(54) Title: MEDICAMENT DISPENSER

(57) Abstract: There is provided a medicament dispenser comprising a body (44), a medicament container and transport means to transport a metered amount of medicament from a rest position to a delivery position wherein the transport means comprises a transport coupling (72). The coupling (72) is reversibly deformable in response to the application of non-mechanical energy thereto. The non-mechanical energy may comprise heat energy, electrical current energy, electrical field energy or magnetic field energy.
Published:

— With international search report.
— Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Medicament Dispenser

This invention relates to a medicament dispenser having transport means to transport a metered amount of medicament from a rest position to a delivery position. The dispenser is particularly suitable for use as an inhalation device.

It is well known to treat patients with medicaments contained in an aerosol, for example, in the treatment of respiratory disorders. It is also known to use for such treatment, medicaments which are contained in an aerosol and are administered to a patient by means of an inhalation device comprising a tubular housing or sleeve in which the aerosol container is located and an outlet tube leading out of the tubular housing. Such inhalation devices are generally referred to as metered dose inhalers (MDIs). The aerosol containers used in such inhalation devices are designed to deliver a predetermined dose of medicament upon each actuation by means of an outlet valve member at one end which can be opened either by depressing the valve member while the container is held stationary or by depressing the container while the valve member is held stationary. In the use of such devices, the aerosol container is placed in the tubular housing with the outlet valve member of the container communicating via a support with the outlet tube, for example a nozzle or mouthpiece. When used for dispensing medicaments, for example in bronchodilation therapy, the patient then holds the housing in a more or less upright condition and the mouthpiece or nozzle of the inhalation device is placed in the mouth or nose of the patient. The aerosol container is pressed towards the support to dispense a dose of medicament from the container which is then inhaled by the patient.

It is also known to use dry powder inhalation devices for the delivery of inhalable medicament. In one aspect, such dispensers comprise pre-metered doses of powdered medicament, for example in capsules or blisters. In another aspect, such dispensers comprise a reservoir of powdered medicament from which doses are metered prior to or concurrent with the delivery process. In either
case, the device may be designed for passive release of medicament, where the medicament is simply made available at a delivery position for aerosolisation in response to the inhalation of the patient. Alternatively, an active release mechanism may be used whereby a 'puff' of compressed gas or air is provided to the delivery position to assist in aerosolisation of the powder prior to or concurrent with the inhalation of the patient. Such devices are generally called active release dry powder inhalers (active DPIs). The source of the compressed gas or air is generally an aerosol container.

It is also well known to use syringes for the delivery of injectable medicament to a patient. Traditional syringes rely on puncturing of the patient's skin by a hollow needle through which the injectable medicament (in solution or suspension form) is delivered to the muscle or tissue of the patient. Recently developed needleless systems for the delivery of injectables employ high velocity injection of particle formulated drugs or vaccine through the skin and into any physically accessible tissue. Other needleless systems employ similar high velocity injection of drug or vaccine coated on to a suitable carrier particle. Such needleless systems may be configured to include a source of compressed air or gas, which on release provides energy to propel the medicament particles for injection into the skin.

It may be understood that effective delivery of medicament to the patient using an inhalation device such as an MDI or active DPI as described above is to an extent dependent on the patient's ability to manually actuate the device (e.g. firing of the aerosol) and to co-ordinate the actuation thereof with the taking of a sufficiently strong inward breath. For some patients, particularly young children, the elderly and the arthritic, manual actuation of the device can present difficulties. Other patients find it difficult to co-ordinate the taking of a reliable inward breath with actuation of the device. Both of these sets of patients run the risk that they do not receive the appropriate dose of medicament.
It may also be understood that effective delivery of medicament to the patient using a syringe or needleless injection system as described above also requires care and dexterity.

The Applicants have now developed a medicament dispenser having means to transport a metered dose from a rest position to a position ready for delivery to a patient. The transport means may not require manual actuation by the patient.

Actuation is responsive to the application of non-mechanical energy to a coupling element of the transport means. The non-mechanical energy can be in the form of heat provided by electrical current flow through the coupling element, which in turn can be provided in response to the sensing of the breath of a patient. Alternatively, the non-mechanical energy can be in the form of a magnetic field provided by a suitable magnetic field source such as a permanent magnet or an electromagnet.

US patent no. 5,061,914 describes a shape memory alloy micro-actuator. The actuator comprises a nickel-titanium alloy material which undergoes a temperature induced phase transition when heated. The phase transition results in contraction of the actuator. The actuator can be mechanically coupled to a micro-mechanical element for motion thereof.

US patent no. 5,958,154 describes alloy materials which undergo a phase transition in response to the application of a magnetic field.

Accordingly, in one aspect the invention provides a medicament dispenser comprising a body, a medicament container and transport means to transport a metered amount of medicament from a rest position to a delivery position, wherein the transport means comprises a transport coupling which is reversibly deformable in response to the application of non-mechanical energy thereto.
The metered amount of medicament may be metered according to weight and/or volume and/or surface area.

The medicament container may comprise medicament in dry powder form. Typically, a dry powder medicament includes a pharmaceutical excipient in dry powder form.

In one embodiment, the medicament is pre-metered prior to actuation of the dispenser by the patient, for example, the medicament is pre-metered in capsules, strip or tape form.

In another embodiment, the medicament container may take the form of a reservoir for said dry powder and the dispenser further comprises a meter for metering an amount of dry powder from said reservoir.

The meter may comprise a weight and/or a volume and/or a time and/or a surface-area regulated mechanism.

In one embodiment the meter may comprise a valve (for example, a linear or rotary valve) and/or a piston and/or a load cell and/or a plunger.

The valve may be a slide valve. Other valve systems include, but are not limited to, poppet valve systems, wedge gate valve systems, double-disc gate valve systems, globe and angle valve systems, swing check valve systems, end cock valve systems, and other like valve systems. The valve design is typically a function of providing a predetermined dosage or amount of the medicament contained within the container to a user.

Where the medicament container is a pressurized aerosol container, the valve typically comprises a valve body having an inlet port through which a medicament aerosol formulation may enter said valve body, an outlet port
through which the aerosol may exit the valve body and an open/close mechanism by means of which flow through said outlet port is controllable.

The valve may be a slide valve wherein the open/close mechanism comprises a sealing ring and receivable by the sealing ring a valve stem having a dispensing passage, the valve stem being slidably movable within the ring from a valve-closed to a valve-open position in which the interior of the valve body is in communication with the exterior of the valve body via the dispensing passage.

The metering volumes of metering valves are typically from 10 to 100 µl, such as 25 µl, 50 µl or 63 µl. Suitably, the valve body defines a metering chamber for metering a metered amount of medicament formulation and an open/close mechanism by means of which the flow through the inlet port to the metering chamber is controllable. Preferably, the valve body has a sampling chamber in communication with the metering chamber via a second inlet port, said inlet port being controllable by means of an open/close mechanism thereby regulating the flow of medicament formulation into the metering chamber.

The valve may also comprise a ‘free flow aerosol valve’ having a chamber and a valve stem extending into the chamber and movable relative to the chamber between dispensing and non-dispensing positions. The valve stem has a configuration and the chamber has an internal configuration such that a metered volume is defined therebetween and such that during movement between is non-dispensing and dispensing positions the valve stem sequentially: (i) allows free flow of aerosol formulation into the chamber, (ii) defines a closed metered volume for pressurized aerosol formulation between the external surface of the valve stem and internal surface of the chamber, and (iii) moves with the closed metered volume within the chamber without decreasing the volume of the closed metered volume until the metered volume communicates with an outlet passage thereby allowing dispensing of the metered volume of pressurized aerosol formulation. A valve of this type is described in U.S. Patent No. 5,772,085.

Thus, the meter may comprise at least one metering chamber.

On actuation of the meter, the or each metering chamber may move into fluid communication with the reservoir.

Alternatively, or in addition, the meter and the reservoir may be relatively rotatable with respect to each other about a common central axis.

In one embodiment the or each metering chamber is adapted to be in fluid communication selectively with the reservoir or with the patient.

The or each metering chamber may have a variable volume.

The or each metering chamber may have a fixed volume which metering volume is variable by insertion of a plunger or piston.

The or each metering chamber may be formed from expandable material.

The or each metering chamber may have a telescopic or concertina arrangement.

In one embodiment, there may be a gas permeable dry powder retaining means below the or each metering chamber. The retaining means may be made from a gas-permeable filter, a mesh screen, a porous material or a perforated chamber element.
The transport means may comprise a perforated strip and claw advancement mechanism and/or a ratchet wheel and a driving pawl advancement mechanism.

A reset mechanism may be provided for resetting the transport means after actuation thereof. The reset mechanism may for example, comprise a spring, motor, mechanical arrangement or a reset coupling which is reversibly deformable in response to the application of non-mechanical energy thereto.

The term 'non-mechanical energy' herein is used to mean essentially any energy type which is not mechanical energy. The coupling and any reset coupling herein typically comprise a material which deforms, or undergoes a phase transition in response to the application of non-mechanical energy, thereby resulting in a change in shape/dimension of the coupling which serves to actuate the transport means. In embodiments the energy may be in the form of heat energy, electrical current energy, electrical field energy and magnetic field energy.

Preferably, the non-mechanical energy comprises electric current flow through the coupling or reset coupling.

Preferably, the coupling or reset coupling comprises a wire, strip, coil or tube.

