Title: SINGLE CHIP CMOS TRANSMITTER/RECEIVER AND METHOD OF USING SAME

Abstract: A single chip RF communication system and method is provided including a transmitter and a receiver. The RF communication system in accordance with the present invention can include an antenna that receives/transmits RF signals, a PLL that generates multi-phase clock signals having a frequency different from a carrier frequency and a reference signal having the carrier frequency, a demodulation-mixer that mixes the received RF signals with the multi-phase clock signals having the frequency different from the carrier frequency to output signals having a frequency reduced relative to the carrier frequency, two stage amplification that amplifies a selected channel signal to a required dynamic level, and an A/D converting unit for converting the RF signals from the mixing unit into digital signals. The two stage amplification can provide the selected channel signal with sufficient gain, even when an adjacent channel signal is output by the demodulation mixer with greater amplitude or power.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
SINGLE CHIP CMOS TRANSMITTER/RECEIVER AND METHOD OF USING SAME

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a communication system, and in particular, to a CMOS radio frequency (RF) communication system.

2. Background of the Related Art

Presently, a radio frequency (RF) communications system has a variety of applications including PCS communication and IMT systems. As such, a CMOS chip integration of the system has been pursued to reduce the cost, size and power consumption.

Generally, the RF communication system is composed of RF front-end block and base-band digital signal processing (DSP) block or baseband modem block. Currently, the base-band DSP block can be implemented with low cost and low power CMOS technology. However, the RF front-end cannot be implemented by CMOS technology because of limitations in speed, bandwidth and noise characteristics, which are below the speed, the frequency and noise specifications of popular RF communication systems.

For example, the PCS hand-phone systems operate at a frequency over 2.0 GHz, but current CMOS technology reliably operates only up to approximately 1.0 GHz in terms of speed and noise. Hence, the RF front-end block is implemented using bipolar, bi-CMOS or GaAs technology that has better speed, bandwidth and noise characteristics than CMOS technology but is more expensive and consumes more power.

Currently, two different types of RF architecture called "direct conversion" and super-heterodyne (double conversion) are used for CMOS RF communication systems. Both architectures have advantages and disadvantages in terms of CMOS implementations.
Fig. 1 is a diagram showing a related art direct conversion RF system 100. A related art direct conversion CMOS RF communication system 100 includes an antenna 105, a RF filter 110, a low noise amplifier (LNA) 120, a phase-locked loop (PLL) 130, a first mixer 140, a second mixer 142, first and second amplifiers 150, 152, a first low pass filter (LPF) 160, a second LPF 162, first and second variable gain amplifiers (VGA) 170, 172 each including automatic gain control (AGC) loops, a first analog/digital (A/D) converter 180, a second A/D converter 182, a third mixer 190 and a power amplifier 192.

The antenna 105 receives RF signals. The received RF signal is composed of various RF bands. Selected RF signals are then filtered at the RF filter 110. That is, out-of-band RF signals (e.g., irrelevant RF bands) are removed by the RF filter 110. The filtered in-band RF signals are amplified with a gain at the LNA 120. However, the in-band RF signal is composed of in-band channels and possible image bands, which is shown as A in Figures 1 and 2. The in-band RF signals passing through the LNA 120 are directly demodulated into base band signals by quadrature multiplication at the first and second mixers 140 and 142 because the LO frequency is equal to the carrier frequency. The PLL 130 preferably generates two types of clock signals, I clock signals and Q clock signals using a voltage controlled oscillator (VCO). The I clock signals and the Q clock signals are the same excepting a phase difference. The I signals preferably have a phase difference of 90 degrees from the Q signals. That is, Q signals are phase shifted with respect to quadrature phase shift I signals. The two sets of signals I and Q are preferably used to increase the ability of the RF system to identify or maintain received information regardless of noise and interference. Sending two types of signals having different phases reduces the probability of information loss or change.

As shown at B in Figures 1 and 2, the down converted signal includes the desired channel, adjacent channels and an up-converted signal. The down-
converted signal is amplified by amplifiers 150, 152 before passing through corresponding low-pass filters (LPF) 160, 162 to prevent drastic signal-to-noise-ratio (SNR) degradation by noise injection from the LPFs 160, 162, which is shown as C in Figures 1 and 2. The signals from the LPFs 160, 162 are amplified by variable gain amplifiers (VGAs) 170, 172, respectively, and become respective signals required for A/D conversion at first and second A/D converters 180, 182. However, the desired channel cannot be amplified to a maximum level allowed by the linearity limit because the adjacent channel can reach the linearity limit before the desired channel is amplified to the required level. Thus, in the related art direct conversion architecture 100, amplification of the entire channel is reduced as the adjacent channel power increases, which also results in SNR degradation. As shown at D in Figures 1 and 2, the LPFs 160, 162 output a large noise floor that is added to the desired channel by the LPFs 160, 162. Accordingly, both the desired channel and the noise floor are amplified when the desired channel is amplified to the required level before the A/D conversion as shown at E in Figures 1 and 2.

The digital signals are then transferred to a base-band discrete-time signal processing (DSP) block (not shown). Channel selection is performed by changing frequency \(f_c \) in at the phase-locked loop (PLL) 130.

As described above, the related art direct conversion RF system 100 has advantages for CMOS RF integration because of its simplicity. In the related art direct conversion RF system only a single PLL is required. Further, in the related art direct conversion RF system high-quality filters are not required. However, the related art direct conversion architecture has disadvantages that make single chip integration difficult or impossible. As shown in Figure 3A, clock signals \(\cos \omega_{c0}t \) from a local oscillator (LO) such as the VCO may leak to either the mixer input or to the antenna where radiations can occur because the local oscillator (LO) is at the same frequency as the RF carriers. The
unintentionally transmitted clock signals $\Delta(t)\cos \omega_{\text{LO}}t$ can reflect off nearby objects and be "re-received" by the mixer again. The low pass filter outputs a signal $M(t) + \Delta(t)$ because of leakages of clock signals. As shown in Figure 3B, self-mixing with the local oscillator results in problems such as time variations or "wandering" DC-offsets at the output of the mixer. The time-varying DC-offset together with inherent circuit offsets significantly reduce the dynamic range of the receiver portion. Further, as discussed above, a related art direct conversion RF system requires a high-frequency, low-phase-noise PLL for channel selection, which is difficult to achieve with an integrated CMOS voltage controlled oscillator (VCO).

Figure 4 shows a block diagram of a related art RF communication system 400 according to a double conversion architecture that considers all of the potential channels and frequency translates them first from RF to IF and then from IF to baseband using a tunable channel select PLL. As shown in Figure 4, the RF communication system 400 includes antenna 405, a RF filter 410, a LNA 420, IR filter 425, a phase lock loop (PLL) PLL1 430, a first mixer 435, a IF filter 440, IF VGA 450, a PLL2 460, a second mixer 465, a LPF 470, an A/D converter 480, a third mixer 490 and a power amplifier 492.

The mixers 435, 465 are all for demodulation while the mixer 490 is for modulation. The mixer 435 is for a selected RF frequency and the mixer 465 is for an intermediate frequency (IF). The PLL1 430 generates clock signals at a high frequency or the RF frequency, the PLL2 460 generates clock signals having a low frequency or the intermediate frequency (IF).

Transmission data are multiplied with the clock signals having the high frequency from the PLL 430 to have an original transmission data frequency by the mixer 490. The output signals of the mixer 490 are amplified with a gain at the power amplifier 492 and then radiated through the antenna 405 for transmission.
Operations of the related art super-heterodyne receiver will now be described. Initially, an RF signal is received by the antenna 405. The received RF signal includes various RF bands. The RF filter 410 filters out out-of-band RF signals and the LNA 420 amplifies the in-band RF signal composed of in-band signals and possible image bands as shown at A in Figures 4-5. Image bands are filtered out by the image rejection (IR) filter 425 as shown at B in Figures 4-5. Otherwise, the image bands are mixed with the in-band RF signal after a first down conversion by the mixer 435 and PLL1 430 combination. Thus, the in-band RF channels are down converted into an IF frequency by a first down conversion at mixer 435 using a local oscillator signal LO1 as shown at C in Figures 4-5. The PLL1 430 generates the local oscillator signals for I signals of the RF signals and for Q signals of the RF signals.

The band-pass IF filter 440 rejects adjacent channels so that only the desired or dedicated channel has a dominant power level at the IF frequency as shown at D in Figures 4-5. The IF VGA 450 that includes an AGC loop amplifies the dedicated channel at the IF frequency to get an amplitude sufficiently large to overcome a large noise floor of the downstream LPF 470. The AGC loop continuously detects the amplitude of the IF VGA 450 output and controls its VGA gain so that a maximum amplitude allowed by the linearity limit can be obtained. As a result, the dual-conversion receiver can achieve the required SNR by the IF-filtering and amplification as shown at E in Figures 4-5. An adjacent channel is not a bottleneck or problem of IF amplification because of filtering by IF filter 440 before the IF amplification is performed by the IF VGA 450. However, if the adjacent channel is not eliminated before the IF amplification, the dedicated channels cannot be amplified to a maximum value because the adjacent channel can reach the linearity limit before the dedicated channel is amplified to the maximum level.
The amplified RF signal is down-converted again into the baseband by the second down-converting mixer 465 and using a local oscillator signal LO2 from the PLL2 460 as shown at F in Figures 4-5. The low-pass filter 470 filters out the up-converted signal and remaining adjacent channels as shown at G in Figures 4-5, which indicates the noise floor added by the LPF 470. The A/D converter 480 converts the signals into digital data, which is then transferred into a baseband discrete-time signal processing (DSP) block (not shown). All of the channels at the IF stage are frequency-translated directly to baseband frequency by the tunable PLL2 460 for channel selection.

As described above, the related art super-heterodyne RF system 400 has various advantages. The related art double conversion RF system 400 performs the channel tuning using the lower-frequency (i.e., IF) second PLL 460, but not the high-frequency, (i.e., RF) first PLL 430. Consequently, the high-frequency RF PLL 430 can be a fixed-frequency PLL that can be more effectively optimized. Further, since channel tuning is performed with the IF PLL 460, which operates at a lower frequency, the contribution of phase noise into channel selection can be reduced. However, the related art double conversion RF system 400 has various disadvantages to overcome for single chip integration. The related art double conversion RF system 300 uses two PLLs, which are difficult to integrate in a single chip. Further, the frequency of first PLL remains too high to be implemented with CMOS technology, and in particular, with a CMOS VCO. In addition, self-mixing problem still occurs because the second PLL is at the same frequency of the IF desired carrier. The output signals of the second mixer may leak to a substrate or may leak to the second mixer again. The time-varying DC-offset, together with inherent circuit offsets significantly reduces the dynamic range of the receiver portion. In addition, CMOS integration of an IR filter and an IF filter is very difficult or impossible.
Related art CMOS low noise amplifiers (LNAs)

The related art CMOS LNAs have various disadvantages. When the inductance for the related art CMOS LNAs is implemented by using an on-chip inductor such as a spiral inductor, the on-chip spiral inductor cannot guarantee required performance characteristics and cannot provide acceptable yields during mass-production fabrication. When the inductance for the related art CMOS LNAs is an off-chip inductor element, the off-chip inductors can cause a more complicated fabrication process, board layout and generates cost-increment in an overall system such as a CMOS RF communication system. Further, required connections to off-chip elements reduce performance characteristics.

Related art CMOS voltage controlled oscillator (VCO) and mixer structure

As discussed above, a wide frequency range and a low phase noise are desirable for various applications. However, a CMOS VCO-mixer structure can only support up to a frequency 1 GHz with reliable phase noise and frequency range. The performance of the VCO-mixer structure becomes worse in terms of phase noise and frequency range and is unacceptable as the frequency of the clock signals LO+ and LO- from the VCO increases. Hence, the VCO and the mixer cannot be readily implemented when the frequency f0 of the clock signals LO+ and LO- is over 1 GHz.

Related art CMOS Automatic gain control loop

A related art direct conversion receiver requires DC offset cancellation. The related art approach for DC offset cancellation uses a high-pass filtering of the DC offset voltage incorporated within the gain stages. The integration of the high-pass filtering depends on the corner frequency and the amount of DC offset rejection. Since the spectrum of DC offset is restricted around zero frequency, and the high-pass filtering must not impair the desired signal, the desired corner frequency should be as low as possible. The capacitance C of the DC offset
cancelling loop increases as a corner frequency \(f_c \) decreases and an open loop forward gain \(A_v \) increases. The capacitance \(C \) value typically reaches several hundred of \(\text{nF} \), and it is difficult to integrate a capacitor of this value on a single chip. Thus, the capacitor is typically located at the outside of the chip.

Unfortunately, when the off-chip capacitor is wired to the chip, a feedback connection is established, and some amount of noise is added via the bond wire coupling. This noise corrupts the signal integrity and degrades the signal-to-noise ratio (SNR).

Related art CMOS phase locked loop (PLL)

Current VCO CMOS technology can support reliable operation only up to a frequency of approximately 1.0 GHz in terms of speed and noise. As the frequency \(f_0 \) of local oscillator clock signals \(\text{LO}+ \) \(\text{LO}- \) increases over one GHz, a CMOS VCO cannot be implemented. To get the low phase noise sufficient for commercial applications such as PCS, however, an LC-resonant oscillator is used because of better phase noise performance than a CMOS ring-oscillator type VCO. A related art VCO has various disadvantages. For a CMOS single chip integration of an RF receiver or communication system, on-chip implementation of a spiral inductor has not been achieved with yields sufficient for mass-production manufacturing because the Q-factor of the integrated spiral inductor should be high enough for VCO oscillation. Manufacturing yield for the high Q-factor is difficult to achieve for the on-chip spiral inductor because of distributed lossy resistance of the substrate.

Related art CMOS tuning circuit

In related art approaches, either a high Q factor can result in poor matching between the master and the slave, or the input of gm-C integrator can comes from an external oscillator and the output comes from the OTA cell, which can produce inaccurate timing results.
The above references are incorporated by reference herein where appropriate for appropriate teachings of additional or alternative details, features and/or technical background.

SUMMARY OF THE INVENTION

An object of the invention is to solve at least the above problems and/or disadvantages and to provide at least the advantages described hereinafter.

