

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
15 July 2010 (15.07.2010)

(10) International Publication Number
WO 2010/079098 A1

(51) International Patent Classification:
C09D 11/00 (2006.01) *C09K 9/02* (2006.01)
C07D 491/107 (2006.01)

(74) Common Representative: BASF SE; IP Department, P.O. Box, CH-4002 Basel (CH).

(21) International Application Number:
PCT/EP2009/067825

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
23 December 2009 (23.12.2009)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09150214.6 8 January 2009 (08.01.2009) EP

(71) Applicant (for all designated States except US): BASF SE [DE/DE]; 67056 Ludwigshafen (DE).

Published:

— with international search report (Art. 21(3))

(72) Inventors; and

(75) Inventors/Applicants (for US only): **MAURER, Marc** [FR/FR]; rue de la Pyramide 8, F-68128 Village-Neuf (FR). **HÜGIN, Max** [CH/CH]; Zielweg 256, CH-4497 Rünenberg (CH). **RAIMANN, Thomas** [CH/CH]; Bodenackerstrasse 15D, CH-4334 Sisseln (CH). **FEILER, Leonhard** [DE/DE]; Ötlingerblick 6, 79589 Binzen (DE). **INDERBITZIN, Bruno** [FR/FR]; 2 Rue de Ferrette, F-68480 Bouxwiller (FR). **FUCHS, André** [DE/DE]; Im Kirschgarten 19, 79418 Schliengen-Oberegggen (DE).

WO 2010/079098 A1

(54) Title: PREPARATION OF A PHOTOCHROMIC INK

(57) **Abstract:** The present invention relates to a photochromic ink, the process for its preparation which is based on a spiropyran powder obtainable by melting, cooling and crushing, and to a new form of a spiropyran obtainable thereby. Said process to prepare a photochromic ink comprises the steps of a) heating and melting the spiropyran at a temperature below 250 C, b) cooling the melt to obtain a solidified spiropyran, c) crushing the solidified spiropyran to obtain a powder, d) optionally adding the powder to a binder providing the basis for the photochromic ink.

Preparation of a photochromic ink

The present invention relates to a photochromic ink, the process for its preparation which is based on a photochromic spirobifluorene powder obtainable by melting, cooling and crushing, and to a new form of a photochromic spirobifluorene obtainable thereby.

5

The use of photochromic inks or dyes is well known. By "photochromic ink" is meant a formulation formed as fluid ink which changes color when exposed to UV light radiation and provides a sufficiently high color density for use in the printing processes.

10 The International Application WO2005075978 (Freshpoint) describes the preparation of solvent-based or water-based printing inks comprising a spirobifluorene, an acrylate polymer as binder, a solvent or water and additives. The spirobifluorene is added as finely ground powder.

15 Spirobifluorenes used for preparing printing inks for time temperature indicators have to be easily dispersible. Therefore a small particle size of the spirobifluorene is required, for example obtained by intensively milling using standard bead mills. This method has at least two drawbacks. First, the milling operation is a time-intensive process, as long milling times are required to produce small enough particles to enable the formation of a stable dispersion. Second, the milling operation can not be used for all spirobifluorenes as some spirobifluorenes irreversibly change their color during milling.

20 A good dispersibility is needed to obtain a high color strength. The use in aqueous and solvent-based systems is desired.

25 The problem underlying the present invention is to reduce the milling time and to prepare an easily activatable spirobifluorene which can be easily converted into a colored spirobifluorene having a high color strength. "Easily activatable" or "easily converted" means that only short exposure to UV light is required.

30 It has been found that spirobifluorenes after melting and re-solidifying show different properties compared to crushed spirobifluorenes obtained by milling. First, it is possible to combine the spirobifluorene powder with a basic ink formulation without intensive milling. Second, a very high color strength is obtained after activation with UV light. In order to reach the same color

strength milled spiropyrans need a longer exposure time (circa 10 times longer) with UV light than the melted/re-solidified products.

Thus, the invention relates to a process to prepare a photochromic ink comprising the steps

5 of

- a) heating and melting a spiropyran, i.e. a photochromic spiropyran at a temperature below 250 °C, i.e. heating a photochromic spiropyran until it has melted,
- b) cooling the melt to obtain a solidified spiropyran,
- c) crushing the solidified spiropyran to obtain a powder,
- 10 d) optionally adding the powder to a binder providing the basis for the photochromic ink.

The invention further relates to a photochromic ink obtainable according to the process of claim 1.

15 The invention further relates to a photochromic spiropyran in the form of a powder which, after dispersion in a printing ink, has at least the double color strength than known forms of the same spiropyran, said powder being obtainable by

- a) heating and melting a photochromic spiropyran at a temperature below 250 °C, i.e. carefully heating the spiropyran until it has melted,
- 20 b) cooling the melt to obtain a solidified spiropyran, and
- c) crushing the solidified spiropyran to obtain a powder.

25 The reason for the unique property of the new form of a spiropyran is not entirely clear. It may be due to the particle size. Spiropyrans of similar particle size may e.g. not be accessible by conventional methods due to reaggregation of small particles in the milling operation.

The inventive process allows the preparation of easily activable time temperature indicators in powder form which can be used in various ink formulations.

30

The decomposition temperature of spiropyrans is below 250 °C, i.e. all spiropyrans so far tested by the present inventors at least start decomposing below or even far below 250 °C. A certain degree, e.g. up to 20%, 30%, 40% or even 50%, of decomposition is acceptable since the gain in color strength by the inventive process more than compensates for the loss

of intact spiropyrans by decomposition. However, some spiropyrans tend to decompose rather rapidly, some even explosively. Hence, due care should be taken not to raise the temperature more than is necessary to obtain a complete melt or not to use explosive spiropyrans in the process of the present invention, especially not in larger scale.

