
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0150561 A1

US 2007O150561A1

Courtney (43) Pub. Date: Jun. 28, 2007

(54) SYSTEMAND METHOD FORVERIFYING A Publication Classification
NETWORK DEVICES CONFIGURATION

(51) Int. Cl.
(76) Inventor: Mike Courtney, Colorado Springs, CO G06F 15/177 (2006.01)

(US) (52) U.S. Cl. .. 709/220

Correspondence Address:
COOLEY GODWARD KRONISH LLP (57) ABSTRACT
ATTN: Patent Group
Suite 500
1200 - 19th Street, NW A system and method for verifying the state of a device
WASHINGTON, DC 20036-2402 (US) configuration corresponding to a network device is

described. In one embodiment, the method includes deter
(21) Appl. No.: 11/675,727 mining a desired State of a device, retrieving a device

configuration stored in a repository, retrieving another
(22) Filed: Feb. 16, 2007 device configuration from the network device, and identi

Related U.S. Application Data fying differences between the device configuration retrieved
from the network device with the device configuration

(63) Continuation of application No. 09/942,833, filed on retrieved from the repository. A record of the differences is

Component

Aug. 29, 2001, now Pat. No. 7,200,548.

Router
165

Optical

1.65

Storage
System
165

then provided to a system administrator.

220

//

DOM
Generator

160

DOM
Applications

185

Patent Application Publication Jun. 28, 2007 Sheet 1 of 7 US 2007/O150561 A1

S N

US 2007/0150561 A1 Patent Application Publication Jun. 28, 2007 Sheet 2 of 7

??T ??npOWN SO

pueuuuuOO

US 2007/0150561 A1 Patent Application Publication Jun. 28, 2007 Sheet 3 of 7

WOCl

99),

US 2007/O150561 A1

OZZ

Patent Application Publication Jun. 28, 2007 Sheet 4 of 7

US 2007/0150561 A1 Patent Application Publication Jun. 28, 2007 Sheet 5 of 7

TINX

WOCl

Patent Application Publication Jun. 28, 2007 Sheet 6 of 7 US 2007/O150561 A1

Determine target router's
characteristics

255
Retrieve hash object
corresponding to key

290
Access schema hash
table associated with

target router's
characteristics

260 Assemble XML
configuration command

295

Retrieve configuration
from target router

265
Any more
Command

lines?
300

No
For a command within the
retrieved configuration line

270 ASSemble XML
commands into an XML

document
315

Generate a lookup key for
the retrieved Command

275
Convert XML document

into DOM
320

Locate corresponding key
in hash map

280 Verify DOM
325

FIGURE 6.

Patent Application Publication Jun. 28, 2007 Sheet 7 of 7 US 2007/0150561 A1

Get Command from
Schema
328

Get application specific
information, etc.

345

Create unique hash key
from Schema command

330
Store schema object

350

Get data type information
from schema

335
Persist object into hash

table
355

Get sibling information
340

Any more
Commands modeled

in Schema?
360

362

No 364

Store hash table
365

FIGURE 7.

US 2007/O 150561 A1

SYSTEMAND METHOD FORVERIFYING A
NETWORK DEVICES CONFIGURATION

PRIORITY

0001. The present application is a continuation applica
tion of commonly owned and assigned application Ser. No.
09/942,833, Attorney Docket No. CNTW-008/00US,
entitled SYSTEM AND METHOD FOR MODELING A
NETWORK DEVICES CONFIGURATION, filed on Aug.
29, 2001, which is incorporated herein by reference.

