PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 98/06207
Al

HO4L 25/06 (43) International Publication Date: 12 February 1998 (12.02.98)

(21) International Application Number: PCT/US97/13057 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,

(22) International Filing Date: 6 August 1997 (06.08.97) GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,

LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, 8D, SE, SG, 8], SK, TJ, T™M, TR, TT,
(30) Priority Data: UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS,

08/692,489 6 August 1996 (06.08.96) us MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH,
DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(71) Applicant (for all designated States except US): VERIFONE, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
INC. [US/USY; Suite 400, Three Lagoon Drive, Redwood MR, NE, SN, TD, TG).
City, CA 94065 (US).

(72) Inventors; and Published

(75) Inventors/Applicants (for US only): COWAN, Richard With international search report.
[US/US]; 281 Portlock Road, Honolulu, HI 96825 (US). Before the expiration of the time limit for amending the
ECKLEY, Gordon, P, [US/US]; 5925 Happy Pines Drive, claims and to be republished in the event of the receipt of
Foresthill, CA 95631 (US). PANCHANGAM, Prasad, V., amendments.

R. [IN/US]; 2715 South Norfolk Street #205, San Mateo,
CA 94403 (US). LEONG, Winston, C., W. [US/US]; 1751
E. Roseville Parkway #1433, Roseville, CA 95661 (US).

(74) Agents: STEPHENS, L., Keith et al; Warren, Perez &
Stephens, Suite 710, 8411 Preston Road, Dallas, TX 75225

(Us).

(54) Title: A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR SEAMLESS, SERVER APPLICATION SUPPORT OF
NETWORK AND NON-NETWORK CLIENT TERMINALS

Host

220

210

Java
Phone

(57) Abstract

A plurality of clients (200) are connected to one or more servers (210). When a client initiates a connection with a server (210), the
server (210) responds to the request for connection by transmitting a message back to the client to determine whether the client is a network
terminal or not. The client responds with a message that is received by an application dispatcher at the server (210) which takes one of a
pair of actions based on whether the client is a network terminal. If the client terminal is a network terminal, then the application dispatcher
spawns a server application in the server which responds to the client application in the client. Going forward, the server application
responds to all future requests from the client application. If the client is not a network terminal, then the application dispatcher initiates a
client application in the server (210) to service the client terminal application requirements. Requests from the client application on behalf
of the client terminal are subsequently serviced by a server application at the server (210) which communicates to the client terminal via
the client application at the server (210).

AL
AM
AT
AU

BA
BB
BE
BF
BG
BJ

BR
BY
CA
CF
CG
CH
CI

CN
Ccu

DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
1E
IL
18
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People's
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Licechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL

RO
SD

SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
T
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Sencegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/06207 PCT/US97/13057

10

15

20

25

A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE
FOR SEAMLESS, SERVER APPLICATION SUPPORT OF
NETWORK AND NON-NETWORK CLIENT TERMINALS

COPYRIGHT NOTIFICATION
Portions of this patent application contain materials that are
subject to copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of the patent

document, or the patent disclosure, as it appears in the Patent and

Trademark Office.

Field of the Invention
This invention generally relates to improvements in computer
systems, and more particularly, to system software for managing a
network of heterogeneous client terminals communicating with a

server in a consistent manner.

Background of the Invention
Recently, it has become increasingly fashionable to speak of

” «

“intelligent,” “smart,” or “programmable” terminals and systems.
Very few mainframe or peripheral manufacturers omit such a
device from their standard product line. Although “intelligence,”
like beauty or art, is in the eye of the beholder, the adjective
generally connotes that the device has a degree of autonomy or

processing ability which allows it to perform certain tasks without

assistance from the mainframe to which it is connected. Many

WO 98/06207 PCT/US97/13057

10

15

20

25

such devices are programmable by virtue of including a

IMICTrOprocessor.

While operational devices are somewhat hazy and non-standard, a
device is referred to as a terminal if a user interacts with the device
to communicate to a host processor, referred to as a server in a
network computing environment. Examples of terminals include
keyboard/printer terminals, cathode-ray tube (CRT) terminals,
remote-batch terminals, real-time data-acquisition and control
terminals, transaction and point-of-sale terminals, and smart

terminals.

A terminal is considered to be intelligent if it contains, hard-, firm-,
and or software which allows it to perform alphanumeric or
graphic message entry, display buffering, verifying, editing and
block transmissions, either on host or hqman command. If the
terminal contains a micropfoccssor' which runs a standard
program to service the terminal, and not arbitrary, user-loaded
programs, the terminal has a fixed function, and is still just an
intelligent terminal. Only when the device contains a general
purpose computer which is easily accessible to the ordinary user
for offering a wide range of programs selectable by a user or by
devices attached to the device does the terminal become a network

terminal in accordance with a preferred embodiment.

PCT/US97/13057

WO 98/06207

10

15

20

25

Sun has recently introduced a new language that is designed to
provide consistency for network applications, named Java. Java is
a general-purpose, concurrent, class-based, object-oriented
programming language and support structure, specifically
designed to have as

few implementation dependencies as possible. Java allows
application developers to write a program once and then be able

to run it everywhere on a computer network.

The Java language solves many of the client-side problems by:

o enabling dynamic class bindings;

o providing enhanced portability of applications; and

o} providing a secure environment in which applications
execute.

Java 1s compiled into bytecodes in an intermediate form instead of
machine code (like C, C++, Fortran, etc.). The bytecodes execute
on any machine with a Java bytecode interpreter. Thus, Java
applications can run on a variety of client machines, and the
bytecodes are compact and designed to transmit efficiently over a
network which enhances a preferred embodiment with universal

clients and server-centric policies.

With Java, developers can create robust User Interface (U1)
components. Custom "widgets" (e.g. real-time stock tickers,

animated icons, etc.) can be created, and client-side performance

>

WO 98/06207

10

15

20

25

PCT/US97/13057

is improved. Unlike HTML, Java supports the notion of client-side
validation, offloading appropriate processing onto the client for
improved performance. Dynamic, real-time applications can be

created using the above-mentioned components.

Sun's Java language has emerged as an industry-recognized
language for "progfamming the Internet." Sun defines Java as: “a
simple, object-oriented, distributed, interpreted, robust, secure,
architecture-neutral, portable, high-performance, multithreaded,
dynamic, buzzword-compliant, general-purpose programming
language. Java supports programming for the Internet in the form
of platform-independent Java applets.” Java applets are small,
specialized applications that comply with Sun's Java Application
Programming Interface (API) allowing developers to add "interactive
content” to Web documents (e.g. simple animations, page
adornments, basic games, etc.). Applets execute within a Java-
compatible browser (e.g. Netscape Navigator) by copying code from
the server to client. From a language standpoint, Java's core
feature set is based on C++. Sun's Java literature states that Java
is basically "C++, with extensions from Objective C for more

dynamic method resolution”.