5 Spiropyrans which are suitable for being used in the process of the present invention can easily be detected and selected, e.g. by heating an undangerously small amount of them until they melt and watching the decomposition behaviour.

The preferred manner of carrying out process step a) above is to heat the spiropyran until it 10 has melted, i.e. to heat it only slightly, e.g. 2, 5 or 10 °C above its melting point which is usually in the range of 140-200 °C, especially 150-190 °C. Preferably, heating is continued until melting is complete, i.e. all of the spiropyran has melted, but in order to avoid circumvention of the patent protection the respective patent claim comprises also those 15 modifications of the process wherein only a substantial portion, e.g. 10, 20, 30, 40, 50, 60, 70, 80 or 90 per cent (percent), of the spiropyran has melted.

The solidified spiropyran is in a transparent form.

Solidified is crystalline or semi amorphous. The term "semi-amorphous" herein means a 20 spiropyran having an intermediate structure of an amorphous structure and a crystalline structure.

Cooling means, for example, cooling to room temperature or a temperature below room 25 temperature and comprises also shock cooling. Shock cooling is preferably performed by pouring the melt on solid carbon dioxide (also called dry ice or carbon dioxide snow) or into liquid nitrogen whereupon the melt usually splits into tiny pieces.

The melting is carried out using any method of heat transfer, for example the melting is formed by heating using an oil bath, by melt extrusion, by radiation, e.g. NIR/IR radiation, 30 heating using a hot air technology, heating by using a cold plasma and the like.

A short heating treatment is preferred to avoid the decomposition of the spiropyrans.

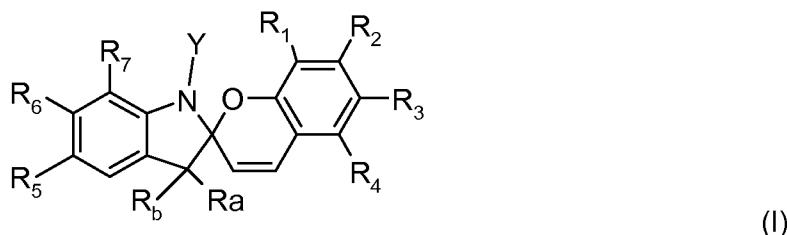
Polymeric binders for inks include all polymers known to be used in inks, e.g. homopolymers, copolymers (random or block-copolymers) or mixtures thereof including polymers of acrylic acid or methacrylic acid, acrylates or methacrylates (e.g. methyl acrylate or methyl methacrylate), styrene, acrylamide, vinyl acetate, vinyl alcohol, vinyl chloride, polyurethanes, 5 cellulose nitrate, carboxymethyl cellulose. Preferred is a water-soluble or water- dispersible acrylic polymer. The binder is thus preferably an acrylic binder.

Inks contain a variety of additives to eliminate foaming, dispersion of pigments, rheological modifiers, and slip agents.

10

The inks comprise a total content of spiropyran of from 1 to 20 % by weight, preferably 1.5-20% by weight, 2-20% by weight, 3-20% by weight based on the total weight of the ink.

15


The spiropyran-dispersed ink composition can be produced by employing various methods which have so far conventionally been known. For example, it can readily be obtained by blending the respective components (binder, additive, spiropyran powder) and mixing and stirring them by means of a stirrer such as a dissolver or mixing and crushing them by means of a ball mill.

20

The spiropyran compound is for example a spiropyran as disclosed (including processes for its manufacture) in WO 2008/083925 A1 or WO 2005075978 A2 (Freshpoint), or a spiropyran as disclosed in the European Application EP08156605 (Ciba), filed May 21, 2008 (corresponding to PCT/EP2009/05564 filed May 11, 2009 and published as WO2009141237 A1), all of which publications are incorporated herein by reference.

25

This is especially a spiropyran derivative of formula I:

wherein

R₁ is hydrogen, -C₁-C₁₈ alkoxy, -C₁-C₁₈ alkylthio, halogen, -C₁-C₁₈ alkyl, -NO₂ or a phenyl radical, like preferably phenyl;

R₂ is hydrogen, -C₁-C₁₈ alkoxy or NO₂;

R₃ is NO₂ or halogen;

R₄ is hydrogen, -C₁-C₁₈ alkoxy or halogen;

R₅ is hydrogen, halogen, -C₁-C₁₈ alkoxy, -COOH, -COO-C₁-C₁₈alkyl, -CF₃ or phenyl;

R₆ is hydrogen or R₆ and R₇ form together a phenyl ring;

5 R₇ is hydrogen;

R_a is hydrogen or -C₁-C₆ alkyl;

R_b is hydrogen or -C₁-C₆ alkyl, or together with R_a form a 5-6 membered ring;

Y is phenyl or benzyl wherein the phenyl or benzyl group may be substituted by one or more groups selected from NO₂, fluorine, bromine, chlorine, CF₃ or phenyl and may 10 carry an annealed benzo ring, or

Y is -CH₂-COO- C₁-C₁₈alkyl or -CH₂-COOH or -CH₂-CO-N(R₁₀)-R₉; or -CH₂-CO-N(R₁₀)-L-N(R₁₀) CO-CH₂- ; wherein

R₉ is hydrogen, C₁-C₁₈alkyl , phenyl, mesityl, phenyl once or more than once 15 substituted by halogen, -CF₃, C₁-C₆alkyl, -C₁-C₆ alkoxy, carboxy, -COO-C₁-C₆alkyl, -S-phenyl or -CO-phenyl;

