wo 2017/015955 A1 [N I 0000 OO O 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/015955 Al

(51

eay)

(22)

(25)
(26)
1

(72)
1

74

2 February 2017 (02.02.2017) WIPO I PCT
International Patent Classification: (81)
GO6F 11/36 (2006.01)
International Application Number:
PCT/CN2015/085581

International Filing Date:

30 July 2015 (30.07.2015)
Filing Language: English
Publication Language: English

Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY.L.P. [US/US]; 11445 Compaq Center Drive
West, Houston, Texas 77070, United States of America

(US).

Inventor; and

Applicant (for US only): CLEMENT, Arnaud Gaston
Claude [FR/CN]; No. 20 Jia Feng Road $ WGQ, FTZ,
Pudong District, Shanghai 200131 (CN).

Agent: DEQI INTELLECTUAL PROPERTY LAW
CORPORATION; 7/F, Xueyuan International Tower, No.
1 Zhichun Road, Haidian District, Beijing 100083 (CN).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(34

Title: APPLICATION TESTING

(57) Abstract: A method for application testing is disclosed. An interface

structure may be extracted from source code of an application under test

Tiyirard an tnloriaes cirneiire oy L 101
Lj::&z('tgfﬁ‘ikr’,’?”ﬁ::';si;; L_‘i?;ﬁlff;; . (AUT) (101), and the interface structure may be separated into subsections
b 2 Of 8n 2 nReano o PSUEAL . .
- oy b ’ (102). Then a primary test may be performed for the AUT by using test code
to execute the subsections (103). An assertion strategy in the test code may
¥ 1 be evaluated based on a predefined assertion requirement to obtain a first
Separate the interface strocture into 102 measurement result of the AUT, in which the assertion strategy may be to
subsections assert an execution result of the test code executing the subsections (104).
v
T . el T the A 103
Perform a primary iest {or the AUT by -
using test code to execote the subsections
v
Evaluate an assertion strategy in the test
y 104

code based on a predefined
assortion roquircment to obtain a first
measurement resull of the AUT, in which
the assertion strategy is to assert a result of
the test code executing the subsections

WO 2017/015955 PCT/CN2015/085581

APPLICATION TESTING

BACKGROUND

(6661 In application development, before an application is released, source code of the
application may be tested using test code. The test code may include instructions to execute the
source code so as to automatically test the source code.

BRIEF DESCRIPTION OF THE DRAWINGS
10062} For a better understanding of the present disclosure, reference should be made to the
Detailed Description below, in conjunction with the following drawings in which like reference

numerals refer to corresponding parts throughout the figures.

16663} FIG. 1 15 a flowchart illustrating a mcthod for application testing according to an

example of the present disclosure;

16684] FIG. 2 is a hierarchical structure of an application under test (AUT) according to an

example of the present disclosure;

[0065] FI1G. 3 1s a flowchart illustrating a method for application testing according to an

example of the present disclosure;

100646] F1G. 4 1s a flowchart Hlusirating a method for application iesting according to an

example of the present disclosure;

10667 FIG.5 is a flowchart illustrating a method for application testing according to an

example of the present disclosure;

16668] FIG.6 is a flowchart illustrating a mecthod for application testing according to an

example of the present disclosure;

160489] FIG.7 is a flowchart illustrating a method for application testing according to an

example of the present disclosure;

(00190} FIG.8 is a flowchart illustrating a method for application testing according to an

example of the present disclosure;

10611} F1G.9 s a hierarchical siracture of an AUT according to an example of the present

disclosure;

WO 2017/015955 PCT/CN2015/085581
10612} F1(3.10 s an apparatus for application testing according to an example of the present

disclosure; and

10613} FIG.11 is an apparatus for application testing according to an example of the present

disclosure.

DETAILED DESCRIPTION
[6614] Reference will now be made in detail to examples, which are illustrated in the
accompanying drawings. In the following detailed description, numerous specific details are set
forth in order to provide a thorough understanding of the present disclosure. Also, the figures are
tllustrations of examples, in which modules or procedures shown in the figures are not
necessarily cssential for implementing the present disclosure. In other instances, well-known
methods, procedures, components, and circuits have not been described in detail so as not to

unnecessarily obscure aspects of the examples.

[0015] At present, there are some measurement tools to control the efficiency of test code
when testing source code of an application. For example, code coverage is one of these
measurement tools. Code coverage may refer to the degree to which the source code of the
application is executed by a particular set of test code, and can provide software developers with
mnformation about which picce of source code s executed as well as which is not. However, a
piece of source code being executed may not mean that the source code is verified. For example,
a function in the source code is executed, but a result of executing the function may not be

verified to learn whether the function is correctly written.

1661 6] Application testing to evaluate how thoroughly source code of an application under
test (AUT) is tested by test code is described according to examples of the present disclosure,
According to the examples, the testing may include whether the source code of the AUT
responds correctly to a number of different types of inputs, Possible interface structures, ¢.g., VO
structures may be extracted from the source code of the AUT, and then assertion strategies
contained in the test code related to the interface structures may be compared with predefined
assertion requirements to obtain an evaluation result of the AUT,

18617] Fig. 1 is a flowchart illustrating a method for application testing according to an
example of the present disclosure. As shown in Fig. 1, the method for application testing may
include the following procedures.

(6618} At block 101, an interface structure may be extracted from source code of an

application under test (AUT).

WO 2017/015955 PCT/CN2015/085581
10619} The AUT may refer to a software program contains source code. The source code
may be a set of computer instructions typically written using a certain human-readable computer
janguage, such as C, C++, or the Java programming langnage. The source code may be usually
transformed by a compiler program into low-level machine code understood by, for example, a

computer.

