(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

=

(29) World Intellectual Property
Organization
International Bureau

27 June 2013 (27.06.2013)

WIPO | PCT

(10) International Publication Number

WO 2013/095610 Al

(51)

21

(22)

(25
(26)
(71)

(72)
(79)

(74)

International Patent Classification:
GO6F 9/30 (2006.01) GO6F 9/305 (2006.01)

International Application Number:
PCT/US201 /067087

International Filing Date:
23 December 201 1(23.12.201 1)

English
Publication Language: English

Applicant (for all designated Sates except US): INTEL
CORPORATION [US/US]; 2200 Mission College
Boulevard, MS: RNB-4-150, Sunnyvae, California 95052
(USs).

Filing Language:

Inventors; and

Inventorg/Applicants (for US only): VALENTINE,
Robert [USIL]; Rechov Hadganiot 33-5, 36054 Kiryat
Tivon (IL). OULD-AHMED-VALL, Elmoustapha
[MR/US]; 5000 West Chandler Boulevard, MS: CH7-401,
Chandler, Arizona 85226 (US). CORBAL, Jesus [ES/ES];
Jordi Girona 1-3 Intel Labs, E-08034 Barcelona (ES).
ULIEL, Tal [IL/IL]; Imber 6/5, 64362 Tel Aviv (IL).
TOLL, Bret L. [US/US]; 2868 NE Lorie Dr., Hillsboro,
Oregon 97124 (US).

Agentss WEBSTER, Thomas C. et a; BLAKELY,
SOKOLOFF, TAYLOR & ZAFMAN LLP, 1279 Oakmead
Parkway, Sunnyvale, California 94085 (US).

81)

(84)

Designated States (unless otherwise indicated, for every
kind d national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, sV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind d regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, Sz, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

d inventorship (Rule 4.17(ivf)

Published:

with international search report (Art. 21(3))

w ©2213/@ 561 A1 |11 0F V0000 O R O

(54) Title: APPARATUS AND METHOD FOR SHUFFLING FLOATING POINT OR INTEGER VALUES

PIPELINE 100

Figure 1A

LENGTH
DECODING
104

FETCH
102

DECODE}ALLOC. RENAMING| SCHEDULE
108 | 108 | 110 112

REGISTER
READ/
EMORY READ
114

WRITE BACK/!
MEMORY
WRITE
18

EXECUTE STAGE

16 122

—————— |
EXCEPTION

coMmIT i
HANDLING\[ot :

(57) Abstract: An apparatus and method are described for shuffling data elements from source registers to a destination register. For
example, a method according to one embodiment includes the following operations: reading each mask bit stored in a mask data
structure, the mask data structure containing mask bits associated with data elements of a destination register, the values usable for
determining whether a masking operation or a shuffle operation should be performed on data elements stored within afirst source re-
gister and a second source register; for each data element of the destination register, if amask bit associated with the data element in -
dicates that a shuffle operation should be performed, then shuffling data elements from the first source register and the second source
register to the specified data element within the destination register; and if the mask bit indicates that a masking operation should be
performed, then performing a specified masking operation with respect to the data element of the destination register.

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
APPARATUSAND METHOD FOR SHUFFLING FLOATING POINT OR INTEGER VALUES

Field of the Invention
Embodiments of the invention relate generally to the field of computer systems. More
particularly, the embodiments of the invention relate to an apparatus and method for shuffling

floating point or integer values within acomputer processor.

Background

Genera Background

Aninstruction set, or instruction set architecture (I1SA), isthe part of the computer
architecture related to programming, and may include the native data types, instructions, register
architecture, addressing modes, memory architecture, interrupt and exception handling, and
external input and output (1/0). The term instruction generally refers herein to macro-
instructions - that isinstructions that are provided to the processor (or instruction converter that
trandates (e.g., using static binary trandation, dynamic binary trandation including dynamic
compilation), morphs, emulates, or otherwise converts an instruction to one or more other
instructions to be processed by the processor) for execution - as opposed to micro-instructions or
micro-operations (micro-ops) - that isthe result of aprocessor's decoder decoding macro-
instructions.

The ISA isdistinguished from the microarchitecture, which isthe internal design of the
processor implementing the instruction set. Processors with different microarchitectures can
share acommon instruction set. For example, Intel® Pentium 4 processors, Intel® Core™
processors, and processors from Advanced Micro Devices, Inc. of Sunnyvale CA implement
nearly identical versions of the x86 instruction set (with some extensions that have been added
with newer versions), but have different internal designs. For example, the same register
architecture of the ISA may be implemented in different ways in different microarchitectures
using well-known techniques, including dedicated physical registers, one or more dynamically
allocated physical registers using aregister renaming mechanism (e.g., the use of a Register
Alias Table (RAT), aReorder Buffer (ROB), and aretirement register file; the use of multiple
maps and apool of registers), etc. Unless otherwise specified, the phrases register architecture,
register file, and register are used herein to refer to that which isvisible to the
software/programmer and the manner in which instructions specify registers. Where a
specificity isdesired, the adjective logical, architectural, or software visible will be used to

indicate registerdfiles in the register architecture, while different adjectives will be used to

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
designation registers in a given microarchitecture (e.g., physical register, reorder buffer,

retirement register, register pool).

An instruction set includes one or more instruction formats. A given instruction format
defines various fields (number of bits, location of bits) to specify, anong other things, the
operation to be performed (opcode) and the operand(s) on which that operation isto be
performed. Some instruction formats are further broken down though the definition of
instruction templates (or subformats). For example, the instruction templates of a given
instruction format may be defined to have different subsets of the instruction format's fields (the
included fields are typically in the same order, but at least some have different bit positions
because there are less fields included) and/or defined to have a given field interpreted differently.
Thus, each instruction of an ISA isexpressed using a given instruction format (and, if defined, in
agiven one of the instruction templates of that instruction format) and includes fields for
specifying the operation and the operands. For example, an exemplary ADD instruction has a
specific opcode and an instruction format that includes an opcode field to specify that opcode
and operand fields to select operands (source l/destination and source2); and an occurrence of
this ADD instruction in an instruction stream will have specific contents in the operand fields
that select specific operands.

Scientific, financial, auto-vectorized general purpose, RMS (recognition, mining, and
synthesis), and visual and multimedia applications (e.g., 2D/3D graphics, image processing,
video compression/decompression, voice recognition algorithms and audio manipulation) often
require the same operation to be performed on alarge number of data items (referred to as "data
parallelism™). Single Instruction Multiple Data (SIMD) refers to atype of instruction that causes
aprocessor to perform an operation on multiple dataitems. SIMD technology is especialy
suited to processors that can logicaly divide the bits in aregister into anumber of fixed-sized
data elements, each of which represents a separate value. For example, the bits in a 256-bit
register may be specified as a source operand to be operated on as four separate 64-bit packed
data elements (quad-word (Q) size data elements), eight separate 32-bit packed data el ements
(double word (D) size data elements), sixteen separate 16-bit packed data elements (word (W)
size data elements), or thirty-two separate 8-bit data elements (byte (B) size data elements). This
type of dataisreferred to as packed data type or vector data type, and operands of this data type
arereferred to as packed data operands or vector operands. In other words, a packed dataitem or
vector refers to a sequence of packed data elements, and a packed data operand or a vector
operand is a source or destination operand of a SIMD instruction (also known as apacked data

instruction or avector instruction).

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
By way of example, one type of SIMD instruction specifies a single vector operation to

be performed on two source vector operands in avertical fashion to generate adestination vector
operand (also referred to as aresult vector operand) of the same size, with the same number of
data elements, and in the same data element order. The data elements in the source vector
operands are referred to as source data el ements, while the data e ements in the destination
vector operand are referred to adestination or result data elements. These source vector
operands are of the same size and contain data elements of the same width, and thus they contain
the same number of data elements. The source data elements in the same bit positions in the two
source vector operands form pairs of data elements (also referred to as corresponding data
elements; that is, the data element in data element position O of each source operand correspond,
the data element in data element position 1 of each source operand correspond, and so on). The
operation specified by that SIMD instruction isperformed separately on each of these pairs of
source data elements to generate a matching number of result data elements, and thus each pair
of source data elements has a corresponding result data element. Since the operation isvertical
and since the result vector operand isthe same size, has the same number of data elements, and
the result data elements are stored in the same data element order as the source vector operands,
the result data elements are in the same bit positions of the result vector operand as their
corresponding pair of source data el ements in the source vector operands. In addition to this
exemplary type of SIMD instruction, there are avariety of other types of SIMD instructions
(e.g., that has only one or has more than two source vector operands, that operate in a horizontal
fashion, that generates aresult vector operand that is of adifferent size, that has adifferent size
data elements, and/or that has adifferent data element order). It should be understood that the
term destination vector operand (or destination operand) is defined as the direct result of
performing the operation specified by an instruction, including the storage of that destination
operand at alocation (be it aregister or at amemory address specified by that instruction) so that
it may be accessed as a source operand by another instruction (by specification of that same
location by the another instruction).

The SIMD technology, such asthat employed by the Intel® Core™ processors having an
instruction set including x86, MMX ™, Streaming SIMD Extensions (SSE), SSE2, SSE3,
SSEA4.1, and SSE4.2 instructions, has enabled a significant improvement in application
performance. An additional set of SIMD extensions, referred to the Advanced Vector
Extensions (AVX) (AVX1 and AVX2) and using the Vector Extensions (VEX) coding scheme,
has been , has been released and/or published (e.g., see Intel® 64 and 1A-32 Architectures
Software Developers Manual, October 2011; and see Intel® Advanced Vector Extensions
Programming Reference, June 201 1).

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087

Background Related to the Embodiments of the Invention

Shuffle instructions are used in current processor architectures to select data e ements
from two or more source registers and copy those data elements to different data element
positions within adestination register. Current shuffle instructions, however, have not been
implemented for use with conditional masking functionality as described herein and have not
been implemented at a 256-bit ganularity as described herein.

Brief Description of the Drawings

FIG. 1A isablock diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of
the invention,

FIG. I B isablock diagram illustrating both an exemplary embodiment of an in-order
architecture core and an exemplary register renaming, out-of-order issue/execution architecture
core to beincluded in aprocessor according to embodiments of the invention;

FIG. 2 isablock diagram of a single core processor and a multicore processor with
integrated memory controller and graphics according to embodiments of the invention;

FIG. 3illustrates ablock diagram of a system in accordance with one embodiment of the
present invention;

FIG. 4 illustrates ablock diagram of a second system in accordance with an embodiment
of the present invention;

FIG. 5illustrates ablock diagram of athird system in accordance with an embodiment of
the present invention;

FIG. 6 illustrates ablock diagram of a system on achip (SoC) in accordance with an
embodiment of the present invention;

FIG. 7 illustrates ablock diagram contrasting the use of a software instruction converter
to convert binary instructions in a source instruction set to binary instructions in atarget
instruction set according to embodiments of the invention;

FIG. 8illustrates an apparatus for performing a shuffle operation according to one
embodiment of the invention.

FIG. 9illustrates an apparatus for performing a shuffle operation according to another
embodiment of the invention.

FIG. 10 illustrates a method for performing a shuffle operation according to

embodiments of the invention.

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
FIGS. 11A and 11B are block diagrams illustrating a generic vector friendly instruction

format and instruction templates thereof according to embodiments of the invention;

FIG. 12A-D are block diagrams illustrating an exemplary specific vector friendly
instruction format according to embodiments of the invention; and

FIG. 13 isablock diagram of aregister architecture according to one embodiment of the
invention;

FIG. 14A isablock diagram of a single processor core, along with its connection to the
on-die interconnect network and with its local subset of the Level 2 (L2) cache, according to
embodiments of the invention; and

FIG. 14B isan expanded view of part of the processor core in Figure 14A according to

embodiments of the invention.

Detailed Description

Exemplary Processor Architectures and Data Types

Figure 1A isablock diagram illustrating both an exemplary in-order pipeline and
an exemplary register renaming, out-of-order issue/execution pipeline according to embodiments
of the invention. Figure I B isablock diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renaming, out-of-order issue/execution
architecture core to be included in aprocessor according to embodiments of the invention. The
solid lined boxes in Figures 1A-B illustrate the in-order pipeline and in-order core, while the
optional addition of the dashed lined boxes illustrates the register renaming, out-of-order
issue/execution pipeline and core. Given that the in-order aspect isa subset of the out-of-order
aspect, the out-of-order aspect will be described.

In Figure 1A, aprocessor pipeline 100 includes afetch stage 102, alength decode stage
104, adecode stage 106, an allocation stage 108, arenaming stage 110, a scheduling (also
known as adispatch or issue) stage 112, aregister read/memory read stage 114, an execute stage
116, awrite back/memory write stage 118, an exception handling stage 122, and acommit stage
124.

Figure 1B shows processor core 190 including afront end unit 130 coupled to an
execution engine unit 150, and both are coupled to amemory unit 170. The core 190 may be a
reduced instruction set computing (RISC) core, acomplex instruction set computing (CISC)
core, avery long instruction word (VLIW) core, or ahybrid or alternative core type. Asyet
another option, the core 190 may be a specia-purpose core, such as, for example, a network or
communication core, COmpression engine, coprocessor core, general purpose computing graphics

processing unit (GPGPU) core, graphics core, or the like.

5

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
The front end unit 130 includes abranch prediction unit 132 coupled to an instruction

cache unit 134, which iscoupled to an instruction trandation lookaside buffer (TLB) 136, which
iscoupled to an instruction fetch unit 138, which is coupled to adecode unit 140. The decode
unit 140 (or decoder) may decode instructions, and generate as an output one or more micro-
operations, micro-code entry points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect, or are derived from, the original
instructions. The decode unit 140 may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware
implementations, programmable logic arrays (PLAS), microcode read only memories (ROMs),
etc. In one embodiment, the core 190 includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit 140 or otherwise within the front
end unit 130). The decode unit 140 is coupled to arename/allocator unit 152 in the execution
engine unit 150.