Arrangements comprising multiple strips, wires, coils, or tubes are also envisaged. The multiple strips, wires, coils, or tubes may be arranged in any suitable fashion including parallel or series arrangements and bundle arrangements.

The coupling may be coated with any suitable coating, or encased within any suitable encasing including a shrink-wrap sheath.

In one particular aspect, the coupling or reset coupling comprises one or more wires which contract in response to application of non-mechanical energy.
thereto.

Preferably, the degree of contraction of the coupling is from 2% to 8%.

In embodiments, the coupling comprises an alloy which undergoes a phase transition on heating (shape memory alloys). Certain shape memory alloys also undergo a change in shape on cooling without externally applied energy. Such two way shape memory alloys are also envisaged for use herein.

In one embodiment, the shape memory alloy is preferably a nickel-titanium alloy such as a nickel-titanium alloy comprising from 5% to 95%, preferably from 20% to 80%, nickel by weight and from 95% to 5%, preferably from 80% to 20%, titanium by weight. By nickel-titanium alloy it is meant an alloy comprised essentially of nickel and titanium, although other elements such as Cu and Nb may be present in small (e.g. trace) amounts.

In other embodiments, the shape memory alloy is preferably a copper-aluminium-nickel alloy or a copper-zinc-aluminium alloy. Trace amounts of other elements may also be present.

In further embodiments, the coupling comprises an alloy which undergoes a phase transition on application of a magnetic field thereto (magnetic shape memory alloys). These materials are generally intermetallic, ferromagnetic alloys that exhibit twin variants in the martensitic, or low-temperature, phase of the material. Suitable magnetic shape memory alloys are for example, described in US Patent No. 5,958,154.

In one embodiment, the magnetic shape memory alloy exhibits an austenitic crystal structure above a characteristic phase transformation temperature and also exhibits a martensitic twinned crystal structure below the phase transformation temperature. The alloy has a magnetocrystalline anisotropy
energy that is sufficient to enable motion of twin boundaries of the martensitic twinned crystal structure in response to application of a magnetic field to the martensitic twinned crystal structure.

Where a magnetic shape memory alloy is employed the medicament dispenser preferably includes a magnetic field source disposed with respect to the coupling in an orientation that applies to the coupling a magnetic actuation field in a direction that is substantially parallel with a selected twin boundary direction of the martensitic twinned crystal structure of the coupling material.

Alternatively, the medicament dispenser preferably includes a magnetic bias field source disposed with respect to the coupling in an orientation that applies a magnetic bias field to the coupling, and a magnetic actuation field source disposed with respect to the coupling in an orientation that applies a magnetic actuation field to the coupling material in a direction that is substantially perpendicular to the orientation of the applied magnetic bias field.

A preferred magnetic shape memory alloy is the actuator material comprising an alloy composition defined as $\text{Ni}_{65-x-y}\text{Mn}_{20+x}\text{Ga}_{15+y}$, where x is between 3 atomic % and 15 atomic % and y is between 3 atomic % and 12 atomic %. Preferably, the actuator material comprises an alloy composition defined as $\text{Ni}_{65-x-y}\text{Mn}_{20+x}\text{Ga}_{15+y}$, where x is between 6 atomic % and 10 atomic % and y is between 5 atomic % and 9 atomic %; or where x is between 12 atomic % and 15 atomic % and y is between 3 atomic % and 6 atomic %; or where x is between 10 atomic % and 14 atomic % and y is between 3 atomic % and 6 atomic %; or where x is between 7 atomic % and 11 atomic % and y is between 3 atomic % and 7 atomic %. In a particularly preferred aspect, the alloy is $\text{Ni}_{90}\text{Mn}_{20}\text{Ga}_{25}$.

Another preferred magnetic shape memory alloy is the alloy having the composition $(\text{Ni}_{a}\text{Fe}_{b}\text{Co})_{65-x-y}(\text{Mn}_{d}\text{Fe}_{e}\text{Co})_{20+x}(\text{Ga}_{g}\text{Si}_{h}\text{Al})_{15+y}$, where x is between 3 atomic % and 15 atomic % and y is between 3 atomic % and 12 atomic %, and
where \(a+b+c=1 \), where \(d+e+f=1 \), and \(g+h+i=1 \).

In preferred aspects, \(b \) is between zero and 0.6, \(c \) is between zero and 0.6, and
\(e, f, h \) and \(i \) are each zero; or \(b \) and \(c \) are each zero, \(e \) is between zero and 0.6, \(f \) is between zero and 0.6, and \(h \) and \(i \) are each zero; or \(b, c, e \) and \(f \) are each zero, \(h \) is between zero and 0.5, and \(i \) is between zero and 0.5.

Other suitable shape memory alloys include those based on ion-exchange polymer composites such as are described in ‘Ionic Polymer-Metal Composites (IPMC) As Biomimetic Sensors, Actuators & Artificial Muscles – A Review’, M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson and J. Smith as published at http://www.unm.edu/~amri/paper.html.

Other potentially suitable shape memory alloys include those based on contractile polymers such as are described in ‘Review of Artificial Muscle based on Contractile Polymers’, Massachusetts Institute of Technology Artificial Intelligence Laboratory Memo No. 1330, November 1991, David L. Brock.

Preferably, the one or more wires have a diameter from 30 to 400 micrometers, preferably from 50 to 150 micrometers.

Preferably, the coupling comprises from two to twenty, preferably six to twelve wires which contract in response to the application of non-mechanical energy thereto. The wires may be arranged in any suitable fashion including parallel or series arrangements and bundle arrangements.

In another aspect, the coupling comprises a strip which comprises multiple layers of different metals. Suitable strips typically comprise a plurality of layers of material, each material having a different coefficient of thermal expansion.

Preferred examples of strips include those comprising multiple layers of different
metals (e.g. bimetallic strips) and strips comprising at least one piezoelectric material. Suitable piezoelectric materials include piezoelectric ceramics, such as compounds of lead zirconate and lead titanate, and piezoelectric crystals which are generally polycrystalline ferroelectric materials with the perovskite structure. Such piezoelectric materials generally deform in response to the application of an electric field.

In one aspect, the coupling is deformable in response to heating arising from electrical current flow in the range from 0.01A to 100A, preferably from 0.1A to 5A.

In another aspect, the coupling is deformable in response to the application of an electrical field, particularly where the coupling comprises a piezoelectric material.

In a further aspect, the coupling is deformable in response to a magnetic field of from 0.01 to 100 Tesla. The magnetic field may for example, be produced by a permanent magnet or by an electromagnet.

Preferably, the medicament dispenser additionally comprises an electrical energy source for providing electric current, or for providing an electric field, or for powering an electromagnet to provide a magnetic field. In one aspect, the electrical energy source comprises a voltaic cell or battery of voltaic cells which may be rechargeable. In another aspect, the electrical energy source comprises a photovoltaic cell or battery of photovoltaic cells. In a further aspect, the electrical energy source comprises a converter for converting mechanical energy into electrical energy. In a further aspect, the electrical energy source comprises a capacitor for local storage of charge. Suitable capacitors comprise those known as ‘super capacitors’ with a high capacitance to size ratio, such as those consisting of solid electrodes and liquid electrolyte.
Any known systems for power management and conservation may be employed with the electrical energy source to manage and/or conserve the power output thereof.

Energy may be conserved by a variety of means to enable the device to operate for longer on a given source of energy, such as a battery. Energy conservation or saving methods have additional advantages in terms of reducing the size requirements of the power source (e.g. battery) and thus the weight and portability of the inhalation device.

A variety of energy saving methods are available which generally involve reducing power consumption. One such method is to use a clock or timer circuit to switch the power on and off at regular or predetermined intervals. In another method the system can selectively switch on/off specific electronic devices, such as visual display units or sensors, in order to power these devices only when they are required to perform a particular sequence of events. Thus different electronic devices may be switched on and off at varying intervals and for varying periods under control of the system. The power sequencing system may also respond to a sensor, such as a motion or breath sensor, which is activated on use of the device.

Low power or "micropower" components should be used within the electronics where possible and if a high power device is required for a particular function this should be put into a low power standby mode or switched off when not required. Similar considerations apply in the selection of transducers.

Operation at low voltage is desirable since power dissipation generally increases with voltage.

For low power digital applications complementary metal oxide semi-conductor (CMOS) devices are generally preferred and these may be specially selected by screening for low quiescent currents. Clock speeds of processors and other
logic circuits should be reduced to the minimum required for computational throughput as power consumption increases with frequency. Supply voltages should also be kept at minimal values consistent with reliable operation because power dissipation in charging internal capacitance's during switching is proportional to the square of the voltage. Where possible, supply voltages should be approximately the same throughout the circuit to prevent current flowing through input protection circuits. Logic inputs should not be left floating and circuits should be arranged so that power consumption is minimised in the most usual logic output state. Slow logic transitions are undesirable because they can result in relatively large class-A currents flowing. Resistors may be incorporated in the power supply to individual devices in order to minimise current in the event of failure.

In some control applications, devices that switch between on and off states are preferred to those that allow analog (e.g. linear) control because less power is dissipated in low resistance on states and low current off states. Where linear components are used (e.g. certain types of voltage regulators) then types with low quiescent currents should be selected. In some circuit configurations it is preferable to use appropriate reactive components (i.e. inductors and capacitors) to reduce power dissipation in resistive components.

Any electrical circuit may incorporate voltage amplification means for generating a higher voltage than that supplied by the voltaic cell or battery of voltaic cells, for example a step-up or inverting switching circuit or a dc-dc converter incorporating an oscillator, transformer and rectifier.

