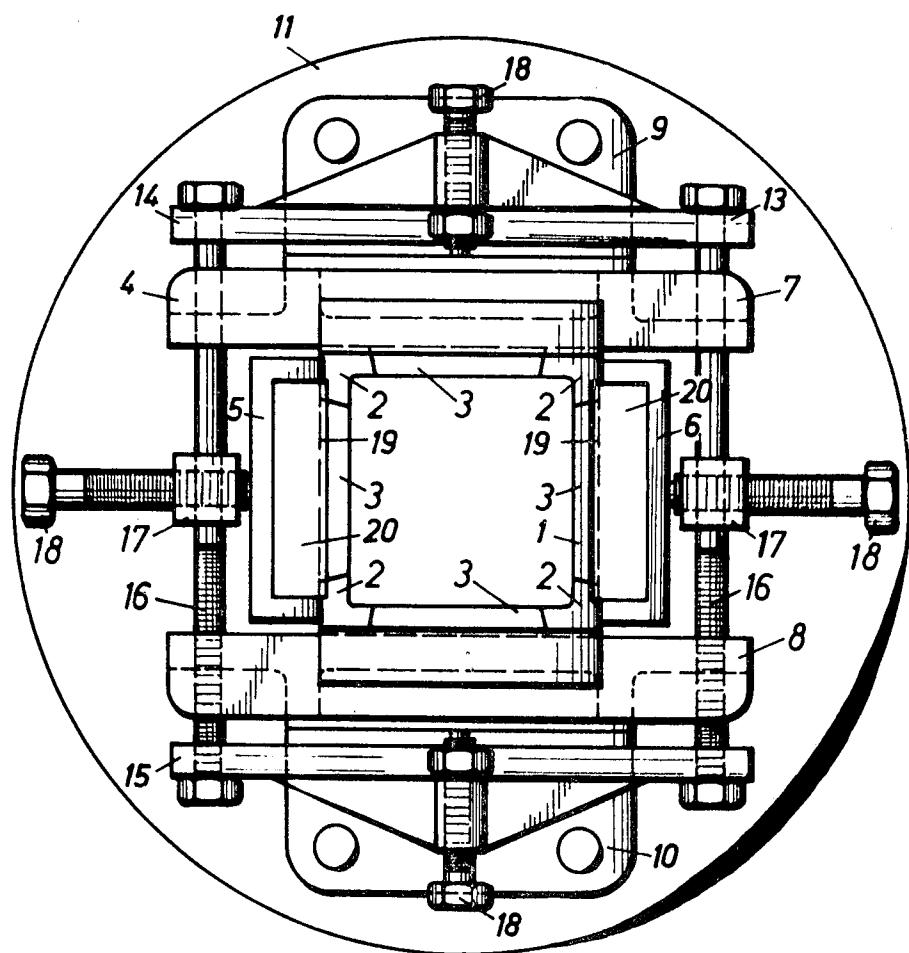


Sept. 20, 1971

H. KRALL ET AL


3,605,870

COOLING DEVICE FOR CONTINUOUS CASTING MOLDS

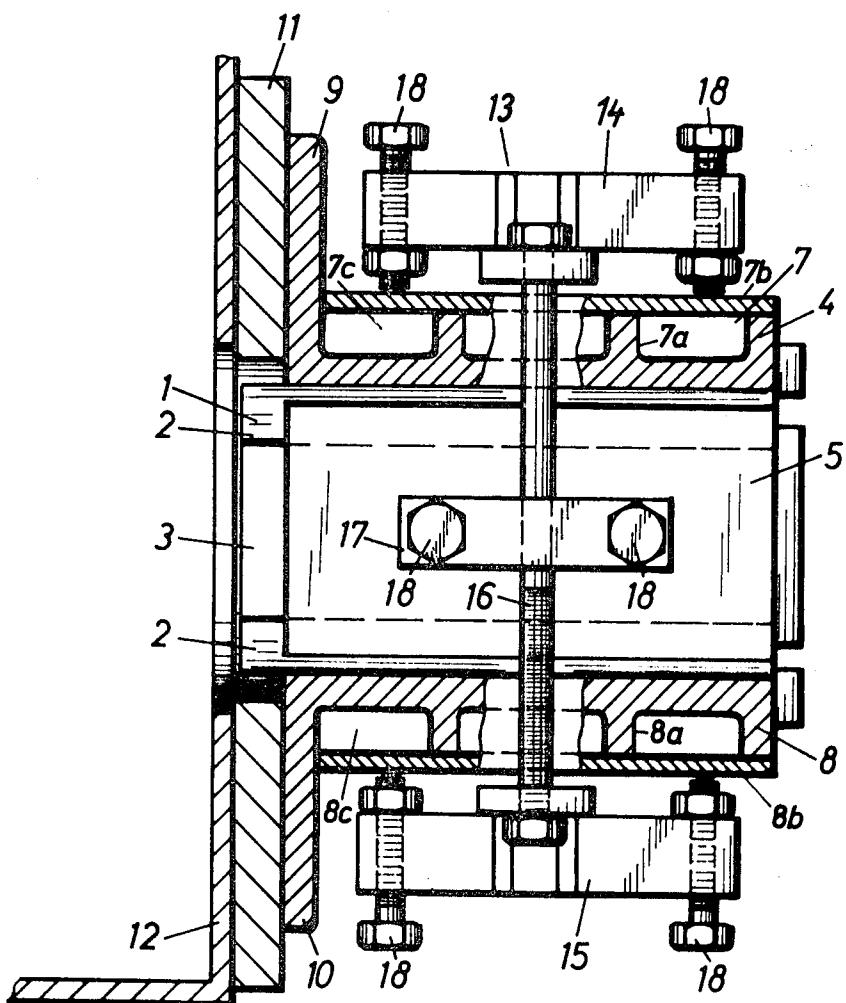
Filed Oct. 18, 1968

2 Sheets-Sheet 1

Fig. 1

Sept. 20, 1971

H. KRALL ET AL


3,605,870

COOLING DEVICE FOR CONTINUOUS CASTING MOLDS

Filed Oct. 18, 1968

2 Sheets-Sheet 2

Fig. 2

1

3,605,870
COOLING DEVICE FOR CONTINUOUS
CASTING MOLDS

Heribert Krall, Wurzburg, and Hans Adalbert Koch, Hochberg, Germany, assignors to Technica-Guss G.m.b.H., Wurzburg, Germany
Filed Oct. 18, 1968, Ser. No. 768,858
Claims priority, application Germany, Apr. 26, 1968, T 24,030, Patent 1,993,120
Int. Cl. B22d 11/12

U.S. Cl. 164—283

2 Claims

ABSTRACT OF THE DISCLOSURE

The disclosure relates to a device for cooling molds for the continuous casting of bars, strips and sections with edges. The mold is elongated and made up of elongated mold parts abutting each other, such as for a rectangular mold corner members and mid-sections therebetween. Two opposite sides of the mold have cooling plates abutting the outside of the mold parts. These plates have spaced ribs extending outward therefrom and a closure plate rests upon the ribs so that coolant channelways are formed. Strap members having adjusting screws tight against the outside of these closure plates and tension rods secure the opposite strap members against the outside of the closure plates and force the opposite cooling plates into close abutting contact with the outside of the adjacent mold members. The other opposite two outsides of the mold members each have an elongated U-shaped plate member with its legs resting against the outside of the adjacent opposite mold members. A sleeve is received on each tension rod adjacent the outside of the U-shaped cooling plates and a screw is threadedly received in a threaded aperture in each sleeve and pressed against the outside of the bight portion of the U-shaped coolant plate to urge the legs