
US008140976B2

(12) United States Patent (10) Patent No.: US 8,140,976 B2
Bohn et al. (45) Date of Patent: Mar. 20, 2012

(54) USING CONTENT AGGREGATION TO BUILD (58) Field of Classification Search ... 715/736,
ADMINISTRATION CONSOLES

(75) Inventors: Joseph A. Bohn, Durham, NC (US);
Kathryn H. Britton, Chapel Hill, NC
(US); Samar Choudhary, Morrisville,
NC (US); Donald F. Ferguson,
Yorktown Heights, NY (US); Carol A.
Jones, Raleigh, NC (US); Richard A.
King, Cary, NC (US); Jason R. McGee,
Apex, NC (US); Christopher C.
Mitchell, Raleigh, NC (US); Vijay
Pandiarajan, Morrisville, NC (US);
Douglas R. Petty, Rochester, MN (US);
Elizabeth A Schreiber, Cary, NC (US);
Timothy G. Shortley, Raleigh, NC
(US); Shikha Srivastava, Cary, NC
(US); John W. Sweitzer, Austin, TX
(US); Robert T. Uthe, Morrisville, NC
(US)

(73) International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 798 days.

Notice: (*)

(21) 12/258,455

(22)

Appl. No.:

Filed: Oct. 27, 2008

(65) Prior Publication Data

US 2009/OO44152 A1 Feb. 12, 2009

Related U.S. Application Data
Continuation of application No. 10/795,008, filed on
Mar. 5, 2004, now Pat. No. 7,493,563.

(63)

Int. C.
G06F 15/16 (2006.01)
G06F 15/177 (2006.01)
U.S. C. 715/736; 715/738; 709/218; 709/222;

709/224

(51)

(52)

dozens of
systems and
applications

NS Wes
Server Server

715/738; 709/218, 222, 224
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,361,361 A 11/1994 Hickman et al.
5,893,916 A 4/1999 Dooley
6,011,537 A 1/2000 Slotznick
6,043,816 A 3/2000 Williams et al.
6,049,799 A 4/2000 Mangat et al.
6,219,700 B1 4/2001 Chang et al.
6,240,410 Bl 5, 2001 Wical
6.256,668 B1 7/2001 Slivka et al.

(Continued)

OTHER PUBLICATIONS

Joseph A. Bohnet al., U.S. Appl. No. 10/795,007, filed Mar. 5, 2004,
Office Action, Jun. 5, 2007, 11 pages.

(Continued)

Primary Examiner — Tadeese Hailu
Assistant Examiner — Haoshian Shih
(74) Attorney, Agent, or Firm — Marcia L. Doubet

(57) ABSTRACT

Content aggregation is used to build administration consoles.
Preferred embodiments enable providing a solution-based
approach to information technology (IT) administration,
whereby content can be flexibly arranged to provide a content
view that is adapted for the IT solution deployed in a particu
lar IT environment. In preferred embodiments, portal tech
nology is used for the aggregation framework, and portlets are
used for creating content. Alternatively, other approaches
such as struts and tiles may be used. Preferred embodiments
deploy an administration console as a Web-accessible appli
cation, and this console consolidates the administration inter
faces for an arbitrary set of management operations, includ
ing administration of an arbitrary collection of hardware and/
or software resources. Roles/permissions may be used when
rendering content for the console, thereby customizing a view
to individual end users (or user groups).

6 Claims, 37 Drawing Sheets

Directory
and Security existing

Applications

Business
data

housands of
tuning

parameters

Storage Area
Network

Web Never Application
Sewer

BPs and
External
Services

Hundreds of
esses

US 8,140,976 B2
Page 2

6,281,900
6,353,446
6,510,466
6,563,514
6,573,906
6,584,496
6,621.505
6,799,198
6,801.222
6,820,094
6,918,090
6,970,869
6,993,720
7,024,658
7,028,264
7,062,511
7,072,807
7,203,909
7,444,633
7,493.563
7,783,638
7,890,864
7,930,696

2001/OO34771
2002fOO32763
2002.0053O20
2002.0054152
2002fOO63735
2002/009 1993
2002fO1164.54
20O2/O12O607
2002/01291.36
2002.0143949
2002fO1460.18
2002/0147709
2002fO149601
2002/0158899
2002.0161876
2002fO165745
2002/0178254
2002/0178290
2002fO188612
2002fO1886.13
2003/0001875
2003, OO18650
2003/0055868
2003/0055878
2003/0056O26
2003/0059009
2003/0065827
2003/01 17437
2003/O126558
2003/013.7538
2004.0002944
2004/0059.705
2004/O104931
2004/O113948
2004/O133660
2004/O148586
2004/O1993.92
2004/0230901
2004/0254884
2005, OO659.13
2005, OO65953
2005.0102429
2005/O154719
2005/O154986
2005/O193OO1
2005/O198042
2005/O1981.96
2005/O1982O1
2005, 0198648
2005.0246632
2006, OO31222
2006/0031849
2006/0271844
2008/027O929

U.S. PATENT DOCUMENTS

B1
B1
B1
B1
B1
B1
B1
B1
B1
B1
B2
B1
B1
B1
B2
B1
B2
B1
B2
B2
B2
B2
B2
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1

8, 2001
3, 2002
1, 2003
5/2003
6, 2003
6, 2003
9, 2003
9, 2004

10, 2004
11, 2004
7/2005
11/2005

1, 2006
4, 2006
4, 2006
6, 2006
T/2006
4, 2007

10, 2008
2, 2009
8, 2010
2, 2011
4, 2011

10, 2001
3, 2002
5, 2002
5, 2002
5, 2002
T/2002
8, 2002
8, 2002
9, 2002

10, 2002
10, 2002
10, 2002
10, 2002
10, 2002
10, 2002
11, 2002
11, 2002
11, 2002
12, 2002
12, 2002

1, 2003
1, 2003
3, 2003
3, 2003
3, 2003
3, 2003
4, 2003
6, 2003
T/2003
T/2003
1, 2004
3, 2004
6, 2004
6, 2004
T/2004
T/2004

10, 2004
11, 2004
12, 2004
3, 2005
3, 2005
5/2005
7/2005
7/2005
9, 2005
9, 2005
9, 2005
9, 2005
9, 2005
11/2005
2, 2006
2, 2006

11, 2006
10, 2008

Ishikawa
Vaughan et al.
Cox et al.
Samar
Harding
Ludtke
Beauchamp et al.
Huboi et al.
Dunham et al.
Ferguson et al.
Hesmer et al.
Slaughter et al.
Hanoch et al.
Cohen et al.
Santoro et al.
Poulsen
Brown et al.
Horvitz et al.
Bohn et al.
Bohn et al.
Choudhary et al.
Bartek et al.
Bohn et al.
Hutsch et al.
Cox et al.
Teijido et al.
Palaniappan et al.
Tamir et al.
Walley et al.
Dyla et al.
Price et al.
Matharu
Rajarajan et al.
Kailamaki et al.
Rajarajan et al.
Rajarajan et al.
Raymond
Raymond
Greene et al.
Brittenham et al.
Coulthard et al.
Yu et al.
Chakraborty et al.
Black et al.
Priestley
Fletcher et al.
Fletcher et al.
Anuffet al.
Meyerson et al.
Skufoa et al.
Cook et al.
Griffin et al.
Hesmer et al.
Hauser et al.
Wittke et al.
Schmitt
Shahrbabaki et al.
Junghuber et al.
Gilboa
Khatri et al.
Godwin et al.
Haber et al.
Lillie et al.
Bower et al.
Pinhas et al.
Choudhary et al.
Bartek et al.
Shoham
Davis
Bohn et al.
Bohn et al.
Wray et al.
Guido et al.
Hannsmann
Barta et al.
Suldikar et al.
Bohn et al.

OTHER PUBLICATIONS

Joseph A. Bohnet al., U.S. Appl. No. 10/795,007, filed Mar. 5, 2004,
Office Action, Nov. 20, 2007, 14 pages.
Joseph A. Bohnet al., U.S. Appl. No. 10/795,007, filed Mar. 5, 2004,
Advisory Action, Feb. 13, 2008, 3 pages.
Joseph A. Bohnet al., U.S. Appl. No. 10/795,007, filed Mar. 5, 2004,
Examiner Interview Summary, Jun. 13, 2008, 1 page.
Joseph A. Bohnet al., U.S. Appl. No. 10/795,007, filed Mar. 5, 2004,
Notice of Allowance, Jun. 13, 2008, 6 pages.
Joseph A. Bohnet al., U.S. Appl. No. 10/795,008, filed Mar. 5, 2004,
Office Action, Jun. 1, 2007, 12 pages.
Joseph A. Bohnet al., U.S. Appl. No. 10/795,008, filed Mar. 5, 2004,
Office Action, Nov. 16, 2007, 14 pages.
Joseph A. Bohnet al., U.S. Appl. No. 10/795,008, filed Mar. 5, 2004,
Office Action, Apr. 9, 2008, 21 pages.
Joseph A. Bohnet al., U.S. Appl. No. 10/795,008, filed Mar. 5, 2004,
Examiner Interview Summary, Jun. 23, 2008, 2 pages.
Joseph A. Bohnet al., U.S. Appl. No. 10/795,008, filed Mar. 5, 2004,
Notice of Allowance, Oct. 10, 2008, 7 pages.
Velda Bartek et al., U.S. Appl. No. 10/754,375, filed Jan. 9, 2004,
Office Action, Dec. 5, 2006, 13 pages.
Velda Bartek et al., U.S. Appl. No. 10/754,375, filed Jan. 9, 2004,
Office Action, Apr. 16, 2007, 14 pages.
Velda Bartek et al., U.S. Appl. No. 10/754,375, filed Jan. 9, 2004,
Office Action, Oct. 3, 2007, 16 pages.
Velda Bartek et al., U.S. Appl. No. 10/754,375, filed Jan. 9, 2004,
Office Action, Jun. 9, 2008, 17 pages.
Velda Bartek et al., U.S. Appl. No. 10/754,375, filed Jan. 9, 2004,
Examiner's Answer, Oct. 15, 2008, 18 pages.
Samar Choudhary et al., U.S. Appl. No. 10/875,971, filed Jun. 24.
2004, Office Action, Nov. 16, 2006, 10 pages.
Samar Choudhary et al., U.S. Appl. No. 10/875,971, filed Jun. 24.
2004, Office Action, May 15, 2007, 14 pages.
Samar Choudhary et al., U.S. Appl. No. 10/875,971, filed Jun. 24.
2004, Office Action, Dec. 4, 2007, 15 pages.
Samar Choudhary et al., U.S. Appl. No. 10/875,971, filed Jun. 24.
2004. Examiners Answer, Jul. 2, 2008, 18 pages.
Samar Choudhary et al., U.S. Appl. No. 10/875,971, filed Jun. 24.
2004, BPAI Decision, Jan. 25, 2010, 14 pages.
Gary T. Barta et al., U.S. Appl. No. 10/819,053, filed Apr. 6, 2004,
Office Action, Jun. 26, 2009, 15 pages.
Gary T. Barta et al., U.S. Appl. No. 10/819,053, filed Apr. 6, 2004,
Office Action, Nov. 27, 2009, 14 pages.
Gary T. Barta et al., U.S. Appl. No. 10/819,053, filed Apr. 6, 2004,
Office Action, Mar. 17, 2011, 13 pages.
Gary T. Barta et al., U.S. Appl. No. 10/819,053, filed Apr. 6, 2004,
Examiner Interview Summary, Aug. 5, 2010, 3 pages.
Gary T. Barta et al., U.S. Appl. No. 10/819,053, filed Apr. 6, 2004,
Final Office Action, Oct. 15, 2010, 17 pages.
Velda Bartek et al., U.S. Appl. No. 10/754,375, filed Jan. 9, 2004,
BPAI Decision, Sep. 28, 2010, 9 pages.
Velda Bartek et al., U.S. Appl. No. 10/754,375, filed Jan. 9, 2004,
Notice of Allowance, Oct. 7, 2010, 6 pages.
Joseph A. Bohnet al., U.S. Appl. No. 12/168,784, filed Jul. 7, 2008,
Notice of Allowance and Examiner's Interview Summary, Dec. 13,
2010, 8 pages.
Lin, Hwa-Chun et al., “Distributed NetworkManagement by HTTP
Based Remote Invocation', Global Telecommunications Confer
ence, Rio de Janeiro, Dec. 5-9, 1999, GLOBECOM 99: Seamless
Interconnection for Universal Services (pp. 1889-1893).
Rowley, Ian, “SCADA and the Internet”, SCADA towards 2001,
Bi-Annual Symposium and Exhibition on SCADA, Gatwick, UK,
Jun. 5, 1997. Proceedings (pp. 1-15).
Shortley, Tim et al., “Integrated Solutions Console: a unified portal
for autonomic systems', IBM DeveloperWorks Live!, New Orleans,
LA, Apr. 9-12, 2003 (15 pages).
“Microsoft Management Console: Overview”, Microsoft Corpora
tion, Oct. 7, 1000, printed Nov. 18, 2003, <http://www.microsoft.
com/windows2000/techinfo/howitworks/management/mmcover.
asp (2 pages).
“Microsoft Management Console: Overview; White Paper'.
Microsoft Corporation, Redmond, WA, 1999 (55 pages).

