
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/095610 Al
27 June 2013 (27.06.2013) W P O P C T

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 9/30 (2006.01) G06F 9/305 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

PCT/US201 1/067087 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

23 December 201 1 (23. 12.201 1) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College (84) Designated States (unless otherwise indicated, for every

Boulevard, MS: RNB-4-150, Sunnyvale, California 95052 kind of regional protection available): ARIPO (BW, GH,

(US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,

(72) Inventors; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(75) Inventors/Applicants (for US only): VALENTINE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

Robert [US/IL]; Rechov Hadganiot 33-5, 36054 Kiryat LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Tivon (IL). OULD-AHMED-VALL, Elmoustapha SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
[MR/US]; 5000 West Chandler Boulevard, MS: CH7-401, GW, ML, MR, NE, SN, TD, TG).
Chandler, Arizona 85226 (US). CORBAL, Jesus [ES/ES];
Jordi Girona 1-3 Intel Labs, E-08034 Barcelona (ES). Declarations under Rule 4.17 :

ULIEL, Tal [IL/IL]; Imber 6/5, 64362 Tel Aviv (IL). — of inventorship (Rule 4.17(ivf)
TOLL, Bret L. [US/US]; 2868 NE Lorie Dr., Hillsboro,
Oregon 97 124 (US). Published:

— with international search report (Art. 21(3))
(74) Agents: WEBSTER, Thomas C. et al; BLAKELY,

SOKOLOFF, TAYLOR & ZAFMAN LLP, 1279 Oakmead
Parkway, Sunnyvale, California 94085 (US).

(54) Title: APPARATUS AND METHOD FOR SHUFFLING FLOATING POINT OR INTEGER VALUES

©

© (57) Abstract: An apparatus and method are described for shuffling data elements from source registers to a destination register. For
example, a method according to one embodiment includes the following operations: reading each mask bit stored in a mask data
structure, the mask data structure containing mask bits associated with data elements of a destination register, the values usable for

o determining whether a masking operation or a shuffle operation should be performed on data elements stored within a first source re -
gister and a second source register; for each data element of the destination register, if a mask bit associated with the data element in

o dicates that a shuffle operation should be performed, then shuffling data elements from the first source register and the second source
register to the specified data element within the destination register; and if the mask bit indicates that a masking operation should be
performed, then performing a specified masking operation with respect to the data element of the destination register.

APPARATUS AND METHOD FOR SHUFFLING FLOATING POINT OR INTEGER VALUES

Field of the Invention

Embodiments of the invention relate generally to the field of computer systems. More

particularly, the embodiments of the invention relate to an apparatus and method for shuffling

floating point or integer values within a computer processor.

Background

General Background

An instruction set, or instruction set architecture (ISA), is the part of the computer

architecture related to programming, and may include the native data types, instructions, register

architecture, addressing modes, memory architecture, interrupt and exception handling, and

external input and output (I/O). The term instruction generally refers herein to macro-

instructions - that is instructions that are provided to the processor (or instruction converter that

translates (e.g., using static binary translation, dynamic binary translation including dynamic

compilation), morphs, emulates, or otherwise converts an instruction to one or more other

instructions to be processed by the processor) for execution - as opposed to micro-instructions or

micro-operations (micro-ops) - that is the result of a processor's decoder decoding macro-

instructions.

The ISA is distinguished from the microarchitecture, which is the internal design of the

processor implementing the instruction set. Processors with different microarchitectures can

share a common instruction set. For example, Intel® Pentium 4 processors, Intel® Core™

processors, and processors from Advanced Micro Devices, Inc. of Sunnyvale CA implement

nearly identical versions of the x86 instruction set (with some extensions that have been added

with newer versions), but have different internal designs. For example, the same register

architecture of the ISA may be implemented in different ways in different microarchitectures

using well-known techniques, including dedicated physical registers, one or more dynamically

allocated physical registers using a register renaming mechanism (e.g., the use of a Register

Alias Table (RAT), a Reorder Buffer (ROB), and a retirement register file; the use of multiple

maps and a pool of registers), etc. Unless otherwise specified, the phrases register architecture,

register file, and register are used herein to refer to that which is visible to the

software/programmer and the manner in which instructions specify registers. Where a

specificity is desired, the adjective logical, architectural, or software visible will be used to

indicate registers/files in the register architecture, while different adjectives will be used to

designation registers in a given microarchitecture (e.g., physical register, reorder buffer,

retirement register, register pool).

An instruction set includes one or more instruction formats. A given instruction format

defines various fields (number of bits, location of bits) to specify, among other things, the

operation to be performed (opcode) and the operand(s) on which that operation is to be

performed. Some instruction formats are further broken down though the definition of

instruction templates (or subformats). For example, the instruction templates of a given

instruction format may be defined to have different subsets of the instruction format's fields (the

included fields are typically in the same order, but at least some have different bit positions

because there are less fields included) and/or defined to have a given field interpreted differently.

Thus, each instruction of an ISA is expressed using a given instruction format (and, if defined, in

a given one of the instruction templates of that instruction format) and includes fields for

specifying the operation and the operands. For example, an exemplary ADD instruction has a

specific opcode and an instruction format that includes an opcode field to specify that opcode

and operand fields to select operands (source1/destination and source2); and an occurrence of

this ADD instruction in an instruction stream will have specific contents in the operand fields

that select specific operands.

Scientific, financial, auto-vectorized general purpose, RMS (recognition, mining, and

synthesis), and visual and multimedia applications (e.g., 2D/3D graphics, image processing,

video compression/decompression, voice recognition algorithms and audio manipulation) often

require the same operation to be performed on a large number of data items (referred to as "data

parallelism"). Single Instruction Multiple Data (SIMD) refers to a type of instruction that causes

a processor to perform an operation on multiple data items. SIMD technology is especially

suited to processors that can logically divide the bits in a register into a number of fixed-sized

data elements, each of which represents a separate value. For example, the bits in a 256-bit

register may be specified as a source operand to be operated on as four separate 64-bit packed

data elements (quad-word (Q) size data elements), eight separate 32-bit packed data elements

(double word (D) size data elements), sixteen separate 16-bit packed data elements (word (W)

size data elements), or thirty-two separate 8-bit data elements (byte (B) size data elements). This

type of data is referred to as packed data type or vector data type, and operands of this data type

are referred to as packed data operands or vector operands. In other words, a packed data item or

vector refers to a sequence of packed data elements, and a packed data operand or a vector

operand is a source or destination operand of a SIMD instruction (also known as a packed data

instruction or a vector instruction).

By way of example, one type of SIMD instruction specifies a single vector operation to

be performed on two source vector operands in a vertical fashion to generate a destination vector

operand (also referred to as a result vector operand) of the same size, with the same number of

data elements, and in the same data element order. The data elements in the source vector

operands are referred to as source data elements, while the data elements in the destination

vector operand are referred to a destination or result data elements. These source vector

operands are of the same size and contain data elements of the same width, and thus they contain

the same number of data elements. The source data elements in the same bit positions in the two

source vector operands form pairs of data elements (also referred to as corresponding data

elements; that is, the data element in data element position 0 of each source operand correspond,

the data element in data element position 1 of each source operand correspond, and so on). The

operation specified by that SIMD instruction is performed separately on each of these pairs of

source data elements to generate a matching number of result data elements, and thus each pair

of source data elements has a corresponding result data element. Since the operation is vertical

and since the result vector operand is the same size, has the same number of data elements, and

the result data elements are stored in the same data element order as the source vector operands,

the result data elements are in the same bit positions of the result vector operand as their

corresponding pair of source data elements in the source vector operands. In addition to this

exemplary type of SIMD instruction, there are a variety of other types of SIMD instructions

(e.g., that has only one or has more than two source vector operands, that operate in a horizontal

fashion, that generates a result vector operand that is of a different size, that has a different size

data elements, and/or that has a different data element order). It should be understood that the

term destination vector operand (or destination operand) is defined as the direct result of

performing the operation specified by an instruction, including the storage of that destination

operand at a location (be it a register or at a memory address specified by that instruction) so that

it may be accessed as a source operand by another instruction (by specification of that same

location by the another instruction).

The SIMD technology, such as that employed by the Intel® Core™ processors having an

instruction set including x86, MMX™, Streaming SIMD Extensions (SSE), SSE2, SSE3,

SSE4.1, and SSE4.2 instructions, has enabled a significant improvement in application

performance. An additional set of SIMD extensions, referred to the Advanced Vector

Extensions (AVX) (AVX1 and AVX2) and using the Vector Extensions (VEX) coding scheme,

has been , has been released and/or published (e.g., see Intel® 64 and IA-32 Architectures

Software Developers Manual, October 2011; and see Intel® Advanced Vector Extensions

Programming Reference, June 201 1).

Background Related to the Embodiments of the Invention

Shuffle instructions are used in current processor architectures to select data elements

from two or more source registers and copy those data elements to different data element

positions within a destination register. Current shuffle instructions, however, have not been

implemented for use with conditional masking functionality as described herein and have not

been implemented at a 256-bit ganularity as described herein.

Brief Description of the Drawings

FIG. 1A is a block diagram illustrating both an exemplary in-order pipeline and an

exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of

the invention;

FIG. IB is a block diagram illustrating both an exemplary embodiment of an in-order

architecture core and an exemplary register renaming, out-of-order issue/execution architecture

core to be included in a processor according to embodiments of the invention;

FIG. 2 is a block diagram of a single core processor and a multicore processor with

integrated memory controller and graphics according to embodiments of the invention;

FIG. 3 illustrates a block diagram of a system in accordance with one embodiment of the

present invention;

FIG. 4 illustrates a block diagram of a second system in accordance with an embodiment

of the present invention;

FIG. 5 illustrates a block diagram of a third system in accordance with an embodiment of

the present invention;

FIG. 6 illustrates a block diagram of a system on a chip (SoC) in accordance with an

embodiment of the present invention;

FIG. 7 illustrates a block diagram contrasting the use of a software instruction converter

to convert binary instructions in a source instruction set to binary instructions in a target

instruction set according to embodiments of the invention;

FIG. 8 illustrates an apparatus for performing a shuffle operation according to one

embodiment of the invention.