R₁₀ is hydrogen, C₁-C₁₈alkyl;

L is 1,3 phenylene or 1,4 phenylene wherein the phenylene linker is optionally 20 substituted by once or more than once by halogen, -CF₃, C₁-C₁₈alkyl, -C₁-C₁₈ alkoxy, carboxy , -COO-C₁-C₁₈alkyl, -CONH₂, -CON(C₁-C₁₈alkyl)₂, nitro; or L is naphthalene, biphenylene or phenylene-O-phenylene wherein the naphthalene, biphenylene or phenylene-O-phenylene linker is optionally substituted once or more than once by 25 halogen, -CF₃, C₁-C₁₈alkyl, -C₁-C₁₈ alkoxy, carboxy , -COO-C₁-C₁₈alkyl, -CONH₂, -CON(C₁-C₁₈alkyl)₂, nitro.

25 Phenyl or benzyl Y carrying an is napthyl or napthylmethyl. Preferably, Y does not carry an annealed benzo ring.

Preferences

Preferred are compounds of the formula I wherein

30 R₁ is hydrogen, -C₁-C₁₈ alkoxy, -C₁-C₁₈ alkylthio, halogen, -C₁-C₁₈ alkyl or -NO₂;

R₂ is hydrogen or -C₁-C₁₈ alkoxy;

R₃ is NO₂ or halogen;

R₄ is hydrogen, -C₁-C₁₈ alkoxy or halogen;

R₅ is hydrogen, halogen, -C₁-C₁₈ alkoxy, -COOH, -COO-C₁-C₁₈alkyl, -CF₃ or phenyl;

R₆ is hydrogen or R₆ and R₇ form together a phenyl ring;

R₇ is hydrogen;

R_a is hydrogen or -C₁-C₆ alkyl;

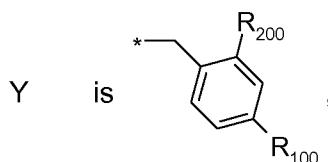
R_b is hydrogen or -C₁-C₆ alkyl, or together with R_a form a 5-6 membered ring;

5 Y is phenyl or benzyl wherein the phenyl or benzyl group may be substituted by one or more groups selected from fluorine, bromine, chlorine, CF₃ or phenyl or

Y is -CH₂-COO- C₁-C₁₈alkyl or -CH₂-COOH or -CH₂-CO-N(R₁₀)-R₉; or -CH₂-CO-N(R₁₀)-L-N(R₁₀) CO-CH₂- ;wherein

R₉ is hydrogen, C₁-C₁₈alkyl, phenyl, mesityl, phenyl once or more than once

10 substituted by halogen, -CF₃, C₁-C₆alkyl, -C₁-C₆ alkoxy, carboxy, -COO-C₁-C₆alkyl, -S-phenyl or -CO-phenyl;


R₁₀ is hydrogen, C₁-C₁₈alkyl;

L is 1,3 phenylene or 1,4 phenylene wherein the phenylene linker is optionally substituted by once or more than once by halogen, -CF₃, C₁-C₁₈alkyl, -C₁-C₁₈ alkoxy,

15 carboxy, -COO-C₁-C₁₈alkyl, -CONH₂, -CON(C₁-C₁₈alkyl)₂, nitro; or L is naphthalene, biphenylene or phenylene-O-phenylene wherein the naphthalene, biphenylene or phenylene-O-phenylene linker is optionally substituted once or more than once by halogen, -CF₃, C₁-C₁₈alkyl, -C₁-C₁₈ alkoxy, carboxy, -COO-C₁-C₁₈alkyl, -CONH₂, -CON(C₁-C₁₈alkyl)₂, nitro.

20

Preferred are compounds of the formula I wherein

R₁ is C₁-C₆alkoxy, preferably methoxy,

R₂ is hydrogen,

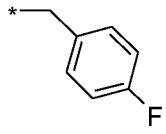
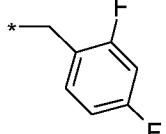
25 R₃ is NO₂,

R₄ is hydrogen,

R₅ is hydrogen or C₁-C₆alkoxy,

R₆ is hydrogen,

R₇ is hydrogen,

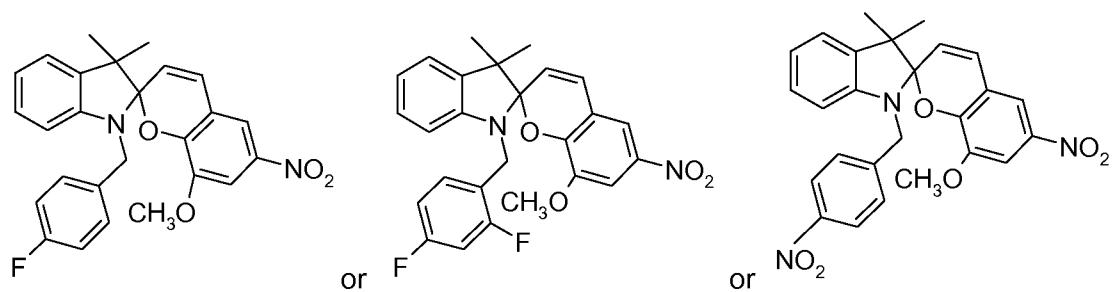


30 R_a is methyl,

R_b is methyl,

R₁₀₀ is NO₂, bromine, fluorine or CF₃, preferably bromine, fluorine or CF₃,

R_{200} is hydrogen or fluorine.