A network terminal in accordance with a preferred embodiment
would execute Java applications in stand-alone mode, but have the
capability to interact with a server for such functions as retrieving

information, database processing, massive computation processing

.l

PCT/US97/13057

WO 98/06207

10

15

20

25

and access to shared devices such as high-speed printers, plotters

and magnetic tapes.

The term “distributed computing” refers both to the devices at
remote locations and to the logic which has been used to enhance
the intelligence of the devices. Such distributed or decentralized
computing with remote intelligent terminals and network terminals

is a fact of life in today’s computer literate society.

There are a number of drawbacks to distributed computing
environments which are not found in a centralized computing
environment. First, hardware problems: when a user locates a
software solution that is optimal for the user’s terminal
environment, the software often will not execute on the host
processor that is universally accessible by other’s in a company.
Moreover, the software will often be incompatible with other user’s

terminals.

Second, interfacing problems: a nonstandard terminal might
require a special—pfn‘pose interface and might not be recognized by
the host. Even standard interfaces are notorious for crashing the
operating system. In any case, “mixed systems” containing
multiple vendor hardware are becoming the norm, but lead to the
blame for system problems being placed on the other system, and

result in difficult debugging and resolving of system problems.

S

WO 98/06207 PCT/US97/13057

10

15

20

25

Third, host operating system support for a heterogeneous terminal
environment can be a nightmare. To provide support for all of the
various protocols, communication rates and processing demands
with the peculiarities intrinsic to a motley crew of downstream

terminals is a system administration headache.

Fourth, local software support: this type of support ranges from
minimal (say, a compiler for the particular terminal) to a mail
program that is compatible with every different terminal attached
to the host server. Some applications can be rebuilt for a
particular terminal by simply recompiling the application, but
many are only distributed as runtime modules with no support

provided for some terminals.

SUMMARY OF THE INVENTION
The foregoing problems are overcome in én illustrative embodiment
of the invention in a network computing environment in which a
plurality of clients are connected to one or more servers. When a
client initiates a connection with a server, the server responds to
the request for connection by transmitting a message back to the
client to determine whether the client is a network terminal or not.
The client responds with a message that is received by an
application dispatcher at the server which takes one of a pair of
actions based on whether the client is a network terminal. If the

client terminal is a network terminal, then the application

(2

PCT/US97/13057

WO 98/06207

10

15

20

25

dispatcher spawns a server application in the server which
responds to the client application in the client. Going forward, the
server application responds to all future requests from the client
application. If the client is not a network terminal, then the
application dispatcher initiates a client application in the server to
service the client terminal application requirements. Requests
from the client application on behalf of the client terminal are
subsequently serviced by a server application at the server which
communicates to the client terminal via the client application at

the server.

Brief Description of the Drawings
The above and further advantages of the invention may be better
understood by referring to the following description in conjunction

with the accompanying drawings, in which:

Figure 1 is a block schematic diagram of a computer system for
example, a personal computer system on which the inventive

object oriented information manager operates;

Figure 2 illustrates a client - server network in accordance with a

preferred embodiment;

Figure 3 illustrates a server architecture in accordance with a

preferred embodiment;

o

WO 98/06267 PCT/US97/13057

10

15

20

25

Figure 4 illustrates a client - server architecture in accordance

with a preferred embodiment;

Figure 5 illustrates a first client request to a server in accordance

with a preferred embodiment;

Figure 6 illustrates a client server environment which accesses

support services in accordance with a preferred embodiment;

Figure 7 is an architecture diagram of a client - server system in

accordance with a preferred embodiment;

Figure 8 is an architecture diagram of a client - server system in

accordance with a preferred embodiment:

Figure 9 is an architecture diagram of a client - server system in

accordance with a preferred embodiment;

Figure 10 illustratés the message format utilized in accordance

with a preferred embodiment;

Figure 11 presents a table showing additional details associated
with the device types, commands and data blocks in accordance

with a preferred embodiment;

PCT/US97/13057

WO 98/06207

10

15

20

25

Figure 12 presents additional detail on the message format in

accordance with a preferred embodiment;

Figure 13 illustrates the display commands and responses in

accordance with a preferred embodiment;

Figure 14 presents the status values associated with various

operations in accordance with a preferred embodiment; and

Figure 15 is a communication flow diagram in accordance with a

preferred embodiment.

Detailed Description
The invention is preferably practiced in the context of an operating
system resident on a computer such as a SUN, IBM, HP, or a
Windows NT computer. A representative hardware environment is
depicted in Figure 1, which’illustrates a fypical hardware
configuration of a computer 100 in accordance with the subject
invention. The computer 100 is controlled by a central processing
unit 102 (which may be a conventional microprocessor) and a
number of other units, all interconnected via a system bus 108,
are provided to accomplish specific tasks. Although a particular
computer may only have some of the units illustrated in Figure 1,
or may have additional components not shown, most server

computers will include at least the units shown.

q

PCT/US97/13057

WO 98/06207

10

15

20

25

Specifically, computer 100 shown in Figure 1 includes a random
access memory (RAM) 106 for temporary storage of information, a
read only memory (ROM) 104 for permanent storage of the
computer's configuration and basic operating commands and an
input/output (I/0) adapter 110 for connecting peripheral or
network devices such as a disk unit 113 and printer 114 to the
bus 108, via cables 115 or peripheral bus 112, respectively. A
user interface adapter 116 is also provided for connecting input
devices, such as a keyboard 120, and other known interface
devices including mice, speakers and microphones to the bus 108.
Visual output is provided by a display adapter 118 which connects
the bus 108 to a display device 122, such as a video monitor. The
computer has resident thereon and is controlled and coordinated
by operating system software such as the SUN Solaris, Windows

NT or JavaOS operating system.

Figure 2 illustrates a client-server network in accordance with a
preferred embodiment. A set of consumer devices (client terminals
200) are attached to a server 210 and the server is attached to a
legacy host 220 to brocess applications requiring information at
the host 220. The connection could be by means of the Internet, a
dialup link, token ring, cellular phone, satellite, T1 or X.25 telco
link or other communication means.

Server Software
The sever software is written using a combination of Java, C or

possibly C++. C or C++ will be used mainly to implement platform

\O

PCT/US97/13057

WO 98/06207

10

15

20

25

dependent code (such as dealing with the comm ports). While a
preferred embodiment discloses support for a dial up network and
Internet processing utilizing TCP/IP, one of ordinary skill in the art
will readily realize that a token ring, SNA or other network, such as
those discussed in US Patents (5,530,961.; 5,491,796; 5,457,797;
5,442,791, 5,430,863; 5,394,401:; 5,291,597, 5,287,537;
5,287,461; 5,201,049; 4,991,089; and 4,588,211) could be readily

interchanged as the network.