RELATED APPLICATIONS

0002 The present application is related to commonly
owned and assigned application Ser. Nos.:

0003) Ser. No. 09/730,864 entitled System and Method
for Configuration, Management and Monitoring of
Network Resources, filed Dec. 6, 2000;

0004 Ser. No. 09/730,680 entitled System and Method
for Redirecting Data Generated by Network Devices,
filed Dec. 6, 2000;

0005 Ser. No. 09/730,863 entitled Event Manager for
Network Operating System, filed Dec. 6, 2000;

0006) Ser. No. 09/730,671 entitled Dynamic Configu
ration of Network Devices to Enable Data Transfers,
filed Dec. 6, 2000;

0007 Ser. No. 09/730,682 entitled Network Operating
System Data Directory, filed Dec. 6, 2000; and

0008) Ser. No. 09/799,579 entitled Global GUI Inter
face for Network OS, filed Mar. 6, 2001;

all of which are incorporated herein by reference.

FIELD OF THE INVENTION

0009. The present invention relates to network device
configuration. In particular, but not by way of limitation, the
present invention relates to systems and methods for retriev
ing configurations from network devices and generating
corresponding command models.

BACKGROUND OF THE INVENTION

0010 Networks, and in particular, the Internet, have
revolutionized communications. Data vital to the continued
prosperity of the world economy is constantly being
exchanged between end-users over these networks. Unfor
tunately, the expansion and maintenance of present networks
is outpaced by the demand for additional bandwidth. Net
work equipment is often difficult to configure, and qualified
network engineers are in extremely short Supply. Thus,
many needed network expansions and upgrades must be
delayed until these engineers are available. While these
upgrades and expansions are pending, end-users continue to
Suffer poor network performance.
0.011) CiscoTM routers, for example, are notoriously dif
ficult to configure—especially in light of the new XML
based interfaces introduced by competitors such as Juniper
NetworksTM. Instead of a user-friendly XML-based inter
face, Cisco TM uses a cumbersome command line interface
(CLI) for its routers. Cisco’sTM CLI is the result of many
years of semi-controlled modifications to its router operating
systems and has resulted in a tangled mess of commands and

Jun. 28, 2007

Subcommands. This cumbersome interface is one reason that
CiscoTM requires that Cisco-certified engineers work on its
rOuterS.

0012 CiscoTM could reduce the complexity of its routers
and reduce the need for Cisco-certified engineers by pro
ducing a user-friendly interface. If CiscoTM attempted to
abandon its CLI in favor of such a user-friendly interface,
however, many years of development and expertise could be
lost. Moreover, even if it could develop a user-friendly
interface, there is presently no economical way to integrate
it into the thousands of existing CiscoTM routers. Despite the
difficulties in implementing a more user-friendly interface,
to remain competitive, CiscoTM and similarly situated com
panies need to move away from their present interfaces.
Present technology, however, does not provide these com
panies with an acceptable option that allows continued use
of their extensive interface knowledge base while simulta
neously providing system administrators and network engi
neers with a user-friendly interface. Moreover, present tech
nologies do not provide an acceptable way to provide
backward compatibility of new user-friendly interfaces with
existing network devices.
0013 CiscoTM, of course, is not the only network device
manufacturer to face this interface-upgrade problem. Many
manufacturers would like to continue using their existing
interface knowledge base while providing system adminis
trators a user-friendly, consistent interface. Accordingly, a
system and method are needed that will allow manufactur
ers, like CiscoTM, to create user-friendly interfaces for both
next-generation and existing devices.

SUMMARY OF THE INVENTION

0014 Exemplary embodiments of the present invention
that are shown in the drawings are summarized below. These
and other embodiments are more fully described in the
Detailed Description section. It is to be understood, how
ever, that there is no intention to limit the invention to the
forms described in this Summary of the Invention or in the
Detailed Description. One skilled in the art can recognize
that there are numerous modifications, equivalents and alter
native constructions that fall within the spirit and scope of
the invention as expressed in the claims.
0015. In one embodiment, for example, the present
invention can provide a system and method for modeling the
configuration of a network device. Such a system could
include a CLI-to-XML converter connected to a schema
storage device or a CLI-to-XML converter in combination
with a document object model (DOM) generator. Other
embodiments could include, for example, a CLI-to-XML
converter, a schema hash system, and a DOM generator.
0016. In operation, one embodiment of the present inven
tion can model a network device's configuration by retriev
ing a the network device's configuration, in a native format,
from the network device—or an alternate location—and
converting it into a standard-format configuration Such as an
XML document or a DOM. This standard-format configu
ration provides system administrators with an easy-to-use,
familiar device configuration format for different network
devices. That is, instead of being forced to manipulate a
difficult CLI-based configuration format, or other format
system administrators can use the standard-format configu
ration to interact with the target network device. Moreover,

