Title: THE NASAL BONE CONDUCTION WIRELESS COMMUNICATION TRANSMISSION EQUIPMENT

Abstract: The nasal bone conduction wireless communication transmission equipment includes: bone conduction input equipment, having the first oscillator, by which convert the voice to be transmitted into the electric wave; wireless communication transmission equipment for electric connecting with the bone conduction input equipment to receive the electric wave signal and transmit it outward; and/or to receive the outward signal; bone conduction output equipment, having the second oscillator, by which receive the outward electric wave signal transmitted by wireless communication and convert the electric wave signal into oscillatory wave, and make the oscillatory wave be conducted to the ear by the nasal bone; and loading equipment for load the above equipment; is character by: the loading equipment is placed on the noise, for making the bone conduction output equipment and bone conduction input equipment which are loaded by the loading equipment be contacted tightly with the nasal bone, and transmitting the oscillatory wave conducted by the bone conduction output equipment to the ear by the nasal bone after resonance in nasal cavity; and the bone conduction input equipment convert the sound wave produced by the resonance in nasal cavity into the electric wave, and transmit to the wireless communication transmission equipment to transmit.

(57) 摘要:

本发明鼻骨传导无线通讯传输装置，包含：骨传导输入装置，具有第一振荡器，用以将待传出之声音转成电波；无线通讯传输装置，电气连接该骨传导输入装置以接收该电波讯号并向外传输，及/或接收外部电波讯号；骨传导输出装置，具有第二振荡器，用以接收该无线通讯所传送之外部电波讯号并将该电波讯号转成振动波，并使该振动波藉骨传导传至耳内；及载具装置，用以承载上述各装置；其特征在，该载具为设置于鼻部之载具，用以使其所承载之骨传导输出装置和骨传导输入装置，与鼻部骨肤紧密接触，且将该骨传导输出装置之振动波，经由在鼻腔内共鸣后再藉由鼻骨传导传至耳内；及该骨传导输入装置将鼻腔共鸣所产生的声波转成电波，再传导至该无线通讯传输装置发讯。
鼻骨传导无线通讯传输装置

技术领域

本发明系有关于一种鼻骨传导无线通讯传输装置，尤指一种藉由振荡并配合一无线通讯装置发话及接听之鼻骨传导无线通讯传输装置。

背景技术

声波藉由空气传导，但是一般藉由空气将声音导入耳内的无线耳机或助听器往往无法消除外界背景声源，因此利用音传导或声传导的振荡器亦运而生。

中国台湾发明专利公告第463517号揭露一种使用骨骼传导型扩音器之传受话装置，其系具有骨传导扩音器部、麦克风部及驱动电路收纳部，并可连接于电话机或无线电收发机上，而上述骨传导扩音器部，系构成为于将上述麦克风部放置于嘴边时，以可贴接于脸上任何位置而易则成。但是，贴接于脸上任何位置的配置并必具有骨骼传导之效果。

第一种习知于颈部之一般接触式间接声波传导装置，虽可消除部份背景声音，但因其为喉部接触，所以传输过去的音质混浊不清，同时夹置于颈部易滑动，十分不方便也不美观，而该习知置于颈部之一般接触式间接骨传导装置之音频讯号相较于一般市话通话中之音频讯号较为衰减不清晰。

另一种习知于眼镜型助听器，将振荡器放置于眼镜框架之耳后尾端以接收声音，虽能消除背景声音，但只能解决听的问题，无法发声，而且由于长期使用，眼镜脚架会松动而无法与耳骨贴合，使助听的效果大为降低；近年手机等行动机具普及，使用频繁，无线蓝牙免持通讯装置大为流行，同时解决了使用行动机具时的听及说的问题，但是，外界背景声音无法免除，夹耳式配戴久了不舒适，重型眼镜脚架不甚美观，耳后容易流汗使助听器丧失功能，且于运动时较易脱落，为其缺点，同时，此类骨传导式眼镜型助听器，如要使用到左右两个眼镜脚架，则无法共享组件如电池、麦克风等等，这使得使用者必须付出近双倍费用购买，不符经济效益。

发明内容

本发明之目的在于提供一种藉由鼻骨传导之振荡器并配合一无线通讯传输装置发
话及接听之鼻骨传导无线通讯传输装置。

本发明之另一目的在于提供一种藉由一载具装置与无线通讯传输装置发话及接听端连接之鼻骨传导无线通讯传输装置。

本发明之另一目的在于提供一种可藉由一磁化器配合一无线通讯传输装置以形成一具有助听功能之鼻骨传导无线通讯传输装置。

本发明之另一目的在于提供一种可藉由一传输装置配合一无线通讯传输装置以形成一具有对讲机功能之鼻骨传导无线通讯传输装置。

本发明之又一目的在于提供可藉由一振荡器并配合一无线通讯传输装置以形成一具有免持听筒功能之鼻骨传导无线通讯传输装置。

本发明之又一目的在于提供一种具有助听、对讲机、耳机及免持听筒功能之多功能的鼻骨传导无线通讯传输装置。

本发明提供一种鼻骨传导无线通讯传输装置，包含：

一骨传导输入装置，具有一第一振荡器，用以将待传出之声音转成电波；
一无线通讯传输装置，电气连接该骨传导输入声音装置以接收该电波讯号并向外传输，及/或接收外部电波讯号；

一骨传导输出装置，具有一第二振荡器，用以接收该无线通讯所传送之外部电波讯号并转换该电波讯号转成振荡波，并使该振荡波藉骨传导传至耳内；及

一载具装置，用以承载上述各装置；

其特征在于，该载具装置为致放于鼻部之载具，用以使该所承载之骨传导输出装置和骨传导输入装置，与鼻部骨膜紧密接触，且将该骨传导输出之振荡波，经由在鼻腔内共鸣后再藉鼻骨传导传至耳内，及将骨传导输入装置将鼻腔共鸣所产生的声音转成电波，再传导至该无线通讯传输装置发讯。