The execution engine unit 150 includes the rename/allocator unit 152 coupled to a
retirement unit 154 and a set of one or more scheduler unit(s) 156. The scheduler unit(s) 156
represents any number of different schedulers, including reservations stations, central instruction
window, etc. The scheduler unit(s) 156 iscoupled to the physical register file(s) unit(s) 158.
Each of the physical register file(s) units 158 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar
floating point, packed integer, packed floating point, vector integer, vector floating point,, status
(e.g., aninstruction pointer that isthe address of the next instruction to be executed), etc. In one
embodiment, the physical register file(s) unit 158 comprises avector registers unit, awrite mask
registers unit, and a scalar registers unit. These register units may provide architectural vector
registers, vector mask registers, and general purpose registers. The physical register file(s)
unit(s) 158 isoverlapped by the retirement unit 154 to illustrate various ways in which register
renaming and out-of-order execution may be implemented (e.g., using areorder buffer(s) and a
retirement register file(s); using afuture file(s), ahistory buffer(s), and aretirement register
file(s); using aregister maps and apool of registers; etc.). The retirement unit 154 and the
physical register file(s) unit(s) 158 are coupled to the execution cluster(s) 160. The execution
cluster(s) 160 includes a set of one or more execution units 162 and a set of one or more memory
access units 164. The execution units 162 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g., scalar floating point, packed
integer, packed floating point, vector integer, vector floating point). While some embodiments
may include a number of execution units dedicated to specific functions or sets of functions,

other embodiments may include only one execution unit or multiple execution units that all

6

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
perform al functions. The scheduler unit(s) 156, physical register file(s) unit(s) 158, and

execution cluster(s) 160 are shown asbeing possibly plural because certain embodiments create
separate pipelines for certain types of data/operations (e.g., a scalar integer pipeline, ascalar
floating point/packed integer/packed floating point/vector integer/vector floating point pipeline,
and/or amemory access pipeline that each have their own scheduler unit, physical register file(s)
unit, and/or execution cluster - and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution cluster of this pipeline has the
memory access unit(s) 164). It should also be understood that where separate pipelines are used,
one or more of these pipelines may be out-of-order issue/execution and the rest in-order.

The set of memory access units 164 is coupled to the memory unit 170, which includes a
data TLB unit 172 coupled to adata cache unit 174 coupled to alevel 2 (L2) cache unit 176. In
one exemplary embodiment, the memory access units 164 may include aload unit, a store
address unit, and a store data unit, each of which is coupled to the data TLB unit 172 in the
memory unit 170. The instruction cache unit 134 isfurther coupled to alevel 2 (L2) cache unit
176 in the memory unit 170. The L2 cache unit 176 is coupled to one or more other levels of
cache and eventually to amain memory.

By way of example, the exemplary register renaming, out-of-order issue/execution core
architecture may implement the pipeline 100 asfollows: 1) the instruction fetch 138 performs
the fetch and length decoding stages 102 and 104; 2) the decode unit 140 performs the decode
stage 106; 3) the rename/allocator unit 152 performs the allocation stage 108 and renaming stage
110; 4) the scheduler unit(s) 156 performs the schedule stage 112; 5) the physical register file(s)
unit(s) 158 and the memory unit 170 perform the register read/memory read stage 114; the
execution cluster 160 perform the execute stage 116; 6) the memory unit 170 and the physical
register file(s) unit(s) 158 perform the write back/memory write stage 118; 7) various units may
be involved in the exception handling stage 122; and 8) the retirement unit 154 and the physical
register file(s) unit(s) 158 perform the commit stage 124.

The core 190 may support one or more instructions sets (e.g., the x86 instruction set
(with some extensions that have been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvae, CA; the ARM instruction set (with optional additional
extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)
described herein. In one embodiment, the core 190 includes logic to support apacked data
instruction set extension (e.g., AVX1, AVX2, and/or some form of the generic vector friendly
instruction format (U=0 and/or U=l), described below), thereby allowing the operations used by
many multimedia applications to be performed using packed data.

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
It should be understood that the core may support multithreading (executing two or more

parallel sets of operations or threads), and may do so in avariety of ways including time sliced
multithreading, simultaneous multithreading (where a single physical core provides alogical
core for each of the threads that physical core is simultaneously multithreading), or a
combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading
thereafter such asin the Intel® Hyperthreading technology).

While register renaming isdescribed in the context of out-of-order execution, it should be
understood that register renaming may be used in an in-order architecture. While the illustrated
embodiment of the processor also includes separate instruction and data cache units 134/174 and
ashared L2 cache unit 176, alternative embodiments may have a single internal cache for both
instructions and data, such as, for example, aLevel 1(LI) internal cache, or multiple levels of
internal cache. In some embodiments, the system may include acombination of an internal cache
and an external cache that isexternal to the core and/or the processor. Alternatively, all of the
cache may be external to the core and/or the processor.

Figure 2 isablock diagram of aprocessor 200 that may have more than one core, may
have an integrated memory controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in Figure 2 illustrate aprocessor 200 with a
single core 202A, a system agent 210, a set of one or more bus controller units 216, while the
optiona addition of the dashed lined boxes illustrates an alternative processor 200 with multiple
cores 202A-N, a set of one or more integrated memory controller unit(s) 214 in the system agent
unit 210, and specia purpose logic 208.

Thus, different implementations of the processor 200 may include: 1) aCPU with the
special purpose logic 208 being integrated graphics and/or scientific (throughput) logic (which
may include one or more cores), and the cores 202A-N being one or more general purpose cores
(e.g., genera purpose in-order cores, general purpose out-of-order cores, a combination of the
two); 2) acoprocessor with the cores 202A-N being alarge number of special purpose cores
intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the
cores 202A-N being alarge number of general purpose in-order cores. Thus, the processor 200
may be a general-purpose processor, Coprocessor or special-purpose processor, such as, for
example, anetwork or communication processor, compression engine, graphics processor,
GPGPU (general purpose graphics processing unit), ahigh-throughput many integrated core
(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor
may be implemented on one or more chips. The processor 200 may be apart of and/or may be
implemented on one or more substrates using any of a number of process technologies, such as,
for example, BICMOS, CMOS, or NMOS.

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
The memory hierarchy includes one or more levels of cache within the cores, a set or one

or more shared cache units 206, and external memory (not shown) coupled to the set of
integrated memory controller units 214. The set of shared cache units 206 may include one or
more mid-level caches, such aslevel 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, a
last level cache (LLC), and/or combinations thereof. While in one embodiment aring based
interconnect unit 212 interconnects the integrated graphics logic 208, the set of shared cache
units 206, and the system agent unit 210/integrated memory controller unit(s) 214, alternative
embodiments may use any number of well-known techniques for interconnecting such units. In
one embodiment, coherency ismaintained between one or more cache units 206 and cores 202-
A-N.

In some embodiments, one or more of the cores 202A-N are capable of multi-threading.
The system agent 210 includes those components coordinating and operating cores 202A-N. The
system agent unit 210 may include for example apower control unit (PCU) and adisplay unit.
The PCU may be or include logic and components needed for regulating the power state of the
cores 202A-N and the integrated graphics logic 208. The display unit isfor driving one or more
externally connected displays.

The cores 202A-N may be homogenous or heterogeneous in terms of architecture
instruction set; that is, two or more of the cores 202A-N may be capable of execution the same
instruction set, while others may be capable of executing only a subset of that instruction set or a
different instruction set.

Figures 3-6 are block diagrams of exemplary computer architectures. Other system
designs and configurations known in the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, ahuge variety of systems or
electronic devices capable of incorporating aprocessor and/or other execution logic as disclosed
herein are generally suitable.

Referring now to Figure 3, shown isablock diagram of a system 300 in accordance with
one embodiment of the present invention. The system 300 may include one or more processors
310, 315, which are coupled to acontroller hub 320. In one embodiment the controller hub 320
includes a graphics memory controller hub (GMCH) 390 and an Input/Output Hub (I0H) 350
(which may be on separate chips); the GMCH 390 includes memory and graphics controllers to
which are coupled memory 340 and a coprocessor 345; the IOH 350 is couples input/output (1/O)
devices 360 to the GMCH 390. Alternatively, one or both of the memory and graphics

9

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
controllers are integrated within the processor (as described herein), the memory 340 and the

coprocessor 345 are coupled directly to the processor 310, and the controller hub 320 in asingle
chip with the IOH 350.

The optional nature of additional processors 315 is denoted in Figure 3 with broken lines.
Each processor 310, 315 may include one or more of the processing cores described herein and
may be some version of the processor 200.

The memory 340 may be, for example, dynamic random access memory (DRAM), phase
change memory (PCM), or acombination of the two. For at least one embodiment, the
controller hub 320 communicates with the processor(s) 310, 315 via amulti-drop bus, such as a
frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or similar
connection 395.

In one embodiment, the coprocessor 345 is a specia-purpose processor, such as, for
example, ahigh-throughput MIC processor, anetwork or communication processor, COmpression
engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,
controller hub 320 may include an integrated graphics accelerator.

There can be avariety of differences between the physical resources 310, 315 in terms of
a spectrum of metrics of merit including architectural, microarchitectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 310 executes instructions that control data processing
operations of a general type. Embedded within the instructions may be coprocessor instructions.
The processor 310 recognizes these coprocessor instructions as being of atype that should be
executed by the attached coprocessor 345. Accordingly, the processor 310 issues these
coprocessor instructions (or control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 345. Coprocessor(s) 345 accept and
execute the received coprocessor instructions.

Referring now to Figure 4, shown is ablock diagram of afirst more specific exemplary
system 400 in accordance with an embodiment of the present invention. Asshownin Figure 4,
multiprocessor system 400 is a point-to-point interconnect system, and includes afirst processor
470 and a second processor 480 coupled via apoint-to-point interconnect 450. Each of
processors 470 and 480 may be some version of the processor 200. In one embodiment of the
invention, processors 470 and 480 are respectively processors 310 and 315, while coprocessor
438 is coprocessor 345. In another embodiment, processors 470 and 480 are respectively
processor 310 coprocessor 345.

Processors 470 and 480 are shown including integrated memory controller (IMC) units

472 and 482, respectively. Processor 470 also includes as part of its bus controller units point-

10

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
to-point (P-P) interfaces 476 and 478; similarly, second processor 480 includes P-P interfaces

486 and 488. Processors 470, 480 may exchange information via apoint-to-point (P-P) interface
450 using P-P interface circuits 478, 488. Asshown in Figure 4, IMCs 472 and 482 couple the
processors to respective memories, namely amemory 432 and amemory 434, which may be
portions of main memory locally attached to the respective processors.

Processors 470, 480 may each exchange information with a chipset 490 via individual P-
P interfaces 452, 454 using point to point interface circuits 476, 494, 486, 498. Chipset 490 may
optionally exchange information with the coprocessor 438 via ahigh-performance interface 439.
In one embodiment, the coprocessor 438 is a special-purpose processor, such as, for example, a
high-throughput MIC processor, anetwork or communication processor, compression engine,
graphics processor, GPGPU, embedded processor, or the like.

A shared cache (not shown) may be included in either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors local cache information may be stored in the shared cache if aprocessor isplaced
into alow power mode.

Chipset 490 may be coupled to afirst bus 416 via an interface 496. In one embodiment,
first bus 416 may be a Peripheral Component Interconnect (PCI) bus, or abus such as aPCI
Express bus or another third generation 1/0 interconnect bus, although the scope of the present
invention isnot so limited.

Asshown in Figure 4, various 1/0 devices 414 may be coupled to first bus 416, along
with abus bridge 418 which couples first bus 416 to a second bus 420. In one embodiment, one
or more additional processor(s) 415, such as coprocessors, high-throughput MIC processors,
GPGPU' s, accelerators (such as, e.g., graphics accelerators or digital signal processing (DSP)
units), field programmable gate arrays, or any other processor, are coupled to first bus 416. In
one embodiment, second bus 420 may be alow pin count (LPC) bus. Various devices may be
coupled to a second bus 420 including, for example, akeyboard and/or mouse 422,
communication devices 427 and a storage unit 428 such as adisk drive or other mass storage
device which may include instructions/code and data 430, in one embodiment. Further, an audio
1/0 424 may be coupled to the second bus 420. Note that other architectures are possible. For
example, instead of the point-to-point architecture of Figure 4, a system may implement a multi-
drop bus or other such architecture.

Referring now to Figure 5, shown isablock diagram of a second more specific
exemplary system 500 in accordance with an embodiment of the present invention. Like
elements in Figures 4 and 5 bear like reference numerals, and certain aspects of Figure 4 have

been omitted from Figure 5in order to avoid obscuring other aspects of Figure 5.

11

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
Figure 5illustrates that the processors 470, 480 may include integrated memory and 1/0

control logic ("CL") 472 and 482, respectively. Thus, the CL 472, 482 include integrated
memory controller units and include I/O control logic. Figure 5illustrates that not only are the
memories 432, 434 coupled to the CL 472, 482, but also that I/0 devices 514 are aso coupled to
the control logic 472, 482. Legacy /0 devices 515 are coupled to the chipset 490.

Referring now to Figure 6, shown isablock diagram of a SoC 600 in accordance with an
embodiment of the present invention. Similar elements in Figure 2 bear like reference numerals.
Also, dashed lined boxes are optional features on more advanced SoCs. In Figure 6, an
interconnect unit(s) 602 is coupled to: an application processor 610 which includes a set of one
or more cores 202A-N and shared cache unit(s) 206; a system agent unit 210; abus controller
unit(s) 216; an integrated memory controller unit(s) 214; a set or one or more coprocessors 620
which may include integrated graphics logic, an image processor, an audio processor, and a
video processor; an static random access memory (SRAM) unit 630; adirect memory access
(DMA) unit 632; and adisplay unit 640 for coupling to one or more external displays. In one
embodiment, the coprocessor(s) 620 include a special-purpose processor, such as, for example, a
network or communication processor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be implemented in hardware,
software, firmware, or a combination of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or program code executing on
programmable systems comprising at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least one input device, and at least one
output device.