US 2007/O 150561 A1

one embodiment of the present invention can allow system
administrators to use the same standard configuration format
across multiple brands and models of network devices.
Thus, in networks that employ multiple brands and models
of network devices, system administrators can be presented
with similar configuration formats for each device despite
the fact that the native configuration formats for the different
devices are significantly different.

0017. The process for actually converting a native-format
configuration for a network device into a standard-format
configuration is generally a multi-step process. For example,
one embodiment of the present invention initially deter
mines the target network device's characteristics such as
manufacturer, model, operating system version, etc. Next,
using some or all of this characteristic information, an
appropriate configuration schema can be retrieved from a
schema storage device. Briefly, the schema can include a
standard representation of the command structure for a
particular type of network device. For example, one schema
could contain a representation of the command structure for
all model 7500 CiscoTM routers using OS version 12.1, and
another schema could contain a representation of the com
mand structure routers using OS version 12.2. The schema,
its creation, and its use are fully described in commonly
owned and assigned U.S. patent application Ser. No. 09/942,
834, Attorney Docket No. CNTW-007/US, entitled System
and Method for Generating a Configuration Schema, which
is incorporated herein by reference.

0018. In certain embodiments, this schema can be
directly used to generate an XML document that represents
the configuration of the particular network device. In the
presently preferred embodiment, however, an intermediate
representation, e.g., a hash representation, of the schema is
generated and the intermediate representation is used to
more quickly generate the corresponding XML document.
By using the intermediate representation, the number of
instruction cycles needed to generate the XML document is
reduced significantly when compared to generating the
XML document directly.

0019. To actually assemble an XML document, one
embodiment of the present invention generates an XML
representation of each native-format command in the net
work device's configuration by associating each command
with the schema, or its hash representation. The XML
document itself can be used to represent the standard-format
configuration, or alternatively, the XML document can be
converted into a DOM, and the DOM can represent the
standard-format configuration. Notably, the integrity of the
generated DOM can be verified via the schema that was used
to generate the XML document, thereby providing a
“closed-loop' capability.

0020. As previously stated, the above-described embodi
ments and implementations are for illustration purposes
only. Numerous other embodiments, implementations, and
details of the invention are easily recognized by those of
skill in the art from the following descriptions and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0021 Various objects and advantages and a more com
plete understanding of the present invention are apparent
and more readily appreciated by reference to the following

Jun. 28, 2007

Detailed Description and to the appended claims when taken
in conjunction with the accompanying Drawings wherein:
0022 FIG. 1 is a block diagram of a conventional net
work;
0023 FIG. 2 is a block diagram of a conventional router;
0024 FIG. 3 is a block diagram of one embodiment of a
system constructed in accordance with the principles of the
present invention;
0025 FIG. 4 is a block diagram of an alternate embodi
ment of a system constructed in accordance with the prin
ciples of the present invention;
0026 FIG. 5 is a block diagram of one implementation of
the DOM generator shown in FIG. 3;
0027 FIG. 6 is a flowchart of one method for operating
the DOM generator shown in FIG. 5; and
0028 FIG. 7 is a flowchart of one method for generating
an intermediate representation described with relation to
FIG. 6.