10626} In most programming languages, for example, in C, C++, or Java programming
languages, the source code of an AUT may be structured into two parts: interface structure {or
signature) and implementation. An jnterface structure may refer to an entry point of the AUT and
may be publically accessible by other functions or methods of the AUT. An interface structure
may be a set of routines, protocols, and tools for building the AUT, and may express a software
component in terms of its operations, inputs, outputs, and underlying types. Interface structures
between software components may provide: constants, data types, types of procedures, exception
specifications and method signatures. Sometimes, public variables may be also defined as part of
an interface structore. For example, the interface structure of a software module may be
deliberately defined separately from the implementation of that module. The implementation
may be realization of an interface structure, and may contain actual code of procedures and

methods specified in the interface structure, as well as other “private” variables, procedures, ete.

(6621} Refer to Fig. 2 which is a hierarchical structure of an AUT according to an example
of the present disclosure. The AUT in Fig. 2 may have three interface structures: input 1, input 2,
and output I which may have their own subsections. The interface structures jnput 1, tnput 2, and

output 1 may be extracted from the AUT respectively.

16622} At block 102, the interface structure may be separated into subsections, For example,
the interface structure may be separated into operation subsections, and an operation subsection

may be separated into fuput subsections and output subsections,

16623] Refer again to FIG. 2. Input 1 may be further separated into two subsections which
may be operation 31 and operation 32. An operation may be a function available as part of a
structure which could access to internal information contained in the structure, for example an
addition function for a calculator structure. Operation 31 may include three subsections which
may be ioput 311, input 312, and output 313. An input may be information provided at an
entrance of an operation, for example, a numerical value 1”7 which would be added to a current
calculator value; and an output may be information returned from an operation after execution of
the operation, for example a result of execution of the addition function. Uperation 32 may
inchude two subsections which may be input 321, and output 322, Input 2 may include a

sabsection which may be operation 21. Operation 21 may further include a sabsection, e.g., input

-3 .

WO 2017/015955 PCT/CN2015/085581

211 Output 1 may be separated into three operation subsections which may be operation 11,
operation 12, and operation 13, Operation 11 may be further separated into three subsections
which may be input 111, input 112, and output 113. Operation 12 may be further separated into
two subsections which may be input 121, and output 122, Operation 13 may be further separated

into two subsections which may be input 131 and input 132.

106624} At block 103, a primary test may be performed for the AUT by using test code to

execute the subsections,

10025] The test code may be a set of computer instractions to be performed on the source
code to test that the source code functions as expected. In the AUT shown in FIG. 2, each line of
code in the three interface structures may be respectively executed using the test code to carry

out a primary test.

10626} At block 104, an assertion strategy in the test code may be cvaluated based on a
predefined assertion requirement to obtain a first measurement result of the AUT. The assertion

strategy may be to assert a result of the test code executing the subsections.

10027} The asscrtion strategy may be an assertion which may be a statement that predicate
{Boolean-valued function, a true-false expression) is expecied to be true at a point in the code.
The predefined assertion requirement may be a list of expected efficient assertions to be
performed corresponding to the interface structures, There may be multiple assertion strategies

and/or multiple assertion requirements.

[6628] As part of testing workflow, each input and output (I/0) in an interface structure may
be execuled and asserted in order to check if they are as expected. If these ¥Os are basic data
structures {numbers, byte arrays, etc.}, the “as expected” check may be very simple. In case of
complex structures, only observable via inferface operations, the “as expected” check may be
quite equivalent (in term of complexity) to checking the overall interface structure being reduced

to each VO,

10629} Refer to Fig. 2 again, assume that in the interface stracture input 1, according to a
predefined assertion requirement, an assertion strategy defined in the test code for input 1 does
not meet the predefined assertion requirement, and assertion of both output 313 and output 322
fails. Thus, since there are totally five subsections contained in the interface structure input 1,
and the assertion of the two subsections is failed, a first measurement result of the AUT of Fig.2

of 6(% may be obtained.

16636} Fig.3 is a flowchart illustrating a method for application testing according to an
example of the present disclosure based on Fig. 1.

-4

WO 2017/015955 PCT/CN2015/085581

18631} In Fig.3, block 104 may further include the following procedures.

10632} At block 301, a type of an operation contained in an operation subsection of the

interface structure may be determined.

16633] The test code may determine the type of the operation according to organization and
definition of objects in a programing language. For example, a specific declaration may be used
to declare a type of an operation in a programming language. Based on the declaration, the type
of the operation may be determined. For example, the operation may be determined to be a
mutable object or an immutable object in the C++ programming language, or may be a mutable

object such as the ArrayList function in the Java prograroming language,

16634 At block 302, it may be determined whether the assertion strategy meets an assertion

requirement predefined for the type of the operation.

[6G35] According to the example of the present disclosure, different assertion requirements
may be predefined for different types of operations. For example, for a mutable object, the
predefined assertion requirement may require performing assertions to check a reference of a

returned object, and check the content of the mutable object as a first parameter.

10636} In this block, what assertions are performed on the source code may be determined.
Then, it is determined whether all assertions predefined in the asserfion requirement are

performed by the assertions in the assertion strategy.

[6637] At block 303, the first measurement result may be obtained based on a determination

result obtained from block 302,

10038] For example, if it is determined that the assertion sirategy defined in the test code for
the mutable object has not checked a reference of the returned object, then a certain score may be

deduced from the a measurcment result of the mutable object.

16639 Fig.4 ts a flowchart illustrating a method for application testing according to another

example of the present disclosure based on Fig.1.
10040] As shown in Fig.4, the block 104 may further include the following procedures.

10041} At block 401, an output subsection of the interface structure may be determined to be

a date,

s
[
1

WO 2017/015955 PCT/CN2015/085581

10042} At block 402, it may be determined whether a year value, a month value, and a day

value in the output subsection are asserted by the assertion strategy.

16043} In this block, since a value of a date may contain a year value, a month value, and a
day value. Then these values should be asserted by the assertion strategy to determine whether

they arc correct.

[G044] At block 403, the first measurement result may be obtained based on a determination

result obtlained {rom block 402,

10045] For example, if one of the year value, the month value, or the day value 15 not
asserted or is asserted not to be correct, then a certain percentage of score may be subtracted

from the first measurementi result,

106646} Fig.5 is a flowchart illustrating a method for application testing according to a further

example of the present disclosure based on Fig.1.
16047} As shown in Fig.5, the block 104 may further include the following procedures.