FIG. 9 illustrates an apparatus for performing a shuffle operation according to another

embodiment of the invention.

FIG. 10 illustrates a method for performing a shuffle operation according to

embodiments of the invention.

FIGS. 11A and 11B are block diagrams illustrating a generic vector friendly instruction

format and instruction templates thereof according to embodiments of the invention;

FIG. 12A-D are block diagrams illustrating an exemplary specific vector friendly

instruction format according to embodiments of the invention; and

FIG. 13 is a block diagram of a register architecture according to one embodiment of the

invention;

FIG. 14A is a block diagram of a single processor core, along with its connection to the

on-die interconnect network and with its local subset of the Level 2 (L2) cache, according to

embodiments of the invention; and

FIG. 14B is an expanded view of part of the processor core in Figure 14A according to

embodiments of the invention.

Detailed Description

Exemplary Processor Architectures and Data Types

Figure 1A is a block diagram illustrating both an exemplary in-order pipeline and

an exemplary register renaming, out-of-order issue/execution pipeline according to embodiments

of the invention. Figure IB is a block diagram illustrating both an exemplary embodiment of an

in-order architecture core and an exemplary register renaming, out-of-order issue/execution

architecture core to be included in a processor according to embodiments of the invention. The

solid lined boxes in Figures 1A-B illustrate the in-order pipeline and in-order core, while the

optional addition of the dashed lined boxes illustrates the register renaming, out-of-order

issue/execution pipeline and core. Given that the in-order aspect is a subset of the out-of-order

aspect, the out-of-order aspect will be described.

In Figure 1A, a processor pipeline 100 includes a fetch stage 102, a length decode stage

104, a decode stage 106, an allocation stage 108, a renaming stage 110, a scheduling (also

known as a dispatch or issue) stage 112, a register read/memory read stage 114, an execute stage

116, a write back/memory write stage 118, an exception handling stage 122, and a commit stage

124.

Figure IB shows processor core 190 including a front end unit 130 coupled to an

execution engine unit 150, and both are coupled to a memory unit 170. The core 190 may be a

reduced instruction set computing (RISC) core, a complex instruction set computing (CISC)

core, a very long instruction word (VLIW) core, or a hybrid or alternative core type. As yet

another option, the core 190 may be a special-purpose core, such as, for example, a network or

communication core, compression engine, coprocessor core, general purpose computing graphics

processing unit (GPGPU) core, graphics core, or the like.

The front end unit 130 includes a branch prediction unit 132 coupled to an instruction

cache unit 134, which is coupled to an instruction translation lookaside buffer (TLB) 136, which

is coupled to an instruction fetch unit 138, which is coupled to a decode unit 140. The decode

unit 140 (or decoder) may decode instructions, and generate as an output one or more micro-

operations, micro-code entry points, microinstructions, other instructions, or other control

signals, which are decoded from, or which otherwise reflect, or are derived from, the original

instructions. The decode unit 140 may be implemented using various different mechanisms.

Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware

implementations, programmable logic arrays (PLAs), microcode read only memories (ROMs),

etc. In one embodiment, the core 190 includes a microcode ROM or other medium that stores

microcode for certain macroinstructions (e.g., in decode unit 140 or otherwise within the front

end unit 130). The decode unit 140 is coupled to a rename/allocator unit 152 in the execution

engine unit 150.

The execution engine unit 150 includes the rename/allocator unit 152 coupled to a

retirement unit 154 and a set of one or more scheduler unit(s) 156. The scheduler unit(s) 156

represents any number of different schedulers, including reservations stations, central instruction

window, etc. The scheduler unit(s) 156 is coupled to the physical register file(s) unit(s) 158.

Each of the physical register file(s) units 158 represents one or more physical register files,

different ones of which store one or more different data types, such as scalar integer, scalar

floating point, packed integer, packed floating point, vector integer, vector floating point,, status

(e.g., an instruction pointer that is the address of the next instruction to be executed), etc. In one

embodiment, the physical register file(s) unit 158 comprises a vector registers unit, a write mask

registers unit, and a scalar registers unit. These register units may provide architectural vector

registers, vector mask registers, and general purpose registers. The physical register file(s)

unit(s) 158 is overlapped by the retirement unit 154 to illustrate various ways in which register

renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s) and a

retirement register file(s); using a future file(s), a history buffer(s), and a retirement register

file(s); using a register maps and a pool of registers; etc.). The retirement unit 154 and the

physical register file(s) unit(s) 158 are coupled to the execution cluster(s) 160. The execution

cluster(s) 160 includes a set of one or more execution units 162 and a set of one or more memory

access units 164. The execution units 162 may perform various operations (e.g., shifts, addition,

subtraction, multiplication) and on various types of data (e.g., scalar floating point, packed

integer, packed floating point, vector integer, vector floating point). While some embodiments

may include a number of execution units dedicated to specific functions or sets of functions,

other embodiments may include only one execution unit or multiple execution units that all

perform all functions. The scheduler unit(s) 156, physical register file(s) unit(s) 158, and

execution cluster(s) 160 are shown as being possibly plural because certain embodiments create

separate pipelines for certain types of data/operations (e.g., a scalar integer pipeline, a scalar

floating point/packed integer/packed floating point/vector integer/vector floating point pipeline,

and/or a memory access pipeline that each have their own scheduler unit, physical register file(s)

unit, and/or execution cluster - and in the case of a separate memory access pipeline, certain

embodiments are implemented in which only the execution cluster of this pipeline has the

memory access unit(s) 164). It should also be understood that where separate pipelines are used,

one or more of these pipelines may be out-of-order issue/execution and the rest in-order.

The set of memory access units 164 is coupled to the memory unit 170, which includes a

data TLB unit 172 coupled to a data cache unit 174 coupled to a level 2 (L2) cache unit 176. In

one exemplary embodiment, the memory access units 164 may include a load unit, a store

address unit, and a store data unit, each of which is coupled to the data TLB unit 172 in the

memory unit 170. The instruction cache unit 134 is further coupled to a level 2 (L2) cache unit

176 in the memory unit 170. The L2 cache unit 176 is coupled to one or more other levels of

cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-of-order issue/execution core

architecture may implement the pipeline 100 as follows: 1) the instruction fetch 138 performs

the fetch and length decoding stages 102 and 104; 2) the decode unit 140 performs the decode

stage 106; 3) the rename/allocator unit 152 performs the allocation stage 108 and renaming stage

110; 4) the scheduler unit(s) 156 performs the schedule stage 112; 5) the physical register file(s)

unit(s) 158 and the memory unit 170 perform the register read/memory read stage 114; the

execution cluster 160 perform the execute stage 116; 6) the memory unit 170 and the physical

register file(s) unit(s) 158 perform the write back/memory write stage 118; 7) various units may

be involved in the exception handling stage 122; and 8) the retirement unit 154 and the physical

register file(s) unit(s) 158 perform the commit stage 124.

The core 190 may support one or more instructions sets (e.g., the x86 instruction set

(with some extensions that have been added with newer versions); the MIPS instruction set of

MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional

extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)

described herein. In one embodiment, the core 190 includes logic to support a packed data

instruction set extension (e.g., AVX1, AVX2, and/or some form of the generic vector friendly

instruction format (U=0 and/or U=l), described below), thereby allowing the operations used by

many multimedia applications to be performed using packed data.

It should be understood that the core may support multithreading (executing two or more

parallel sets of operations or threads), and may do so in a variety of ways including time sliced

multithreading, simultaneous multithreading (where a single physical core provides a logical

core for each of the threads that physical core is simultaneously multithreading), or a

combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading

thereafter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of out-of-order execution, it should be

understood that register renaming may be used in an in-order architecture. While the illustrated

embodiment of the processor also includes separate instruction and data cache units 134/174 and

a shared L2 cache unit 176, alternative embodiments may have a single internal cache for both

instructions and data, such as, for example, a Level 1 (LI) internal cache, or multiple levels of

internal cache. In some embodiments, the system may include a combination of an internal cache

and an external cache that is external to the core and/or the processor. Alternatively, all of the

cache may be external to the core and/or the processor.

Figure 2 is a block diagram of a processor 200 that may have more than one core, may

have an integrated memory controller, and may have integrated graphics according to

embodiments of the invention. The solid lined boxes in Figure 2 illustrate a processor 200 with a

single core 202A, a system agent 210, a set of one or more bus controller units 216, while the

optional addition of the dashed lined boxes illustrates an alternative processor 200 with multiple

cores 202A-N, a set of one or more integrated memory controller unit(s) 214 in the system agent

unit 210, and special purpose logic 208.

Thus, different implementations of the processor 200 may include: 1) a CPU with the

special purpose logic 208 being integrated graphics and or scientific (throughput) logic (which

may include one or more cores), and the cores 202A-N being one or more general purpose cores

(e.g., general purpose in-order cores, general purpose out-of-order cores, a combination of the

two); 2) a coprocessor with the cores 202A-N being a large number of special purpose cores

intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the

cores 202A-N being a large number of general purpose in-order cores. Thus, the processor 200

may be a general-purpose processor, coprocessor or special-purpose processor, such as, for

example, a network or communication processor, compression engine, graphics processor,

GPGPU (general purpose graphics processing unit), a high-throughput many integrated core

(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor

may be implemented on one or more chips. The processor 200 may be a part of and/or may be

implemented on one or more substrates using any of a number of process technologies, such as,

for example, BiCMOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of cache within the cores, a set or one

or more shared cache units 206, and external memory (not shown) coupled to the set of

integrated memory controller units 214. The set of shared cache units 206 may include one or

more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, a

last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based

interconnect unit 212 interconnects the integrated graphics logic 208, the set of shared cache

units 206, and the system agent unit 210/integrated memory controller unit(s) 214, alternative

embodiments may use any number of well-known techniques for interconnecting such units. In

one embodiment, coherency is maintained between one or more cache units 206 and cores 202-

A-N.