DETAILED DESCRIPTION

0029 Referring now to the drawings, where like or
similar elements are designated with identical reference
numerals throughout the several views, and referring in
particular to FIG. 1, it illustrates a block diagram of a
conventional network system 100. In this network system
100, end-users 105 are connected to servers 110, which are
connected to networking equipment such as hubs, not
shown, optical components 115, and routers 120. Using the
networking equipment, end-users 105 that are associated
with different servers 110 can exchange data.
0030. As new servers 110 and end-users 105 are added to
the overall system 100, or as new software becomes avail
able, the routers 120 and/or optical components 115 of the
network system 100 may need reconfiguring. To reconfigure
these components, a system administrator 125 with the
proper authorization—could access the router 120 and/or
optical component 115 by, for example, establishing a telnet
connection to the component and transferring configuration
instructions thereto.

0031 Referring now to FIG. 2, it is a block diagram of
one type of conventional router. In this representation, a
processor 125 is connected to a configuration interface 130,
an operating system (OS) storage module 135, a command
storage module 140, a configuration storage module 145.
and a routing module 150. The illustrated arrangement of
these components is logical and not meant to be an actual
hardware diagram. Thus, the components can be combined
or further separated in an actual implementation. Moreover,
the construction of each individual component is well
known to those of skill in the art.

0032 Still referring to FIG. 2, when a system adminis
trator 125 wishes to reconfigure a router 120, he accesses the
router 120 through the configuration interface 130 and
retrieves the present configuration for the router 120 from
the configuration storage module 145. If necessary, the
system administrator 125 can review available configuration
commands and associated bounds by accessing and review
ing the commands stored in the command storage module
140. In essence, the command storage module 140 provides

US 2007/O 150561 A1

the knowledge base for a “help' screen. The commands
stored in the command storage module 140 are often unique
to the particular OS version stored in the OS module 135.
0033. After the system administrator 125 has assembled
the new configuration instructions, these instructions are
pushed through the configuration interface 130 and stored in
the configuration storage module 145. As previously
described, for Cisco TM routers, interaction is generally
through a CLI. In other words, the command storage module
140 is queried through the CLI; available commands are
returned through the CLI; and new configuration commands
are provided to the router 120 through the CLI. Unfortu
nately, the CLI is difficult to manage and requires highly
skilled engineers for even simple tasks.
0034) For other routers, the configuration interface 130
could be XML based. Although the XML-based interface is
easier to navigate than a CLI, each network device manu
facturer that uses an XML-based interface generally struc
tures its interface in a proprietary fashion. Thus, network
engineers are still forced to learn many different interfaces
and command structures even for XML-based network
devices.

0035) Referring now to FIG. 3, it is a block diagram of
one embodiment of a system constructed in accordance with
the principles of the present invention. In this embodiment,
a DOM generator 160, which is more fully described with
relation to FIG. 5, is connected to a network device 165, a
schema storage device 170, a system administrator 175, a
DOM storage device 180, and various DOM applications
185, which will be discussed in more detail below.
0036). In one method of operation, the system adminis
trator 175 initially notifies the DOM generator 160 to model
the configuration for the network device 165. In other words,
the DOM generator 160 is instructed to convert the active
command format for the network device 165 into an XML
and/or DOM format. In response, the DOM generator 160
either polls the network device 165 to discover the device's
characteristics, e.g., manufacturer, model, operating system
version, etc., or retrieves the information from a database
(not shown). Next, the DOM generator 160 identifies and
retrieves, from the schema storage device 170, the schema
corresponding to the device characteristics for the network
device 165. The DOM generator 160 then retrieves the
configuration from the network device 165 and, using the
retrieved schema, converts the individual commands of the
configuration into a DOM. The resulting DOM can then be
stored in the DOM storage device 180 in association with an
identifier for the network device 165. Note that storage
devices 170 and 180 could, in fact, be integrated into a single
device.