Program code, such as code 430 illustrated in Figure 4, may be applied to input
instructions to perform the functions described herein and generate output information. The
output information may be applied to one or more output devices, in known fashion. For
purposes of this application, aprocessing system includes any system that has a processor, such
as, for example; adigital signal processor (DSP), amicrocontroller, an application specific
integrated circuit (ASIC), or amicroprocessor.

The program code may be implemented in ahigh level procedural or object oriented
programming language to communicate with aprocessing system. The program code may aso
be implemented in assembly or machine language, if desired. In fact, the mechanisms described
herein are not limited in scope to any particular programming language. In any case, the

language may be a compiled or interpreted language.

12

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
One or more aspects of at least one embodiment may be implemented by representative

instructions stored on a machine-readable medium which represents various logic within the
processor, which when read by a machine causes the machine to fabricate logic to perform the
techniques described herein. Such representations, known as"IP cores' may be stored on a
tangible, machine readable medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually make the logic or processor.

Such machine-readable storage media may include, without limitation, non-transitory,
tangible arrangements of articles manufactured or formed by a machine or device, including
storage media such as hard disks, any other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact disk rewritable's (CD-RWSs), and
magneto-optical disks, semiconductor devices such asread-only memories (ROMs), random
access memories (RAMSs) such as dynamic random access memories (DRAMS), static random
access memories (SRAMs), erasable programmable read-only memories (EPROMS), flash
memories, electricaly erasable programmable read-only memories (EEPROMS), phase change
memory (PCM), magnetic or optical cards, or any other type of media suitable for storing
electronic instructions.

Accordingly, embodiments of the invention also include non-transitory, tangible
machine-readable media containing instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or
system features described herein. Such embodiments may also bereferred to as program
products.

In some cases, an instruction converter may be used to convert an instruction from a
source instruction set to atarget instruction set. For example, the instruction converter may
trandate (e.g., using static binary trandation, dynamic binary tranglation including dynamic
compilation), morph, emulate, or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction converter may be implemented in
software, hardware, firmware, or acombination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

Figure 7 isablock diagram contrasting the use of a software instruction converter to convert
binary instructions in a source instruction set to binary instructions in atarget instruction set
according to embodiments of the invention. In the illustrated embodiment, the instruction
converter is a software instruction converter, although alternatively the instruction converter may
be implemented in software, firmware, hardware, or various combinations thereof. Figure 7
shows aprogram in ahigh level language 702 may be compiled using an x86 compiler 704 to
generate x86 binary code 706 that may be natively executed by aprocessor with at least one x86

13

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
instruction set core 716. The processor with at least one x86 instruction set core 716 represents

any processor that can perform substantially the same functions as an Intel processor with at least
one x86 instruction set core by compatibly executing or otherwise processing (1) a substantial
portion of the instruction set of the Intel x86 instruction set core or (2) object code versions of
applications or other software targeted to run on an Intel processor with at least one x86
instruction set core, in order to achieve substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 704 represents acompiler that is operable to
generate x86 binary code 706 (e.g., object code) that can, with or without additional linkage
processing, be executed on the processor with at least one x86 instruction set core 716.

Similarly, Figure 7 shows the program in the high level language 702 may be compiled using an
aternative instruction set compiler 708 to generate alternative instruction set binary code 710
that may be natively executed by aprocessor without at least one x86 instruction set core 714
(e.g., aprocessor with cores that execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,
CA). Theinstruction converter 712 isused to convert the x86 binary code 706 into code that
may be natively executed by the processor without an x86 instruction set core 714. This
converted code isnot likely to be the same as the alternative instruction set binary code 710
because an instruction converter capable of thisisdifficult to make; however, the converted code
will accomplish the general operation and be made up of instructions from the aternative
instruction set. Thus, the instruction converter 712 represents software, firmware, hardware, or a
combination thereof that, through emulation, simulation or any other process, allows aprocessor
or other electronic device that does not have an x86 instruction set processor or core to execute
the x86 binary code 706.

EMBODIMENTS OF THE INVENTION FOR PERFORMING A SHUFFLE OPERATION

Embodiments of the invention described below provide for the shuffling of floating point
or integer data elements from source registers to a destination register using conditional masking
and with 128-bit or 256-bit granularity. While these embodiments are described within the
context of specific mask register values and output vector register sizes, the underlying
principles of the invention are not limited to these implementations.

Figure 8 illustrates shuffle logic 805 for performing shuffle operations on 256-bit
operands 802-803 with 128-bit packed data elements A-D in accordance with one embodiment
of the invention. Specifically, in this embodiment, the shuffle logic 805 selects a 128-bit data
element, A or B, to be copied to afirst 128-bit position of a destination register (DST) 804 and

14

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
selects a second 128-bit data element, C or D, to be copied to a second 128-bit position of the

destination register 804 based on a 2-bit immediate value 805. In one embodiment, the first bit
of the immediate value specifies whether A or B is shuffled into the first half of the destination
register (e.g., 0=A, 1= B) and the second bit of the immediate value specifies whether C or D is
shuffled into the second half of the destination register (e.g.,, 0=C, 1=D).

In one embodiment, amask bit may also be specified within amask data structure 870 for
each of the destination register data elements. If the mask bit associated with aparticular data
element in the destination register is set to true, then the shuffle logic 805 shuffles the data
elements through to the destination register as described above. If the mask bit is set to false
then, in one embodiment, the shuffle logic writes all zeroes to the associated destination register
entry. For example, if amask bit associated with destination register bits 0:127 is set to afalse
value, then in one embodiment, the shuffle logic 805 writes all zeros to bits 0:127. The
foregoing technique of writing zeroes to a destination data element in response to amask value is
referred to herein as "zeroing masking." Alternatively, one embodiment of the invention uses
"merging masking" in which the previous data element values stored in the destination register
are maintained. Thus, returning to the above example, if "merging masking" isused, bits 0:127
would maintain their prior values. Of course, masking bits described above may bereversed
while still complying with the underlying principles of the invention (e.g., true = masking; false
= no masking).

Asillustrated in Figure 8, in one embodiment, the shuffle logic 805 accesses the registers
to perform the above operations by controlling multiplexers 810-811. The logic required for
implementing a multiplexer iswell understood by those of ordinary skill in the art and will not
be described here in detail.

Figure 9illustrates another embodiment of shuffle logic 805 which shuffles four 128-bit
data elements, A-D and E-F, stored in two 512-bit source registers 902-903. The shuffle logic
805 selects any two of data elements A-D based on the value of the first four bits of an
immediate value imm8 905 and selects any two of data elements E-H based on the value of the
last four bits of the immediate value imm8 905. More specificaly, in one embodiment, the first
two bits of the immediate value specify the selection for data element 0:127 of the destination
register 904; the next two bits of the immediate value specify the selection for data el ement
128:255 of the destination register 904; the next two bits of the immediate value specify the
selection for data element 256:383 of the destination register 904; and the final two bits of the
immediate value specify the selection for data element 384:51 1 of the destination register 904.

In one embodiment, amask data structure 870 may be specified to provide masking

operations as described above. For example, if “zeroing masking” isused, then the shuffle logic

15

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
805 writes al zeroes for data elements in the destination 904 associated with afalse mask bit and

performs the shuffle operations as described above for data elements in the destination 904
associated with atrue mask bit. Alternatively, if "merging masking” isused, then the shuffle
logic 805 maintains prior values for data e ements in the destination 904 associated with afalse
mask bit and performs the shuffle operations as described above for data elements in the
destination 904 associated with atrue mask bit.

A method according to one embodiment of the invention isillustrated in Figure 10. The
method may be executed within the context of the architecture shown in Figures 8-9 but is not
limited to any particular architecture.

At 1002, control variable N is set to zero and, at 1002, the immediate value isread to
determine how to shuffle the data elements. At 1004, data element N is selected for updating in
the destination register. If awritemask condition is set to afalse value, determined at 1005, then
the data element N in the destination register isupdated based on the particular masking type.
For example, if zeroing masking isused, then all zeros are written to the destination data element
N.

If the writemask condition is set to atrue value then, at 1007, either SRCI or SRC2 based
on the current value of N. For example, if data element N isin the first half of the destination
register, then SRCI may be selected and if data element N isin the second half of the destination
register, then SRC2 may be selected. At 1008, the data element is selected from the source
register and stored in as data element N in the destination register based on the immediate value
(e.g., asdescribed above). If the final data element has been updated in the destination,
determined at 1010, the process terminates. Otherwise, the next data element N in the
destination register is selected for updating at 1011 and the process returns to 1003.

The pseudocode describing the implementation of one embodiment of the invention is set
forth below. It will be understood, however, that the undelrying principles of the invention are
not limited to the specific implementation described in the pseudocode.

VSHUFF64x2 (EVEX 512-hit version)

(KL, VL) = (4, 256), (8, 512)

FORj « 0TOKL-1

i« *64
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+63:i] « SRC2[63.0]
ELSE TMP_SRC2[i+63:i] «+ SRC2[i+63:i]
Fl;
ENDFOR,;

16

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
IF VL =256

TMP_DEST[127:0] « Select2(SRCI[255:0], imm8[0]);
TMP_DEST[255:128] « Select2(SRC[255:0], imm8][l]);

Fl;
IF VL =512
TMP_DEST[127:0] « Select4(SRCI[511:0], immg[l:Q]);
TMP_DEST[255:128] « Select4(SRCI[511:0], imm8[3:2]);
TMP_DEST[383.256] <« Select4(SRCI[511:0], imm8[5:4]);
TMP_DESTI[5 11:384] «- Select4(SRCI[511:0], imm8[7:6]);
Fl;
FORj « OTOKL-1
i—j*64
IF kI[j] OR *no writemask*
THEN DEST[i+63:i] <~ TMP_DESTJ[i+63:i]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
EL SE * zeroing-masking* ;zeroing-masking
THEN DEST [i+63:i] < O
Fl
Fl;
ENDFOR

DEST[MAX-VL-LVL] « 0

Exemplary I nstruction Formats

Embodiments of the instruction(s) described herein may be embodied in different
formats. Additionally, exemplary systems, architectures, and pipelines are detailed below.
Embodiments of the instruction(s) may be executed on such systems, architectures, and
pipelines, but are not limited to those detail ed.

A vector friendly instruction format is an instruction format that is suited for vector
instructions (e.g., there are certain fields specific to vector operations). While embodiments are
described in which both vector and scalar operations are supported through the vector friendly
instruction format, alternative embodiments use only vector operations the vector friendly

instruction format.

17

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
Figures 11A-11B are block diagrams illustrating a generic vector friendly instruction

format and instruction templates thereof according to embodiments of the invention. Figure 11A
isablock diagram illustrating a generic vector friendly instruction format and class A instruction
templates thereof according to embodiments of the invention; while Figure 11B isablock
diagram illustrating the generic vector friendly instruction format and class B instruction
templates thereof according to embodiments of the invention. Specifically, a generic vector
friendly instruction format 1100 for which are defined class A and class B instruction templates,
both of which include no memory access 1105 instruction templates and memory access 1120
instruction templates. The term generic in the context of the vector friendly instruction format
refers to the instruction format not being tied to any specific instruction set.

While embodiments of the invention will be described in which the vector friendly
instruction format supports the following: a64 byte vector operand length (or size) with 32 bit (4
byte) or 64 bit (8 byte) data element widths (or sizes) (and thus, a 64 byte vector consists of
either 16 doubleword-size elements or aternatively, 8 quadword-size elements); a 64 byte vector
operand length (or size) with 16 bit (2 byte) or 8 bit (1 byte) data element widths (or sizes); a 32
byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit
(1 byte) data element widths (or sizes); and a 16 byte vector operand length (or size) with 32 bit
(4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths (or sizes);
alternative embodiments may support more, less and/or different vector operand sizes (e.g., 256
byte vector operands) with more, less, or different data element widths (e.g., 128 bit (16 byte)
data element widths).

The class A instruction templates in Figure 11A include: 1) within the no memory access
1105 instruction templates there is shown ano memory access, full round control type operation
1110 instruction template and ano memory access, data transform type operation 1115
instruction template; and 2) within the memory access 1120 instruction templates there is shown
amemory access, tempora 1125 instruction template and amemory access, non-tempora 1130
instruction template. The class B instruction templates in Figure 1B include: 1) within the no
memory access 1105 instruction templates there is shown ano memory access, write mask
control, partial round control type operation 1112 instruction template and a no memory access,
write mask control, vsize type operation 1117 instruction template; and 2) within the memory
access 1120 instruction templates there is shown amemory access, write mask control 1127
instruction template.

The generic vector friendly instruction format 1100 includes the following fields listed
below in the order illustrated in Figures 1l1A-1 1B.

18

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
Format field 1140 - a specific value (an instruction format identifier value) in this field

uniquely identifies the vector friendly instruction format, and thus occurrences of instructions in
the vector friendly instruction format in instruction streams. Assuch, this field isoptional in the
sense that it isnot needed for an instruction set that has only the generic vector friendly
instruction format.

Base operation field 1142 - its content distinguishes different base operations.

Register index field 1144 - its content, directly or through address generation, specifies
the locations of the source and destination operands, bethey inregisters or in memory. These
include a sufficient number of bits to select N registers from aPxQ (e.g. 32x512, 16x128,
32x1024, 64x1024) register file. While in one embodiment N may be up to three sources and
one destination register, alternative embodiments may support more or less sources and
destination registers (e.g., may support up to two sources where one of these sources also acts as
the destination, may support up to three sources where one of these sources aso acts asthe
destination, may support up to two sources and one destination).