Especially preferred is a compound of the formula I wherein

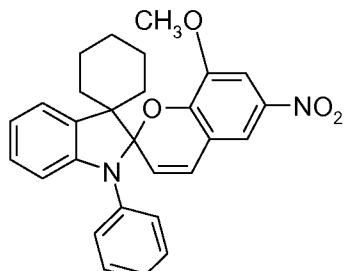

5 Y is nitro-benzyl, like especially 4-nitro-benzyl, or or ;
 preferably Y is 4-fluoro-benzyl or 2,4-difluoro-benzyl,

10 R_1 is methoxy,
 R_2 is hydrogen,
 R_3 is NO_2 ,

10 R_4 is hydrogen,
 R_5 is hydrogen
 R_6 is hydrogen,
 R_7 is hydrogen,
 R_a is methyl,

15 R_b is methyl,

The preferred compound has the following formula



20 The spirobifluorene compounds are molten and re-solidified by cooling to room temperature. The re-solidified spirobifluorene can easily be dispersed in an ink formulation. The milling time is reduced by factor 5 compared to unmolten spirobifluorenes. The exposure time of the ink formulation by UV radiation is less (approximately 4-40%, preferably 4-10%) compared to an ink formulation containing an unmolten spirobifluorene.

25

Furthermore preferred is a compound of the formula I wherein R_a and R_b together form a hexylene ring, Y is phenyl, R_1 is methoxy, R_2 is hydrogen, R_3 is nitro, R_4 is hydrogen, R_5 is

hydrogen, R₆ is hydrogen R₇ is hydrogen. This preferred compound has the following formula

MH1188

5

Furthermore preferred are compounds of the formula I

wherein Y is -CH₂-COR,

R₁ is C₁-C₆alkoxy, C₁-C₆alkylthio, or a phenyl radical, like especially phenyl, preferably R₁ is C₁-C₆alkoxy or C₁-C₆alkylthio,

10 R is -C₁-C₆alkoxy or -NHR₉ wherein R₉ is phenyl, phenyl once or more than once substituted by halogen, -CF₃, C₁-C₆alkyl, -C₁-C₆ alkoxy, -S-phenyl or -CO-phenyl,

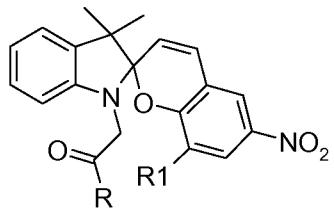
R₂ is hydrogen,

R₃ is NO₂,

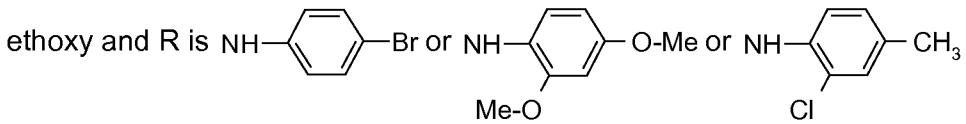
R₄ is hydrogen,

15 R₅ is hydrogen,

R₆ is hydrogen,

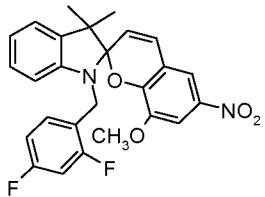

R₇ is hydrogen,

R_a is methyl and


R_b is methyl.

20

These compounds can be expressed by the following formula Ia


Especially preferred are further compounds of the formula Ia wherein R₁ is methoxy or

Examples

5 **Example 1: melting**

1g 1'-(2,4-Difluorobenzyl),3',3'-dimethyl-6-nitro-8-methoxy(2H-1-benzopyran-2,2'-2H-indol) (LF3233)

is heated in a glass tube at 160°C for 5 minutes. The molten mass is cooled to room
10 temperature and pulverized. The powder is then added to an aqueous based basic ink formulation using a planetary mill (available from Fritsch GmbH, Planetary Fritsch Pulverisette 7) to obtain a printing ink.

The basic ink formulation is described below.

The printing ink is then applied to a paper using a wiper. The film thickness is approximately
15 12 µm. The label obtained is activated using UV light.

The Table below shows that the molten and re-solidified spirobifluorene according to the invention needs only 1/10 of the UV Dosis to reach the same color strength as the unmolten spirobifluorene. The radiation time is reduced from 2 seconds to 0.2 seconds.

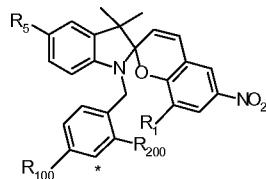
20 The values L, a and b used in the present text are informal abbreviations of the coordinates of the CIE color space L*, a* and b* and should not be mixed up with the Hunter values L, a and b. L (and L*) define the lightness axis of the CIE color space with 0 meaning black and 100 meaning white; a (and a*) define the location on the red - green axis (positive values are red, negative values are green, and 0 is neutral); and b (and b*) define the location on the blue – yellow axis (positive values are yellow, negative values are blue, and 0 is neutral).

The starting color values (uncharged) of the unmolten and the molten spirobifluorene are slightly different due to a slight discoloration during the melting process.

- 10 -

Unmolten 2 seconds activated:

	L	a	b
uncharged	86.74	-0.14	4.27
charged	44.6	-0.54	-38.43

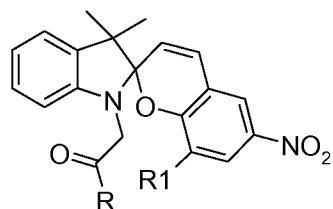

molten 0,2 seconds activated:

	L	a	b
	81.84	1.51	1.33
	42.36	-4.94	-42.01

The bleaching kinetic is the same for both products.

