发明名称
一种SCR脱硝催化剂专用的钛钨粉的制备方法

摘要
本发明提出了一种SCR脱硝催化剂专用的钛钨粉的制备方法，涉及无机化学材料的制备领域。它以硫酸法制造钛白粉的中间体偏钛酸为原料，经打浆、分散、压滤、切片、煅烧和粉碎的工艺过程，制备出高品质纳米钛钨粉。与现有技术相比，本发明的有益效果是利用本发明中的钛钨粉制备出的SCR脱硝催化剂更适用于国内苛刻的烟气条件，针对国内火电厂烟气的特点适应性更强，脱硝效率高。同时，该发明产品生产工艺可靠，产品质量稳定，成本相对较低，也大大降低了脱硝催化剂的制造成本。
1. 一种 SCR 脱硝催化剂专用的钛钨粉的制备方法，其特征在于：它以硫酸法制备钛白粉的中间体偏钛酸为原料，经打浆、分散、压滤、切块、煅烧和粉碎的工艺过程，制备出钛钨粉：所述分散的工艺过程为，添加 pH 值调整剂至打浆工艺后的浆液中，调整浆液环境 pH 值为 6-8，将浆液加热至 80-90℃，搅拌 2h，使浆液一次分散充分；然后向浆液中加入钙盐前驱体，将称量好的钙盐前驱体按 400-800g/L 加入 80-90℃的去离子水中，搅拌 1h；然后将钙盐前驱体及去离子水的混合液加入到一次分散充分后的浆液中，再搅拌 1h，使其二次分散均匀，其钙盐前驱体添加量按折合 WO3 的质量来计，添加量为二氧化钛质量的 3-7%；所述煅烧的工艺过程为，将切碎工艺后的滤饼块在 150-250℃下煅烧 2h；然后在 250～350℃下煅烧 2h；继续在 350～490℃下煅烧 2h；最后在 490～590℃下煅烧 3h。

2. 根据权利要求 1 所述的一种 SCR 脱硝催化剂专用的钛钨粉的制备方法，其特征在于：所述打浆的工艺过程为，将偏钛酸加去离子水打浆稀释至浓度为 7-15%，搅拌 1h。

3. 根据权利要求 1 所述的一种 SCR 脱硝催化剂专用的钛钨粉的制备方法，其特征在于：所述 pH 值调整剂为氨水、碳酸铵、碳酸氢铵、氢氧化钠或氢氧化钾，所述钙盐前驱体为偏钨酸铵、仲钨酸铵、钨酸或钨酸铵。

4. 根据权利要求 1 所述的一种 SCR 脱硝催化剂专用的钛钨粉的制备方法，其特征在于：所述压滤工艺过程为将分散工艺处理后的浆液压滤，使固含量控制在 40-50%，得滤饼。

5. 根据权利要求 1 所述的一种 SCR 脱硝催化剂专用的钛钨粉的制备方法，其特征在于：所述切块的工艺过程为，将压滤工艺后的滤饼，切碎至直径≤1cm 的块状，得滤饼块。

6. 根据权利要求 1 所述的一种 SCR 脱硝催化剂专用的钛钨粉的制备方法，其特征在于：所述粉碎的工艺过程为，将煅烧工艺后的固体物磨制粉碎，粉碎时添加表面改性剂，表面改性剂添加量按钛钨粉质量的 0.05%~0.2% 计，最终将粒径控制在 0.8~1.6um。