The electrical circuit may incorporate one or more energy storage components such as capacitors or inductors in order to supply a high enough instantaneous current to raise the temperature of the strips or wires at the required rate to the required temperature.
The input to the electrical circuit may be connected to the electrical energy source by means of a mechanical, electro-mechanical or electronic switching component.

The output of the electrical circuit may be connected to the strips or wires or to an electromagnet by means of a mechanical, electro-mechanical or electronic switching component or by a component allowing the output current to be controlled in a linear or digital (e.g. pulse width modulated) manner.

Suitable control profiles (e.g. via pulse width modulation) include those where the temperature of a shape memory alloy coupling is initially raised to a holding temperature (H) which is just below the transition temperature (T). Actuation of the coupling is then achievable by heating the coupling to a temperature (A) just above the transition temperature. This can be achieved rapidly because the holding temperature (H) is close to the transition temperature (T). When the source of heating is switched off, deactuation also occurs rapidly because the cooling from a temperature (A) only just above the transition temperature (T) to the transition temperature involves only a small temperature decrease.

The strip or wire components may be powered from the battery using a switching component without additional power supply circuitry.

Suitably, the medicament dispenser additionally comprises a controller for controlling the amount of electrical current flow through the coupling or to an electromagnet.

Suitably, the medicament dispenser additionally comprises a timer for controlling the duration of electrical current flow through the coupling or to an electromagnet.

Suitably, the medicament dispenser additionally comprises a local electrical
source such as a capacitor or inductor.

The additional energy source may be mechanically generated, for example, the energy source may comprise a biasable resilient member e.g. a spring. Alternatively, the energy source may comprise a source of compressed fluid, preferably compressed gas. The energy source may comprise a chemical energy source or a physically explosive energy source.

Preferably, deformation of the coupling and hence, actuation of the transport means is responsive to a patient-actuable mechanism.

In one aspect, said mechanism comprises a button, switch or lever arrangement.

In another aspect, the medicament dispenser is in the form of an inhaler for the delivery of inhalable medicament. Preferably, deformation of the coupling and hence, actuation of the transport means is responsive to a patient-actuable mechanism comprising a sensor which senses the breath of a patient. The deformation of the coupling (e.g. by electrical current flow therethrough) may be responsive to the detection of the inward breath of a patient. Alternatively, deformation of the coupling (e.g. by electrical current flow therethrough) may be responsive to a mechanism coupled to any point in the breathing pattern of the patient, such as the end of the outward breath.

In one aspect, the sensor comprises a breath-movable element which is movable in response to the breath of a patient. Preferably, the breath-movable element is selected from the group consisting of a vane, a sail, a piston, a diaphragm and an impeller.

Movement of the breath-movable element may be detectable by any suitable technique for detecting movement. Suitable techniques include optical detectors, magnetic detectors or detectors using detection of capacitative effects.
Optical detectors may be used to detect movement of the breath-movable element by providing the element with a patterned outer surface, for example strips in a barcode type arrangement, and locating the optical detector so that it points towards the patterned surface. Movement of the breath-movable element alters the amount of the light source which reflects back onto the optical detector as the beam passes over the patterned surface. The strips may be arranged so that the direction of movement of the element can be detected.

Magnetic detectors may be used to detect the movement of breath-movable element by the use of a magnetic switch device. A reader is located on the dispenser and magnetic material embedded within the breath-movable element (or vice-versa). Movement of the breath-movable element results in a change of the magnetic field experienced by the reader. Alternatively, a Hall effect device can be used whereby a semiconductor measures the strength of the magnetic field of the magnetic material on the breath-movable element.

Detection of capacitative effects may be used to detect movement of the breath-movable element by adding a conductive part to the element and also to a second fixed part of the dispenser. Movement of the breath-movable element results in a change in capacitance which can be measured.

In another aspect, the sensor comprises a pressure sensor for sensing the pressure profile associated with the breath of a patient. A pressure transducer is an example of a suitable pressure sensor.

In another aspect, the sensor comprises an airflow sensor for sensing the airflow profile associated with the breath of a patient.

In another aspect, the sensor comprises a temperature sensor for sensing the temperature profile associated with the breath of a patient.
In another aspect, the sensor comprises a moisture sensor for sensing the moisture profile associated with the breath of a patient.

In another aspect, the sensor comprises a gas sensor for sensing the oxygen or carbon dioxide profile associated with the breath of a patient. The chemical profile of the inhaled and exhaled part of the breath cycle varies and this further may be used as a measurement tool.

Suitably, the breath data includes breath cycle data, FEV, and/or peak flow data.

In one aspect, the coupling is exposable to the airflow arising from the inhalation or expiration of the patient to assist in the cooling of the coupling post-actuation of the transport means. Other active cooling mechanisms may be employed, such as fan cooling.

Preferably, the dispenser further comprises release means. The release means may be actuable by the transport coupling.

As used herein, the term “release means” refers to the means for the making available of the dose for release to the patient, for example, the actual dispensing (whether passive or active) to the patient. The release may be active in the sense that medicament is actively dispensed from the container, or the release may be passive in the sense that medicament is merely made available for release when the release means is actuated.

The release means may comprise (i) a passive and/or (ii) an active dose-release mechanism.

Typically, the release means is linked to the transport means such that the release means is actuated immediately after metering and transport of a dose.
In one embodiment, the release means is passive and comprises making the metered dose available to the patient for inhalation thereby.

In another embodiment, the release means is active and comprises means to propel pressurised gas in the direction of patient inhalation. In this embodiment, the patient receives a positive signal that the dose has been dispensed which may add to patient confidence. An active release means may also increase the efficacy of delivery of the medicament, for example, the drug may be released in a more focussed plume or cloud towards the back of the inhaler’s nose or throat. Preferably, the gas-propelling means provides at least one pulse of gas on actuation.

The gas-propelling means may provide one pulse of gas for each dose dispensed.

The gas may be air or an inert gas.

In one embodiment, the medicament dispenser may be in the form of an active dry powder inhaler in which a “puff” of compressed air or gas (e.g. helium) is delivered from the release means, such as an aerosol container, to aerosolize a dose of released dry powder medicament.

In another embodiment, the medicament dispenser is in the form of a needleless injection system in which compressed air or gas (e.g. helium) is delivered at high velocity from the release means (e.g. an aerosol container) to propel a dose of dry powder medicament for injection into the skin.

Thus, suitably the aerosol container, which as used herein refers to any suitable container for comprising liquefied gas under pressure, comprises a compressed air or gas (e.g. helium).
In another aspect, the medicament container may be arranged for rupture in response to firing of the release means.

Preferably the medicament dispenser comprises an actuation or dose counter for counting the number of actuations of the transport means. The actuation or dose counter may be mechanical or electronic. More preferably the actuation or dose counter is independent of the coupling so that counting will occur even if the transport means is manually actuated.

Suitably, the medicament dispenser additionally comprises an electronic data management system. The electronic data management system has input/output capability and comprises a memory for storage of data; a microprocessor for performing operations on said data; and a transmitter for transmitting a signal relating to the data or the outcome of an operation on the data.

Suitably, the electronic data management system comprises an electronic control system for controlling the supply of energy to the coupling. Thus, in aspects the control system may regulate flow of electrical current to the coupling or to any heater or electromagnet source associated therewith.

The control system may form part of a larger electronic data management system capable of receiving inputs from other electronic components. In particular, inputs may be received from any sensor to enable actuation of the coupling in response to sensor, particularly breath sensor input.

The control system may be arranged to accomplish any suitable control of actuation of the coupling including varying the amount of energy supplied thereto, the rate of energy supplied thereto, pulsing patterns of energy supply to the coupling, and more complex control patterns.
Suitably, the electronic data management system is arranged to be responsive to or activated by the voice of a user. Thus, for example the system may be switched on or off in response to a voice command.

The electronic data management system may be integral with the body. Alternatively, the electronic data management system forms part of a base unit which is reversibly associable with the body.

Suitably, the medicament dispenser additionally comprises a data input system for user input of data to the electronic data management system. Preferably, the data input system comprises a man machine interface (MMI) preferably selected from a keypad, voice or noise recognition interface, graphical user interface (GUI) or biometrics interface.

Suitably, the system additionally comprises a visual display unit for display of data from the electronic data management system to the user. The display may for example, comprise a screen such as an LED or LCD screen. More preferably the visual display unit is associable with the housing. More basic display units are envisaged also including those in which a light or pattern of lights is employed to act as a signal to the patient.

The electronic data management system may further comprise a voice synthesiser for verbal communication of data, instructions and feedback to a user.

Suitably, the medicament dispenser additionally comprises a datalink for linking to a local data store to enable communication of data between the local data store and the electronic data management system. The datastore may also comprise data management, data analysis and data communication capability.

The datastore may itself form part of a portable device (e.g. a handheld device)
or it may be sized and shaped to be accommodated within the patient’s home. The datastore may also comprise a physical storage area for storage of replacement medicament containers. The datastore may further comprise a system for refilling medicament from a reservoir of medicament product stored therewithin. The datastore may further comprise an electrical recharging system for recharging any electrical energy store on the medicament dispenser, particularly a battery recharging system.

The datalink may for example enable linking with a docking station, a personal computer, a network computer system or a set-top box by any suitable method including a hard-wired link, an infra red link or any other suitable wireless communications link.