上述该骨传导输入装置为一使用者说话装置。

上述该骨传导输出装置为一使用者收音装置。

上述该载具装置为眼镜、潜水镜、风镜、护目镜、鼻罩、口罩、面罩、头罩、贴片、鼻夹，或可使该装置附于鼻部骨膜者均可。

上述该无线通讯传输装置具有讯号收发单元、讯号处理单元、发话器、功能选择器、音源切换器及音量调整器。

上述该无线通讯传输装置进一步设有一发话器，该发话器系用以收集声音，并将所收集之声音讯号传送至该骨传导输出声音装置，俾使本发明装置形成具有助听器功
能。

上述该无线通讯传输装置的讯号收发单元，系用以处理无线电讯号的收发，且该
讯号收发单元具有天线、对频模块、射频讯号接收模块、射频讯号发射模块、射频讯
号放大器及电子滤波器。

上述该无线通讯传输装置的讯号处理单元，系用以处理讯号，且该讯号处理单元
具有讯号处理器、预设参数值储存器、参数修改缓存器、功能模块及回授消除处理模
块。

上述该预设参数储存器，系用以储存无线通讯传输装置内各项预设参数。

上述该回授消除处理模块，系用以降低无线通讯传输装置回授声音。

上述该功能选择器，系用以切换各功能模块。

上述该音量调整器，系用以调整音量大小。

上述该无线通讯传输装置上包含一音源切换器，系用以切换发话器或骨传导输入
声音装置的声音来源。

此外，本发明提供一种鼻骨传导无线通讯传输系统，包含：

一传输装置；及

一鼻骨传导无线通讯传输装置，其系与该传输装置无线连接，该鼻骨传导无线通
讯传输装置包含：

一骨传导输入装置，具有一第一振荡器，用以将待传出之声音转成电波；

一无线通讯传输装置，电气连接该骨传导输入装置以接收该电波讯号并向外
传输，及/或接收外部电波讯号；

一骨传导输出装置，具有一第二振荡器，用以接收该无线通讯所传送之外部
电波讯号并将该电波讯号转成振荡波，并使该振荡波藉鼻骨传导传至耳内；及

一载具装置，用以承载上述各装置；

其特征在于，该载具装置为置放于鼻部之载具，用以使其所承载之骨传导输出
装置和骨传导输入装置，与鼻骨骨肤紧密接触，且将该骨传导输出装置之振荡波，
经由在鼻部内共鸣后再藉鼻骨传导传至耳内；及将骨传导输入装置将鼻腔共鸣所产
生之声波转成电波，再传导至该无线通讯传输装置发讯。

上述该无线通讯传输装置与一传输装置建立无线连接，该传输装置为具有连结、
传输及对频等功能之无线通讯传输产品。

上述该无线通讯传输装置与传输装置之间系根据蓝牙无线通讯协议建立无线连
接。

上述该传输装置由一无线电通讯器介接一讯号收发器所组成，该无线电通讯器藉由讯号收发器而与无线电通讯传输装置建立无线电连接。

上述该无线电通讯传输装置根据蓝牙无线电通讯协议或微波接收或传输无线讯号。

上述该无线电通讯器为一手机或一 PDA 或类似之无线电通讯传输产品。

上述该讯号收发器具有讯号处理器、射频讯号接收模块、射频讯号发射模块及对频模块，并可进一步包含无线电调器。

上述该无线电调器系方便使用者以无线电方式调整置于无线通讯传输装置内之参数修改、功能模块及音量大小等功能。

上述该无线电调器可置于传输装置内，亦可单独建置以 RF 射频等无线操作方式操作该参数修改、功能模块及音量大小等功能。

上述无线通讯器与讯号收发器之间由一连接器介接，该连接器用以电气连接该无线通讯器及讯号收发器，且该连接器可设计成耳机插孔、PCMCIA插卡及USB埠等不同用途之型式。

上述该无线通讯传输装置配合传输装置之 MP3 播放器、随身听、计算机、收录音机、音响及电视等音讯功能而无线连接，俾使本发明装置形成具有无线收听之耳机功能。

上述该传输装置的讯号收发器之对频模块与该无线通讯传输装置的讯号收发单元之对频模块调对频率后，俾使本发明装置形成一对讲机之功能。

为提升骨传导声音之效率及装置佩带方便的改良，本发明另提供一种可嵌入位于鼻部的载具（如眼镜）之鼻骨传导助听装置，或可夹（贴）附在于鼻部的载具（如眼镜）之鼻骨传导助听装置，或者直接夹（贴）于鼻部的鼻骨传导助听装置。

本发明之目的在于提供一种藉由鼻骨振荡器将外界声音传导至耳内之鼻骨传导助听装置。

本发明之鼻骨传导助听装置，包含：

一调控装置，系接收及处理由外界所传送之声音讯号；

一骨肤传导振荡装置，具有一振荡器，用以接收经该调控装置处理之信号；及

一载具装置，以承载该调控装置和该骨肤传导振荡装置；

其特征在于，该载具装置为置放于鼻部的载具，并使该骨肤传导振荡装置紧密接触鼻骨肤部，而该振荡器用以将该骨肤传导振荡装置所接收电波转成振荡波传导至
鼻部，俾使该振荡波透过鼻部骨膜传导至耳内。

上述该载具装置可为眼镜、潜水镜、风镜、护目镜、鼻罩、贴片及防护面具等任何与鼻部骨膜相贴之载具。

上述该调控装置包含电源供应装置、警讯器、话器器、电波扩大器、频率控制处理模块、讯号处理模块、回授消除处理模块。

上述该话器器，用以收集外部声音。

上述该电波扩大器装置，用以增强该话器器之讯号强度。

上述该频率控制处理模块，用以将话器器与扩大器之讯号选频。

上述该讯号处理器，用以将选频之讯号，再处理让输出的声音，更符合使用者听觉需求。

上述该回授消除处理模块，用以降低或消除助听装置之回授声音。

上述该调控装置进一步包含电源供应装置及音量调整器。

上述该音量调整器，用以调整音量大小。

上述该电源供应装置，用以提供各项设备运作之电源。

上述该电源供应装置为一电池或其它可供应电源之相关产品。

附图说明

图 1 是显示本发明鼻骨传导无线通讯传输系统之方块图。

图 2 是显示本发明鼻骨传导无线通讯传输系统实验之音频讯号图。

图 3 是显示市话通话中之音频讯号图。

图 4 是显示习知置于颈部之一般接触式间接传导麦克风之音频讯号图。

图 5 是本发明鼻骨传导无线通讯传输装置以嵌入眼镜方式之载具应用图。

图 6 是本发明鼻骨传导无线通讯传输装置以活动夹贴方式用于眼镜之载具应用图。

图 7 是本发明鼻骨传导助听装置之方块图。

图 8 是本发明鼻骨传导助听装置以活动夹贴方式用于眼镜之载具立体图。

图 9 是本发明鼻骨传导助听装置以嵌入眼镜方式之载具立体图。

[主要组件符号说明]