Architecture
A server architecture in accordance with a preferred embodiment

supports two types of client terminals.

Network terminals. These are client terminals capable of directly
executing the Java applications on the client terminal which are
initially stored on a server. The server will simply download this
code to the client’s network terminal whiéh the client will then
execute to provide a particular service. This service may or may not
interact with other clients or servers. Network terminals can be
connected to a server through a dial up modem link, directly
through a local area network, or by other network communication

means in accordance with a preferred embodiment.

Non-network terminals. These are client’s terminals which are
not capable of executing Java applications on the client terminal.

When dealing with this class of client the server will execute the

(1

WO 98/06207

10

15

20

25

PCT/US97/13057

application on behalf of the client. In this case the server will only
expect necessary input and output operations to be performed by
the client terminal. An example of how to connect a plurality of
non-network terminals to a host server is described in US Patent
5,287,461, the disclosure of which is hereby incorporated by

reference in its entirety.

Figure 3 illustrates a server architecture in accordance with a
preferred embodiment. A client 300 would initiate a connection
with a server 350 by, for example, dialing in to a modem pool
which is intercepted by the point-to-point stack software 311
which conforms information received to the TCP layer 312 which
obtains a socket 313 for connecting the client 310 to the server
350. The Java net layer 314 further refines the request to conform
with the TERMIO and NET layer 315 which passes the request
along to the application dispatcher 319. ‘The application
dispatcher 319 spawns the appropriate server application selected
from the server applications 330. On a non-network terminal, The
non-network terminal initiates a “first connection” by dialing up a
modem, for example. The dial up goes through the native OS 316
(Solaris or Windows NT dial up layer) and is connected with the
serial communication in the VFI.SERIAL layer 317 which abstracts
the serial input/output functions into a higher level
communication layer. The VFI.NET layer 315 takes the abstracted
serial layer and maps it into a similar communication as the

communication from the network terminal 300. It makes the

\Z2_

PCT/US97/13057

WO 98/06207

10

15

20

25

dialup asynchronous connection appear to the server application

as a new socket connection.

Network Terminal - “First Connection”
Figure 4 illustrates a client - server architecture in accordance
with a preferred embodiment. The architecture is illustrated
initially for a network terminal for clarity and then follows with a
non-network terminal. Processing commences at 400 when a
network terminal requests connection through a layered
communication system to a set of server threads 420 which are
triggered by a detection of a “ring” 430 to initiate possible client
updates and the subsequent client appplication to server
application processing. “Ring” refers to a “first connection” in

socket processing in accordance with a preferred embodiment.

The network terminal makes its connection through the Point-to-
Point-Protocol stack 411 ufilizing the TCP layer 412 and the
sockets layer 413, which is like an electrical socket, for attaching
terminals to communication sockets to facilitate communication
through the network. All of this is managed by the Java.net 414
which connects the socket 1111 via the TCP layer 412 and the
PPP stack 411. The layer above is the VFl.net and VFIL.TERMIO
415 which is responsible for detecting that the connection is made
and mapping the connection to an application dispatcher 431 to

further process the first connection (ring) request.

WO 98/06207

10

15

20

25

PCT/US97/13057

The server 450 waits for a “first connection” request much like an
interrupt manager. When a “first connection” request arrives, then
the application dispatcher has a method that detects a connect
request or a LAN “first connection” request that would arrive
through the TCP layer as a socket connect. That connection 1s
translated into a lbgical ring which is equivalent to an event or
interrupt. The server 450 responds to the “first connection” with a
query initiated by the application dispatcher 431 requesting “who
are you” via an enquiry message asking for identification by the
client loader thread 421. The network terminal responds with ID
information, including the identification of the application that the
network terminal requires. If the terminal answers with an
identifier indicating that the terminal is a network terminal, then
the client loader thread 421 performs any necessary client
application updates via a download using a file transfer program
such as UDP or FTP, or any other socket layer protocols that are

available for network file transfers to the network terminal 400.

Network Terminal - First Client Request to Server
Figure 5 illustrates a first client request to a server in accordance
with a preferred embodiment. When a first client request is

transmitted from the network terminal 500 with a client

W

PCT/US97/13057

WO 98/06207

10

15

20

25

application resident thereon 510 to the server 550, the application
dispatcher 530 spawns the corresponding server application 520
for servicing the request at the server 550 via the assigned socket
1112. The server application 520 responds to the request and
transmits information to the network terminal 500. The
application dispatcher 530 has completed its responsibilities for
this client 500 and can return to a wait state until the next “first
connection” request from a client. The client application request
could be as simple as a get current time request or a request for

data from a server database.

Network Terminal - Subsequent Client Request to Server
Figure 6 illustrates a network terminal 600 with a downloaded
client application 610 which accesses support services in the
server 650 through its assigned server application 620 in
accordance with a preferred embodiment. The terminal 600
communicates to a server application 626 which accesses host
processing capabilities and database services 640 to service
requests emanating from the client application 610. The server
application 620 handles any events that originate from the client
application 610 via the assigned socket 1112. These events could
include data requests from a database application, or data transfer
to a server. Remote data from another server application could
also be accessed by the client. Server application 620 accesses

support services directly or via a socket interface 660.

>

WO 98/06207 PCT/US97/13057

10

15

20

25

Non-network Terminal - “First Connection”
Figure 7 is an architecture diagram of a client - server system in
accordance with a preferred embodiment. A layered
communication system 700 is used by a non-network terminal
710 to detect a ring providing an indicia of communication 740
and dispatch an application 730. Dispatching an application 730
also initiates a server thread 720 for servicing the client request.
The non-network terminal 710 initiates a “first connection” by
dialing up a modem, for example. The dial up goes through the
native OS 711 (Solaris or Windows NT dial up layer) and is
connected with the serial communication in the VFL.SERIAL layer
712 which abstracts the serial input/output functions into a
higher level communication layer. The VFI.NET layer 715 takes
the abstracted serial layer and maps it into a similar
communication as the communication from the network terminal.
[t makes the dialup asynchronous conne‘ction appear to the server
application as a new socket connection 1111. The communication
is an event 740 that triggers actions by the application dispatcher
741 which responds to the “first connection” event by requesting
ID information from the client, via an enquiry message, and

starting the requested client application 720 at the server 750.

Non-network Terminal - First Client Request to Server

\(o

PCT/US97/13057

WO 98/06207

10

15

20

25

Figure 8 is an architecture diagram of a client - server system in
accordance with a preferred embodiment. The client application
822 is responsible for managing the non-network terminal 810,
The client application 822 writes information, utilizing a server
version of VFL.TERMIO 855, to and responds to key presses by the
non-network terminal 810 at the server 850. The client
application 822 initially makes a request for service from a socket
1112 that is associated with the non-network terminal 810 when

the application dispatcher 840 spawns the client application 822.