The following spiropyrans having a benzylic group Y are treated analogously as described in

5 Example 1.


Lab No.	R ₁₀₀	R ₂₀₀	R ₁	R ₅	Melting Temp (°C)	Melting Time (min)	Exposure time to UV radiation (s)	L-value
LF3206	Br	H	OMe**	H	-	-	10	53
					195	1	4	34
LF3391	H	H	OMe	H	-	-	10	41
					170	1	4	29
LF2923	**	H	OMe	H	-	-	10	56
					170	5	4	38
LF2807	F	H	OMe	H	-	-	10	39
					155	1	0.4	39
FP152	CF ₃	H	OMe	H	-	-	10	27
					160	5	10	11
FP258	CF ₃	H	OMe	OMe	-	-	10	44
					160	5	10	16
FP220	I	H	OMe	H	-	-	10	37
					185	5	10	22

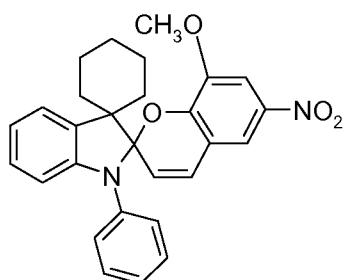
* LF2923 carries a benzo ring which is annealed to the C-atom carrying the substituent R₁₀₀ and the C-atom marked with * in the above formula.

10 ** OMe means methoxy, i.e. OCH₃.

The following spiropyrans having an ester or amid group Y are treated analogously as described in Example 1.

5

Lab No.	R	R ₁	Melting Temp (°C)	Melting Time (min)	Exposure time to UV radiation (s)	L-value
LF3721	-OCH(CH ₃) ₂	OMe (OCH ₃)	-	-	10	31
			150	5	4	14
LF3471		OMe	-	-	10	67
			190	1	4	40
LF3838		OMe	-	-	10	63
			180	1	4	38
LF3847		OMe	-	-	10	85
			180	1	10	50
LF4001		OMe	-	-	10	77
			180	1	1	44
LF3849		OMe	-	-	10	69
			180	1	1	40
LF4005		OMe	-	-	10	68
			180	1	1	35
LF4009		OMe	-	-	10	77
			180	1	10	43
LF3550		OMe	-	-	10	73
			180	1	4	44


- 12 -

Lab No.	R	R ₁	Melting Temp (°C)	Melting Time (min)	Exposure time to UV radiation (s)	L-value
LF4022		OMe	-	-	10	70
			180	1	1	32
LF4026		OMe	-	-	10	71
			180	1	10	38
LF4032	-OCH(CH ₃) ₂	OEt**	-	-	10	82
			180	1	10	55
LF4033	-OCH(CH ₃) ₂	SMe***	-	-	10	50
			180	1	1	32
LF4035		OEt**	-	-	10	76
			180	1	1	42
LF4028		OMe	-	-	10	76
			180	1	4	59
LF4021		OMe	-	-	10	74
			180	1	4	61

R* indicates the position of the free valency forming the linkage to the rest of the spiropyran molecule.

** OEt = ethoxy = -O-CH₂-CH₃ *** SMe = methylthio = -S-CH₃

5 The following spiropyran compound is treated analogously as described in Example 1

MH1188

Unmolten 3 seconds activated

molten 0.3 seconds activated

- 13 -

	L	a	b
uncharged	88.2	0.57	1.03
charged	63.6	1.05	1.8

L	a	b
83.6	1.02	2.1
44.17	-36.96	-30.53

The following spiropyran compound

171°C for 5 minutes and further treated according to Example 1.

5

unmolten 2 seconds activated

	L	a	b
uncharged	86.74	-0.14	4.27
charged	44.6	-0.54	-38.43

molten 0,2 seconds activated

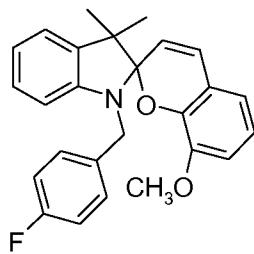
L	a	b
81.84	1.51	1.33
42.36	-4.94	-42.01

A Collin **Teachline** extruder E 20 T is heated to 160°C. The extruder is loaded with

10 500g of the following spiropyran (LF2807)

and extruded out in 25 min.

The spiropyran is molten during the extrusion process and exits out as a high viscous liquid which is then cooled. Glassy plates are formed. The plates are crushed and added to an aqueous based basic ink formulation using a planetary mill (available from Fritsch GmbH, Planetary Fritsch Pulverisette 7) to obtain a printing ink.


15

molten 2 seconds activated

	L	a	b
uncharged	89.7	-0.77	2.7
charged	29.97	-0.57	-36.95

- 14 -

3 g of the following spiropyran

is molten in a microwave (800W) for 2

minutes. The molten mass is cooled to room temperature and pulverized. The powder is then added to an aqueous based basic ink formulation using a planetary mill (available from
 5 Fritsch GmbH, Planetary Fritsch Pulverisette 7) to obtain a printing ink

molten 2 seconds activated

	L	a	b
uncharged	92.7	-0.58	1.8
charged	33.4	-0.62	-36.73

10 **Preparation of the water based printing ink which contains 10% spiropyran (TTI)**

Step 1: Basic printing ink

20g Glascol® LS-16 (Ciba AG) (acrylic copolymer in an aqueous solution)

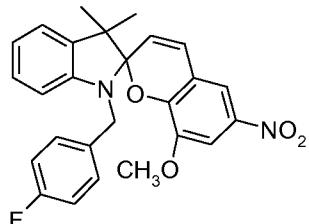
20g Joncrys® 74 (BASF AG)

15 0.25g TEGO® Foamex 845 als antifoaming agent (Evonik Industries AG)

Step 2: preparation of the TTI-printing ink:

1g spiropyran (TTI)

9g Basic printing ink

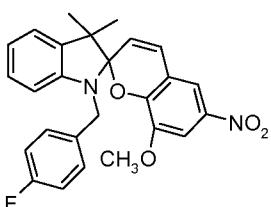

20 35g zirconium oxide -balls having a diameter of 0.7-0.9mm

Milling for 15min at 650 rpm (rounds per minute) using a planetary mill (Planetary Fritsch Pulverisette 7 available from Fritsch GmbH, Germany).