In some embodiments, one or more of the cores 202A-N are capable of multi-threading.

The system agent 210 includes those components coordinating and operating cores 202A-N. The

system agent unit 210 may include for example a power control unit (PCU) and a display unit.

The PCU may be or include logic and components needed for regulating the power state of the

cores 202A-N and the integrated graphics logic 208. The display unit is for driving one or more

externally connected displays.

The cores 202A-N may be homogenous or heterogeneous in terms of architecture

instruction set; that is, two or more of the cores 202A-N may be capable of execution the same

instruction set, while others may be capable of executing only a subset of that instruction set or a

different instruction set.

Figures 3-6 are block diagrams of exemplary computer architectures. Other system

designs and configurations known in the arts for laptops, desktops, handheld PCs, personal

digital assistants, engineering workstations, servers, network devices, network hubs, switches,

embedded processors, digital signal processors (DSPs), graphics devices, video game devices,

set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and

various other electronic devices, are also suitable. In general, a huge variety of systems or

electronic devices capable of incorporating a processor and/or other execution logic as disclosed

herein are generally suitable.

Referring now to Figure 3, shown is a block diagram of a system 300 in accordance with

one embodiment of the present invention. The system 300 may include one or more processors

310, 315, which are coupled to a controller hub 320. In one embodiment the controller hub 320

includes a graphics memory controller hub (GMCH) 390 and an Input/Output Hub (IOH) 350

(which may be on separate chips); the GMCH 390 includes memory and graphics controllers to

which are coupled memory 340 and a coprocessor 345; the IOH 350 is couples input/output (I/O)

devices 360 to the GMCH 390. Alternatively, one or both of the memory and graphics

controllers are integrated within the processor (as described herein), the memory 340 and the

coprocessor 345 are coupled directly to the processor 310, and the controller hub 320 in a single

chip with the IOH 350.

The optional nature of additional processors 315 is denoted in Figure 3 with broken lines.

Each processor 310, 315 may include one or more of the processing cores described herein and

may be some version of the processor 200.

The memory 340 may be, for example, dynamic random access memory (DRAM), phase

change memory (PCM), or a combination of the two. For at least one embodiment, the

controller hub 320 communicates with the processor(s) 310, 315 via a multi-drop bus, such as a

frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or similar

connection 395.

In one embodiment, the coprocessor 345 is a special-purpose processor, such as, for

example, a high-throughput MIC processor, a network or communication processor, compression

engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,

controller hub 320 may include an integrated graphics accelerator.

There can be a variety of differences between the physical resources 310, 315 in terms of

a spectrum of metrics of merit including architectural, microarchitectural, thermal, power

consumption characteristics, and the like.

In one embodiment, the processor 310 executes instructions that control data processing

operations of a general type. Embedded within the instructions may be coprocessor instructions.

The processor 310 recognizes these coprocessor instructions as being of a type that should be

executed by the attached coprocessor 345. Accordingly, the processor 310 issues these

coprocessor instructions (or control signals representing coprocessor instructions) on a

coprocessor bus or other interconnect, to coprocessor 345. Coprocessor(s) 345 accept and

execute the received coprocessor instructions.

Referring now to Figure 4, shown is a block diagram of a first more specific exemplary

system 400 in accordance with an embodiment of the present invention. As shown in Figure 4,

multiprocessor system 400 is a point-to-point interconnect system, and includes a first processor

470 and a second processor 480 coupled via a point-to-point interconnect 450. Each of

processors 470 and 480 may be some version of the processor 200. In one embodiment of the

invention, processors 470 and 480 are respectively processors 310 and 315, while coprocessor

438 is coprocessor 345. In another embodiment, processors 470 and 480 are respectively

processor 310 coprocessor 345.

Processors 470 and 480 are shown including integrated memory controller (IMC) units

472 and 482, respectively. Processor 470 also includes as part of its bus controller units point-

to-point (P-P) interfaces 476 and 478; similarly, second processor 480 includes P-P interfaces

486 and 488. Processors 470, 480 may exchange information via a point-to-point (P-P) interface

450 using P-P interface circuits 478, 488. As shown in Figure 4, IMCs 472 and 482 couple the

processors to respective memories, namely a memory 432 and a memory 434, which may be

portions of main memory locally attached to the respective processors.

Processors 470, 480 may each exchange information with a chipset 490 via individual P-

P interfaces 452, 454 using point to point interface circuits 476, 494, 486, 498. Chipset 490 may

optionally exchange information with the coprocessor 438 via a high-performance interface 439.

In one embodiment, the coprocessor 438 is a special-purpose processor, such as, for example, a

high-throughput MIC processor, a network or communication processor, compression engine,

graphics processor, GPGPU, embedded processor, or the like.

A shared cache (not shown) may be included in either processor or outside of both

processors, yet connected with the processors via P-P interconnect, such that either or both

processors' local cache information may be stored in the shared cache if a processor is placed

into a low power mode.

Chipset 490 may be coupled to a first bus 416 via an interface 496. In one embodiment,

first bus 416 may be a Peripheral Component Interconnect (PCI) bus, or a bus such as a PCI

Express bus or another third generation I/O interconnect bus, although the scope of the present

invention is not so limited.

As shown in Figure 4, various I/O devices 414 may be coupled to first bus 416, along

with a bus bridge 418 which couples first bus 416 to a second bus 420. In one embodiment, one

or more additional processor(s) 415, such as coprocessors, high-throughput MIC processors,

GPGPU' s, accelerators (such as, e.g., graphics accelerators or digital signal processing (DSP)

units), field programmable gate arrays, or any other processor, are coupled to first bus 416. In

one embodiment, second bus 420 may be a low pin count (LPC) bus. Various devices may be

coupled to a second bus 420 including, for example, a keyboard and/or mouse 422,

communication devices 427 and a storage unit 428 such as a disk drive or other mass storage

device which may include instructions/code and data 430, in one embodiment. Further, an audio

I/O 424 may be coupled to the second bus 420. Note that other architectures are possible. For

example, instead of the point-to-point architecture of Figure 4, a system may implement a multi

drop bus or other such architecture.

Referring now to Figure 5, shown is a block diagram of a second more specific

exemplary system 500 in accordance with an embodiment of the present invention. Like

elements in Figures 4 and 5 bear like reference numerals, and certain aspects of Figure 4 have

been omitted from Figure 5 in order to avoid obscuring other aspects of Figure 5 .

Figure 5 illustrates that the processors 470, 480 may include integrated memory and I/O

control logic ("CL") 472 and 482, respectively. Thus, the CL 472, 482 include integrated

memory controller units and include I/O control logic. Figure 5 illustrates that not only are the

memories 432, 434 coupled to the CL 472, 482, but also that I/O devices 514 are also coupled to

the control logic 472, 482. Legacy I O devices 515 are coupled to the chipset 490.

Referring now to Figure 6, shown is a block diagram of a SoC 600 in accordance with an

embodiment of the present invention. Similar elements in Figure 2 bear like reference numerals.

Also, dashed lined boxes are optional features on more advanced SoCs. In Figure 6, an

interconnect unit(s) 602 is coupled to: an application processor 610 which includes a set of one

or more cores 202A-N and shared cache unit(s) 206; a system agent unit 210; a bus controller

unit(s) 216; an integrated memory controller unit(s) 214; a set or one or more coprocessors 620

which may include integrated graphics logic, an image processor, an audio processor, and a

video processor; an static random access memory (SRAM) unit 630; a direct memory access

(DMA) unit 632; and a display unit 640 for coupling to one or more external displays. In one

embodiment, the coprocessor(s) 620 include a special-purpose processor, such as, for example, a

network or communication processor, compression engine, GPGPU, a high-throughput MIC

processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be implemented in hardware,

software, firmware, or a combination of such implementation approaches. Embodiments of the

invention may be implemented as computer programs or program code executing on

programmable systems comprising at least one processor, a storage system (including volatile

and non-volatile memory and/or storage elements), at least one input device, and at least one

output device.

Program code, such as code 430 illustrated in Figure 4, may be applied to input

instructions to perform the functions described herein and generate output information. The

output information may be applied to one or more output devices, in known fashion. For

purposes of this application, a processing system includes any system that has a processor, such

as, for example; a digital signal processor (DSP), a microcontroller, an application specific

integrated circuit (ASIC), or a microprocessor.

The program code may be implemented in a high level procedural or object oriented

programming language to communicate with a processing system. The program code may also

be implemented in assembly or machine language, if desired. In fact, the mechanisms described

herein are not limited in scope to any particular programming language. In any case, the

language may be a compiled or interpreted language.

One or more aspects of at least one embodiment may be implemented by representative

instructions stored on a machine-readable medium which represents various logic within the

processor, which when read by a machine causes the machine to fabricate logic to perform the

techniques described herein. Such representations, known as "IP cores" may be stored on a

tangible, machine readable medium and supplied to various customers or manufacturing

facilities to load into the fabrication machines that actually make the logic or processor.

Such machine-readable storage media may include, without limitation, non-transitory,

tangible arrangements of articles manufactured or formed by a machine or device, including

storage media such as hard disks, any other type of disk including floppy disks, optical disks,

compact disk read-only memories (CD-ROMs), compact disk rewritable's (CD-RWs), and

magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random

access memories (RAMs) such as dynamic random access memories (DRAMs), static random

access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash

memories, electrically erasable programmable read-only memories (EEPROMs), phase change

memory (PCM), magnetic or optical cards, or any other type of media suitable for storing

electronic instructions.