US 8,140,976 B2
Page 3

C. S. Yang et al., “Design and Implementation of an Administration
System for Distributed Web Server”. Proceedings of the Twelfth
Systems Administration Conference (LISA '98) Boston, MA. Dec.
6-11, 1998 (11 pages).
Budi Darmawan, et al., “IBM Tivoli Monitoring for Databases”. IBM
Redbooks, 2002 (208 pages).
Hansen, Tony, “On BRM Framework”. Technical White Paper, Oct.
15, 2003, 89 pages.

Gary T. Barta et al., U.S. Appl. No. 10/819,053, filed Apr. 6, 2004,
Office Action, Apr. 29, 2010, 18 pages.
Samar Choudhary et al., U.S. Appl. No. 10/875,971, filed Jun. 24.
2004. Notice of Allowance, Apr. 15, 2010, 6 pages.
Gary T. Barta et al., U.S. Appl. No. 10/819,053, filed Apr. 6, 2004,
Office Action, Oct. 24, 2011, 12 pages.
Gary T. Barta et al., U.S. Appl. No. 10/819,053, filed Apr. 6, 2004,
Advisory Action, Dec. 17, 2010, 3 pages.

US 8,140,976 B2

I "OICH

U.S. Patent

£7A. A.
eloe)

007
Jeoueeg peo

Iewel leujeu.

GOA,

US 8,140,976 B2 Sheet 3 Of 37 Mar. 20, 2012 U.S. Patent

Cy)

CD
r

002

U.S. Patent Mar. 20, 2012 Sheet 4 of 37 US 8,140,976 B2

U.S. Patent Mar. 20, 2012 Sheet 5 Of 37 US 8,140,976 B2

FIG. 5A

<?xml version="1.0" encoding="UTF-8"?>
<component xmlins: xsi="http://www.w3.org/2001/XMLSchema-instance"

Xsi : noNamespaceSchemaLocation="isc. xsd"
uid="Com. ibm. is C. samples. layout. ISCRows Columns"
Version="5 O'
suiteID="Com. ibm. isc. samples. suite"
suite version="5. 0.2">

<component-title>
<title locale="en">Layout Pages</title>

</component-title>
<suite-title>

<title locale="en">Console Samples, Version 1.</title>
</suite-title>

<content-hierarchy)
<content-type name="workItemPage" supported-markup="html">

<Org-node uid="com.ibm. is C. samples Node">
<title locale="en">Samples</title>
<Org-node uid="Com. ibm. is C. samples Node. RowAndColumn">

<title locale="en">Row and Column Layouts</title>
<page uid="COm.ibm. is C. samples.layout. row pg">

<title locale="en">One Row </title>
<!--

<!-- This page layout has a single row.

3page-layOut D

<portlet
ref="com.ibm. is C. Samples. layout. A Portlet" />

/row>
</page-layout>

</pages

U.S. Patent Mar. 20, 2012 Sheet 6 of 37 US 8,140,976 B2

<page uid="Com. ibral. iSC. samples. layout. Column pg">
<title locale="en">One Column</title>
<!--

<!-- This page layout has a single column.

<page-layout.>
<Column
<portlet
ref="com.ibm. is C. samples. layout. A Portlet" />

</column)
</page-layout>
</page
<page uid-"com.ibm. iSC. samples. layout. 2rows pa">

<title locale="en" >Two Rows.</title>

This page layout has two rows.

A

B
f

<page-layout>
<Column>

<roWX

<portlet
ref="Com. ibm. is C. samples. layout. A Portlet" />

</row> ---

<r OW)

<portlet
ref="COIn ibn. isc. samples. layout. B Portlet" />

</row>
</column>

</page-layout>
</pages

U.S. Patent Mar. 20, 2012 Sheet 7 Of 37 US 8,140,976 B2

FIG. 5C

<page uid="com.ibm. is C. samples. layout. 2 cols pg'>
<title locale="en" >Two Columns </title>
K. --

<!-- This page layout has two Columns.

<Column width="30%" >
<portlet
ref="com.ibm. isc. samples. layout. A Portlet" />

column)
KColumn width="70%" >

<portlet
ref="com.ibm. is C. samples. layout. B Portlet" />

Column>
</row >

</page-layout>
</page)

U.S. Patent Mar. 20, 2012 Sheet 8 Of 37 US 8,140,976 B2

FIG. 5D

<page uid="com.ibm. isc. Samples. layout. row 2 cols pg">
<title locale="en">Row and Two Columns </title>
k - -

<!-- This page layout has two rows, with
two Columns in the second row.

<page-layout>
<Column>

<row)

<p Ortlet
ref="com.ibm. is C. samples. layout. A Portlet" />

</row>
<OW>

<column>
<portlet
ref="com.ibm. is C. Samples. layout. B Portlet" />

</column>
<column)

<portlet
ref="com.ibm. is C. samples. layout. C Portlet" />

</Column>
</row)

</column)
</page-layout>

</page->

U.S. Patent Mar. 20, 2012 Sheet 9 Of 37 US 8,140,976 B2

FIG. 5E
<page uid="com.ibm. is C. samples. layout. 2 cols row pg">

<title locale="en" >Two Columns and Row</title>
< --

<!-- This page layout has two rows, with
two columns in the first row.

<page-layout>
{Column)

{r OW)

<Column)
<portlet
ref="com.ibm. is c. samples. layout. A Portlet"/>

</column)
<Column)
<portlet
ref="com.ibm. isc. samples. layout. B Portlet"/>

</column> w

</row)
{rOW)

<portlet
ref="com.ibm. isc. samples. layout. C Portlet" />

</row >
</column)

</page-layout)
</page)

U.S. Patent Mar. 20, 2012 Sheet 10 of 37 US 8,140,976 B2

FIG. 5F

<page uid="com.ibm. is C. samples. layout. col2rows pg">
<title locale="en">Column and Two Rows</title>
<-- -->

<!-- This page layout has two columns, with -->
two rows in column two.

<page-layout)
<roW>

<Column>
<portlet
ref="com.ibm. isc. samples. layout. A Portlet" />

</column)
KColumn)

<roW)
<portlet
ref="com.ibm. isc. samples. layout. B Portlet" />

</row)
<rOW)

Kportlet
ref="com.ibm. isc. samples. layout. C Portlet" />

</row)
</column)

</row>
</page-layout>

</page->

U.S. Patent Mar. 20, 2012 Sheet 11 of 37 US 8,140,976 B2

FIG. 5G

<page uid="com.ibm. is C. samples.layout. 2 rows Col. pg">
<title locale="en" >Two Rows and Column(/title>
<! -- - -->

<!-- This page layout has two Columns, with
two rows in Column One.

<page-layout
<OWD>

<column>
< OW)

<port let
ref="com.ibm. is C. samples. layout. A Portlet" />

</row>
<rOW)

<portlet
ref="com.ibm. isc. samples. layout. B Portlet" />

</row)
</column>
<column)

<portlet
ref="com.ibm. isc. samples. layout. C Portlet" />

</column- --

</row >
</page-layOut>

</page)

U.S. Patent Mar. 20, 2012 Sheet 12 Of 37

FIG. 5H
<page uid="com.ibm. isc. samples.layout .2colsw2 rows_pg">

<title locale="en" >Two Columns with Rows </title>
< --
<!-- This page layout has two Columns.
<!-- column contains two row S.

<Column>
<OW)>

<portlet
ref="com. i

</row)
<OW>

<portlet
ref="com. i

</row>
column)

<column)
<roW)

<portlet
ref="com. i

K/row)
<r OW)

<portlet
ref="COIm. i

</row >
column.

Arow >
/page-layout>

</page)

. Samples

US 8,140,976 B2

see -3)

Each

-545
... layout. A Portlet" />

- 546
... layout. B Portlet" />

547 /
... layout. C Portlet" />

4.
/1

... layout. D Portlet" />

U.S. Patent Mar. 20, 2012 Sheet 13 of 37 US 8,140,976 B2

FIG. 5
<page uid="com.ibm. is C. samples. layout. 2 rowsw2cols pg">

<title locale="en" >Two Rows with Columns</title>
<-- -->

<!-- This page layout has two rows. Each -->
<!-- row contains two columns.

<page-layout>
<Column)
KCWX

<Column)
<portlet
ref="com.ibm. is C. samples. layout. A Portlet" />

</ column)
<column)
<portlet
ref="com.ibm. is C. samples. layout. B Portlet" />

</columns
</row>
<OW)

<Column)
<portlet
ref"com.ibm. isc. Samples. layout. C Portlet" />

</column> -

<Column)
<portlet
ref="com.ibm. is C. samples. layout. D Portlet" />

</column>
</row)

</column->
</page-layout>

</pagex
</org-node>

</org-node>
</content-type)

</content-hierarchy>

</component>

U.S. Patent Mar. 20, 2012 Sheet 14 of 37 US 8,140,976 B2

U.S. Patent Mar. 20, 2012 Sheet 15 Of 37 US 8,140,976 B2

s

U.S. Patent

O

Mar. 20, 2012 Sheet 16 of 37

FIG. 8

US 8,140,976 B2

<page uid="com.ibm. isc. samples. layout. 2 ColsW2rows pg">
<title locale="en">Two Columns with ROWs</title>
< - -

<!-- This page layout has two Columns.
<!-- Column contains two rows.

<page-layout>
< OW>

<Column)
< OWD

<portlet
ref="Comi

</row)
<rOW)

<portlet
ref="Com.

</row)
</column)
<column)

<r OW)

<portlet
ref="com. i

</row)
KrCW)

<portlet
ref="COIn... i

</row)
</column)

</row)
</page-layout>

</page)

Each

. Samples. layout. A Portlet" />

... samples. layout. B Portlet" />

... samples. layout. C Portlet" />

a 70 1.
... layout. Graphical Portlet" />

US 8,140,976 B2 U.S. Patent

US 8,140,976 B2 Sheet 18 of 37 Mar. 20, 2012

000A.

U.S. Patent

US 8,140,976 B2 Sheet 19 Of 37 Mar. 20, 2012

00/, /,

U.S. Patent

US 8,140,976 B2 Sheet 20 Of 37 Mar. 20, 2012 U.S. Patent

00:44,

ZI "{OINH

US 8,140,976 B2 Sheet 21 Of 37 Mar. 20, 2012 U.S. Patent

Z go | e6ed

00£A.

9. I ’0IJH

US 8,140,976 B2

G I '40IJH

U.S. Patent

| go || 96ed

US 8,140,976 B2

009/,

9 I "?IH

U.S. Patent

US 8,140,976 B2

r

U.S. Patent

U.S. Patent Mar. 20, 2012 Sheet 26 of 37 US 8,140,976 B2

FIG. 19A

1900
initialize Console module

1905

No new portlets for
Console module?

Yes

1970

Add portlets to console module

1916
Get desired list of pages

1920
Get first page to be added

1925
Create page definition

U.S. Patent Mar. 20, 2012 Sheet 27 Of 37 US 8,140,976 B2

FIG. 19B

Get list of portlets on page

1935
Add portlet to page definition

in Console module XML

1940

1930

Add roW/column or other
layout data to portlet

information

end of portlet

Yes

Add help information 1950
for page to Console module

1955
Get next page to be

added

1960

3)" -(a)
Yes

1965
Package console module

in One file

U.S. Patent Mar. 20, 2012 Sheet 28 Of 37 US 8,140,976 B2

FIG. 20

Perform other 2OOO

install steps

2005
ls

Console
framework installed

already?