Modifier field 1146 - its content distinguishes occurrences of instructions in the generic
vector instruction format that specify memory access from those that do not; that is, between no
memory access 1105 instruction templates and memory access 1120 instruction templates.
Memory access operations read and/or write to the memory hierarchy (in some cases specifying
the source and/or destination addresses using values in registers), while non-memory access
operations do not (e.g., the source and destinations are registers). While in one embodiment this
field also selects between three different ways to perform memory address calculations,
alternative embodiments may support more, less, or different ways to perform memory address
calculations.

Augmentation operation field 1150 - its content distinguishes which one of avariety of
different operations to be performed in addition to the base operation. This field is context
specific. In one embodiment of the invention, this field isdivided into aclass field 1168, an
alpha field 1152, and abeta field 1154. The augmentation operation field 1150 allows common
groups of operations to be performed in asingle instruction rather than 2, 3, or 4 instructions.

Scale field 1160 - its content allows for the scaling of the index field's content for
memory address generation (e.g., for address generation that uses 2% * index + base).

Displacement Field 1162A- its content isused as part of memory address generation
(e.g., for address generation that uses 2 * index + base + displacement).

Displacement Factor Field 1162B (note that the juxtaposition of displacement field
1162A directly over displacement factor field 1162B indicates one or the other isused) - its

content isused as part of address generation; it specifies adisplacement factor that isto be scaled

19

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
by the size of amemory access (N) - where N isthe number of bytes in the memory access (e.g.,

for address generation that uses 25 * index + base + scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor field' scontent is multiplied by the
memory operands total size (N) in order to generate the final displacement to beused in
calculating an effective address. The value of N isdetermined by the processor hardware at
runtime based on the full opcode field 1174 (described herein) and the data manipulation field
1154C. The displacement field 1162A and the displacement factor field 1162B are optional in
the sense that they are not used for the no memory access 1105 instruction templates and/or
different embodiments may implement only one or none of the two.

Data element width field 1164 - its content distinguishes which one of anumber of data
element widths isto be used (in some embodiments for all instructions; in other embodiments for
only some of the instructions). This field is optional in the sense that it isnot needed if only one
data element width is supported and/or data element widths are supported using some aspect of
the opcodes.

Write mask field 1170 - its content controls, on aper data element position basis,
whether that data element position in the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction templates support merging-
writemasking, while class B instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks allow any set of elements in the destination to be
protected from updates during the execution of any operation (specified by the base operation
and the augmentation operation); in other one embodiment, preserving the old value of each
element of the destination where the corresponding mask bit has a0. In contrast, when zeroing
vector masks alow any set of elements in the destination to be zeroed during the execution of
any operation (specified by the base operation and the augmentation operation); in one
embodiment, an element of the destination is set to 0 when the corresponding mask bit has a0
value. A subset of this functionality isthe ability to control the vector length of the operation
being performed (that is, the span of elements being modified, from the first to the last one);
however, it isnot necessary that the elements that are modified be consecutive. Thus, the write
mask field 1170 allows for partial vector operations, including loads, stores, arithmetic, logical,
etc. While embodiments of the invention are described in which the write mask field's 1170
content selects one of a number of write mask registers that contains the write mask to be used
(and thus the write mask field's 1170 content indirectly identifies that masking to be performed),
alternative embodiments instead or additional alow the mask write field's 1170 content to
directly specify the masking to be performed.

20

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
Immediate field 1172 - its content allows for the specification of an immediate. This

field is optional in the sense that isit not present in an implementation of the generic vector
friendly format that does not support immediate and it isnot present in instructions that do not
use an immediate.

Class field 1168 - its content distinguishes between different classes of instructions.
With reference to Figures 11A-B, the contents of this field select between class A and class B
instructions. In Figures 11A-B, rounded corner squares are used to indicate a specific value is
present in afield (e.g., class A 1168A and class B 1168B for the class field 1168 respectively in
Figures 11A-B).
Instruction Templatesd ClassA

In the case of the non-memory access 1105 instruction templates of class A, the alpha
field 1152 isinterpreted as an RSfield 1152A, whose content distinguishes which one of the
different augmentation operation types are to be performed (e.g., round 1152A.1 and data
transform 1152A.2 are respectively specified for the no memory access, round type operation
1110 and the no memory access, data transform type operation 1115 instruction templates),
while the beta field 1154 distinguishes which of the operations of the specified type isto be
performed. In the no memory access 1105 instruction templates, the scale field 1160, the
displacement field 1162A, and the displacement scale filed 1162B are not present.

No-Memory Access Instruction Templates - Full Round Control Type Operation

In the no memory access full round control type operation 1110 instruction template, the
beta field 1154 isinterpreted as around control field 1154A, whose content(s) provide static
rounding. While in the described embodiments of the invention the round control field 1154A
includes a suppress all floating point exceptions (SAE) field 1156 and around operation control
field 1158, alternative embodiments may support may encode both these concepts into the same
field or only have one or the other of these concepts/fields (e.g., may have only the round
operation control field 1158).

SAE field 1156 - its content distinguishes whether or not to disable the exception event
reporting; when the SAE field's 1156 content indicates suppression isenabled, agiven
instruction does not report any kind of floating-point exception flag and does not raise any
floating point exception handler.

Round operation control field 1158 - its content distinguishes which one of a group of
rounding operations to perform (e.g., Round-up, Round-down, Round-towards-zero and Round-
to-nearest). Thus, the round operation control field 1158 allows for the changing of the rounding

mode on aper instruction basis. In one embodiment of the invention where a processor includes

21

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
acontrol register for specifying rounding modes, the round operation control field's 1150

content overrides that register value.
No Memory Access I nstruction Templates- Data Transform Type Operation

In the no memory access data transform type operation 1115 instruction template, the
beta field 1154 isinterpreted as adata transform field 1154B, whose content distinguishes which
one of anumber of data transforms isto be performed (e.g., no data transform, swizzle,
broadcast).

In the case of amemory access 1120 instruction template of class A, the alpha field 1152
isinterpreted asan eviction hint field 1152B, whose content distinguishes which one of the
eviction hints isto beused (in Figure 11A, temporal 1152B. 1 and non-temporal 1152B.2 are
respectively specified for the memory access, temporal 1125 instruction template and the
memory access, non-temporal 1130 instruction template), while the beta field 1154 isinterpreted
as a data manipulation field 1154C, whose content distinguishes which one of anumber of data
manipulation operations (also known as primitives) isto be performed (e.g., no manipulation;
broadcast; up conversion of a source; and down conversion of adestination). The memory
access 1120 instruction templates include the scale field 1160, and optionally the displacement
field 1162A or the displacement scale field 1162B.

Vector memory instructions perform vector loads from and vector stores to memory, with
conversion support. Aswith regular vector instructions, vector memory instructions transfer
data from/to memory in a data element- wise fashion, with the elements that are actually
transferred isdictated by the contents of the vector mask that is selected as the write mask.

Memory Access Instruction Templates - Temporal

Temporal dataisdata likely to be reused soon enough to benefit from caching. This s,
however, ahint, and different processors may implement it in different ways, including ignoring
the hint entirely.

Memory Access I nstruction Templates- Non-Temporal

Non-temporal data isdata unlikely to be reused soon enough to benefit from caching in

the 1st-level cache and should be given priority for eviction. This is, however, ahint, and

different processors may implement it in different ways, including ignoring the hint entirely.
Instruction Templatesd Class B

In the case of the instruction templates of class B, the alphafield 1152 isinterpreted asa
write mask control (Z) field 1152C, whose content distinguishes whether the write masking
controlled by the write mask field 1170 should be amerging or azeroing.

In the case of the non-memory access 1105 instruction templates of class B, part of the
beta field 1154 isinterpreted as an RL field 1157A, whose content distinguishes which one of

22

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
the different augmentation operation types are to be performed (e.g., round 1157A.1 and vector

length (VSIZE) 1157A.2 are respectively specified for the no memory access, write mask
control, partial round control type operation 1112 instruction template and the no memory
access, write mask control, VSIZE type operation 1117 instruction template), while the rest of
the beta field 1154 distinguishes which of the operations of the specified type isto be performed.
In the no memory access 1105 instruction templates, the scale field 1160, the displacement field
1162A, and the displacement scale filed 1162B are not present.

In the no memory access, write mask control, partial round control type operation 1110
instruction template, the rest of the beta field 1154 isinterpreted as around operation field
1159A and exception event reporting isdisabled (a given instruction does not report any kind of
floating-point exception flag and does not raise any floating point exception handler).

Round operation control field 1159A - just asround operation control field 1158, its
content distinguishes which one of a group of rounding operations to perform (e.g., Round-up,
Round-down, Round-towards-zero and Round-to-nearest). Thus, the round operation control
field 1159A alows for the changing of the rounding mode on aper instruction basis. In one
embodiment of the invention where aprocessor includes a control register for specifying
rounding modes, the round operation control field's 1150 content overrides that register value.

In the no memory access, write mask control, VSIZE type operation 1117 instruction
template, the rest of the beta field 1154 isinterpreted as a vector length field 1159B, whose
content distinguishes which one of anumber of data vector lengths isto be performed on (e.g.,
128, 256, or 512 byte).

In the case of amemory access 1120 instruction template of class B, part of the beta field
1154 isinterpreted as abroadcast field 1157B, whose content distinguishes whether or not the
broadcast type data manipulation operation isto be performed, while the rest of the beta field
1154 isinterpreted the vector length field 1159B. The memory access 1120 instruction
templates include the scale field 1160, and optionally the displacement field 1162A or the
displacement scale field 1162B.

With regard to the generic vector friendly instruction format 1100, afull opcode field
1174 is shown including the format field 1140, the base operation field 1142, and the data
element width field 1164. While one embodiment is shown where the full opcode field 1174
includes al of these fields, the full opcode field 1174 includes less than all of these fields in
embodiments that do not support al of them. The full opcode field 1174 provides the operation

code (opcode).

23

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
The augmentation operation field 1150, the data element width field 1164, and the write

mask field 1170 allow these features to be specified on aper instruction basis in the generic
vector friendly instruction format.

The combination of write mask field and data element width field create typed
instructions in that they allow the mask to be applied based on different data element widths.

The various instruction templates found within class A and class B are beneficia in
different situations. In some embodiments of the invention, different processors or different
cores within aprocessor may support only class A, only class B, or both classes. For instance, a
high performance general purpose out-of-order core intended for general-purpose computing
may support only class B, acore intended primarily for graphics and/or scientific (throughput)
computing may support only class A, and a core intended for both may support both (of course, a
core that has some mix of templates and instructions from both classes but not all templates and
instructions from both classes iswithin the purview of the invention). Also, asingle processor
may include multiple cores, all of which support the same class or in which different cores
support different class. For instance, in aprocessor with separate graphics and general purpose
cores, one of the graphics cores intended primarily for graphics and/or scientific computing may
support only class A, while one or more of the general purpose cores may be high performance
general purpose cores with out of order execution and register renaming intended for general-
purpose computing that support only class B. Another processor that does not have a separate
graphics core, may include one more general purpose in-order or out-of-order cores that support
both class A and class B. Of course, features from one class may also be implement in the other
class in different embodiments of the invention. Programs written in ahigh level language
would beput (e.g., just in time compiled or statically compiled) into an variety of different
executable forms, including: 1) aform having only instructions of the class(es) supported by the
target processor for execution; or 2) aform having alternative routines written using different
combinations of the instructions of all classes and having control flow code that selects the
routines to execute based on the instructions supported by the processor which is currently
executing the code.

Figure 12A-D are block diagrams illustrating an exemplary specific vector friendly
instruction format according to embodiments of the invention. Figure 12 shows a specific vector
friendly instruction format 1200 that is specific in the sense that it specifies the location, size,
interpretation, and order of the fields, aswell asvalues for some of those fields. The specific
vector friendly instruction format 1200 may be used to extend the x86 instruction set, and thus
some of the fields are similar or the same as those used in the existing x86 instruction set and

extension thereof (e.g., AVX). This format remains consistent with the prefix encoding field,

24

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
real opcode byte field, MOD R/M field, SIB field, displacement field, and immediate fields of

the existing x86 instruction set with extensions. The fields from Figure 11into which the fields
from Figure 12 map areillustrated.

It should be understood that, although embodiments of the invention are described with
reference to the specific vector friendly instruction format 1200 in the context of the generic
vector friendly instruction format 1100 for illustrative purposes, the invention isnot limited to
the specific vector friendly instruction format 1200 except where claimed. For example, the
generic vector friendly instruction format 1100 contemplates avariety of possible sizes for the
various fields, while the specific vector friendly instruction format 1200 is shown as having
fields of specific sizes. By way of specific example, while the data element width field 1164 is
illustrated as aone bit field in the specific vector friendly instruction format 1200, the invention
isnot so limited (that is, the generic vector friendly instruction format 1100 contemplates other
sizes of the data element width field 1164).

The generic vector friendly instruction format 1100 includes the following fields listed
below in the order illustrated in Figure 12A.

EVEX Prefix (Bytes 0-3) 1202 - isencoded in afour-byte form.

Format Field 1140 (EVEX Byte 0, bits [7:0]) - the first byte (EVEX Byte 0) isthe format
field 1140 and it contains 0x62 (the unique value used for distinguishing the vector friendly
instruction format in one embodiment of the invention).

The second-fourth bytes (EVEX Bytes 1-3) include anumber of bit fields providing
specific capability.