Accordingly, embodiments of the invention also include non-transitory, tangible

machine-readable media containing instructions or containing design data, such as Hardware

Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or

system features described herein. Such embodiments may also be referred to as program

products.

In some cases, an instruction converter may be used to convert an instruction from a

source instruction set to a target instruction set. For example, the instruction converter may

translate (e.g., using static binary translation, dynamic binary translation including dynamic

compilation), morph, emulate, or otherwise convert an instruction to one or more other

instructions to be processed by the core. The instruction converter may be implemented in

software, hardware, firmware, or a combination thereof. The instruction converter may be on

processor, off processor, or part on and part off processor.

Figure 7 is a block diagram contrasting the use of a software instruction converter to convert

binary instructions in a source instruction set to binary instructions in a target instruction set

according to embodiments of the invention. In the illustrated embodiment, the instruction

converter is a software instruction converter, although alternatively the instruction converter may

be implemented in software, firmware, hardware, or various combinations thereof. Figure 7

shows a program in a high level language 702 may be compiled using an x86 compiler 704 to

generate x86 binary code 706 that may be natively executed by a processor with at least one x86

instruction set core 716. The processor with at least one x86 instruction set core 716 represents

any processor that can perform substantially the same functions as an Intel processor with at least

one x86 instruction set core by compatibly executing or otherwise processing (1) a substantial

portion of the instruction set of the Intel x86 instruction set core or (2) object code versions of

applications or other software targeted to run on an Intel processor with at least one x86

instruction set core, in order to achieve substantially the same result as an Intel processor with at

least one x86 instruction set core. The x86 compiler 704 represents a compiler that is operable to

generate x86 binary code 706 (e.g., object code) that can, with or without additional linkage

processing, be executed on the processor with at least one x86 instruction set core 716.

Similarly, Figure 7 shows the program in the high level language 702 may be compiled using an

alternative instruction set compiler 708 to generate alternative instruction set binary code 710

that may be natively executed by a processor without at least one x86 instruction set core 714

(e.g., a processor with cores that execute the MIPS instruction set of MIPS Technologies of

Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,

CA). The instruction converter 712 is used to convert the x86 binary code 706 into code that

may be natively executed by the processor without an x86 instruction set core 714. This

converted code is not likely to be the same as the alternative instruction set binary code 710

because an instruction converter capable of this is difficult to make; however, the converted code

will accomplish the general operation and be made up of instructions from the alternative

instruction set. Thus, the instruction converter 712 represents software, firmware, hardware, or a

combination thereof that, through emulation, simulation or any other process, allows a processor

or other electronic device that does not have an x86 instruction set processor or core to execute

the x86 binary code 706.

EMBODIMENTS OF THE INVENTION FOR PERFORMING A SHUFFLE OPERATION

Embodiments of the invention described below provide for the shuffling of floating point

or integer data elements from source registers to a destination register using conditional masking

and with 128-bit or 256-bit granularity. While these embodiments are described within the

context of specific mask register values and output vector register sizes, the underlying

principles of the invention are not limited to these implementations.

Figure 8 illustrates shuffle logic 805 for performing shuffle operations on 256-bit

operands 802-803 with 128-bit packed data elements A-D in accordance with one embodiment

of the invention. Specifically, in this embodiment, the shuffle logic 805 selects a 128-bit data

element, A or B, to be copied to a first 128-bit position of a destination register (DST) 804 and

selects a second 128-bit data element, C or D, to be copied to a second 128-bit position of the

destination register 804 based on a 2-bit immediate value 805. In one embodiment, the first bit

of the immediate value specifies whether A or B is shuffled into the first half of the destination

register (e.g., 0 = A, 1 = B) and the second bit of the immediate value specifies whether C or D is

shuffled into the second half of the destination register (e.g., 0 = C, 1 = D).

In one embodiment, a mask bit may also be specified within a mask data structure 870 for

each of the destination register data elements. If the mask bit associated with a particular data

element in the destination register is set to true, then the shuffle logic 805 shuffles the data

elements through to the destination register as described above. If the mask bit is set to false

then, in one embodiment, the shuffle logic writes all zeroes to the associated destination register

entry. For example, if a mask bit associated with destination register bits 0 :127 is set to a false

value, then in one embodiment, the shuffle logic 805 writes all zeros to bits 0:127. The

foregoing technique of writing zeroes to a destination data element in response to a mask value is

referred to herein as "zeroing masking." Alternatively, one embodiment of the invention uses

"merging masking" in which the previous data element values stored in the destination register

are maintained. Thus, returning to the above example, if "merging masking" is used, bits 0:127

would maintain their prior values. Of course, masking bits described above may be reversed

while still complying with the underlying principles of the invention (e.g., true = masking; false

= no masking).

As illustrated in Figure 8, in one embodiment, the shuffle logic 805 accesses the registers

to perform the above operations by controlling multiplexers 810-811. The logic required for

implementing a multiplexer is well understood by those of ordinary skill in the art and will not

be described here in detail.

Figure 9 illustrates another embodiment of shuffle logic 805 which shuffles four 128-bit

data elements, A-D and E-F, stored in two 512-bit source registers 902-903. The shuffle logic

805 selects any two of data elements A-D based on the value of the first four bits of an

immediate value imm8 905 and selects any two of data elements E-H based on the value of the

last four bits of the immediate value imm8 905. More specifically, in one embodiment, the first

two bits of the immediate value specify the selection for data element 0:127 of the destination

register 904; the next two bits of the immediate value specify the selection for data element

128:255 of the destination register 904; the next two bits of the immediate value specify the

selection for data element 256:383 of the destination register 904; and the final two bits of the

immediate value specify the selection for data element 384:51 1 of the destination register 904.

In one embodiment, a mask data structure 870 may be specified to provide masking

operations as described above. For example, if "zeroing masking" is used, then the shuffle logic

805 writes all zeroes for data elements in the destination 904 associated with a false mask bit and

performs the shuffle operations as described above for data elements in the destination 904

associated with a true mask bit. Alternatively, if "merging masking" is used, then the shuffle

logic 805 maintains prior values for data elements in the destination 904 associated with a false

mask bit and performs the shuffle operations as described above for data elements in the

destination 904 associated with a true mask bit.

A method according to one embodiment of the invention is illustrated in Figure 10. The

method may be executed within the context of the architecture shown in Figures 8-9 but is not

limited to any particular architecture.

At 1002, control variable N is set to zero and, at 1002, the immediate value is read to

determine how to shuffle the data elements. At 1004, data element N is selected for updating in

the destination register. If a writemask condition is set to a false value, determined at 1005, then

the data element N in the destination register is updated based on the particular masking type.

For example, if zeroing masking is used, then all zeros are written to the destination data element

N.

If the writemask condition is set to a true value then, at 1007, either SRCl or SRC2 based

on the current value of N. For example, if data element N is in the first half of the destination

register, then SRCl may be selected and if data element N is in the second half of the destination

register, then SRC2 may be selected. At 1008, the data element is selected from the source

register and stored in as data element N in the destination register based on the immediate value

(e.g., as described above). If the final data element has been updated in the destination,

determined at 1010, the process terminates. Otherwise, the next data element N in the

destination register is selected for updating at 1011 and the process returns to 1003.

The pseudocode describing the implementation of one embodiment of the invention is set

forth below. It will be understood, however, that the undelrying principles of the invention are

not limited to the specific implementation described in the pseudocode.

VSHUFF64x2 (EVEX 512-bit version)

(KL, VL) = (4, 256), (8, 512)

FOR j — 0 TO KL-1

i j *64

IF (EVEX.b == 1) AND (SRC2 *is memory*)

THEN TMP_SRC2[i+63:i] - SRC2[63.0]

ELSE TMP_SRC2[i+63:i] - SRC2[i+63:i]

FI;

ENDFOR;

IF VL = 256

TMP_DEST[127:0] - Select2(SRCl[255:0], imm8[0]);

TMP_DEST[255:128] - Select2(SRC[255:0], imm8[l]);

FI;

IF VL = 512

TMP_DEST[127:0] - Select4(SRCl[511:0], imm8[l:0]);

TMP_DEST[255:128] - Select4(SRCl[511:0], imm8[3:2])

TMP_DEST[383.256] - Select4(SRCl[511:0], imm8[5:4])

TMP_DEST[5 11:384] - Select4(SRCl[511:0], imm8[7:6])

FI;

FOR j — 0 TO KL-1

i j * 64

IF kl[j] OR *no writemask*

THEN DEST[i+63:i] - TMP_DEST[i+63:i]

ELSE

IF *merging-masking* ; merging-masking

THEN *DEST[i+63:i] remains unchanged*

ELSE *zeroing-masking* ;zeroing-masking

THEN DEST [i+63:i] - 0

FI

FI;

ENDFOR

DEST[MAX-VL-1:VL] - 0

Exemplary Instruction Formats

Embodiments of the instruction(s) described herein may be embodied in different

formats. Additionally, exemplary systems, architectures, and pipelines are detailed below.

Embodiments of the instruction(s) may be executed on such systems, architectures, and

pipelines, but are not limited to those detailed.

A vector friendly instruction format is an instruction format that is suited for vector

instructions (e.g., there are certain fields specific to vector operations). While embodiments are

described in which both vector and scalar operations are supported through the vector friendly

instruction format, alternative embodiments use only vector operations the vector friendly

instruction format.

Figures 11A-11B are block diagrams illustrating a generic vector friendly instruction

format and instruction templates thereof according to embodiments of the invention. Figure 11A

is a block diagram illustrating a generic vector friendly instruction format and class A instruction

templates thereof according to embodiments of the invention; while Figure 1IB is a block

diagram illustrating the generic vector friendly instruction format and class B instruction

templates thereof according to embodiments of the invention. Specifically, a generic vector

friendly instruction format 1100 for which are defined class A and class B instruction templates,

both of which include no memory access 1105 instruction templates and memory access 1120

instruction templates. The term generic in the context of the vector friendly instruction format

refers to the instruction format not being tied to any specific instruction set.