An object of the present invention is to provide a single chip CMOS transmitter/receiver and method that substantially obviates one or more problems and disadvantages of the related art.

A further object of the present invention is to fabricate a CMOS RF front end and method for using same that allows one chip integration of an RF communication system.

Another object of the present invention is to provide an RF communication system and method with reduced cost and power requirements.

Still another object of the present invention is to provide a reliable high speed, low noise CMOS RF communication system and method for using same.

Another object of the present invention is to increase a frequency range of a RF front end of an RF communication system.

Another object of the present invention is to provide a direct conversion RF communication system and method that provides a prescribed SNR regardless of an adjacent channel power level.

Another object of the present invention is to provide a baseband structure for a CMOS RF receiver on a single chip using selective two step amplification to meet desired gain for a selected RF channel and remove a larger adjacent channel.

To achieve at least the above objects and advantages in whole or in part, and in accordance with the purpose of the present invention, as embodied and broadly described, there is provided a direct conversion communication system
that includes a receiver unit that receives signals including selected signals having a carrier frequency, a demodulation-mixer that mixes the received carrier frequency selected signals and that outputs baseband selected signals, and a baseband amplification circuit that includes first and second stage AGC amplifiers that receive the baseband selected signals and that selectively amplify in-channel signals to a prescribed amplitude.

To further achieve the objects in whole or in part, and in accordance with the purpose of the present invention, there is provided a single chip RF communication system, that includes a transceiver that receives and transmits RF signals, a PLL for generating a plurality of $2N$-phase clock signals having a substantially identical frequency $2^N f_0 / N$, wherein f_0 is the carrier frequency, and wherein N is a positive integer, a demodulation mixer that mixes the RF signals from the transceiver with the plurality of $2N$-phase clock signals from the PLL to output RF signals having a frequency reduced relative to the carrier frequency f_0, wherein the demodulation mixer comprises a plurality of two input mixers, an AGC loop coupled to the demodulation-mixer, a gain-merged filter coupled to the AGC loop, and an A/D converting unit coupled to the gain-merged filter that converts the RF signals from the demodulation mixer into digital signals.

To further achieve the objects of the invention, in whole or in part, and in accordance with the purpose of the present invention, there is provided a method of operating a RF communication system that includes receiving signals including selected signals having a carrier frequency, generating more than two multi-phase clock signals having a substantially identical frequency different from the carrier frequency, mixing the received selected signals with the more than two multi-phase clock signals to output demodulated selected signals having a frequency reduced from the carrier frequency, wherein several of the more than two multi-phase clock signals are mixed to demodulate one of a first carrier frequency signal and a second carrier frequency signal, amplifying the
demodulated selected signals until one of a selected channel and an adjacent channel reach a linearity limit and amplifying and filtering the adjacent channel and amplifying the selected channel to a desired dynamic range.

Another object of the present invention is to provide a LNA formed without an inductor.

Another object of the present invention is to provide a CMOS LNA formed without a spiral type on-chip inductor.

Another object of the present invention is to provide a reduced cost CMOS LNA.

Another object of the present invention is to provide a CMOS RF communication system using a LNA without an inductor.

Another object of the present invention is to provide a CMOS LNA having a simpler process for mass production and increased yield.

Another object of the present invention is to provide a CMOS LNA having first and second gain control stages.

Another object of the present invention is to provide a CMOS LNA having an increased dynamic range.

Another object of the present invention is to provide a CMOS LNA having first and second gain controlled stages each including first and second symmetric networks.

Another object of the present invention is to provide a CMOS LNA having first and second gain controlled stages each including first and second symmetric networks to allow a symmetric full-up and full-down operations.

To achieve at least the above objects and advantages in a whole or in parts and in accordance with the purpose of the present invention, as embodied and broadly described, there is provided a CMOS low noise amplifier (LNA) that includes a plurality of amplification stages coupled between an input terminal
and an output terminal and a gain controller coupled to each of the plurality of amplifier stages, wherein the CMOS LNA does not include a spiral inductor.

A further object of the present invention is to provide a VCO-mixer and method for using same on a single substrate.

Another object of the present invention is to increase the frequency range of a apparatus mixer and method.

Still another object of the present invention is to provide a mixer and method for using same having reduced noise.

Another object of the present invention is to increase a performance of the mixer structure.

A further object of the present invention is to provide a single/double balanced mixer and method having a symmetric switch structure.

A further object of the present invention is to fabricate a RF communications receiver on a single substrate.

A further object of the present invention is to provide a RF communications transceiver and method including a multi-phase mixer on a single substrate.

To achieve the advantages and in accordance with the purpose of the present invention, as embodied and broadly described, there is provided a circuit that includes a mixer that receives a plurality of first clock signals having different phases, each first clock signal having a first frequency which is less than a reference frequency, wherein the mixer mixes the plurality of first clock signals to generate a plurality of local oscillator signals therein having a higher second frequency, and wherein the mixer multiplies the plurality of local oscillator signals with input signals to provide output signals at output terminals.

A further object of the present invention is to provide a DC offset cancelling apparatus.
Another object of the present invention is to simultaneously provide a lower corner frequency and high DC offset voltage rejection.

Still another object of the present invention is to provide a single chip bypass filter.

Yet another object of the present invention is to decrease a total capacitance of an AGC loop as the number of gain stages increase.

To achieve the advantages and in accordance with a purpose of the present invention, as embodied and broadly described, the structure of the invention includes a plurality of gain stages connected in series, that receive and amplify an input RF signal; and a plurality of feedback loops, wherein each feedback loop corresponds to respective ones of the gain stages, and is connected to an input port and output port of the respective gain stage, to filter an offset voltage.

A further object of the present invention is to fabricate a RF communications system including a PLL on a single CMOS chip.

Another object of the present invention is to increase the frequency range of a PLL.

Another object of the present invention is to reduce the noise of a PLL.

Another object of the present invention is to increase the performance of PLL.

Another object of the present invention is to provide a CMOS VCO for a PLL that can minimize phase-noise of a CMOS ring oscillator.

Another object of the present invention is provide a VCO that can output a large amplitude signal with a rise-fall time reduced or minimized.

Another object of the present invention is to reduce or minimize supplying noise effects of the VCO.

Another object of the present invention is to provide a prescaler for the PLL having increased bandwidth and spectral performance.
Another object of the present invention is to provide a fractional-N prescaler architecture that eliminates a fractional-spur problem.

To achieve the above advantages in a whole or in parts and in accordance with the purpose of the present invention, as embodied and broadly described, there is provided a circuit that includes a clock generator that generates a plurality of first clock signals having different phases, each first clock signal having a first frequency that is less than a reference frequency and a prescaler coupled to said clock generator for receiving the plurality of first clock signals to generate a divided clock second clock signal.

Another object of the present invention is to provide a master-slave circuit not limited by frequency or Q-factor requirements.

Another object of the present invention is to provide a master-slave tuning circuit using a poly-phase filter.

Another object of the present invention is to provide a master-slave gm-C poly-phase filter having the same electrical characteristics for a first filter and a second filter compared in the master-slave filters.

Another object of the present invention is to provide a gm-C poly-phase filter having output signals from high and low pass filters provided by the same circuit.

Another object of the present invention is to provide a master-slave tuning circuit having increased accuracy.

Another object of the present invention is to provide a more robust master-slave tuning circuit with increased accuracy and a simplified configuration.

To achieve the above described objects in a whole or in parts and in accordance with the present invention, there is provided a tuning circuit that includes a slave filter block and a master filter block that outputs a control signal to the slave filter block, wherein the master filter block that includes a first filter
including a high pass filter and a low pass filter, wherein each of the high and low pass filters receives the control signal, a first rectifier coupled to the high pass filter, a second rectifier coupled to the low pass filter and a converter coupled to the first and second rectifiers that outputs the control signal.

Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objects and advantages of the invention may be realized and attained as particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in detail with reference to the following drawings in which like reference numerals refer to like elements, and wherein:

- Figure 1 is a circuit diagram showing a related art RF communication system;
- Figures 2A-2E are diagrams showing signal propagation in the system of Figure 1;
- Figures 3A and 3B are diagrams showing clock signal leakage in the system of Figure 1;
- Figure 4 is a circuit diagram showing another related art RF communication system;
- Figures 5A-5G are diagrams showing signal propagation in the system of Figure 4;
- Figure 6 is a diagram showing a preferred embodiment of a multi-phase, reduced frequency (MPRF) RF communication system according to the present invention;
- Figure 7 is a block diagram showing a receiver of a RF communication system according to a preferred embodiment of the present invention;
Figure 8 is a block diagram showing signal flow of the RF communication system of Figure 7; and

Figure 9 is a block diagram showing a receiver of a RF communication system according to another preferred embodiment of the present invention;

Figure 10 is a block diagram that illustrates a preferred embodiment of a CMOS LNA according to the present invention;

Figure 11 is a circuit diagram that illustrates a preferred embodiment of a CMOS LNA according to the present invention;

Figure 12A is a block diagram showing a VCO-mixer structure according to a preferred embodiment of the present invention;

Figure 12B is a circuit diagram showing a VCO-mixer structure of Figure 2A;

Figure 13 is a circuit diagram showing the VCO-mixer according to another preferred embodiment of the present invention;

Figures 14A-14H are operational timing diagrams showing a mixer of Figure 3;

Figure 15 is a circuit diagram showing yet another preferred embodiment of a mixer according to the present invention;

Figure 16 is a circuit diagram showing an exemplary quadrature down converter according to the third preferred embodiment;

Figure 17 is a circuit diagram showing still yet another preferred embodiment of a mixer according to the present invention;

Figure 18A is a block diagram of a DC offset cancelling circuit with a single feedback loop according to a preferred embodiment of the present invention;

Figure 18B is a schematic diagram of the DC offset cancelling circuit of Figure 18A;
Figure 19 is a diagram that illustrates impulse sensitivity function for a CMOS ring oscillator according to the related art;

Figure 20 is a diagram that illustrates a related art integer-N architecture;

Figure 21 is a diagram that illustrates a related art fractional-N prescaler;

Figure 22 is a diagram that illustrates a CMOS VCO according to a preferred embodiment;

Figure 23 is a diagram that illustrates a preferred embodiment of a fractional-N prescaler according to the present invention;

Figure 24 is a diagram that illustrates operational and timing waveforms according to a preferred embodiment of a fractional-N prescaler;

Figure 25 is a diagram that illustrates operational and timing waveforms according to a preferred embodiment of a fractional-N prescaler;

Figure 26 is a diagram that illustrates a preferred embodiment of a master-slave tuning circuit according to the present invention;

Figure 27 is a diagram that illustrates a preferred embodiment of a rectifier;

Figure 28 is a diagram that illustrates a preferred embodiment of a voltage-to-current converter; and

Figure 29 is a circuit diagram that illustrates an exemplary transconductance amplifier.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

A single chip radio frequency (RF) communication system formed using CMOS techniques should satisfy the following operative requirements. A CMOS voltage controlled oscillator (VCO) has poor noise characteristics. Accordingly, a CMOS phase-locked loop (PLL) integration is required. However, the number of PLL should be small and the center frequency of a PLL preferably differs sufficiently from a transmitting RF frequency (e.g., is preferably low enough) to control a phase noise result using the CMOS VCO.
High-quality filters are preferably eliminated because of associated disadvantageous area and power specifications in CMOS configurations. Also, a number of components in the CMOS RF system should be small or reduced without performance degradation.

A first preferred embodiment of a "multi-phase reduced frequency" (MPRF) conversion RF communication system 600 is shown in Figure 6 and can preferably be formed on a single CMOS chip. The first preferred embodiment can operate at frequencies well above 1 GHz such as 1.8-2.4 GHz. The phrase “multi-phase reduced frequency conversion” is used because a single-phase periodic signal having a high frequency is preferably obtained by combining or multiplying multi-phase low-frequency periodic signals together. The first preferred embodiment of the MPRF conversion RF communication system 600 includes a front-end MPRF RF block 602 and a digital signal processing (DSP) block 604, which is preferably base-band. As discussed above, related art DSP blocks can be formed using CMOS techniques. Accordingly, a detailed explanation of the DSP block 604 including a digital signal processor 650 will be omitted.

The MPRF conversion RF block 602 includes an antenna 605, an RF receiver portion 640, analog/digital (A/D) converter 690, D/A converter 695, a power amplifier 670 coupled between a mixer 660 and the antenna 605. The receiver portion 640 generates a modulating and de-modulating clock, i.e., local oscillator (LO), whose frequency f_0 is determined by a reference clock.

Figure 7 shows a block diagram of a first preferred embodiment of a receiver 700, which can operate as the receiver portion 640. As shown in Figure 7, the receiver 700 includes a full-CMOS low noise amplifier 710, a N-phase mixer 720A, 720B, a PLL generating multi-phase (e.g., 800 MHz) LO signals (e.g., LO[0:11]) 730, a variable gain amplifier (VGA) with a first automatic gain control (AGC) loop 740A, 740B, a gain-merged (e.g., four 3rd order Gm-C elliptic filter)
filter with a second AGC loop 750A, 750B, a Gm-C tuning circuit with a poly-
phase filter configuration 760. Each of an I-channel and a Q-channel signal is
coupled to analog-to-digital converter (e.g., 4-bit flash ADC) 770A, 770B,
respectively.

The PLL 730 preferably includes a N-phase voltage controlled oscillator
(VCO) 732, a phase frequency detector (PFD) and charge pump 736, a loop filter
738 and a prescaler 734. The VCO 732 is preferably a multiple feedback loop
VCO where each VCO cell of the VCO 732 preferably includes short rise/fall
times and a large swing to obtain a phase noise reduced sufficiently for a
wideband 2.4 GHz CDMA application. The prescaler 734 is preferably a multi-
phase sampling fractional-N prescaler that performs fractional-N operations
while preventing a fractional spur inside the channel bandwidth. Thus, the PLL
730 incorporates a bandwidth sufficient for a low phase noise 2.4 GHz W-
CDMA without the fractional spur inside the channel bandwidth.