0037. One advantage of the DOM format is that it pro
vides a standard format for most network device configu
rations. Generally, applications that use or manipulate net
work device configurations must be customized for each
manufacturer, each model, and each OS version. This type
of customization often requires many different versions of
the same application. By converting each network device's
configuration into a DOM format, however, applications can
be designed to utilize a single, standard configuration format
and thereby limit the need for customizations.
0038 Although many different types of applications can
utilize a DOM, a select few are represented in FIG. 3 as
DOM applications. For example, one Such application is a
DOM-based graphical user interface (GUI) 190. In this

Jun. 28, 2007

application, the hashed schema and/or the resulting DOM
instance are used to drive the GUI used by the system
administrator 175. The advantage of such a GUI 190 is that
the system administrator 175 is presented with network
device configurations in a standard, consistent format
regardless of the characteristics of the particular network
device.

0039) Another application that utilizes the DOM is the
XML-XML converter 195, also called the standard XML
to-native XML converter. As previously described, some
network devices include XML-based interfaces. However,
these XML-based interfaces are generally based on propri
etary (native) configuration instructions. Thus, the system
administrator 175 may interface with one XML-based net
work device in a very different way than another XML
based network device. To standardize the interface between
these various XML-based network devices, the XML-XML
converter converts a standard XML-based instruction into a
native XML-based instruction. In other words, the XML
XML converter allows the system administrator 175 to use
the same XML-based command format for most network
devices even though each device may require its own native
XML-based command format.

0040 Like the XML-XML converter 195, the XML-CLI
converter 200 allows the system administrator 175 to inter
face with CLI-based network devices using a standard
XML-based command format instead of a CLI-based com
mand format. Other DOM-based applications may include
lightweight directory access protocol (LDAP) for storing
and manipulating schema, hash representations, and device
configuration commands. These converters convert XML
based configurations into a LDAP-based configuration and
LDAP-based configurations into XML-based configura
tions.

0041. Yet another possible DOM application is the com
parator 210, which is configurable to identify the differences
between two DOMs. For example, if the configuration for a
target network device were changed, the new configuration
could be retrieved from the device and converted to a DOM.
The comparator 210 could then compare the new DOM
against the original DOM to thereby identify any changes,
additions, and/or deletions. The comparator can then record
these changes in a markup DOM using a configuration
change markup language and make the markup DOM avail
able to the system administrator for configuration and Vali
dation purposes.

0042. In another embodiment of the comparator 210, the
old DOM is compared against a draft DOM instead of a new
DOM. In other words, the system administrator 175 gener
ates a draft configuration for a target network device 165.
This draft configuration is converted into a DOM, and the
comparator 210 compares it against the target network
device's original DOM. The system administrator 175 can
use this embodiment of the comparator to view the configu
ration changes before the draft DOM is finalized and pushed
to the target network device 165.
0043. The DOM applications can also include an (API)
application programming interface 215. This API provides a
mechanism whereby the DOM can be transferred to/from
other software programs, which may reside on network
devices. Accordingly, the DOM can be programmatically
modified outside of the embodiment and resubmitted.

0044) Referring now to FIG. 4, it is a block diagram of an
alternate embodiment of a system 220 constructed in accor

US 2007/O 150561 A1

dance with the principles of the present invention. In this
embodiment, the DOM generator 160 is connected through
a network 225 to the network devices 165, the system
administrator 175, the schema storage device 170, and the
DOM applications 180. This embodiment illustrates that the
components described herein can be distributed in a number
of ways and without impacting the basic operation of this
system as described with regard to FIG. 3.
0045 Referring now to FIG. 5, it is a block diagram of
one implementation of the DOM generator 160 shown in
FIG. 3. In this embodiment, the DOM generator 160
includes a schema hash system 230, an XML converter 235,
and a DOM transformer 250. These components can be
connected to the schema storage device 170, the target
network device 165, a DOM storage device 245 and an XML
storage device 250.
0046. In this embodiment, the XML converter 235, using
the appropriate schema, generates an XML document con
taining an XML representation of the network devices
configuration. This XML document is then passed to the
DOM transformer 240, which converts the XML document
into a DOM. The output from the XML converter 235 and/or
the DOM transformer 240 can be stored and passed to
relevant Software applications. For example, the output from
the XML converter 235 can be stored in the XML storage
device 250 and the output from the DOM transformer 240
can be stored in the DOM storage device 245.
0047. Notably, the XML converter 235 of this embodi
ment can convert the native configuration of the network
device 165 into an XML document using an intermediate
representation of the schema associated with the network
device 165, such as a hash table generated by the hash
system 230, instead of the schema itself. By using an
intermediate representation of the appropriate schema, the
XML converter 235 can reduce the time and processing
requirements needed to convert a native configuration into a
corresponding XML document. The creation and use of the
intermediate representation is described more fully with
regard to FIG. 6.
0048. The operation of the DOM generator 160 can be
further illustrated by reference to the flowchart in FIG. 6. As
depicted, the DOM generator 160 determines the target
network device's characteristics by polling the network
device or accessing a database (not shown) containing Such
information (step 255). Next, the XML converter 235 iden
tifies the appropriate intermediate representation for the
target network device 165 (step 260). As previously
described, this intermediate representation provides the nec
essary data to convert the native-format configuration of the
target network device 165 into a standard format such as an
XML format.