Yes

2010
install COnSole frameWOrk

Deploy console module
to Console See FIG. 21

Console modules?

2015

2O2
Continue With install

U.S. Patent Mar. 20, 2012 Sheet 29 Of 37 US 8,140,976 B2

FIG 21

Parse XML to get list of pages, 2100
asSociated navigation entries,

and access rights

Get page and navigation 215
entry descriptions

2110
insert page info in page repository

with layout info; insert list of
portlets in portlet repository

2115
Add navigation element

to navigation list

2120
Add access rights information

to authorization data

U.S. Patent Mar. 20, 2012 Sheet 30 Of 37 US 8,140,976 B2

12 Receive request
for console log-on FIG. 22

Present log-on
page

22.05

2210
Get user ID,
passWord

22:15

Yes
2220 A

Determine
available taskS

2229 See FIG. 23
Present available

tasks in
navigaton pane

22.30
Receive task
Selection

22.35
invoke selected

task

2240 Update aggregated
view as necessary

224.5

250 Yes

U.S. Patent Mar. 20, 2012 Sheet 31 Of 37 US 8,140,976 B2

FIG. 23
200

Get list of tasks (pages)
plugged into Console

Get next task

User
allowed to do

task?

Task
attirbutes match

filters?

Add task to
navigation tree

20

Render navigation pane

235

U.S. Patent Mar. 20, 2012 Sheet 32 Of 37 US 8,140,976 B2

FIG. 24

24O45
Get associated page

definition

24OO
Get ID of selected task

2410
Get list of portlets and
layout details from
page definition

24.75
Contruct basic layout of page

according to
layout instructions

2420
invoke portlets in order
to fill in layout slots See FIG. 25

U.S. Patent Mar. 20, 2012 Sheet 33 of 37 US 8,140,976 B2

FIG. 25

Portlet
available?

aggregate
view

25.35 Return to

caller

US 8,140,976 B2 Sheet 34 of 37 Mar. 20, 2012 U.S. Patent

V9Z "?INHõ597
£292N

US 8,140,976 B2 Sheet 35 of 37 Mar. 20, 2012 U.S. Patent

ººººº

US 8,140,976 B2 Sheet 36 of 37 2012 Mar. 20 U.S. Patent

|O9Ó “?IJH

US 8,140,976 B2 Sheet 37 Of 37 Mar. 20, 2012 U.S. Patent

SJ09ST) uO?e001 Sseuppe p?uesn Kuo?uêAu! S?esse Tu?uupe ?Su30||
M??A 004,

/...CÓ “?IJH

US 8,140,976 B2
1.

USING CONTENTAGGREGATION TO BUILD
ADMINISTRATION CONSOLES

CROSS REFERENCE TO RELATED
APPLICATIONS

The present invention is related to the inventions disclosed
in the following commonly-assigned U.S. patent applica
tions: Ser. No. 10/795,007, entitled “Federating Legacy/Re
mote Content into a Central Network Console', which was
filed on Mar. 5, 2004 (now U.S. Pat. No. 7,444,633); and Ser.
No. 10/754,375, entitled “Dynamic Composition of Help
Information for an Aggregation of Applications', which was
filed on Jan. 9, 2004 (now U.S. Pat. No. 7,890,864). The
disclosures in these commonly-assigned patents are hereby
incorporated herein by reference as if set forth fully.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to computing systems, and

deals more particularly with techniques for leveraging con
tent aggregation techniques and frameworks (such as Web
portals) for creating and deploying administration consoles,
where those consoles may be used (for example) with opera
tions such as resource configuration and systems manage
ment.

2. Description of the Related Art
Computer Software and hardware systems are often con

figured, monitored, and managed by one or more administra
tors using graphical user interfaces called “consoles'. Often,
each system component within an information technology
(“IT) environment has its own independently-developed
console for carrying out these operations. Even a relatively
Small business can require a number of different computer
based products (including hardware components and/or soft
ware components) for its business Solution, and a large busi
ness or other enterprise may have a very large number of such
products in its IT environment. As a result, an administrator
working in the IT environment may be faced with a large
number of different consoles, each of which may potentially
have different behavior and/or presentation conventions.

Requiring an administrator to learn how to use multiple
different consoles is time-consuming and therefore costly.
Requiring an administrator to work with multiple different
consoles is also inefficient and creates an error-prone situa
tion. For example, the administrator may require extra time
for locating a desired function when changing among con
soles having different presentation characteristics, and may
make errors when he or she forgets the various behavioral
differences among the consoles (such as the severity of a
problem being depicted through a different set of colors on
different consoles). Creating and maintaining a variety of
product-specific consoles is also inefficient and costly for
product development organizations.

Prior art consoles also suffer from other problems. In many
cases, a console is installed on, and operates on, the same
physical device as the product that it manages. (For example,
a console that provides operations for managing a server
application may be installed on the device running the server
Software.) In other cases, a console is installed on the work
station of every administrator needing access to the console.
Both of these approaches are referred to herein as an
“installed console' scenario. An enterprise can easily grow to
have tens of thousands of these installed, and—even though
the various instances of the installed console do not have
different behavior and presentation conventions—the admin

10

15

25

30

35

40

45

50

55

60

65

2
istrator must perform a series of mostly-redundant operations
to upgrade each of the consoles when the corresponding
product has to be upgraded and maintained.

Another problem with many existing consoles is that the
presentation of administration functions is typically aligned
with the structure of the products comprising the business
Solution, rather than being designed to provide a solution to
an administrators task at hand. When an administration con
sole has been designed to administer a collection of products
but a particular IT environment does not install all of those
products, it may be a difficult or time-consuming task to
modify the console to address only the appropriate Subset of
products; in other cases, such modifications may not be pos
sible, leaving the administrator to use a console that reflects
uninstalled products.

Prior art consoles also require significant duplicated effort
for performing a particular action multiple times, which is
burdensome and inefficient for administrators. For example,
if an administrator needs to start or stop several servers, prior
art consoles require the start or stop action to be carried out
separately for each such server. When products from different
Vendors or products using different operating systems are
present in an IT environment, then it often happens that the
command syntax for carrying out an operation varies among
the products. This can be confusing, error-prone, and ineffi
cient for administrators.

Accordingly, what is needed are improvements to admin
istration consoles.

SUMMARY OF THE INVENTION

An object of the present invention is to provide improve
ments for administration consoles.

Another object of the present invention is to provide tech
niques for leveraging content aggregation frameworks in
administration consoles.
A further object of the present invention is to provide a

Web-accessible console that consolidates the administration
interfaces for an arbitrary collection of hardware and/or soft
Wai SOUCS.

Still another object of the present invention is to provide a
console that is flexibly updateable by its user(s).

Yet another object of the present invention is to provide a
console that enables an operation to be applied to multiple
targets (where those targets may, in Some cases, use differing
functional interfaces).

Other objects and advantages of the present invention will
be set forth in part in the description and in the drawings
which follow and, in part, will be obvious from the descrip
tion or may be learned by practice of the invention.
To achieve the foregoing objects, and in accordance with

the purpose of the invention as broadly described herein, the
present invention may be deployed as methods, systems, and/
or computer program products embodied on one or more
computer-readable media. In one aspect, the present inven
tion provides content aggregation techniques for a console,
comprising: defining one or more views that are renderable on
the console, wherein a definition of each view specifies one or
more content-creating Software entities that can be invoked to
create content to be rendered in the view; rendering one of the
defined views, wherein a selectable representation (such as a
hyperlink containing a name or otheridentifying information,
an icon, etc.) is also rendered for at least one of the invocable
software entities specified in the definition for the rendered
view; invoking a particular one of the invocable Software

US 8,140,976 B2
3

entities, responsive to selection of the selectable representa
tion thereof, and rendering, on the console, content created by
the invoked software entity.

The invoking may further comprise invoking a plurality of
the invocable software entities, and the rendering may further
comprise rendering content created by more than one of the
invoked software entities (e.g., responsive to invoking a
selectable representation of a different view). Each of the
definitions is preferably specified using a markup language
document, such as a markup language document encoded in
Extensible Markup Language notation.
The view may be designed as a page. Each view definition

may further comprise information to be used when creating
the selectable representations of the invocable software enti
ties and/or views. The selectable representation may be ren
dered in a navigation pane of the console, and this navigation
pane may be dynamically built.

Optionally, at least one of the definitions may further com
prise an identification of one or more authorized users of one
or more of the invocable software entities specified in that
definition. In this case, the selectable representation may be
suppressed for each invocable software entity for which a
current user of the console is not one of the identified autho
rized users. Authorized users may additionally, or alterna
tively, be specified for one or more of the defined views, and
the selectable representation may be suppressed if the current
user is not an authorized user for the view. In other
approaches, the selectable representation may be suppressed
for each invocable software entity for which an implementa
tion is not available and/or a selectable representation of each
view for which no invocable software entity implementation
is available may be suppressed.

Optionally, at least one of the definitions may further com
prise filtering criteria associated with one or more of the
invocable software entities. In this case, the selectable repre
sentation may be suppressed for each invocable Software
entity for which the filtering criteria do not match currently
active filtering preferences. The currently-active filtering
preferences may be the preferences of a current user of the
console.

In one approach, an aggregation framework is used for the
console. This aggregation framework may be a portal, and the
invocable software entities may be portlets.
A new renderable view may be defined that specifies one or

more of the content-creating software entities specified in one
or more previously-defined views, where the new view
enables content created by those content-creating Software
entities to be rendered in an alternative arrangement. The
manner in which content in a previously-defined view will be
rendered may be changed by altering the specification of the
content-creating software entities in the previously-defined
view. Additional content may be programmatically added to a
previously-defined view, responsive to installation of a
resource to be managed from the console, without requiring
human interaction to cause the addition. Similarly, previ
ously-defined content may be programmatically removed
from a previously-defined view, responsive to uninstalling a
resource to be managed from the console, without requiring
human interaction to cause the removal.

In another aspect, the present invention provides tech
niques for providing a console for a user, further comprising:
specifying a definition for each of a plurality of pages,
wherein each definition identifies at least one invocable soft
ware entity for each page; rendering one of the pages on the
console for the user, using page layout information specified
in the definition for the rendered page; selecting, by the user
from the rendered page, a plurality of the invocable software

5

10

15

25

30

35

40

45

50

55

60

65

4
entities, using a selectable representation thereof that is ren
dered on the console; invoking the selected Software entities;
aggregating content resulting from the invoking step into an
aggregated view, according to the page layout information
specified in the definition for the rendered page; and render
ing the aggregated view on the console. A plurality of invo
cable software entities may be selected, for example, using a
selectable representation that applies to multiple resources,
and a task may be invoked against the multiple resources. At
least two of the resources against which the task is invoked
may be different from one another, in Some cases, and this
difference is transparent to the user during the invocation.
The present invention will now be described with reference

to the following drawings, in which like reference numbers
denote the same element throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 illustrates a complex heterogeneous IT environment
of the type that may need to be administered;

FIG. 2 depicts, in an abstract manner, the approach used in
preferred embodiments to provide an administration console
that offers users a single point of access;

FIG. 3 illustrates an architecture comprising a console
framework and a set of console modules that plug into the
framework to provide a console with specific administrative
capabilities, according to preferred embodiments;

FIGS. 4, 6, and 7 illustrate several examples of adminis
tration consoles having aggregated content views, according
to techniques of the present invention;

FIG.5 (comprising FIGS.5A-5I) illustrates how a markup
language document may be used for specifying an easily
modifiable layout of aggregated content that is provided
according to preferred embodiments, and

FIG. 8 illustrates one such modification; and
FIGS. 9-10 depicts sample views that may be provided

during log-on to a console;
FIGS. 11-13 depict sample views that may be provided as

an administrator interacts with a troubleshooting task, and
illustrate use of multiple portlets, potentially developed for
different resources and/or by different product development
teams, within a view:

FIG. 14 provides a sample view showing how roles or
permissions may be used to customize views;

FIGS. 15-16 provide sample views showing how a single
action may be requested for heterogeneous resources, and
how multiple portlets can be represented within a single view:

FIGS. 17-18 provide an example showing how the flexible
configurability of embodiments of the present invention
allows advantageous customization;

FIGS. 19-25 provide flowcharts depicting logic that may
be used when implementing preferred embodiments of the
present invention;

FIG. 26 (comprising FIGS. 26A-26C) provides a sample
markup language document in which navigation elements,
access rights information, and filtering criteria keywords are
specified; and

FIG. 27 depicts a sample navigation pane constructed
using information from the sample document in FIG. 26.