When the first request 845 is generated by the client application
822 residing on the server 850, at application startup, the first
request for service is routed in the server 850 to the application
dispacher 840 and spawns the server application 820 which will
handle subsequent requests. The server application 820 makes a
request for service from a socket 1112 that is associated with the
client application 822 which transmits an appropriate command
through the VFI.TERMIO 855 to the VFI.SERIAL layer 856 using
the operating system communication support 857 to the non-
network terminal 810. This processing is identical to the network
terminal processing with the exception that all applications reside
on the server 850 as opposed to a Java application executing

remotely on the network terminal.

One advantage of Java is that it is machine independent and does

not care whether a Java application resides on the client or the

)

WO 98/06207 PCT/US97/13057

10

15

20

25

server. In the case of the non-network terminal, the client
application resides in the server and controls the Java incapable

terminal.

Non-network Terminal - Subsequent Client Requests to Server
Figure 9 is an architecture diagram of a client - server system in
accordance with a preferred embodiment. A layered
communication system 900 is used by a non-network terminal
910 to manage the interconnection of a server Application 940 to a
client application 920 and facilitate communication between the
terminal 910 and server application 940 via a client application
920 resident on the server 950. Figure 9 shows the processing
after the first request has been completed and the client
application 920 is coupled with the server application 940 via the
assigned socket 1112 just as in the network terminal example,
except the client application 920 and server application 940 both

reside on the server 950.

If a terminal responds with a message that indicates it is a non-
network terminal, then the terminal is supported with the
command streams described in Figures 10-14. If the terminal is a
network terminal, then the application is downloaded via a FTP or

other network file transfer procedure.

Figure 10 illustrates the structure of a packet in accordance with a

preferred embodiment. Figure 11 shows the format of each field of

\%

PCT/US97/13057

WO 98/06207

10

15

20

25

a communication and describes the contents of the same. For
example, the header is two bytes in length and has various values
that correspond to different types of transactions. Similarly, the
Packet Type, Header CRC, Sequence #, Data Block and CRC-16
fields are described in the table set forth in Figure 11,

Figure 12 represents a table showing additional details associated
with the device types, commands and data parameters. For
example, the device type field is one byte long and specifies the
selected Input/Output device. Figure 13 illustrates the display
commands in accordance with a preferred embodiment. The
display’s device type is zero. Figure 14 presents the status values
associated with various requested operations in accordance with a

preferred embodiment.

Figure 15 is a communication flow diagram in accordance with a
preferred embodiment. A terminal 1500 either has firmware or an
application 1504 that initiates a connection 1506 with a server
1502 by contacting a dispatcher 1508. The connect initiate 1506
also connects a socket 1111 to handle the connection. The
dispatcher 1508 transmits an identification enquiry 1510 which
the client terminal replies to with an identification message 1512,
In the case of a network terminal, the client loader 1522 performs
any necessary client application updates 1520 on the client
terminal 1500. In the case of a non-network terminal, the

dispatcher starts the client application. The client then sends a

19

WO 98/06207 PCT/US97/13057

request to start the server application 1530 to the server which
results in the connection of a socket 1112 and the server
application 1550 being started and a confirmation message 1532
being transmitted back to the client application 1540. Then, when
5 the client application 1540 requests data 1542 from the server
application 1550, the server application 1550 responds with the

application response data 1560.

PCT/US97/13057

WO 98/06207

10

15

20

25

Application Dispatcher - Control Flow
Application Dispatcher startup

Configured modem ports that will take part in transactions are
pre-configured. The Application Dispatcher (AD) startup code
looks at this configuration stream to determine the number of S
threads (serial port listeners). S classes instantiate a
VFI.NET.serversocket object which in turn create a
VFL.NET.ModemIO.ModemPort object. The ModemPort object
binds to a low level VFI.NET.ModemIO.Port object which utilizes

native methods to configure and wait on the communications port.

SO
{
serversocket SOSocket = new serversocket (“socket1111”, 1);

// Listener object

{
socket SOConnSocket= SOSocket.accept(); //

Translates to
WaitDevice(CONNECT)
ReadAndValidate (RequestID);
return RequestID, SOConnSocket;

Request Processing

>\

WO 98/06207 PCT/US97/13057

10

15

20

As illustrated above, S threads are transient threads. And even
when alive they perform efficient waits (No CPU cycles are
consumed). The AD receives the RequestID from each S thread.
Request processing is performed by database lookup. Typically
Requests, are simple text messages with delimiters and are parsed

using a StringTokenizer object.

StringTokenizer stParseHelp = new StringTokenizer ((String)
Request);

field1 = stParseHelp.nextToken();

field2 = and so on.

The AD will query a database to determine which applications
should be initiated based on the enquiry message utilizing an SQL
query of the form: |

“SELECT <Field ClassPath> from <TableName> where <f1 = field 1

is handled by the JDBC layers to return data to the AD. The AD is

now ready to run the client thread.

ClientThread = new Thread (field1, field2... , S0ConnSocket);

K+

PCT/US97/13057

WO 98/06207

10

15

20

25

The field list contains appropriate fields (those required for client
application processing) and are passed down to the client thread

along with the connected socket object.

Client Threads
Client Threads proxy the actual application. Application output
meant for the terminal’s devices are routed out using VFI.TERMIO
as directives to the client terminal’s firmware. The connected
socket (which translates to a live dial-up connection) is passed
down from the AD to the client thread. Client threads are long
living - usually transferring data to corresponding servlets that
initiate connections to upstream hosts or make database
transactions. Despite the fact that client threads can be JDBC
aware, servlets handle database transactions. This helps to
maintain code constancy when the same client class is downloaded

to a Java capable terminal for remote execution.

Terminal I/0 is performed through a VFL.TermlO object that in
turn instantiates a VFI.TermlO.ServProtocol object. The protocol
object implements the actual data transfer with the client terminal.
The protocol object requires the socket object passed down from

the AD to the client thread.

CO (Appropriate Request fields, SO0ConnSocket)
{

WO 98/06207 PCT/US97/13057

10

15

20

25

VFIL.TermlO I0Object = new TermlO (SOConnSocket); / /10
object / /instantiation. This cascades into a ServProtocol

Object instantiation.

IOODbject. WriteString (Stringlndex); // Displays a particular
string on the P-ATM.

//1f the client needs to retrieve data from upstream hosts
(OmniHost, VISA etc), //or needs data from a database it makes
a TCP stream connection to a servlet.