Suitably, the medicament dispenser additionally comprises an actuation detector for detecting actuation of the trigger means wherein said actuation detector transmits actuation data to the electronic data management system.

The medicament dispenser may additionally comprise a safety mechanism to prevent unintended multiple actuations of the trigger means. The patient is thereby protected from inadvertently receiving multiple doses of medicament in a situation where they take a number of short rapid breaths. More preferably, the safety mechanism imposes a time delay between successive actuations of the release means. The time delay is typically of the order of from three to thirty seconds.

Suitably, the medicament dispenser additionally comprises a release detector for detecting release of medicament from the medicament container, wherein said release detector transmits release data to the electronic data management system.

Suitably, the medicament dispenser additionally comprises a shake detector for
detecting shaking of the medicament container (e.g. prior to actuation of the transport means), wherein said shake detector transmits shake data to the electronic data management system.

Suitably, the electronic data management system includes a predictive algorithm or look-up table for calculating the optimum amount of medicament to dispense.

Suitably, the memory on the electronic data management system includes a dose memory for storing dosage data and reference is made to the dose memory in calculating the optimum amount of medicament to dispense.

Suitably, the medicament dispenser additionally comprises a selector for selecting the amount of medicament to dispense from the dispenser. In one aspect, the selector is manually operable. In another aspect, the selector is operable in response to a signal from the transmitter on the electronic data management system.

Suitably, the medicament dispenser comprises in association with a body or housing thereof, a first transceiver for transmitting and receiving data and in association with the medicament container, a second transceiver for transmitting and receiving data, wherein data is transferable in two-way fashion from the first transceiver to the second transceiver. The data is preferably in digital form and suitable for transfer by electronic or optical means. A medicament dispenser of this general type is described in pending UK Patent Application No. 0020538.5.

The body or housing of the medicament dispenser is typically shaped to define a cavity within which the medicament container is receivable. The body and/or medicament container may be further shaped with any manner of grooves, indentations or other shaping or surface details to define a 'lock and key' relationship between the body and the container. Colour guides, arrows and any other surface markings may also be employed.
One advantage of embodiments of this type is the ability to store many types of information in different parts of the memory structure of the transceivers. The information is furthermore stored in a form which is readily and accurately transferable. The information could for example, include manufacturing and distribution compliance information written to the memory at various points in the manufacturing or distribution process, thereby providing a detailed and readily accessible product history of the dispenser. Such product history information may, for example, be referred to in the event of a product recall. The compliance information could, for example, include date and time stamps. The information could also include a unique serial number stored in encrypted form or in a password protectable part of the memory which uniquely identifies the product and therefore may assist in the detection and prevention of counterfeiting. The information could also include basic product information such as the nature of the medicament and dosing information, customer information such as the name of the intended customer, and distribution information such as the intended product destination.

On loading or reloading the dispenser with a medicament container (such as an aerosol canister or dry powder cassette) the second transceiver may, for example, read the unique serial number, batch code and expiry date of the medicament and any other information on the second transceiver. In this way the nature and concentration of the medicament, together with the number of doses used or remaining within the container, may be determined. This information can be displayed to the patient on a visual display unit. Other information, such as the number of times the dispenser has been reloaded with a medicament container, may also be displayed.

Similarly, should the container be removed from the housing before the supply of medicament is exhausted, the same data can be read from the second transceiver and the number of doses remaining or used determined. Other
information, such as the date and time of administration of the drug, or environmental exposure data such as the minimum / maximum temperatures or levels of humidity the medicament container has been exposed to, may also be read and displayed to the user.

In the event that the supply of medicament within the container becomes exhausted, or that the shelf life of the medicament has expired, or that the first transceiver does not recognise the batch code on the second transceiver, activation of the dispenser may be prevented to safeguard the user. Activation may also be prevented if the medicament has been exposed to extreme environmental conditions for periods outwith the manufacturer's guidelines.

Data may be transferred to and from any transceiver during the period of use of the medicament dispenser by the patient. For example, the medicament dispenser may include an electronic data management system having various sensors associated therewith. Any data collected by the sensors or from any data collection system associated with the electronic data management system including a clock or other date/time recorder is transferable.

Data may be transferred each time the patient uses the device. Or alternatively, data may be stored in a database memory of the electronic data management system and periodically downloaded to any transceiver. In either case, a history of the usage of the device may be built up in the memory of a transceiver.

In one embodiment herein, a history of the usage of the medicament dispenser is transferred to the second transceiver on the aerosol container. When the medicament container is exhausted it is exchanged by the patient for a new refill container. At the point of exchange, which will typically occur at the pharmacy, data may be transferred from the exhausted container to the refill and vice-versa. Additionally, usage history data may be read from the refill and transferred to a healthcare data management system for example comprising a
network computer system under the control of a healthcare data manager.

Methods are envisaged herein whereby the patient is given some sort of reward for returning the refill and making available the data comprised within the second transceiver. Methods are also envisaged herein whereby the healthcare data manager is charged for either receipt of the data from the second transceiver or for its use for commercial purposes. Any rewards or charging may be arranged electronically. The methods may be enabled by distributed or web-based computer network systems in which any collected data is accessible through a hub on the network. The hub may incorporate various security features to ensure patient confidentiality and to allow selective access to information collected dependent upon level of authorisation. The level of user authorisation may be allocated primarily to safeguard patient confidentiality. Beyond this the level of user authorisation may also be allocated on commercial terms with for example broader access to the database being authorised in return for larger commercial payments.

Suitably, the first and second transceiver each comprise an antenna or equivalent for transmitting or receiving data and connecting thereto a memory. The memory will typically comprise an integrated circuit chip. Either transceiver may be configured to have a memory structure which allows for large amounts of information to be stored thereon. The memory structure can be arranged such that parts of the memory are read-only, being programmed during/after manufacture, other parts are read/write and further parts are password protectable. Initial transfer of information (e.g. on manufacture or one dispensing) to or from any transceiver can be arranged to be readily achievable by the use of a reader which is remote from the medical dispenser, thereby minimising the need for direct product handling. In further aspects, the reader can be arranged to simultaneously read or write to the memory of multiple transceivers on multiple medicament dispensers.
A suitable power source such as a battery, clockwork energy store, solar cell, fuel cell or kinetics-driven cell will be provided as required to any electronic component herein. The power source may be arranged to be rechargeable or reloadable.

Suitably, data is transferable in two-way fashion between the first and second transceiver without the need for direct physical contact therebetween.

Preferably, data is transferable wirelessly between the first and second transceiver.

Suitably, the first transceiver is an active transceiver and the second transceiver is a passive transceiver. The term active is used to mean directly powered and the term passive is used to mean indirectly powered.

Suitably, the second transceiver comprises a label or tag comprising an antenna for transmitting or receiving energy; and an integrated circuit chip connecting with said antenna, and the first transceiver comprises a reader for said label or tag. In this case the label or tag is a passive transceiver and the reader is an active transceiver. Preferably, the reader will not need to be in direct contact with the tag or label to enable the tag or label to be read.

The tag may be used in combination and/or integrated with other traditional product labelling methods including visual text, machine-readable text, bar codes and dot codes.

Suitably, the integrated circuit chip has a read only memory area, a write only memory area, a read/write memory area or combinations thereof.

Suitably, the integrated circuit chip has a one-time programmable memory area. More preferably, the one-time programmable memory area contains a unique
serial number.

Suitably, the integrated circuit chip has a preset memory area containing a factory preset, non-changeable, unique data item. The preset memory item is most preferably in encrypted form.

Suitably, the integrated circuit chip has plural memory areas thereon. Suitably, any memory area is password protected.

Suitably, any memory area contains data in encrypted form. Electronic methods of checking identity, error detection and data transfer may also be employed.

In one aspect, the integrated circuit has plural memory areas thereon including a read only memory area containing a unique serial number, which may for example be embedded at the time of manufacture; a read/write memory area which can be made read only once information has been written thereto; and a password protected memory area containing data in encrypted form which data may be of anti-counterfeiting utility.

Suitably, the tag is on a carrier and the carrier is mountable on the body or housing of the medicament dispenser or the medicament container.

In one aspect, the carrier is a flexible label. In another aspect, the carrier is a rigid disc. In a further aspect, the carrier is a rectangular block. In a further aspect, the carrier is a collar ring suitable for mounting to the neck of an aerosol container. Other shapes of carrier are also envisaged.

Suitably, the carrier is mouldable or weldable to the medicament container or housing. Suitably, the carrier encases the tag. More preferably, the carrier forms a hermetic seal for the tag.
In one aspect, the carrier comprises an insulating material such as a glass material or, a paper material or an organic polymeric material such as polypropylene. Alternatively, the carrier comprises a ferrite material.

The energy may be in any suitable form including ultrasonic, infrared, radiofrequency, magnetic, optical and laser form. Any suitable channels may be used to channel the energy including fibre optic channels.

In one aspect, the second transceiver comprises a radiofrequency identifier comprising an antenna for transmitting or receiving radiofrequency energy; and an integrated circuit chip connecting with said antenna, and the first transceiver comprises a reader for said radiofrequency identifier. In this case the radiofrequency identifier is a passive transceiver and the reader is an active transceiver. An advantage of radiofrequency identifier technology is that the reader need not be in direct contact with the radiofrequency identifier tag or label to be read.