DESCRIPTION OF PREFERRED
EMBODIMENTS

The present invention provides techniques for using con
tent aggregation to build administration consoles. The result
ing consoles may be used advantageously in many ways,
several of which will be described herein by way of illustra

US 8,140,976 B2
5

tion. For example, administration consoles may be used for
system set-up operations, resource configuration, run-time
monitoring, and/or systems management.

Preferred embodiments are described herein with refer
ence to using Web portals as the content aggregation frame
work, and using Software entities known as portlets for cre
ating content that is to be rendered in the console. It should be
noted, however, that references herein to using portals or
portlets are by way of illustration and not of limitation. Alter
natively, a different framework and/or different types of con
tent-creating software entities may be used, without deviating
from the Scope of the present invention. As one example, a
“struts and tiles' approach may be used to provide the frame
work and the content. (Struts is a framework for building
Java R. Web applications, and was created as part of the
Apache Jakarta Project that is sponsored by the Apache Soft
ware Foundation. Refer to the Apache Web site or publica
tions for more information. “Java” is a registered trademark
of Sun Microsystems, Inc. in the United States, other coun
tries, or both.)

The term “console module' is used herein to refer to a unit
of function deployed withina console. According to preferred
embodiments, each console module comprises all elements
required to add the new function, including portlets, page
definitions, navigation elements, and help information that
corresponds to the page and its elements. One or more con
sole modules may be used for administering a particular
resource or combination of resources. Preferred embodi
ments are therefore described herein with reference to port
lets as the units that are aggregated into a view, and console
modules as the units that are separately plugged into the
console. Console modules may contain Zero or more portlets,
page layout definitions, which are preferably created using a
markup language such as the Extensible Markup Language,
or “XML (with filters, access control information, and so
forth, as discussed below) and associated help information,
and other resources like widget libraries or images. Console
modules can be added to or taken away from the console, and
portlets can be added to or taken away from an aggregated
view.
A variety of operations may be performed on the consoles

of the present invention. Terms such as “management opera
tions”, “systems management operations', or “administrative
functions' are used herein, for ease of reference, although
these terms are not meant to limit the scope of the present
invention.

FIG. 1 illustrates, by way of example, a complex hetero
geneous IT environment 100 of the type that may be deployed
within a complex enterprise. As shown therein, a number of
different types of end user devices 105 (referred to generally
herein as workstations) may be used as access points in envi
ronment 100, and the communication path into network 150
in this environment typically encounters an Internet firewall
110, a load balancer 115, and a caching system 120. A
Domain Name System (“DNS) server 125 may be encoun
tered to resolve the address of a Web server 130, which is
separated from a Web application server 140 and data server
145 using a second Internet firewall 135. As noted in FIG. 1,
this IT environment 100 may include dozens of systems and
applications and hundreds of resources, and thousands of
tuning parameters may be defined; a complex IT environment
might even contain millions of system and application
resources. A console according to embodiments of the present
invention may be used advantageously when administering a
complex environment such as that depicted: both the number
and the nature of the managed resources are extensible in an
indefinitely large number of combinations. (Embodiments of

10

15

25

30

35

40

45

50

55

60

65

6
the present invention may also be used advantageously in less
complex environments, as will be obvious.)

Embodiments of the present invention enable reducing the
time required for administrators to learn and to use the con
sole, and improve the accuracy of management operations, as
administrators benefit from a consistent console “look and
feel. By leveraging industry standard technologies, as dis
closed herein, the cost of developing and maintaining con
soles for IT resources is reduced, and the time-to-market for
new IT products can therefore be shortened since standard
development tools can be used create and maintain console
modules and personnel with appropriate skills are easier to
find. Furthermore, use of standards-based interfaces enables
developers from numerous companies to contribute content
that can be used in the console, and this content can be
developed using standard Web application development
tools.
When using preferred embodiments of the present inven

tion, console content is determined by the products that are
installed with the console (either locally or in the network).
The present invention also enables consoles to be arranged
Such that the presentation of administrative functions is
aligned with the solutions and processes set up by the IT
organization (or other enterprise, equivalently) where the
console will be deployed. This is in contrast to prior art
approaches where the console matches the structure of the
products that comprise the Solution. These prior art
approaches are typically designed using a “one size fits all
approach, and may be difficult to modify when an enterprise
does not deploy the full set of products or intend to realize the
full set of function addressed on the prior art console. Using
the present invention, however, a particular enterprise can
change its installed product set, and therefore the mix of
products being managed, and embodiments of the present
invention allow the console in use for managing these prod
ucts to adapt transparently to the change without requiring
any user action beyond installing or uninstalling products:
when a particular product is installed, its console modules are
programmatically plugged in, or added, to the console, and
when a product is uninstalled, its console modules are pro
grammatically removed from the console. The administrator
is not required to perform configuration work to cause these
console modules to be added or removed.

Default content arrangements may be provided with
embodiments of the present invention, where these default
arrangements may serve as a starting point for customization,
e.g., by System integrators. System integrators may specify
customizations that arrange portlet content to match business
processes or, equivalently, to match other design objectives
Such as an organization's administrative structure. Suppose,
for example, that a particular administrator within an organi
Zation is responsible for ensuring that everything runs
Smoothly during the organization's bi-weekly payroll pro
cessing. A system integrator may therefore arrange content
within a portal page to include a monitoring portlet for every
system resource that is used in the payroll process, enabling
the administrator to determine with a quick glance whether
everything is running Smoothly. Thus, the page layout is
designed in terms of the Smooth running of the payroll pro
cess, not in terms of the set of products that happen to be
installed in this organization. (Note that this customization of
page layout occurs at design time, in preferred embodiments,
when the XML syntax for a page definition is created. Refer
to the discussion of FIG. 21, below, for more information
about how a page definition that identifies a plurality of port
lets may be processed when a console module is being
deployed.)

US 8,140,976 B2
7

A system integrator might arrange content views of interest
to one IT environment’s administrators in one way, while the
views created for another IT environment’s administrators
might group the content in other ways. And, content views
defined for aparticular IT environment can be easily changed,
if desired, using techniques of the present invention.

Embodiments of the present invention also preferably
enable system administrators to individually customize their
consoles. An administrator might choose to display a high
way-traffic-reporting portlet on the page that provides views
of other tasks this administrator performs just before leaving
work for the day, for example. Many other types of adminis
trator-specific customizations might also be performed.
Usability is therefore greatly improved, as contrasted to prior
art fixed-format consoles. Preferably, customizations per
formed by individual administrators use page-modifying
portlets provided through standard portal user interfaces of
the prior art. (Note that techniques disclosed herein are not
limited to use by end users who have particular job titles such
as system administrators. Thus, references herein to various
job titles are by way of example.)

Using techniques disclosed herein, reductions may be real
ized in the time required for an administrator to perform an
action on several different instances of the same or similar
resource. As one example, multiple servers may be started or
stopped with a single action (or action sequence). This is true
even though some of the servers might have a different
mechanism for starting or stopping, as compared to others of
those servers: rather than requiring the administrator to learn
each different server-specific approach, embodiments of the
present invention provide a consistent approach for the
administrator and transparently resolve the individual differ
ences. For example, an administrator may select a set of
servers and execute a particular operation on all of them,
without needing to know that they may be different types of
servers with different administrative interfaces. This means
that different products can share the same portlets for similar
purposes or even use the same portlet to manage their com
bined set of similar resources. Similarly, the administrators
interactions with resources other than servers can be uniform
when using embodiments of the present invention. As another
example, resources that log information during execution
may use different types of storage repositories (such as a
directory database, relational database, conventional flat files,
and so forth), and embodiments of the present invention
enable the administrator to have a consistent point of access
into the stored information without having to adapt his or her
interactions to the nuances of each type of repository.
As a result of these and other advantages provided by

embodiments of the present invention, the overall cost of
ownership of IT resources (including systems and networks)
may be reduced.

Preferred embodiments of the present invention build a
console as a network-accessible application (referred to
equivalently hereinafter as a “Web-based application) that
leverages a content aggregation technology (such as portal
aggregation). This Web-based approach provides significant
advantages over prior art consoles that are installed directly
on an administrators workstation or on the product to be
managed. Now, rather than requiring deployment of numer
ous instances of the console in a number of different loca
tions, techniques of the present invention allow accessing a
centralized, remotely-operating (i.e., network-accessible)
console application. Furthermore, this access may be made
using general-purpose Software, Such as a browser, that is

10

15

25

30

35

40

45

50

55

60

65

8
already resident on the administrator's workstation. This
greatly reduces the cost of deployment and maintenance for
an enterprise.

FIG. 2 illustrates abstractly how an integrated console 200,
as disclosed herein, provides a common look and feel when
administering resources. A number of graphical elements,
Such as views, controls, and so forth (shown generally at 240
in FIG. 2), can be shared in this process. Common services
Such as navigation panes, status areas, and user assistance
(which may be provided using common, shareable portlets)
can be shared among multiple integrated console modules
when using embodiments of the present invention. The
related invention titled “Dynamic Composition of Help Infor
mation for an Aggregation of Applications' discloses tech
niques for aligning the presentation of help information (or
other information) with the presentation of content for which
help may be requested. Techniques disclosed in this related
invention may optionally be used in combination with tech
niques disclosed herein.

FIG. 2 also illustrates a variety of end user devices 220
accessing the console 200, and applications 260 (which may
be supplied from a variety of Sources, including third-party
content providers) may be represented in the console view
using (for example) view elements as depicted at 240 to
obtain a common look and feel.

Standard view/model interfaces, such as those provided by
the Java 2 Platform, Enterprise Edition (which is commonly
referred to as “J2EER) are used in preferred embodiments to
connect the view elements rendered by portlets to the back
end resources that are being monitored or controlled. Those
interfaces may include Java Management Extensions, or
“JMX’; Web services; and so forth. ("J2EE is a registered
trademark of Sun Microsystems, Inc. in the United States,
other countries, or both.)
The content aggregation framework provides a central

infrastructure, through which the console is network acces
sible, and Supports a set of pluggable console modules that
provide specific administrative functions. If an enterprise
changes its set of installed products, the install packages of
new products may add new content to the console framework
by plugging in one or more console modules, while uninstall
programs of removed products may remove the console mod
ules that were previously plugged into the console for those
removed products. This happens without requiring user inter
action, in preferred embodiments. Each administrator who
accesses the centralized console then sees the revised view,
without having to modify that administrators workstation.

Using a content framework with plug-ins for selected
administrative functions, different IT environments get dif
ferent console modules plugged into the console framework
by installing different sets of products, thereby flexibly tai
loring a particular console to the set of resources to be admin
istered and customized by administrators that will be using
the centralized console. System integrators (or others) can
structure pages to match business processes, and portlets
contained in one or more other console modules can be used
to create the layout of a particular page. Each administrator is
able to organize the view of the selected plug-ins according to
his or her preferences using standard portal customization.
Accordingly, the content provided by separate products can
be combined in new ways, matching the way a particular
administrator thinks about the business solution which is
being managed. (The typical approach in prior art consoles,
by way of contrast, requires the console presentation to match
the organization of the products in that business solution, as
has been discussed earlier.)