Leaving the printing ink over night and separate the balls.

Example 2: dispersing

The raw, i.e. crystalline and unmilled compound of the formula

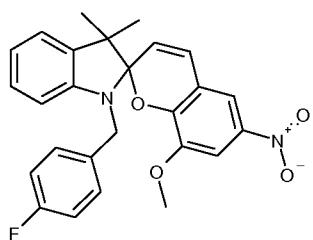

(before melting step) is dispersed in the basic printing ink formulation described above

5 according to the usual dispersion process described above, i.e. using a planetary mill (Planetary Fritsch Pulverisette 7 available from Fritsch GmbH, Germany) and milling at 650 rounds per minute (rpm), and the coloristical properties (especially L-Value -> color development) are checked after 5, 15 and 30 minutes dispersion time. The color development after irradiation with UV light (cf. Example 3) is poor and very slow.

	L	a	b
uncharged	93.84	-1	2.75
5' Dispersion	73.79	-4.65	-4.25
15' Dispersion	63.79	-8.72	-12.72
30' Dispersion	59.24	-7.34	-10

10

The same compound


after melting step is also dispersed according to

the usual dispersion process and the coloristical properties (especially L-Value -> color development) are checked after 5, 15 and 30 minutes dispersion time. The color development after irradiation with UV light (cf. Example 3) shows that a very high and
15 constant L-value is already obtained after only 5 minutes processing time (dispersion time).

	L	a	b
uncharged	91.77	-0.83	1.89
5' Dispersion	22	2.17	-39.47
15' Dispersion	21.74	2.83	-40.97
30' Dispersion	22.94	-1.97	-37.93

Example 3: color strength comparison of crystalline, milled and molten LF2807

5 Synthesis of crystalline LF2807 (as described on page 19 of WO 2008/083925 A1) having the structure:

Step 1) A solution of 2,3,3-trimethylindolenine (5.0 g, 31.4 mmol) and 4-fluorobenzylbromide (3.0 g, 15.7 mmol) in dry toluene 30 ml is stirred overnight at 80-85°C. The mixture is cooled to room temperature, filtered through a glass filter, washed with diethyl ether and dried under reduced pressure. The crude product is dissolved in CH₂Cl₂ and treated with 5% aqueous NaOH under stirring for 30 minutes. The organic phase is separated, dried over Na₂SO₄, passed through a short alumina column in equal parts per volume of hexane-CH₂Cl₂ and evaporated giving rise to a corresponding free base, which is immediately dissolved in 10 ml ethanol containing a few drops of triethylamine.

Step 2) A solution of 1-(4'-fluorobenzyl)-3,3-dimethyl-2-methylene-indoline (2.7 g, 10.0 mmol) and 2-hydroxy-3-methoxy-5-nitrobenzaldehyde (3.6 g, 13.0 mmol) is refluxed in 25 ml ethanol for 2 hours, cooled to room temperature, filtered, triturated with 1% triethylamine (in water), washed with water, crystallized from ethanol, and dried under reduced pressure yielding crystalline LF2807.

Color strength comparison:

(A): Crystalline LF2807 is stirred in 5% loading in the basic printing ink described above using a standard Teflon made disk-stirrer (100 rpm) for 10 minutes.

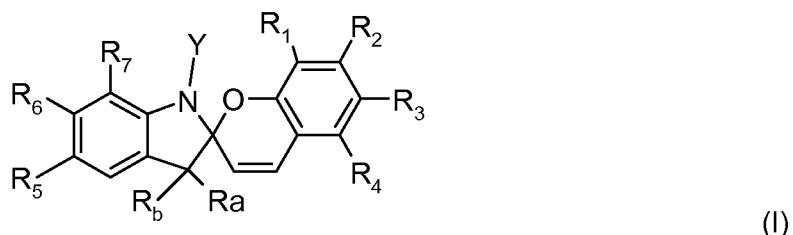
5 (B) Crystalline LF2807 is dispersed and milled in 5% loading in the printing ink described above using a perl mill (pulverisette) with zirconium oxide beads (650 rpm) for 10 minutes.

(C) Crystalline LF2807 is molten, re-solidified, dispersed and milled in 1% loading in the printing ink described above using a perl mill (pulverisette) with zirconium oxide beads (650 rpm) for 10 minutes.

10 All produced inks are drawn on paper using a #2 doctor blade resulting in an ink thickness of approximately 12µm (wet). The prints are charged subsequently with UV light of 365 nm for 1 or 10 seconds as specified in the following table and the color is measured using a colorimeter.

The following results are obtained:

Experiment	starting L-value	Charging	L-value after loading	color strength (approximately)
A	96	10 seconds	91	extremely low
B	87	1 second	45	100%, comparison
C	85	1 second	46	~500%


15

As can be seen above, after dispersion in the printing ink by identical treatment in the perl mill, the molten, re-solidified and milled LF2807 (Experiment C) exhibits about the same L-value as the unmolten and milled LF2807 (Experiment B) despite the fact that the concentration of the active material in Experiment C is 5 times lower. Therefore the color 20 strength for the molten, re-solidified and milled LF2807 is 500% as compared to the unmolten and milled LF2807 for which the color strength is set as 100%.