1 --- 骨传导输出装置
<table>
<thead>
<tr>
<th>布局</th>
<th>功能描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>骨传导输入装置</td>
</tr>
<tr>
<td>3</td>
<td>无线通讯传输装置</td>
</tr>
<tr>
<td>5</td>
<td>传输装置</td>
</tr>
<tr>
<td>6</td>
<td>眼镜</td>
</tr>
<tr>
<td>7</td>
<td>嵌入式主体外壳</td>
</tr>
<tr>
<td>8</td>
<td>活动式主体外壳</td>
</tr>
<tr>
<td>9</td>
<td>夹贴装置</td>
</tr>
<tr>
<td>10</td>
<td>振荡器</td>
</tr>
<tr>
<td></td>
<td>振荡器</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>讯号收发单元</td>
</tr>
<tr>
<td>32</td>
<td>音量调整器</td>
</tr>
<tr>
<td>33</td>
<td>发话器</td>
</tr>
<tr>
<td>34</td>
<td>音源切换器</td>
</tr>
<tr>
<td>35</td>
<td>功能选择器</td>
</tr>
<tr>
<td>36</td>
<td>讯号处理器</td>
</tr>
<tr>
<td>37</td>
<td>预设参数值储存器</td>
</tr>
<tr>
<td>38</td>
<td>参数修改缓存器</td>
</tr>
<tr>
<td>39</td>
<td>回授消除处理模块</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>44</td>
</tr>
<tr>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>49</td>
</tr>
<tr>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>
51 --- 讯号收发器
52 --- 连接器
53 --- 天线
54 --- 讯号处理器
55 --- 射频讯号接收模块
56 --- 射频讯号发射模块
57 --- 对频模块
58 --- 天线
60 --- 镜框连结架
61 --- 镜框鼻垫支架
100 --- 鼻骨传导通讯传输装置
200 --- 鼻骨传导助听装置
101 --- 调控装置
102 --- 骨肤传导振荡装置
103 --- 眼镜
104 --- 嵌入式主体外壳
105 --- 讯号传输线
106 --- 活动式主体外壳
107 --- 夹贴装置
110 --- 电源供应装置
111 --- 发话器
112 --- 电波扩大器
113 --- 频率控制处理模块
114 --- 警讯器
115 --- 讯号处理模块
116 --- 回授消除处理模块
117 --- 音量调整器
120 --- 振荡器
130 --- 镜框连结架
131 --- 镜框鼻垫支架
具体实施方式

请参考图 1，系显示本发明鼻骨传导无线通讯传输系统之方块图。本发明鼻骨传导无线通讯传输装置 100，包含：一骨传导输出装置 1，具有：一振荡器 10；一骨传导输入装置 2，具有：一振荡器 20；一无线通讯传输装置 3，该无线通讯传输装置 3 包含：讯号处理单元 30、讯号收发单元 31、音量调节器 32、发话器 33、音源切换器 34、功能选择器 35 及天线 35；以及一载具装置（请参考图 5 及图 6），承载上述各装置并置于鼻部，其中该无线通讯传输装置 3 与一传输装置 5 建立无线连接，该传输装置 5 为具有连结、传输及对频等功能之无线通讯产品，且该传输装置 5 由一无线通讯器 50 介接一讯号收发器 51 所组成，而无线通讯器 50 与讯号收发器 51 藉由一连接器 52 完成电气连接。

在具体实施例中，该无线通讯传输装置 3 进一步设有一电源开关 47、电源供应器 48 及警讯器 49，该电源开关 47 系选择开启或关闭使用本发明鼻骨传导无线通讯传输装置，而该电源供应器 48 系提供本装置所需之电力，且该电源供应器 48 为一般性电池或燃料电池或可供应电源等装置等，而该警讯器 49 系为于电源电力达到低供应量时，自动发出警讯，以提醒使用者更换电池，而该无线通讯器 50 为一手机或具有通讯能力之 PDA 或类似之无线通讯传输产品，而连接器 52 可设计成耳机插孔、PCMCIA 插卡及 USB 埠等不同用途之型式。

请继续参考图 1，该骨传导输出装置 1 置于使用者之鼻部，且骨传导输出装置 1 与鼻部骨肤紧密接触。该骨传导输出装置 1 之振荡器 10 为将来自无线通讯传输装置 3 之电波转换成振荡波，而使该振荡波在鼻腔内共鸣再藉鼻骨传导传至耳内以形成接听功能。该骨传导输入装置 2 亦置于使用者之鼻部，且骨传导输入装置 2 与鼻部骨肤紧密接触。该骨传导输入装置 2 之振荡器 20 将鼻腔共鸣所产生的声音所形的振荡波转换成电波而形成发话功能。而该传输装置 5 为经由该无线通讯传输装置 3 以传送电子讯息至该骨传导输出装置 1 及接收骨传导输入装置 2 之电子讯息，且该传输装置 5 之无线通讯器 50 藉由该连接器 52 与该讯号收发器 51 连结，而该无线通讯传输装置 3 系电气连接该骨传导输入装置 2 与骨传导输出装置 1 以收发该无线讯号。