[G048] At block 501, it may be determined that an output subsection of the interface structure

is a {ist,

(6649} At block 502, it may be determined whether a size of the list and each element in the
fist are verified by the assertion strategy or not. The size may refer to the nurmnber of elements in

the list.

16656 At block 503, the first measurement result may be obtained based on a determination

resuli obtained in block 502,

10051 For example, if the size of the hist is not asseried by the assertion strategy, then a

certain percentage of score may be subtracted from the first measurement result.

16052} With the examples of the present disclosure, if the output of a function in a subsection
of the interface structure returns a list, but an assertion strategy in the test code only asserts or
verifies the size of the list, and a predefined assertion requirement may define that the size of the
list and cach clement in the list needs to be asserted. Then, there may be a mismatch between the
assertion strategy and the expected assertion requirement, and the test does not cover the source

code efficiently according to the measurement.

WO 2017/015955 PCT/CN2015/085581
18653 Fig.6 is a flowchart illustrating a method for application testing according to another

example of the present disclosure based on Fig. 1.
10654] As shown in Fig.6, the block 104 includes the following procedures,

[66535] At block 601, it may be determined that an operation subsection of the interface
structure contains a mutable object. For example, the mmtable object may be the ArrayList

function in the Java programming language.

[6656] At block 602, it may be determined whether a reference of a returned object of the

mutable object is asserted or not by the assertion strategy to obtain a first determination resalt.

{66571 Al block 603, it 1s determined whether content of the mutable object is asserted or not

by the assertion strategy to obtain a second determination result.

18658} Thus, in this example, in case of a mutable object, in order to evaluate the
measurement result of the test, the predefined assertion requirement may define asserting the
reference of a returned object, and asserting the content of a mutable object provided as first

parameter.

100659] That 1s, when source code uses a memory block (or object), the memory block (or
object) should be asserted. If a memory block is provided as an input of a function, then whether

the memory block is modified by the function or not should be asserted.

16666 in case of a structured operand (like an object), the predefined assertion requirement
may define: if a compare function is used (like equals() in Java), then considering the structured
operand as being fully asserted, whatever the implementation of this method (it should tested on
its own separately), or il a compare function s not used, cach internal ficld should be accesse

via getters (or publicly) in order to assert the content of the structured operand. These assertion

operations should also be performed by the assertion strategy.

[6061] At block 604, the first measurement result may be obtained based on the first

determination result and the second determination result,

[6862] For exarnple, if based on the first determination result, the reference of the returned
object of the nmitable object has not be asserted by the assertion strategy, a certain score

perceniage may be removed from 100% (o obtain the {irst measurement result,

18663] Fig.7 is a flowchart illustrating a method for application testing according to an

example of the present disclosure.

WO 2017/0159355 PCT/CN2015/085581
18664} As shown in Fig. 7, at block 701, an interface structure may be extracted from source

code of an application under test (AUT).
10065] At block 702, the interface structure may be separated into subsections.

6066} At block 703, a primary test may be performed for the AUT by using test code to
execute the subsections.

100667] At block 704, an assertion strategy in the test code may be evaluated based on a
predefined assertion requirement to obtain a first measurement result of the AUT. The assertion

strategy may be to assert a result of the test code executing the subsections.,

16668} The procedures in blocks 701-704 may be similar with those in blocks 101-104 of
Fig.1, and will not be elaborated herein. For detailed information please refer to the foregoing

description for blocks 101-104,

(6669} At block 705, execution of the subsections may be evaluated to obtain a second

measurement result of the AUT based on the primary test,
18670} in this block, execution of the subsections of the interface structure may be evaluated
to obtain code coverage as the second measurernent result of the interface structure,
100671} There may be some metric for determining the code coverage, for example:

function coverage: this metric may be to determine whether each function (or
subrouting) in a subsection has been called or not;

statement coverage: this metric may be to determine whether each statement in a
subsection has been executed or not;

branch coverage: this metric may be to determine whether cach branch (also called
decision-to-decision path} of each control structare (such as in if and case statements) in a
subsection has been executed or not; and

condition coverage (or predicate coverage): this metric may be to determine whether
each Boolean sub-expression in a subsection has been evaluated both to true and false or not.
18672} At block 706, a third measurement result may be generated for the interface structure
by using the second measurement result as a weight factor of the first measurement result,
10673] In this block, the code coverage of the interface structure obtained in block 305 may
be used as a weight factor to weight the test coverage obtained in block 304 to generate a

measurement result of testing the AUT.

WO 2017/015955 PCT/CN2015/085581
10074} In an example, the source code or the code to be tested may be a public object
including an addition function which performs addition of values of two inputs: variables “a”
and “b”. However, in the public object, implementation of the addition function may define that
a value of “a+b-1" should be returned as an output of the addition function, The test code may
define calling the addition function and assigning a value “0” to both “a” and “b” to execute the
addition function. According to code coverage metrics, the code coverage of this test may be 100%
which may be used as the second measurement result of testing the source code. However, in this
example, since the source code is to return a value of “a+b-17 as the output of the addition
function, a wrong output “1” will be returned instead of “07. By further asserting the output of
the function, this error may be found. And an assertion result which is the first measurement
result of testing the source code may be 0%. In this way, an overall measurement result, i.c., the
third measurement result of testing the source code may be (180%%0%)=0%. The source code

and the test code may be in the Java programing language.

10675] For the example as shown in Fig.2, assume the assertion of input 322 and ouiput 313
respectively contained in operation 31 and operation 32 of the interface structure input 1 is failed,
and then the first measurement result of the AUT may be 60%. Assume that the code coverage of
the interface structare input 1 is 100%, e.g., each line of the code in the interface structure input
1 being executed, and therefore the second measurcment result of the AUT is 100%. Thus, the
third measurement result of the AUT which is obtained by using the second measarement result

as a factor to weight the first measurement result will be 100%*60%=60%.