The color strength of crystalline LF2807 which is not milled, but only stirred in the printing ink is extremely low.

Claims

1. A process to prepare a photochromic ink comprising the steps of
 - a) heating and melting the spiropyran at a temperature below 250 °C,
 - b) cooling the melt to obtain a solidified spiropyran,
 - c) crushing the solidified spiropyran to obtain a powder, and
 - d) adding the powder to a binder providing the basis for the photochromic ink.
2. A photochromic ink obtainable according to the process of claim 1.
3. A process according to claim 1 wherein the binder is water-soluble or water-dispersible acrylic polymer.
4. A process according to claim 1 wherein the spiropyran is a compound of the formula I:

wherein

R₁ is hydrogen, -C₁-C₁₈ alkoxy, -C₁-C₁₈ alkylthio, halogen, -C₁-C₁₈ alkyl, -NO₂ or a phenyl radical;

R₂ is hydrogen, -C₁-C₁₈ alkoxy or NO₂;

R₃ is NO₂ or halogen;

R₄ is hydrogen, -C₁-C₁₈ alkoxy or halogen;

R₅ is hydrogen, halogen, -C₁-C₁₈ alkoxy, -COOH, -COO-C₁-C₁₈alkyl, -CF₃ or phenyl;

R₆ is hydrogen or R₆ and R₇ form together a phenyl ring;

R₇ is hydrogen;

R_a is hydrogen or -C₁-C₆ alkyl;

R_b is hydrogen or -C₁-C₆ alkyl, or together with R_a form a 5-6 membered ring;

Y is phenyl or benzyl wherein the phenyl or benzyl group may be substituted by one or more groups selected from NO₂, fluorine, bromine, chlorine, CF₃ or phenyl or

- 19 -

Y is $-\text{CH}_2\text{COO- C}_1\text{-C}_{18}\text{alkyl}$ or $-\text{CH}_2\text{COOH}$ or $-\text{CH}_2\text{CO-N(R}_{10}\text{)-R}_9$; or $-\text{CH}_2\text{CO-}$
 $\text{N(R}_{10}\text{)-L-N(R}_{10}\text{) CO-CH}_2\text{-}$; wherein

R_9 is hydrogen, $\text{C}_1\text{-C}_{18}\text{alkyl}$, phenyl, mesityl, phenyl once or more than once substituted by halogen, $-\text{CF}_3$, $\text{C}_1\text{-C}_6\text{alkyl}$, $-\text{C}_1\text{-C}_6$ alkoxy, carboxy, $-\text{COO-C}_1\text{-C}_6\text{alkyl}$, $-\text{S-phenyl}$ or $-\text{CO-phenyl}$;

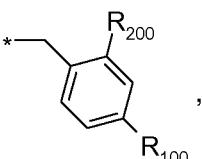
R_{10} is hydrogen, $\text{C}_1\text{-C}_{18}\text{alkyl}$;

L is 1,3 phenylene or 1,4 phenylene wherein the phenylene linker is optionally substituted by once or more than once by halogen, $-\text{CF}_3$, $\text{C}_1\text{-C}_{18}\text{alkyl}$, $-\text{C}_1\text{-C}_{18}$ alkoxy, carboxy, $-\text{COO-C}_1\text{-C}_{18}\text{alkyl}$, $-\text{CONH}_2$, $-\text{CON(C}_1\text{-C}_{18}\text{alkyl)}_2$, nitro; or L is naphthalene, biphenylene or phenylene-O-phenylene wherein the naphthalene, biphenylene or phenylene-O-phenylene linker is optionally substituted once or more than once by halogen, $-\text{CF}_3$, $\text{C}_1\text{-C}_{18}\text{alkyl}$, $-\text{C}_1\text{-C}_{18}$ alkoxy, carboxy, $-\text{COO-C}_1\text{-C}_{18}\text{alkyl}$, $-\text{CONH}_2$, $-\text{CON(C}_1\text{-C}_{18}\text{alkyl)}_2$, nitro.

5. A process according to claim 4, wherein the spiropyran is a compound of the formula I wherein

R_1 is hydrogen, $-\text{C}_1\text{-C}_{18}$ alkoxy, $-\text{C}_1\text{-C}_{18}$ alkylthio, halogen, $-\text{C}_1\text{-C}_{18}$ alkyl, or NO_2 ,

R_2 is hydrogen or $-\text{C}_1\text{-C}_{18}$ alkoxy,


Y is phenyl or benzyl wherein the phenyl or benzyl group may be substituted by one or more groups selected from NO_2 , fluorine, bromine, chlorine, CF_3 or phenyl or

Y is $-\text{CH}_2\text{COO- C}_1\text{-C}_{18}\text{alkyl}$ or $-\text{CH}_2\text{COOH}$ or $-\text{CH}_2\text{CO-N(R}_{10}\text{)-R}_9$; or $-\text{CH}_2\text{CO-}$

$\text{N(R}_{10}\text{)-L-N(R}_{10}\text{) CO-CH}_2\text{-}$; wherein R_9 , R_{10} and L are as defined in claim 4, and

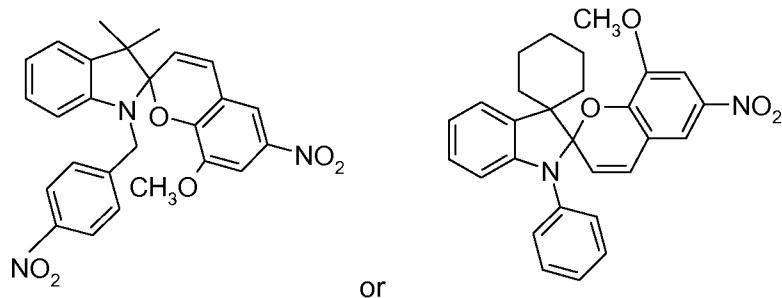
the remaining substituents are as defined in claim 4.