本发明鼻骨传导无线通讯传输装置 100 具有无线通讯传输免持听筒、无线对讲机、助听器及耳机等功能模式，该传输装置 5 之讯号收发器 51 具有讯号处理器 54、射频讯号接收模块 55、射频讯号发射模块 56、天线 53、及对频模块 57。在本发明进
一步的实施例中，该传输装置 5 之讯号收发器 51 还具有无线调整器，而该无线调整器系用来调整或修改参数修改缓存器 38 内的参数值、功能模块 40 内之功能，以及音量调整器 32 之音量大小；且该讯号收发器 51 系根据蓝牙无线通讯协议或微波与无线通讯传输装置 3 建立无线连接，而该无线通讯传输装置 3 之讯号处理单元 30 系用以处理讯号且该讯号处理单元 30 具有电源供应器 48、电源开关 47、警示器 49、讯号处理器 36、预设参数值储存器 37、参数修改缓存器 38、回授消除处理模块 39 及功能模块 40，其中该讯号处理器 36 系可记忆多组各种功能模式环境之下的频率，并处理所接收或传送之电子讯号，而该预设参数值储存器 37 为无储存无线通讯传输装置 3 内各项参数，并将其烧录成 IC 晶体，且该参数修改缓存器 38 系依使用者于使用环境下可直接调整或藉由无线调整器自行修改某些功能及参数值，且以最后所修改之参数值自动储存，而该回授消除处理模块 39 系为于该讯号处理器 36 之讯号产生回授噪声时，将自动产生一组相反之电子讯号与回授噪声抵消，以达到回授消除的功能及降低干扰源，用以降低无线通讯传输装置 3 回授声音，保持音质的稳定度，而该功能模块 40 系为设定无线通讯免持听筒、无线对讲机、助听器及耳机等模式，俾使本发明提供多元化之功能选择，另外，对于不同实施例的应用，无线调整器亦可不装置在传输装置 5 或讯号接收器 51 内，而单独成立一单元，利用 RF 射频等无线操作方式操作该参数修改、功能模块及音量大小等功能。

该无线通讯传输装置 3 之讯号收发单元 31 具有天线 58、对频模块 41、射频讯号接收模块 42、射频讯号发射模块 43、射频讯号放大器 44 及电子滤波模块 45，其中该对频模块 41 系为无线电讯间的频率对调，以便相互交换无线电讯，而该射频讯号接收模块 42 系为无线电讯号传输的一种接收器，该射频讯号发射模块 43 系为无线电讯号传输的一种发射器，该射频讯号放大器 44 系为将无线电讯号经过加强后再传输出去，以免讯号衰弱，该电子滤波模块 45 系为将声音讯号透过滤波器，过滤噪声以加强电波讯号的稳定度。该无线通讯传输装置 3 之功能选择器 35，系用以切换各功能模块。

该无线通讯传输装置 3 之音量调整器 32 系用以调整音量大小，亦可藉由无线调整器方便使用者进行调整。该无线通讯传输装置 3 之话器 33 系用以收集声音，并将所收集之讯号传送至该骨髓传导输出装置 1，俾使该骨髓传导无线通讯传输装置 100 具有助听器之功能。

请再继续参考图 1，本发明鼻骨传导无线通讯传输装置 100 为无线通讯传输免持听筒功能模式时，藉由该传输装置 5 之无线通讯器 50 与该讯号收发器 51 连结以发
送一声音讯号传送至该无线通讯传输装置 3，该无线电通讯传输装置 3 藉由该天线 53 及射频讯号接收模块 42 接收讯号后，经该射频讯号放大器 44 将讯号放大再由该电子滤波模块 45 经过滤噪声以加强电波讯号的稳定度，再经由该讯号处理单元 30 之讯号处理器 36 根据所传送之讯号判断此为无线通讯传输之通讯讯号，而执行免持听简之指令动作，并经该回授消除处理模块 39 传送至该音量调整器 32，以调整适当之音量大小，利用一传输线 46 再将讯号传送至该骨传导输出装置 1，藉由骨传导输出装置 1 之振荡器 10 将电波转换成振荡波，再由鼻部鼻骨传导经过耳内而达到接听之功能，而再利用该骨传导输入装置 2 之振荡器 20 将使用者说话之振荡波转换成电波利用一传输线 46 传送至该无线电通讯传输装置 3 之音源切换器 34 经讯号处理单元 30 之讯号处理器 36 处理讯号后，再经讯号收发单元 31 之射频讯号放大器 44 之讯号放大，再经射频讯号发射模块 43 藉由该天线 58 与天线 53 发送及收发该无线讯号，再传送至该传输装置 5 之讯号收发器 51，透过该连接器 52 传送至无线通讯器 50，而达到通话之功能，即完成无线电通讯传输免持听简之功能模式。

当本发明鼻骨传导无线电通讯传输装置 100 为无线对讲机功能模式时，藉由该无线电通讯传输装置 3 之功能选择器 35 至该讯号处理单元 30 之功能模块 40 选择切换至无线对讲机之使用模式，再将该无线电通讯传输装置 3 之对频模块 41 与传输装置 5 之对频模块 57 的频率调对，待对频相符后即完成无线对讲机模式之设定，该无线电对讲机模式之运作，即将上述无线通讯器 50 置换为无线对讲机，其余架构均相同，于此不在赘述。

当本发明鼻骨传导无线电通讯传输装置 100 为助听器功能模式时，藉由该无线电通讯传输装置 3 之功能选择器 35 至该讯号处理单元 30 之功能模块 40 选择切换至助听器之使用模式，再藉由该无线电通讯传输装置 3 之发话器 33 经由音源切换器 34 设定切换为发话之功能，而使该传输装置 5 之声音讯号暂时无法进入，仅藉由该发话器 33 收集声音，若传输装置 5 有无线电通讯电子讯号传入时，音源切换器则自动切断发话器 33 之声来源，此时即自动变成免持听简之功能模式，当一旦通讯电子讯号结束后，又自动转成助听器模式，且将所收集之声音讯号经由该讯号处理单元 30 处理讯号后，将讯号传送至该骨肤传导输出装置 1，藉由骨传导输出装置 1 之振荡器 10 将电波转换成振荡波，再由鼻部鼻骨传导经过耳内而达到收听之功能，俾使完成收听功能之助听器模式。

当本发明鼻骨传导无线电通讯传输装置 100 为耳机功能模式时，藉由该传输装置 5 与欲使用之产品，例如：MP3 播放器、随身听、计算机、收录音机、音响及电视等。
音讯产品连接，并由讯号收发器 51 传送音讯，再藉由该无线通讯传输装置 3 之功能选
择器 35 至该讯号处理器单元 30 之功能模块 40 选择切换至耳机之使用模式，即使本发明
装置转变为具有无线收听的耳机功能。