/ /This is consistent with the behavior of the network
terminal which would //make the same connection over PPP.

clienTransObject = new Socket (<Host>, <Well known
socket>);

// Explained further down under initial client requests

..... / /Further processing

// Send out host requests

clienTransObject.write (HostRequest);

clienTransObject.read (HostResponse);

I0ODbject.WriteString (Stringindex + n); //Displays status on
the P-ATM.

}

WO 98/06207 PCT/US97/13057

10

15

20

25

Initial Client Request processing
The AD runs a T thread (spawned off during startup) that listens
on a well-known socket (e.g. 1112) waiting for initial
ClientRequests from a client application. The T thread processes

the ClientRequest to determine which servlet class needs loading.

T
{

ClientInitialRequestListener = new ServerSocket (<wellknown

socket (e.g. 1112)>);

// Wait for initial requests and spawn off server

connSocket = ClientlnitialRequestListener.accept();

connSocket.Stream.read (InitialRequest);

Parse (InitialRequest);
HostThread HO = new Thread (connSocket, “class name”);
The T thread is a daemon thread and lives as long as the AD lives.

When the client application is downloaded to a Java capable

terminal initial requests arrive over the PPP link.

WO 98/06207 PCT/US97/13057

Host Threads or Servlets
Host Threads (H) service client requests for upstream and database
connectivity. A host thread can make TCP connections with
5 remote hosts, forward financial transactions originating from the

client application and route the response.

HO (connSocket)
{

10 connSocket.Stream.read (ClientRequest);

ParseRequest (StringTokenizer);

Socket upstreamSock = new Socket (upstreamHost, Port);

’

15 //Transact
connSocket.Stream. Write (HostResponse);

Transient and Long-living Threads in the Application
20 Dispatcher

A sockets based abstraction of the Win32 Communication API

Consistence in the access of transport layer services needs no over

emphasis. The design of the PTS server aims to provide a uniform
25 interface to third party client component and server component

applet writers to the async dial-up protocol module and the

2o

PCT/US97/13057

WO 98/06207

10

15

20

25

system’s TCP/SLIP/PPP stack. This interface comprises a set of
Java Classes collectively called VFI.NET.*. It should be noted that
this package does not provide pure TCP/ UDP/IP specific objects
and methods that are already defined and implemented in
java.net.*. Programmers, however, do not need to explicitly import
Java.net.*. This is automatically done by the package. Further,
this document does not discuss the functionality of java.net.*
which may be found in the appropriate JDK documentation. It,
merely, details a class design that overloads methods specifically
necessary to build a BSD sockets like layer between calling applets
(servlets) and the machine specific Java serial communications
package.

Hierarchy
A uniform upper edge interface for the ModemlO classes permits
easy replacement of the implementation. The actual modem
handling code, for instance, may use the TAPI client calls instead
of direct Win32 communication calls. Mﬁltiple libraries that
conform to the same interface allow different link level protocol
stacks (like MNP3). This ensures the constancy (and hence direct

portability) of VFI.ModemlIO.*.

Required ModemIO Functionality
1. Open an end-to-end async, duplex dial-up connection. The
station address (InetAddress as in TCP/ IP) is the dial string.

Configure upon connection.

2

WO 98/06207

10

15

20

25

PCT/US97/13057

2. Listen for an incoming dial-up connection. The listen port
(analogous to the bound TCP port) is the COM port. In this
regard the valid port numbers range from O - OxFF (which is the
maximum number of COM ports allowed in NT). Configure

upon initialization.

3. Obtain Input and Output streams that re-direct from /to the

open connection.

4. Hang-up (close as in TCP/IP) a live connection.

The following classes form a part of VFI.ModemlO.* :-

Raw Serial Port Handling

public class VFI.ModemlO.Port
{

/ / Contructors

public Port (int nPortNum);

public Port (int nPortNum, int nBaud, int nParity, int
nDataBits, int nStopBits);

public Port (int nPortNum, String sCfgStr);

public Port (String sPortName);

public Port (String sPortName, String sCfgStr);

30

WO 98/06207 PCT/US97/13057

/ /Methods
public void close();
public int getPortID();
public String getPortName();
5 public String getCfgStr();
public InputStream getInputStream();
public OutputStream getOutputStream();

10 Modem initialization and methods
public class VFI.ModemIO.ModemPort
{
/ /Constructors
public ModemPort (int nPortNum);
15 public ModemPort (Port objPort);
public ModemPort (String sPortName);
public ModemPort (int nPortNum, String sInitString);
public ModemPort (Port objPort, String sInitString);
public ModemPort (String sPortName, String sInitString);

20
//Methods
public Port getPort();
public boolean connect (String sDialString);
public void disconnect();
25 public void reset();

public boolean configure (String sCfgStr);

X\

WO 98/06207

10

15

20

25

PCT/US97/13057

public boolean configureDM (String sCfgStr);

Programmers must use getPort() to capture a stream and transfer
data over the ModemPort. Configure(String) sends out an AT
command and returns TRUE if the modem returned OK<cr><If>.
configureDM(String) sends out the same command to the modem

when in data mode.

NET - The Sockets wrapper
The package encapsulates two major classes found in java.net.* -
Socket and ServerSocket. To present a familiar interface and yet
avoid conflicts, the package instantiates its own socket and
serversocket objects via constructors that take an extra parameter
(that identifies the lower object that needs to be instantiated). This

is illustrated after the class definition.

Station address resolution
The InetAddress object refers to an unique long value that
corresponds to the machines TCP/IP address. The async dial-up
line may however use multiple COM ports to open a connection
with the host. Heuristically, it may seem that fitting the TCP/IP
host/machine address into the native COM support library will
permit overloading of InetAddress and hence enhance elegance.

This, however, results in extra and avoidable complexity. In this

PCT/US97/13057

WO 98/06207

10

15

20

25

regard, InetAddress will still correspond only to a TCP/IP address.
The versions of the java.net.Socket constructor that accept the
host name (as a String) will, instead, be overloaded. This value will

now refer to a dial String that identifies the remote station address.