As shown in Figure 7, the PLL 730 generates 12-phase LO signals
(LO[0:11]) for seven different channel frequencies. The N-phase mixer is
preferably a quadrature down converter and as shown in Figure 7 includes two
six-phase single-balanced mixers 720A, 720B where one is for the I-channel and
the other is for the Q-channel. For example, as shown in Figure 7, the six-phase
mixer 720A receives 800 MHz six-phase LO signals (LO[0, 2, 4, 6, 8, 10]) for the
I-channel and the six-phase mixer 720B receives 800 MHz six-phase LO signals
(LO[1, 3, 5, 7, 9, 11]) for the Q-channel. Accordingly, the 12-phase quadrature
down converter 720 provides the function of a single-balanced mixer that receives
a single-phase 2.4 GHz LO signal. In this example, the mixers 720A, 720B
permit the CMOS VCO to provide multi-phase clock signals at a frequency
2f0/N (e.g., one-third) of the carrier frequency f0. Accordingly, a dominant
power of the LO and its associated leakage is not at 2.4 GHz (the carrier
frequency) because the VCO 732 is operating at 800 MHz. Thus, in the first
preferred embodiment of the receiver 700, an amount of DC-offset can be drastically reduced due to the $2^n f_0/N$ frequency of the VCO 732.

As shown in Figure 7, the mixers 720A, 720B output baseband RF signals. A baseband structure of the receiver 700 includes the first AGC loop 740A and the second AGC loop 750A. The AGC loop 740A includes n-VGA stages (e.g., $n=7$) 742a, 742b, ..., 742n, a cascaded DC-offset canceling loop 744 having n-DC-offset canceling loops 744a, 744b, ..., 744n (e.g., $n=7$) and a first feedback loop 746. Additional description of the automatic gain loop control apparatus is provided in co-pending U.S. Application No. (Attorney Docket No. GCT-11) filed November 6, 2000, the contents of which are hereby incorporated by reference. The second AGC loop 750A includes a gain-merged four 3rd order Gm-C elliptic filter 752, a DC-offset canceling loop 754 and a second feedback loop 756. The first AGC loop preferably enables the desired channel to achieve the maximum gain before the channel selection filter in a case where there is a large adjacent channel condition. The second AGC loop preferably compensates gain lost for the desired channel because of the large adjacent channel blocker. The baseband structure first AGC loop 740B and the second AGC loop (with filter) 750B of the receiver 700 for the Q channel have a similar configuration to the I channel. Each of the feedback loops include a peak detector 746a, 756a, a charge pump 746b, 756b and a loop filter 746c, 756c.

Figure 8 is a diagram that illustrates signal flow of the baseband structure of the receiver 700. As shown in Figure 8, two different conditions are illustrated. In a first condition, an input RF signal 805 is received from the mixer 720 where the adjacent channel power 820 is smaller than or equal to power of the desired channel 810. Preferably, according to the first preferred embodiment of the receiver 700, the desired channel obtains the required gain primarily from the first AGC loop 740. In a second condition, an input RF signal 825 is received from the mixer 720 where the adjacent channel power 840 is greater than (e.g.,
substantially larger) than the desired channel 830. When the RF signal 825 is received, the first AGC loop 740 amplifies the desired channel 830 until the adjacent channel power 840 reaches the allowed linearity limit. In the second AGC loop 750, the AGC loop is merged in a Gm-C channel selection filter that amplifies the desired channel to the desired level limited by the allowed linearity limit. By selectively controlling the conditions and operations of the first and second (e.g., cascaded) AGC loops 740, 750, an RF signal in the desired channel can still receive a maximum gain available to the RF signal 805 even when the RF signal 825 is received. Thus, the first preferred embodiment of the baseband structure of the receiver 700 obtains a gain provided by a dual-conversion receiver.

In addition, the output signal outputted from the last VGA of the VGA loop in the first AGC loop, is inputted back to VGA 3 as shown in Figure 8. However, the present invention is not intended to be so limited. For example, the output signal could also be looped back to a different one of the previous VGAs in the VGA loop such as VGA 1 or all the VGA stages.

Figure 9 is a diagram that illustrates gain distribution of the receiver 700. As shown in Figure 9, case I illustrates the conditions where the amplitude of an adjacent channel blocker is equal (e.g., or less than) to the in-band signal. As shown in Figure 9, a received in-band signal 910 has a value being a minimum detectable signal (MDS). Similarly, an adjacent channel blocker 920 has an initial value being the MDS. As shown in case I of Figure 9, both of the in-band signal 910 and the out-of-band signal 920 receive a gain of G_{RF} dB (decibels) by an RF stage 930. In a preferred embodiment, the RF stage 930 includes the LNA 710 and N-phase mixer 720. Thus, as shown at point B of case I in Figure 9, the in-band and out-of-band signals 910, 920 are signals having $(MDS + G_{RF})$ dB at an output terminal of the mixer 720. G_{RF} is defined as an RF gain provided by an RF section 930.
The AGC 940 is a first stage AGC that amplifies both the in-band signal 910 and the out-of-band signal 920 until the dedicated linearity limit 932. In case I, the adjacent channel blocker (e.g., out-of-band signal 920) cannot prohibit the in-band signal 910 from receiving sufficient amplification. Thus, both the in-band and out-of-band signals 910, 920 are amplified up to \((\text{MDS} + G_{RF} + G_{AGC})\) dBm at an output terminal of the first AGC loop stage 940. \(G_{AGC}\) is the AGC gain by the first AGC loop 940. Accordingly, in the second AGC loop 950 in case I shown in Figure 9, the in-band signal is preferably not amplified because a sufficient amplification was previously achieved to meet the dedicated signal level for the receiver 700. Preferably, the first AGC loop stage 940 achieves the amplification. However, in the second AGC loop 950, the adjacent channel blocker 920 is partially filtered to be reduced in amplitude. As shown in Figure 9, in the second AGC loop 950, the adjacent channel blocker 920 is rejected preferably by a filter rejection ratio (e.g., \(4 \times R_F\)) in the filter stage without amplification because \(G_F\) is set to 0 by the second AGC loop 950. \(G_F\) is the merged gain of a 3rd order elliptic filter of the second AGC loop 950 and \(R_F\) is the rejection ratio of 3rd order elliptic filter. In summary, in case I as shown in Figure 9, the gain of the VGA preferably included in the first AGC loop sufficiently covers the required dynamic range \(G_{AGC} = D_{ALL}\). In the single chip CMOS RF receiver, \(D_{ALL}\) is a required dynamic range to transfer the in-band signal. Thus, in case I of Figure 9, \(G_{AGC}\) and equal \(D_{ALL}\).

As shown in case II in Figure 9, the amplitude of the adjacent channel blocker 980 is larger than the in-band signal 970 by B dB, which is the required adjacent channel blocking ratio. As shown in case II of Figure 9, the MDS dBm of in-band signal 970 and the \((\text{MDS} + B)\) dBm of the out-of-band signal 980 are applied to the RF stage 930. Accordingly, at an output terminal of the RF stage 930 (e.g., mixer output), the in-band signal 970 has a gain of \((\text{MDS} + G_{RF})\) dBm and the out-of-band signal 980 has a gain of \((\text{MDS} + B + G_{RF})\) dBm. In case II, the
VGA of the first AGC loop 940 preferably amplifies both signals 970, 980 until the amplitude of the adjacent channel blocker 980 reaches the linearity limit 932. As a result, at the output of the first AGC loop 940 (e.g., VGA output terminal), the in-band signal 970 has a gain of \((MDS + G_{RF} + G_{AGC})\) dBm and the out-of-band signal 980 has a gain of \((MDS + G_{RF} + G_{AGC} + B)\) dBm. Relative to the case I of Figure 9, the VGA gain \(V_{AGC}\) (case II) is smaller than the VGA gain \(V_{AGC}\) (case I) by B dB. In the second AGC loop 950 for case II of Figure 9, the gain-merged-filter stage 954 preferably amplifies the in-band signal 970 by \((4 \times G_{RF})\), which is preferably equal to the required blocking ratio, B dB. The out-of-band signal 980 is amplified by \((4 \times G_{RF})\) and simultaneously rejected by \((4 \times R_{FP})\) by the gain-merged-filter in the second AGC loop 950, which results in a total or net \((4 \times (R_{FP} - G_{RF}))\) rejection. Accordingly, in a second preferred embodiment of the receiver baseband structure shown in Figure 9, the required dynamic range is shared by the first AGC loop 940 (VGA) and the second AGC loop 950 (the gain-merged-filter) to provide the required dynamic range \(D_{ALL} = G_{AGC} + 4 \times G_{RF} = G_{AGC} + B\).

Although the second preferred embodiment of the baseband structure shown in Figure 9 indicates a first AGC loop followed by a second AGC loop 950, the present invention is not intended to be so limited. Thus, the second AGC loop 950 could be sequentially provided after a mixer of the RF section 930 prior to the first AGC loop 940. In such a case, the in-band RF signal would be first processed by preferably the Gm-C filter to block an adjacent channel prior to the gain from the first AGC loop 940 using preferably the VGA amplifiers.

As described above, the preferred embodiments of the CMOS receiver architecture and methods for using same have various advantages. In the preferred embodiments, a direct conversion receiver is provided having a SNR comparable to a super-heterodyne receiver. Further, in preferred embodiments of baseband structure and methods of using same according to the present
invention a sufficient SNR is provided for an input signal regardless of an adjacent channel power level.

Figure 10 is a block diagram that illustrates a first preferred embodiment of a CMOS LNA according to the present invention, which preferably provides better linearity and gain controllability and is formed without inductors. The CMOS LNA 1300 includes an input terminal 1310 preferably coupled to received an RF signal input IN, a first amplification stage 1320 coupled to the input terminal 1310, a second amplifier stage 1340 coupled to an output node 1326 of the first amplification stage 1320 and an output terminal 1360 that preferably transmits an RF output signal OUT. Further, the CMOS LNA 1300 includes a gain controller 1350 coupled to the first and second amplification stages 1320, 1340.

The first preferred embodiment of the CMOS LNA is composed of two amplification stages, which can achieve the desired gain for the CMOS LNA 1300 adapted for use in a CMOS RF communications system. Each of the first and second amplification stages 1320, 1340 preferably has an identical configuration. However, the present invention is not intended to be so limited. The first amplification stage 1320 as shown in Figure 10 includes a feedback loop 1322 coupled between the output node 1326 and a first amplifier circuit 1324 of the first amplifier stage 1320. The feedback loop 1322 preferably establishes a DC bias point of the output node 1326 of the first amplification stage 1320.

The first amplification stage 1320 preferably includes a symmetric CMOS network to increase a dynamic range of the CMOS LNA 1300, in particular, under large RF signal inputs IN. Further, the gain of the CMOS LNA 1300 can be controlled by using the gain controller 1350. Preferably, the gain controller 1350 includes a current source I. The current level provided by the current source I of the gain controller 1350 is preferably copied on both of the first and
second amplifier stages 1320, 1340. For example, the current level can be copied using a current mirror or the like.

Figure 11 is a circuit diagram that illustrates in more detail the first preferred embodiment of the CMOS LNA 1300 of Figure 10. The CMOS LNA 1300 can be a starved inverter type LNA. As shown in Figure 11, the first amplifier circuit 1324 includes four transistors 1400P1, 1400P2, 1400N2 and 1400N1 coupled in series between a power source voltage V_{DD} and a ground voltage. The input terminal 1310 is coupled to gate electrodes of the transistors 1400P2 and 1400N2 whose drains are coupled in common to form the output terminal 1326 of the first amplification stage 1320. Further, a capacitor 1400C2 is coupled between the ground voltage and a junction coupling the transistors 1400P1 and 1400P2, and a capacitor 1400C1 is coupled between the ground voltage and a junction coupling the transistors 1400N2 and the transistors 1400N1.

The second amplifier stage 1340 includes four transistors 1400P3, 1400P4, 1400N4, 1400N3 coupled in series between the power source voltage V_{DD} and the ground voltage. Further, gate electrodes of the transistors 1400P4 and 1400N4, each having drains commonly coupled to form an output node of the second amplification stage 1340, are coupled to the output node 1326 of the first amplification stage 1320. As shown in Figure 14, the output node of the second amplification stage 1340 is also the output terminal 1360. Further, capacitors 1400C4 and 1400C3 are coupled between the ground voltage and junctions coupling the transistors 1400P3 and 1400P4 and the transistors 1400N4 and 1400N3, respectively.

The feedback loop 1322 of the first amplification stage 1320 includes a resistor 1400R2, a capacitor 1400C6, an operational amplifier OPAMP1 and the transistor 1400N1. The resistor 1400R2 is coupled between the output node 1326 of the first amplifier circuit 1324 and a non-inverting input of the
OPAMP1. The capacitor 1400C6 is coupled between the ground voltage and the non-inverting input of the OPAMP1. The output of the OPAMP1 is coupled to the gate electrode of the transistor 1400N1, and an inverting input of OPAMP1 is coupled to a voltage node 1.

As shown in Figure 11, a resistor 1400R1 and capacitor 1400C8 are coupled between the input terminal 1310 and the ground. The voltage node 1 is coupled to a junction between the resistor 1400R1 and the capacitor 1400C8.

The feedback loop 1322 including the resistor 1400R2, the capacitor 1400C6, the OPAMP1 and the transistor 1400N1 establish the DC bias point of the output node 1326 of the first amplification stage 1320 and the input of the second amplification stage 1340, which is preferably adjusted to 0.5 V_{DD} for coupling to the voltage node 1.

In a similar manner, a feedback loop of the second amplification stage 1340 includes a resistor 1400R3, a capacitor 1400C7, an operational amplifier OPAMP2 and the transistor 1400N3, which receives an output of the OPAMP2 at a gate electrode. Similar to the feedback loop 1322, the resistor 1400R3 is coupled between an output node of the second amplification stage 1340 and a non-inverting terminal of the OPAMP2. The capacitor 1400C7 is coupled between the ground voltage and the non-inverting terminal of the OPAMP2. An inverting terminal of the OPAMP2 is coupled to the voltage node 1.

Preferably, the transistors 1400P1-1400P4 are PMOS type transistors and the transistors 1400N1-1400N4 are NMOS type transistors. As can be appreciated, the preferred embodiment is not limited to such transistor type.