在本发明进一步的实施例中，以上各功能模块 40 的切换，均可藉助无线调整器
完成。

在本发明的各种实施例中，装置装置为眼镜、潜水镜、风镜、护目镜、鼻罩、
口罩、面罩、头罩、贴片、鼻夹或可使该装置贴附于鼻部骨鼻者均可。传输装置 5 之
无线通讯器 50 可为一手机、PDA、计算机、无线对讲机或 RF、微波、红外线传输机
等无线通迅产品，而该讯号处理器 54 可整合为一集成电路产品，而该传输装置 5 之讯
号收发器 51 亦可内建于该无线通讯器 50 内，而不需藉由连接器 52 连结至无线通讯器
50。

在本发明的另一实施例中，鼻骨传导无线通讯传输装置 100 与讯号收发器 51 可
结合为一产品，视为一鼻骨传导无线通讯传输系统。

请参考图 2 至图 4，系显示本发明鼻骨传导无线通讯传输系统与市话通话中及
置于颈部之一般接触式间接传导麦克风之实验音频讯号图，该利用骨传导振荡发声之
音频讯号图之纵轴为频率，而横轴为频率，于频率 500Hz 至 1kHz 间，该频宽介于-20dB
至-30dB 之间，而于频率 1kHz 至 2kHz 间，该频宽亦介于-10dB 至-20dB，而于频率 2kHz
至 5kHz 间，该频宽介于-10dB 至-30dB 之间，而图 3 之市话通话中之音频讯号，该市
话通话中之音频讯号于频率 500Hz 至 1kHz 间，该频宽介于-10dB 至-20dB 之间，而
于频率 1kHz 至 5kHz 间，该频宽亦介于-10dB 至-20dB 之间，而图 4 之市话通话中之音频讯号，于频率 500Hz 至 1kHz 间，该频宽介于-10dB 至
-20dB 之间，而于频率 1kHz 至 2kHz 间，该频宽介于-20dB 至-30dB 之间，而于频率
2kHz 至 5kHz 间，该频宽已衰减至-30dB 以下，由上述可知本发明骨传导无线通讯
传输系统利用骨传导振荡发声之音频讯号，相较于习知置于颈部之一般接触式间接传
导之音频讯号，更接近音质清晰之市话的音频讯号，而可达到较好之传输音质。

请参考图 5 并配合参考图 1，系显示本发明骨传导无线通讯传输装置以嵌入
眼镜方式之载具立体图。本发明应用于眼镜之鼻骨传导无线通讯传输装置 100，包含：
一眼镜 6，该眼镜 6 具有一镜框连接架 60 及一对镜框鼻垫支架 61；一嵌入式主体外壳
7，嵌入该眼镜 6，该嵌入式主体外壳 7 内设有该无线通讯传输装置 3，且配合该无线
通讯传输装置 3 之各功能选择于该主体外壳之面板上设有电源开关 47、功能选择器 35、
音源切换器 34、对频模块 41、音量调整器 32 及发话器 33；及一传输装置 5，该传输装置具有一无线通讯器 50 之手机与一外接之讯号收发器 51。

请继续参考图 5，该对镜框鼻垫支架 61 于一镜框鼻垫支架内设有一骨传导输出装置 1，而于另一镜框鼻垫支架内设有一骨传导输入装置 2，且该对镜框鼻垫支架 61 内之骨传导输出装置 1 及骨传导输入装置 2 藉由一讯号传输线 46 与该嵌入式主体外壳 7 内之无线通讯传输装置 3 连接通讯，而该传输装置 5 之手机藉由与讯号收发器 51 连接而透过无线传输而与该嵌入式主体外壳 7 之无线通讯传输装置 3 连接，而达到本发明鼻骨传导无线通讯传输装置 100。

请参考图 6，系显示本发明鼻骨传导无线通讯传输装置以活动夹贴方式用于眼镜之裁具立体图。本发明应用于眼镜之鼻骨传导无线通讯传输装置 100，包含：一镜框 6，该镜框 6 具有一镜框连结架 60 及一对镜框鼻垫支架 61；一活动式主体外壳 8，其背部有一夹贴装置 9 夹于该镜框连结架 60 上，且该活动式主体外壳 8 内设有该无线通讯传输装置 3，且配合该无线通讯传输装置 3 之各功能选择于该主体外壳之面板上设有电源开关 47、功能选择器 35、音源切换器 34、对频模块 41、音量调整器 32 及发话器 33；及一传输装置 5，该传输装置具有一无线通讯器 50 之手机与一外接之讯号收发器 51。

请继续参考图 6，该对镜框鼻垫支架 61 于一镜框鼻垫支架内设有一骨传导输出装置 1，而于另一镜框鼻垫支架内设有一骨传导输入装置 2，且该对镜框鼻垫支架 61 内之骨传导输出装置 1 及骨传导输入装置 2 藉由一讯号传输线 46 与该活动式主体外壳 8 内之无线通讯传输装置 3 连接通讯，而该传输装置 5 之手机藉由与讯号收发器 51 连接而透过无线传输而与该活动式主体外壳 8 之无线通讯传输装置 3 连接，而达到本发明鼻骨传导无线通讯传输装置 100。

请参考图 7，系显示本发明鼻骨传导助听装置之方块图。本发明鼻骨传导助听装置 200，包含：一调控装置 101，该调控装置 101 包含电源供应装置 110、发话器 111、电波扩大器 112、频率控制处理模块 113、警讯器 114、讯号处理模块 115、回授消除处理模块 116 及音量调整器 117、讯号传输线 105；及一脑波传导振荡装置 102，该脑波传导振荡装置 102 具有一振荡器 120；及一载具装置（请参考图 8 及图 9），该载具装置系承载该调控装置 101 及该脑波传导振荡装置 102 并置于鼻部。