While embodiments of the invention will be described in which the vector friendly

instruction format supports the following: a 64 byte vector operand length (or size) with 32 bit (4

byte) or 64 bit (8 byte) data element widths (or sizes) (and thus, a 64 byte vector consists of

either 16 doubleword-size elements or alternatively, 8 quadword-size elements); a 64 byte vector

operand length (or size) with 16 bit (2 byte) or 8 bit (1 byte) data element widths (or sizes); a 32

byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit

(1 byte) data element widths (or sizes); and a 16 byte vector operand length (or size) with 32 bit

(4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths (or sizes);

alternative embodiments may support more, less and/or different vector operand sizes (e.g., 256

byte vector operands) with more, less, or different data element widths (e.g., 128 bit (16 byte)

data element widths).

The class A instruction templates in Figure 11A include: 1) within the no memory access

1105 instruction templates there is shown a no memory access, full round control type operation

1110 instruction template and a no memory access, data transform type operation 1115

instruction template; and 2) within the memory access 1120 instruction templates there is shown

a memory access, temporal 1125 instruction template and a memory access, non-temporal 1130

instruction template. The class B instruction templates in Figure 1IB include: 1) within the no

memory access 1105 instruction templates there is shown a no memory access, write mask

control, partial round control type operation 1112 instruction template and a no memory access,

write mask control, vsize type operation 1117 instruction template; and 2) within the memory

access 1120 instruction templates there is shown a memory access, write mask control 1127

instruction template.

The generic vector friendly instruction format 1100 includes the following fields listed

below in the order illustrated in Figures 1lA-1 IB.

Format field 1140 - a specific value (an instruction format identifier value) in this field

uniquely identifies the vector friendly instruction format, and thus occurrences of instructions in

the vector friendly instruction format in instruction streams. As such, this field is optional in the

sense that it is not needed for an instruction set that has only the generic vector friendly

instruction format.

Base operation field 1142 - its content distinguishes different base operations.

Register index field 1144 - its content, directly or through address generation, specifies

the locations of the source and destination operands, be they in registers or in memory. These

include a sufficient number of bits to select N registers from a PxQ (e.g. 32x512, 16x128,

32x1024, 64x1024) register file. While in one embodiment N may be up to three sources and

one destination register, alternative embodiments may support more or less sources and

destination registers (e.g., may support up to two sources where one of these sources also acts as

the destination, may support up to three sources where one of these sources also acts as the

destination, may support up to two sources and one destination).

Modifier field 1146 - its content distinguishes occurrences of instructions in the generic

vector instruction format that specify memory access from those that do not; that is, between no

memory access 1105 instruction templates and memory access 1120 instruction templates.

Memory access operations read and/or write to the memory hierarchy (in some cases specifying

the source and/or destination addresses using values in registers), while non-memory access

operations do not (e.g., the source and destinations are registers). While in one embodiment this

field also selects between three different ways to perform memory address calculations,

alternative embodiments may support more, less, or different ways to perform memory address

calculations.

Augmentation operation field 1150 - its content distinguishes which one of a variety of

different operations to be performed in addition to the base operation. This field is context

specific. In one embodiment of the invention, this field is divided into a class field 1168, an

alpha field 1152, and a beta field 1154. The augmentation operation field 1150 allows common

groups of operations to be performed in a single instruction rather than 2, 3, or 4 instructions.

Scale field 1160 - its content allows for the scaling of the index field's content for

memory address generation (e.g., for address generation that uses 2s * index + base).

Displacement Field 1162A- its content is used as part of memory address generation

(e.g., for address generation that uses 2s * index + base + displacement).

Displacement Factor Field 1162B (note that the juxtaposition of displacement field

1162A directly over displacement factor field 1162B indicates one or the other is used) - its

content is used as part of address generation; it specifies a displacement factor that is to be scaled

by the size of a memory access (N) - where N is the number of bytes in the memory access (e.g.,

for address generation that uses 2s * index + base + scaled displacement). Redundant low-

order bits are ignored and hence, the displacement factor field' s content is multiplied by the

memory operands total size (N) in order to generate the final displacement to be used in

calculating an effective address. The value of N is determined by the processor hardware at

runtime based on the full opcode field 1174 (described herein) and the data manipulation field

1154C. The displacement field 1162A and the displacement factor field 1162B are optional in

the sense that they are not used for the no memory access 1105 instruction templates and/or

different embodiments may implement only one or none of the two.

Data element width field 1164 - its content distinguishes which one of a number of data

element widths is to be used (in some embodiments for all instructions; in other embodiments for

only some of the instructions). This field is optional in the sense that it is not needed if only one

data element width is supported and/or data element widths are supported using some aspect of

the opcodes.

Write mask field 1170 - its content controls, on a per data element position basis,

whether that data element position in the destination vector operand reflects the result of the base

operation and augmentation operation. Class A instruction templates support merging-

writemasking, while class B instruction templates support both merging- and zeroing-

writemasking. When merging, vector masks allow any set of elements in the destination to be

protected from updates during the execution of any operation (specified by the base operation

and the augmentation operation); in other one embodiment, preserving the old value of each

element of the destination where the corresponding mask bit has a 0 . In contrast, when zeroing

vector masks allow any set of elements in the destination to be zeroed during the execution of

any operation (specified by the base operation and the augmentation operation); in one

embodiment, an element of the destination is set to 0 when the corresponding mask bit has a 0

value. A subset of this functionality is the ability to control the vector length of the operation

being performed (that is, the span of elements being modified, from the first to the last one);

however, it is not necessary that the elements that are modified be consecutive. Thus, the write

mask field 1170 allows for partial vector operations, including loads, stores, arithmetic, logical,

etc. While embodiments of the invention are described in which the write mask field's 1170

content selects one of a number of write mask registers that contains the write mask to be used

(and thus the write mask field's 1170 content indirectly identifies that masking to be performed),

alternative embodiments instead or additional allow the mask write field's 1170 content to

directly specify the masking to be performed.

Immediate field 1172 - its content allows for the specification of an immediate. This

field is optional in the sense that is it not present in an implementation of the generic vector

friendly format that does not support immediate and it is not present in instructions that do not

use an immediate.

Class field 1168 - its content distinguishes between different classes of instructions.

With reference to Figures 11A-B, the contents of this field select between class A and class B

instructions. In Figures 11A-B, rounded corner squares are used to indicate a specific value is

present in a field (e.g., class A 1168A and class B 1168B for the class field 1168 respectively in

Figures 11A-B).

Instruction Templates of Class A

In the case of the non-memory access 1105 instruction templates of class A, the alpha

field 1152 is interpreted as an RS field 1152A, whose content distinguishes which one of the

different augmentation operation types are to be performed (e.g., round 1152A.1 and data

transform 1152A.2 are respectively specified for the no memory access, round type operation

1110 and the no memory access, data transform type operation 1115 instruction templates),

while the beta field 1154 distinguishes which of the operations of the specified type is to be

performed. In the no memory access 1105 instruction templates, the scale field 1160, the

displacement field 1162A, and the displacement scale filed 1162B are not present.

No-Memory Access Instruction Templates - Full Round Control Type Operation

In the no memory access full round control type operation 1110 instruction template, the

beta field 1154 is interpreted as a round control field 1154A, whose content(s) provide static

rounding. While in the described embodiments of the invention the round control field 1154A

includes a suppress all floating point exceptions (SAE) field 1156 and a round operation control

field 1158, alternative embodiments may support may encode both these concepts into the same

field or only have one or the other of these concepts/fields (e.g., may have only the round

operation control field 1158).

SAE field 1156 - its content distinguishes whether or not to disable the exception event

reporting; when the SAE field's 1156 content indicates suppression is enabled, a given

instruction does not report any kind of floating-point exception flag and does not raise any

floating point exception handler.

Round operation control field 1158 - its content distinguishes which one of a group of

rounding operations to perform (e.g., Round-up, Round-down, Round-towards-zero and Round-

to-nearest). Thus, the round operation control field 1158 allows for the changing of the rounding

mode on a per instruction basis. In one embodiment of the invention where a processor includes

a control register for specifying rounding modes, the round operation control field's 1150

content overrides that register value.

No Memory Access Instruction Templates - Data Transform Type Operation

In the no memory access data transform type operation 1115 instruction template, the

beta field 1154 is interpreted as a data transform field 1154B, whose content distinguishes which

one of a number of data transforms is to be performed (e.g., no data transform, swizzle,

broadcast).

In the case of a memory access 1120 instruction template of class A, the alpha field 1152

is interpreted as an eviction hint field 1152B, whose content distinguishes which one of the

eviction hints is to be used (in Figure 11A, temporal 1152B. 1 and non-temporal 1152B.2 are

respectively specified for the memory access, temporal 1125 instruction template and the

memory access, non-temporal 1130 instruction template), while the beta field 1154 is interpreted

as a data manipulation field 1154C, whose content distinguishes which one of a number of data

manipulation operations (also known as primitives) is to be performed (e.g., no manipulation;

broadcast; up conversion of a source; and down conversion of a destination). The memory

access 1120 instruction templates include the scale field 1160, and optionally the displacement

field 1162A or the displacement scale field 1162B.

Vector memory instructions perform vector loads from and vector stores to memory, with

conversion support. As with regular vector instructions, vector memory instructions transfer

data from/to memory in a data element- wise fashion, with the elements that are actually

transferred is dictated by the contents of the vector mask that is selected as the write mask.

Memory Access Instruction Templates - Temporal

Temporal data is data likely to be reused soon enough to benefit from caching. This is,

however, a hint, and different processors may implement it in different ways, including ignoring

the hint entirely.

Memory Access Instruction Templates - Non-Temporal

Non-temporal data is data unlikely to be reused soon enough to benefit from caching in

the 1st-level cache and should be given priority for eviction. This is, however, a hint, and

different processors may implement it in different ways, including ignoring the hint entirely.