Socket initialization and connection

public class VFI.NET.socket
{

/ /Constructors
public socket (String sHost, int nPort, int nProtocolType);
/* nProtocolType may take one of two values :
PF_INET #defined to 1
PF_VFI_PTS_MODEMIO #defined to 2
Passing a value of O causes the use of

Java.net.Socket.*/

/ /Methods

public void close();

public String getStationAddress();

public int getPort();

public InputStream getInputStream();
public OutputStream getOutputStream();

public class VFI.NET.serversocket
{

WO 98/06207 PCT/US97/13057

10

15

20

25

/ / Constructors

public serversocket(int nPort, int nProtocolType);

/* nProtocolType may take one of two values :
PF_INET #defined to 1
PF_VFI_PTS_MODEMIO #defined to 2

Passing a value of O causes the use of

java.net.ServerSocket.*/

/ /Methods
public socket accept();
public void close();

public int getPort();

Interface Library to native Win32 Comm. API methods
HANDLE OpenDevice {int nDevNum, DCB * pNewDCB);
void CloseDevice (HANDLE hDevice); |
int WriteDevice (HANDLE hDev, int nBytesToWrite, unsigned char
* pWriteBulf);
int ReadDevice (HANDLE hDev, int nBytesToRead, unsigned char *
pReadBuf),
BOOL ConfigureDevice (HANDLE hDev, DCB * pNewDCB);

B

WO 98/06207 PCT/US97/13057

While the invention is described in terms of preferred embodiments
in a specific system environment, those skilled in the art will

recognize that the invention can be practiced, with modification, in
other and different hardware and software environments within the

5 spirit and scope of the appended claims.

U
U

WO 98/06207

10
11
12
13
14
15
16
17
18
19
20
21

PCT/US97/13057

CLAIMS

Having thus described our invention, what we claim as new, and

desire to secure by Letters Patent is:

(b)

(c)

(d)

A distributed computer system including a client terminal

and a server which communicate via a network, comprising:

the client terminal initiating connection to the server

computer utilizing the network;

the server responding to the initial connection by

transmitting an enquiry message to the client terminal,

the client terminal responding to the enquiry message with a

message comprising identification information indicative of

the client terminal being a network terminal or a non-

network terminal and identifying a client application the

client terminal requires;

the server receiving and analyzing i:he identification

information to determine if the client terminal is a network

terminal or a non-network terminal; and

(d1) if the client terminal is a network terminal, then the
client loader on the server updates the client
application, if necessary, on the client terminal
utilizing the network and starts the server application
to service future requests from the client terminal; and

(d2) if the client terminal is a non-network terminal, then

the server initiates the client application and server

24

WO 98/06207

22
23

PCT/US97/13057

application on the server for processing the application

at the server for the client terminal.

The distributed computer system as recited in claim 1,
wherein the update of the client application entails a

download of the client application to the client terminal.

The distributed computer system as recited in claim 1,in
which the client terminal communicates to the server

utilizing a dial-up network connection.

The distributed computer system as recited in claim 1,
wherein the identification information comprises

configuration characteristics of the client terminal.

The distributed computer system as recited in claim 1,
wherein the network terminal executes Java code on the

network terminal.

WO 98/06207

PCT/US97/13057

The distributed computer system as recited in claim 1,
wherein the same client application is executed on the server

computer and the client terminal.

The distributed computer system as recited in claim 1,
wherein the non-network terminal receives commands from

the client application on the server.

The distributed computer system as recited in claim 1,
including means for passing a client application request to

another server to process the request.

WO 98/06207

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(a)

(b)

(c)

(d)

PCT/US97/13057

A method for distributing computing between a server

computer and a client terminal which communicate via a

network, comprising the steps of:

Initiating connection of the client terminal to the server

computer utilizing the network;

responding to the initial connection request at the server

computer by transmitting an enquiry message to the client

terminal,

responding to the enquiry message at the client terminal

with a message comprising identification information

indicative of the client terminal being a network terminal or

a non-network terminal and identifying a client application

the client terminal requires;

receiving and analyzing the identification information at the

server computer to determine if the client terminal is a

network terminal or a non-network terminal; and

(d1) loading a server application if the client terminal is a
network terminal, which starts the client application
and services future requests from the client terminal;
and

(d2) loading a server application on the server, if necessary,

which initiates a client application on the server for
processing the client application at the server on
behalf of the client terminal, if the client terminal is a

non-network terminal.

)

WO 98/06207

1 12,

PCT/US97/13057

The method as recited in claim 9, wherein the update of the
client application entails a download of the client application

to the client terminal.

The method as recited in claim 9, including the step of
communicating between the client terminal and the server

utilizing a dial-up network connection.

The method as recited in claim 9, wherein the identification
information comprises configuration characteristics of the

client terminal.

The method as recited in claim 9, wherein the network

terminal executes Java code on the network terminal.

The method as recited in claim 9, wherein the same client
application is executed on the server computer and the client

terminal.
The method as recited in claim 9, wherein the non-network

terminal receives commands from the client application on

the server.

2%

WO 98/06207

10
11
12
13
14
15
16
17
18
19
20
21
22

16.

17.

(a)

(c)

(d)

PCT/US97/13057

The method as recited in claim 9, including the step of
passing a client application request to another server to

process the request.

A computer program embodied on a computer-readable

medium for enabling a distributed computing system,

including a client terminal and a server which communicate

via a network, comprising:

a code segment for initiating connection of the client

terminal to the server computer utilizing the network;

a code segment for responding to the initial connection

request at the server computer by transmitting an enquiry

message to the client terminal;

a code segment for responding to the enquiry message at the

client terminal with a message comprising identification

information indicative of the c,lient.terminal being a network

terminal or a non-network terminal and identifying a client

application the client terminal requires;

a code segment for receiving and analyzing the identification

information at the server computer to determine if the client

terminal is a network terminal or a non-network terminal;

and

(d1) a code segment for loading a server application if the
client terminal is a network terminal, which updates
the client application and services future requests

from the client terminal; and

9

PCT/US97/13057

WO 98/06207

23 (d2) a code segment for loading a server application, if
24 necessary, on the server which initiates the client
25 application on the server for processing the client
26 application at the server on behalf of the client

27 terminal, if the client terminal is a non-network
28 terminal.

1 18. The computer program as recited in claim 17, wherein the
2 update of the client application entails a download of the

3 client application to the client terminal.

1 19. The computer program as recited in claim 17, including a
2 code segment for communicating between the client terminal

3 and the server utilizing a dial-up network connection.

1 20. The computer program as recited in claim 17, wherein the
2 identification information comprises configuration

3 characteristics of the client terminal.

1 21. The computer program as recited in claim 17, wherein the
2 network terminal executes Java code on the network

3 terminal.

1 22. The computer program as recited in claim 17, wherein the
2 same client application is executed on the server computer

3 and the client terminal.

o

WO 98/06207

PCT/US97/13057

The computer program as recited in claim 17, wherein the
non-network terminal receives commands from the client

application on the server.

The computer program as recited in claim 17, including a
code segment for passing a client application request to

another server to process the request.
The computer program as recited in claim 17, including a

code segment for making a dial up connection appear to the

server as a socket connection.