10676} In another cxample, the source code may be a public String object including a
concatenation function which concatenates two inputs: strings “a” and “b”. In the public String
object, implementation of the concatenation function may define that this String object will
return “a+b” as an output of the String object. For example, a concatenation of strings “123” and
“456” 1s “1234567. Then the test code may define calling the concatenation function, and
assigning a value “1237 to “a” and “456” to “b” to execute the concatenation function. Farther,
the test code may define verifying a length of a returned value of executing the concatenation
function. In this example, the source code and the test code may be in the Java programming

language.

186771 From the test code, it can be seen that the concatenation function is executed, t.¢., the
code coverage may be 100% which is the second measurement result of the source code.
However, the assertion strategy in the test code does not fully check the output content of
exccuting the concatenation function, just a part of the ouiput content, ie¢., the length. If a

predefined assertion requirement defines that the String object is composed of 10 methods, then

-9

WO 2017/015955 PCT/CN2015/085581
this assertion strategy may cover 10% of the result. Then the first measurement result of the
source code may be 10%. Thus, an overall measurement result, 1.¢., the third measurement result

of this test may be 10%*100%=10%.

[6678] An efficient predefined assertion requirement and/or assertion strategy of the test
code may define performing a check on the overall returned output. For example, the test code
may define comparing the content of the output of executing the concatenation result with an

expected value,

10679} Fig. 8 is a flowchart illustrating a method for application lesting according to an

example of the present disclosure.

[0680] As shown in Fig. 8, the method includes the following procedures.
(6081} At block 801, an AUT may be scparated into interface structures, each of the interface

structures may be separated into subsections, and each of the sabsections may be separated into
interface unitts, to form a tree structure for the AUT. The interface structures, the subsections,
and the interface units may be nodes of the tree structure in different levels. An interface
structurc may be a parent node of subsections separated from the interface structure, and the
subsections may be children nodes of the interface structure. A subsection may be a parent node
of interface units separated from the subsection, and the interface units may be children nodes of

the subsection.

16682] This block may correspond to blocks 101 and 102 in Fig.1. For detailed information

please refer to Fig. 1.

[0083] At block 802, first nodes having a samc parent node in the tree structure may be
obtained, and 100 percent may be divided by the number of the first nodes to get a weighting
percentage of cach of the first nodes. In this way, the nodes having a same parent node may
occupy a same percentage of weight when evaluating a measurement result of the parent node of

the nodes,

[0084] At block 803, the weighting percentage of a first node may be applied to obtain a first

measurement result for the parent node of the first node.

18685} After primary tests are performed for all the interface structures in the AUT (please
refer to the description for block 103 in Fig.1), when the first measurement result 1s calculated
for an interface structure using the method 1o block 104 of Fig.1, weighting percentages of

subsections in the interface structure may be used.

- 10 -

WO 2017/015955 PCT/CN2015/085581
15656} At block 804, first measurement resulis of the nodes of the tree structure may be

aggregated to get a final measurement result for the AUT.

10087} In the foregoing blocks of the method shown in Fig.8, similar operations may be

performed as those of the method shown in FIG. 1, and will not be claborated herein.

(6688} In blocks 802-804, a size of an interface structure, a size of a subsection, and a size of
au interface unit may be used as factors to obtain a {inal measurement result of the AUT. For
example, the size may refer to the number of operations in an interface structure, and/or the

number of /0Os in an operation.

[G089] if an interface structure contains multiple operations (method calls, constructors, etc.)
to be checked, cach operation may be equally split by the test code. Each operand of one
operation (a mutable parameter, a returned value, eic.) will equally participate to the scoring of
the operation. As an example, a measurement resuit of a structured operand based on internal

fields may be evaluated based on an equal weight of each field.

16G90] In an example, the test code may define two calls to two operations such as functions
of an object in the interface structure and execute the two operations. According to a method of
an example of the present disclosure, each operation may equally weigh 50%. Assame that the
first call or operation is scored 70% and the second one is scored 30% after the assertion strategy
in the test code is evaluated based on a predefined assertion requireruent. In this example, the
assertion strategy in the test code may be asserting the size of a returned result of the function
concatList() and the value of the last element of the list. The predefined assertion requircment
may be that the object should be asserted fully for each operation, and not incrementally. Then

/. [A]

an overall measurement result of the test code (50%*70%6)+H(50%%30%)=50% may be obtained.

10091} In another example, the source code may be a function of adding a new entry to a list,
for example, the ArrayList function in Java programming langnage. The inputs of the function
may be the list itself and a new element to add. The output of the mutable function 1s a new list
which should contain all the original elements of the input list and the new element. According
to the assertion strategy in the test code, the size of a returned list and its last clement may be
asserted. However, even if the test asserts the content of the returned object, as it is a mutable
object, however, according to a predefined assertion requirement, what should be tested is also

reference, or at least to compare it.

16692} An assertion may be performed to assert whether a memory block (e.g., a set of
mermory as used to store a structure during operation cxecution) which is rcturned by the

function is in fact the same memory block as an input of the function, i.¢., asserting the output

~11 -

WO 2017/015955 PCT/CN2015/085581

fist is the same object as the input one.

16693 Then, in this example, in case of a mutable object, in order to evaluate the score of the
test, the predefined assertion requirement may define: asserting the reference of a returned object,

and asserting the content of a mutable object provided as first parameter.

[6694] That is, when source code uses a memory block (or object), the memory block {or
object) should be asserted. 1If a memory block is provided as an input of a function, then whether

the memory block ts modified by the function or not should be asserted.

186985] In case of a structured operand (like an object), the predefined assertion requirement
may define: it a compare function is used (like cquals() in Java), then considering the structured
operand as being fully checked, whatever the implementation of this method (it should tested on
its own separately); or if a compare function is not used, ecach internal field should be accessed

via getters {(or publicly) in order to check the content of the stractured operand.