US 8,140,976 B2

FIG. 3 illustrates an architecture comprising a console
framework and a set of console modules that plug into the
framework to provide a console 200 with specific adminis
trative capabilities, according to preferred embodiments. As
shown therein, a layered approach may be used, and in this
example, commercially-available WebSphere(R) Portal Server
(“WPS) technology 313 and WebSphere Application Server
(“WAS) technology 315 are leveraged for the console.
(“WebSphere' is a registered trademark of International
Business Machines Corporation, hereinafter “IBM, in the
United States, other countries, or both.) In addition, a set of
console services (“CS) are provided, in preferred embodi
ments, by a console services layer 311. The portlets in a
console module that plugs in to this framework to provide a
console can use services from all three layers 311,313,315 by
invoking application programming interfaces (APIs) 310,
312,314 of the respective layers. For example, a portlet can
use CS layer 311 for certain console-specific functions: WPS
layer 313 for a portlet container and portlet services; and
WAS layer 315 for authentication and to interact with various
J2EE services for communicating with local and/or remote
back-end resources being managed. CS layer 311 can use
services 312, 314 from both the WPS layer 313 and WAS
layer 315. WPS layer 313 can use services 314 from WAS
layer 315. (Preferred embodiments may omit functions such
as search capabilities and content management capabilities
from the portal technology layer 313, thereby requiring a
smaller footprint for the console.)
A "deploy” command (or analogous command) is prefer

ably used to add console modules to the portal framework of
console 200, and FIG. 3 illustrates three representative con
sole modules 320,321,322 that may be added in this manner
to provide content. These console modules may enable a
variety of functions to manage resources. For example, one
console module might contain a portlet 320 that renders con
tent after querying a database application; the same or a
different console module might contain a portlet 321 to render
content pertaining to a Web server supplied by a first vendor;
and a different console module might contain a portlet 322 to
render content pertaining to a Web server supplied by a sec
ond vendor. Portlets 320-322 may be implemented in various
ways, where each portlet might be implemented using a Web
based view technology selected from an array that includes
(but is not limited to) JavaServer Pages(R) ("JSPs’(R), intent
based marked languages, and so forth. ("JavaServer Pages'
and “JSP are registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.) These view
technologies are illustrated in FIG.3 as four representative
components 331-334 that may be used with embodiments of
the present invention for creating the view in a console, as will
now be described.
A set of generic controls or widgets, a Java Server Faces

(JSF) widget library, and generic scalable graphic widgets
(shown generally at 331 in FIG.3) may be used with embodi
ments of the present invention, where these controls/widgets
may provide functionality Such as building tables, tree struc
tures, and charts or graphs for data rendering within a portlet,
and so forth.
An abstract UI markup language (AUIML) component

332 may be used, with which markup document syntax can be
used to specify (interalia) formatting information that is to be
used when rendering content on the console. (AUIML is a
language defined by IBM for intent-based user interface
specifications. Commonly-assigned U.S. Pat. No. 6,781,609.
Ser. No. 09/567.487, filed May 9, 2000, which is entitled
“Technique for Flexible Inclusion of Information Items and
Various Media Types in a User Interface', provides a descrip

10

15

25

30

35

40

45

50

55

60

65

10
tion of the AUIML notation. Reference may be made to this
commonly-assigned patent, which is incorporated herein by
reference, for more information.)
An XForms’ component 333 may be used with embodi

ments of the present invention. XForms is a standard from the
World Wide Web Consortium (“W3C), and is intended to
provide improvements over the Hypertext Markup Language
(“HTML) for rendering information and performing tasks
using Web-based documents. (Refer to the W3C Web page or
publications for more information on XForms.) Various com
ponent extensions 334 may also be used with embodiments of
the present invention. For example, interactions between con
sole modules (via hyperlinks, selectable graphical buttons,
and so forth) may be facilitated in this manner.

Since administration of multiple resources is integrated
into a single infrastructure, according to preferred embodi
ments, the present invention enables a single view for con
trolling an action (such as turning a set of servers on or off.
rebooting resources, and so forth) to be shared across differ
ent products and systems, even if the systems do not have the
same commands for performing the function. In addition,
preferred embodiments allow a number of resources to be
selected, so that the same action can be replicated to these
multiple resources with one request. A table of servers might
be displayed, for example, along with a graphical represen
tation of current status for each of the servers and a means for
the administrator to select (e.g., by checking a box or clicking
a radio button) one or more of the servers as the target of the
action. According to preferred embodiments, these resources
may span various systems and may be heterogeneous. For
example, Software resources developed by a vendor may be
viewed alongside software resources developed by other ven
dors and/or by the enterprise’s own development organiza
tion, and actions requested by the administrator on the inte
grated console may be applied to selected ones of these
resources (with any resource-specific interfaces being trans
parently handled “under the covers' of the console to perform
the selected actions). Preferred embodiments leverage stan
dard interfaces such as JMX or Web services, as discussed
earlier, where these standard interfaces may be used to pro
vide functionality underlying the console to perform opera
tions such as connecting to a managed resource, issuing com
mands to a managed resource, and so forth. Accordingly,
while the administrator is presented with a consistent and
user-friendly task interface that may span a number of man
aged resources, this underlying functionality preferably
bridges between the administrator's task interface and the
interface of each managed resource, such that any resource
specific conversions, translations, or other adaptations are
automatically performed, based on the selected task and its
target resources.

Embodiments of the present invention provide a view con
structed of independently-developed user interface compo
nents (such as portlets, when using a portal model for content
aggregation) that can be combined together into an adminis
trative function. Instructions written in a markup language,
such as XML, are used in preferred embodiments to specify
how the console modules are to be arranged into pages. XML
instructions may also be used to specify how entries are to be
added to a navigation tree which is displayable on the pages.
FIG. 4 abstractly illustrates a sample Web page 400, repre
senting an administration console (see title bar 410) that has
been constructed in this manner. As shown therein, the page
also contains a navigation pane 420, where available tasks are
preferably rendered (for example, as text that can be selected
to cause execution of the corresponding task), and a work area
430, where content pertaining to a selected task is preferably

US 8,140,976 B2
11

rendered. In the work area 430 of sample page 400, content in
four separate sub-areas or cells 441, 451, 461, 471 is arranged
in two columns and two rows. FIG. 4 also shows four sample
portlets 440, 450, 460, 470 that execute to create the content
of these cells. The portlets might use prior art techniques to
query the status of hardware devices or software applications,
for example, and prior art techniques may be used to create
content for rendering in individual ones of the cells to reflect
that current status (where techniques of the present invention
enable aggregating the cells to provide the administrator with
an aggregated View).

FIGS. 5A-5I show a sample XML document 500 of the
type that may be used for specifying layout information,
according to preferred embodiments. This XML document
500 contains syntax specifying a wide variety of page layout
styles, for purposes of illustration. In actual practice, product
developers preferably provide default page layouts defining a
Suggested arrangement of content for their product (and this
layout may be modified by the administrator and/or system
integrator). As an example of how the XML syntax in docu
ment 500 defines a page layout, refer to the sample <page->
element at reference number 510. This <page element 510
has a <page-layout element 511 containing a single <row>
element 512. The content of this row element 512 is a <port
let tag513 having an identification 514 of aparticular portlet
(i.e., as the value of the “ref attribute) that presumably cre
ates content that is appropriate for rendering in this single
row fashion. The sample <page element 520 has a <page
layout element 521 containing a single <row> element 522,
and in this case, the <row> element contains two <column
elements 523, 524. In each <column element, a <portlets
tag identifies the portlet that creates the content to be rendered
in that column.

Referring now to sample <page element 540, syntax that
may be used to specify the layout illustrated in work area 430
of FIG. 4 is shown. In this sample, the <page-layout tag 541
has a single outermost <row> tag 542, which contains two
<column tags 543,544. Each <column tag 543,544 further
contains two <row> tags. Within each of these four <row>
tags, a portlet identifier is specified (see reference numbers
545, 546, 547,548), thereby identifying the portlet that will
create the content for a particular cell in the four-cell layout
thus defined. See the comments at reference number 549,
where a graphical representation of the cells represented by
<page-layout element 541 is provided, each cell being iden
tified with a letter that appears in the corresponding portlet
identifier. For example, the cell identified as “A” at 549 cor
responds to the portlet identifier "com.ibm.isc.samples.lay
out. A Portlet', which is shown at 545. Thus, the first <col
umn tag 543 in the XML document 500 represents cells 441,
451 in FIG. 4, and the second <column tag 544 represents
cells 461, 471.
By modifying the XML document that specifies a view

layout, the portlets can be arranged into different page group
ings, and in particular, can be arranged into groupings that
match a business Solution deployed in a particular IT envi
ronment. Suppose, for example, that the administrator using
console 400 decides that the product for which content is
rendered at cell 471 is no longer of interest and therefore
uninstalls the hardware device or the software application
from the administered system. Portlet 470 is no longer rel
evant. With the present invention, the console is flexibly
altered by the uninstall processing to omit portlet 470 from
console 400 without requiring any direct reconfiguration by a
user. A console 600, as shown in FIG. 6, can therefore be
substituted for console 400, where this console 600 retains
content cells 441, 461 and (in this example) fills the lower

10

15

25

30

35

40

45

50

55

60

65

12
sub-area 451' with content created by portlet 450. (As will be
obvious, in an alternative approach, a narrower area might be
used for the content created by portlet 450.) Refer to reference
number 530 in the XML document 500 of FIG. 5, which
shows page layout syntax that may be used for specifying the
layout illustrated in FIG. 6.

Alternatively, suppose the administrator decides that dif
ferent information would be preferable as a replacement for
cell 471 of console 400 in FIG. 4. For example, portlet 470
might create output in text format, whereas the administrator
prefers to see output for this resource in graphical format.
Assuming that another portlet 480 creates this alternative
format, a different console 700 as shown in FIG. 7 can be
easily created to contain that information at 481 by replacing
the <page element 540 in document 500 with the <page->
element 800 shown in FIG.8. In this sample <page-> element
800, the new portlet 480 (which is substituted for portlet 548
of FIG. 5) is identified as “com.ibm.isc.samples.layout
Graphical Portlet'. See reference number 810 in FIG. 8.
(Note that the present invention enables portlets in one con
sole module to be reused by other console modules, where a
“reusing module references, in its page definition XML, a
portlet or portlets to be reused in that page.)

Turning now to FIGS. 9-13, a scenario is illustrated that
shows how an administrator might log on to the administra
tion console of preferred embodiments and then begin to
perform various administration tasks. As shown in FIG. 9, a
“welcome' page 900 is preferably presented, where this
screen requests the administrator to enter his or her creden
tials, which are referred to herein (by way of illustration but
not of limitation) as a user identifier ("ID") 910 and password
920. (Note that use of an aggregated console as disclosed
herein may remove the burden placed on administrators by
prior art, per-product consoles, where the administrator may
be required to remember a distinct user ID and password
combination for each of those product-specific consoles. In
contrast, a single user ID and password can be used for
logging an administrator on to the aggregated console of
preferred embodiments.)
Upon entering the user ID 910 and password 920 informa

tion and pressing the “Log In' button 930, another page 1000
is presented, in this example scenario. See FIG. 10. In this
example, page 1000 lists the tasks that are available in navi
gation pane 1010, and work area 1020 provides introductory
information (which may vary widely among IT environments
and therefore has not been illustrated in detail in this
example). It may be desirable in some scenarios to provide
introductory information of the type illustrated at 1020 only
when the administrator first opens the console: Subsequently,
other page content might be provided instead of the introduc
tory information, such as the last page viewed by this admin
istrator or a preferred start page selected by this administrator.
Embodiments of the present invention may therefore be
adapted for using conditional logic to determine which page
content should be presented.
The tasks in navigation pane 1010 are preferably repre

sented in a conventional tree structure format, where folder
icons are used to group tasks together and can be clicked upon
to open or close the folder. FIG. 11 therefore shows an
example page 1100 that may be presented when the admin
istrator has clicked on the Troubleshooting folder icon 1030
in FIG. 10. As shown in FIG. 11, the icon 1030 is now
presented as an opened folder icon 1030" in updated naviga
tion area 1010", and text (shown generally at reference num
ber 1110, in this example) has been added underneath the
Troubleshooting entry that specifies several troubleshooting
tasks that may be performed. Preferably, each task is pre

US 8,140,976 B2
13

sented in a color and/or font that indicates visually to the
administrator that this text is a selectable link. Upon clicking
(or otherwise activating) one of these selectable links, a cor
responding task will then be launched, and the portlet or
portlets corresponding to that task will then render its/their
output in the work area 1020.

