各次元的壁厚，确认了各种偏厚率对扩管后的弯曲的影响。其结果，确认了如图 9、10 和 11 所示的关系。这些图表示着扩管前钢管的偏芯偏厚率和扩管后钢管的以“1/曲率半径”表示的弯曲量之间的关系。由图 10 和图 11 可知原本存在于钢管中的偏厚中，2 元以上的偏厚对由于扩管而发生的钢管弯曲的影响小。另一方面，如图 9 所示，图 8 (b) 所示的偏芯偏厚即 1 元偏厚最能促进扩管加工后的弯曲。

钢管的偏芯偏厚（1 元偏厚），是在钢管的制造工序中例如用穿孔机等进行压延时当作为穿孔工具的芯棒（plug）撞在偏离圆柱形铸片的中心位置而进行穿孔时产生。即，偏芯偏厚是厚度薄的部分和厚度厚的部分分别以 360 度为周期存在的偏厚。因此，偏芯偏厚率 (%) 可用下式(10)定义。

\[\text{偏芯偏厚率} = \frac{[(\text{在偏芯偏厚成分中的最大壁厚} - \text{在偏芯偏厚成分中的最小壁厚})}{\text{平均壁厚}}] \times 100 \quad \cdots (10) \]

如图 9 所示，偏芯偏厚率越大，“1/曲率半径” 也变得越大。即弯曲变大。作为油井管而使用时，为了确保螺丝部的可靠性，“1/曲率半径” 必须在 0.00015 以下，优选为 0.0001 以下，更优选为 0.00005 以下。由图 9 可知，如果扩管前的钢管的偏芯偏厚率在 10% 以下，优选为 8% 以
下，更优选为5%以下，即此时30%的扩管率进行扩管，也可作为油井管而使用。

以上，对于本发明的钢管，分为两偏厚率和偏芯偏厚率进行了说明。偏厚率是如图8(a)所示由实际管横截面的最大壁厚和最小壁厚求得。另一方面，偏芯偏厚是指如图8(b)所示的一元偏厚的偏厚率。因此，只要满足偏厚率满足上述式①或者是偏芯偏厚率在10%以下之中的任一方就可以。但是，如果同时满足以上2个条件，则扩管后的钢管的抗压强度高且弯曲少。

3、钢管的埋设方法

本发明的埋设方法，其特征在于使用以上所述的本发明的钢管进行。具体的是按照以下顺序进行的埋设方法。

1）在挖掘的井内埋设钢管，然后进一步挖掘所埋设的钢管的前端部的地下以使井更深，接着向埋设的钢管内部插入外径比较该钢管的内径小的第2钢管，而将该第2钢管埋设在变深的井内。

2）利用插入到管内的工具对该第2钢管进行扩管，以使其直径变大，然后挖掘该管的第2钢管的前端部的地下，以使井更深，接着在所扩管的第2钢管内插入具有比该钢管内径更小的外径的第3钢管，将其埋设在变深的井内，并进行扩管。

3）重复进行上述埋设和扩管，依次埋设直径更小的油井管。

这时，作为进行扩管的钢管，使用了所述的本发明的钢管。作为扩管加工的方法，可选择性地使用利用液压提升芯棒或带有锥度的芯轴或者用机械方法拉拔的各种方法。

附图说明

图 1 是说明以往的油井挖掘方法的图。
图 2 是说明利用扩管法的油井挖掘方法的图。
图 3 是表示用扩管法埋设的油井管的图。
图 4 是表示扩管的状态的纵向截面图。
图 5 是表示通过试验求得的扩管前的钢管的偏厚率和扩管后的钢管的偏厚率之间关系的图。
图 6 是表示扩管后的钢管的偏厚层和抗压强度下降之间关系的图。
图 7 是表示用于求得偏厚层的管的壁厚测定位置的图。
图 8 是说明钢管的偏厚形态的横向截面图。
图 9 是表示扩管前的钢管的偏心偏厚层（1 元偏厚层）和扩管后的钢管的弯曲量之间关系的图。
图 10 是扩管前的钢管的 2 元偏厚层和扩管后的钢管的弯曲量之间关系的图。
图 11 是扩管前的钢管的 3 元偏厚层和扩管后的钢管的弯曲量之间关系的图。