Instruction Templates of Class B

In the case of the instruction templates of class B, the alpha field 1152 is interpreted as a

write mask control (Z) field 1152C, whose content distinguishes whether the write masking

controlled by the write mask field 1170 should be a merging or a zeroing.

In the case of the non-memory access 1105 instruction templates of class B, part of the

beta field 1154 is interpreted as an RL field 1157A, whose content distinguishes which one of

the different augmentation operation types are to be performed (e.g., round 1157A.1 and vector

length (VSIZE) 1157A.2 are respectively specified for the no memory access, write mask

control, partial round control type operation 1112 instruction template and the no memory

access, write mask control, VSIZE type operation 1117 instruction template), while the rest of

the beta field 1154 distinguishes which of the operations of the specified type is to be performed.

In the no memory access 1105 instruction templates, the scale field 1160, the displacement field

1162A, and the displacement scale filed 1162B are not present.

In the no memory access, write mask control, partial round control type operation 1110

instruction template, the rest of the beta field 1154 is interpreted as a round operation field

1159A and exception event reporting is disabled (a given instruction does not report any kind of

floating-point exception flag and does not raise any floating point exception handler).

Round operation control field 1159A - just as round operation control field 1158, its

content distinguishes which one of a group of rounding operations to perform (e.g., Round-up,

Round-down, Round-towards-zero and Round-to-nearest). Thus, the round operation control

field 1159A allows for the changing of the rounding mode on a per instruction basis. In one

embodiment of the invention where a processor includes a control register for specifying

rounding modes, the round operation control field's 1150 content overrides that register value.

In the no memory access, write mask control, VSIZE type operation 1117 instruction

template, the rest of the beta field 1154 is interpreted as a vector length field 1159B, whose

content distinguishes which one of a number of data vector lengths is to be performed on (e.g.,

128, 256, or 512 byte).

In the case of a memory access 1120 instruction template of class B, part of the beta field

1154 is interpreted as a broadcast field 1157B, whose content distinguishes whether or not the

broadcast type data manipulation operation is to be performed, while the rest of the beta field

1154 is interpreted the vector length field 1159B. The memory access 1120 instruction

templates include the scale field 1160, and optionally the displacement field 1162A or the

displacement scale field 1162B.

With regard to the generic vector friendly instruction format 1100, a full opcode field

1174 is shown including the format field 1140, the base operation field 1142, and the data

element width field 1164. While one embodiment is shown where the full opcode field 1174

includes all of these fields, the full opcode field 1174 includes less than all of these fields in

embodiments that do not support all of them. The full opcode field 1174 provides the operation

code (opcode).

The augmentation operation field 1150, the data element width field 1164, and the write

mask field 1170 allow these features to be specified on a per instruction basis in the generic

vector friendly instruction format.

The combination of write mask field and data element width field create typed

instructions in that they allow the mask to be applied based on different data element widths.

The various instruction templates found within class A and class B are beneficial in

different situations. In some embodiments of the invention, different processors or different

cores within a processor may support only class A, only class B, or both classes. For instance, a

high performance general purpose out-of-order core intended for general-purpose computing

may support only class B, a core intended primarily for graphics and/or scientific (throughput)

computing may support only class A, and a core intended for both may support both (of course, a

core that has some mix of templates and instructions from both classes but not all templates and

instructions from both classes is within the purview of the invention). Also, a single processor

may include multiple cores, all of which support the same class or in which different cores

support different class. For instance, in a processor with separate graphics and general purpose

cores, one of the graphics cores intended primarily for graphics and/or scientific computing may

support only class A, while one or more of the general purpose cores may be high performance

general purpose cores with out of order execution and register renaming intended for general-

purpose computing that support only class B. Another processor that does not have a separate

graphics core, may include one more general purpose in-order or out-of-order cores that support

both class A and class B. Of course, features from one class may also be implement in the other

class in different embodiments of the invention. Programs written in a high level language

would be put (e.g., just in time compiled or statically compiled) into an variety of different

executable forms, including: 1) a form having only instructions of the class(es) supported by the

target processor for execution; or 2) a form having alternative routines written using different

combinations of the instructions of all classes and having control flow code that selects the

routines to execute based on the instructions supported by the processor which is currently

executing the code.

Figure 12A-D are block diagrams illustrating an exemplary specific vector friendly

instruction format according to embodiments of the invention. Figure 12 shows a specific vector

friendly instruction format 1200 that is specific in the sense that it specifies the location, size,

interpretation, and order of the fields, as well as values for some of those fields. The specific

vector friendly instruction format 1200 may be used to extend the x86 instruction set, and thus

some of the fields are similar or the same as those used in the existing x86 instruction set and

extension thereof (e.g., AVX). This format remains consistent with the prefix encoding field,

real opcode byte field, MOD R/M field, SIB field, displacement field, and immediate fields of

the existing x86 instruction set with extensions. The fields from Figure 11 into which the fields

from Figure 12 map are illustrated.

It should be understood that, although embodiments of the invention are described with

reference to the specific vector friendly instruction format 1200 in the context of the generic

vector friendly instruction format 1100 for illustrative purposes, the invention is not limited to

the specific vector friendly instruction format 1200 except where claimed. For example, the

generic vector friendly instruction format 1100 contemplates a variety of possible sizes for the

various fields, while the specific vector friendly instruction format 1200 is shown as having

fields of specific sizes. By way of specific example, while the data element width field 1164 is

illustrated as a one bit field in the specific vector friendly instruction format 1200, the invention

is not so limited (that is, the generic vector friendly instruction format 1100 contemplates other

sizes of the data element width field 1164).

The generic vector friendly instruction format 1100 includes the following fields listed

below in the order illustrated in Figure 12A.

EVEX Prefix (Bytes 0-3) 1202 - is encoded in a four-byte form.

Format Field 1140 (EVEX Byte 0, bits [7:0]) - the first byte (EVEX Byte 0) is the format

field 1140 and it contains 0x62 (the unique value used for distinguishing the vector friendly

instruction format in one embodiment of the invention).

The second-fourth bytes (EVEX Bytes 1-3) include a number of bit fields providing

specific capability.

REX field 1205 (EVEX Byte 1, bits [7-5]) - consists of a EVEX.R bit field (EVEX Byte

1, bit [7] - R), EVEX.X bit field (EVEX byte 1, bit [6] - X), and 1157BEX byte 1, bit[5] - B).

The EVEX.R, EVEX.X, and EVEX.B bit fields provide the same functionality as the

corresponding VEX bit fields, and are encoded using I s complement form, i.e. ZMM0 is

encoded as 111IB, ZMM15 is encoded as 0000B. Other fields of the instructions encode the

lower three bits of the register indexes as is known in the art (rrr, xxx, and bbb), so that Rrrr,

Xxxx, and Bbbb may be formed by adding EVEX.R, EVEX.X, and EVEX.B.

REX' field 1110 - this is the first part of the REX' field 1110 and is the EVEX.R' bit

field (EVEX Byte 1, bit [4] - R') that is used to encode either the upper 16 or lower 16 of the

extended 32 register set. In one embodiment of the invention, this bit, along with others as

indicated below, is stored in bit inverted format to distinguish (in the well-known x86 32-bit

mode) from the BOUND instruction, whose real opcode byte is 62, but does not accept in the

MOD R/M field (described below) the value of 11 in the MOD field; alternative embodiments of

the invention do not store this and the other indicated bits below in the inverted format. A value

of 1 is used to encode the lower 16 registers. In other words, R'Rrrr is formed by combining

EVEX.R', EVEX.R, and the other RRR from other fields.

Opcode map field 1215 (EVEX byte 1, bits [3:0] - mmmm) - its content encodes an

implied leading opcode byte (OF, OF 38, or OF 3).

Data element width field 1164 (EVEX byte 2, bit [7] - W) - is represented by the

notation EVEX.W. EVEX.W is used to define the granularity (size) of the datatype (either 32-

bit data elements or 64-bit data elements).

EVEX.vvvv 1220 (EVEX Byte 2, bits [6:3]-vvvv)- the role of EVEX.vvvv may include

the following: 1) EVEX.vvvv encodes the first source register operand, specified in inverted (Is

complement) form and is valid for instructions with 2 or more source operands; 2) EVEX.vvvv

encodes the destination register operand, specified in I s complement form for certain vector

shifts; or 3) EVEX.vvvv does not encode any operand, the field is reserved and should contain

111lb. Thus, EVEX.vvvv field 1220 encodes the 4 low-order bits of the first source register

specifier stored in inverted (Is complement) form. Depending on the instruction, an extra

different EVEX bit field is used to extend the specifier size to 32 registers.

EVEX.U 1168 Class field (EVEX byte 2, bit [2]-U) - If EVEX.U = 0, it indicates class A

or EVEX.U0; if EVEX.U = 1, it indicates class B or EVEX.U1.

Prefix encoding field 1225 (EVEX byte 2, bits [l:0]-pp) - provides additional bits for the

base operation field. In addition to providing support for the legacy SSE instructions in the

EVEX prefix format, this also has the benefit of compacting the SIMD prefix (rather than

requiring a byte to express the SIMD prefix, the EVEX prefix requires only 2 bits). In one

embodiment, to support legacy SSE instructions that use a SIMD prefix (66H, F2H, F3H) in both

the legacy format and in the EVEX prefix format, these legacy SIMD prefixes are encoded into

the SIMD prefix encoding field; and at runtime are expanded into the legacy SIMD prefix prior

to being provided to the decoder's PLA (so the PLA can execute both the legacy and EVEX

format of these legacy instructions without modification). Although newer instructions could

use the EVEX prefix encoding field's content directly as an opcode extension, certain

embodiments expand in a similar fashion for consistency but allow for different meanings to be

specified by these legacy SIMD prefixes. An alternative embodiment may redesign the PLA to

support the 2 bit SIMD prefix encodings, and thus not require the expansion.