10096} According to an example of the present disclosure, in order to establish a scoring, a
penalty strategy may be applied. For example, for cach detected lack or failure in testing, a pre-
defined "malus" may be deduced from the maximum score {e.g., 100%). For example, for a
String structure, “checking only its length” could have a malus value of 75%, and “checking its

countent without case support” would have a malus value of 20%.

18697} Fig.9 is a hicrarchical structure of the AUT based on FIG. 2, which is used to further

illustrate the method in Fig.§,

16698} As shown in Fig9, children nodes (inputs, outputs, or operations) of a parent node
{an input, an output, or an operation) may be equally weighted, for example, on the percentage of
testing score aspect, when the assertion strategy in the test code associated with the subscctions

may be evaluated based on a predefined requirement to obtain the first measurement result.

16699 As can be seen from Fig.9, the AUT includes three interface structares input 1, input
2, and output 1 on a same level. Then, each of them may be assigned a weight of 33% which 1s
obtained by dividing 100% by 3 and then rounding a divided result. Input T has two operations
31, and 32, and cach of the operations may be assigned a weight of 50%. For Operation 31, since
it has three 1/0s, then each 1/ may be assigned a weight of 33%. For operation 31, since it has
two I/Os, then cach /O may be assigned a weight of 50%. Input 2 has an operation 21, and then
the operation 21 has a weight of 100%. The output 1 has three operations, i.¢., operation 11,
operation 12, and operation 13, and then cach of the operation has a weight of 33%. For

operation 11, it has three I/Os which has an equal weight of 33%. Operation 12 has two V0s

~12 -

WO 2017/015955 PCT/CN2015/085581
each of which has an equal weight of 50%. Operation 13 has two VVOs each of which has an

equal weight of 50%.

100180] Assume that in the mterface strocture input 1, according to the predefined assertion
requirements, the assertion strategy defined in the test code for input 1 does not meet the
predefined assertion requircments, then testing of both output 313 and output 322 fail. Then, a
measurement result of mput 1 will be (33%F100%+33%*100%+()*50%
+H{50%* 100%+0)*50%=33%+25%=58%. Since input 1 occupies 33% of the interface structures
of the AUT, then an actual test result for input 1 in the AUT will be (58%%33%)=19.14%, which
may be rounded to be 19%. Assume that the values of test coverage of input 2 and output 1 are
100% respectively. Then a test result for the AUT will be (19%+33%+33%)=85% at the

application level.

100161} In this way, the method of application testing may gencraie a more aggressive
reporting of the quality of testing, and it may provide more accurate global evaluation as the size

of cach function (LOC) is used to weight a final result of testing.

106162] The method shown in Fig.8 may be performed together with the method shown in
Fig.7, i.e., combining with the code coverage metric. In this case, an equal percentage of weight
may be assigned to children nodes of a parent node based on the nurber of the children nodes
when third measurement results are obtained for the interface structures. Then the third

measurement results of the interface structures may be aggregated.

[06103] The methods in the examples of the present disclosure may be integrated as a part of
continuous integration {CI) as a new failure criterion (like the code coverage} if an overall
scoring of a measurement result may be too low. The Cl is a tool used to execute all the tests of
an application each time the code is modified. In general, such a tool provides a lot of metrics in

order to determine if the application is ready for delivery.

[00104] An apparatus for application testing may include: a source control management
(SCM) machine to store the source code of the overall application and test code; an target
execution machine to practically execute the test code in an environment compatible with the
execution requirements of the application; a quality analysis machine to generate metrics and
quality reports by analyzing the souwrce code of the application and the test code; and a
continuous integration (CI) machine to retrieve the source code of the application and its related
test code from the SCM machine, trigger a quality analysis, prepare the testing binaries for a
target execution environment, retrieve all the results of the tests, and present an overall report of

each integration cycle.

- 13-

WO 2017/015955 PCT/CN2015/085581
1061658] Fig. 10 is an apparatus for application testing according to an example of the present
disclosure, The apparatus may be implemented on a computer, and includes a non-transitory
storage medium 11 and a processor 12 connected with the storage medium 11 via an internal bus
13. The non-transitory storage medium 11 may store machine readable instructions 14 that

executable by the processor 12.

[861686] The machine readable instructions 14 may include: an exiraction instruction 15, a

separation instruction 16, a primary test instruction 17, and a first evaluation instruction 18.

166107} The extraction instruction 15 may be to extract an interface structure from source

code of an application under test (AUT).

100108} The scparation instruction 16 may be to scparate the interface structure into

subsections.

[6018%] The primary test instruction 17 may be to perform a primary test for the AUT by

using test code to execute the subsections

(00110} The first evaluation instruction 18 may be to evaluate an assertion sirategy in the test
code based on a predefined assertion reguirement to obtain a first measurement result of the
AUT. The assertion strategy may be to assert an execution result of the test code executing the

subsections.

166181} The machine readable instructions 14 may further inchude a second evaluation
instruction 19 (As shown in Fig.11) which may be to evaluate execution of the subsections to
obtain a sccond measurement result of the AUT based on the primary test, and a gencration
instruction to generate a third measurement result of the AUT by weighting the first

measurement result using the second measurement result,

106112} The first cvaluation instruction 18 may be further to determine a type of an operation
contained in a subsection of the interface structure, in which the subsection may be an operation
subsection; determine whether the asscrtion strategy mects an assertion requirernent predefined
for the type of the operation or not; and obiain the first measurement result based on a

determination result.

[06113] A predefined valne may be subtracted from the first measurement resulf in response
to determining that an assertion predefined in the assertion reguirement is not performed for the

operation by the assertion strategy correspondingly.

~- 14 -

WO 2017/0159355 PCT/CN2015/085581
186134} The first evaluation instruction 18 may be further to determine that a subsection of
the interface structure is a date; determine whether a vear value, a month value, and a day value
in the subsection are asserted by the assertion strategy or not; and obtain the first measurement

result based on a determination result. The subsection may be an output subsection

100115} The first evaluation instruction 18 may be further to determine that a subsection of
the interface structure 1s a hist; determine whether a size of the list and each element in the list are
verified by the assertion strategy or not; and obtain the first measurement result based on a

determination result. The subsection may be an output subsection.