The radiofrequency identifier can be any known radiofrequency identifier. Such identifiers are sometimes known as radiofrequency transponders or radiofrequency identification (RFID) tags or labels. Suitable radiofrequency identifiers include those sold by Philips Semiconductors of the Netherlands under the trade marks Hitag and Icode, those sold by Amtech Systems Corporation of the United States of America under the trade mark Intellitag, and those sold by Texas Instruments of the United States of America under the trade mark Tagit.

Suitably, the antenna of the RFID tag is capable of transmitting or receiving radiofrequency energy having a frequency of from 100 KHz to 2.5 GHz. Preferred operating frequencies are selected from 125 KHz, 13.56 MHz and 2.4 GHz.
In one aspect, the second transceiver comprises a magnetic label or tag
comprising an antenna for transmitting or receiving magnetic field energy; and
an integrated circuit chip connecting with said antenna, and the first transceiver
comprises a reader for said magnetic label or tag. In this case the magnetic label
or tag is a passive transceiver and the reader is an active transceiver.

A suitable magnetic label or tag comprises plural magnetic elements in mutual
association whereby the magnetic elements move relative to each other in
response to an interrogating magnetic field. A magnetic label or tag of this type
is described in U.S. Patent No. 4,940,966. Another suitable magnetic label or tag
comprises a magnetorestrictive element which is readable by application of an
interrogating alternating magnetic field in the presence of a magnetic bias field
which results in resonance of the magnetorestrictive elements at different
predetermined frequencies. A magnetic label of this type is described in PCT
Patent Application No. WO92/12402. Another suitable magnetic label or tag
comprising plural discrete magnetically active regions in a linear array is
described in PCT Patent Application No. WO96/31790. Suitable magnetic labels
and tags include those making use of Programmable Magnetic Resonance
(PMR) (trade name) technology.

In another aspect, the second transceiver comprises a microelectronic memory
chip and the first transceiver comprises a reader for said microelectronic
memory chip. The microelectronic memory chip may comprise an Electrically
Erasable Programmable Read Only Memory (EEPROM) chip or a SIM card-type
memory chip. In this case the microelectronic memory chip is a passive
transceiver and the reader is an active transceiver.

Any transceiver herein, particularly a passive transceiver may be mounted on or
encased within any suitable inert carrier. The carrier may comprise a flexible
sheet which may in embodiments be capable of receiving printed text thereon.
In one aspect, the first transceiver is integral with the body such that a single unit is comprised. The first transceiver may for example be encased within or moulded to the body.

In another aspect, the first transceiver forms part of a base unit which is reversibly associable with the body. The base unit may for example, form a module receivable by the body such as a snap-in module.

Suitably, the medicament dispenser additionally comprises a communicator for wireless communication with a network computer system to enable transfer of data between the network computer system and the electronic data management system. Dispensers employing such communicators are described in pending PCT Applications No.s PCT/EP00/09291 (PG3786), PCT/EP00/09293 (PG4029) and PCT/EP00/09292 (PG4159). Preferably, the communicator enables two-way transfer of data between the network computer system and the electronic data management system.

Suitably, the data is communicable between the network computer system and the electronic data management system in encrypted form. All suitable methods of encryption or partial encryption are envisaged. Password protection may also be employed. Suitably, the communicator employs radiofrequency or optical signals.

In one aspect, the communicator communicates via a gateway to the network computer system. In another aspect, the communicator includes a network server (e.g. a web server) such that it may directly communicate with the network.

In a further aspect, the communicator communicates with the gateway via a second communications device. Preferably, the second communications device is a telecommunications device, more preferably a cellular phone or pager.
Preferably, the communicator communicates with the second communications device using spread spectrum radiofrequency signals. A suitable spread spectrum protocol is the Bluetooth (trade mark) standard which employs rapid (e.g. 1600 times a second) hopping between plural frequencies (e.g. 79 different frequencies). The protocol may further employ multiple sending of data bits (e.g. sending in triplicate) to reduce interference.

In one aspect, the network computer system comprises a public access network computer system. The Internet is one suitable example of a public access network computer system, wherein the point of access thereto can be any suitable entrypoint including an entrypoint managed by an Internet service provider. The public access network computer system may also form part of a telecommunications system, which may itself be either a traditional copper wire system, a cellular system or an optical network.

In another aspect, the network computer system comprises a private access network computer system. The private access network system may for example, comprise an Intranet or Extranet which may for example, be maintained by a health service provider or medicament manufacturer. The network may for example include password protection; a firewall; and suitable encryption means.

Preferably, the communicator enables communication with a user-specific network address in the network computer system.

The user-specific network address may be selected from the group consisting of a web-site address, an e-mail address and a file transfer protocol address. Preferably, the user-specific network address is accessible to a remote information source such that information from said remote information source can be made available thereto. More preferably, information from the user-specific network address can be made available to the remote information source.
In one aspect, the remote information source is a medicament prescriber, for example a doctor's practice. Information transferred from the medicament prescriber may thus, comprise changes to prescription details, automatic prescription updates or training information. Information transferred to the medicament prescriber may comprise compliance information, that is to say information relating to the patient's compliance with a set prescribing programme. Patient performance information relating for example, to patient-collected diagnostic data may also be transferred to the medicament prescriber. Where the dispenser is an inhaler for dispensing medicament for the relief of respiratory disorders examples of such diagnostic data would include breath cycle data or peak flow data.

In another aspect, the remote information source is a pharmacy. Information transferred from the pharmacy may thus, comprise information relating to the medicament product. Information sent to the pharmacy may thus include prescription requests which have been remotely pre-authorised by the medicament prescriber.

In a further aspect, the remote information source is an emergency assistance provider, for example a hospital accident and emergency service or an emergency helpline or switchboard. The information may thus, comprise a distress or emergency assist signal which requests emergency assistance.

In a further aspect, the remote information source is a manufacturer of medicament or medicament delivery systems. Information transferred to the system may thus, comprise product update information. The system may also be configured to feed information back to the manufacturer relating to system performance.

In a further aspect, the remote information source is a research establishment.
In a clinical trial situation, information may thus be transferred relating to the trial protocol and information relating to patient compliance fed back to the research establishment.

5 In a further aspect, the remote information source is an environmental monitoring station. Information relating to weather, pollen counts and pollution levels may thus be made accessible to the system.

In a further aspect, the remote information source is a computer software download site from which software may be downloaded for use in the electronic data management system. Embodiments are envisaged in which such software downloads are employed to upgrade or modify any existing software employed by the electronic data management system.

10 Suitably, the medicament dispenser additionally comprises a geographic positioning system such as a global positioning system or a system which relies on the use of multiple communications signals and a triangulation algorithm.

In another embodiment, the inhaler additionally comprises climate control means. Preferably, the climate control means is actuable by the coupling.

The climate control means may comprise means to (i) reduce moisture increase in the dispenser; and/or (ii) maintain ambient temperature; and/or (iii) dry the meter prior to actuation of the dispenser.

25 The climate control means may comprise a desiccant and/or a heater.

The climate control means may comprise a temperature and/or a moisture sensor.
The dispenser of the invention is suitable for dispensing medicament, particularly for the treatment of respiratory disorders such as asthma and chronic obstructive pulmonary disease (COPD).

Appropriate medicaments may thus be selected from, for example, analgesics, e.g., codeine, dihydromorphine, ergotamine, fentanyl or morphine; anginal preparations, e.g., diltiazem; antiallergics, e.g., cromoglicate, ketotifen or nedocromil; antiinfectives e.g., cephalosporins, penicillins, streptomycin, sulphonamides, tetracyclines and pentamidine; antihistamines, e.g., methapyrilene; anti-inflammatory agents, e.g., beclometasone dipropionate, fluticasone propionate, flunisolide, budesonide, rofleponide, mometasone furoate or triamcinolone acetonide; antitussives, e.g., noscapine; bronchodilators, e.g., albuterol, salmeterol, ephedrine, adrenaline, fenoterol, formoterol, isoprenaline, metaproterenol, phenylephrine, phenylpropanolamine, pirbuterol, reproterol, rimiterol, terbutaline, isoetharine, tulobuterol, or (-)-4-amino-3,5-dichloro-α-[[6-[2-(2-pyridinyl)ethoxy] hexyl]methyl] benzenemethanol; diuretics, e.g., amiloride; anticholinergics, e.g., ipratropium, tiotropium, atropine or oxitropium; hormones, e.g., cortisone, hydrocortisone or prednisolone; xanthines, e.g., aminophylline, choline theophyllinate, lysine theophyllinate or theophylline; therapeutic proteins and peptides, e.g., insulin or glucagon. It will be clear to a person skilled in the art that, where appropriate, the medicaments may be used in the form of salts, (e.g., as alkali metal or amine salts or as acid addition salts) or as esters (e.g., lower alkyl esters) or as solvates (e.g., hydrates) to optimise the activity and/or stability of the medicament.

Medicaments can also be delivered in combinations. Preferred formulations containing combinations of active ingredients contain salbutamol (e.g., as the free base or the sulphate salt) or salmeterol (e.g., as the xinafoate salt) in combination with an antiinflammatory steroid such as a beclometasone ester (e.g., the dipropionate) or a fluticasone ester (e.g., the propionate). A particularly
preferred combination comprises salmeterol xinafoate salt and fluticasone propionate.

Preferred medicaments are selected from albuterol, salmeterol, fluticasone propionate and beclomethasone dipropionate and salts or solvates thereof, e.g., the sulphate of albuterol and the xinafoate of salmeterol, and any mixtures thereof. Alternatively, the dispenser may be employed for dispensing vaccine.