The gain controller 1350 includes transistor 1400P5 and current source 1400Is coupled in series between the power source voltage V_{DD} and the ground voltage. Further, a gate electrode of the transistor 1400P5 is commonly coupled to a drain electrode connected to the current source 1400Is. In addition, the gate electrode of the transistor P5 is commonly coupled to a gate electrode of the
transistor 1400P1, a gate electrode of the transistor 1400P3 and a capacitor 1400C5, which is also coupled to the ground voltage.

The 0.5 V_{DD} bias and symmetric PMOS and NMOS networks of the first and second amplification stages 1320, 1340 enable symmetric operating points so that the PMOS and NMOS networks have an increased or maximum head-room and an increased or maximum dynamic range especially under a large RF signal input received at the input terminal 1310. The 0.5 V_{DD} bias also enables transistors 1400N2, 1400P2, 1400N4 and 1400P4 to operate in a saturation region even when the large RF input signal is received.

The resultant gain of the first amplification stage can be determined from the transconductance of the transistor 1400P2 and the transistor 1400N2 (e.g., $g_{m400P2} + g_{m400N2}$) and a resultant output impedance of a parallel combination of the transistors 1400P2 and 1400N2 (e.g., $r_{o400P2} \parallel r_{o400N2}$), which is $\text{GAIN}_{1st} = (g_{m400P2} + g_{m400N2}) \times (r_{o400P2} \parallel r_{o400N2})$. In similar way, the gain of the second amplification stage is determined as $\text{GAIN}_{2nd} = (g_{m400P4} + g_{m400N4}) \times (r_{o400P4} \parallel r_{o400N4})$. Should the first preferred embodiment of the CMOS LNA 1300 not have a symmetric structure, a full-down and full-up conditions would have different head-room and different characteristics, which would result in signal distortion depending upon the full-down and full-up conditions and decrease the linearity of such a CMOS LNA.

In addition, the gain of the first preferred embodiment of the CMOS LNA 1300 can be controlled by changing a value of the current source 1400Is. A current level from the current source 1400Is can be copied at each of the first and second amplifier stages 1320, 1340 preferably through a current mirror composed of the transistors 1400P5, 1400P3 and 1400P1. By increasing the value of the current source 1400Is, the transconductance of the transistors 1400P2, 1400N2, 1400P4 and 1400N4 increases, which results in an increment in gain. The capacitors 1400C6 and 1400C7 are preferably used to stabilize the two feedback
loops of the first amplification stage 1320 and the second amplification stage 1340, respectively. The capacitors 1400C1-1400C5 and 1400C8 are preferably used to make AC-ground.

As described above, preferred embodiments of a CMOS LNA and methods of using same provide a desired gain for the wide frequency range, not at just a selected frequency. Further, if higher gain is required, a number of stages of the CMOS LNA can be increased. In addition, alternative embodiments of a gain controller can be used according to the present invention. For example, the gain can be controlled by putting and controlling load capacitance of each stage. Such a circuit for load capacitance control can be implemented by series connection of a pass-transistor and a capacitor, and the voltage of a gate electrode of the pass-transistor can be controlled to control an effective load capacitance.

As described above, preferred embodiments and methods for using same of a CMOS LNA according to the present invention have various advantages. The preferred embodiments according to the present invention provide a CMOS LNA that does not use an inductor. The preferred embodiments of the LNA can use a simplified manufacturing process. Further, the preferred embodiments of the CMOS LNA have symmetric amplification stages that allow symmetric pull-up and pull-down operations while achieving a desired gain. In addition, the preferred embodiments provide an increased linear performance.

Figure 12A is a block diagram that illustrates a VCO-mixer structure in accordance with a first preferred embodiment of the present invention. The structure can be used for a RF communications system. The structure includes a multi-phase voltage controlled oscillator VCO 2100 and a multi-phase mixer 2200. The multi-phase mixer 2200 includes a differential amplifying circuit 2200A and a combining circuit 2200B.
When a reference clock signal having a reference frequency of $f_{\text{ref}} = f_0$ is used, the multi-phase VCO 2100 generates a plurality of N-phase clock signals $\text{LO}(i=0 \text{ to } N-1)$ having a frequency of $2^i f_0/N$, where $N = N_D * 2$ and N_D equals the number of delay cells in the multi-phase VCO 2100. In other words, the VCO 2100 reduces the frequency f_0 to $2^i f_0/N$. The frequency $2^i f_0/N$ reduces the phase noise of the multi-phase VCO and increases the frequency range.

The plurality of N-phase intermediate clock signals $\text{LO}(0)$, $\text{LO}(1),...,\text{LO}(N-1)$ having a frequency of $2^i f_0/N$ is inputted into the combining circuit 2200B of the multi-phase mixer 2200, and the input signals, for example, RF signals RF+ and RF- are inputted into the differential amplifying circuit 2200A. The differential amplifying circuit 2200B differentially amplifies the radio frequency signals RF+ and RF-. The combining circuit 2200B is responsive to a bias voltage V_{bias} and preferably combines the N-phase intermediate clock signals $\text{LO}(0)$-$\text{LO}(N-1)$ to generate the output clock signals LOT+ and LOT- having the original frequency f_0. The mixer 2200 then accomplishes a multiplication of the output clock signals LOT+ and LOT- and the RF signals RF+ and RF-.

Figure 12B illustrates a circuit diagram of the VCO-mixer structure 2100, 2200 in accordance with a first preferred embodiment. The multi-phase VCO 2100 includes N_D number of delay cells 2100,1-2100,ND coupled in series. Based on such configuration, the multi-phase VCO generates a plurality of N-phase intermediate clock signals $\text{LO}(0)$-$\text{LO}(N-1)$ having a frequency of $2^i f_0/N$. A control circuit for the VCO 2100 that generates a frequency control signal includes a phase frequency detector 2054, a charge pump 2056 and a loop filter 2058 that outputs the frequency control signal to each of the delay cells 2100,1-2100,ND. The phase frequency detector 2054 receives a reference clock signal f_{ref} and a VCO clock signal f_{vco} from a reference clock divider circuit 2052 and a VCO clock divider circuit 2053, respectively. The frequency $2^i f_0/N$ of the clock
signals LO(ϕ) - LO(N-1) is represented by $M'/K'(f_{\text{ref}})=2f_c/N$. Thus, the frequency f_c is based on the reference clock signal f_{ref} and the divider circuits 2052 and 2053. In other words, f_{VCO} can be $2f_c/N$ by setting M'/K' of the divider circuits 2052 and 2053.

The differential amplifying circuit 2200A of the multi-phase mixer 2200 includes two load resistors R1' and R2' coupled to two differential amplifiers 2200A₁ and 2200A₂, respectively. The differential amplifier 2200A₁ includes two NMOS transistors 2210 and 2212, and the differential amplifier 2200A₂ includes two NMOS transistors 2214 and 2216. The drains of the NMOS transistor 2210 and 2216 are coupled to the load resistors R1' and R2', respectively, and the gates of the NMOS transistors 2210 and 2216 are coupled for receiving the RF signal RF⁺. Further, the drains of the NMOS transistors 2212 and 2214 are coupled to the load resistors R2' and R1', respectively, and the gates are coupled for receiving the RF signal RF⁻. The sources of NMOS transistors 2210 and 2212 and NMOS transistors 2214 and 2216 are coupled to each other and to the combining circuit 2200B of the multi-phase mixer.

The differential amplifiers 2200A₁ and 2200A₂ differentially amplifies the RF signals RF⁺ and RF⁻, respectively, such that a more accurate output signals OUT⁻ and OUT⁺ can be obtained. Further, the differential amplification removes noise that may have been added to the RF signals RF⁺ and RF⁻. As shown in Figure 12B, the mixer 2200 is a type of multi-phase double-balanced mixer. In this preferred embodiment, two differential amplifiers 2200A₁ and 2200A₂ are included, however, the present invention may be also accomplished using only one of the differential amplifiers in alternative embodiments.

The combining circuit 2200B includes bias NMOS transistors 2232 and 2234, first combining unit 2200B₁ and second combining unit 2200B₂, coupled to the bias NMOS transistors 2232 and 2234, respectively, and a current source $I_{\text{s₁}}$ coupled to the first and second combining units 2200B₁ and 2200B₂. The first
combining unit 2200B₁ includes a plurality of transistor units 2220₀, 2220₂,...2220ₙ₋₂, and the second combining unit includes a second plurality of transistor units 2220₁,2220₃,...2220ₙ₋₁.

Preferably, each of the plurality of transistor units includes a plurality of serially connected transistors, wherein the serially connected transistors are coupled in parallel with the serially connected transistors of the plurality of transistor units. Preferably, each transistor unit includes two (2) serially connected transistors. Hence, in the preferred embodiment, there are a total of N/2 number of transistor units in each combining unit 2200A or 2200B, such that the total number of NMOS transistors is 2*N.

The gate of the bias NMOS transistors 2232 and 2234 are coupled for receiving the bias voltage V_{Bias} and the gates of the transistors in the first and second plurality of transistor units are coupled for receiving a corresponding N-phase intermediate clock signals LO(i) and /LO(i) having a frequency of 2*f₀/N, where /LO(i) = LO(N/2 + i), i = 0, 1,.., N/2-1. In this preferred embodiment, the bias NMOS transistors 2232 and 2234 are included for prevention of error, however, such transistors may be omitted in alternative embodiments. Further, the sequential ON-OFF operation of the 2*N number NMOS transistors of the combining circuit 2200B is equivalent to a NAND logic circuit, which can be interchanged with other equivalent logic circuits and structure in alternative embodiments.

The generic Figure 12B structure allows integration of the multi-phase VCO 2100 and multi-phase mixer 2200 on a single chip, i.e., on a single semiconductor substrate using CMOS technology. Such structure and layout reduce noise including noise caused by parasitic capacitances. As described above, the differential amplification using the RF signals RF⁺ and RF⁻ in the differential amplifying circuit 2200A reduces noise.
The reduction of the reference frequency f_0 to N-phase intermediate clock signals $LO(i)$ having a frequency of $2^k f_0/N$ also reduces noise. When a plurality of transistors are formed on the same substrate, such as a semiconductor substrate for CMOS technology, a plurality of P-N junctions are formed in the substrate. The parasitic capacitances mostly exist at the P-N junctions. If the frequency of a signal applied to the gate of the transistor is very high, the higher frequency of f_0 causes much more noise compared to a reduced frequency of $2^k f_0/N$.

Further, the operation of the differential amplifier circuit 2200A and the combining circuit 2200B is dependent on the output clock signals LOT+ and LOT- having a frequency of f_0, which are provided by the first combining unit 2200B1 and second combining unit 2200B2, respectively, by combining the N-phase intermediate clock signals $LO(i)$ having a frequency of $2^k f_0/N$. When the bias voltage V_{bias} is applied, the NMOS transistors 2232 and 2234 are turned ON and OFF based on the output clock signals LOT+ and LOT-. Although the NMOS transistors 2210, 2212, 2214 and 2216 are turned ON by the RF signals RF+ and RF- applied to the gate electrodes, the amplification of the RF signals RF+ and RF- and the output clock signals LOT+ and LOT- for generating the output signals OUT+ and OUT- is performed when the bias NMOS transistors 2232 and 2234 are turned on by the clock signals LOT+ and LOT-.

Figure 13 illustrates a second preferred embodiment of the multi-phase VCO and the multi-phase mixer when $N_D=3$ and $N=6$, and Figures 14A-14H illustrate the operational timing diagrams of the Figure 13 preferred embodiment. As shown, the multi-phase VCO 2110 includes three delay cells 2110a-2110c to generate 6-phase intermediate clock signals $LO(0)-LO(5)$. An exemplary circuit including five transistors for the delay cells 2110a-2110c, (i.e., the delay cell 2110b) is also shown. For illustrative purposes only, if the input clock signal has a frequency of $f_0=1.5$ GHz, the 6-phase intermediate clock signals $LO(0)-LO(5)$ will have a frequency of 0.5 GHz.
The 6-phase mixer 2250 includes a differential amplifying circuit 2250A and a combining circuit 2250B. The differential amplifying circuit 2250A includes a first differential amplifier 2250A₁ having NMOS transistors 2260 and 2262 and a second differential amplifier 2250A₂ having NMOS transistors 2264 and 2266, which are coupled to load resistors R3 and R4, respectively. The combining circuit 2250B includes a first combining unit 2250B₁ and 2250B₂, which are commonly coupled to a current source Iₜ₂. The first and second combining units 2250B₁ and 2250B₂ are coupled to the first and second differential amplifiers 2250A₁ and 2250A₂ through bias NMOS transistors 2282 and 2284, respectively, which are biased by a bias voltage Vₜ₂. Cumulatively, the first and second combining units 2250B₁ and 2250B₂ includes six transistor units 2270₁-2270₅ with a total of twelve transistors.

As shown in Figures 14A-14F, the 6-phase VCO 2110 generates 6-phase intermediate clock signals LO(1)-LO(5) having the reduced frequency f₀/3. The 6-phase mixer 2250 receives the 6-phase intermediate clock signals LO(1)-LO(5) and the RF signals RF⁺ and RF⁻. Each intermediate clock signal LO(1)-LO(5) and /LO(0)-/LO(2), where /LO(0)=LO(3), /LO(1)=LO(4) and /LO(2)=LO(5), is applied to a corresponding transistor of the first and second combining units 2250B₁ and 2250B₂. The first and second combining units 2250B₁ and 2250B₂ combine the 6-phase intermediate clock signals LO(0), LO(1),...LO(4), LO(5) having the frequency f₀/3 to generate the output clock signals LOT⁺ and LOT⁻ having the frequency f₀.

As shown in Figures 14A-14H, when LO(0) is high and LO(1) is low (LO(4)=high), the two output signals LOT⁺ and LOT⁻ are low and high, respectively. When LO(1) is high and LO(2) is low (LO(5)=high), the output signals LOT⁺ and LOT⁻ are high and low, respectively. When LO(2) is high and LO(3) is low (LO(0)=high), the output signals LOT⁺ and LOT⁻ are low and high, respectively. When LO(3) is high and LO(4) is low (LO(1)=high), the
output signals LOT+ and LOT- are high and low, respectively. When LO(4) is high and LO(5) is low (LO(2) = high), the output signals LOT+ and LOT- of the mixer 2503 are low and high, respectively. When LO(5) is high and LO(5) is low (LO(3) = high), the output signals LOT+ and LOT- are low and high, respectively.