U\

(9z 31ny) 133HS ailniiLsans

102 104 106 106'*ﬁ
[L L
CPU ROM RAM 113

INTERFACE
ADAPTER

116

DISPLAY
ADAPTER,|

114

KEYBOARD
20— o

'q
DISPLAY

vi/t

L0790/86 OM

LSOET/L6SN/LDd

PCT/US97/13057

2/14

WO 98/06207

JSOH

¢ 4d4DId

AdHAJHS

<

“100010dd
dlI/dO.1/ddd

INLV-d

suoyd
eAR[

d
BAR[

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13057
3/14 C

WO 98/06207

Ol

¢ HdNDIA
00¢
0S¢
m/
PeIsddd T1¢
oﬂ NOD T€UWMm 12AeTdOL CI€
— sios tle
L1E— | TVIEASTIA LAN'VAVL VI¢
| OINEHLTAA . LANTAA
81t 1aydyedsi(q //m It
0 mfm 6l¢
" ‘Ky[eho] ‘anfea paIoIS) ‘
SNOILVOI'TddV BA®B[I9AISS “ * * M

SUBSTITUTE SHEET (RULE 26)

WO 98/06207

PCT/US97/13057

4/14

v HdNDIA

Olp————

DINAHL

THA

\\’V // 00¥

%s\m AE% 1y

WOD Teuim a&? D ._y k7
synos| ETV
STy M i
OIMAEERINA % OINHALTIANMAN| ¢y
J ~—
10939p 3ury - | \ ré /
K y YIAVOTINAIT -
0¢ >0 .
Toyojedsi(y IYO 7
[ey v

nVO SpeaIy ., I9A13G

—0SP

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13657

WO 98/06207

5/14

S HINDIA

oIS

INedH.L

‘E\\\\Lom
\ % 1sanbai 0} asuodsay - ¢ \O S

e ddy [
NOD ZEWM 3Ap] dol|
S mMUOm//L
= CIT1
TVIMAS TIA sz.<>$ /
OINYAL TIA \ Hmz.%\/

901AI3S 10J 3sanbay - |

NOILVOITddV
HIATAS LAVIS-¢C

Jayoredsiq O
€C ddy |VO SPBAIY [, 10AIDS

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13057

WO 98/06207

6/14

9 HANDIA

O ﬂ @ INAH.L rblO@
m& TAN]
NOILVOI'TddV ILNAITD ..Iu" \OW@
\
/ T
AoelS bﬁ aseqeje(y
NOD TEWM 1487 dDY 59
SLEMO0S) IsOHIIO
TVIIAS TAA Ez.<>$,, 53014105
oddng
OINYAL TIA Ly YA ow@:
Cll ﬁ\ { NOILLYI'TddV

./omc AAYAS

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13057

714

WO 98/06207

OlL—
VNI L HIDIA
SMOMLAN-NON 00L
|
yoel1S ddd
INOD [geuIm 19AeT dDL
SLAMDO0S
ClL4 TVIIAS TIA LAN' VAVI
STLr—0 TANTAA
Joo1op Sury - | NOILVDI'1ddV ﬁwwwm i
ovL /
IT1 vﬁ@
. ﬁ.uosoﬁ%ﬁ |YO
I Nl‘\\\aﬁ?\ SpeaIy] 19AIaS

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13057

WO 98/06207

8/14

8 HA(1DIA

018
/ TVNINYHL
TIOMLIN-NON Oow
1sanbai 0} asuodsay] - ¢ /
LS8 3981 m_mm
\ INOD TeWMm 14eT dDL
T ciil simoos G
9S8 | TVINESTHA > LAN'VAV(
) OUNMELTdY| / LAN [AA
mmwl\\ ,2 1ddV
2014105 10§ J5oNbaY - | N w NAI'TO
Omwl\\\.\\ A 1ayoedsi(q 1I||Y$w NM\H/MMWAMMMSN
Ov8ddy »()

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13057

WO 98/06207

9/14

16

TVNIWNIAL
RROMLAN-NON

6 HIdNDIH

INOD TeUIM

/

39818 ddd

104AeT dDL

cl

L S1a3008

006 “\

I q«Emm{\/

LAN VAVI

056 __L~

OINNEL A

\ LANTAA

/V NOILVOI'lddV

LNEITO
6

OLLVOI'lddV

@_VV0 uanuas

SUBSTITUTE SHEET (RULE 26)

WO 98/06207

PCT/US97/13057

10/14

OT TANDIA

jo¥ded asuodsay 4o puswWoD)
uno)
91 214g redAL
o¥D »001g DIo(] ¥ mutm:@m.m; YD depery 3oed J2pEsSH
IPHIBJ MVNADY

SUBSTITUTE SHEET (RULE 26)

[T HINDOIA

PCT/US97/13057

P ¥ Xy X =)D

‘wucse
1L1D2-0¥D 1q-91 piepuels syy 513 play %50]g Bieg 24
30 214q 152 3Y) 01 ¥ $5UINBRS WOY ‘UOHEINIIED YD) AIAG 7 sa14q z 9/-0¥2

"pa1dAIdu2 39 39yuny KeWw pue (s390]q) S:33dEC JajjTils
o)ut dn usyoJq ag Aew sSesseyy 2suodsay JO puTLWIWOD
syl si2Xoed VYN MDV-UOL 103 A[uo pijea ‘pjaus jeuondp 1 -uno) s14Ag yoo)g viog

"
Aq pajuswwa1dul 3q {]im $%90]9 1uanbasans ‘g sAem|e 5! 330]q

11/14

YRS "RI3N9Bd H YN/ D V-UOU 10 AjUo pijea ‘pj3ul [RLUORGD 314q | & souanbag
BIBP PIUIWSURL I58) 31 §) SIY) *Sie0Rd MVN

pue 3DV Joj uno) akg/edi] 1e%oeg o J0 wnsysayn sa1fq ¢ 8D dpeay
22018

BIR(PUE ¥ 35UINb2S 311 10 3715 o1 ‘(anjeA Xew S60p) 09
= 119 'S11q 7] Suiuieiial 9y Ul paUIRILG? §1 JUN0Y) 3Ag su

%22qdo0] ‘SpOJA 1591 pAIBNIU] JAJS e
o0ed 159

paidAoua-uoN / paidhisug meg e

NO0]G ISET] .