[66186] The first evaluation instruction 18 may be further to determine that a subsection of
the interface structure contains a mutable object; determine whether a reference of a returned
object of the mutable object is asserted or not by the assertion strategy to get a first determination
result; determine whether content of the mutable object is asserted or not by the assertion
strategy to obtain a second determination result; and obtain the first measurement result based on
the first determination result and the second determination result. The subsection may be an

operation subsection.

{00117} The first evaluation instruction 18 may be further to: in response to determining that
the mutable object is a structured operand, determine that the content of the mutable object is
asserted in case that a compare function is executed for the structured operand; and determine
whether each internal field of the structured operand is accessed via a getter to get the second

determination result in case that no compare function is executed for the structared operand.

{66118} The machine readable instructions 14 may be executable by the processor to: separate
the AUT into interface structurcs, scparate cach of the interface structures into subsections, and
separate cach of the subsections into interface umits, to form a tree structure for the AUT in
which the interface structures, the subsections, and the interface units may be nodes of the tree
separated trom the interface structure, and a subsection may be a parent node of interface units
separated from the subsection; obtain first nodes having a same parent node in the tree structure,
and divide 100 percent according to the number of the first nodes to get a weighting percentage
of cach of the first nodes; apply the weighting percentage of a first node to obtain a first
measurement result for the parent node of the first node; and aggregate first measurement results

of the nodes of the tree structure to get a final measurement result for the AUT.

-~ 15 -

WO 2017/015955 PCT/CN2015/085581
100119} The non-transitory storage device may be a magnetic disk, an optical disk, a read-

only memory (ROM), a random access memory (RAM), etc.

100120} According to the examples of the present disclosure, by extracting the interface

structures from the AUT and testing the interface structures, workload of a user may be reduced.

{60121} It should be noted that, in some implementations, the blocks in the flowcharts may be
performed out of the order illustrated, depending on the functions of the blocks. For example,

two blocks shown in succession may be executed concurrently.

106122] What is described in the foregoing are only examples of the present disclosure, and
should not be construed as Hmitations to the present disclosure. Any changes, equivalent
replacements, modifications made without departing from the scope and spirit of the present

disclosure are intended to be included within the protecting scope of the present disclosure.

- 16 -

WO 2017/015955 PCT/CN2015/085581

CLAIMS

WHAT IS CLAIMED IS:

I. A machine implemented method for application testing, comprising:

extracting an interface structure from source code of an application under test (AUT);

separating the interface structure into subsections;

performing a primary test for the AUT by using test code to execute the subsections; and

evaluating an assertion strategy in the iest code based on a predefined assertion
requirement to obtain a first measurement result of the AUT, wherein the
assertion strategy is to assert an execution result of the test code executing the

subsections.

2. The method of claim 1, further comprising:

evaluating execution of the subsections to obtain a second measurement result of the
AUT based on the primary test; and

generating a third measurement result of the AUT by weighting the first measurement

result using the second measurement result.

3. The method of claim 1, wherein evaluating the assertion strategy in the test code based
on the predefined assertion requirement to obtain the first reasurement result of the AUT
comprises:

determining a type of an operation contained in a subscction of the interface structure,

wherein the subsection is an operation subsection;

determining whether the assertion strategy rmocts an asscrtion requirement predefined for

the type of the operation or not; and

obtaining the first measurement result based on a determination result,

4. The method of claim 3, wherein obtaining the {irst measurcment result of the AUT

based on the determination result comprises:
subtracting a predefined value from the first measurement result in response to
determining that an assertion predefined in the assertion requirement is not

performed for the operation by the assertion strategy correspondingly.

5. The method of claim 1, wherein evaluating the assertion strategy in the test code based
on the predefined assertion requirement to obtain the first measurement result of the AUT
COMPTises:

determining that a subsection of the interface structure is a date, wherein the subsection is

an output subsection;

17 -

WO 2017/015955 PCT/CN2015/085581
determining whether a year value, a month value, and a day value in the subsection are
asserted by the assertion strategy or not; and

obtaining the first measurement result based on a determination result.

6. The method of claim 1, wherein evaluating the assertion strategy in the test code based
on the predefined assertion requirement to obtain the first measurement result of the AUT
COMPIiSes!

determining that a subsection of the interface structure 1s a list, wherein the subscction is

an output subsection;

determining whether a size of the list and cach clement in the list are verified by the

assertion strategy or not; and

obtaining the first measurement result based on a determination result.

7. The method of claim 1, wherein evaluating the assertion strategy in the test code based
on the predefined assertion requirement to obtain the first measurement result of the AUT
COMPTiSCs:

determining that a subsection of the interface structure comprises a mutable object,

wherein the subsection is an operation subsection;

determining whether a reference of a returned object of the mutable object is asserted or

not by the assertion strategy to get a first determination result;

determining whether content of the mutable object 1s asserted or not by the assertion

strategy to obtain a second determination result; and

obtaining the first measurement result based on the first determination result and the

second determination result.

8. The method of claim 7, wherein determining whether the content of the mutable object
is asserted or not by the assertion strategy to obtain the second determination result comprises:

in response to determining that the mutable object is a structured operand, determining
that the content of the mutable object 1s asserted in case that a compare function is
executed for the structured operand; and

determining whether cach internal field of the structured operand is accessed via a getter
to get the second determination result in case that no compare function is
executed for the structured operand.

9. The method of claim 1, further comprises:

separating the AUT into interface structures, separating each of the interface structures
into subsections, and separating cach of the subsections into interface units, to

form a tree structure for the AUT, wherein the interface siructures, the subsections,

- 1R -

WO 2017/015955 PCT/CN2015/085581

and the interface units are nodes of the tree structure in different levels, an
mterface structure is a parent node of subsections separated from the interface
structure, and a subsection is a parent node of interface units separated from the
subsection;

obtaining first nodes having a same parent node in the tree structure, and dividing 100
percent according to the number of the first nodes to get a weighting percentage
of each of the first nodes;

applying the weighting percentage of a first node to obtain a first measurement result for
the parent node of the first node; and

aggregating first measurement results of the nodes of the tree structure to get a final

measurement result for the AUT.