Each pair of NMOS transistors in the combining circuit are turned on in order, thereby producing the output signals LOT+ and LOT-, as shown in Figures 14G and 14H.

Figure 15 illustrates a third preferred embodiment of a multi-phase single balanced mixer according to the present invention. The third preferred embodiment of a multi-phase mixer 2500 is a type of single balanced mixer. The multi-phase mixer 2500 preferably receives N-phase, $2^N f_o$/N MHz LO clocks (LO (0:N-1)) and an RF signal and performs multiplication equivalent a single balanced mixer, which receives a single-phase f_o MHz LO clock and the RF signal.

The multi-phase single balanced mixer 2500 preferably includes four functional blocks being a load block 2510, a switch array block 2520, a noise reduction block 2530 and an input block 2540. As shown in Figure 15, load block 2510 preferably includes two PMOS transistors 2511, 2512 and two load resistors 2513, 2514. The two PMOS transistors 2511, 2512 have source electrodes coupled to a source voltage V_{DD} and gate electrodes commonly coupled together. The load resistors 2513, 2514 are respectively coupled between the gate electrodes and drain electrodes of the PMOS transistors 2511, 2512.

The PMOS transistors 2511, 2512 preferably are operating on a saturation region to provide high-impedance, and the resistors 2513, 2514 serve as a load resistance. The parallel combination of the resistor 2513 and the output impedance of PMOS transistor 2511 operates close to just the resistance of the resistor 2513 because the output impedance of transistor 2511 is large compared
with the resistor 2513. Similarly, the parallel combination of the resistor 2514 and the output impedance of transistor 2512 is close to just the resistor 2516. The drain electrodes of the transistors 2511 and 2512 are respectively coupled to first and second switch networks 2520A and 2520B of a switch array block 2520 that perform multiplication of the multi-phase clock. A first switch network 2520A includes a plurality of transistor units 2522_0, 2522_1, ..., 2522_{N-2}, and a second switch network 2520B includes a second plurality of transistor units 2522_1, 2522_2, ..., 2522_{N-1}.

Preferably, the N-phase single-balanced mixer 2500 receives N-phase clock signals LO[0:N-1] and the RF signal. In a six-phase mixer, the LO signals would be LO[0:5]. As shown in Figures 14G-14H, the switch array block 2520 provides a mechanism to obtain the resultant effect equivalent to applying a single phase signal whose frequency is F_o by using the N-phase LO signals whose frequency is 2*f_o/N. The N-phase single-balanced mixer 2500 according to the third preferred embodiment includes N switches controlled by N-phase LO signals. One of the \(\frac{N}{2} \) switches 2522_i in the first switch network 2520A and one of the \(\frac{N}{2} \) switches 2522_j in the second switch network 2520B is alternately turned on at every phase interval as shown in Figures 14A-14F. As a result, virtual waveforms LOT+ and LOT- as shown in Figures 14G-14H are obtained by the multi-phase operation at output terminal IOUT- and IOUT+, respectively.

Further, gate electrodes of the transistors 2524A and 2524D are commonly coupled to receive a corresponding multi-phase clock signal LO (e.g., LO(0)), and
gate electrodes of the transistors 2524B and 2524C are commonly coupled to receive a corresponding multi-phase clock signal LO (e.g., LO(1)B). The transistors 2524A and 2524B further have source electrodes coupled to the load block 2510 at the output terminal IOUT+, and the transistors 2524C and 2524D have source electrodes coupled to a node 2526.

Preferably, each of the switches 25220-2522N,1 includes four NMOS transistors. Hence, in the third preferred embodiment, there are N/2 number of switches in each of the first and second switch networks 2520A or 2520B, such that the total number of NMOS transistors is 4*N. In addition, each of the switches 25220-2522N,1 includes symmetric NMOS transistors to provide an equivalent or symmetric electrical conditions to the two input ports 2525A, 2525B of each of the switches 25220-2522N,1.

A noise reduction block 2530 preferably includes a cascode NMOS transistor 2531 whose gate electrode is coupled to a bias voltage V_{bias}. The noise reduction block operates to isolate the input block from the switch network 2520 to prohibit noise coupling to an input RF signal 2550. In the third preferred embodiment, the bias NMOS transistor 2531 is included to prevent error, however, such transistors enabled by the bias voltage V_{bias} can be omitted in alternative embodiments.

An input block 2540 includes NMOS transistor 2541 coupled to receive the RF input signal 2550 preferably from a low noise amplifier at a gate electrode. The transistor 2541 is coupled between the transistor 2531 and the ground voltage. The input voltage of the transistor 2540 is converted to a current level by the transconductance of the transistor 2541. The plurality of N-phase clock signals LO(0), LO(1),...,LO(N-1) having a frequency of 2*f_{o}/N is inputted into the switch array block 2520 of the multi-phase mixer 2500, and the RF input signal 2550 is inputted into the transistor 2541.
The load block 2510 can amplify the RF input signal 2500 when the switch array block 2520 preferably combines the N-phase clock signals \(LO(0)-LO(N-1) \) to generate the output clock signals \(LOT^+ \) and \(LOT^- \) having the original frequency \(f_0 \) responsive to the transistor 2531 receiving the bias voltage \(V_{Bias} \) at the output terminals IOUT\(^-\), IOUT\(^+\). The mixer 2500 then accomplishes a multiplication of the output clock signals \(LOT^+ \) and \(LOT^- \) and the RF input signal 2550. As a result, the multi-phase single-balanced mixer 2500 can perform the operation equivalent to applying the high-frequency \(f_0 \) signal by using the reduced-frequency multi-phase LO clock signals.

As an example, in an RF communication system, a 12-phase quadrature down converter as shown in Figure 16 can be composed of two six-phase single-balanced mixers 2600A, 2600B according to the third preferred embodiment. As shown in Figure 16, six-phase LO signals (\(LO[0, 2, 4, 6, 8, 10] \)) are used for an I-channel down conversion and the remaining six-phase LO signals (\(LO[1, 3, 5, 7, 9, 11] \)) are used for Q-channel down conversion. Each of the six-phase mixers in Figure 16 using six-phase LO signals having the frequency \(f_0/3 \) MHz perform the same functionality as a single-balanced mixer with the \(f_0 \) MHz single-phase LO signal. The third preferred embodiment of the mixer structure allows the use of a large amplitude \(LO[0:11] \) signals having reduced rise/fall times, and thus increases mixer conversion gains and decreases noise. To provide a more accurate output signal at the I and Q output terminals IOUT\(^-\), IOUT\(^+\), QOUT\(^\), QOUT\(^+\), resistor and capacitor pairs 2670 can be added to an input path of an RF signal 2650. Further, a load block 2610 can be shared by the mixers 2600A, 2600B in alternative embodiments.

Alternatively, in a fourth preferred embodiment of a multi-phase mixer according to the present invention, two double-balanced mixers can be used to construct a quadrature down converter as shown in Figure 17. A double-balanced mixer 2700 receives a differential RF input RF\(^+\), RF\(^-\) in contrast to the
single-balanced mixers 2500, 2600 that can receive a single-ended RF input. As shown in Figure 17, the multi-phase double-balanced mixer 2700 incorporates a single load block 2710 commonly coupled to first and second switch arrays 2720. Each switch 2722 uses a structure similar to the second preferred embodiment. In addition, a current source 2780 coupled between the differential RF input and the ground voltage can be incorporated to improve performance characteristics.

As described above, preferred embodiments of a mixer and methods of using same have various advantages. The preferred embodiments allow robust and low noise VCO and mixer to be fabricated on a single substrate, preferably on a semiconductor substrate using CMOS technology. The preferred embodiments reduce interference caused by the input signal and the input clock signal because the frequency of the multi-phase intermediate clock signals deviate from the carrier signal frequency and the modulation frequency. A phase locked loop (PLL) frequency range can be increased because the PLL frequency range is based on the reduced frequency multi-phase clock signal frequency condition. Moreover, such results can enhance the channel selection capability of RF front-end in a RF communication system.

Figure 18a is a block level diagram of a DC offset cancelling circuit 3200 in accordance with a preferred embodiment of the present invention. Figure 18b is a schematic diagram of the DC offset cancelling circuit 3200 of Fig. 18a. As shown in Figs. 18a and 18b, the DC offset cancelling circuit 3200 includes a plurality of gain stages 3210 connected in series. However, instead of a single servo feedback loop, each gain stage 3210 has its own servo feedback loop and DC offset cancelling circuit 3220 to reject the DC offset of the respective gain stage 3210. In other preferred embodiments, each gain stage 3210 includes a variable gain amplifier (VGA) and each DC offset cancelling circuit 3220 includes a high pass filter.
An incoming signal having a voltage V_{in} is amplified at each gain stage 3210. Each individual gain stage 3210 (i) has a gain of A_{vi} and the total AGC loop gain is shown at equation 1 as:

$$A_v = \prod_i A_{vi} \quad (1)$$

The transfer function for each gain stage 3210 is:

$$\frac{sA_{vi}}{s + \frac{g_{mi} A_{vi} A_{vi,dc}}{C_i}}$$

Since the gain stages 3210 are cascaded, the overall transfer function for the AGC loop 3200, having a number of gain stages 3210 (N), is shown at equation 2 as:

$$\frac{V_o}{V_{in}} = \left[\frac{sA_{vi}}{s + \frac{g_{mi} A_{vi} A_{vi,dc}}{C_i}} \right]^N \quad (2)$$

The cut-off frequency f_{ci} of each gain stage is shown at equation 3 as:

$$f_{ci} = \frac{g_{mi} A_{vi} A_{vi,dc}}{2\pi C_i} \quad (3)$$

and is preferably substantially equal for best overall performance. The total capacitance value of the AGC according to this preferred embodiment is the sum of the capacitance C_i for each of the number of gain stages N. The ratio of total capacitance values indicates he capacitance value required for the DC offset cancellation circuit of the preferred embodiment. This ratio is shown at equation 4 as:

$$\frac{C_r}{\Sigma C_{mi}} = \frac{A_{v,r}}{N A_{v,m}} = \frac{A_{v,m}^{N-1}}{N} \quad (4)$$
where C_r represents the capacitance value for the related art DC offset cancelling circuit, and C_m represents the capacitance value for the preferred embodiment of the present invention with multiple DC offset cancelling loops 3220. According to the above equation (4), the numerator grows exponentially, but the denominator grows linearly as the number N of gain stages 3210 increases. Thus, the total capacitance value decreases exponentially as the number N of gain stages 3210 increases. Therefore, the capacitance value of the preferred embodiment of the present invention is smaller than the capacitance value of the related art circuit, by several order of magnitudes for only a moderate number of gain stages.

Another advantage of the preferred embodiment of the present invention is that the amount of DC offset rejection is larger in the preferred embodiment than in the related art single servo feedback approach. Based on equation (4), the DC offset decreases 20dB/decade for each gain stage 3220, in contrast with 20dB/decade for all the gain stages of the entire related art single feedback loop. In other words, the amount of DC offset is about N times greater in this preferred embodiment of the present invention than in the related art approach. This provides the benefit of substantially eliminating the trade-off between the cut-off frequency and amount of DC offset rejection. The large roll-off rate of the preferred embodiments of the present invention enable the sufficient suppression of DC offset even in the case of low cut-off frequency.

The method for analyzing phase noise of a CMOS ring oscillator can use equation 5 (Lesson’s Equation) as follows:

$$\text{PhaseNoise} (\Delta\omega) = 10 \cdot \left\{ \frac{2FKT}{P_{in}} \left[1 + \left(\frac{\omega_0}{2Q\Delta\omega} \right)^2 \right] \right\} \cdot (1 + \frac{\Delta\omega}{\Delta\omega})$$

According to equation 5, the phase noise ($\Delta\omega$) curve of phase noise plotted against frequency offset ($\log\Delta\omega$) is composed of three different slope sections.
At sufficiently small frequency offset from the carrier frequency (f_0), there is a first section that is proportional to $(1/\Delta \omega)^3$. The first section is generated by $1/f_0$ noise of the device. After the first section $(1/\Delta \omega)^3$, there is a second section having a curve that is proportional to $(1/\Delta \omega)^2$. Further, the phase noise spectra eventually flatten out for large frequency offsets in a third section, rather than continuing to drop as the square of the phase noise $\Delta \omega$. Such a noise floor may be due to the noise associated with any active elements (such as buffers) placed between VCO and the measuring equipments, or it can even reflect limitations in the measuring equipment itself. The factor F is empirical and varies significantly from oscillator to oscillator. The F value therefore must be determined from measurements. According to equation 1, increasing a Q-factor, increasing a signal amplitude or decreasing a center frequency are ways to reduce phase noise.

Another model for VCO phase noise analysis (Hajimir) asserts that the phase displacement of an oscillator signal depends on when the impulse noise is applied. Thus, the phase noise analysis is time varying, and the shortcoming of the linear time-invariant noise analysis such as equation 5 (Lesson’s equation) become apparent. To the extent that linearity remains a good assumption, the amount of phase displacement is proportional to magnitude of the noise impulse, and varies inversely with a total signal charge. Hence, the impulse response for the phase displacement may be shown at equation 6 as:

$$h\phi(t, r) = \frac{\Gamma(\sigma_0)}{q_{\text{max}}} u(t - r)$$

where q_{max} is the maximum charge displacement for the signal, $u(t)$ is the unit step, a function $\Gamma(x)$ is the impulse sensitivity function (ISF), which is a dimensionless, frequency-and amplitude-independent function that is periodic in 2π. The ISF encodes information about the sensitivity of the system to an
impulse injected at phase $\omega_0 t$. The ISF varies from oscillator to oscillator. Once the ISF has been determined (by standard methods), the excess phase can be determined through use of the superposition integral under the assumption of linearity as shown at equation (7) as:

$$
\Phi(t) = \int_0^\infty h(t,\tau) i(\tau) d\tau = \frac{1}{q_{\text{max}}} \int_0^\infty \Gamma(\sigma_0 \tau) i(\tau) d\tau
$$

Fig. 19 is a diagram that shows the shape of ISF of a related art CMOS ring oscillator. As shown in Fig. 19, the absolute value of ISF function according to equation (3) has its maximum value during the transitions. In other words, noise impulse caused by device noise current affects the phase displacement on the transition region. Thus, to reduce or minimize the phase noise of CMOS ring oscillator, rise/fall time ($T_{\text{rise}}, T_{\text{fall}}$) should be reduced or minimized.