In one embodiment, the medicament may be in dry powder form and may include a pharmaceutical excipient in dry powder form.

The density of the dry powder medicament particles may be reduced relative to standard dry powder medicament.

The dry powder medicament particles may be aerodynamically shaped to improve medicament delivery to the patient.

Alternatively, the medicament container may comprise medicament in solution or suspension form.

The medicament container may comprise a suspension of a medicament in a propellant, for example, liquefied HFA134a, HFA-227, helium or carbon dioxide.

Alternatively, the medicament container may comprise a solution of a medicament in a solvent.

Preferably, the medicament dispenser additionally comprises a safety mechanism to prevent unintended multiple actuations of the transport means.

The safety mechanism may impose a time delay between successive actuation of the transport means.
Preferably, the medicament dispenser comprises a manual override enabling manual actuation of the transport means. The manual override may be designed to cover all situations in which the coupling does not actuate in the normal manner. These will include situations where actuation does not happen (e.g. due to power failure). Alternatively, this will include situations where actuation occurs, but reset of the coupling fails (e.g. due to power being in "continuous on" mode) and a manual reset, decoupling (e.g. by severing the coupling) or "circuit break" is employed.

Preferably, the medicament dispenser comprises a child resistance feature to prevent undesirable actuation thereof by children.

In another aspect, the invention provides an actuator for use in a medicament dispenser as described hereinabove.

In a further aspect, the invention provides an actuator for a medicament container comprising a housing, within said housing, a container seat for receipt of the medicament container; on the housing or connecting therewith, transport means to transport a metered amount of medicament from a rest position to a delivery position, wherein the transport means comprises a transport coupling which is reversibly deformable in response to the application of non-mechanical energy thereto.

The actuator herein may be configured to include, as relevant, any of the above described features of the medicament dispenser. In particular, the actuator may be configured to include an electronic data management system comprising control means for the actuation of the coupling.

Preferably, the non-mechanical energy comprises electric current flow through the coupling.
In one embodiment, the coupling comprises one or more wires which contract in response to application of non-mechanical energy thereto. More preferably, the one or more wires comprise an alloy which undergoes a phase transition on heating, for example in response to flow of electrical current therethrough. The alloy is for example, a nickel-titanium alloy.

In another embodiment, the one or more wires comprise an alloy which undergoes a phase transition on application of a magnetic field thereto (magnetic shape memory alloys).

Suitably, the actuator additionally comprises an electronic control system for controlling the supply of non-mechanical energy to the coupling. Suitably, the electronic control system is capable of providing pulses of non-mechanical energy to the coupling.

Suitably, the electronic control system is capable of receiving inputs from electronic sensors locatable on the dispenser. Suitably, the actuator additionally comprises an electronic sensor selected from the group consisting of a breath sensor, a shake sensor, a temperature sensor, an infrared sensor and a patient ID sensor.

In a further aspect, the invention provides a medicament container for use in the dispenser and/or the actuator as described hereinabove.

According to a further aspect of the present invention there is provided a laboratory test apparatus comprising at least one actuator as described above and a mounting (e.g. a bench mounting) for the at least one actuator. The laboratory test apparatus is designed for use in testing the performance of the medicament dispenser in a laboratory environment. Often, plural actuators will be mounted on a single mounting to enable simultaneous testing thereof. The
laboratory test apparatus will typically be connected to various sensors and recording devices for monitoring aspects of the performance of the medicament dispenser.

According to a further aspect of the present invention there is provided a kit of parts comprising a medicament dispenser as described above in the form of a cartridge; and a housing shaped for receipt of said cartridge.

According to a further aspect of the present invention there is provided a kit of parts comprising an actuator as described above and, receivable by said actuator, a medicament container.

In a preferred commercial embodiment herein, the actuator is arranged for receipt of a refill cartridge. Typically, the actuator is in the form of a relatively complex device, including for example an electronic data management system and the cartridge is in the form of a medicament refill therefor.

In another aspect the cartridge comprises a medicament dispenser having a voltaic cell as an electrical energy source and the housing is provided with a mouthpiece for patient inhalation therethrough and electronic information display apparatus for displaying information to the patient.

The invention will now be described further with reference to the accompanying figures in which:-

Figure 1 shows one embodiment of transport means according to one aspect of the invention;

Figure 2a shows a breath operated inhaler comprising transport means according to another aspect of the invention in a rest position;

Figure 2b shows the inhaler of Figure 2a after actuation of the transport means; and
Figure 3 shows a dry powder inhaler comprising transport means according to another aspect of the invention.

Referring now to the figures, Figure 1 illustrates schematically one embodiment of the transport means according to the invention, in the form of a dry powder medicament inhaler metered dose strip advancement means.

The dry powder medicament is pre-metered into dose aliquots stored in blister packs 4 spaced along a carrier strip 6. The carrier strip 6 has a series of equally spaced perforations 8 along one side. The transport mechanism 2 takes the form of a transport coupling shape memory alloy (SMA) wire 10 linked at one end to a claw 12 which retains the strip 6 in position by engaging a perforation 8 along the strip’s length. The claw 12 is biased in its rest position by a return spring 14.

On actuation, an electrical current passes through the SMA wire 10 causing it to heat up and contract. The contracting wire pulls the claw 12 forward (in the direction of the arrow as seen on Figure 1) and advances the strip 6. It may take one cycle of heating the SMA wire for one complete dose advancement or it may take many cycles. A detector (not shown) may detect when the strip has advanced to the next dose (for example, by counting breaks in an infra red beam passing through the perforations). At this point, the current is switched off, and the SMA wire 10 cools and expands. The return spring 14 now disengages the claw 12 from the strip 6 and the claw returns to the rest position ready for another transport cycle.

Figures 2 a and b illustrate the transport means as embodied in a dry powder reservoir inhaler 22. The inhaler 22 comprises a powder reservoir 24, a power supply 26, a metered dose plate 28 having metering cup 28a, a canister containing HFA or other pressurised gas 30, an aerosolisation engine 32 and a transport coupling in the form of a shape memory alloy (SMA) wire assembly
34.

The inhaler 22 is breath operated such that as the patient inhales the power supply/electronics system 26 sends an electrical current through the SMA wire assembly 34. The assembly 34 heats and contracts and draws the metered dose plate 28 containing a metered dose (not shown) away from the powder reservoir 24 (the non-dispensing position) to the aerosolisation engine 32 for dispensing to the patient. In alternative embodiments, the metered dose plate 28 and the aerosolisation engine 32 may be actuable through the same SMA wire assembly 34 as the transport means. For example, the SMA wire assembly may actuate metering, transport and aerosolisation.

Figure 3 illustrates a cross-sectional view through an inhalation device for use with a medicament pack in which dry powder medicament is defined between two sides (a base sheet and a lid sheet) of a peelable strip.

The inhaler 42 has a body 44 defining three storage chambers; one chamber 46 is for housing the strip 48 and from which it is dispensed, one chamber 50 is for receiving the used portion of the base sheet 52, and one chamber 54 is for receiving the used portion of the lid sheet 56.

There is also a chamber for housing an index wheel 58 which has a plurality of grooves 60 spaced at a pitch equal to the distance (x) between the centre lines of adjacent drug pockets.

The transport means comprises means to rotate the index wheel 58 and a lid spool 62 for collecting the lid sheet 56 after drug is dispensed (see exploded view). The lid spool 62 is mounted on a ratchet wheel 64 the teeth of which are engaged by a flexible driving pawl 66 and mounted on a fixed spindle 68. In order to ensure that the ratchet wheel 64 moves only in one direction, there is a flexible ratchet non-return leg 70.
The transport means comprises a transport coupling which takes the form of a shape memory alloy (SMA) wire assembly. A SMA wire 72 is pivotally linked to the driving pawl assembly 76 which is biased to lock the ratchet wheel 64 in position by a return spring 74. A power supply 76 in the form of a battery is linked to the SMA wire 72 such that on actuation of the transport means via a manual switch 76a an electrical current passes through the SMA wire 72 causing it to heat and contract. As the SMA wire 72 contracts the driving pawl 66 releases the ratchet wheel 64 to rotate by one or more discrete doses on the medicament strip 48. When the index wheel 58 reaches the following pocket position a contact switch 78 stops the current to the wire 72 which cools, expands and locks the ratchet wheel 64 in position once again.

It may be appreciated that any of the parts of the dispenser or actuator which contact the medicament suspension may be coated with materials such as fluoropolymer materials which reduce the tendency of medicament to adhere thereto. Any movable parts may also have coatings applied thereto which enhance their desired movement characteristics. Frictional coatings may therefore be applied to enhance frictional contact and lubricants used to reduce frictional contact as necessary.

It will be understood that the present disclosure is for the purpose of illustration only and the invention extends to modifications, variations and improvements thereto.

The application of which this description and claims form part may be used as a basis for priority in respect of any subsequent application. The claims of such subsequent application may be directed to any feature or combination of features described therein. They may take the form of product, method or use claims and may include, by way of example and without limitation, one or more of the following claims:
CLAIMS:
1. A medicament dispenser comprising a body, a medicament container and transport means to transport a metered amount of medicament from a rest position to a delivery position, wherein the transport means comprises a transport coupling which is reversibly deformable in response to the application of non-mechanical energy thereto.

2. A medicament dispenser according to claim 1 wherein the medicament is in dry powder form.

3. A medicament dispenser according to claim 1 or claim 2 wherein the medicament is pre-metered prior to actuation of the dispenser by a patient.