10. An apparatus for application testing, comprising:

a processor; and

a non-transitory storage mediom to store machine readable instructions that when
executed by the processor cause the processor to:

extract an interface structure from source code of an application under test (AUT);

separate the interface structure into subsections;

perform a primary test for the AUT by using test code to execute the subsections; and

evaluate an assertion strategy in the test code based on a predefined assertion requirement
to obtain a first measurement result of the AUT, wherein the assertion strategy is

to assert an execution result of the test code executing the subsections,

11. The apparatus of claim 10, wherein the machine readable instructions when executed
by the processor cause the processor to:
evaluate execution of the subsections to obtain a second measurement result of the AUT
based on the primary test; and
generate a third measurement result of the AUT by weighting the first measurement

result using the second measurement result.

12. The apparatus of claim 10, wherein the machine readable instructions when exccuted

by the processor cause the processor to:
separate the AUT into interface structures, separate cach of the interface structures into
sabsections, and separate each of the sabsections into interface units, to form a
tree structure for the AUT, wherein the interface structures, the subsections, and

the interface units are nodes of the tree structure in different levels, an inierface

- 19 -

WO 2017/015955 PCT/CN2015/085581
structure is a parent node of subsections separated from the interface structure,
and a subscction is a parent node of interface units separated from the subscction;

obtain first nodes having a same parent node in the tree structure, and divide 100 percent
according to the number of the first nodes to get a weighting percentage of cach
of the first nodes;

apply the weighting percentage of a first node to obtain a first measurement result for the
parent node of the first node; and

aggregate first measurement results of the nodes of the tree structure to get a final

measurement result for the AUT.

13, A non-transitory machine rcadable storage wmedium storing machine readable
instructions executable by a processor to:
extract an interface structare from source code of an application ander test (AUT);
separate the interface structure into subsections;
perform a primary test for the AUT by using test code to execute the subsections; and
evaluate an assertion strategy in the test code based on a predefined assertion requirement
to obtain a first measurement result of the AUT, wherein the assertion strategy is

to assert an execution result of the test code executing the subsections.

14. The apparatus of claim 13, wherein the machine readable instructions are executable
by the processor to:
evaluate execution of the subsections to obtain a second measurement result of the AUT
based on the primary test; and
generate a third measurement result of the AUT by weighting the first measurement

result using the second measurement result,

15. The non-transitory machine readable storage mediom of claim 13, wherein the
machine readable instructions are executable by the processor to:
scparate the AUT into interface structures, scparate cach of the interface structures into
subsections, and separate each of the subsections into interface units, to form a
tree structure for the AUT, wherein the interface siructures, the subsections, and
the interface units are nodes of the tree structure in different levels, an interface
structure is a parent node of subsections separated from the interface structure,
and a subsection is a parent node of interface units separated from the subsection;
obtain first nodes having a same parent node in the tree structure, and divide 100 percent
according to the number of the first nodes to get a weighting percentage of cach

of the first nodes;

220 -

WO 2017/015955 PCT/CN2015/085581
apply the weighting percentage of a first node to obtain a first measurement result for the
parent node of the first node; and
aggregate first measurement results of the nodes of the tree structure to get a final

measurement resull for the AUT.

WO 2017/015955 PCT/CN2015/085581

/10

Extract an interface structure {rom source | —-
code of an application under test (AUT)

¥

Separate the mterface structure into o
subsections

v

Perform a primary test for the AUT by | —
using test code (o execuie the subsections

4

Evaluate an assertion strategy in the test
code based on a predefined —
assertion requirement to obtain a first
measurement result of the AUT, in which
the assertion strategy is to assert a result of
the test code executing the subsections

104

FIG. 1

WO 2017/015955 PCT/CN2015/085581

2/10

Application Inputl | Input2 Outputl

Operation 11 | foput 111 Input 112 Output 113

Operation 12 | Input 121 Qutput 122

Operation 13 | Input 131 | Input 132

Operation 21 | Input 211

Operation 31 | Input 311 | Input 312 Qutput 313

i Operation 32 | Input 321 | Input 322

FIG.2

WO 2017/015955 PCT/CN2015/085581

3/10

Extract an interface structure from source ——— 101

code of an application under test (AUT)

\

Separate the interface structure into —
subsections

¥

Perform a primary test for the AUT by | —
asing test code to execute the subsections

Determine a type of an operation
contained in a subsection of the
interface structure, in which the first
subsection is an operation subsection

-~ -
\

E

B

E

|

|

! Determine whether the assertion
| strategy meets an asscrtion

| requirement predefined for the type of
E

|

E

|

|

E

|

302

_/

kY
\

the operation or not

Obtain the first measurement result | —
based on a determination result

WO 2017/015955 PCT/CN2015/085581

4/10

Extract an interface structure from source ——— 101

code of an application under test (AUT)

\

Separate the interface structure into —
subsections

¥

Perform a primary test for the AUT by | —
asing test code to execute the subsections

Determine that a subsection of the
interface structure is a date, in which
the subsection is an output subsection

Tm
R
i
)

i

B

E

B

i

| Determine whether a year value, a
| month value, and a day valuc in the |
! subsection are asserted by the
E

|

E

|

|

|

|

4472

_/

i

assertion strategy or not

Obtain the first measurement result | —
based on a determination result

F1G.4

WO 2017/015955 PCT/CN2015/085581

5/10

Fxtract an interface structure from source | ——
code of an application under test (AUT)

Separate the interface structure into L
subsections ‘

¥

103

\

Perform a primary test for the AUT by
using test code to execute the subsections

B., mmmmmmm e T T s omm "]7 B 50 }

Determine that a subsection of the 104

mterface structure is a list, in which
the subsection is an output subsection

i

b

i

|

] i
Determine whether a size of the list !
|

i

!