具体实施方式

下面，详细地说明本发明地实施方式。

在本发明中，在埋设的钢管内插入具有比该埋设管的内径小的外径的钢管进行扩管，是为了如前所述，通过使之前的埋设的钢管和之后所埋设的钢管之间的间隙变小，使用于埋设油井管的挖掘面积变小。

用扩管的方法使钢管的直径变大的方法没有特别的限定，最优先的方法是如图 2 所示，向管内插入设有锥度的工具（芯棒），然后从油井管的下端注油以施加压力，通过油压提升工具而进行扩管加工的方法。

另外，也可以使用用机械方法拉拔工具的方法。

这时，关键是，作为进行扩管的油井管，使用本发明的钢管。由此，可以抑制扩管后钢管的抗压强度下降和弯曲。

没有必要对作为套管的所有钢管进行扩管。即使仅对 1 尺寸或 2 尺寸的套管用钢管进行扩管，也具有减少油田挖掘面积的效果。若要对所有尺寸的钢管进行扩管，因需要准备多种扩管用工具且会增加扩管作业，所以最好考虑到这些所需的费用，对必须进行扩管的钢管进行限定。

本发明的钢管可以使用于新型的油田开发，也可使用于已有油田的修补。也就是说，当套管的一部分破损或者腐蚀时，取出该部分套管，并插入所要替代的钢管，并进行扩管，以此进行修补。

本发明的钢管，可以是焊接了钢板的对接部分的电缝钢管（ERW 钢管），也可以是由钢坯制得的无缝钢管。制管之后，可以进行淬火、回火
等热处理，冷拉等形状矫正。对于化学组成也没有特别的限制。例如，
C-Mn 钢、Cr-Mo 钢等低合金钢，13 Cr 钢，高 Ni 钢等铁素体系，马氏体
系，2 相系和奥氏体系的不锈钢也可以使用。

在之前所示的 (a)、(b) 和 (c) 的钢管是优选钢管的代表例。下面
说明该优选钢管的各成分的作用效果和含量。

C:

C 是确保钢的强度且为获得充分的淬火性能而所需的元素。为了获
得这些效果，优选的含量在 0.1% 以上。若含量低于 0.1%，则若要得到
所需的强度，需要在低温下进行回火，硫化物应力腐蚀裂缝 (以下记为
SSC) 的敏感性变大，所以不理想。相反，如果 C 的含量超过 0.45%，
则淬火时的淬裂敏感性增大，且韧性也变差。因此，C 的含量在 0.1～0.45
% 是优选的。更优选是在 0.15～0.3%。

Si:

Si 具有作用钢的脱氧剂的效果和提高回火软化阻力从而提高强度的
效果。如果其含量低于 0.1%，则这些效果不够充分。相反，如果 Si 的
含量超过 1.5%，则钢的热加工性会显著变差。因此，Si 的含量在 0.1～1.5
% 是优选的。更优选的范围是 0.2～1%。

Mn:

Mn 是增加钢的淬火性能确保钢管的强度所需的有效元素。若其含
量低于 0.1%，则其效果不够充分，且强度和韧性将同时下降。相反，若
Mn 的含量超过 3%，则其偏析变多，使韧性下降。因此，Mn 含量的范
围在 0.1～3% 优选的。更优选的范围是 0.3～1.5%。

P:

P 是在钢中作为杂质而含有的元素。如果其含量超过 0.03%，则会
偏析到晶粒边界上使韧性下降，所以 P 含量优选在 0.03% 以下。含量越
少越好，更优选的是在 0.015% 以下。

S:

S 是在钢中作为杂质而含有的元素。由于它与 Mn 或 Ca 等元素形成
硫化物系的夹杂物，使韧性变差，所以其含量越少越好。若含量超过 0.01
%，则韧性的劣化变得显著，所以优选在 0.01% 以下。更优选的是在 0.005
%以下。

sol.Al:

Al 是作为钢的脱氧剂而使用的元素。若 sol.Al 含量超过 0.05% 则不仅脱氧效果达到饱和，而且会导致钢的韧性的下降。因此，sol.Al 的含量优选在 0.05%以下。sol.Al 实际上可以不含有，但为了充分得到上述的效果，优选使其含量在 0.01%以上。