REX field 1205 (EVEX Byte 1, bits [7-5]) - consists of aEVEX.R bit field (EVEX Byte
1, bit [7] - R), EVEX.X bit field (EVEX byte 1, bit [6] - X), and 1157BEX byte 1, bit[5] - B).
The EVEX.R, EVEX.X, and EVEX.B bit fields provide the same functionality asthe
corresponding VEX bit fields, and are encoded using | scomplement form, i.e. ZMMO is
encoded as 1111B, ZMM15 isencoded as 0000B. Other fields of the instructions encode the
lower three bits of the register indexes asisknown in the art (rrr, xxx, and bbb), so that Rrrr,
Xxxx, and Bbbb may be formed by adding EVEX.R, EVEX.X, and EVEX.B.

REX' field 1110 - thisisthe first part of the REX" field 1110 and isthe EVEX.R' bit
field (EVEX Byte 1, bit [4] - R') that isused to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the invention, this bit, along with others as
indicated below, is stored in bit inverted format to distinguish (in the well-known x86 32-bit
mode) from the BOUND instruction, whose real opcode byte is 62, but does not accept in the
MOD R/M field (described below) the value of 11inthe MOD field; alternative embodiments of

the invention do not store this and the other indicated bits below in the inverted format. A value

25

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
of lisused to encode the lower 16 registers. In other words, R'Rrrr isformed by combining

EVEX.R, EVEX.R, and the other RRR from other fields.

Opcode map field 1215 (EVEX byte 1, bits [3:0] - mmmm) - its content encodes an
implied leading opcode byte (OF, oF 38, or OF 3).

Data element width field 1164 (EVEX byte 2, bit [7] - W) - isrepresented by the
notation EVEX.W. EVEX.W isused to define the granularity (size) of the datatype (either 32-
bit data elements or 64-bit data elements).

EVEX.vwwv 1220 (EVEX Byte 2, bits [6:3]-vvvv)- the role of EVEX.vvvv may include
the following: 1) EVEX.vvvv encodes the first source register operand, specified ininverted (Is
complement) form and is valid for instructions with 2 or more source operands; 2) EVEX.vvvwv
encodes the destination register operand, specified in | scomplement form for certain vector
shifts; or 3) EVEX.vvvv does not encode any operand, the field isreserved and should contain
111lb. Thus, EVEX.vvvv field 1220 encodes the 4 low-order bits of the first source register
specifier stored in inverted (Is complement) form. Depending on the instruction, an extra
different EVEX bit field isused to extend the specifier size to 32 registers.

EVEX.U 1168 Class field (EVEX byte 2, bit [2]-U) - If EVEX.U =0, it indicates class A
or EVEX.UQ; if EVEX.U = 1, it indicates class B or EVEX.U1.

Prefix encoding field 1225 (EVEX byte 2, bits [I:0]-pp) - provides additional bits for the
base operation field. In addition to providing support for the legacy SSE instructions in the
EVEX prefix format, this also has the benefit of compacting the SIMD prefix (rather than
requiring abyte to express the SIMD prefix, the EVEX prefix requires only 2 bits). In one
embodiment, to support legacy SSE instructions that use a SIMD prefix (66H, F2H, F3H) in both
the legacy format and in the EVEX prefix format, these legacy SIMD prefixes are encoded into
the SIMD prefix encoding field; and at runtime are expanded into the legacy SIMD prefix prior
to being provided to the decoder's PLA (so the PLA can execute both the legacy and EVEX
format of these legacy instructions without modification). Although newer instructions could
use the EVEX prefix encoding field's content directly as an opcode extension, certain
embodiments expand in a similar fashion for consistency but allow for different meanings to be
specified by these legacy SIMD prefixes. An alternative embodiment may redesign the PLA to
support the 2 bit SIMD prefix encodings, and thus not require the expansion.

Alphafield 1152 (EVEX byte 3, bit [7] - EH; also known as EVEX.EH, EVEX.rs,
EVEX.RL, EVEX.write mask control, and EVEX.N; aso illustrated with a) - as previously
described, this field is context specific.

26

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
Betafield 1154 (EVEX byte 3, bits [6:4]-SSS, also known as EVEX.s, o, EVEX.r,

EVEX.rrl, EVEX.LLO, EVEX.LLB; aso illustrated with BBR) - aspreviously described, this
field is context specific.

REX' field 1110 - thisisthe remainder of the REX' field and isthe EVEX.V bit field
(EVEX Byte 3, bit [3] - V) that may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted format. A value of lisused to encode
the lower 16 registers. In other words, V'VVVV isformed by combining EVEX.V,
EVEX.vvvv.

Write mask field 1170 (EVEX byte 3, bits [2:0]-kkk) - its content specifies the index of a
register in the write mask registers aspreviously described. In one embodiment of the invention,
the specific value EVEX.kkk=000 has a special behavior implying no write mask isused for the
particular instruction (this may be implemented in avariety of ways including the use of awrite
mask hardwired to al ones or hardware that bypasses the masking hardware).

Real Opcode Field 1230 (Byte 4) is also known as the opcode byte. Part of the opcode is
specified in this field.

MOD R/M Field 1240 (Byte 5) includes MOD field 1242, Reg field 1244, and R/M field
1246. Asprevioudy described, the MOD field's 1242 content distinguishes between memory
access and non-memory access operations. The role of Reg field 1244 can be summarized to
two situations: encoding either the destination register operand or a source register operand, or
be treated as an opcode extension and not used to encode any instruction operand. The role of
R/M field 1246 may include the following: encoding the instruction operand that references a
memory address, or encoding either the destination register operand or a source register operand.

Scale, Index, Base (SIB) Byte (Byte 6) - Aspreviously described, the scale field's 1150
content isused for memory address generation. SIB.xxx 1254 and SIB.bbb 1256 - the contents
of these fields have been previoudly referred to with regard to the register indexes Xxxx and
Bbbb.

Displacement field 1162A (Bytes 7-10) - when MOD field 1242 contains 10, bytes 7-10
are the displacement field 1162A, and it works the same as the legacy 32-bit displacement
(disp32) and works at byte granularity.

Displacement factor field 1162B (Byte 7) - when MOD field 1242 contains 01, byte 7 is
the displacement factor field 1162B. The location of this field isthat same asthat of the legacy
x86 instruction set 8-bit displacement (disp8), which works at byte granularity. Since disp8 is
sign extended, it can only address between -128 and 127 bytes offsets; in terms of 64 byte cache
lines, disp8 uses 8 bits that can be set to only four really useful values -128, -64, 0, and 64; since
agreater range is often needed, disp32 isused; however, disp32 requires 4 bytes. In contrast to

27

10

15

20

25

30

WO 2013/095610 PCT/US2011/067087
disp8 and disp32, the displacement factor field 1162B is areinterpretation of disp8; when using

displacement factor field 1162B, the actua displacement isdetermined by the content of the
displacement factor field multiplied by the size of the memory operand access (N). This type of
displacement isreferred to asdisp8*N. This reduces the average instruction length (a single byte
of used for the displacement but with amuch greater range). Such compressed displacement is
based on the assumption that the effective displacement ismultiple of the granularity of the
memory access, and hence, the redundant low-order bits of the address offset do not need to be
encoded. In other words, the displacement factor field 1162B substitutes the legacy x86
instruction set 8-bit displacement. Thus, the displacement factor field 1162B isencoded the
same way as an x86 instruction set 8-bit displacement (so no changes in the ModRM/SIB
encoding rules) with the only exception that disp8 is overloaded to disp8*N. In other words,
there are no changes in the encoding rules or encoding lengths but only in the interpretation of
the displacement value by hardware (which needs to scale the displacement by the size of the
memory operand to obtain abyte-wise address offset).

Immediate field 1172 operates as previously described.
Full Opcode Field

Figure 12B isablock diagram illustrating the fields of the specific vector friendly
instruction format 1200 that make up the full opcode field 1174 according to one embodiment of
the invention. Specifically, the full opcode field 1174 includes the format field 1140, the base
operation field 1142, and the data element width (W) field 1164. The base operation field 1142
includes the prefix encoding field 1225, the opcode map field 1215, and the real opcode field
1230.

Register Index Field

Figure 12C isablock diagram illustrating the fields of the specific vector friendly
instruction format 1200 that make up the register index field 1144 according to one embodiment
of the invention. Specificaly, the register index field 1144 includes the REX field 1205, the
REX" field 1210, the MODR/M.reg field 1244, the MODR/M.r/m field 1246, the W W field
1220, xxx field 1254, and the bbb field 1256.

Augmentation Operation Field

Figure 12D isablock diagram illustrating the fields of the specific vector friendly
instruction format 1200 that make up the augmentation operation field 1150 according to one
embodiment of the invention. When the class (U) field 1168 contains 0, it signifies EVEX.UOQ
(class A 1168A); when it contains 1, it signifies EVEX.U1 (class B 1168B). When U=0 and the
MOD field 1242 contains 11 (signifying ano memory access operation), the alphafield 1152

28

10

15

20

25

WO 2013/095610 PCT/US2011/067087
(EVEX byte 3, bit [7] - EH) isinterpreted asthersfield 1152A. When the rsfield 1152A

contains a 1 (round 1152A.1), the beta field 1154 (EVEX byte 3, bits [6:4]- SSS) isinterpreted
asthe round control field 1154A. The round control field 1154A includes a one bit SAE field
1156 and atwo bit round operation field 1158. When thersfield 1152A contains a O (data
transform 1152A.2), the beta field 1154 (EVEX byte 3, bits [6:4]- SSS) isinterpreted as athree
bit data transform field 1154B. When U=0 and the MOD field 1242 contains 00, 01, or 10
(signifying amemory access operation), the alpha field 1152 (EVEX byte 3, bit [7] - EH) is
interpreted asthe eviction hint (EH) field 1152B and the beta field 1154 (EVEX byte 3, bits
[6:4]- SSS) isinterpreted as athree bit data manipulation field 1154C.

When U=l, the alphafield 1152 (EVEX byte 3, bit [7] - EH) isinterpreted asthe write
mask control (Z) field 1152C. When U=I and the MOD field 1242 contains 11 (signifying ano
memory access operation), part of the beta field 1154 (EVEX byte 3, bit [4]- So) isinterpreted as
the RL field 1157A; when it contains a 1 (round 1157A.1) therest of the beta field 1154 (EVEX
byte 3, bit [6-5]- S,-i) isinterpreted as the round operation field 1159A, while when the RL field
1157A contains a0 (VSIZE 1157.A2) the rest of the beta field 1154 (EVEX byte 3, bit [6-5]- S,_
1) isinterpreted asthe vector length field 1159B (EVEX byte 3, bit [6-5]- L, ;). When U=I and
the MOD field 1242 contains 00, 01, or 10 (signifying amemory access operation), the beta field
1154 (EVEX byte 3, bits [6:4]- SSS) isinterpreted asthe vector length field 1159B (EVEX byte
3, bit [6-5]- L,) and the broadcast field 1157B (EVEX byte 3, bit [4]- B).

Figure 13 isablock diagram of aregister architecture 1300 according to one
embodiment of the invention. In the embodiment illustrated, there are 32 vector registers 1310
that are 512 bits wide; these registers are referenced as zmmO through zmm31. The lower order
256 bits of the lower 16 zmm registers are overlaid on registers ymmO-16. The lower order 128
bits of the lower 16 zmm registers (the lower order 128 bits of the ymm registers) are overlaid on
registers xmmO-15. The specific vector friendly instruction format 1200 operates on these

overlaid register file asillustrated in the below tables.

Adjustable Class Operations Registers

Vector Length

Instruction A (Figure 11A; 1110, 1115, zmm registers

Templates that U=0) 1125, 1130 (the vector

do not include length is 64 byte)

the vector length | B (Figure 11B; 1112 zmm registers

field 1159B U=1) (the vector
length is 64 byte)

29

10

15

20

WO 2013/095610 PCT/US2011/067087

Instruction B (Figure 11B; 1117, 1127 zmm, ymm, or

Templates that u=l) Xmm registers

do include the (the vector

vector length length is 64 byte,

field 1159B 32 byte, or 16
byte) depending
on the vector
length field
1159B

In other words, the vector length field 1159B selects between a maximum length and one
or more other shorter lengths, where each such shorter length ishalf the length of the preceding
length; and instructions templates without the vector length field 1159B operate on the maximum
vector length. Further, in one embodiment, the class B instruction templates of the specific
vector friendly instruction format 1200 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar operations are operations performed
on the lowest order data element position in an zmm/ymm/xmm register; the higher order data
element positions are either left the same as they were prior to the instruction or zeroed

depending on the embodiment.

Write mask registers 1315 - in the embodiment illustrated, there are 8 write mask
registers (ko through k7), each 64 bits in size. In an alternate embodiment, the write mask
registers 1315 are 16 bits in size. Aspreviously described, in one embodiment of the invention,
the vector mask register k O cannot be used as awrite mask; when the encoding that would
normally indicate k Oisused for awrite mask, it selects ahardwired write mask of OxFFFF,
effectively disabling write masking for that instruction.

General-purpose registers 1325 - in the embodiment illustrated, there are sixteen 64-bit
general-purpose registers that are used along with the existing x86 addressing modes to address
memory operands. These registers are referenced by the names RAX, RBX, RCX, RDX, RBP,
RSI, RDI, RSP, and R8 through R 15.

Scalar floating point stack register file (x87 stack) 1345, on which is aliased the MMX
packed integer flat register file 1350 - in the embodiment illustrated, the x87 stack is an eight-
element stack used to perform scalar floating-point operations on 32/64/80-bit floating point data

using the x87 instruction set extension; while the MMX registers are used to perform operations

30

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
on 64-bit packed integer data, aswell asto hold operands for some operations performed

between the MM X and XMM registers.

Alternative embodiments of the invention may use wider or narrower registers.
Additionally, aternative embodiments of the invention may use more, less, or different register
files and registers.