7. 根据权利要求 6 所述的一种 SCR 脱硝催化剂专用的钛钨粉的制备方法，其特征在于：所述表面改性剂是指三羟甲基丙烷、三乙醇胺或有机硅油。
说明书

一种 SCR 脱硝催化剂专用的钛钙粉的制备方法

技术领域
[0001] 本发明涉及无机化学材料的制备方法，特别涉及一种 SCR 脱硝催化剂专用的钛钙粉的制备方法。

背景技术
[0002] 氮氧化物 (NOx) 是主要的大气污染物之一，是诱发光化学烟雾和酸雨的重要前驱体，建立低碳和环境友好型经济发展方式势在必行。其中燃煤电站、工业锅炉烟气是 NOx 的最大来源，其占总的 NOx 排放量约 60%。国家“十二五”规划纲要草案中明确地将 NOx 排放量列为约束性指标，同时国家环保部 2011 年 7 月颁布的《火电厂大气污染物排放标准》(于 2012 年 1 月 1 日执行)中对火电厂脱硝实施的时间和 NOx 排放标准都有了更为严格的要求，明确要求新建及现有火电厂氮氧化物排放控制在 100mg/Nm³以内。因此，脱硝催化剂市场即将大规模启动，国内催化剂市场会有爆炸式增长。氨选择性催化还原技术 (NH3-SCR) 是目前国内脱硝行业首选技术，也只有该方法可以满足火力发电厂在高环保标准要求时能够达标排放。催化剂是 SCR 脱硝技术的核心，而约占催化剂重量 80% 以上的纳米二氧化钛载体制备是技术的关键的技术。钛钙粉因其典型的多孔结构和高热稳定性等特点，是理想的催化剂载体材料。

[0003] 现用于制备脱硝催化剂的纳米钛钙粉大都是从国外进口的，不仅浪费较大外汇而且严重制约脱硝环保产业的发展。同时，因受资源特性、供需矛盾等诸多客观因素制约，国内燃煤电站使用的煤质参差不齐，致使其气条件如 NOx、SO2、灰分等指标亦较为苛刻，即使用进口纳米钛钙粉制备的催化剂出现“水土不服”现象。

发明内容
[0004] 本发明提供了一种 SCR 脱硝催化剂专用的钛钙粉的制备方法，解决了现有技术中的不足。本发明中的钛钙粉生产工艺可靠，性能质量稳定，成本相对较低；利用本发明产品钛钙粉制备的 SCR 脱硝催化剂更适用于国内苛刻的烟气条件，针对国内火电站烟气的特点适应性更强，脱硝效率高。

[0005] 本发明的技术方案是这样实现的：
[0006] 一种 SCR 脱硝催化剂专用的钛钙粉的制备方法，它以硫酸法制备钛白粉的中间体偏钛酸为原料，经打浆、分散、压滤、切块、煅烧和粉碎的工艺过程，制备出钛钙粉。
[0007] 作为优选，所述打浆的工艺过程为，将偏钛酸加去离子水打浆稀释至浓度为 7-15%，搅拌 1h。
[0008] 作为优选，所述分散的工艺过程为，添加 pH 值调整剂至打浆工艺后的浆液中，调整浆液环境 pH 值为 6-8，将浆液加热至 80-90℃，搅拌 2h，使浆液一次分散充分；然后向浆液中加入钛盐前驱体；将称量好的钛盐前驱体置于 80-90℃的去离子水中，搅拌 1h，然后将钛盐前驱体及去离子水的混合液加入到一次分散充分后的浆液中，再搅拌 1h，使其二次分散均匀其钛盐前驱体添加量按折合 WO3 的质量来计，添加量为二氧化钛质量的 3-7%。
说明 书

[0009] 作为优选，所述pH值调整剂为氨水、碳酸钠、硫酸氢铵、氢氧化钠或氢氧化钾；所述
盐前驱体，包括偏钪酸铵、仲钪酸钠、钪酸、钪酸锌等。

[0010] 作为优选，所述压滤的工艺过程为将分散工艺处理后的浆液压滤，使固含量控制在
40~50%，得滤饼。

[0011] 作为优选，所述切块的工艺过程为，将压滤工艺后的滤饼，切碎至直径≤1cm的块
状，得滤饼块。

[0012] 作为优选，所述煅烧的工艺过程为，将切碎工艺后的滤饼块，在150~590℃条件下，煅
烧9h。

[0013] 作为优选，所述将切碎工艺后的滤饼块在150~590℃条件下煅烧9h，具体为：将滤
饼块在150~250℃下煅烧2h；然后在250~350℃下煅烧2h；继续在350~490℃下煅烧2h；最后
在490~590℃下煅烧3h。

[0014] 作为优选，所述粉碎的工艺过程为，将煅烧工艺后的固体物磨制粉碎，磨制时添
加表面改性剂，表面改性剂添加量按钛酸钙质量的0.05%~0.2%计，最终将粒径控制在
0.8~1.6um。