0049) Possibly concurrently with the XML converter 235
identifying the corresponding intermediate representation,
the XML converter 235 retrieves the configuration from the
network device 165 and identifies each initial command
within each configuration line (steps 265 and 270). For
example, the XML converter 235 could locate command
distinguishing tags embedded in the configuration Such as
“begin command” and/or “end command.” Alternatively, the
XML converter 235 could use logical indicators within the
configuration to distinguish the individual commands. Either
way, using the identified initial command, the XML con
verter 235 generates a look-up key that is used to index the
hash table, locate a hash map object that corresponds to the
look-up key and retrieve that hash map object (steps 275 and

Jun. 28, 2007

280). The hash map object contains schema information
regarding the command or value Such as whether optional or
required data type, etc. Finally, using this hash map object,
the XML converter 235 can assemble the XML-based com
mand and write it to the corresponding XML document (step
295).
0050. The above process should be repeated for each
command in the network device's native-format configura
tion. With regard to FIG. 6, this process is represented by
determining whether any more commands need to be con
verted (step 300). If so, branch 305 is followed to step 270
and a next native-format command is identified. The process
for this command is then repeated. If, on the other hand, all
native-format commands have been converted, branch 310
is followed and the XML converter 235 assembles all of the
generated XML commands into an XML document that can
be stored in the XML storage device and/or provided to the
DOM transformer 240 (step 315).
0051. Once the XML document has been assembled, it
can be passed to the DOM transformer 240 where a DOM
corresponding to the XML document can be generated (step
320). The process for converting an XML document to a
DOM is well known in the art and, thus, not described here.
Notably, the DOM transformer 240 can verify its transfor
mation process against the appropriate schema stored in the
schema storage device 170 (step 325). In other words, each
configuration command in the DOM should have a particu
lar format, which are defined by the configuration schema
corresponding to the target network device 165. Thus, the
DOM transformer 240 can compare the generated DOM
against the corresponding configuration schema to verify
that the DOM was properly constructed.
0.052 Referring now to FIG. 7, it is a flowchart of one
method for generating an intermediate representation of a
configuration schema. In this embodiment, a command is
initially retrieved from the previously assembled configu
ration schema (step 328). Additionally, any related higher
level commands (called parent commands) in the configu
ration schema can be retrieved (step 330). The retrieved
command and the retrieved parent commands can then be
used to generate a unique hash key for the retrieved com
mand (step 330).
0053. After the unique hash key is generated, a corre
sponding hash object can also be generated. This hash object
can include basic information related to the generated hash
key. To generate the hash object, information Such as data
type, sibling commands, and application specific informa
tion is retrieved and assembled into the schema object (steps
335 and 340). The data type information, for example, can
indicate whether the data associated with a particular com
mand is a string, an integer, etc. and the sibling information
can identify commands at the same hierarchical level as the
initially retrieved command that have the same parent com
mand as the initially retrieved command. Additionally, in
certain embodiments, specialized application information
can also be retrieved (step 345). This application informa
tion, for example, can define special processing require
ments for a schema.