In addition, supply noise effects the phase noise of the CMOS VCO. The supply fluctuation can induce the abrupt phase displacement on CMOS ring oscillator, which results in the increment of phase noise. To reduce the supply noise effects on CMOS VCO, adding a source follower on the top of the VCO circuit is generally accepted as the solution for supply noise rejection. By using the source follower, the frequency of VCO can be controlled with the power supply noise effects reduced or minimized. The power supply is connected to a drain electrode of the source follower so that high impedance is seen from the power node. A source electrode of the source follower becomes an actual supply node of VCO, which is hardly affected by real power supply fluctuation.

To support commercial RF standards, such as PCS, WLL, and IMT2000, a prescaler should be added to the PLL to provide (a) large bandwidth to overcome large phase noise of CMOS ring oscillator and (b) relatively small channel spacing to meet the standards. However, supporting the large bandwidth and supporting the small channel spacing are trade-offs with each
other (i.e., conflicting requirements) because both the PLL bandwidth and the channel spacing are proportional to the reference frequency applied to a phase detector. That is, relatively low VCO phase noise can be achieved for a large channel spacing.

An integer-N prescaler and a fractional-N prescaler are two generally used related art prescaler architectures as shown in Figs. 20 and 21, respectively. As shown in Figure 20, a PLL architecture including the related art integer-N prescaler includes a phase frequency detector 4210, a charge pump and loop filter 4220 that outputs a frequency control signal to a VCO 4230. The phase frequency detector 4210 receives a reference clock signal Fref and a VCO clock signal Fvco from a VCO clock divider circuit 4240, respectively. The frequency \(f_0 \) of local oscillator clock signals from the VCO is represented by \((F_{ref}) = f_0 \). Thus, the frequency Fvco is based on the reference clock signal Fref and the circuit 4240 in Fig. 20, and the frequency of the Fvco is determined by a reference clock frequency Fref.

For example, the related art integer-N architecture for PCS system as shown in Fig. 20, the reference frequency (Fref) applied to the phase detector should be the same as channel spacing (BWchannel), which is about 600KHz. Thus, the bandwidth of PLL using integer-N architecture is fixed to channel spacing, and the bandwidth sufficient to overcome large phase noise of CMOS ring oscillator is hard to get by using integer-N architecture. Another problem of the integer-N architecture is the reference spur problem. Whenever the phase detector 4210 compares the reference frequency Fref and the VCO 4230 frequency Fvco, the charge-pump 4220 provides charge for the loop filter, which corresponds to a phase error between the reference and VCO clock. The charge pumping mechanism whose frequency is equal to channel spacing induces a spurious spectral spur called the reference spur, which has a frequency equal to the channel spacing. The reference spur can cause severe problem on frequency
conversion flow of an RF transmitter TX and an RF receiver RX because the spur frequency is located within the in-band region.

In the related art fractional-N architecture 4340 as shown in Fig. 21, the reference frequency (Fref) can be increased regardless of the channel spacing (BW_{channel}) so that sufficient bandwidth can be obtained to overcome the large phase noise of CMOS ring oscillator. As shown in Fig. 21, Fref is equal to N x BW_{channel}. By increasing N, the reference frequency Fref increases, which results in large bandwidth. However, the fractional spur problem exists in the related art fractional-N architecture 4340 because the fractional spur whose frequency is equal to the channel spacing can cause similar problem as that of reference spur in integer-N architecture. Further, the amount of the fractional spur is much larger than the amount of the reference spur of the related art integer-N architecture shown in Fig. 20. Accordingly, the related art PLL architecture adaptable for a CMOS RF communication system cannot overcome both of bandwidth and spur problems.

Preferred embodiments of a CMOS PLL adaptable for an RF communications system includes preferred embodiments of a multi-phased sampling fractional-N prescaler and VCO and methods of using same will now be described.

Figure 22 is a diagram that illustrates a preferred embodiment of a CMOS VCO according to the present invention. According to the preferred embodiment of a CMOS VCO, a multiple-feedback CMOS VCO 4400 includes multiple feedback loops 4420; for low phase noise. As shown in Figure 22, the CMOS VCO includes a plurality of serially coupled delay cells 4410A, 4410B, ..., 4410N that output a plurality of N-phase clock signals LO[0:N-1]. The VCO 4400 has multiple feedback loops to increase the VCO frequency and reduce rise-fall times of the local oscillator LO waveforms. As shown in Figure 22, a VCO cell 4410, (i=1-N) has four input ports (INP, INN, INNB, INPB) and two output ports (OUT, OUTB). The output terminal OUT (cell 4410) coupled to an input
terminal INNB (cell 4410_{i=1}) and an input terminal INPB (cell 4410_{i=2}). An output signal OUT (cell 4410_{i}) and is coupled to an input terminal INN (cell 4410_{i=1}) and input terminal INP (cell 4410_{i=2}). However, output signals OUT, OUTB from cell 4410(N-1) are respectively fed back to input terminals INPB, INP of cell 4410(0), respectively and output signals OUT, OUTB from cell 4400(N) are fed back to input terminals of INNB, INN of cell 4400(0), respectively.

A preferred embodiment of a delay cell 4410, of the VCO 4400 will now be described. As shown in Figure 22, each delay cell 4410, includes four input terminals INP, INPB, INN, INNB, two output terminals OUT, OUTB and is coupled between a power source voltage V_{DD} and a ground voltage and in addition receives a control voltage Vctrl. As shown in Figure 22, the cell 4410, includes a first NMOS transistor MN0 coupled between the power supply voltage V_{DD} and a first node N1. A gate electrode of the NMOS transistor MN0 receives a bias voltage V_{BIAS} from preferably an on-chip regulator. Each cell 4410, further includes pairs of transistors including MP3-MN3, MP1-MN1, MP5-MN5, MP6-MN6, MP2-MN2, and MP4-MN4 coupled between the first node N1 and the ground voltage. Further, the input terminal INP is coupled to a gate electrode of the transistors MP4 and MP2, an input terminal INN is coupled to gate electrodes of the transistors MN4, MN2, the input terminal INPB is coupled to gate electrodes of the transistors MP3, MP1 and the input terminal INNB is coupled to gate electrodes of the transistors MN3, MN1. The output terminal OUT of the cell 4400, is coupled at a junction between drain electrodes of the transistor pair MP3-MN3 and drain electrodes of the transistor pair MP5-MN5. The output terminal OUTB is connected to the interconnection between drain electrodes of the transistor pair MP4-MN4 and drain electrodes of the transistor pair MP6-MN6. A transistor MN7 receives the control voltage Vctrl at a gate electrode, and is coupled between nodes FEED and FEEDB, respectively.
Coupled drain electrodes of the transistor pair MP1-MN1 and gate electrodes of the transistor pair MP6-MN6 are also coupled to the node FEED. Coupled drain electrodes of the transistor pair MP2-MN2 and gate electrodes of the transistor pair MP5-MN5 are coupled to the node FEEDB. Further, a transistor MP7 has a source electrode coupled to the first node N1, a drain electrode coupled to the output terminal OUT and a gate electrode coupled to the output terminal OUTB. A transistor MP8 has a source electrode coupled to the first node N1, a drain electrode coupled to the output terminal OUTB and a gate electrode coupled to the output terminal OUT.

Operations of the cell 4410, according to the preferred embodiment of the multiple-feedback CMOS VCO 4400 will now be described. In the cell 4410, the transistor MN0 prevents noise injection caused by the supply fluctuation. Preferably, the transistor MN0 has a high impedance at the power supply voltage VDD side and a low impedance the first at node N1. Accordingly, effects of the supply fluctuation are reduced on the VCO operations. An inverter structure composed of the transistor pair MP3-MN3 and the transistor pair MP4-MN4 receive the signals INPB, INNB, INP, and INN, respectively, from a previous cell 4410(i -1) and generates the output signals OUT, OUTB at commonly coupled drain electrodes. The transistors MP7 and MP8 construct a positive feedback network or loop to supplement or improve the VCO 4400 oscillation and reduce rise/fall times. A second positive feedback network is preferably composed of four inverters, inverter1 (the transistor pair MP1-MN1), inverter2 (the transistor pair MP5-MN5), inverter3 (the transistor pair MP2-MN2) and inverter4 (the transistor pair MP6-MN6) to control the frequency of the VCO 4400 by changing a gate voltage Vctrl of the transistor MN7. When the control voltage Vctrl decreases, the output node FEED of the inverter1 and the output node FEEDB of the inverter3 become isolated. As a result, the signals at the output nodes FEED and FEEDB can operate in an inverted manner, which
results in the inverter1 and the inverter3 providing positive feedback on the signal operation of the output terminal OUTB and the inverter2 and the inverter4 providing positive feedback on the signal operation of the output terminal OUT. In this case, the rise/fall time of the waveform on the output terminals OUT, OUTB is minimized but the VCO frequency becomes reduced because the strong positive feedback prohibits the VCO 4400 signal from quickly changing the state of the VCO 4400 signal. In other words, a time delay is generated for the VCO 4400 signal to change signal state and propagate. When the control voltage Vctrl increases, conductivity of the transistor MN7 increases to prevent the signals of the output nodes FEED and FEEDB from operating in the inverted manner. In other words, amplitude of the signals of the output nodes FEED and FEEDB are reduced by the increased conductivity of the transistor MN7. As a result, the positive feedback strength on the output terminal OUTB by the inverter1 and the inverter2 is reduced or weak, which results in a rapid state change of the VCO 4400 signal and an increment in the VCO 4400 frequency. In other words, the weak positive feedback helps the VCO 4400 signal to change its state quickly and with reduced resistance, which results in a frequency increment.

Accordingly, the preferred embodiment of the CMOS VCO 4400 in a PLL minimizes phase-noise of a CMOS ring oscillator by increasing an amplitude of the VCO signal, minimizing or reducing rise/fall time of the VCO signal and reducing or minimizing supply fluctuation noise effects on a VCO. As shown in Figure 22, transistors MN0-MN7 are preferably NMOS type transistors, and the transistors MP1-MP8 are preferably PMOS type transistors. However, the present invention is not intended to be so limited.

As described above, the preferred embodiments of the CMOS VCO and methods for operating same have various advantages. The preferred embodiments of the CMOS VCO have a symmetric PMOS/NMOS structure to match the rise/fall time of the local oscillator LO waveforms, which can reduce
the phase noise caused by rise/fall time mismatch. Further, a frequency of the VCO according to the preferred embodiments can be controlled by adjusting the strength of the feedback network. The preferred embodiments use a simple control structure for the feedback networks. In particular, as a control signal value (e.g., Vctrl) decreases, the amount of feedback by the feedback networks increases. In the preferred embodiment of the VCO 4400, as Vctrl decreases, the voltage level of the output nodes FEED and FEEDB increase and the amount of feedback by the feedback network increases. Thus, a rapid or sharp rise/fall time for a VCO can be maintained by the preferred embodiments even at a reduced frequency. Thus, the preferred embodiments of the CMOS VCO and methods using the same provides a full swing LO signal with fast rise/fall time and high power supply rejection ratio (PSRR).

Figure 23 is a diagram that illustrates a phase lock loop according to a second preferred embodiment of the present invention. As shown in Figure 23, a second preferred embodiment of the PLL includes a CMOS VCO 4400 and a multi-phase sampling fractional-N prescaler 4500 includes a pulse-swallow divider 4510, a multi-stage (e.g., 12-stage) multi-phase sampler 4520, a multiplexer 4530 (e.g., 12 to 1 multiplexer) and a modular counter 4540.

The pulse-swallow divider 4510 preferably performs divide-by-[4xP + S] operations. The pulse-swallow divider 4510 includes a divider 4512 and a counter 4514. In the related art, the LO frequency is too high for robust logic operation such as selecting one phase signal among multi-phase signals using a selection operation such as a multiplexer operation. Thus, before selecting one phase signal among multi-phase clocks, division by the pulse-swallow divider 4510 is performed to decrease the frequency to provide more robust logic operations.

The output of the pulse-swallow divider 4510 is sampled by the multi-phase sampler 4520 that preferably includes a plurality of N flip flops 4522 coupled in series. As shown in Figure 23, the multi-phase sampler 4520 samples using 12-phase 800MHz LO clocks (LO[0:11]). The outputs of the 12-stage
sampler 4520 (TCK[0:11]) have 12 different timings determined by the 12-phase LO clocks. A timing difference between the adjacent TCK clock signals are
\((1 + 1/12) \times T_{vco}\), where \(T_{vco}\) is the period of LO clocks coming from the VCO 4400. For example, as shown in Fig. 23, the number of multi-phase clock signals
LO is 12, the frequency of LO clocks is 800MHz, \(T_{vco}\) is 1.25ns and the timing difference between the adjacent TCK clock is \((1 + 1/12) \times 1.25\)ns. The reason that
the timing difference is not \(1/12 \times T_{vco}\) but \((1 + 1/12) \times T_{vco}\) is that the setup and
hold time window of the 12-stage sampler 4520 is larger than \(1/12 \times T_{vco}\) and
smaller than \((1 + 1/12) \times T_{vco}\). The modular counter 4520 periodically selects one
of TCK[0:11] according to an input control signal \(M\), which ranges from 0 to 11.
The resultant period of the 12-to-1 multiplexer 4530 output DIVCK is \([4x P + S + M + M/12] \times T_{vco}\). Thus, the resultant division ratio of the first preferred
embodiment of the prescaler 4500 is \([4x P + S + M + M/12]\).

As described above, the fractional spur of the related fractional-N prescaler
is caused by clocking frequency of the prescaler, which is equal to the channel
spacing. The preferred embodiment of the prescaler 4500 does not use a timing
source whose frequency is equal to channel spacing. As a result, the prescaler
4500, with a fractional-12 operation (e.g., \(N = 12\)), increases the PLL bandwidth
and reduces the phase noise without the fractional spur. In particular, the
fractional spur frequency of the prescaler 4500 is equal to the reference clock
frequency (e.g., 800 MHz) and is far from the channel spacing. By changing the
P, S, and M values, the PLL including the VCO 4400 and the prescaler 4500, can
support different channel frequencies.