i

!

i

|

|

|

B

|

B

| and cach clement in the listare | _ L
| | verified by the assertion strategy or

E not
|

E

|

|

E

E

%

h
el
(S

Obtain the first measurement result | —— -
based on a determination result

F1G.5

WO 2017/015955

based on the first determination result]”
and the second determination result

PCT/CN2015/085581
6/10
Extract an mierface structure from source | 101
code of an application under test (AUT)
arr : e clrebues § L 102
Separate the interface structure into —
subsections
v
dorf; : cthe ATTT 103
Perform a primary test for the AUT by | —
using test code to execute the subsections
el slludiuuihuiudiui JN 2|
Determine that a subsection of the | |
interface structure contains a mutable| |—— 164
object, in which the subsectionisan | |
operation subsection o
I |
Determne whether a reference of a |
returned object of the mutable object, | 602
is asserted or not by the assertion |
strategy to obtain a first determination |
result i
. v |
Determine whether content of the | 603
mutable object is asserted or not by /ME/ 2
the assertion strategy to obtain a |
second determination result |
v s
Obtain the first measurement result | 604

WO 2017/015955

7/10

Extract an interface structure from source -

code of an apphication under test (AUT)

¥

Separate the interface structure into | —

subseciions

¥

Perform a primary test for the AUT by
using test code to execute the subsections

Evaluate an assertion strategy in the test
code based on a predefined assertion
requarement Lo obtain a first measarement
result of the AUT, in which the assertion
strategy is to assert a result of the test code
executing the subsections

Fwvaluate execution of the subsections to
obtain a second measurement result of the
AUT based on the primary test

4

Generate a third measurement result for the
interface structure by weighting the first
measurement result using the second
measurement result

PCT/CN2015/085581

701

702

703

WO 2017/015955 PCT/CN2015/085581

8/10

Separate the AUT into interface structares, separate each of the
interface structures into subsections, and separate each of the X
subsections into interface units, to form a tree structure forthe | —— 801

AUT, in which the interface structures, the subsections, and the
interface units are nodes of the tree structure in different levels,
an interface structure is a parent node of subsections separated
from the interface structure, and a subsection is a parent node of

interface units separated from the subsection

Obtain first nodes having a same parent node in the tree %02
structure, and divide 100 percent according to the number of the)
first nodes to get a weighting percentage of each of the first

nodes
Apply the weighting percentage of a first node to obtain a first | . 803
measurement result for the parent node
¥
o R04

Aggregate first measurement results of the nodes of the tree
structare to get a final measurement result for the AUT

FIG.8

WO 2017/015955 PCT/CN2015/085581
9/10
33% 33% 33%
Application | Inputt | Input2 | Output]
33% 33% 33%
339 Operation 11 | Input 111 | Input 112 {Output 113
50% 50%
33% Operation 12 | Input 121 | Output 122
50% 50%
33% Operation 13 | Input 131 | Input 132
106 %
100 % Operation 21 | Input 211
33% 33% 33%
50% Operation 31 | Input 311 | Input 312 |Cutput 313
50% 50%
50% Operation 32 | Input 321 |Output 322

FIG.9

WO 2017/015955 PCT/CN2015/085581

10/10
o e
- Processor | 12
[E & ,,,,,,,,,,,,,,,,
v
Internal Bus 13 /
L /// ~— i}
g Memory — 14 E
| § 15 16 Instructions 517
: i | Extraction Separation ﬁPrimary Test /‘/? E
. Instruction Instruction | Instruction (1
a § 18 |
g ¢ | First Evaluation ; E
! Instruction
bo- Pl
E |
FIG.10
S——
- Processor
1 R
Internal Bus 13
1 11
; Memory 14 i
E § 15 16 Instructions Ei"/’
: y | Extraction Separation Primary Test/ ?g
. Instruction | Instruction Instruction L
| i 18 19 b
: y | First Evaluation %Seco‘nd Evaiuation% é E
- Instruction Instruction | |
. | |
y T e |

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2015/085581

A, CLASSIFICATION OF SUBJECT MATTER

GOG6F 11/36(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT,CNKLEPODOC,WPLIEEE:application, program,

AUT, test+, extract+, interface, structure, source code,

separat+, split+, evaluat+, assert+, weight+, percent, tree, subsection?, node

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2012254665 Al (INFOSYS TECHNOLOGIES LTD.) 04 October 2012 (2012-10-04) 1-8, 10-11, 13-14
paragraphs [0053]-[0055], claims 1, 8-9
A US 2012254665 Al (INFOSYS TECHNOLOGIES LTD.) 04 October 2012 (2012-10-04) 9, 12, 15
the whole document
Y CN 103136095 A (ALIBABA GROUP HOLDING LTD.) 05 June 2013 (2013-06-05) 1-8, 10-11, 13-14
paragraphs [0057]-[0065], claims 1-2
A CN 103136095 A (ALIBABA GROUP HOLDING LTD.) 05 June 2013 (2013-06-05) 9, 12, 15
the whole document
A CN 104572463 A (GUANGZHOU KUGOU COMPUTER TECHNOLOGY CO., LTD.) 29 1-15
April 2015 (2015-04-29)
the whole document

I:l Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

) document defining the general state of the art which is not considered
to be of particular relevance

“gr earlier application or patent but published on or after the international
filing date

“ document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“«o” document referring to an oral disclosure, use, exhibition or other
means

«p document published prior to the international filing date but later than

the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

“

“x»

“y»

“ &

Date of the actual completion of the international search

Date of mailing of the international search report

05 April 2016 27 April 2016
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA LILDuo

6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing
100088, China

Facsimile No. (86-10)62019451

Telephone No. (86-10)62414054

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/CN2015/085581
. Patf:nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
[N 2012254665 Al 04 October 2012 [N 8448146 B2 21 May 2013
----- CN 103136095 A OSJune 2013 None
""" CN 104572463 A 20 April 2015 None.

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report