Suppose that the administrator clicks on the Logs and
Traces link 1120 in FIG. 11. The contents of work area 1020
may then be replaced by content illustrated at 1200 in FIG. 12.
As shown therein, a first portlet may generate a selection area
1210 that enables the administrator to select from among a list
of resources for which logs or traces can be presented, and a
second portlet may then generate content pertaining to the
selected resource(s) and render that content in view area
1220. In this sample content view 1200, the resource selection
portlet corresponding to reference number 1210 requests the
administrator to select from among a plurality of defined
systems (see reference number 1211) and then to select a
server defined on the selected system (see reference number
1212). Upon selecting a system and server, a portlet is then
executed (in this example) that presents the current log set
tings that have been configured for that system and server. See
reference number 1220, where a representation of sample log
settings is presented. The sample rendering at 1220 presents
the path name 1221 where various log files for this resource
are being stored, and a Browse button 1222 may be presented
to enable the administrator to easily launch a task to browse
the file system for other log files. FIG. 13 provides a sample
view 1300 that results, in this example, from pressing the
Browse button 1222. This view 1300 is created by a portlet
associated with the browse task, and enables the administra
torto browse folders on a managed system and selectalog file
as the target file for specific types of messages. In view 1300.
the administrator can select to see the logs available in a
specific folder by activating the link at 1310 or the link at
1311. In the example of FIG. 13, the link at 1310 has been
activated, and a portlet then executes to render a representa
tion 1320 of each available log file that has been created for
the resource selected at 1211 and 1212 in FIG. 12. See,
generally, the Filename column 1322, where names of the
available log files are presented. The administrator may then
select a log file, for example by using the radio buttons in the
Select column 1321 and selecting the “OK” button.

Role-based or permission-based filtering is preferably pro
vided by embodiments of the present invention, thereby
ensuring that an administrator sees only the administrative
functions that he or she is entitled to perform. For example,
when user "admin' logs on to the console using the page
depicted at reference number 900 in FIG.9, embodiments of
the present invention preferably consult previously-stored
permission information to determine which tasks this particu
lar administrator has permission (i.e., authority) to perform.
Alternatively, a role associated with this user ID may be
determined, and permissions associated with that role may be
used to determine the administrator's authorized tasks. Or,
group-level roles or permissions may be used, whereby a
group of which this administrator is a member is determined
(for example, using the provided userID) and the tasks made
available to this administrator are limited to the tasks for
which members of that group are authorized. (The manner in
which permissions, roles, and/or groups can be determined
using a user ID is well known in the art, and therefore will not
be discussed in detail herein.)

FIG. 14 illustrates a result of this filtering approach, where
in this example, screen 1400 is identical to screen 1000 of
FIG. 10 except that the selectable task groups “Resources'.
“Security”, “Environment, and “Systems Administration'

10

15

25

30

35

40

45

50

55

60

65

14
have been omitted from navigation pane 1410. For example,
with reference to omission of the Security task group, this
may indicate that the present administrator is not authorized
to view or alter security-related information. Or, it might
indicate that this administrator has defined preferences that
filter the Security task group so that it is not displayed in his
or her navigation pane. Similarly, it may be that those tasks
represent console functionality that the IT organization does
not wish to utilize: by not including the task group on the
navigation pane, access to the function is effectively removed
for this IT organization’s administrators, and the administra
tors awareness of the function is also removed (unlike prior
art consoles, where inaccessible functions may continue to be
shown to administrators).

Other forms of filtering and searching can be used to
modify the displayed navigation tree in navigation pane 1410.
For example, an administrator may want to see a configured
set of favorites, or all the pages associated with managing a
particular server, or all the pages associated with a particular
class of server tasks. Some of the filtering criteria may be
included as attributes in the XML syntax that defines the page
layout. (See the discussion of FIG. 26, below, for an example
of this approach.) Other criteria might be derived in other
ways, such as from a context associated with the current page.
Thus, for example, a portlet on the page might allow the
administrator to select a certain set of resources, and by
pressing a button rendered on the portlet view, the navigation
tree might be refreshed with navigation elements correspond
ing to the selected set of resources.

FIG. 15 illustrates how an embodiment of the present
invention may be used to apply an action to heterogeneous
resources. As shown therein in view 1500, a navigation pane
1510 presents a number of tasks that can be selected, and in
this case, the Databases task folder 1511 has been expanded.
Work area 1520 may present information such as a welcome
to the administrator and/or general instructions for task selec
tion/usage. Suppose that the administrator selects the “Test
Connections’ task 1512 that is available within the Databases
task folder, indicating that he or she would like to test con
nections to one or more databases. Work area 1520 may then
be replaced with content pertaining to that task, as shown by
the sample content in FIG. 16 at 1600. In this example, the
administrator is first presented with a “Test Connections'
portlet view 1600 that includes a list 1611 identifying the
available databases (as determined by a portlet which is
responsible for making that determination, in preferred
embodiments), enabling the administrator to select one or
more databases of interest. Suppose that two databases are
available, as shown in list 1611 (using two sample database
identifiers), and that the administrator selects both of those
databases. (Preferably, the administrator clicks on a represen
tation of each resource of interest in order to select that
resource when using various views in the console.) Further
Suppose, in this example, that the first database is a relational
database and the second database is a directory database, and
that the command used to test the connection to the relational
database is different from the command used to test the con
nection to the directory database. Notably, view 1600 does
not require the administrator to provide command syntax, or
to learn command syntax that varies from one type of
resource to another. Instead, the administrator simply selects
the database by clicking on a rendering of its name or other
identifying information (where this name or identifying
information is preferably created when the database is con
figured. Such that each database can be easily and uniquely
identified). Portlets deployed according to the present inven
tion mask these database-specific details from the adminis

US 8,140,976 B2
15

trator, thereby increasing efficiency and reducing user errors
and confusion. Connections to back-end systems (such as
database systems) may be provided, in one approach, using
management beans created with JMX; in another approach,
Web services technology may be invoked. In either case, the
processing occurs transparently to the administrator.

List 1611 also shows how an action (discussed below with
reference to graphical button 1612, in this example) can be
easily applied to multiple resources, even though those
resources are not homogeneous.

Consoles according to the present invention preferably
provide one or more graphical controls, such as buttons, that
can be activated to enable the administrator to apply an action
to selected resources. Thus, in the example of FIG.16, a “Test
Connection” button 1612 is provided in view 1610, with
which the administrator signals that selection of the databases
in list 1611 is complete and that the connection test (i.e., the
portlet functionality associated with this button) should
begin. The content in portlet view 1630 is dynamically ren
dered, responsive to the selection made in portlet view 1610.
In this example, view 1630 requests the administrator to
provide his or her user ID and password for each selected
database, where this information can be used to determine
whether the administrator is authorized to issue commands to
each selected database. See columns 1631 and 1632. This
example also presents a “Test' button 1634, to be activated by
the administrator after the user ID and password information
has been entered, thereby triggering the test itself. A
“Results’ column 1633 is also presented, where results of the
connection test to each database are preferably presented
upon completion of the connection tests.

In preferred embodiments, a separate portlet may be
deployed to log the administrator on to each of the selected
databases, and each portlet may verify the user ID and pass
word for its associated database. Or, other techniques (such as
the WebSphere Portal server credential vault) may be used to
minimize the need for the administrator to log on to back-end
resources. Separate portlets may also be deployed to perform
the connection test to each of the selected databases, and to
then render a result (such as “Successful' or “Failed') in the
Results column 1633. A “Failed result may include links to
other tasks to help resolve the cause of the failure, such as
starting a stopped server or database. The content aggregation
techniques disclosed herein enable specifying these various
portlets that underlie the content views, and how those port
lets interact with one another. For example, a portlet may be
deployed that accepts the user's selections from list 1611 and
that contains conditional logic to invoke different user-au
thentication portlets, depending on a programmatically-de
termined type of each selected database. Those user-authen
tication portlets then preferably identify their log-on
requirements for presentation in view 1630 (in this example).
Alternatively, the credentials may be retrieved from a creden
tial vault and pre-populated in the view. Upon receiving the
user ID and password, separate database-specific verifica
tions may be performed by the portlets for the selected data
bases, after which results thereof are preferably returned for
rendering in column 1633 as part of the consolidated view
1630. The administrator, however, perceives the separate
Verifications (i.e., authentications) as a single action, where
aggregated view 1630 consolidates the administrator's per
ception of the separate back-end processes that are to be
performed (and a single heading 1640 is preferably used to
describe the action to be performed). Note further that these
back-end processes are dynamically identified, depending on
which resources the administrator selects from a representa
tion such as that illustrated at reference number 1611.

10

15

25

30

35

40

45

50

55

60

65

16
FIGS. 17-18 provide another example showing how the

flexible configurability of embodiments of the present inven
tion allows advantageous customization. In this example, the
customization pertains to selection of a particular type of
view element. In FIG. 17, a tabular representation 1710 is
used in page 1700 to present current status of a selection of
resources. Assume, for purposes of illustration, that a portlet
has been deployed that creates this tabular representation, and
that an alternative portlet is available to present analogous
information using a graphical approachina network topology
chart. The present invention enables this alternative represen
tation to be rendered simply by altering an XML document
that identifies which of these portlets renders content into this
page 1700. Table 1710 can thus be replaced by network
topology chart 1810 in FIG. 18, if desired. (Refer to the
discussion of FIGS. 5 and 8, above, which explain how one
portlet can be easily substituted for another by modifying an
XML document.) In addition, a console module that does not
contain portlets might be made available in Some circum
stances. For example, a console module may be created with
the same page content definition except that a static image or
other content source may be substituted for the portlet. The
administrator may then be allowed to choose among the page
definitions.

Turning now to FIGS. 19-25, flowcharts are provided
depicting logic that may be used when implementing embodi
ments of the present invention.

FIG. 19 depicts logic for creating a console module. In
Block 1900, a console module is initialized. Block 1905 tests
to see whether there are any new portlets for this console
module. If not, control transfers to Block 1915; otherwise, at
Block 1910, the new portlets are added to the initialized
console module.

Block 1915 obtains the desired list of pages for this console
module. The desired list might be determined, for example,
by a content designer or a solution designer Such as a system
integrator. In Block 1920, the first page from this list is
obtained, and a page definition is created for that page at
Block 1925. In preferred embodiments, the page definition is
created using XML Syntax, and includes a specification of the
page title and its navigation elements for placement in a
navigation pane. The page definition may also include a
specification of access rights (e.g., identifiers of the users
and/or user groups who are authorized to access tasks from
this page) and/or filtering criteria keywords that can be com
pared to administrator preferences. See the discussion of FIG.
26, below, for more information on how this information
might be provided in a sample XML document.
The portlets to be included on this page are then determined

(Block 1930). As stated earlier, embodiments of the present
inventionallow creating layouts for pages/tasks using portlets
that are in that particular console module as well as portlets
that are provided in other console modules. Block 1930 may
therefore use portlets located in various modules. Block 1935
adds one of these portlets to the XML specification of the
page definition. (See, for example, reference numbers 513,
514 in FIG. 5A, where the “ref attribute of a <portletd tag
identifies a portlet included in a page layout 510.) In Block
1945, row/column or other appropriate layout data is added to
the portlet information. (In the example in FIG.5A, a <row>
element 512 is used for the <portlet tag 513 specified in this
<page-layout element 511.) Other types of layout data
might include tables, charts, graphs, and so forth.

Block 1945 tests to see whether all portlets in the portlet list
obtained at Block 1930 have now been processed. If not,
control returns to Block 1935 to begin processing another of
the portlets. When all portlets have been added to the page

US 8,140,976 B2
17

definition, similar processing is preferably performed for the
Help content that is to be provided with this page. Block 1950
therefore indicates that Help information for the page is
added to the console module.

Block 1955 then obtains the next page (if any) to be added
to this console module. If there are no more pages to add, then
the test in Block 1960 has a positive result (i.e., processing of
the page list obtained at Block 1915 is at the end), and at
Block 1965, the page definition is packaged in one file that
pertains to a particular console module. This iteration of the
logic of FIG. 19 then exits (Block 1970). Otherwise, when
more pages are still to be processed (i.e., when the test in
Block 1960 has a negative result), control returns from Block
1960 to Block 1925, where creation of the page definition for
that page begins.

Notably, a system integrator can use the approach shown in
FIG. 19 to create new pages for business processes using
portlets from a range of console modules. A console module
that provides a rearranged view of a previously-defined con
sole module might then contain only help and page layout
Syntax, for example, while referring to content-creating port
lets in another console module.