4. A medicament dispenser according to claim 2 wherein the medicament container takes the form of a reservoir for said dry powder and a meter for metering a weight of dry powder from said reservoir.

5. A medicament dispenser according to any one of the preceding claims wherein the meter comprises a weight and/or volume and/or a time and/or a surface-area regulated mechanism.

6. A medicament dispenser according to any one of the preceding claims wherein the meter comprises a valve (for example, a linear or rotary valve) and/or a piston and/or a load cell and/or a plunger.

7. A medicament dispenser according to any one of the preceding claims wherein the meter comprises at least one metering chamber.

8. A medicament dispenser according to claim 7 wherein on actuation of the meter, the or each metering chamber moves into fluid communication with the reservoir.
9. A medicament dispenser according to claim 7 or claim 8 wherein the meter and the reservoir are relatively rotatable with respect to each other about a common central axis.

10. A medicament dispenser according to claim 9 wherein the or each metering chamber is adapted to be in fluid communication selectively with the reservoir or with the patient.

11. A medicament dispenser according to any one of claims 7 to 10 wherein the or each metering chamber has a variable volume.

12. A medicament dispenser according to any one of claims 7 to 10 wherein the or each metering chamber has a fixed volume which metering volume is variable by insertion of a plunger or piston.

13. A medicament dispenser according to claim 11 wherein the or each metering chamber is formed from expandable material.

14. A medicament dispenser according to claim 11 wherein the or each metering chamber has a telescopic or concertina arrangement.

15. A medicament dispenser according to any one of claims 7 to 14 further comprising a gas permeable dry powder retaining means below the or each metering chamber.

16. A medicament dispenser according to claim 15 wherein the retaining means is made from a gas-permeable filter, a mesh screen, a porous material or a perforated chamber element.
17. A medicament dispenser according to any one of the preceding claims wherein the transport means comprises a perforated strip and claw advancement mechanism and/or a ratchet wheel and a driving pawl advancement mechanism.

18. A medicament dispenser according to any of claims 1 to 17, additionally comprising a reset mechanism for resetting the transport means after actuation thereof.

19. A medicament dispenser according to claim 18, wherein the reset mechanism comprises a reset coupling which is reversibly deformable in response to the application of non-mechanical energy thereto.

20. A medicament dispenser according to any of claims 1 to 19, wherein said non-mechanical energy comprises electric current flow through the coupling.

21. A medicament dispenser according to any of claims 1 to 20, wherein the coupling comprises a wire, strip, coil or tube.

22. A medicament dispenser according to claim 21, wherein the coupling comprises multiple wires, strips, coils or tubes.

23. A medicament dispenser according to any of claims 1 to 22, wherein the coupling comprises one or more wires which contract in response to the application of non-mechanical energy thereto.

24. A medicament dispenser according to claim 23, wherein the coupling exhibits a degree of contraction of from 2% to 8% on application of non-mechanical energy thereto.
25. A medicament dispenser according to claim 24, wherein the coupling comprises an alloy which undergoes a phase transition on application of non-mechanical energy thereto.

5 26. A medicament dispenser according to claim 25, wherein said alloy is a nickel-titanium alloy.

27. A medicament dispenser according to claim 26, wherein said nickel-titanium alloy comprises from 5% to 95% nickel by weight and from 95% to 5% titanium by weight, preferably from 20% to 80% nickel by weight and from 80% to 20% titanium by weight.

28. A medicament dispenser according to either of claims 26 or 27, wherein said nickel-titanium alloy additionally comprises copper, niobium or any mixtures thereof.

29. A medicament dispenser according to claim 25, wherein the alloy is a copper-zinc-aluminium alloy or a copper-aluminium-nickel alloy.

30. A medicament dispenser according to claim 25, wherein the alloy has the composition defined as Ni_{65-x-y}Mn_{20} + xGa_{15} + y, where x is between 3 atomic % and 15 atomic % and y is between 3 atomic % and 12 atomic %.

31. A medicament dispenser according to claim 25, wherein the alloy has the composition defined as (Ni_{a}Fe_{b}Co_{c})_{65-x-y}(Mn_{d}Fe_{e}Co_{f})_{20} + x(Ga_{g}Si_{h}Al_{i})_{15} + y, where x is between 3 atomic % and 15 atomic % and y is between 3 atomic % and 12 atomic %, and where a+b+c=1, where d+e+f=1, and g+h+i=1.

32. A medicament dispenser according to claim 25, wherein the alloy comprises an ion-exchange polymer composite.
33. A medicament dispenser according to claim 25, wherein the alloy comprises a contractile polymer.

34. A medicament dispenser according to any of claims 23 to 33, wherein said one or more wires have a diameter from 30 to 400 micrometers, preferably from 50 to 150 micrometers.

35. A medicament dispenser according to any of claims 23 to 34, wherein the coupling comprises from two to twenty, preferably six to twelve wires which contract in response to heating or application of a magnetic field thereto.

36. A medicament dispenser according to any of claims 1 to 35, wherein said strip comprises multiple layers of different metals.

37. A medicament dispenser according to claim 36, wherein the strip comprises a bimetallic strip.

38. A medicament dispenser according to either of claims 36 or 37, wherein the strip comprises at least one piezoelectric material.

39. A medicament dispenser according to any of claims 1 to 38, wherein the coupling is deformable in response to heating arising from electrical current flow in the range from 0.01A to 100A, preferably from 0.1A to 5A.

40. A medicament dispenser according to any of claims 1 to 38, wherein the coupling is deformable in response to a magnetic field of from 0.01 to 100 Tesla.

41. A medicament dispenser according to any of claims 1 to 40, additionally comprising an electrical energy source.
42. A medicament dispenser according to claim 41, wherein said electrical energy source comprises a voltaic cell or battery of voltaic cells.

43. A medicament dispenser according to claim 42, wherein said voltaic cell or battery of voltaic cells is rechargable.

44. A medicament dispenser according to claim 41, wherein said electrical energy source comprises a photovoltaic cell or battery of photovoltaic cells.

45. A medicament dispenser according to claim 41, wherein said electrical energy source comprises a converter for converting mechanical energy into electrical energy.

46. A medicament dispenser according to any of claims 41 to 45, additionally comprising a controller for controlling the amount of electrical current flow through the coupling or to an electromagnet to provide a magnetic field.

47. A medicament dispenser according to any of claims 41 to 46, additionally comprising a timer for controlling the duration of electrical current flow through the coupling or to an electromagnet to provide a magnetic field.

48. A medicament dispenser according to any of claims 41 to 47 additionally comprising a local electrical energy source.

49. A medicament dispenser according to any one of claims 41 to 48 wherein the additional energy source is mechanically-generated.

50. A medicament dispenser according to claim 49 wherein the energy source comprises a biasable resilient member.
51. A medicament dispenser according to claim 50 wherein the biasable resilient member is a spring.

52. A medicament dispenser according to claim 49 wherein the energy source comprises a source of compressed fluid, preferably compressed gas.

53. A medicament dispenser according to claim 49 wherein the energy source comprises a chemical energy store, preferably a chemical propellant or ignition mixture.

54. A medicament dispenser according to claim 49 wherein the energy source comprises a physically explosive energy source.

55. A medicament dispenser according to any of claims 1 to 54, wherein flow of electrical current through the coupling and hence, actuation of the transport means is responsive to a patient-actuable mechanism.

56. A medicament dispenser according to claim 55 wherein said mechanism comprises a button, switch or lever arrangement.

57. A medicament dispenser according to any of claims 1 to 56, in the form of an inhaler for the delivery of inhalable medicament.

58. A medicament dispenser according to claim 57, wherein heating arising from flow of electrical current through the coupling and hence, actuation of the transport means is responsive to a patient-actuable trigger comprising a sensor which senses the breath of a patient.

59. A medicament dispenser according to claim 58, wherein said sensor comprises a breath-movable element which is movable in response to the breath of a patient.
60. A medicament dispenser according to claim 59, wherein said breath-movable element is selected from the group consisting of a vane, a sail, a piston, a diaphragm and an impeller.

61. A medicament dispenser according to claim 58, wherein said sensor comprises a pressure sensor for sensing the pressure profile associated with the breath of a patient.

62. A medicament dispenser according to claim 58, wherein said sensor comprises an airflow sensor for sensing the airflow profile associated with the breath of a patient.

63. A medicament dispenser according to claim 58, wherein said sensor comprises a temperature sensor for sensing the temperature profile associated with the breath of a patient.

64. A medicament dispenser according to claim 58, wherein said sensor comprises a moisture sensor for sensing the moisture profile associated with the breath of a patient.

65. A medicament dispenser according to claim 58, wherein said sensor comprises a gas sensor for sensing the oxygen or carbon dioxide profile associated with the breath of a patient.

66. A medicament dispenser according to any of claims 57 to 65, wherein the coupling is exposable to the airflow arising from inhalation or expiration of the patient to assist in the cooling of the coupling post-actuation of the transport means.
67. A medicament dispenser according to any one of the preceding claims further comprising release means.

68. A medicament dispenser according claim 67 wherein the release means comprises (i) a passive and/or (ii) an active release mechanism.

69. A medicament dispenser according to claim 68 wherein the passive release mechanism comprises exposing the metered dose to the patient for receipt thereby.

70. A medicament dispenser according to claim 68 or claim 69 wherein the active release mechanism comprises means to propel pressurised gas through the metered dose in the delivery position.