Operations of the preferred embodiment of the multi-phase sampling
fractional-N prescaler 4500 will now be described. Fig. 24 is a diagram that
shows operation and timing waveforms of the prescaler 4500 when \(M = 3\). The
period of TCK[0:11] is \((4x P + S) \times T_{vco}\). As shown in Fig. 24, TCK[7] is initially
selected as the DIVCK. At this time, POINT[0:11] is \(0000000010000\). After a first
cycle, the modular counter 4530 shifts the POINT[0:11] value by 3, which results in POINT[0:11] is 000000000010. Thus, TCK[10] is selected as DIVCK for a second cycle. After the second cycle, POINT[0:11] becomes 010000000000. In a third cycle, TCK[1] is selected. However, in the third cycle shown in Fig. 24, a control signal OVERFLOW, which means that pointer value is smaller than that of the previous cycle (e.g., 1 < 10), is detected by the modular counter 4530. The modular counter 4530 asserts the OVERFLOW signal and controls the PS-Counter 4514 to increase its division factor by $13 \times T_{vco}$ to maintain the exact timing as shown in Fig. 24. As a result, the period of DIVCK, which is applied as one phase detector PFD input, becomes $[4 \times P + S + 3 \times (1 + 1/12)] \times T_{vco}$ as shown in Figure 24. The other phase detector PFD input is a reference frequency, e.g., 20 MHz REFK. Thus, the effective division factor of the prescaler 4500 as shown in Figure 24 is $[4 \times P + S + 3 \times (1 + 1/12)]$.

Fig. 25 is a diagram that shows operation and timing waveforms of the prescaler 4500 when $M=7$. The period of TCK[0:11] is $(4 \times P+S) \times T_{vco}$. Initially, TCK[4] is selected as the DIVCK as shown in Fig. 25. At this time, POINT[0:11] is 000010000000. After a first cycle, the modular counter 4530 shifts the POINT[0:11] value by 7, which results in POINT[0:11] is 000000000001. Thus, TCK[11] is selected as the DIVCK. After a second cycle, POINT[0:11] becomes 000000100000. In a third cycle, TCK[6] is selected. But in the third cycle, the control signal OVERFLOW, which means that pointer value is smaller than that of the previous cycle (e.g., 6 < 11), is detected by the modular counter 4530. The modular counter 4530 applies the OVERFLOW signal and makes the PS-Counter 4514 increase its division factor by $13 \times T_{vco}$ to maintain the exact timing as shown in Fig. 25. As a result, the period of DIVCK, which is applied as one of the phase detector PFD inputs, becomes $[4 \times P + S + 7 \times (1 + 1/12)] \times T_{vco}$. Thus, the effective division factor of the prescaler 4500 as shown in Figure 25 is $[4 \times P + S + 7 \times (1 + 1/12)]$.

-50-
As described above, preferred embodiments of a prescaler 4500 have various advantages. The preferred embodiments of a PLL including a multi-phase fractional-N prescaler and methods of using same provide large bandwidth and spectral purity. Further, according to the preferred embodiments, the prescaler reduces or eliminates a fractional-spur problem. Accordingly, a PLL incorporating the preferred embodiments of the VCO and prescaler architecture and methods for using same increase performance characteristics for an RF CMOS single-chip communication system.

Figure 26 is a diagram that illustrates a preferred embodiment of a master-slave gm-C tuning circuit in accordance with the present invention. As shown in Figure 26, a master block 5410 copies a control voltage 5430 to a slave filter 5440. The master block includes a first rectifier 5413, a second rectifier 5414, a voltage-to-current (V-I) converter 5416 and a gm-C poly-phase filter 5420. As shown in Figure 26, the rectifier 5413 receives high pass filter output signals 5425A, 5425B from the filter 5420 and the rectifier 5414 receives low pass filter output signals 5429A, 5429B from the filter 5420. The V-I converter 5416 receives output from the rectifiers 5413, 5414 and outputs the control voltage 5430 to the slave filter 5440. The gm-C poly-phase filter 5420 includes transconductance amplifiers 5422, 5424, 5426, 5428. Positive and negative input ports of transconductance amplifier 5422 receive a common mode reference signal. A positive output port of transconductance amplifier 5424 is coupled to a negative output port of the transconductance amplifier 5422 and a negative input port of the transconductance amplifier 5424. A negative output port of the transconductance amplifier 5424 is coupled to a positive output port of the transconductance amplifier 5422 and a positive input port of the transconductance amplifier 5424. In addition, the positive and negative output ports of the transconductance amplifier 5424 are output nodes for the high pass filtered (HPF) output signals 5425B, 5425A, respectively. In addition, positive
and negative input ports of the transconductance amplifier 5426 are coupled to receive a reference input signal 5450. A positive output port of a transconductance amplifier 5428 is coupled to the negative output port of the transconductance amplifier 5426 and a negative input port of the transconductance amplifier 5428. A negative output port of the transconductance amplifier 5428 is coupled to a positive output port of the transconductance amplifier 5426 and a positive input port of the transconductance amplifier 5428. The positive and negative output ports of the transconductance amplifier 5428 are output nodes for the low pass filtered (LPF) output signals 5429B, 5429A, respectively. Thus, the filter 5420 includes a high pass filter circuit 5420A and a low pass filter circuit 5420B. The reference signal 5450 is coupled to the positive and negative output ports of the transconductance amplifier 5424 through capacitors 5423B and 5423A, respectively. Capacitors 5427A and 5427B are coupled between a ground voltage and the negative and positive output terminals of the transconductance amplifier 5428. A diagram that illustrates an equivalent circuit 5460 of the gm-C poly-phase filter 5420 is shown in Figure 26.

In the preferred embodiment of the master-slave gm-C tuning circuit, the transconductance amplifiers 5426, 5428 receives the feedback loop control signal Vctrl as a control signal and respectively outputs the control signal Vctrl to the transconductance amplifiers 5422 and 5424. The sine wave is preferably used a reference signal. As shown in Figure 26, a 4 MHz sine wave is used as the reference signal to set the filter 5420 cut-off frequency.

During operations of the master block 5410, as the value of the Vctrl 5430 increases, transconductance values (gm) increase and the amplitude of the LPF output signals 5429A, 5429B increase and the amplitude of the HPF output signals 5425A, 5425B decrease. The rectifiers 5413, 5414 preferably detect peak levels of the HPF and LPF output signals respectively, for the comparison. The
V-I converter 5416 receives the rectified outputs from the rectifiers 5413, 5414 and generates a pumping current that is preferably proportional to the difference of the amplitude of the rectified output. As a result, the amplitudes of the HPF output signals and LPF output signals are equalized by the negative feedback loop and results in a steady state transconductance value g_m shown at equation 8 as follows:

$$\left| \frac{1}{1 + j\omega \frac{C}{g_m}} \right| = \left| \frac{j\omega \frac{C}{g_m}}{1 + j\omega \frac{C}{g_m}} \right| \Leftrightarrow g_m = \omega C = 2\pi fC$$

As described above, a master block such as the master block 5410 according to the preferred embodiments can be adapted as a tuning circuit for various types of transconductance amplifiers. An exemplary transconductance amplifier is illustrated in Figure 29. The transconductance amplifiers in the high pass filter section and the low pass filter section of the master block 5410 preferably provide a similar function of operating as resistor-equivalent whose value is 1/gm ohm. Further, the common mode reference signal is preferably a DC voltage whose value is about half V_{dd} (e.g., 1/2 the supply voltage). In addition, in the master block 5410 a sine wave is the preferred reference signal 5450, however, alternative types of signals can be used such as a triangular wave can be applied. The frequency of the reference signal 5450 is preferably applied according to the required cut-off frequency of corresponding slave block. For example, if the cut-off frequency of slave filter is 6MHz, 4MHz sine wave should be replaced with 6MHz sine wave.

Figure 27 is a diagram that illustrates a preferred embodiment of a rectifier according to the present invention. As shown in Figure 27, a rectifier 5500 includes PMOS type transistors 5501, 5502 coupled in parallel between node A and a ground voltage. Gate electrodes of the PMOS transistors 5501 and 5502
respectively receive an input signal IN and an input signal complement INB. PMOS type transistor 5503 is coupled between a source voltage V_{DD} and node A, and PMOS type transistor 5504 is coupled between the source voltage V_{DD} and node B. Gate electrodes of the PMOS transistors 5503 and 5504 receive a bias voltage V_{Bias}. A fifth PMOS type transistor 5505 is coupled between node B and the ground voltage. An operational amplifier has an inverting terminal coupled to node B, a non-inverting terminal coupled to node A and an output coupled to the gate electrode of the PMOS type transistor 5505 to provide an output signal of the rectifier 5500. The rectifier 5500 can be used as the rectifier 5413, 5414 in Figure 26.

Figure 28 is a diagram that illustrates a preferred embodiment of a V-I converter 5600 according to the present invention. As shown in Figure 28, transistors 5601 and 5602 are coupled in series between a power source voltage V_{DD} and the ground voltage. Further, transistors 5603 and 5604 are coupled in series between the source voltage V_{DD} and the ground voltage by commonly coupled drain electrodes that provide an output signal of the V-I converter 5600. Transistors 5605 and 5606 are coupled in series between the source voltage V_{DD} and a current source I_s, which is coupled to the ground voltage. Transistors 5607 and 5608 are coupled in series between the source voltage V_{DD} and the current source I_s by commonly coupled drain electrodes. In addition, gate electrodes and the drain electrode of the transistor 5605 are coupled together and to the gate of the transistor 5601. Similarly, a gate electrode and the drain electrode of the transistor 5607 are coupled together and to the gate electrode of the transistor 5603. Gate electrodes of the transistor 5606 and 5608 respectively receives input signals 5620 and 5622, respectively. The converter 5600 can be used as the V-I converter 5416 in Figure 26.

As described above, the preferred embodiment of the master-slave tuning circuits and methods of using same according to the present invention have
various advantages. The control voltage of a feedback loop (e.g., Vctrl) is copied to a slave circuit and both the master and slave circuits use a gm-C filter. For an accurate amplitude comparison, electrical characteristics including for example common load level, loading capability should be matched. High-pass and low-pass filter portions of a poly-phase filter in the poly-phase filter according to the preferred embodiments use the same filter with different configurations. Further, output signals of the high and low pass filtering come from the same circuits so that both signals have the same electrical characteristics, which result in a more accurate tuning circuit relative to the related art tuning circuits.

Further, the preferred embodiment of gm-C poly-phase filter tuning circuit provide a simpler circuit configuration for both the master and slave filter bodies. In addition, the preferred embodiments of a tuning circuit provide an increased robust operations relative to the VCO type related art tuning circuits due to elimination of disadvantages caused by the difficulty of oscillation and to high Q-factor requirements of the VCO type tuning circuits.

The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the present invention. The present teaching can be readily applied to other types of apparatuses. The description of the present invention is intended to be illustrative, and not to limit the scope of the claims.

Many alternatives, modifications, and variations will be apparent to those skilled in the art. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures.
WHAT IS CLAIMED IS:

1. A direct conversion communication system, comprising:
 a receiver unit that receives signals including selected signals having
 a carrier frequency;
 a demodulation-mixer that mixes the received carrier frequency
 selected signals and outputs baseband selected signals; and
 a baseband amplification circuit that includes first and second stage
 AGC amplifiers that receive the baseband selected signals and selectively amplify
 in-channel signals to a prescribed amplitude.

2. The communications system of claim 1, wherein the prescribed amplitude is greater than a required dynamic range of the communications system.

3. The communications system of claim 2, wherein an adjacent channel in the baseband selected signals has a greater power level than the in-channel signals, and the second stage AGC amplifier is a gain-merged filter.

4. The communication system of claim 1, further comprising:
 a RF filter coupled to the receiver unit that filters the received selected signals;
 a low noise amplifier coupled to the RF filter that amplifies the
 filtered selected signals with a gain;
 an A/D converting unit that converts the selected signals from the demodulation-mixer into digital signals; and
 a discrete-time signal processing unit that receives the digital signals.
5. A single chip RF communication system, comprising:
 a transceiver that receives and transmits RF signals;
 a PLL for generating a plurality of 2N-phase clock signals having
 a substantially identical frequency $2f_c/N$, wherein f_c is the carrier frequency,
 and wherein N is a positive integer;
 a demodulation mixer that mixes the RF signals from the
transceiver with the plurality of 2N-phase clock signals from the PLL to output
RF signals having a frequency reduced relative to the carrier frequency f_c,
wherein the demodulation mixer comprises a plurality of two input mixers;
 an AGC loop coupled to the demodulation-mixer;
 a gain-merged filter coupled to the AGC loop; and
 an A/D converting unit coupled to the gain-merged filter that
 converts the RF signals from the demodulation mixer into digital signals.

6. The communication system of claim 5, wherein several of the
 plurality of 2N-phase clock signals are combined to demodulate at least one of
 an I carrier frequency signal and a Q carrier frequency signal.

7. A method of operating a RF communication system, comprising:
 receiving signals including selected signals having a carrier
 frequency;
 generating more than two multi-phase clock signals having a
 substantially identical frequency different from the carrier frequency;
 mixing the received selected signals with the more than two multi-
 phase clock signals to output demodulated selected signals having a frequency
 reduced from the carrier frequency, wherein several of the more than two multi-
 phase clock signals are mixed to demodulate one of a first carrier frequency signal
 and a second carrier frequency signal;
amplifying the demodulated selected signals until one of a selected channel and an adjacent channel reach a linearity limit; and
amplifying and filtering the adjacent channel and amplifying the selected channel to a desired dynamic range.

8. The method of claim 7, wherein the adjacent channel has a greater power level than the selected channel in the demodulated selected signals.

9. The method of claim 7, further comprising:
RF filtering the received selected signals;
amplifying the filtered selected signals with a gain;
low pass filtering the demodulated selected signals having the frequency reduced to baseband;
A/D converting the low pass filtered frequency reduced selected signals into digital signals; and
discrete-time signal processing the digital signals.

10. A CMOS low noise amplifier (LNA), comprising:
a plurality of amplification stages coupled between an input terminal and an output terminal; and
a gain controller coupled to each of the plurality of amplifier stages, wherein the CMOS LNA does not include a spiral inductor.