[0015] 作为优选，所述表面改性剂是指三羟甲基丙烷、三乙醇胺或有机硅油。

[0016] 运用本发明中的方法生产出的钛酸钙关键技术指标为：

[0017] 晶粒度：10~22nm

[0018] SO₄²⁻含量：0.7~3.5wt%（dry）

[0019] 比表面积：70~100m²/g

[0020] 粒子形状：0.8~1.6um

[0021] 与现有技术相比，本发明的有益效果是：

[0022] 1、主要原料的选择来源广泛。偏钛酸的价格较低来源广，我国钨矿资源丰富，生产
制造成本较低；

[0023] 2、使用本发明中钛酸钙而制备的SCR脱硝催化剂能很好地适用于国内苛刻的烟气
条件，针对国内火电厂烟气的特点适应性更优，成本更低，脱硝效率高；

[0024] 3、该产品清洁生产，生产过程对环境污染小；

[0025] 4、同时提高普通钛白粉的技术含量，促进了产业升级，拓宽了脱硝环保及钛白领
域的产业链条。普通的钛白粉用途很广泛；涂料、颜料、造纸、橡胶、食品、医药等，但不能用
于脱硝催化剂的制备。

具体实施方式

[0026] 实施例1：

[0027] 称取10kg偏钛酸（折合TiO₂计，该原料TiO₂含量约为28%），置于配置有搅拌器的
反应釜中，加入约31kg去离子水使浆液TiO₂含量约为15%，搅拌1h；向浆液中加入氨水调
整pH值至6，用蒸汽将浆液加热至80℃，保温并搅拌2h，同时适量补充氨水，使浆液pH维持
在6；称取0.58kg偏钪酸铵（偏钪酸铵中WO₃含量约91%）溶于5kg的温水为80℃热的去离
子水中，搅拌器搅拌1h；将制备好的偏钪酸铵溶液加入到前述的pH值为6充分分散的偏钛
酸浆液中，搅拌1h；浆液经压滤至固含量约为40%的块状滤饼；将滤饼切碎至小碎块状并将其
煅烧，其中150℃煅烧2h、250℃煅烧2h、350℃煅烧2h、500℃煅烧3h；将煅烧后的固体中
均匀添加 0.01kg 三乙醇胺，采用打粉机将其粉碎至粒径 D50 为 1.16μm，得到钛钨粉。

【0029】实施例 2

【0030】实施例 3

【0031】实施例 4

【0032】实施例 5

【0033】制备 SCR 脱硝催化剂的工艺为：将本发明中制备的钛钨粉以及其他各种原料按配
方比例严格配料，配好后混料机进行高速混合均匀，经过初步混炼后的原料再用专用的预过滤挤出机进行过滤式挤压混炼，炼好的坯料放上架坯车进行一定时间的陈化，经陈化后的坯料再进入强力真空挤出机挤压成连续的蜂窝状坯体，再经自动同步切割机切割（一般坯体的切割长度为1200-1500mm），经切割好后的蜂窝坯体再由机械手夹具自动搬至板线上，然后再由板线由自动搬运机搬上干燥车，坯体在干燥车上经多通道高温保温微波干燥，最后进入网带式低温电窑中烧成（其它窑炉也可以），即制备出SCR脱硝催化剂。

[0037] 上述实施实例产品的指标及其制备催化剂应用性能如下表所示：

<table>
<thead>
<tr>
<th>序号</th>
<th>比表面积（m²/g）</th>
<th>硫酸根含量（%）</th>
<th>晶粒度（μm）</th>
<th>保留粒径（μm）</th>
<th>脱硝效率（%）</th>
<th>挤出成型率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>实例1</td>
<td>98.4</td>
<td>3.41</td>
<td>15.7</td>
<td>1.16</td>
<td>92.8</td>
<td>87.4</td>
</tr>
<tr>
<td>实例2</td>
<td>93.6</td>
<td>2.93</td>
<td>16.1</td>
<td>1.22</td>
<td>89.7</td>
<td>93.6</td>
</tr>
<tr>
<td>实例3</td>
<td>89.7</td>
<td>2.76</td>
<td>16.6</td>
<td>1.09</td>
<td>94.2</td>
<td>90.1</td>
</tr>
<tr>
<td>实例4</td>
<td>84.2</td>
<td>2.49</td>
<td>17.0</td>
<td>1.14</td>
<td>91.8</td>
<td>88.5</td>
</tr>
<tr>
<td>实例5</td>
<td>81.2</td>
<td>2.26</td>
<td>17.6</td>
<td>1.26</td>
<td>88.9</td>
<td>92.3</td>
</tr>
</tbody>
</table>