请继续参考图 7，该脑波传导振荡装置 102 系紧密接触使用者之鼻骨部，且该脑波传导振荡装置 102 之振荡器 120 为将所接收之电波转换成振荡波透过鼻部骨质传
导传至耳内，而具有收听功能，而该调控装置 101 系接收及处理由外界所传送之声
讯号，且该调控装置 101 之电源供应装置 110 系供应本发明鼻骨传导助听装置 200 全
部所需的电源，且该电源供应装置 110 可为一电池或其它可供应电源之相关产品，而
该发话器 111 可为一麦克风，用以收集声音，而该电波扩大器 112 系用以增强该发话
器 111 收集声音之讯号强度，而该频率控制处理模块 113，系用以将发话器 111 与电
波扩大器 112 之讯号选频，而警讯器 114，系当电源达到低供应量时，将自动发出警
讯，以提醒使用者更换电池，而讯号处理模块 115，系用以将选频讯号，再经再处理，
让输出的声音更符合使用者听觉需求，而该回授消除处理模块 116，系为于该讯号处
理模块 115 之电子讯号产生回授噪声时，将自动产生一组相反之电子讯号与回授噪声
抵消，用以降低鼻骨传导助听装置 200 之回授声音，以达到回授消除的功能及降低干
扰源，保持音质的稳定度，而该音量调整器 117，系用以调整音量大小。

当本发明鼻骨传导助听装置 200 于运作时，该电源供应装置 110 提供所有鼻骨传
导助听装置 200 所需的电力，且经该警讯器 114 检视电力是否已达低电量状态，若是
则直接经过该音量调整器 117 将警讯讯号传送至该骨质传导振荡装置 102，而让使用
者听到此讯号，以便提早更换新的电池；若否则经由该发话器 111 收集声音，且将藉
由该发话器 111 所收集之声音，先经过该电波扩大器 112，增强该发话器 111 讯号之
强度，再经该频率控制处理模块 113 的选频处理，而取得最佳的频率环境，并再经该
讯号处理模块 115 之讯号处理，让外界的声音其音质更适合使用者，而若于使用过程
中如因回授声音的现象产生时，该回授消除处理模块 116 将会自动产生一组相反之电子
讯号与回授噪声抵消，用以降低鼻骨传导助听装置 200 之回授声音，以消除因回授
所产生之杂音现象，再经由该音量调整器 117 调整音量至适合于使用者之音量大小，
最后藉由该讯号传输线 105 将音讯讯号传送至该骨质传导振荡装置 2，再设由该骨
质传导振荡装置 102 之振荡器 120，将电波讯号转成振荡波，透过鼻部骨质传导传至
耳内。因此，本发明特征藉由鼻部骨传导途径可以达到助听较以往前向技术为佳之
功效。

请参考图 8 并配合参考图 7，系显示本发明鼻骨传导助听装置之活动夹贴方式用
于眼镜之载具立体图。本发明应用于眼镜之鼻骨传导助听装置 200，包含：一眼镜 103，
该眼镜 103 具有一镜框连结架 130 及一对镜框鼻垫支架 131；一活动式主体外壳 106，
其背部有一夹贴装置 107 夹于该镜框连结架 130 上，且该活动式主体外壳 106 内设有
调控装置 101，且配合该调控装置 101 之各功能选择于该活动式主体外壳 106 之面板
上设有发话器 111 及音量调装置 117。

该对镜框鼻垫支架 131 内设有该骨肤传导振荡装置 102，且该对镜框鼻垫支架 131 内之该骨肤传导振荡装置 102 藉由该讯号传输线 5 与该活动式主体外壳 106 内之调控装置 101 连接通讯，俾使于使用时，藉由该活动式主体外壳 106 上之发话器 111 接收声音讯号，再经由该调控装置 101 之电波扩大器 112，增强该发话器 111 讯号之强度，再经该频率控制处理模块 113 的选频处理，并再经该讯号处理模块 115 之讯号再处理，经回授消除处理模块 116 降低或消除鼻骨传导助听装置 200 之回授声音，再经音量调整器 117 调整音量大小，最后藉由该讯号传输线 5 将讯号传送至对镜框鼻垫支架 131 内之骨肤传导振荡装置 102，并藉由该骨肤传导振荡装置 102 之振荡器 120，将电波讯号转成振荡波，透过鼻部骨肤传导传至耳内收听，而完成本发明应用于眼镜 103 之鼻骨传导助听装置 200。

请参阅图 9 并配合参阅图 7，系显示本发明鼻骨传导助听装置以嵌入眼镜方式之裁具立体图。本发明应用于眼镜之鼻骨传导助听装置 200，包含：一眼镜 103，该眼镜 103 具有一镜框连接架 130 及一镜框鼻垫支架 131；一嵌入式主体外壳 104，嵌入该眼镜 103，该嵌入式主体外壳 104 内设有调控装置 101，且配合该调控装置 101 之功能选择于该嵌入式主体外壳 104 之面板上设有发话器 111 及音量调整器 117。

请继续参考图 9，该对镜框鼻垫支架 131 内设有该骨肤传导振荡装置 102，且该对镜框鼻垫支架 131 内之该骨肤传导振荡装置 102 藉由该讯号传输线 105 与该嵌入式主体外壳 104 内之调控装置 101 连接通讯，俾使于使用时，藉由该主体外壳 104 上之发话器 111 接收外界声音讯号，再经由该调控装置 101 之电波扩大器 112，增强该发话器 111 讯号之强度，再经该频率控制处理模块 113 的选频处理，并再经该讯号处理模块 115 之讯号处理，经回授消除处理模块 116 降低或消除鼻骨传导助听装置 200 之回授声音，再经音量调整器 117 调整音量大小，最后藉由该讯号传输线 105 将音讯号传送至对镜框鼻垫支架 131 内之骨肤传导振荡装置 102，并藉由该骨肤传导振荡装置 102 之振荡器 120，将电波讯号转成振荡波，透过鼻部骨肤传导传至耳内，而完成本发明应用于眼镜 103 之鼻骨传导助听装置 200。

在详细说明本发明的较佳实施例之后，熟悉该项技术人士可清楚的了解，在不脱离下述申请专利范围与精神下可进行各种变化与改变，亦不受限于说明书实施例的实施方式。
权利要求