thereof into engagement with the adjacent mold members. The elongated space formed between the U-shaped member and the outside of the adjacent mold member serves as a passageway for coolant. The first two mentioned cooling plates have in line transverse flanges that serve as mounting means for mounting the assembly onto an intermediate plate attached to the furnace at its discharge opening. The intermediate plate has an aperture therein in alignment with the adjacent open end of the mold assembly.

BACKGROUND OF THE INVENTION

As is well-known in the continuous casting process, the molten metal in the mold is cooled by a cooling device, surrounding it. While passing through the mold the molten metal solidifies by the effect of the cooling device. Furthermore, it is well-known to use for the cooling device a single cooler which is provided with a flange to mount it to the furnace.

Such coolers, however, have to be machined very exactly on the internal faces so that a good heat transfer is guaranteed. The usually used material steel when used tends to distortion owing to the thermal effect so that these coolers have to be refinished after a short time of operation or scrapped respectively. Coolers made of other material which is not so susceptible to distortions bring about considerable rises in price for the cooling device owing to the material costs. Another disadvantage is the rigid inner cooler opening. This and the surface of the mold have to be machined very precisely so that they fit tightly. A refinishing of the joint faces of already used molds and the use of these molds is no longer possible without many difficulties. Therefore, the suggestion has already been

2

made to design the cooling device of several parts and to screw the individual parts to each other. Such coolers are held by the mold itself. When using thin-walled molds the danger exists, however, that the sensible mold material breaks owing to the weight of the cooling device.