Figures 14A-B illustrate ablock diagram of amore specific exemplary in-order core
architecture, which core would be one of several logic blocks (including other cores of the same
type and/or different types) in achip. The logic blocks communicate through a high-bandwidth
interconnect network (e.g., aring network) with some fixed function logic, memory 1/0
interfaces, and other necessary 1/0 logic, depending on the application.

Figure 14A isablock diagram of a single processor core, along with its connection to the
on-die interconnect network 1402 and with its local subset of the Level 2 (L2) cache 1404,
according to embodiments of the invention. In one embodiment, an instruction decoder 1400
supports the x86 instruction set with a packed data instruction set extension. An L | cache 1406
allows low-latency accesses to cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1408 and avector unit 1410 use separate
register sets (respectively, scalar registers 1412 and vector registers 1414) and data transferred
between them iswritten to memory and then read back in from alevel 1(LI) cache 1406,
aternative embodiments of the invention may use adifferent approach (e.g., use a single register
set or include acommunication path that allow data to be transferred between the two register
files without being written and read back).

The local subset of the L2 cache 1404 ispart of aglobal L2 cache that isdivided into
separate local subsets, one per processor core. Each processor core has adirect access path toits
own local subset of the L2 cache 1404. Data read by aprocessor coreis stored inits L2 cache
subset 1404 and can be accessed quickly, in parallel with other processor cores accessing their
own local L2 cache subsets. Data written by aprocessor coreis stored in its own L2 cache
subset 1404 and isflushed from other subsets, if necessary. The ring network ensures coherency
for shared data. The ring network isbi-directiona to allow agents such as processor cores, L2
caches and other logic blocks to communicate with each other within the chip. Each ring data-
path is 1012-bits wide per direction.

Figure 14B is an expanded view of part of the processor core in Figure 14A according to
embodiments of the invention. Figure 14B includes an L | data cache 1406A part of the L |
cache 1404, aswell as more detail regarding the vector unit 1410 and the vector registers 1414.
Specifically, the vector unit 1410 isa 16-wide vector processing unit (VPU) (seethe 16-wide

ALU 1428), which executes one or more of integer, single-precision float, and double-precision

31

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
float instructions. The VPU supports swizzling the register inputs with swizzle unit 1420,

numeric conversion with numeric convert units 1422A-B, and replication with replication unit
1424 on the memory input. Write mask registers 1426 alow predicating resulting vector writes.

Embodiments of the invention may include various steps, which have been described
above. The steps may be embodied in machine-executable instructions which may be used to
cause a general-purpose or special-purpose processor to perform the steps. Alternatively, these
steps may be performed by specific hardware components that contain hardwired logic for
performing the steps, or by any combination of programmed computer components and custom
hardware components.

Asdescribed herein, instructions may refer to specific configurations of hardware such as
application specific integrated circuits (ASICs) configured to perform certain operations or
having apredetermined functionality or software instructions stored in memory embodied in a
non-transitory computer readable medium. Thus, the techniques shown in the figures can be
implemented using code and data stored and executed on one or more electronic devices (e.g., an
end station, a network element, etc.). Such electronic devices store and communicate (internally
and/or with other electronic devices over anetwork) code and data using computer machine-
readable media, such as non-transitory computer machine-readable storage media (e.g., magnetic
disks; optical disks; random access memory; read only memory; flash memory devices,; phase-
change memory) and transitory computer machine-readable communication media (e.g.,
electrical, optical, acoustical or other form of propagated signals - such as carrier waves, infrared
signals, digital signals, etc.). In addition, such electronic devices typicaly include a set of one or
more processors coupled to one or more other components, such as one or more storage devices
(non-transitory machine-readable storage media), user input/output devices (e.g., akeyboard, a
touchscreen, and/or adisplay), and network connections. The coupling of the set of processors
and other components istypically through one or more busses and bridges (also termed as bus
controllers). The storage device and signals carrying the network traffic respectively represent
one or more machine-readable storage media and machine-readable communication media.

Thus, the storage device of a given electronic device typically stores code and/or data for
execution on the set of one or more processors of that electronic device. Of course, one or more
parts of an embodiment of the invention may be implemented using different combinations of
software, firmware, and/or hardware. Throughout this detailed description, for the purposes of
explanation, numerous specific details were set forth in order to provide athorough
understanding of the present invention. It will be apparent, however, to one skilled in the art that
the invention may be practiced without some of these specific details. In certain instances, well

known structures and functions were not described in elaborate detail in order to avoid obscuring

32

WO 2013/095610 PCT/US2011/067087
the subject matter of the present invention. Accordingly, the scope and spirit of the invention

should bejudged in terms of the claims which follow.

33

10

15

20

25

30

35

WO 2013/095610 PCT/US2011/067087
CLAIMS

Weclaim:

1. A processor to execute one or more instructions to perform the operations of:

reading each mask bit stored in amask data structure, the mask data structure containing
mask bits associated with data elements of a destination register, the values usable for
determining whether a masking operation or a shuffle operation should be performed on data
elements stored within afirst source register and a second source register;

for each data element of the destination register, if amask bit associated with the data
element indicates that a shuffle operation should be performed, then shuffling data elements
from the first source register and the second source register to the specified data element within
the destination register; and

if the mask bit indicates that a masking operation should be performed, then performing a
specified masking operation with respect to the data element of the destination register.

2. The processor asin claim 1wherein the specified masking operation comprises
setting the bits of the data element in the destination register all equal to zero.

3. The processor asin claim 1wherein the specified masking operation comprises
maintaining existing values previously stored in the data element in the destination register.

4. The processor asin claim 1wherein each data element in the destination register

comprises 128 bits of data.

5. The processor asin claim 4 wherein each data element in the first and second

source registers comprises 128 bits of data.

6. A method comprising:

reading each mask bit stored in amask data structure, the mask data structure containing
mask bits associated with data elements of a destination register, the values usable for
determining whether a masking operation or a shuffle operation should be performed on data
elements stored within afirst source register and a second source register;

for each data element of the destination register, if amask bit associated with the data
element indicates that a shuffle operation should be performed, then shuffling data elements
from the first source register and the second source register to the specified data element within
the destination register; and

34

10

20

25

30

35

WO 2013/095610 PCT/US2011/067087

il ihe mask bit indicates that a masking opération should be performed, then performing a
specified masking operation with respect to the data elernenLof the destination register.

7. The method asin claim 6 wherein die specified masking operation comprises
selling the bits of the data element in the destination register all equal to zero.

8. The method asin claim 6 wherein the specified masking operation comprises

maintaining existing values previoudy stored in the data clement in the destination register.

9. The method asin claim 6 wherein each data element in the destination register
comprises 128 bits or data.

10. The method as in claim 9 wherein each data element in ihe first and second source
registers comprises 128 bits of data.

11. A processor comprising:

means for reading each mask bit stored in a mask data structure, the mask data structure
containing mask bits associated with data elements of adestination register, the values usable for
determining whether a masking operation or a shuffle operation should be performed on data
elements stored within afirst source register and a second source register;

means for shuffling data elements from the first source register and the second source
register to a specified data element within the dcstiaation register, wherein, for each data clement
of the destination register, if amask bit associated with the data element indicates that a shuffle
operation should be performed, then shuffling data elements, wherein if the mask bit indicates
that amasking operation should be performed, then performing a specified masking operation
with respect to the data element of the destination register.

2. The processor asinclaim 11 wherein the specified masking operation comprises

setting the bits of the data clement in the destination register all equal to zero.

13. The processor asin claim 11wherein the specified masking operation comprises

maintaining existing values previously .stored in the data clement in the destination register.

14. The processor asin claim 11 wherein each data element in the destination register

comprises 128 bits of data.

35
RECTIFIED SHEET (RULE 91)

10

15

20

30

s
w

WO 2013/095610 PCT/US2011/067087

15. Theprocessor asinclaim 14 wherein each data element in the first and second
source registers comprises 128 bits of data.

16. A computer system comprising:

amemory for storing program instructions and date;

aprocessor to execute one or more of the program instructions to perform the operations
of:

reading each mask bit stored in amask data structure, the mask data structure containing
mask bits associated with data elements of adestination register, the values usable for
determining whether amasking operation or a shuffle operation should be performed on data
elements stored within a first source register and a second source register;

for each data element of the destination register, if amask bit associated with the data
clement indicatesthat a shuffle operation should be performed, then shuffling data elements
from the first source register and the second sourceregister to the spcciilcd data clement within
the destination register, and

if the mask bit indicates that a masking operation should be pcrtbrmed, then performing a
specified masking operation with respect to the data clement of the destination register.

17. The system asin claim 16 wherein the specified masking operation comprises
selling the bits of the data element in ihe destination register al equal to zero.

18. The system asin claim 16 wherein the specified masking operation comprises

maintaining existing values previously stored in the data element in the destination register.

19. Tliesystem asin claim 16 wherein each data element in the destination register

comprises 128 bits of data.

20. Thesystem asin claim 19 wherein each data element in the first and second

source registers comprises 128 bits of data.

21. Thesystem asin claim 15 further comprising;
adisplay adapter to render graphics images in response to execution of the program code

by the processor.

22. Thesystemasinclaim 21 further comprising:

36
RECTIFIED SHEET (RULE 91)

WO 2013/095610 PCT/US2011/067087

auser input inierfacc to receive control signals from auser input device, the processor

executing the program code in response to the control signals.

37
RECTIFIED SHEET (RULE 91)

PCT/US2011/067087

WO 2013/095610

1116

| Vel
| LIAWOD

9l |, | v/l
1INN LINN FHOVYO Viva | O LINN
JHOVD ZlL AHOW3IN
21 1INN g1 Yivd
I*
y 091 (S)¥3LSNTO NOILNDIX3
91 (SILINN 291
$S300V (S)LINN
AHONAW NOILND3IX3
A A

T p——

_
_
861 (S)LINN S3T14 ¥31S19FY TYOISAH |
|
_

g} anbi4

// 061 34090

o IA .vu —C———A_ - | vel
l__ @lwmzl:umm._bomzmml _1 _r LINN NG |
L= = 7 7zl uNn - T T _
| 051 LINN
- — .W_Q,%Béﬂ\ ANYNIS_ INIONT NOILND3X3
— | oSl
ovl :zg»mgoouo LINA ONAL LNOWA
[88/ HOI34 NOILONYISNI |
A
9g1 LINM 811 NOILONYLSNI Ze} LINN
-pL_FEL LINN SHOVO NOLLONHISNI NOILOIdTdd HONVXE
..lel 8l 7l I I
onmanw | FLEM oLl avad Ao zhk | ol | 8ol
NOLLdgoxal ASONIN | 39v1S3IN03xa | /av3y | FINAIHOS [ONINVYNT 00TV
i O TN wasemy |
V| 2inbig

0l
901 A
ONId0o3d
400953d HLONT HO134

00} INM3dd ——

PCT/US2011/067087

WO 2013/095610

2/16

91Z (SILINN
YITIOYLNOD
sng

I 1z (S)LINN
| y311081IN0D
I xdoman

| qaiv¥oaIN

L e — —

0l¢ LINN

INIOV NILSAS

90Z (S)LIN

| Nvoz | !
L ()unn) !
| 3Howo | !

!

NC0Z 3H0D N

¢1e ONIY
N FHOVD QTHVYHS
V¥0Z
cowm (S)LINN
JHOVD
V202 3409

Z &inbi4
80¢ 1907
3S0ddNd
VIO3dS _

// 00¢ ¥0SS3204d

WO 2013/095610

300

3/16

315
—/

\

. _— 310

L

|
|
[

-
|
|

345

PROCESSOR

—

/_

PCT/US2011/067087

i |
co-

| ProcESSOR |~

L |

360 —_

/0

CONTROLLER
HUB320

—I_—GMCH 390

I———|—_

- MEMORY

-

__JZI
|

IOH 350

I

Figure 3

PCT/US2011/067087

WO 2013/095610

4/16

viva ¥ aInbi4
8cy —— 0S¥
ANV 3009 | s3omaa _ | asnow
JOVHOLS Y1V Ly WWOD (444 /QEYOgAIN
H 0zy |4 h
GLy A Ly 8LY
H0SSID0Hd o/l olany $301A3Q Off 390148 SNg
a1y - ._. r— =
ooy —1 | zey — 4l _ 8ey
o6y — d-d 06% 13SdIHO JES [gy _wowmm_oom%o
= 1
Gy 257
>
owv d-d dd d-d d-d o N.v
9y — g5y — \ \ L oLy
8l
0S¥
— 8% iy —7
NI NI
ey ey
AHOWIN | AHOW3N
¥0SSI0Ud0D
40SSI0Nd ¥0SSID0¥d

/ 00y

PCT/US2011/067087

WO 2013/095610

5/16

G ainbi4

vey
AJONIIN

[A%%
AJONIN

GLS
O/l AOVOT
06y 96¥ e/
13SdiHO
g6y —1 dd pe —| dd
114 L F A% I* &
. . »
08Y d-d dd d-d d-d 0y
98y — 88y \ /I oLy
8V
0Sy
— 287 Ur =z
10 10
H0SS3004d H0SS3004d
145

S30IA3d ON

/ 009

PCT/US2011/067087

WO 2013/095610

6/16

712 (S)LINN
0v9 0€9 YITIOHLINOD
LNNAYTdsia | | SO LNAYIT 1A ivss ANONN
Q3LVEOILINI
912 (S)LINN
HMITIOHINOD
Sng | 209 (SILINN SAmzzoomEz_
memem === —
| |
_ 90Z (S)LINN IHOVO AFHVHS
A m - = =
1 Nvoz | vy02
| | (S)INN | _ cea | |©)LNN
04 LINN " O HOVY
INTOV WILSAS 1 NZ0¢ FH0D] Y20¢Z 3402

