A subsequently mountable car’s holder for a container with lozenges or the like comprises an elastic clamping part (1) intended to engage with a lamella (a) of an aeration grid on a car’s dashboard and an elastic holding part (2) intended to hold a container (b) with lozenges that is shaped in the form of a horse-shoe. A link between the clamping part (1) and the holding part (2) is carried out by a pivotable link in a way that the holding part (2) with its hub (3) is pivotally mounted in a bearing (4) of the clamping part (1).

Fig. 1
SUBSEQUENTLY MOUNTABLE CONTAINER FOR LOZENGES AND THE LIKE
ONTO A VEHICLE DASHBOARD

Subject of Invention
[001] The subject of the invention is a subsequently mountable container for lozenges and the like onto a vehicle dashboard.

Technical Problem
[002] A technical problem solved by the invention is how to design such holder that will allow a driver to take individual lozenges or the like only with one hand while driving and will not be an obstacle during a drive especially to the driver.

Prior Art
[003] Holders intended for a force-fit arrangement into an aeration grid on a dashboard are known, in which a clip engages into one of grid lamellas. The clip intended to be mounted onto a lamella has an integral elastic horseshoe-shaped holding element intended to hold a container with lozenges and the like. A disadvantage of said embodiment is an extremely unhandy taking of lozenges out of an upright container, so passengers and a driver in a car prefer taking the container from the holder, tilting it with one hand and getting an individual lozenge onto the palm of another hand. For a driver, such use is dangerous during a ride and for passengers it is annoying due to too many steps involved.
So there is a need for an improved holder of this type, from which a driver and/or a passenger would take lozenges from a container only with one hand.

Solution to the Technical Problem

The described technical problem is solved by a holder of the invention, which is characterised in that an elastic horseshoe-shaped holding element is pivotably arranged on a clamping part intended for a force-fit dismountable connection on a lamella of an aeration grid on a car's dashboard, wherein a bearing that allows the holding element to pivot is provided with a retaining friction coefficient of a hub within the bearing, which assures a self-closing position of the container in the holder in tilted positions, when no external force, like the force of a user's hand, is exerted on the container. Both approximately horizontal positions of the container, i.e. to the left and to the right, are important, as they enable a driver and/or a passenger to take lozenges only with one hand. Furthermore, retaining elements are designed within the bearing, which hold the container in vertical and both horizontal positions, wherein the neck of the container is oriented to the left or to the right.

The essence of the invention will now be described in more detail by way of an embodiment and with reference to the enclosed drawing, representing in

Fig. 1 perspective view of the holder of the invention, and
Fig. 2 cross-section of the holder.

A subsequently mountable car's holder for a container with lozenges or the like comprises an elastic clamping part 1 intended to engage with
a lamella of an aeration grid on a car's dashboard and an elastic holding part intended to hold a container with lozenges that is shaped in the form of a horseshoe.

A link between the clamping part 1 and the holding part 2 is carried out by a pivotable link in a way that the holding part 2 with its hub is pivotably mounted in a bearing of the clamping part. The hub 3 is protected against falling out from said bearing with its wider section at its free end.

The hub 3 fits the bearing 4 in so much that it holds the holding part 2 together with container full of lozenges in any turned position. At the same time a bulge is provided in the hub, said bulge co-operating with one of four recesses in the bearing, said recesses being equidistantly arranged on its cross-section in order to arrest the position of the holding part in a vertical or horizontal position, while being turned by a user in the bearing 4.

The holder of the invention is intended to be produced by injection moulding from any thermoplastic material, wherein the material must be elastic in the anticipated dimensions of the holder in the area of the clamping part and the holding part, whereas the mutual link between the parts in the bearing should be provided with such friction that the part will rotate in the part as described above.

It is understood that the holder of the invention can be implemented in various ways in terms of industrial design, without circumventing the essence of the appended claims.
CLAIMS

1. A subsequently mountable car's holder for a container with lozenges or the like comprises an elastic clamping part (1) intended to engage with a lamella (a) of an aeration grid on a car's dashboard and an elastic holding part (2) intended to hold a container (b) with lozenges that is shaped in the form of a horse-shoe, characterised in that a link between the clamping part (1) and the holding part (2) is carried out by a pivotable link in a way that the holding part (2) with its hub (3) is pivotably mounted in a bearing (4) of the clamping part (1).

2. Subsequently mountable car's holder as claimed in claim 1, characterised in that the hub (3) is protected against falling out from said bearing (4) with its wider section (5) at its free end.

3. Subsequently mountable car's holder as claimed in claim 1, characterised in that a bulge (6) is provided in the hub (3), said bulge (6) co-operating with one of four recesses (7) in the bearing (4), said recesses (7) being equidistantly arranged on its cross-section in order to arrest the position of the holding part (2) in a vertical or horizontal position, while being turned by a user in the bearing (4).