11. The CMOS LNA of claim 10, wherein each of the amplification stages comprises:
first and second symmetric circuits; and
a feedback loop coupled between an output node of said each amplification stage and the second symmetric circuit.
12. The CMOS LNA of claim 11, wherein the first circuit comprises: first and second PMOS type transistors coupled in series between a first prescribed voltage and a corresponding output node of the amplification stage; and a first capacitor coupled between a second prescribed voltage and a junction coupling the first and second PMOS type transistors, wherein the second circuit comprises, first and second NMOS type transistors coupled in series between the output node of the amplification stage and the second prescribed voltage, and a second capacitor coupled between the second prescribed voltage and a junction coupling the first and second NMOS type transistors.

13. The CMOS LNA of claim 12, wherein the feedback loop comprises: a first operational amplifier having an output coupled to a control electrode of the second NMOS type transistor; a first resistor coupled to the output node of the amplification stage and a first input of the first operational amplifier; and a third capacitor coupled between the second prescribed voltage and the first input of the operational amplifier, and wherein a second input terminal of the first operational amplifier is coupled to a third prescribed voltage, wherein a level of the third prescribed voltage is between levels of the first and second prescribed voltages.

14. The CMOS LNA of claim 13, further comprising: a second resistor coupled to the input terminal; and
a fourth capacitor coupled in series between the second resistor and
the second prescribed voltage, wherein a junction coupling the second resistor
and the fourth capacitor provides the third prescribed voltage.

15. The CMOS LNA of claim 14, wherein the gain controller comprises:
 a gain transistor and a gain current source coupled in series between
 the first prescribed voltage and the second prescribed voltage; and
 a gain capacitor coupled between the second prescribed voltage and
 a control electrode of the gain transistor, and wherein a control electrode and a
 second electrode of the gain transistor are coupled together.

16. The CMOS LNA of claim 15, wherein the gain controller and first
 PMOS type transistors of the amplification stages comprise a current mirror, and
 wherein the third prescribed voltage is one-half the first prescribed voltage.

17. A circuit, comprising:
 a mixer that receives a plurality of first clock signals having
different phases, each first clock signal having a first frequency which is less than
a reference frequency, wherein the mixer mixes the plurality of first clock signals
to generate a plurality of local oscillator signals therein having a higher second
frequency, and wherein the mixer multiplies the plurality of local oscillator
signals with input signals to provide output signals at output terminals.

18. The circuit of claim 17, wherein a first local oscillator signal and a
 second local oscillator of the local oscillator signals are respectively used for I-
 channel and Q-channel conversion.
19. The circuit of claim 17, further comprising a clock generator that receives a reference signal having the reference frequency and generates the plurality of first clock signals, wherein the clock generator includes a plurality of delay cells coupled in series to provide the plurality of first clock signals having different phases.

20. A method for modulating input signals, comprising:

 generating a plurality of first clock signals having different phases, each first clock signal having a first frequency that is less than a reference frequency of an input signal;

 combining the plurality of first clock signals to generate a plurality of local oscillator signals having a second frequency higher than the first frequency; and

 mixing the plurality of local oscillator signals with the input signal to provide an output signal.

21. The circuit of claim 20, wherein the output signal is baseband.

22. A loop apparatus, comprising:

 a plurality of gain stages connected in series to amplify a signal having a voltage, wherein each gain stage increases the voltage of the signal, and includes an input port that receives the signal and an output port that transmits the resulting amplified signal; and

 a plurality of feedback loops that cancel an undesired offset of the resulting amplified signal, wherein each feedback loop connects to the output port and the input port of a corresponding one of the gain stages, such that each gain stage is connected to a corresponding feedback loop that cancels the undesired offset of its corresponding gain stage.
23. The loop apparatus of claim 22, wherein the undesired offset is a direct current offset voltage, and each feedback loop includes a direct current offset canceling unit for rejecting the direct current offset voltage accumulated by its corresponding gain stage.

24. The loop apparatus of claim 23, wherein each direct current offset canceling unit includes a high-pass filter that filters the direct current offset voltage.

25. The loop apparatus of claim 22, wherein each gain stage includes a variable gain amplifier.

26. The loop apparatus of claim 22, wherein the plurality of gain stages and feedback loops are mounted on a chip, and each feedback loop includes a capacitor mounted on the chip.

27. A method for controlling a gain of a signal, comprising:
 amplifying the voltage of a signal by propagating the signal through a plurality of gain stages connected in series, wherein each gain stage increases the voltage of the signal, and includes an input port receiving the signal and an output port transmitting the resulting amplified signal; and
 canceling an undesired offset of the resulting amplified signal with a plurality of feedback loops, wherein each feedback loop connects to the output port and the input port of a corresponding one of the gain stages, such that each gain stage is connected to a corresponding feedback loop that cancels the undesired offset of its corresponding gain stage.
28. A circuit, comprising:
 a clock generator that generates a plurality of first clock signals
 having different phases, each first clock signal having a first frequency that is less
 than a reference frequency; and
 a prescaler coupled to the clock generator that receives the plurality
 of first clock signals to generate a second clock signal based on the reference
 frequency that is higher than the first frequency.

29. The circuit of claim 28, wherein the clock generator includes a
 plurality of delay cells coupled in series for providing the plurality of first clock
 signals having different phases, wherein a first one of the plurality of delay cells
 receive feedback signals from subsequent ones of the delay cells.

30. The circuit of claim 29, wherein each of the delay cells includes first
 and second output terminals and first through fourth input terminals.

31. The circuit of claim 30, wherein said each of the delay cells
 comprises:
 a first pair of transistors coupled in series by second electrodes
 between a first node and a first prescribed voltage, wherein control electrodes of
 the first pair of transistors are respectively coupled to the fourth and third output
 terminals;
 a second pair of transistors coupled in series by second electrodes
 between the first node and the first prescribed voltage, wherein control
 electrodes of the second pair of transistors are respectively coupled to the first
 and second input terminals;
a third pair of transistors coupled in series by second electrodes between the first node and the first prescribed voltage, wherein control electrodes of the third pair of transistors are respectively coupled to fourth and third input terminals, and wherein the commonly coupled second electrodes are coupled to the first output terminal;

a fourth pair of transistors coupled in series by second electrodes between the first node and the first prescribed voltage, wherein control electrodes of the fourth pair of transistors are respectively coupled to the first input terminal and the second input terminal, and wherein the second electrode of the fourth pair of transistors are coupled to the second output terminal;

a feedback circuit coupled between a second node and a third node;

a fifth pair of transistors coupled in series by second electrodes between the first node and the first prescribed voltage, wherein the second electrodes of the fifth pair of transistors are coupled to the first output terminal, and wherein control electrodes of the fifth pair of transistors are coupled to the third node;

a sixth pair of transistors coupled in series by second electrodes between the first node and the first prescribed voltage, wherein the second electrodes of the sixth pair of transistors are coupled to the second output terminal, and wherein control electrodes of the sixth pair of transistors are coupled to the second node;

a seventh transistor coupled between a first node and a first output terminal having a control electrode coupled to the second output terminal;

an eighth transistor coupled between a first node and the second output terminal, wherein the eighth transistor has a control electrode coupled to the first output terminal; and

a ninth transistor coupled between a second prescribed voltage and the first node.
32. The circuit of claim 31, wherein the feedback circuit includes a feedback transistor coupled to receive a feedback control signal.

33. The circuit of claim 28, wherein the prescaler comprises:
 a divider circuit coupled to receive one of the plurality of first clock signals;
 a sampler circuit that includes a plurality of flip flops coupled in series that receives an output signal of the divider circuits, wherein the sampler circuit outputs a plurality of third clock signals;
 a multiplexer coupled to receive the third plurality of clock signals and a selection signal, wherein the multiplexer outputs the second clock signal; and
 a counter circuit coupled between the divider circuit and the multiplexer.

34. The circuit of claim 33, wherein the divider circuit comprises a pulse-swallow divider circuit, and wherein the sampler circuit comprises a plurality of flip flops coupled in series, wherein each of the plurality of flip flops receives a corresponding one of the first plurality of clock signals and outputs one of the third plurality of clock signals, and wherein a first flip flop receives the output signal of the divider circuit.

35. The circuit of claim 33, further comprising:
 a phase detector that receives the second clock signal and a reference clock signal;
 a charge pump circuit coupled to the phase detector; and
a loop filter coupled to the charge pump that outputs the feedback control signal to the clock generator.

36. The circuit of claim 35, wherein the clock generator is a voltage controlled oscillator (VCO), and the second clock signal is a divided clock signal, wherein the prescaler reduces a fractional spur in phase noise generated by the VCO.

37. The circuit of claim 36, wherein the circuit is a CMOS circuit formed on a single chip.

38. A tuning circuit, comprising:

a slave filter block; and

a master filter block that outputs a control signal to the slave filter block, wherein the master filter block comprises,

5 a first filter including a high pass filter and a low pass filter, wherein each of the high and low pass filters receives the control signal,

a first rectifier coupled to the high pass filter,

a second rectifier coupled to the low pass filter, and

a converter coupled to the first and second rectifiers that

outputs the control signal.

39. The tuning circuit of claim 38, wherein as a value of the control signal increases, a first amplitude of an output signal of the high pass filter decreases and a second amplitude of an output signal of the low pass filter increases.
40. The tuning circuit of claim 39, wherein the value of the control signal is adjusted until the first amplitude and the second amplitude are equal.

41. The tuning circuit of claim 38, wherein the first filter includes first and second transconductance amplifiers (TA) coupled in series to output a first pair of output signals at first and second output terminals; and third and fourth transconductance amplifiers (TA) coupled in series to output a second pair of output signals at third and fourth output terminals.

42. The tuning circuit of claim 41, wherein first and second inputs of the first TA receives a first prescribed reference signal, and wherein a first output of the second TA is coupled to the second output terminal, a second output of the first TA and a second input of the second TA, and wherein a second output of the second TA is coupled to a first output terminal, a first output of the first TA and a first input of the second TA.

43. The tuning circuit of claim 42, wherein the first and second inputs of the third TA receives a second prescribed reference signal, wherein a first output of the fourth TA is coupled to the fourth output terminal, a second output of the third TA and a second input of the fourth TA, and wherein a second output of the fourth TA is coupled to the third output terminal, a first output of the third TA and a first input of the fourth TA.

44. The tuning circuit of claim 43, wherein a control terminal of the first through fourth TAs receives the control signal.

45. The tuning circuit of claim 44, further comprising:
first and second capacitors coupled between the first and second output terminals and the second reference signal; and
third and fourth capacitors coupled between the third and fourth output terminals and a first prescribed reference voltage, respectively.

46. The tuning circuit of claim 45, wherein the first rectifier comprises:

first and second transistors coupled between a first node and a first prescribed voltage level;
a third transistor coupled between a second prescribed voltage level and the first node;
fourth and fifth transistors coupled in series at a second node between the second prescribed voltage level and the first prescribed voltage level; and
an operational amplifier having first and second inputs respectively coupled to the first and second nodes and an output coupled to a control electrode of the fifth transistor, wherein a control electrode of the third and fourth transistors receives a third prescribed voltage, and wherein control electrodes of the first and second transistors receives first and second input signals, respectively.

47. The tuning circuit of claim 45, wherein the converter is a voltage-to-current converter comprising:

first and second transistors coupled in series between a second prescribed voltage and a first prescribed voltage;
third and fourth transistors coupled in series at an output terminal of the converter between the second prescribed voltage and the first prescribed voltage;
fifth and sixth transistors coupled in series between the second prescribed voltage and a first node;
seventh and eighth transistors coupled in series between the second prescribed voltage and the first node; and
a current source coupled between the first node and the first prescribed voltage.
FIG. 1

BACKGROUND ART

FIG. 2

BACKGROUND ART
FIG. 3A

BACKGROUND ART

FIG. 3B

BACKGROUND ART
Figs. 6
First AGC Loop with cascaded DC-offset canceling loop

AGC-merged 4 X 3rd order elliptic gm-C filter

FIG. 8
CASE I

910 RF Gain
920 B

DALL = GACC

GACC: AGC Gain
GREF: Required Dynamic Range

CASE II

970

DALL

GREF

GREF: RF Gain

DALL: Required Dynamic Range

GACC: AGC Gain

GREF: Required Dynamic Range

Gx: Merged Gain of 3rd-order Elliptic Filter

B: Required Adjacent Blocking Ratio

4 X Gx = B

4 X Gx > B

4 X [Rn, Gx] > SNR

Rejection and Amplification as Super-Heterodyne

MDS: Minimum Detectable Signal

FIG. 9
6-phase VCO

LO(0) LO(3) LO(1) LO(4) LO(2) LO(5)

2110_1 2110_2 2110_3

LO(0:5), where L(0)=L(3),
L(1)=L(4),
L(2)=L(5)

2110

250

6-phase MIXER

FIG. 13
Frequency = $f_0/3$

LO(0)
LO(1)
LO(2)
LO(3)
LO(4)
LO(5)
LOT+
LOT-

Frequency = f_0

FIGURE 14A
FIGURE 14B
FIGURE 14C
FIGURE 14D
FIGURE 14E
FIGURE 14F
FIGURE 14G
FIGURE 14H
F_{vco} = M \cdot F_{ref} = M \cdot \frac{BW}{channel}

Comparison interval \approx \frac{1}{F_{ref}} = \frac{1}{\frac{BW}{channel}}

Phase Noise \approx 20 \log M

\frac{1}{PLL \text{ Bandwidth}}

Reference Spur

F_{vco} = (T + \frac{K}{N}) \cdot F_{ref} = (T + \frac{K}{N}) \cdot \frac{N \cdot BW}{channel}

Comparison interval = \frac{1}{F_{ref}} = \frac{1}{N \cdot \frac{BW}{channel}}

Phase Noise \approx 20 \log (T + \frac{K}{N})

\frac{1}{PLL \text{ Bandwidth}}

Fractional Spur

FIG. 20

FIG. 21
$T_{div} = \left(4 \cdot P + S \right) \cdot T_{ref}$

$11 \cdot \left(1 + \frac{T_{ref}}{12} \right) = 13 \cdot T_{ref}$

$12 \cdot \left(1 + \frac{T_{ref}}{12} \right) = 13 \cdot T_{ref}$