Alpha field 1152 (EVEX byte 3, bit [7] - EH; also known as EVEX.EH, EVEX.rs,

EVEX.RL, EVEX.write mask control, and EVEX.N; also illustrated with a) - as previously

described, this field is context specific.

Beta field 1154 (EVEX byte 3, bits [6:4]-SSS, also known as EVEX.s 2_0, EVEX.r2_0,

EVEX.rrl, EVEX.LLO, EVEX.LLB; also illustrated with βββ) - as previously described, this

field is context specific.

REX' field 1110 - this is the remainder of the REX' field and is the EVEX.V bit field

(EVEX Byte 3, bit [3] - V) that may be used to encode either the upper 16 or lower 16 of the

extended 32 register set. This bit is stored in bit inverted format. A value of 1 is used to encode

the lower 16 registers. In other words, V'VVVV is formed by combining EVEX.V,

EVEX.vvvv.

Write mask field 1170 (EVEX byte 3, bits [2:0]-kkk) - its content specifies the index of a

register in the write mask registers as previously described. In one embodiment of the invention,

the specific value EVEX.kkk=000 has a special behavior implying no write mask is used for the

particular instruction (this may be implemented in a variety of ways including the use of a write

mask hardwired to all ones or hardware that bypasses the masking hardware).

Real Opcode Field 1230 (Byte 4) is also known as the opcode byte. Part of the opcode is

specified in this field.

MOD R/M Field 1240 (Byte 5) includes MOD field 1242, Reg field 1244, and R/M field

1246. As previously described, the MOD field's 1242 content distinguishes between memory

access and non-memory access operations. The role of Reg field 1244 can be summarized to

two situations: encoding either the destination register operand or a source register operand, or

be treated as an opcode extension and not used to encode any instruction operand. The role of

R/M field 1246 may include the following: encoding the instruction operand that references a

memory address, or encoding either the destination register operand or a source register operand.

Scale, Index, Base (SIB) Byte (Byte 6) - As previously described, the scale field's 1150

content is used for memory address generation. SIB.xxx 1254 and SIB.bbb 1256 - the contents

of these fields have been previously referred to with regard to the register indexes Xxxx and

Bbbb.

Displacement field 1162A (Bytes 7-10) - when MOD field 1242 contains 10, bytes 7-10

are the displacement field 1162A, and it works the same as the legacy 32-bit displacement

(disp32) and works at byte granularity.

Displacement factor field 1162B (Byte 7) - when MOD field 1242 contains 01, byte 7 is

the displacement factor field 1162B. The location of this field is that same as that of the legacy

x86 instruction set 8-bit displacement (disp8), which works at byte granularity. Since disp8 is

sign extended, it can only address between -128 and 127 bytes offsets; in terms of 64 byte cache

lines, disp8 uses 8 bits that can be set to only four really useful values -128, -64, 0, and 64; since

a greater range is often needed, disp32 is used; however, disp32 requires 4 bytes. In contrast to

disp8 and disp32, the displacement factor field 1162B is a reinterpretation of disp8; when using

displacement factor field 1162B, the actual displacement is determined by the content of the

displacement factor field multiplied by the size of the memory operand access (N). This type of

displacement is referred to as disp8*N. This reduces the average instruction length (a single byte

of used for the displacement but with a much greater range). Such compressed displacement is

based on the assumption that the effective displacement is multiple of the granularity of the

memory access, and hence, the redundant low-order bits of the address offset do not need to be

encoded. In other words, the displacement factor field 1162B substitutes the legacy x86

instruction set 8-bit displacement. Thus, the displacement factor field 1162B is encoded the

same way as an x86 instruction set 8-bit displacement (so no changes in the ModRM/SIB

encoding rules) with the only exception that disp8 is overloaded to disp8*N. In other words,

there are no changes in the encoding rules or encoding lengths but only in the interpretation of

the displacement value by hardware (which needs to scale the displacement by the size of the

memory operand to obtain a byte-wise address offset).

Immediate field 1172 operates as previously described.

Full Opcode Field

Figure 12B is a block diagram illustrating the fields of the specific vector friendly

instruction format 1200 that make up the full opcode field 1174 according to one embodiment of

the invention. Specifically, the full opcode field 1174 includes the format field 1140, the base

operation field 1142, and the data element width (W) field 1164. The base operation field 1142

includes the prefix encoding field 1225, the opcode map field 1215, and the real opcode field

1230.

Register Index Field

Figure 12C is a block diagram illustrating the fields of the specific vector friendly

instruction format 1200 that make up the register index field 1144 according to one embodiment

of the invention. Specifically, the register index field 1144 includes the REX field 1205, the

REX' field 1210, the MODR/M.reg field 1244, the MODR/M.r/m field 1246, the W W field

1220, xxx field 1254, and the bbb field 1256.

Augmentation Operation Field

Figure 12D is a block diagram illustrating the fields of the specific vector friendly

instruction format 1200 that make up the augmentation operation field 1150 according to one

embodiment of the invention. When the class (U) field 1168 contains 0, it signifies EVEX.U0

(class A 1168A); when it contains 1, it signifies EVEX.U1 (class B 1168B). When U=0 and the

MOD field 1242 contains 11 (signifying a no memory access operation), the alpha field 1152

(EVEX byte 3, bit [7] - EH) is interpreted as the rs field 1152A. When the rs field 1152A

contains a 1 (round 1152A.1), the beta field 1154 (EVEX byte 3, bits [6:4]- SSS) is interpreted

as the round control field 1154A. The round control field 1154A includes a one bit SAE field

1156 and a two bit round operation field 1158. When the rs field 1152A contains a 0 (data

transform 1152A.2), the beta field 1154 (EVEX byte 3, bits [6:4]- SSS) is interpreted as a three

bit data transform field 1154B. When U=0 and the MOD field 1242 contains 00, 01, or 10

(signifying a memory access operation), the alpha field 1152 (EVEX byte 3, bit [7] - EH) is

interpreted as the eviction hint (EH) field 1152B and the beta field 1154 (EVEX byte 3, bits

[6:4]- SSS) is interpreted as a three bit data manipulation field 1154C.

When U=l, the alpha field 1152 (EVEX byte 3, bit [7] - EH) is interpreted as the write

mask control (Z) field 1152C. When U=l and the MOD field 1242 contains 11 (signifying a no

memory access operation), part of the beta field 1154 (EVEX byte 3, bit [4]- So) is interpreted as

the RL field 1157A; when it contains a 1 (round 1157A.1) the rest of the beta field 1154 (EVEX

byte 3, bit [6-5]- S2-i) is interpreted as the round operation field 1159A, while when the RL field

1157A contains a 0 (VSIZE 1157.A2) the rest of the beta field 1154 (EVEX byte 3, bit [6-5]- S2_

is interpreted as the vector length field 1159B (EVEX byte 3, bit [6-5]- L1-0) . When U=l and

the MOD field 1242 contains 00, 01, or 10 (signifying a memory access operation), the beta field

1154 (EVEX byte 3, bits [6:4]- SSS) is interpreted as the vector length field 1159B (EVEX byte

3, bit [6-5]- L1-0) and the broadcast field 1157B (EVEX byte 3, bit [4]- B).

Figure 13 is a block diagram of a register architecture 1300 according to one

embodiment of the invention. In the embodiment illustrated, there are 32 vector registers 1310

that are 512 bits wide; these registers are referenced as zmmO through zmm31. The lower order

256 bits of the lower 16 zmm registers are overlaid on registers ymmO-16. The lower order 128

bits of the lower 16 zmm registers (the lower order 128 bits of the ymm registers) are overlaid on

registers xmmO-15. The specific vector friendly instruction format 1200 operates on these

overlaid register file as illustrated in the below tables.

Instruction B (Figure 11B; 1117, 1127 zmm, ymm, or

Templates that U=l) xmm registers

do include the (the vector

vector length length is 64 byte,

field 1159B 32 byte, or 16

byte) depending

on the vector

length field

1159B

In other words, the vector length field 1159B selects between a maximum length and one

or more other shorter lengths, where each such shorter length is half the length of the preceding

length; and instructions templates without the vector length field 1159B operate on the maximum

vector length. Further, in one embodiment, the class B instruction templates of the specific

vector friendly instruction format 1200 operate on packed or scalar single/double-precision

floating point data and packed or scalar integer data. Scalar operations are operations performed

on the lowest order data element position in an zmm/ymm/xmm register; the higher order data

element positions are either left the same as they were prior to the instruction or zeroed

depending on the embodiment.

Write mask registers 1315 - in the embodiment illustrated, there are 8 write mask

registers (kO through k7), each 64 bits in size. In an alternate embodiment, the write mask

registers 1315 are 16 bits in size. As previously described, in one embodiment of the invention,

the vector mask register k O cannot be used as a write mask; when the encoding that would

normally indicate k O is used for a write mask, it selects a hardwired write mask of OxFFFF,

effectively disabling write masking for that instruction.

General-purpose registers 1325 - in the embodiment illustrated, there are sixteen 64-bit

general-purpose registers that are used along with the existing x86 addressing modes to address

memory operands. These registers are referenced by the names RAX, RBX, RCX, RDX, RBP,

RSI, RDI, RSP, and R8 through R 15.

Scalar floating point stack register file (x87 stack) 1345, on which is aliased the MMX

packed integer flat register file 1350 - in the embodiment illustrated, the x87 stack is an eight-

element stack used to perform scalar floating-point operations on 32/64/80-bit floating point data

using the x87 instruction set extension; while the MMX registers are used to perform operations

on 64-bit packed integer data, as well as to hold operands for some operations performed

between the MMX and XMM registers.

Alternative embodiments of the invention may use wider or narrower registers.

Additionally, alternative embodiments of the invention may use more, less, or different register

files and registers.