FIG. 20 depicts logic describing installation of a product
(or other resource) that includes one or more console mod
ules. A number of prior art install steps may be performed
(Block 2000), and installation processing that pertains to the
present invention then begins (Block 2005) by checking to see
if a console framework is already installed. If it is, then
control transfers to Block 2015; otherwise, the console frame
work is installed (Block 2010), preferably using prior art
techniques.

At Block 2015, a console module for this product is
deployed to the console. (Refer to the discussion of FIG. 21,
below, where this is described in more detail.) Block 2020
then checks to see if there are more console modules for this
product. If so, the processing of Blocks 2015-2020 is repeated
until all console modules have been deployed. Any remaining
prior art product installation steps are then performed (Block
2025) to complete the product installation. In this manner,
content in the console grows dynamically. (Similarly, content
in the console may shrink dynamically during an uninstall,
which preferably proceeds in an analogous manner to that of
the install process shown in FIG. 20.)

FIG. 21 provides a flowchart illustrating logic that may be
used when a console module is deployed. The XML page
definition is parsed (Block 2100), thereby determining the list
of pages for this module, the associated navigation entries to
be used in a navigation pane of the console, and any specified
access rights and/or filtering criteria keywords. Block 2105
obtains a page from the list, along with its navigation entry
descriptors, access rights, and/or filtering criteria keywords,
and at Block 2110, a list of the portlets for this page is inserted
into a portlet repository and the page information and layout
information for the page are preferably inserted into a page
repository. (Refer to FIG. 5 for examples of how various
layout styles might be specified for portlet content to be
rendered.) The navigation element obtained in Block 2105 is
added to a navigation list (Block 2115), and at Block 2120.
the access rights and/or filtering criteria keyword information
(if provided) is preferably added to a table or other repository
that stores authorization/filtering information for use in deter
mining whether the task will be presented as a selectable
choice to particular administrators. Block 2125 then checks to
see if the list of pages obtained in Block 2100 has been
completely processed. If not, control returns to Block 2105 to

10

15

25

30

35

40

45

50

55

60

65

18
begin processing another of the page definitions for this mod
ule; otherwise, this iteration of the logic in FIG. 21 exits
(Block 2130).

FIG. 22 illustrates how an administrator's log-on request
may be processed, providing a role/permission-specific
aggregated view. (Refer also to the discussion of FIG. 9.
above, regarding the log-on process.) In Block 2200, the
log-on request is received. In preferred embodiments, this
corresponds to receiving a request for the Web-accessible
console (e.g., by receiving a Hypertext Transfer Protocol, or
“HTTP, request message that specifies a Uniform Resource
Locator, or “URL, identifying the console). In response, a
log-on page is returned and rendered (Block 2205), prefer
ably using a client-side browser or similar application. Block
2210 indicates that the administrator's user ID and password
are obtained, and in Block 2215, a test is made to determine
whether that information identifies an authorized administra
tor. (Techniques for validating a user ID and password are
well known, and are not discussed in detail herein.) If this test
has a negative result, then control may return to Block 2210
(e.g., to provide another opportunity for entering a valid user
ID/password combination); or, processing may exit from
FIG. 22, preventing the unauthorized administrator from
using the console. Otherwise, when the test in Block 2215 has
a positive result, then processing continues at Block 2220.

In Block 2220, the role/permission information associated
with the entered user ID/password is used to determine the
tasks for which this administrator is authorized. A console
presenting those tasks is then rendered (Block 2225), as
described in more detail below with reference to FIG.25. (See
also FIG. 23, where a flowchart is provided depicting logic
that may be used to create a navigation pane customized to
this administrators access rights and/or filtering preferences.
FIG. 26 provides a sample page definition document where
access rights and filtering criteria have been specified as
design-time information.)
The administrator may then select a task (Block 2230), for

example by making a selection from a navigation pane (or
from another displayed view, such as a work area, where a
task selection portlet may underlie this view according to
preferred embodiments). The task corresponding to that
selection is then invoked (Block 2235), and if appropriate, the
view may be updated responsive to the task execution (Block
2240). For example, if the task requests information retrieval,
Such as a status query to be executed for selected resources,
then the console may be updated at Block 2240 to present the
retrieved information. (The flowchart in FIG. 24 provides
more information about building an aggregated page, respon
sive to selecting a task, and is discussed below.)

Block 224.5 then tests to see whether the administrator has
finished executing tasks (where this may be indicated, for
example, by pressing a “Logout” button). If so, then the
processing of FIG.22 exits (Block 2250); otherwise, control
returns to Block 2230 to await the administrator's next task
selection.

FIG. 23 illustrates how a navigation tree may be dynami
cally created, according to preferred embodiments, to depict
entries only for those tasks for which the present administra
tor is an authorized user. In addition, filtering criteria (which
may be administrator-specific preferences) may be used to
further customize the navigation tree. Or, an implementation
of the present invention may be adapted to support customi
Zation according to either of these techniques individually.
(Refer to the description of Block 2320 and also of FIG. 26,
below, for more information on using filters.)

In Block 2300, the list of tasks or pages currently plugged
in to the console is determined. Block 2305 obtains the next

US 8,140,976 B2
19

task from this list, and Block 2310 checks to see if this task list
is already at the end. If so, then control transfers to Block
2330, where the navigation pane that has been constructed is
rendered, and processing then exits from FIG. 23 (Block
2335); otherwise, processing continues at Block 2315.

Block 2315 checks to see if this administrator is allowed to
perform this task. (Preferably, the access rights information
described above with reference to Blocks 2100 and 2120 is
used in this operation.) If the administrator is not authorized,
then control returns to Block 2305 to obtain the next task from
the task list. Otherwise, processing continues at Block 2320,
which checks to see if the tasks attributes match any cur
rently-active filtering criteria. For example, a particular
administrator might specify filtering criteria Such as “only
database functions” or “only tasks associated with Server X,
thereby limiting entries rendered in the navigation tree to a
manageable, useful set (as determined by the administrator).
Filtering criteria keywords may be specified in the XML page
definition syntax for a page, as a type of page attribute, as
discussed in more detail below with reference to the example
in FIG. 26. The filtering criteria keyword(s) associated with
each page is/are preferably stored in a table or other reposi
tory (e.g., during the processing of Block 2110 of FIG. 21),
and a particular administrator may define the keywords of
interest as administrator-specific preferences. Accordingly,
the test in Block 2320 compares keywords/attributes associ
ated with this task to the currently-active filtering prefer
ences. If there is a match, then processing continues at Block
2325; otherwise, control returns to Block 2305 to begin evalu
ating the next task.
Upon reaching Block 2325, the task is one for which the

administrator is authorized, and for which the currently-ac
tive filtering preferences are matched. Block 2325 therefore
adds this task to the navigation tree for the console, and
control then returns to Block 2305 to process the next task (if
any).

FIG. 24 depicts logic that may be used to build an aggre
gated page for rendering to the administrator, and provides
more detail regarding Blocks 2235-2240 of FIG. 22. When
the administrator selects a task, an identifier associated with
that task is obtained (Block 2400) and used to retrieve an
associated page definition (Block 2405). For example, with
reference to the page definition 500 in FIG. 5, if the admin
istrator double-clicked on a rendering of the text “One Row'
in a navigation pane, this text might represent a task that
renders its content in a single-row format by invoking a port
let having the identifier shown at reference number 514 in
FIG.5A, and the page definition defined at reference number
510 might therefore be retrieved responsive to selection of the
“One Row' text.

Block 2410 then obtains the list of portlets in this page
definition, along with details specifying their layout. This
information is used in Block 2415 to construct a layout for the
page, and the portlets are then invoked at Block 2420. As
discussed in more detail with reference to FIG.25, the portlets
are invoked in the order in which they are specified in the page
definition, thereby creating content that will be used to fill in
the slots of this layout.

FIG. 25 provides further details pertaining to the presenta
tion of a console view having an aggregation of content from
one or more portlets. As shown therein, the first portlet to be
represented within a view is determined (Block 2500). Pref
erably, this comprises evaluating syntax in the XML docu
ment that specifies the portlet(s) for a selected view. For
example, if the view to be presented has a unique identifier, or
“uid”, value of "com.ibm.isc.samples.layout.
2colsw2rows pg. which appears as an attribute of the

10

15

25

30

35

40

45

50

55

60

65

20
<page-> tag shown at reference number 540 in FIG. 5, then the
first portlet (in this example) has the identifier “com.ibm.isc
..samples. layout. A Portlet'. See the <portlet tag at refer
ence number 545.

Block 2505 makes a dynamic determination as to whether
this portlet is available. Embodiments of the present invention
enable specifying a page layout where some functionality
represented therein may or may not be available in aparticular
implementation—or the present administrator may or may
not be authorized to use some of the specified functionality.
Accordingly, the test in Block 2505 has a positive result if the
portlet is available for use by this administrator. In that case,
processing continues at Block 2510, which indicates that this
portlet is invoked. The content created by the portlets execu
tion is then inserted into the current slot of the aggregated
view (Block 2515). Each portlets content may be added to a
table widget, for example. (For reference number 545, the
content of the first portlet is used for the upper left cell in a
layout having two columns and two rows, as discussed above
with reference to FIG. 5.) Processing then continues to Block
2520, which is discussed below.
As mentioned with reference to Block 2505, a page layout

may specify portlets that are not currently available in a
particular IT environment. Preferred embodiments of the
present invention enable programmatically learning of new
portlets that are available for rendering content into the aggre
gated console, including such previously-unavailable port
lets. For example, if products are added to an existing IT
environment, a console as disclosed herein may automati
cally incorporate content from one or more console modules
that are deployed during installation of those products. Pref
erably, the content aggregation techniques use conditional
logic to search in the portlet repository for the portlets defined
in the page definitions to determine whether references to
specified portlets can be completed, and if not, the corre
sponding view area is left empty (or, in an optional aspect, this
area may be made available for content of other portlets which
are currently available). When a referenced portlet subse
quently becomes available, its content can then be automati
cally merged into the aggregated view, according to the page
definition. Use of content aggregation techniques, as dis
closed herein, enables this automatic merging to occur in
ways not necessarily envisioned by the content developers.
(Note that entries in the navigation pane may also be updated
dynamically to reflect availability of portlets providing new
or additional tasks. See the discussion of FIG. 23.)

Returning to the discussion of FIG. 25, Block 2520 obtains
the identifier of the next portlet to be invoked for the selected
view, if any, and Block 2525 tests to see whether the page
definition is at its end (in which case a portlet identifier was
not found by Block 2520). Again referring to reference num
ber 540, it can be seen that there is another <portlet tag 546,
and thus the test in Block 2525 has a negative result. Accord
ingly, control then returns to Block 2505, which checks to see
if that portlet is available. (As will be obvious, the portlets
may be invoked without waiting for a previously-invoked
portlet to complete its execution; FIG. 25 depicts a sequential
invocation for ease of illustration.)
When the test in Block 2505 has a negative result, then a

portlet that is specified in the page layout syntax for this view
is not available for rendering content to be aggregated into the
view. Accordingly, that portlets view area may be left empty,
or may be reused by other portlets, as discussed above. (See,
also, the discussion of FIG. 6.) Control therefore transfers
from Block 2505 to Block 2520, which checks to see if other
portlets are specified for this view (effectively skipping over
the reference to the unavailable portlet).

US 8,140,976 B2
21

When the test in Block 2525 determines that there are no
more portlets specified for this view (i.e., the test has a posi
tive result), processing continues at Block 2530, where the
aggregated view resulting from invocation of the available
portlets is rendered. Control then returns to the invoking logic
(Block 2535), where the administrator may (if desired) per
form further interactions with this view.

Turning now to FIG. 26, a sample markup language docu
ment 2600 is provided to illustrate how navigation elements,
access rights, and filtering criteria keywords may be speci
fied. Each of these will now be described in more detail with
reference to the provided sample document.

In sample document 2600, two highest-level entries 2610,
2620 for a navigation pane are defined. These entries 2610,
2620 may be considered as folder-type entries, in that they
serve as containers for other lower-level entries. For example,
the value of the <title> element in entry 2610 is “view, and
the value of the <title> element in entry 2620 is “admin as
sets. These text strings are preferably rendered in a tree
structured navigation pane as siblings. The “view” entry has
been defined with a single child element titled “license'; see
reference number 2615. The “admin assets’ entry has a
single child element titled “inventory’ 2625, which in turn
has four child elements titled “userid 2635, “address' 2645,
“location” 2655, and “users' 2665. See FIG. 27 for a sample
navigation pane 2700 containing these entries.