SUMMARY OF THE INVENTION

It is an object of the invention to create a cooling device which avoids these disadvantages.

The problem is solved by providing a cooling device that consists in an actually known way of at least two individual cooling plates of which at least one is provided with a flange. The cooling plates provided with a flange are mounted as by screws to a second flange (intermediate flange) and then this is mounted directly to the holding furnace. The cooling plates of the cooling device which are not provided with a flange are pressed in an actually known way against the mold together with the other cooling plates. According to the invention this is done by means of a tightening cross the essential character of which is that the individual cooling plates are not pressed laterally but in the middle of the longitudinal shaft against the mold. Owing to this a one sided distortion of the cooling plates is avoided when they are pressed on.

The face of the cooling plate resting against the mold is plane and easily accessible for refinishing so that it can be easily subjected to surface grinding after being disassembled.

The over-all dimensions of the mold can be changed within certain limits without having to acquire new coolers because the cooling plates can be moved on the intermediate flange and this is also permitted by the tightening cross. Owing to its simple design the cooling plate can be manufactured of a cheap material with little danger of distortion.

The cooling device is mounted to the furnace and carries the graphite mold which has only a low stability. Owing to this a higher mechanical load of the continuous casting form is guaranteed as against the solutions known so far.

BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the invention is hereinafter described by way of example with reference to the accompanying drawings but it is clearly to be understood that the invention is by no means restricted to the details of this embodiment.

FIG. 1 shows the mold and its cooler as seen looking into the discharge end of the mold end,

FIG. 2 is a lateral view of the cooler partly in section.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The mold 1 consists of four corner members 2 and four mid-sections or intermediate members 3 abutting the corner members. These are held together by the forces transferred by the cooler 4 consisting mainly of four parts, the two lateral coolers 5 and 6 and the upper cooler 7 and the lower 8. The upper cooler 7 has a flange 9, the lower cooler 8 has a flange 10. The flanges 9 and 10 are secured as by screws (not shown) to the intermediate flange 11 which consists of a flat plate. They can be adjustably positioned on it within certain limits. The intermediate flange is secured to the holding furnace by known means. The upper and lower coolers 7 have outwardly extending spaced apart ribs 7a and 8a and over these ribs are received cover plates 7b and 8b. The void spaces 7c and 8c formed therein are coolant passages. Each individual part 5 to 8 of the cooler 4 has connections for the cooling water inlet and outlet connections. Cooler 4 is held together by tightening cross 13. This consists of the straps 14 and 15 which are pulled toward each other by the tension rods 16. The

straps 14 and 15 have screws mounted therein that tighten against the cover plates 7b and 8b. On the tension rods 16 there received sleeves 17 having threaded apertures extending transverse to the tension rods. By means of the screw 18 received in these threaded apertures the four parts of cooler 4 are pressed against mold 1 so that its individual parts 2 and 3 are closing tightly at the joints. The joints 19 between mold 1 and cooler 4 are also watertight and cannot lose the water flowing through the inner chambers 20 of cooler 4.

What is claimed is:

1. A cooling device for attachment to a holding furnace having an elongated mold for the continuous casting of bars, strips and sections with edges, an intermediate flange attached to said furnace and having an aperture therethrough, through which extends said mold, said cooling device having at least two individual cooling plates arranged around the circumference of the mold, at least one of said cooling plates having a flange thereon extending transversely to the rest of the plate and being shiftably connected to said intermediate flange.

2. A cooling device according to claim 1 having a tightening cross means for each of said two individual cooling

plates, means holding the tightening cross means about said mold, each of said tightening cross means having pressure means applying pressure to the respective plates at a middle point of the plate.

References Cited

UNITED STATES PATENTS

2,600,772	6/1952	Horn	-----	164—283
2,769,218	11/1956	Harter et al.	-----	164—283
3,226,782	1/1966	Schultz	-----	164—283
3,286,309	11/1966	Brondyke et al.	-----	164—283X
3,353,584	11/1967	Atkin	-----	164—283X
3,292,216	12/1966	Colombo	-----	164—281
3,511,305	5/1970	Wefrtzi	-----	164—82

FOREIGN PATENTS

681,844	3/1964	Canada	-----	164—283
1,125,594	3/1962	Germany	-----	164—283
298,695	10/1963	Netherlands	-----	164—283
363,762	9/1962	Switzerland	-----	164—82

J. SPENCER OVERHOLSER, Primary Examiner

J. E. ROETHEL, Assistant Examiner