N:

N 是在钢中作为杂质而含有的元素，与 Al 或 Ti 等元素形成氮化物。特别是，当 AlN 或 TiN 大量地析出时，钢的韧性会变差。因此，N 的含量优选在 0.01%以下。N 的含量越少越好，但更为优选的是 0.008%以下。

Ca:

Ca 是根据需要而含有的元素，它在改变硫化物的形态而提高韧性方面有效。因此，特别是钢的韧性显得重要时含有为好。为了充分地得到该效果，含有 0.001%以上为好。另外，若 Ca 的含量超过 0.005%，则夹杂物的生成量大，会成为点腐蚀的起点等而在耐腐蚀性方面上出现负面影响。因此，当含有 Ca 时 Ca 的含量范围在 0.001～0.005%为好。更为理想的范围是在 0.002～0.004%。

在具有上述化学组成的油井管中，若要进一步提高强度，以含有 Cr、Mo、V 中的 1 种以上为好。并且，若要防止高温区域中的晶粒的粗大化，以确保韧性，含有 Ti 和 Nb 中的一种以上为好。以下，说明各元素的优选的范围。

Cr、Mo 和 V 中的一种以上:

通过含有适当量的这些元素，可以有效地提高钢的淬火性，提高强度。若要得到这些效果，优选在下述的含量范围内含有上述元素的 1 种或 2 种以上。另一方面，若含量超过适当的量，这些元素容易形成粗大的碳化物，在大多数情况下反而会导到韧性或耐腐蚀性的劣化。

另外，Cr 除了具有上述效果之外，在使高温二氧化碳环境中的腐蚀速度变小的方面也有效的。同样地，Mo 具有抑制由于 P 等的晶界偏析而引起的脆化的效果，V 也具有提高回火软化阻力的效果。

Cr: 0.2~1.5%。更优选的范围是在 0.3~1%。
Mo: 0.1~0.8%。更优选的范围是在 0.3~0.7%。
V: 0.005~0.2%。更优选的范围是在 0.008~0.1%。

Ti 以及 Nb:

这些元素是，通过含有适当量而形成 TiN 或 NbC，并以此具有防止晶粒的粗大化、提高韧性效果的元素。若要得到防止晶粒粗大化的效果，以在下述的含量范围内含有这些元素中的 1 种或 2 种为好。另外，若含量超过适当的量，则 TiC 或 NbC 的生成量会成为过量，使钢的韧性变差。

Ti: 0.005~0.05%。更优选的范围是在 0.009~0.03%。
Nb: 0.005~0.1%。更优选的范围是在 0.009~0.07%。

实施例

[实施例 1]

熔炼表 1 中所示的 4 种化学组成的钢，并用通常的满乃斯曼－mandrel 制管法，制造了外径为 139.7mm、壁厚为 10.5mm、长度为 10m 的无缝钢管。对该钢管进行淬火－回火的热处理，制得 API-L80 级别（屈服强度：570MPa）等同品。

根据 UST 测定钢 A、钢 B 及钢 C 的钢管的扩管前的偏厚率，测定后，在管内插入芯棒，用机械方法进行拉拔扩管加工。以管坯内径的扩大率，做成 10%、20% 和 30% 等 3 种扩管率。

图 4 是扩管加工中的芯棒周边的截面图。如图 4 所示，管坯 5 是通过固定扩管开始侧的端部，并用机械方法拉拔芯棒 4 而进行了扩管。芯棒前端部的锥度角 α 为 20 度。根据所述式②求出了扩管率。若使用图 4 中的符号，具体如下。

扩管率 = [(扩管后的内径 d1－扩管前的内径 d0)/d0] × 100

根据 UST 测定了扩管前的钢管和扩管后的钢管的壁厚分布。并由测定的壁厚求出了偏厚率。根据 API 规格的 RP37 测定了扩管加工后的钢管的抗压强度。另外，厚度分布的测定是，如根据图 7 所作出的说明，在管的长度方向上以 500mm 为间距，在 10 处横截面的每一横截面上每隔 22.5 度的间距在 16 处进行。在其测定结果中，将最大的偏厚率示于表 2 中。表 2 中的 CI/CO 是，扩管后的钢管的实测抗压强度(C1)和根据
上述⑦式计算得到的没有偏厚的钢管的抗压强度（CO）的比值。