MOJ]0] OF ENDOIE SIO e

193984 (S5UCOsay J0 putwwo 3 eieg

JVN e

SOV e

IS5t g joniuc)

:'39%520 (25U0ds3) 10 prewWWOD) TILD 10 sayed

WO 98/06207

1041U02 13322d 153) © S1 31 1 S3UILLASP SIU] 16 - C1q uno)) a1kg
‘811G JUBDYIUSIS 1+ 1SOW 2U3 Ul p2urpiuos §1 934 12Ndeg 24 $4G 7 /2dA]1 193084
(8ST)EEX0 (ESIN) YY'XQ anjeA 21 SEY | $314Aq ¢ J3ptay

syJTway | 2zIg awep

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13057

WO 98/06207

12/14

cT TANDIF

*Aue J1 ‘B)Ep
paissnbs2 Aq pamo[}o] ‘smams 214 | :aSessajy asuodssy 104
"sudlewered viep pUBLIWOD :35eSS2jA) PUBWIWO)) JO4

uapuadsp 9dA] 921AS(PUE puRWIWOY) §I Pidl} SI) <?]qERIIBA> sJ3jaureseq
wspuadap adA] 301A5(1 214 puBWILOD 214q | puewIWo)

140

*DD1 pue ‘pedAay ‘Aejdsi(‘wsisAS 1201ASPQRS oY) 193]S 314q | $31A53Qng
(‘3ulpooug JLNSWWAS Xo0|g J04) "m0]|0) 01 BIEp J0 LiSusT 34q | Jidusn
S FLANER| ;g Jurep

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13057

13/14

WO 98/06207

PT HANODIA

‘uopoajas dwold jBE||] £
*SI99BIBYD AUBW 00 7
"PUBLLILCY Pijeau] 1
*UONIRISEO |NISSEIING 0
uondisasag snIeIS
€T dANOIA
*SUON ‘Oy2% SInd3S J83]D 9
*SUON ‘(. «. AB]ASIP) OY3s 31n22S 32§ 4
"SUON "oyd2 |B20] 82D +
"SUON "0Y23 |BJ0] 19§ 3
Aouraw
-uwn|os 195130 ‘31qe] | AN woy 1dwoead 19531d Aejdsig z
‘uwngos ‘Suing 1x3) med Aejdsi(g 1
‘Arowsw
*Suis 395330 ‘a1aR L AN 0wl Suins 1%33 23015 0
sJajaweled ieQg vondiiasag puswwo))

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13057

WO 98/06207

14/14

GT HANDIA

IOATOS

uornyeoddy
-0SS1

ARSI ERECH:E

BTEp TSonbaT uoreonddy = ¢3S 1

uonyeonddy
IURI[D

UOTEIg U0 - CEGT

DOS) uon

49pEU
QO:O Nmmu

Tdde 15T TTeIs 0T ISanbag = 0EG

[

8041

uoSUMQOMO v

soTepdrt uoryeoadde JuSID - 002G 1

95BSSall UONeBIIIuaP] - IS1

[

AImbus UoTTesyIusSpPl = O1GT

(ITT1 LAMDOS) 103uuo) - 90S1

\otst

ANIT v

1oAID
E>m

\

[euruLIa],

..... -—>—GOSTt e e —

TUUNgosT T

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT inte. .onal Appiication No

PCT/US 97/13057

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 H04L29/06

According to Intemational Patent Classification(IPC) or to both national clagsification and IPC

8. FIELDS SEARCHED

IPC 6 HO4L

Minimum documentation searched (classification systemn followed by classification symbols)

Documaentation searched other than minimumdocumentation to the extent that such documents are included in the fields searched

Elactronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Cltation of document, with indication, whare appropriate, of the relevant passages

INC) 9 August 1995

see column 32, line 15-49
see column 36, line 10-29
see column 40, line 8-42

see column 29, line 26 - column 30, line

X EP 0 666 681 A (TRANSACTION TECHNOLOGY 1-4,

7-12,
15-20,
23,24

Y see column 8, line 31 - column 9, line 15 5,6,13,

14,21,
22,25

m Further documents are listed in the continuation of box C.

E Patent family members are listed in annax.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considerad to be of panticuiar relevance

“E" earlier document but published on or after the international
fing date

“L* documemnt which may throw doubts on priority claim(s) or
which Is cited to establish the publicationdate of another
citation or other epecial reason (as specified)

‘0" document referring to an oral disclosure, usa, exhibition or
other means

"P" document published prior to the iltemational filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the applcation but
cited to understand the principle or theory underlying the
invention

X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

“Y* documant of particular relevance; the claimed invention
cannot be considered to involva an inventive step when the
documaent is combined with one or more other such docu-
ao“r'?, ;uch combination being obvious to a parson skilled

art.

*&" document member of the same patant family

Date of the actual complation of theinternational search Date of mailing of the international search report
17 December 1997 14/01/1998
Name and mailing address of the ISA Authonized officer
European Patent Office, P.B. 5818 Patentiaan 2
NL — 2280 HV Rijswijk 5 nl
Tal. (+31-70) 340-2040, Tx. 31 651 epo 1, :
Fax: (+31-70) 3403016 Dupuis, H

Fom PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Inte: onail Application No

PCT/US 97/13057

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Aslevant to claim No.

Y EP 0 326 699 A (IBM) 9 August 1989
A see page 3, line 4-32

see page 7, line 14-16; figure 7

see page 8, line 7-10

Y US 5 506 832 A (ARSHI TAYMOOR ET AL) ¢
April 1996

see column 1, line 58 - column 2, line 32
see column 9, line 38-60; figures 1,5,17
see column 48, Tine 2-30

see column 54, line 55 - column 55, line
32; figure 48

see column 59, Tine 50 - column 63, line
61; figure 53

P.A WAYNER P: "Inside the NC"
BYTE,
vol. 21, no. 11, November 1996, MCGRAW
HILL,USA,

pages 105-110, XP002050423
see the whole document

6,14,22
1,4,8,9,
12,16,
17,20,24

5,13,21,
25

Fomn PCTASA/210 {(continuation of second sheet) (July 19892)

page 2 of 2

INTERNATIONAL SEARCH REPORT | imor onal Application No

Information on patent tamily members PCT/US 97/13057
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0666681 A 09-08-95 US 5195130 A 16-03-93
AU 6758290 A 13-06-91
CA 2068336 A,C 10-05-91
CN 1054164 A,B 28-08-91
CN 1093475 A 12-10-94
EP 0499620 A 26-08-92
JP 7170341 A 04-07-95
JP 5501645 T 25-03-93
WO 9107839 A 30-05-91
US 5485370 A 16-01-96
US 5572572 A 05-11-96
US 5321840 A 14-06-94
EP 0326699 A 09-08-89 US 4885789 A 05-12-89
DE 3855378 D 25-07-96
DE 3855378 T 23-01-97
JP 1870558 C 06-09-94
JP 2007639 A 11-01-90
US 5506832 A 09-04-96 US 5524110 A 04-06-96
US 5506954 A 09-04-96
US 5493568 A 20-02-96
US 5663951 A 02-09-97
US 5590128 A 31-12-96
US 5600797 A 04-02-97
US 5579389 A 26-11-96
US 5592547 A 07-01-97
US 5631967 A 20-05-97
US 5566238 A 15-10-96
US 5673393 A 30-09-97
US 5574934 A 12-11-96

Form PCT/ISA/210 (patent family annex) (Juty 1892)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