71. A medicament dispenser according to claim 70 wherein the gas-propelling means provides at least one pulse of gas on actuation.

72. A medicament dispenser according to claim 70 or 71 wherein the gas-propelling means provides one pulse of gas for each dose dispensed.

73. A medicament dispenser according to any one of claims 70 to 72 wherein the gas is air.

74. A medicament dispenser according to any one of claims 70 to 72 wherein the gas is an inert gas.

75. A medicament dispenser according to any of claims 1 to 72 comprising an actuation counter for counting the number of actuations of the transport means or a dose counter for counting the number of doses delivered.

76. A medicament dispenser according to claim 75, wherein the actuation
counter is independent of the coupling.

77. A medicament dispenser according to any of claims 1 to 76 additionally comprising an electronic control system for controlling the supply of non-mechanical energy to the coupling.

78. A medicament dispenser according to claim 77, wherein the electronic control system is capable of providing pulses of non-mechanical energy to the coupling.

79. A medicament dispenser according to either of claims 77 or 78, wherein the electronic control system is capable of receiving inputs from electronic sensors locatable on the dispenser.

80. A medicament dispenser according to claim 79, additionally comprising an electronic sensor selected from the group consisting of a breath sensor, a shake sensor, a temperature sensor, an infrared sensor and a patient ID sensor.

81. A medicament dispenser according to any one of the preceding claims additionally comprising climate control means.

82. A medicament dispenser according to claim 81 wherein the climate control means is actuable by the coupling.

83. A medicament dispenser according to claim 81 or claim 82 wherein the climate control means comprises means to (i) reduce moisture increase in the dispenser; and/or (ii) maintain ambient temperature; and/or (iii) dry the dispenser prior to actuation thereof.

84. A medicament dispenser according to any one of claims 81 to 83 wherein the climate control means comprises a desiccant.
85. A medicament dispenser according to any one of claims 81 to 84 wherein the climate control means comprises a heater.

86. A medicament dispenser according to any one of claims 81 to 85 wherein the climate control means comprises a temperature and/or a moisture sensor.

87. A medicament dispenser according to any one of the preceding claims wherein the medicament is selected from the group consisting of albuterol, salmeterol, fluticasone propionate, beclomethasone dipropionate, salts or solvates thereof and any mixtures thereof.

88. A medicament dispenser according to any one of the preceding claims wherein the dry powder medicament includes a pharmaceutical excipient in dry powder form.

89. A medicament dispenser according to any one of the preceding claims wherein the density of the dry powder medicament particles is reduced relative to standard dry powder medicament.

90. A medicament dispenser according to any one of the preceding claims wherein the dry powder medicament particles are aerodynamically shaped to improve medicament delivery to the patient.

91. A medicament dispenser according to claim 87 wherein the medicament container takes the form of a reservoir for said dry powder and a meter for metering a weight of dry powder from said reservoir.
92. A medicament dispenser according to any one of the preceding claims wherein the medicament is pre-metered prior to actuation of the dispenser by a patient.

93. A medicament dispenser according to any one of the preceding claims wherein the medicament container comprises medicament in solution or suspension form.

94. A medicament dispenser according to claim 93 wherein the medicament container comprises a suspension of a medicament in a propellant, for example, liquefied HFA134a, HFA-227, helium or carbon dioxide.

95. A medicament dispenser according to claim 94 wherein the medicament container comprises a solution of a medicament in a solvent.

96. A medicament dispenser according to any one of the preceding claims additionally comprising a safety mechanism to prevent unintended multiple actuations of the transport means.

97. A medicament dispenser according to claim 96 wherein the safety mechanism imposes a time delay between successive actuation of the transport means.

98. A medicament dispenser according to any of the preceding claims comprising a manual override enabling manual actuation of the transport means.

99. A medicament dispenser according to claim 98 comprising a child resistance feature to prevent undesirable actuation thereof by children.

100. An actuator for use in a medicament dispenser according to any one of the preceding claims.
101. An actuator for a medicament container comprising a housing, within said housing, a container seat for receipt of the medicament container; on the housing or connecting therewith, transport means to transport a metered amount of medicament from a rest position to a delivery position, wherein the transport means comprises a transport coupling which is reversibly deformable in response to the application of non-mechanical energy thereto.

102. An actuator according to either of claims 100 or 101, wherein said non-mechanical energy comprises electric current flow through the coupling.

103. An actuator according to any of claims 100 to 102, wherein the coupling comprises one or more wires which contract in response to the application of non-mechanical energy thereto.

104. An actuator according to any of claims 100 to 103, wherein said coupling comprises an alloy which undergoes a phase transition on the application of non-mechanical energy thereto.

105. An actuator according to claim 104, wherein said alloy is a nickel-titanium alloy.

106. An actuator according to any of claims 100 to 105 additionally comprising an electronic control system for controlling the supply of non-mechanical energy to the coupling.

107. An actuator according to claim 106, wherein the electronic control system is capable of providing pulses of non-mechanical energy to the coupling.
108. An actuator according to either of claims 106 or 107, wherein the electronic control system is capable of receiving inputs from electronic sensors locatable on the dispenser.

109. An actuator according to claim 108, additionally comprising an electronic sensor selected from the group consisting of a breath sensor, a shake sensor, a temperature sensor, an infrared sensor and a patient ID sensor.

110. An actuator according to any one of claims 100 to 109 further comprising release means.

111. A dry powder medicament container for use in the dispenser according to claims 1 to 99 and/or the actuator of claims 100 to 110.

112. Laboratory test apparatus for testing a medicament container having transport means comprising at least one actuator according to any of claims 100 to 110 and a mounting for said at least one actuator.

113. Kit of parts comprising a medicament dispenser according to any of claims 1 to 99 in the form of a cartridge; and a housing shaped for receipt of said cartridge.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61M15/00 A61M5/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category *</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 461 281 A (ATOCHEM NORTH AMERICA) 18 December 1991 (1991-12-18) column 3, line 6 -column 8, line 2; figures 1-3</td>
<td>1-113</td>
</tr>
<tr>
<td>A</td>
<td>WO 92 15353 A (MIRIS MEDICAL CORP) 17 September 1992 (1992-09-17) page 26, line 22 -page 31, line 8; figures 1-3</td>
<td>1-113</td>
</tr>
<tr>
<td>A</td>
<td>WO 92 07599 A (MINNESOTA MINING & MFG) 14 May 1992 (1992-05-14) page 18, line 31 -page 19, line 31; figure 1</td>
<td>1-113</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
A document defining the general state of the art which is not considered to be of particular relevance.
E earlier document but published on or after the international filing date.
L later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.
Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
Q document member of the same patent family.

Date of the actual completion of the international search: 10 May 2001

Date of mailing of the international search report: 17/05/2001

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 90 13327 A (RIKER LABORATORIES INC) 15 November 1990 (1990-11-15) page 23, line 5 - page 25, line 24; figures 1, 2</td>
<td>1-113</td>
</tr>
<tr>
<td>A</td>
<td>US 4 518 384 A (TARELLO WILLIAM R ET AL) 21 May 1985 (1985-05-21) column 13, line 26 - column 15, line 18; figures 18, 19</td>
<td>1-113</td>
</tr>
<tr>
<td>A</td>
<td>US 5 743 250 A (GONDA IGOR ET AL) 28 April 1998 (1998-04-28) column 28, line 20 - line 24 column 46, line 2 - line 24; figure 14</td>
<td>1-113</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 0461281</td>
<td>18-12-1991</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 188617 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2082168 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69230546 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69230546 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 529053 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0529053 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2141104 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9164205 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2613347 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5394866 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5469750 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5450336 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5392768 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5522378 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5542410 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5622162 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5497764 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5520166 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5608647 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5655516 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5743252 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5755218 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5813397 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5826570 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 643435 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5539590 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 644790 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5558890 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2050298 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2058764 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69027319 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69027319 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69027679 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69027679 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 470154 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 472598 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0470154 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0472598 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0705614 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2087911 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2091825 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1006546 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5501505 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4504671 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 313925 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 178798 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 233486 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 248275 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9013328 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5619984 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5655523 A</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US 6012454 A</td>
<td>11-01-2000</td>
<td></td>
</tr>
<tr>
<td>US 4518384 A</td>
<td>21-05-1985</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 5672581 A</td>
<td>30-09-1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 5364838 A</td>
<td>15-11-1994</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 5456598 A</td>
<td>10-06-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6131567 A</td>
<td>17-10-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6085753 A</td>
<td>11-07-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 5970973 A</td>
<td>26-10-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 5873358 A</td>
<td>23-02-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6024090 A</td>
<td>15-02-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO 9822169 A</td>
<td>28-05-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 5941240 A</td>
<td>24-08-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6186880 B</td>
<td>02-01-2001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 5888477 A</td>
<td>30-03-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 5884620 A</td>
<td>23-03-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6098615 A</td>
<td>06-08-2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 685694 B</td>
<td>22-01-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 4194996 A</td>
<td>23-05-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA 2203129 A</td>
<td>09-05-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 0785713 A</td>
<td>30-07-1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 10509606 T</td>
<td>22-09-1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO 9613161 A</td>
<td>09-05-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 6097794 A</td>
<td>15-08-1994</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 0700302 A</td>
<td>13-03-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO 9416717 A</td>
<td>04-08-1994</td>
<td></td>
</tr>
</tbody>
</table>