由表 2 可知，满足式①即满足 $E_0 \leq 30/\left(1 + 0.018 \alpha \right)$ 的本发明例中，在所有的扩管率下，抗压强度高，且 C_1/CO 在 0.8 以上。另一方面，使用偏厚率不满足式①的钢管进行扩管的比较例，在所有的扩管率下抗压强度低，且 C_1/CO 小于 0.8。

表 1

<table>
<thead>
<tr>
<th>钢种</th>
<th>试样材料的化学组成（质量%、余部：Fe 和杂质）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>0.24</td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
</tr>
<tr>
<td>C</td>
<td>0.12</td>
</tr>
<tr>
<td>D</td>
<td>0.24</td>
</tr>
</tbody>
</table>
表 2

<table>
<thead>
<tr>
<th>钢种</th>
<th>扩管率 (α) (%)</th>
<th>扩管前的偏厚率 (EI) (%)</th>
<th>扩管后的偏厚率 (E1) (%)</th>
<th>30/ (1+0.018α)</th>
<th>实测抗压强度 (C1) (\text{psi})</th>
<th>C1/CO</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>5.4</td>
<td>6.5</td>
<td>25.4</td>
<td>11200</td>
<td>0.98</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>25.0</td>
<td>29.0</td>
<td>25.4</td>
<td>9500</td>
<td>0.82</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>30.0</td>
<td>34.5</td>
<td>25.4</td>
<td>8800</td>
<td>0.76</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10.0</td>
<td>14.0</td>
<td>22.1</td>
<td>9150</td>
<td>0.91</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>17.4</td>
<td>24.5</td>
<td>22.1</td>
<td>8750</td>
<td>0.87</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>25.0</td>
<td>32.0</td>
<td>22.1</td>
<td>7700</td>
<td>0.77</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.8</td>
<td>1.2</td>
<td>19.5</td>
<td>8100</td>
<td>0.95</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.0</td>
<td>13.6</td>
<td>19.5</td>
<td>7250</td>
<td>0.85</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>23.0</td>
<td>34.0</td>
<td>19.5</td>
<td>6100</td>
<td>0.72</td>
<td>×</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>0.8</td>
<td>1.0</td>
<td>25.4</td>
<td>12800</td>
<td>0.98</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>13.3</td>
<td>16.1</td>
<td>25.4</td>
<td>12400</td>
<td>0.95</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>32.0</td>
<td>38.0</td>
<td>25.4</td>
<td>9600</td>
<td>0.73</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.0</td>
<td>9.0</td>
<td>22.1</td>
<td>10800</td>
<td>0.96</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20.0</td>
<td>26.5</td>
<td>22.1</td>
<td>9500</td>
<td>0.84</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>26.0</td>
<td>36.0</td>
<td>22.1</td>
<td>8160</td>
<td>0.72</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>12.0</td>
<td>18.4</td>
<td>19.5</td>
<td>9200</td>
<td>0.83</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>14.2</td>
<td>23.0</td>
<td>19.5</td>
<td>7800</td>
<td>0.82</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>26.0</td>
<td>41.0</td>
<td>19.5</td>
<td>6500</td>
<td>0.67</td>
<td>×</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>18.0</td>
<td>20.5</td>
<td>25.4</td>
<td>8000</td>
<td>0.92</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>21.0</td>
<td>26.0</td>
<td>25.4</td>
<td>7800</td>
<td>0.90</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>35.0</td>
<td>42.0</td>
<td>25.4</td>
<td>6050</td>
<td>0.69</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>13.1</td>
<td>18.3</td>
<td>22.1</td>
<td>6750</td>
<td>0.90</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21.0</td>
<td>29.5</td>
<td>22.1</td>
<td>6000</td>
<td>0.80</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>31.0</td>
<td>42.2</td>
<td>22.1</td>
<td>5100</td>
<td>0.68</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.0</td>
<td>8.0</td>
<td>19.5</td>
<td>5800</td>
<td>0.91</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>18.0</td>
<td>26.5</td>
<td>19.5</td>
<td>5100</td>
<td>0.80</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>28.0</td>
<td>44.0</td>
<td>19.5</td>
<td>4100</td>
<td>0.65</td>
<td>×</td>
</tr>
</tbody>
</table>