019 HOSS300dd NOILYOINddY

029 (S)H0SSIN0Hd0D

/ 009

dIHO ¥ NO W3LSAS

9 ainbi4

PCT/US2011/067087

WO 2013/095610

7116

704 H3TIdNOD 98X

904 3000 AYVNIg 98X

¢0/ 3DVNONVYT 19A3T HOH

804 "3 1dINOD
138 NOILONYLSNI
AAILYNEALTY

214 MILIANOD
NOILONMLSNI
£ 3Inbi4 012 3000 AYYNIG
135 NOILONYLSNI
SAYLLAOS IALLYNHILTY
FHYMANYH
Y
o 714 340D 13 NOILONYLSNI
00 L3S NOILONMLSN
OB NG LSvaT 98X N LNOHLIM ¥OSSID0Nd
1Y HLIM 4OSSF00¥d

PCT/US2011/067087

WO 2013/095610

8/16

8 'Ol

¥08 1Sd
14174 A RPEAN 0
aion gi0y
7\ 7\
Bupjsewom | ! L BupSewaium Ji
\\L) ' Ne—
0L8 : :
org |
PN 508
J19071
F144NHS 1
/ 908 guiwi
| [\
a D v
Gge 8cL gl 0 15174 8cl L2} 0
€08 ¢OdSs ¢08 LOdS

PCT/US2011/067087

WO 2013/095610

9/16

6 ‘Ol

706 1S0Q
LIS 8¢, £8¢ 952,552 T AN FA) 0
H40 ‘D13 H40'D'93 giodgy aglon‘gy
L I J
Y
L
0L6”
08 .
ASEIN $08
] 21901 P
I144NHS AN 9ls|v]|e
_ G06 gl
-
I
4 3 a 9] d
LS 8¢ £8¢ 9SZ 552 9zZL 1Tl 0 LS 78¢ €8¢ 952 §S2 8zZL izl
£06 ZOYS 206 10YS

PCT/US2011/067087

10/16

0T "Oid

8001

IMIVA JLVIAININI NO G3Sva THIS
HO TOYUS INOY4 V3 O1 LNIFINITI Yivd 12313S

T

L00T
N 40 IMIVA NO g3aSva ZHdsS
HO TIYS ¥3IHLIF 103138

N A 9001
(ONI9YIIN ¥O 0¥3Z “O'3)
IdAL ONDISYIN

NO a3svg 31vadn

001
NOILYNILS3Id
NI 31vadn OL N LNIAIFI3 Viva LDIT3S

A

- £001

WO 2013/095610

INTVA ILVIAININI aV3Y

A

2001 B
0= N < “ 18v1S _

PCT/US2011/067087

WO 2013/095610

11/16

- B2 D D
0L11 azorL | 0911 - il |zl
ey amialamn| S5 1 qaEn] (2o aTEE | 28l Lao) 89PM | qig | qfae | OFh
S rviganisying oo 2 SIS oL Indivin. veodnan g8l ss30ov] REaN | oiliimao |01 L
T BUMM viva | dasia [Tvosy YA { NON NV aisiony 3sve | YWHOA
= | YHOdWILNON \
L L _ m\ | | 5 SSIDDY AMOWIN
- 77
0LL} gzol, 109}l)L hll
Ms: Qi aEE S 23 dsiqaE) (ort ISR 1 vazel, fveoni v S E a1al | qrEEN | S5 .ﬁ_
T BRI Vg | 4 dsia {1vos L Whaisioay 3sve 4|
g | 828l | = acl)
GZhL TYHOJWAL
| Lo a ! | 'ss300v Adonal SOV
| m NOILOIAZ | “ O
- 791 - Y vor))
| 0LL} . wopl, | bl | vl
200 AR TR Sam o apeyaEd (EVH Whvear viss3oov| anaid | araEn | J4 Pm
LY IGIARIISYIN N3 EOSNYHL YLy SOF E Y SSY10{AdOEm| X3aNI |ollveado| T3
I =N e X KON jaisiony 3sva
| =
m “ | ' L G111 NOILYHEdO 3dAL J
— - | J_ 10 'SSIOQY AHOWIN QN
! 01} ‘ 891) 13l | 95k} | [vorll | vl il
eon a3l Siam L o |NOUREEO LR 1 vzei1 hveoy viss3ooy| amal | amEiEn | Hﬂ
=E.<5m~>=>:§m<§ ENERE VGl Qaid | ONNOS | SSYIOANOWAN] XIAN! 1OILVHACO |vnm T
T BN viva 109.LNGY aNNOY | L_ON” juaisiomd 3sva O]
| | | m oL S0
| | ! g |_d03dAL THINO ONNOY SSIOIV
004} LYINYOS NOILONYLSN] = | | TIN4 '$S300Y AYONINON A
ATON3R MO L03A ORANTD : m ! HON
r i 1 A
c— T T o Tl
_ oy gzl 1091l 7oL q13i4] 89k iy vl
ey K o TG Bt ST TS RIS N ey NCIC g S B T Moy ST F_
ALVIGINASYA| NTATa] Ve | 3 diidd] xaan Joilwiado |93 .
T BINM viva | dasia | 1vos) 0511 01314 NOLLYSIH0 NOLLYININONY SENSREY ESE 4l vyl
) PITT A 2

1314 300340 T1N4

PCT/US2011/067087

12/16

WO 2013/095610

e TR , 4 h
0L1) | azoll ase11 |0z511 @134 ey o)
22 | o] T3 |y giql 091 Eest) 31 G5 L XAY N lage o] 8L | qugi | gmam | On |
ivicannys | HOMLE—or =IO BONEL o | s ™ 1ssvio) f3SRSH1 EON NOLYNEA0] iss
@ A R B A avows| ILhi Whaisiozy| 3svd 7
b ! “ A1 GcLl
= L ! QWM OOV WIN SSIODY
m = m | = | AJONIN
| | = = = m
I | ! | f I
I ! | | | !
| | l
s L s
_— = ToLT N 4 N N h
= 0LV 1 qpale - e REE A SEURYEE! Ve crll orLL m
ALYIGEAAIDISYN| | nFnata HAONIT JYZSHA iswi ™ | sSyTo |AJOIEN| X3ANI INOLLYMAdO], G5
T B viva e EIC N Qs N == S um
| F = ﬂ PTRCEDNE
| D m | | 3ZISA "0 M “00V I ON
— = T TR _ - ~
= 0L} Vozs)) atai vopl 1 wvll | el
z2uL a3l G S OB f 04INOO |88}t 8] SS300Y| QT | Tl mﬁ_ﬁ_mm
ALY | NFAES VIOV yiswi | SS10 | AJOW3N| X3ANI INOLLYN3d0] 1
C_ Poum viva oD BEI ON_ Juaisioqy| 3sve

¢l 'dO 3dAL "TdIND ‘NS - 4

m | = |
VIS1L = m Lovd "OWM “00Y AW ON S0k
001} LYIWHOZ NOILONYLSNI “ u Smmu m = “ SS30QY
ATANIMA "0 L03A QRENTD o | i AHONEN
" — i) | LON

| oiL | VT aol e il | zhll
2o aalaEel TEE 1T] 094 | ven i vazs [TR aEd) e gy | g s |

e e A QEE
ALYICIR MSYIN | NTAT TR ZeTT X3aNI INOILYY3dO .
m, ALMM viva | 4°dsSIa mj\ow 051} @731 NOILYy3do NolLwInaweny 23103 sioay) 3sva E%mi o

7414 320240 11Nd

PCT/US2011/067087

WO 2013/095610

13/16

06z} 01314 30000 TVAY 67zL 4T3l
il ONIQOONT
@714 NOILYHAdO 3SVE wj4aMd
-
A ATALALALA did| 290
95z, ¥zl TEIMM ozl piTl _
g 9 g $91L T3l HLAIM
d9d XAX NANINAL L N O A} digixX|d ININTIT YLYQ NesE
CQE Y EEENSBRER TVINO4
. G121 d¥IN 30000
9z1 914 .
7.1} Q1314 300040 TIN4 gzl ol
002} LYWHOS NOILONELSNI ATANSINS YOL03A OI4{03dS
! N AZ dIdILTINA SIHDIHM GzzlL @131 K
{0 LOV4 INFNFOV1dSIA SHL ATNO STT0H 0L ONJAOONI
1ng N+8dSIa SY 0L G343 A3 "(10=00N NIHM EE MIENE
N84SI €29}) 1314 YOLOY4 INFWIOVIdSIA VI LM 26 S12) ovbL @134
| 05zl EER vl 5021 LYIWd04
ca | 05¢) g 09T | q1a14 300040 3 | 0czh QT34 A | 300040 X %
| SWAl J1d;a)a F£= ais | z\mooim AAAAA A D] Al 8 [8] 8 o]l dl al Al alal Al w[nln]n] e [x Jul zox0
i | | N B |
(01 =Q0W NIHM Z8dSIQ) $ a s bGhL |
veol) di3id ._.zm_\/_mo,qim_o QEERE] 0Lzl X3y
891} 073l
el opzL | vzl (zwzL| 0vCl X3d ¥911 @134 HLAIM
A AR e | o3 |donj SSY10 IN3WT3 ¥1va . ,
0 3 G9 0 43 §9 I AADIEERENELE
3149 9IS 3LAS WS QOW vl 'Old

WO 2013/095610 PCT/US2011/067087

14/16
F1G. 12D CLASSFIELD ALPHAFIELD ETa FIELD 1154
' 1168~ 1152
.)
AUGMENTATION OPERATION FIELD 1150 TJUTG[BIEE
RS MOD FIELD 1242
FIELD 1152A [a |B[B|B 11 rs [41B[B B
rounp 115281 1 1 1T ™ FIELD 1152 T T
SAE FIELD 1rarifro | X 0 [s2|s1]s0
1156 v | TRANSFORM
ROUND OPERATION FIELD 1158 |52 DATA TRANSFORM
U=0 ROUND CONTROL FIELD 1154A ! FIELD 11548
MOD FIELD 1242

alglels 00 {OR{01{OR| 10
I

T T T T Fll@ée.:\
EVICTION [Eil s TsiTse 1 S8 1B oD

HINT FIELD Il Ml g
11528~ L1250 Y Neos
DATA MANIPULATION FIELD 1154C
VOD FIELD 1242
BIBIBNRL [11 BIBIBNRL
T T FIELD TT T FIELD
WRITE oo T157A | 1 1157A
MASK rirod 1 L{lof O
ROUND | VSIZE
e~) T157AT ~ 1157A2
1152C \C R R ON | VECTOR LENGTH FIELD
11598
e MERGING | FIELD1150A !
MOD FIELD 1242
00]or[01]or[10
OIN BIB[B
ZERONG —r Ly T 1TeoA
] 1

LJLIB]! SiB l‘D"F'D"“““’D“T"Dl

— N P g

- <l
VECTOR LENGTH BROADCAST FIELD 1157B

FIELD 11598

PCT/US2011/067087

WO 2013/095610

15/16

€l old

2

0y

slg #9
gLl siosIBay Nsepy Sl

0Sel 314 ¥3LSiD3Y
1V7Id LNI d3IOVd XN

SLig v9
A
()
ya |
|
|
|
a3asvIy |
|
0 “
- .
S1id 08
(d428)
Syel

FTid J3LSIDTH HWIVLS d4 ¥vTvOS

Geel sielsiboy asodind jelsuss

eyawiz
Siig 962
> Y
ﬁwtm 8¢l
Shwwx ShuawiA
Owiux OWwIwA Swiwiz
(.)
siigdcLg
0Lg} sis)sibay Jojoop
SLig 9 X 9l

00€1 FHINLOILIHOYY H3LSI93Y

PCT/US2011/067087

WO 2013/095610

16/16

veorl
dHOVO Viva i1

¥

d¢crl vaerl
1HIANOD THIANOD
SIEFANN OId3NNN
A
(424"
SHILSIOIY
4OLO3A
A
Y. v ¥ /
ocrl eyl
ANZZINMS 1343y
I ¥ v i
gerl

NV JYOLO3AN IAIM-91

A

9crl

SHIALSIOTY MSYIN ILIEM

gl "old

corl
AHOMLAN ONIY
4

i

orl
IHOVO
¢14HL 40 1389NS V00T

4

v

90v1
IHOVO L1

[
¥

424" [434"
SY3LSIOIH SHILSIOIY
=[OXROE) dYIVOS

A A

2 T B

olyl 80¥L
LINN 1INN
JOL33A dYIvOS

A A

¥

oovi
33003A NOILONYLSNI

Wyl "9l

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US201 1/067087

A. CLASSIFICATION OF SUBJECT MATTER

GO6F 9/30(2006.01)i, GO6F 9/305(2006. 01)i

According to International Patent Classification (IPC) or to both nationa classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by
GO6F 9/30; GO6F 5/01; GO6F 9/315; GO6F 9/00

classification symbols)

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

eKOMPASS(KIPO internal) & Keywords: shuffle, mask bit, register

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2004-0054877 Al (WLLIAM w. MACY et al.) 18 March 2004 1-22
See the abstract, paras .[0101]-[0103] , and claim 1.
A US 7739319 B2 (MACY, JR WLLIAM W. et al.) 15 June 2010 1-22
See the abstract, col. 31 lines 44-67, col. 32 lines 1-9, fig. 16,
and clains 1, 28.
A US 7155601 B2 (SIRINIVAS CHENNUPATY) 26 Decenber 2006 1-22
See the abstract, col. 4 lines 53-67, col.5 lines 1-9, figs.3A 3B, 3C
and claim 1.
A US 2011-0029759 Al (MACY, JR WLLIAM W. et al.) 03 February 2011 1-22
See the abstract, figs. 9, 11, and claim 1.