6. A process according to claim 4, wherein the spiropyran is a compound of the formula I wherein

Y is ,

R_1 is $\text{C}_1\text{-C}_6\text{alkoxy}$, R_2 is hydrogen,

R_3 is NO_2 ,


R_4 is hydrogen,

R_5 is hydrogen or $\text{C}_1\text{-C}_6\text{alkoxy}$,

R_6 is hydrogen,

R_7 is hydrogen,
 R_a is methyl,
 R_b is methyl,
 R_{100} is NO_2 , bromine, fluorine or CF_3 ,
 R_{200} is hydrogen or fluorine.

7. A process according to claim 4, wherein the spiropyran is a compound of the formula

8. A process according to claim 4, wherein the spiropyran is a compound of the formula I wherein

Y is $-\text{CH}_2\text{COR}$
 R_1 is $\text{C}_1\text{-C}_6\text{alkoxy}$ or $\text{C}_1\text{-C}_6\text{alkylthio}$
 R is $-\text{C}_1\text{-C}_6\text{alkoxy}$ or $-\text{NHR}_9$ wherein R_9 is phenyl, phenyl once or more than once substituted by halogen, $-\text{CF}_3$, $\text{C}_1\text{-C}_6\text{alkyl}$, $-\text{C}_1\text{-C}_6\text{alkoxy}$, $-\text{S-phenyl}$ or $-\text{CO-phenyl}$
 R_2 is hydrogen,
 R_3 is NO_2
 R_4 is hydrogen,
 R_5 is hydrogen,
 R_6 is hydrogen,
 R_7 is hydrogen,
 R_a is methyl.
 R_b is methyl.

9. A photochromic spiropyran in the form of a powder which, after dispersion in a printing ink, has at least the double color strength than known forms of the same spiropyran, said powder being obtainable by

- d) carefully heating a photochromic spiropyran until it has melted,
- e) cooling the melt to obtain a solidified spiropyran, and

- 21 -

f) crushing the solidified spiropyran to obtain a powder.

10. A spiropyran according to claim 9 having the formula I as defined in any one of claims 4-8.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2009/067825

A. CLASSIFICATION OF SUBJECT MATTER
INV. C09D11/00 C07D491/107 C09K9/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C09D C07D C09K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 633 109 A (JENNINGS CAROL A [CA] ET AL) 27 May 1997 (1997-05-27) columns 16-37; examples	1,3-8
X	-----	2,9,10
A	EP 1 260 560 A (XEROX CORP [US]) 27 November 2002 (2002-11-27) examples	1,3-8
X	-----	2,9,10
		-/--

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"&" document member of the same patent family

Date of the actual completion of the international search 23 February 2010	Date of mailing of the international search report 10/03/2010
---	--

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040. Fax: (+31-70) 340-3016	Authorized officer Ellrich, Klaus
--	--

INTERNATIONAL SEARCH REPORT

 International application No
 PCT/EP2009/067825

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GALBERTSHTAM M A ET AL: "Photochromic properties of some N-substituted 3,3-dimethyl-6'-nitro-indoline-2-spiro-2'-2H-chromenes" CHEMISTRY OF HETEROCYCLIC COMPOUNDS (A TRANSLATION OF KHIMIYAGETEROTSIKLICHESKIKH SOEDINENII), PLENUM PRESS CO., NEW YORK, NY, US, vol. 13, 1 January 1977 (1977-01-01), pages 1309-1313, XP002496051 ISSN: 0009-3122 the whole document -----	1-8
X		9,10
A	JONATHAN FILLEY ET AL: "Magnesium and calcium chelation by a bis-spiropyran" JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY, A: CHEMISTRY, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 117, 1 January 1998 (1998-01-01), pages 193-198, XP002496058 ISSN: 1010-6030 the whole document -----	1
X		9,10
X	GUGAVA M T ET AL: "Study of photochromic properties of some spirochromenes by means of IR spectra" IZVESTIJA AKADEMII NAUK GRUZINSKOJ SSR = PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE GEORGIAN SSR,, vol. 8, no. 4, 1 January 1982 (1982-01-01), pages 288-293, XP009122670 ISSN: 0132-6074 the whole document -----	2,9,10
A		1,3-8
X	PANTSYRNYI V I ET AL: "Preparation of spiropyrans based on 3- formylsalicylic acid derivatives" HIMIA GETEROSCIKLICESKIH SOEDINENIJ - CHEMISTRY OF HETEROCYCLIC COMPOUNDS, LATVIJSKIJ INSTITUT ORGANICESKOGO SINTEZA, RIGA, LV, vol. 7, no. 1, 1 January 1971 (1971-01-01), page 134, XP002545310 ISSN: 0132-6244 the whole document -----	9,10
A		1-8
X	US 3 999 989 A (ONO HISATAKE ET AL) 28 December 1976 (1976-12-28) columns 2-8; claims 1,9 -----	2,9,10
A		1,3-8

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2009/067825

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 5633109	A 27-05-1997	NONE			
EP 1260560	A 27-11-2002	JP 4126194 B2			30-07-2008
		JP 2003020430 A			24-01-2003
		US 2003002132 A1			02-01-2003
US 3999989	A 28-12-1976	DE 2162771 A1			06-07-1972
		FR 2118740 A5			28-07-1972
		GB 1374437 A			20-11-1974
		JP 49013354 B			30-03-1974