1. 一种鼻骨传导无线通讯传输装置，包含：
 骨传导输入装置，具有第一波荡器，用以将待传出之声音转成电波；
 无线通讯传输装置，电气连接该骨传导输入装置以接收该电波讯号并向外传输，及/或接收外部电波讯号；
 骨传导输出装置，具有第二波荡器，用以接收该无线通讯所传送之外部电波讯号并将其波电讯号转成波荡波，并使该波荡波藉鼻骨传导传至耳内；及
 载具装置，用以承载上述各装置；
 其特征在于，该载具装置为置放于鼻部之载具，用以使其所承载之骨传导输出装置和骨传导输入装置，与鼻部皮肤紧密接触，且将该骨传导输出装置之波荡波，经由在鼻腔内共鸣后再藉鼻骨传导传至耳内；及将骨传导输入装置将鼻腔共鸣之声音转成电波，再传导至该无线通讯传输装置发讯。

2. 如权利要求1所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置根据蓝牙无线通讯协议或微波或红外线接收或传送无线讯号。

3. 如权利要求1所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置至少包含：天线、讯号收发电器、讯号处理单元。

4. 如权利要求1所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置至少包含：功能选择器、音源切换器及音量调整器。

5. 如权利要求1所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置无线连结无线调整器。

6. 如权利要求1所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置进一步设有发话器，该发话器系用以收集声音，并将所收集之讯号传送至该骨肤传导输出装置，俾使该骨肤传导无线通讯传输装置具有助听器功能。

7. 一种鼻骨传导无线电通讯传输装置，包含：
 骨传导输入装置，具有波荡器，用以将待传出之声音转成电波；
 无线通讯传输装置，电气连接该骨传导输入装置以接收该电波讯号；及
 载具装置，用以承载上述各装置；
 其特征在于，该载具装置为置放于鼻部之载具，用以使其所承载之骨传导输入装
置，与鼻部皮肤紧密接触，且将骨传导输入装置将鼻腔共鸣所产生之声音波转成电波，再传导至该无线通讯传输装置发讯。

8. 如权利要求7所述的鼻骨传导无线通讯传输装置，其中该载具装置为眼镜、潜水镜、风镜、护目镜、鼻罩、口罩、面罩、头罩、贴片、鼻夹，或可使该装置贴附于鼻部皮肤者。

9. 如权利要求7所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置根据蓝牙无线通讯协议或微波或红外线接收或传送无线讯号。

10. 如权利要求7所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置至少包含：天线、讯号收发单元、讯号处理单元。

11. 如权利要求7所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置至少包含：功能选择器、音源切换器及音量调整器。

12. 如权利要求7所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置无线连结无线调整器。

13. 一种鼻骨传导无线通讯传输装置，包含：

无线通讯传输装置，用以接收该外部电波讯号；

骨传导输出装置，具有振荡器，用以接收该无线通讯所传送之外部电波讯号并将该电波讯号转成振荡波，并使该振荡波藉鼻骨传导传至耳内；及

载具装置，用以承载上述各装置；

其特征在于，该载具装置为置于鼻部之载具，用以使其所承载之骨传导输出装置，与鼻部皮肤紧密接触，且将该骨传导输出装置之振荡波，经由在鼻腔内共鸣后再藉鼻骨传导传至耳内。

14. 如权利要求13所述的鼻骨传导无线通讯传输装置，其中该载具装置为眼镜、潜水镜、风镜、护目镜、鼻罩、口罩、面罩、头罩、贴片、鼻夹，或可使该装置贴附于鼻部皮肤者。

15. 如权利要求13所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置根据蓝牙无线通讯协议或微波接收或传送无线讯号。

16. 如权利要求13所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置至少包含：天线、讯号收发单元、讯号处理单元。

17. 如权利要求13所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置至少包含：功能选择器、音源切换器及音量调整器。
18. 如权利要求13所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置
无线连接无线调整器。

19. 如权利要求13所述的鼻骨传导无线通讯传输装置，其中该无线通讯传输装置
进一步设有发话器，该发话器系用以收集声音，并将所收集之讯号传送至该骨传导输出
装置，俾使该鼻骨传导无线通讯传输装置具有助听器功能。

20. 一种鼻骨传导无线通讯系统，包含：

传输装置；及

鼻骨传导无线通讯传输装置，其系与该传输装置无线连接，该鼻骨传导无线通讯
传输装置包含：

骨传导输入装置，具有第一振荡器，用以将待传出之声音变换成电波；

无线通讯传输装置，电气连接该骨传导输入装置以接收该电波讯号并向外传输，及/或接收外部电波讯号；

骨传导输出装置，具有第二振荡器，用以接收该无线通讯所传送之外部电波
讯号并将该电波讯号转成振荡波，并使该振荡波藉鼻骨传导传至耳内；及

载具装置，用以承载上述各装置；

其特征在于，该载具装置为置于鼻部之载具，用以使其所承栽之骨传导输出装
置和骨传导输入装置，与鼻部骨皮紧密接触，且将该骨传导输出装置之振荡波，经由
在鼻腔内共鸣后再藉鼻骨传导传至耳内；及将骨传导输入装置将鼻腔共鸣所产生之声
音波转成电波，再传导至该无线通讯传输装置发讯。

21. 如权利要求20所述的鼻骨传导无线通讯传输系统，其中该载具装置为眼镜、
潜水镜、风镜、护目镜、鼻罩、口罩、面罩、头罩、贴片、鼻夹，或可使该装置贴附
于鼻部骨皮者。

22. 如权利要求20所述的鼻骨传导无线通讯传输系统，其中该无线通讯传输装置
与该传输装置建立无线连接。

23. 如权利要求20所述的鼻骨传导无线通讯传输系统，其中该传输装置为具有连
接、传输及对频等功能之无线通讯产品。

24. 如权利要求20所述的鼻骨传导无线通讯传输系统，其中该传输装置由无线通
讯器介接讯号收发器所组成。

25. 如权利要求24所述的鼻骨传导无线通讯传输系统，其中该无线通讯器为手机、
PDA或类似之无线通讯传输产品。
26. 如权利要求24所述的骨传导无线通讯传输系统，其中该无线通讯器进一步具有红外线、RF或微波等无线传输器。

27. 如权利要求24所述的骨传导无线通讯传输系统，其中该无线通讯器与讯号收发器藉由连接器完成电气连接，且该连接器可设计成耳机插孔、PCMCIA插卡及USB埠等不同用途之型式。