0054) Once the relevant information has been collected,
the corresponding schema object can be assembled and the
hash map assembled for the unique key and Schema object
(step 350 and 355). If there are any more commands in the
schema that need to be modeled, branch 362 is followed and
the next command can be retrieved (step 328). If all of the
commands have been modeled, then branch 364 can be

US 2007/O 150561 A1

followed and the various hash objects can be stored as a
completed hash table (step 365).
What is claimed is:

1. A method for verifying the state of a device configu
ration corresponding to a network device, wherein the
device configuration includes a plurality of configuration
commands, the method comprising:

determining a desired State of a device;
retrieving a device configuration stored in a repository,

wherein the device configuration stored in the reposi
tory corresponds to the desired state of the device;

retrieving another device configuration from the network
device;

identifying differences between the device configuration
retrieved from the network device with the device
configuration retrieved from the repository; and

providing a record of the differences to a system admin
istrator.

2. The method of claim 1 including:
converting the device configuration retrieved from the

repository into an XML-based format; and
converting the device configuration retrieved from the

network device into the XML-based format.
3. The method of claim 2, wherein converting the device

configuration retrieved from the network device includes
converting the device configuration retrieved from the net
work device into an XML document or an XML document
object model, and wherein converting the device configu
ration retrieved from the repository includes converting the
device configuration retrieved from the repository into an
XML document or an XML document object model.

4. The method of claim 1, including:
retrieving the device configuration stored in the repository

as a Software programmable object; and
converting the device configuration retrieved from the

network device into an Software programmable object.
5. The method of claim 1 including:
providing the record to an event bus
6. The method of claim 1 including:
providing the record to a policy server.
7. The method of claim 1, wherein providing the record

includes providing the record via an application program
mable interface.

8. The method of claim 1, wherein providing the record
includes providing the record via a document.

9. A method for providing a vendor independent repre
sentation of device configurations wherein each of the
device configurations include a plurality of configuration
commands, the method comprising:

retrieving a device configuration stored in a data reposi
tory;

translating the retrieved configuration into a vendor
independent representation of the retrieved configura
tion;

Jun. 28, 2007

making the vendor-independent representation of the
retrieved configuration available via an applications
programmable interface;

retrieving the vendor-independent representation of the
retrieved configuration via the application program
mable interface;

modifying the vendor-independent representation of the
retrieved configuration;

resubmitting the modified vendor-independent represen
tation of the retrieved configuration back to the appli
cation programmable interface;

applying a configuration corresponding to the modified
vendor-independent representation of the retrieved
configuration to a device; and

storing the modified vendor-independent representation
of the retrieved configuration.

10. The method of claim 9, wherein the vendor indepen
dent representation of the retrieved configuration is an XML
document object model.

11. The method of claim 9 wherein the vendor indepen
dent representation of the retrieved configuration is a soft
ware programmable object.

12. The method of claim 9, wherein the vendor indepen
dent representation of the retrieved configuration is an XML
document.

13. The method of claim 9, wherein the vendor indepen
dent representation of the retrieved configuration is a docu
ment.

14. A method for Verifying a configuration corresponding
to a network device, wherein the configuration includes a
plurality of configuration commands, the method compris
1ng:

determining a required configuration of a device wherein
the determining the required configuration of a network
device comprises:
assessing the network device requirements;
choosing the vendor, type model and operating system

needed to fulfill the required assessment;
choosing configuration commands to fulfill the required

assessment by consulting a representation of a com
mand structure for the network device;

generating required network device configuration com
mands;

Submitting the required network configuration commands
to the network device; and

storing the device configuration.
15. The method of claim 14, wherein the representation of

a command structure for the network device is an XML
schema.

16. The method of claim 14, wherein the representation of
a command structure for the network device is a software
programmable object.

17. The method of claim 14, wherein the representation of
a command structure for the network device is a document.

k k k k k