注：C1：扩管后的钢管的抗压强度。CO：没有偏厚的钢管的抗压强度的计算值。

备注栏的○是本发明例，×是比较例

[实施例 2]

使用表 1 中的 D 钢，与实施例 1 同样地制造外径为 139.7mm、壁厚为 10.5mm、长度为 10m 的无缝钢管，并对该钢管进行淬火—回火的热处理，制得 API-L80 级别等同品。
根据 UST 确认了扩管前的钢管的厚度曲线。厚度曲线是，如图 7 所示，根据在管的长度方向上以 500mm 为间距，在 10 处横截面的圆周方向上进行 16 等分而定的测定点位置上测得其壁厚而求得。由该壁厚曲线，根据傅立叶解析抽取偏芯偏厚（1 元偏厚）、2 元偏厚和 3 元偏厚的成分，求出了各成分的偏厚率。其结果表示于表 3 中。表 3 的测定 No.是，在管的长度方向上的测定位置处的序号。

表 3

<table>
<thead>
<tr>
<th>测定 No.</th>
<th>平均壁厚（mm）</th>
<th>1 元偏厚（偏心偏厚）</th>
<th>2 元偏厚</th>
<th>3 元偏厚</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>偏厚 (mm)</td>
<td>偏厚率 (%)</td>
<td>偏厚 (mm)</td>
<td>偏厚率 (%)</td>
</tr>
<tr>
<td>1</td>
<td>10.56</td>
<td>0.57</td>
<td>5.4</td>
<td>0.37</td>
</tr>
<tr>
<td>2</td>
<td>10.58</td>
<td>0.42</td>
<td>4.0</td>
<td>0.03</td>
</tr>
<tr>
<td>3</td>
<td>10.52</td>
<td>0.41</td>
<td>3.9</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>10.51</td>
<td>0.32</td>
<td>3.0</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>10.45</td>
<td>0.48</td>
<td>4.3</td>
<td>0.09</td>
</tr>
<tr>
<td>6</td>
<td>10.43</td>
<td>0.33</td>
<td>3.2</td>
<td>0.07</td>
</tr>
<tr>
<td>7</td>
<td>10.37</td>
<td>0.46</td>
<td>4.4</td>
<td>0.10</td>
</tr>
<tr>
<td>8</td>
<td>10.44</td>
<td>0.50</td>
<td>4.8</td>
<td>0.12</td>
</tr>
<tr>
<td>9</td>
<td>10.54</td>
<td>0.51</td>
<td>4.8</td>
<td>0.14</td>
</tr>
<tr>
<td>10</td>
<td>10.43</td>
<td>0.48</td>
<td>4.6</td>
<td>0.08</td>
</tr>
</tbody>
</table>

使用上述管坯，按照与实施例 1 相同的方法进行扩管。扩管率为 10%、20% 和 30%。

在管坯长度方向的偏心偏厚率最大的部位（表 3 的测定 No.1 的位置）上，测定了扩管后的钢管弯曲的曲率半径。也测定了其他部位的曲率半径，但这些值大，并不是实用上成为障碍的弯曲。

在图 9、图 10 和图 11 中分别表示了管坯的 1 元偏厚（偏芯偏厚）、2 元偏厚、3 元偏厚的偏厚率和扩管后的钢管的曲率半径的倒数之间的关
系。如图 9 所示，偏芯偏厚率超过 10% 的管坯中，由扩管而产生的弯曲显著大。如图 10 和图 11 所示，2 元或 3 元的没有偏芯的偏厚和弯曲量之间的关联少。由以上事实可知，若要抑制扩管后的弯曲，重要的是将管坯的偏心偏厚率控制在 10% 以下。

本发明的钢管在扩管之后也具有高的抗压强度。并且，由扩管而导致的弯曲也小。通过对钢管使用埋设扩管法，可得到使井的挖掘面积小且提高油井管的可靠性等效果。
图5

图6
图 7

图 8
图 9

图 10
图 11