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

*

Special categories of cited documents:

"A" document defining the general state of the art which isnot considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
citedto establish the publication date of citation or other
special reason (as specified)

"O" document referringto an oral disclosure, use, exhibition or other
means

"P" document published prior tothe international filing date but later

than the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the application but citedto understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be consideredtoinvolvean inventive
step when the document istaken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obviousto aperson skilled inthe art

document member of the same patent family

Date of the actual completion of the international search

28 AUGUST 2012 (28.08.2012)

Date of mailing of the international search report

29 AUGUST 2012 (29.08.2012)

Name and mailing address of the ISA/KR

' Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan
City: 30270 1. Repubjic 0f k oreq

|

F

acsimile No. 82-42-472-7140

Authorized officer

Park Ji Eun

Telephone No. 82-42-481-5696

Form PCT/ISA/210 (second sheet) (My 2009)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/US20 11/067087

Patent document Publication Patent family Publication

cited in search report date member(s) date

uUs 2004-0054877 A1 18 .03.2004 AU 1996-695 11 B2 23. 03,2000
AU 2003-30 1718 Al 25. 05,2004
CA 2230108 A1l 06. 03, 1997
CA 2230108 C 12. 12,2000
cN 100338570 co 19. 09,2007
cN 100461093 co 11.02.2009
cN 100492278 C 27. 05,2009
cN 101620525 A 06. 01,2010
cN 1107905 C 07. 05,2003
CN 1200821 A 02. 12,1998
CN 1200821 co 02. 12,1998
cN 1506807 A 23. 06,2004
CN 1522401 A 18. 08,2004
CN 1522401 co 09. 08,2006
cN 1801082 A 12. 07,2006
CN 1813241 A 02. 08,2006
CN 1813241 co 02. 08,2006
EP 0847552 A1l 30. 01,2002
EP 0847552 B1 30. 10.2002
EP 1639452 A2 29. 03,2006
EP 1639452 B1 09. 09,2009
JP 03-750820 B2 01.03,2006
JP 04-064989 B2 19. 03,2008
JP 04-607105 B2 15. 10,2010
JP 04-623963 B2 12. 11,2010
JP 04-750157 B2 27.05,2011
JP 11-51 1577 A 05. 10,1999
JP 2005-508043 A 24. 03,2005
JP 2006-107463 A 20. 04,2006
JP 2007-526536 A 13.09,2007
JP 2009-009587 A 15. 01,2009
JP 2010-282649 A 16. 12,2010
JP 201 1-138541 A 14. 07,201 1
JP 4750157 B2 17.08,201 1
KR 10-0329339 B1 06. 07,2002
KR 10-0602532 B1 19. 07,2006
KR 10-0831472 B1 22. 05,2008
us 05721892A A 24. 02,1998
us 05859997A A 12.01, 1999
us 05983256A A 09. 11,1999
us 060353 16A A 07. 03,2000
us 2002-0059355 A1l 16. 05,2002
us 2003-0050941 A1l 13.03,2003
us 2003-0084082 A1l 01.05,2003
us 2003-0123748 A1l 03. 07,2003
us 2003-013 1030 A1l 10. 07,2003
us 2004-0054878 A1l 18. 03,2004
us 2004-0054879 A1l 18. 03,2004
us 2004-0059889 A1l 25. 03,2004

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US20 11/067087
Patent document Publication Patent family Publication
cited in search report date member(s) date

us 2004-0073589 A1l 15. 04. 2004
us 2004-0078404 A1l 22.04. 2004
us 2004-0098556 A1l 20. 05.2004
us 2004-01 17422 Al 17.06.2004
us 2004-01336 17 Al 08. 07.2004
us 2004-0139 138 Al 15.07.2004
us 2004-02 10616 Al 21.10.2004
us 2004-0220992 A1l 04. 11.2004
us 2005-01083 12 Af 19. 05.2005
us 2009-0265409 A1l 22. 10.2009
us 2009-0265523 A1l 22. 10.2009
us 2010-00 11042 Al 14.01.2010
us 201 1-0029759 A1l 03.02.201 1
us 201 1-0035426 Al 10.02.201 1
us 6385634 Bl 07. 05.2002
us 6418529 B1 09. 07.2002
us 6961845 B2 01.11.2005
us 7085795 B2 01.08.2006
us 7272622 B2 18.09.2007
us 7340495 B2 04. 03.2008
us 7392275 B2 24. 06.2008
us 7395298 B2 01.07.2008
us 7395302 B2 01.07.2008
us 7424505 B2 09. 09.2008
us 7430578 B2 30. 09.2008
us 7509367 B2 24.03.2009
us 7624138 B2 24. 11.2009
us 7631025 B2 08. 12.2009
us 7685212 B2 23.03.2010
us 7725521 B2 25. 05.2010
us 7739319 B2 15.06.2010
us 7818356 B2 19. 10.2010
us 8185571 B2 22.05.2012
us 8214626 B2 03. 07.2012
us 8225075 B2 17.07.2012
Wo 03-03860 1 Al 08. 05.2003
Wo 2004-040439 A2 13.05.2004
wo 2004-040439 A3 13.05.2004
wo 2005-006 183 A2 20. 01.2005
wo 2005-006 183 A3 20. 01.2005
wo 97-08610 Al 06. 03. 1997
us 7739319 B2 15.06.2010 AU 1996-695 11 B2 23. 03.2000
AU 2003-30 1718 Al 25. 05.2004
cA 2230108 A1 06. 03. 1997
cA 2230108 C 12. 12.2000
cN 100338570 co 19. 09.2007
cN 100461093 co 11.02.2009
cN 100492278 C 27.05.2009
cN 101620525 A 06.01.2010

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US20 11/067087
Patent document Publication Patent family Publication
cited in search report date member(s) date

cN 1107905 C 07. 05,2003
CN 1200821 A 02. 12, 1998
CN 1200821 co 02. 12,1998
cN 1506807 A 23. 06,2004
CN 1522401 A 18. 08,2004
CN 1522401 co 09. 08,2006
CN 1801082 A 12. 07,2006
CN 1813241 A 02. 08,2006
CN 1813241 co 02. 08,2006
EP 0847552 A1l 30. 01,2002
EP 0847552 B1 30. 10,2002
EP 1639452 A2 29. 03,2006
EP 1639452 B1 09. 09,2009
JP 03-750820 B2 01.03,2006
JP 04-064989 B2 19. 03,2008
JP 04-607105 B2 15. 10,2010
JP 04-623963 B2 12. 11.2010
JP 04-750157 B2 27.05,2011
JP 11-51 1577 A 05. 10,1999
JP 2005-508043 A 24. 03,2005
JP 2006-107463 A 20. 04,,2006
JP 2007-526536 A 13.09,2007
JP 2009-009587 A 15. 01,2009
JP 2010-282649 A 16. 12,2010
JP 201 1-138541 A 14.07.201 1
JP 4750157 B2 17.08,201 1
KR 10-0329339 B1 06. 07,2002
KR 10-0602532 B1 19. 07,2006
KR 10-0831472 B1 22. 05,2008
us 05721892A A 24. 02, 1998
Us 05859997A A 12.01, 1999
Us 05983256A A 09. 11, 1999
Us 060353 16A A 07. 03,2000
us 2002-0059355 A1l 16. 05,2002
Us 2003-0050941 A1 13.03,2003
us 2003-0084082 A1l 01.05,2003
us 2003-0123748 A1l 03. 07,2003
us 2003-013 1030 Al 10. 07,2003
us 2004-0054877 Al 18. 03,2004
us 2004-0054878 A1l 18. 03,2004
us 2004-0054879 A1l 18. 03,2004
us 2004-0059889 A1l 25. 03,2004
us 2004-0073589 A1l 15. 04,2004
us 2004-0078404 A1l 22. 04,,2004
us 2004-0098556 A1l 20. 05,2004
us 2004-01 17422 Al 17. 06,2004
us 2004-01336 17 Al 08. 07,2004
us 2004-0139 138 Al 15. 07,2004
us 2004-02 10616 Al 21.10,2004
us 2004-0220992 A1l 04. 11,2004

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT /US2011/067087

Patent document Publication Patent family Publication
cited in search report date member(s) date
Us 2005-01083 12 Al 19,05, 2005
Us 2009-0265409 A1l 22.10.2009
us 2009-0265523 A1l 22, 10,2009
us 2010-00 11042 Al 14,01, 2010
us 201 1-0029759 A1l 03.02,2011
us 201 1-0035426 Al 10,02,201 1
us 6385634 B1 07.05. 2002
us 6418529 B1 09, 07,2002
us 6961845 B2 01, 11,2005
us 7085795 B2 01,08, 2006
us 7272622 B2 18,09, 2007
us 7340495 B2 04.03.2008
us 7392275 B2 24,06, 2008
us 7395298 B2 01,07,2008
us 7395302 B2 01,07,2008
us 7424505 B2 09,09, 2008
us 7430578 B2 30. 09,2008
us 7509367 B2 24,03, 2009
us 7624138 B2 24, 11,2009
us 7631025 B2 08. 12,2009
us 7685212 B2 23.03.2010
us 7725521 B2 25,05, 2010
us 7818356 B2 19, 10,2010
us 8185571 B2 22.05,2012
us 8214626 B2 03.07.2012
us 8225075 B2 17.07.2012
Wo 03-03860 1 A1 08. 05, 2003
Wo 2004-040439 A2 13,05, 2004
wo 2004-040439 A3 13,05, 2004
wo 2005-006 183 A2 20,01, 2005
wo 2005-006 183 A3 20.01, 2005
wo 97-08610 A1l 06, 03, 1997
Us 7155601 B2 26. 12 .2006 us 2002-1 12147 Al 15,08, 2002
Us 201 1-0029759 a1 03.02.2011 AU 1996-695 11 B2 23.03. 2000
AU 2003-30 1718 Al 25,05, 2004
CA 2230108 Al 06,03, 1997
cA 2230108 C 12, 12,2000
cN 100338570 co 19,09, 2007
cN 100461093 co 11, 02,2009
cN 100492278 C 27.05, 2009
cN 101620525 A 06.01.2010
cN 1107905 C 07.05, 2003
cN 1200821 A 02, 12, 1998
cN 1200821 co 02, 12, 1998
cN 1506807 A 23.06. 2004
cN 1522401 A 18,08, 2004
cN 1522401 co 09, 08, 2006
cN 1801082 A 12, 07,2006

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US20 11/067087
Patent document Publication Patent family Publication
cited in search report date member(s) date

CN 1813241 A 02. 08,2006
CN 1813241 co 02. 08,2006
EP 0847552 A1l 30.01,2002
EP 0847552 Bl 30. 10,2002
EP 1639452 A2 29. 03,2006
EP 1639452 B1 09. 09,2009
JP 03-750820 B2 01.03, 2006
JP 04-064989 B2 19. 03,2008
JP 04-607105 B2 15. 10,2010
JP 04-623963 B2 12. 11,2010
JP 04-750157 B2 27.05,2011
JP 11-51 1577 A 05. 10, 1999
JP 2005-508043 A 24. 03,2005
JP 2006-107463 A 20. 04,,2006
JP 2007-526536 A 13.09,2007
JP 2009-009587 A 15. 01,2009
JP 2010-282649 A 16. 12,2010
JP 201 1-138541 A 14.07,201 1
JP 4750157 B2 17.08,201 1
KR 10-0329339 B1 06. 07,2002
KR 10-0602532 B1 19. 07,2006
KR 10-0831472 B1 22. 05,2008
Us 05721892A A 24. 02,1998
Us 05859997A A 12.01, 1999
Us 05983256A A 09. 11. 1999
Us 060353 16A A 07. 03,2000
us 2002-0059355 A1l 16. 05,2002
us 2003-0050941 A1l 13.03,2003
us 2003-0084082 A1l 01.05,2003
us 2003-0123748 A1l 03. 07,2003
us 2003-013 1030 A1l 10. 07,2003
us 2004-0054877 A1l 18. 03,2004
us 2004-0054878 A1l 18. 03,2004
us 2004-0054879 A1l 18. 03,2004
us 2004-0059889 A1 25. 03,2004
us 2004-0073589 A1l 15. 04,,2004
us 2004-0078404 A1l 22. 04,,2004
us 2004-0098556 A1l 20. 05,2004
us 2004-01 17422 Al 17. 06,2004
us 2004-01336 17 Al 08. 07,2004
us 2004-0139 138 Al 15. 07,2004
us 2004-02 10616 Al 21.10,2004
us 2004-0220992 A1l 04. 11,2004
us 2005-01083 12 Al 19. 05,2005
us 2009-0265409 A1l 22. 10,2009
us 2009-0265523 A1l 22. 10,2009
us 2010-00 11042 A1l 14.01,2010
us 201 1-0035426 A1l 10.02,201 1
us 6385634 Bl 07. 05,2002
us 6418529 B1 09. 07,2002

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/US20 11/067087

Patent document Publication Patent family Publication
cited in search report date member(s) date
Us 6961845 B2 01.11,2005
us 7085795 B2 01.08,2006
us 7272622 B2 18. 09,2007
us 7340495 B2 04. 03,2008
us 7392275 B2 24. 06,2008
us 7395298 B2 01.07,2008
us 7395302 B2 01.07,.2008
us 7424505 B2 09. 09,2008
us 7430578 B2 30. 09,2008
us 7509367 B2 24. 03,2009
us 7624138 B2 24. 11,2009
us 7631025 B2 08. 12,2009
us 7685212 B2 23. 03,2010
us 7725521 B2 25. 05,2010
us 7739319 B2 15. 06,2010
us 7818356 B2 19. 10,2010
us 8185571 B2 22. 05,2012
us 8214626 B2 03. 07,2012
us 8225075 B2 17. 07,2012
Wo 03-03860 1 Al 08. 05,2003
Wo 2004-040439 A2 13.05,2004
wo 2004-040439 A3 13.05,2004
wo 2005-006 183 A2 20. 01,2005
wo 2005-006 183 A3 20. 01,2005
wo 97-08610 A1l 06. 03, 1997

Form PCT/ISA/210 (patent family annex) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