28. 如权利要求27所述的骨传导无线通讯传输系统，其中该讯号收发器配合MP3播放器、随身听、计算机、收录音机、音响或电视等音讯产品之连接，俾使该无线通讯传输装置与骨传导输入装置的结合形成收听之耳机功能。

29. 如权利要求20所述的骨传导无线通讯传输系统，其中该无线通讯传输装置至少包含：天线、讯号收发单元、讯号处理单元。

30. 如权利要求20所述的骨传导无线通讯传输系统，其中该无线通讯传输装置至少包含：功能选择器、音源切换器及音量调整器。

31. 如权利要求20所述的骨传导无线通讯传输装置，其中该无线通讯传输装置无线连结无线调整器。

32. 如权利要求20所述的骨传导无线通讯传输系统，其中该无线通讯传输装置进一步设有发话器，该发话器系用以收集声音，并将所收集之讯号传送至该骨肤传导输出装置骨传导输入装置，俾使该骨传导无线通讯传输装置具有助听器功能。

33. 如权利要求20所述的骨传导无线通讯传输系统，其中该无线通讯传输装置根据蓝牙无线通讯协议或微波接收或传输无线讯号。

34. 一种骨传导助听装置，包含：

- 调控装置，系接收及处理由外界所传送之声音讯号；
- 骨肤传导振荡装置，具有振荡器，用以接收经该调控装置处理之信号；及
- 载具装置，以承载该调控装置和该骨肤传导振荡装置；

其特征在于，该载具装置置于放于鼻部的载具，并使该骨肤传导振荡装置紧密接触鼻骨脑部，而该振荡器用以将该骨肤传导振荡装置所接收电波转成振荡波传导至鼻部，俾使该振荡波透过鼻腔骨肤传导传至耳内。

35. 如权利要求34所述的骨传导助听装置，其中该调控装置包含发话器、电波扩大器，频率控制处理模块、讯号处理模块、回授消除处理模块、电源供应装置及讯号传输线。
图 4
INTERNATIONAL SEARCH REPORT

![International application No.](PCT/CN2005/000799)

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: H04B 1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: H04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, EPDOC, PAJ, CNPAT

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN2119053 U 1992-10-14 ZHOUYINGPING YINGSHENG LIUHAITAO YUANQUN LISHUWANG</td>
<td>1-35</td>
</tr>
<tr>
<td>A</td>
<td>CN1512490 A 2004-7-14 LUXIAOLIN</td>
<td>1-35</td>
</tr>
<tr>
<td>A</td>
<td>WO00128195 A1 2001-4-19 BOESEN P V</td>
<td>1-35</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C.
☒ See patent family annex.

* Special categories of cited documents:
 - **“A”** document defining the general state of the art which is not considered to be of particular relevance
 - **“E”** earlier application or patent but published on or after the international filing date
 - **“L”** document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - **“O”** document referring to an oral disclosure, use, exhibition or other means
 - **“P”** document published prior to the international filing date but later than the priority date claimed
 - **“T”** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - **“X”** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - **“Y”** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - **“&”** document member of the same patent family

Date of the actual completion of the international search

2005/5/24

Date of mailing of the international search report

18 · AUG 2005 (18 · 08 · 2005)

Name and mailing address of the ISA/CN

The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China 100088
Facsimile No. 86-10-62019451

Authorized officer

[Signature]

Telephone No. (86-10)62084544

Form PCT/ISA /210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO0128195 A1</td>
<td>2001-4-19</td>
<td>AU200146068 A</td>
<td>2001-4-23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1222793 A1</td>
<td>2002-7-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6560468 B1</td>
<td>2003-5-6</td>
</tr>
</tbody>
</table>
国际检索报告

国际申请号

PCT/CN2005/000799

A. 主题的分类

IPC7: H04B 1/00

按照国际专利分类表(IPC)或同时按照国家分类和IPC两种分类

B. 检索领域

检索的最低限度文献(标明分类系统和分类号)

IPC7: H04B

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库(数据库的名称，和使用的检索词(如使用))

WPI,EPDOC,PAJ,CNPAT

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN2119053 U 1992-10-14 周景平、殷胜、刘海涛、原群、李书旺</td>
<td>1-35</td>
</tr>
<tr>
<td>A</td>
<td>CN1512490 A 2004-7-14 吕小鹏</td>
<td>1-35</td>
</tr>
<tr>
<td>A</td>
<td>WO0128195 A1 2001-4-19 BOESEN P V</td>
<td>1-35</td>
</tr>
</tbody>
</table>

□ 其他文件在 C 栏的续页中列出。

见同族专利附件。

* 引用文件的具体类型:
 “A” 认为特别相关的表示了现有技术一般状态的文件
 “E” 在国际申请日的当天或之后宣布的在先申请或专利
 “L” 可能对优先权要求构成障碍的文件，或为确定另一篇引用文件的公布日而引用的文件
 “O” 涉及口头公开、使用、展示或其他方式公开的文件
 “P” 公布日先于国际申请日且迟于所要求的优先权日的文件

“T” 在申请日或优先权日之后公布，与申请不相抵触，但为了理解发明之理论或原理的在先文件

“X” 特别相关的文件，单独考虑该文件，认定要求保护的发明不是新颖的或不具有创造性

“Y” 特别相关的文件，当该文件与另一篇或多篇该类文件结合并且这种结合对于本领域技术人员为显而易见时，要求保护的发明不具有创造性

“&” 同族专利的文件

国际检索实际完成的日期

2005/7/20

国际检索报告邮寄日期

18-8月 2005 (18-08-2005)

中华人民共和国国家知识产权局(ISA/CN)

中国北京市海淀区北门桥西土城路6号 100088

传真号：(86-10)62019451

受权官员

[手写签名]

电话号码：(86-10)62084545

PCT/ISA/210 表(第2页) (2005年4月)
<table>
<thead>
<tr>
<th>检索报告中引用的专利文件</th>
<th>公布日期</th>
<th>同族专利</th>
<th>公布日期</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO0128195 A1</td>
<td>2001-4-19</td>
<td>AU200146068 A</td>
<td>2001-4-23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1222793 A1</td>
<td>2002-7-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6560468 B1</td>
<td>2003-5-6</td>
</tr>
</tbody>
</table>