Note that the page definition syntax provided in document
2600 for each of the leaf nodes 2615, 2635, 2645,2655,2665
of the tree-structured navigation pane includes a specification
of at least one portlet that is to be invoked when the admin
istrator selects the task associated with that leaf node (e.g., by
double-clicking on the text of an entry from navigation pane
2700).

Sample document 2600 also illustrates one way in which
access rights may be specified in a page definition document.
An <access-control element is used, in this example syntax,
to identify roles of users who are permitted to access pages or
groups of pages. See reference numbers 2612, 2622, 2662.
Reference number 2612 indicates that users having a role of
“Administrator are permitted to invoke the page titled
“license’ 2615. Reference number 2622 indicates that users
having a role of either “User' or Administrator are permit
ted to invoke the page titled “admin assets 2621 (which is a
folder containing lower-level tasks, as shown in FIG. 27). In
each case, a <role> tag includes a “permit' attribute that has,
as its value, a group name for the role that is permitted to
access the task. As an alternative, the <role> tags in element
2662 may be used to override the role information specified at
2622. In this example, element 2662 specifies that users in the
“Administrator role are permitted to have access to the
“users' page (and its associated portlet 2668), while those
users in the “User' role are excluded from accessing this
page. (For example, this access rights information may be
designed to prevent end users from modifying specifications
of users and their roles.)

Filtering criteria keywords are illustrated in sample docu
ment 2600 at reference numbers 2618, 2623, and 2628. A
<keyword attribute is used, in this approach, to specify one
or more filtering criteria values that are to be associated with
a page or group of pages. Accordingly, the attribute value
“security” at reference number 2618 indicates that the
“license' choice 2615 should be rendered only for adminis
trators when “security” is an active filtering preference. The
comma-separated list “lan, security specified at reference
number 2623 indicates that the “admin assets' node and its
children are only to be rendered for administrators when
either “lan' or “security' is an active filtering preference, and

10

15

25

30

35

40

45

50

55

60

65

22
the value "lan' at reference number 2628 indicates that the
“inventory' node and its children should only be rendered for
administrators when the active filtering criteria indicate that
this administrator is interested in tasks having the keyword
“lan”. As will be obvious, this is merely one approach that
may be used for specifying filtering criteria keywords.

Optionally, an embodiment of the present invention may be
adapted for using wild cards, whereby a particular adminis
trator may specify that he or she is interested in viewing all
tasks without regard to the keywords associated with any
particular task. Or, in another approach, the absence of filter
ing criteria associated with an administrator may be imple
mented as if a wildcard approach was specified. When using
a wildcard approach, administrators are not required to know
the keywords, or to specifically configure preferences, to
enable selectable representations of tasks to be rendered.

In another approach, a customization page might be ren
dered whereby the administrator is presented with selectable
keywords, as defined in one or more pages for which this
administrator is an authorized user, to assist the administrator
in choosing filtering criteria that can be used to limit the
entries in a navigation page to a useful Subset.
AS has been demonstrated, the present invention defines

advantageous techniques for creating and deploying admin
istration consoles. Techniques disclosed herein may be used
in a variety of scenarios to provide aggregated content, and a
number of such scenarios have been depicted in the examples
presented herein. Portlets rendered when using embodiments
of the present invention may perform operations that include,
but are not limited to, querying resources and/or altering the
state of those resources (where the state may be altered, for
example, by issuing commands to a resource, such as starting
or stopping one or more servers or other devices).
A number of different resources have been discussed

herein, by way of illustration but not of limitation. Embodi
ments of the present invention may be used advantageously
with an arbitrarily-wide range of objects, limited only by the
availability of computer-accessible management interfaces
for those objects.

Prior art portal and portlet techniques enable constructing
a view that presents a single instance of a managed resource
within a particular area of the console. Techniques of the
present invention, on the other hand, enable each area of the
console to represent more than one managed resource, as has
been described.

Prior art consoles known to the inventors suffer drawbacks
of the type which have been discussed earlier. For example,
the prior art consoles are typically “installed consoles” and
are not user-customizable, and disadvantages thereof have
been discussed. In addition, Some prior art consoles are oper
ating-system specific and/or do not leverage standards-based
interfaces. As a result, code that is developed for these con
soles is often not portable, and the prior art console may
therefore be very limited in its adaptability. As a result, devel
opment and maintenance costs are increased in this prior art
approach, as contrasted to the reusable console modules
(which may be combined in different ways for different
views) made possible when using the present invention.

Consoles based on a pluggable model are commercially
available that use the Microsoft Management Console
(“MMC) from Microsoft Corporation, and allow indepen
dently-developed management content to be Snapped in.
However, these consoles are operating-system specific and
operate as installed consoles. To the best of the present inven
tors knowledge and belief, such consoles do not allow end
users or system integrators to rearrange the content in solu
tion-specific ways.

US 8,140,976 B2
23

WebSphere Systems Console (“WSC), a commercially
available product of IBM, provides a Web- and J2EE-based
console, but techniques disclosed herein go considerably fur
ther in terms of extensibility and flexibility. For example,
content modules added to WSC allow attaching tasks at vari
ous points in the console using an extended Eclipse plug-in
model. Although WSC allows extension console modules to
be installed and uninstalled to form a solution, the module
install/uninstall cannot be performed while the console appli
cation is running (i.e., dynamically, as is possible in the
present invention). Furthermore, WSC does not enable end
users or system integrators to rearrange content in completely
new ways. In addition, an embodiment of the present inven
tion may provide a console that has, within the same display
infrastructure, content from other end user applications
which are not related to administration. For example, a user
may configure his or her administration console to also con
tain a view of real-time stock quotes (or other user-selected
content) when using the present invention. No prior art con
soles are known that provide this degree of flexibility and
adaptability.
The IBM Console, a commercially-available component

included in several products of IBM, is a proprietary (i.e.,
non-standards-based) approach to an integrated console, and
provides an integrated user experience across product bound
aries with the intent of consolidating content and providing
tighter integration between products along with a consistent
user interface. This IBM Console aims to let users accomplish
tasks without having to interact with many consoles, prod
ucts, or servers directly. However, this IBM Console does not
enable aggregating content onto a single page, and does not
enable end users or system integrators to rearrange content in
completely new ways, in contrast to the present invention.
Furthermore, the IBM Console does not provide a solution
based upon industry standards, in contrast to an embodiment
of the present invention.

Optionally, an embodiment of the present invention may be
adapted for generating the console as either a Web-based
console or an installed console (where this decision may be
made, for example, by interrogating the value of a configured
parameter).
As will be appreciated by one of skill in the art, embodi

ments oftechniques of the present invention may be provided
as methods, systems, or computer program products. Prefer
ably, an implementation of techniques of the present inven
tion is provided in Software, although implementations pro
vided in hardware or firmware, or combinations of software
with hardware and/or firmware, are also within the scope of
the present invention. Furthermore, an implementation of
techniques of the present invention may take the form of a
computer program product which is embodied on one or more
computer-usable storage media (including, but not limited to,
disk storage, CD-ROM, optical storage, and so forth) having
computer-usable program code embodied therein.
The present invention has been described with reference to

flowchart illustrations and/or block diagrams of methods,
apparatus (systems), and computer program products accord
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus
trations and/or block diagrams, can be implemented by com
puter program instructions. These computer program instruc
tions may be provided to a processor of a general purpose
computer, special purpose computer, embedded processor, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro

10

15

25

30

35

40

45

50

55

60

65

24
cessing apparatus, create means for implementing the func
tions specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, Such that the instructions stored in the
computer-readable memory produce an article of manufac
ture including instruction means which implement the func
tion specified in the flowchart and/or block diagram block or
blocks.
The computer program instructions may also be loaded

onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per
formed on the computer or other programmable apparatus to
produce a computer-implemented process such that the
instructions which execute on the computer or other program
mable apparatus provide steps for implementing the func
tions specified in the flowchart and/or block diagram block or
blocks.

While preferred embodiments of the present invention
have been described, additional variations and modifications
in those embodiments may occur to those skilled in the art
once they learn of the basic inventive concepts. Therefore, it
is intended that the appended claims shall be construed to
include preferred embodiments and all Such variations and
modifications as fall within the spirit and scope of the inven
tion.

What is claimed is:
1. A system for building an administration console as a

network-accessible application in a networking environment,
comprising:

a computer comprising a processor, and
instructions stored on at least one computer-readable

medium, wherein the processor is adapted to carry out
the instructions, the instructions configured to imple
ment functions comprising:
for each of a plurality of resources to be administered

using the administration console, programmatically
and dynamically tailoring the administration console
to the plurality of resources to be administered there
with, further comprising:
responsive to deployment of each one of the resources

in the networking environment, programmatically
plugging in, to a content aggregation framework
for building the administration console while the
content aggregation framework is executing, at
least one console module comprising functionality
for administering that one of the resources in the
networking environment; and

responsive to undeployment of any one of the
resources in the networking environment, pro
grammatically unplugging, from the content aggre
gation framework while the content aggregation
framework is executing, each console module pre
viously plugged in to the content aggregation
framework for that one of the resources;

for each of the programmatically plugged in console
modules, dynamically adding, to a navigation pane in
a view rendered in a displayed page of the adminis
tration console, each of at least one selectable entry
associated with that console module, wherein the
selectable entries in the navigation pane are defined in
a markup language document corresponding to each
of the plugged-in console modules and represent
selectable links to tasks that are invocable for admin

US 8,140,976 B2
25

istering the resources to be administered with the
administration console; and

responsive to selection of one of the selectable entries in
the navigation pane, invoking the corresponding task
and rendering a view, on the administration console,
comprising content created responsive to the invoked
task, according to layout information associated with
the selected entry by the console module with which
the selected entry is associated.

2. The system according to claim 1, the instructions further
configured to implement functions comprising Suppressing
the programmatically adding for any one of the at least one
selectable entries for which a run-time lookup determines that
an invocable implementation thereof is not available, thereby
preventing an attempt to invoke that one of the at least one
selectable entries.

3. The system according to claim 1, wherein the content
aggregation framework is a portal and the selectable entries
correspond to portlets.

4. A computer program product for building an adminis
tration console as a network-accessible application in a net
working environment, the computer program product embod
ied on one or more non-transitory computer-readable storage
media and comprising computer-readable program code for:

for each of a plurality of resources to be administered using
the administration console, programmatically and
dynamically tailoring the administration console to the
plurality of resources to be administered therewith, fur
ther comprising:
responsive to deployment of each one of the resources in

the networking environment, programmatically plug
ging in, to a content aggregation framework for build
ing the administration console while the content
aggregation framework is executing, at least one con
sole module comprising functionality for administer
ing that one of the resources in the networking envi
ronment; and

5

10

15

25

30

35

26
responsive to undeployment of any one of the resources

in the networking environment, programmatically
unplugging, from the content aggregation framework
while the content aggregation framework is execut
ing, each console module previously plugged into the
content aggregation framework for that one of the
resources;

for each of the programmatically plugged in console mod
ules, dynamically adding, to a navigation pane in a view
rendered in a displayed page of the administration con
Sole, each of at least one selectable entry associated with
that console module, wherein the selectable entries in
the navigation pane are defined in a markup language
document corresponding to each of the plugged-in con
Sole modules and represent selectable links to tasks that
are invocable for administering the resources to be
administered with the administration console; and

responsive to selection of one of the selectable entries in
the navigation pane, invoking the corresponding task
and rendering a view, on the administration console,
comprising content created responsive to the invoked
task, according to layout information associated with the
selected entry by the console module with which the
Selected entry is associated.

5. The computer program product according to claim 4.
further comprising computer-readable program code for Sup
pressing the programmatically adding for any one of the at
least one selectable entries for which a run-time lookup deter
mines that an invocable implementation thereof is not avail
able, thereby preventing an attempt to invoke that one of the
at least one selectable entries.

6. The computer program product according to claim 4,
wherein the content aggregation framework is a portal and the
selectable entries correspond to portlets.