Figures 14A-B illustrate a block diagram of a more specific exemplary in-order core

architecture, which core would be one of several logic blocks (including other cores of the same

type and/or different types) in a chip. The logic blocks communicate through a high-bandwidth

interconnect network (e.g., a ring network) with some fixed function logic, memory I/O

interfaces, and other necessary I/O logic, depending on the application.

Figure 14A is a block diagram of a single processor core, along with its connection to the

on-die interconnect network 1402 and with its local subset of the Level 2 (L2) cache 1404,

according to embodiments of the invention. In one embodiment, an instruction decoder 1400

supports the x86 instruction set with a packed data instruction set extension. An LI cache 1406

allows low-latency accesses to cache memory into the scalar and vector units. While in one

embodiment (to simplify the design), a scalar unit 1408 and a vector unit 1410 use separate

register sets (respectively, scalar registers 1412 and vector registers 1414) and data transferred

between them is written to memory and then read back in from a level 1 (LI) cache 1406,

alternative embodiments of the invention may use a different approach (e.g., use a single register

set or include a communication path that allow data to be transferred between the two register

files without being written and read back).

The local subset of the L2 cache 1404 is part of a global L2 cache that is divided into

separate local subsets, one per processor core. Each processor core has a direct access path to its

own local subset of the L2 cache 1404. Data read by a processor core is stored in its L2 cache

subset 1404 and can be accessed quickly, in parallel with other processor cores accessing their

own local L2 cache subsets. Data written by a processor core is stored in its own L2 cache

subset 1404 and is flushed from other subsets, if necessary. The ring network ensures coherency

for shared data. The ring network is bi-directional to allow agents such as processor cores, L2

caches and other logic blocks to communicate with each other within the chip. Each ring data-

path is 1012-bits wide per direction.

Figure 14B is an expanded view of part of the processor core in Figure 14A according to

embodiments of the invention. Figure 14B includes an LI data cache 1406A part of the LI

cache 1404, as well as more detail regarding the vector unit 1410 and the vector registers 1414.

Specifically, the vector unit 1410 is a 16-wide vector processing unit (VPU) (see the 16-wide

ALU 1428), which executes one or more of integer, single-precision float, and double-precision

float instructions. The VPU supports swizzling the register inputs with swizzle unit 1420,

numeric conversion with numeric convert units 1422A-B, and replication with replication unit

1424 on the memory input. Write mask registers 1426 allow predicating resulting vector writes.

Embodiments of the invention may include various steps, which have been described

above. The steps may be embodied in machine-executable instructions which may be used to

cause a general-purpose or special-purpose processor to perform the steps. Alternatively, these

steps may be performed by specific hardware components that contain hardwired logic for

performing the steps, or by any combination of programmed computer components and custom

hardware components.

As described herein, instructions may refer to specific configurations of hardware such as

application specific integrated circuits (ASICs) configured to perform certain operations or

having a predetermined functionality or software instructions stored in memory embodied in a

non-transitory computer readable medium. Thus, the techniques shown in the figures can be

implemented using code and data stored and executed on one or more electronic devices (e.g., an

end station, a network element, etc.). Such electronic devices store and communicate (internally

and/or with other electronic devices over a network) code and data using computer machine-

readable media, such as non-transitory computer machine-readable storage media (e.g., magnetic

disks; optical disks; random access memory; read only memory; flash memory devices; phase-

change memory) and transitory computer machine-readable communication media (e.g.,

electrical, optical, acoustical or other form of propagated signals - such as carrier waves, infrared

signals, digital signals, etc.). In addition, such electronic devices typically include a set of one or

more processors coupled to one or more other components, such as one or more storage devices

(non-transitory machine-readable storage media), user input/output devices (e.g., a keyboard, a

touchscreen, and/or a display), and network connections. The coupling of the set of processors

and other components is typically through one or more busses and bridges (also termed as bus

controllers). The storage device and signals carrying the network traffic respectively represent

one or more machine-readable storage media and machine-readable communication media.

Thus, the storage device of a given electronic device typically stores code and/or data for

execution on the set of one or more processors of that electronic device. Of course, one or more

parts of an embodiment of the invention may be implemented using different combinations of

software, firmware, and/or hardware. Throughout this detailed description, for the purposes of

explanation, numerous specific details were set forth in order to provide a thorough

understanding of the present invention. It will be apparent, however, to one skilled in the art that

the invention may be practiced without some of these specific details. In certain instances, well

known structures and functions were not described in elaborate detail in order to avoid obscuring

the subject matter of the present invention. Accordingly, the scope and spirit of the invention

should be judged in terms of the claims which follow.

CLAIMS

We claim:

1. A processor to execute one or more instructions to perform the operations of:

reading each mask bit stored in a mask data structure, the mask data structure containing

mask bits associated with data elements of a destination register, the values usable for

determining whether a masking operation or a shuffle operation should be performed on data

elements stored within a first source register and a second source register;

for each data element of the destination register, if a mask bit associated with the data

element indicates that a shuffle operation should be performed, then shuffling data elements

from the first source register and the second source register to the specified data element within

the destination register; and

if the mask bit indicates that a masking operation should be performed, then performing a

specified masking operation with respect to the data element of the destination register.

2 . The processor as in claim 1 wherein the specified masking operation comprises

setting the bits of the data element in the destination register all equal to zero.

3 . The processor as in claim 1 wherein the specified masking operation comprises

maintaining existing values previously stored in the data element in the destination register.

4 . The processor as in claim 1 wherein each data element in the destination register

comprises 128 bits of data.

5 . The processor as in claim 4 wherein each data element in the first and second

source registers comprises 128 bits of data.

6 . A method comprising:

reading each mask bit stored in a mask data structure, the mask data structure containing

mask bits associated with data elements of a destination register, the values usable for

determining whether a masking operation or a shuffle operation should be performed on data

elements stored within a first source register and a second source register;

for each data element of the destination register, if a mask bit associated with the data

element indicates that a shuffle operation should be performed, then shuffling data elements

from the first source register and the second source register to the specified data element within

the destination register; and

ihe mask bit indicates that a masking operation should be performed, then performing a

specified masking operation with respect to the data ernenLof the destination register.

7. The method as in claim 6 wherein die specified masking operation comprises

selling the bits of the data element in th destination register all equal to zero.

8. The method as in claim 6 wherein the specified masking operation comprises

maintaining existing values previously stored in the data clement in the destination register.

9. The method as in claim 6 wherein each data element in the destination register

comprises 128 bits or a a

10. The method in claim 9 wherein each data element in ihe first and second source

registers comprises 128 bits of data.

. A processor compri sing:

means for reading each mask bit stored in a mask data structure, the ask data structure

containing mask bits associated with data elements of a destination register, the values usable for

determining whether masking operation or a shuffle operation should be performed on data

elements stored within a first source register and a second source register;

means for shuffling data elements from the first source register and the second source

register to a specified data element within the dcstiaation register, wherein, for each data clement

of the destination register, if a mask bit associated with the data element indicates that a shuffle

operation should be performed, then shuffling data elements, wherein i f the mask bit indicates

that a masking operation should be performed, then performing a specified masking operation

with respect to the data element of the destination register.

. The processor as in claim 11 wherein the specified masking operation comprises

setting the bits of the data clement i the destination register all equal to zero.

13. The processor as in claim 11wherein the specified masking operation comprises

maintaining existing values previously .stored in the data clement in the destination register.

14. The processor as in claim 1 wherein each data element in the destination register

comprises 128 bits of data.

. The processor as in claim 14 wherein each data element in the first and second

source registers comprises 8 bits of data.

16. A computer system comprising:

a memory for storing program instructions and data;

a processor to execute one or more of the program instructions to perform the operations

of:

reading each mask bit stored in a mask data structure, the mask data structure containing

mask bits associated with data elements of a destination register, the values usable for

determining whether a masking operation or a shuffle operation should be performed n data

elements stored within a first source register and a second source register;

for each data element of the destination register, if a mask bit associated with the data

clement indicates that a shuffle operation should be performed, then shuffling data elements

from the first source register and the second source register to the spcciilcd data clement within

the destination register, and

if th mask bit indicates that a masking operation should be pcrtbrmed, then performing a

specified masking operation with respect to the data clement of the destination register.

17. The system as in claim 16 wherein the specified masking operation comprises

selling the bits of the data element in ihe destination register all equal to zero.

8 . The syste as in claim wherein the specified masking operation comprises

maintaining existing values previously stored in the data element in the destination register.

19. ie system as in claim 16 wherein each data element in the destination register

comprises 128 bits of data.

20. The system as in claim 19 wherein each data element in the first and second

source registers comprises 28 bits of data.

2 . The system as i claim 15 further comprising;

a display adapter to render graphics images in response to execution of the program cod

by the processor.

22. The system as in claim 2 further comprising:

a user input inierfacc to receive control signals ro a user input device, the processor

executing the program code in response to the control signals.

INTERNATIONAL SEARCH REPORT International application No.

PCT/US201 1/067087

A. CLASSIFICATION OF SUBJECT MATTER

G06F 9/30(2006. 01)i, G06F 9/305(2006. 01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F 9/30; G06F 5/01; G06F 9/315; G06F 9/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords: shuffle, mask bit, register

c . DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2004-0054877 Al (WILLIAM, W . MACY et a l .) 18 March 2004 1-22

See the abstract, paras . [0101]-[0103] , and claim 1 .

US 7739319 B2 (MACY, JR. WILLIAM W. et a l .) 15 June 2010 1-22

See the abstract, col. 31 lines 44-67, col. 32 lines 1-9, fig. 16,

and claims 1 , 28.

US 7155601 B2 (SIRINIVAS CHENNUPATY) 26 December 2006 1-22

See the abstract, col. lines 53-67, col. 5 lines 1-9, figs.3A, 3B, 3C,

and claim 1 .

US 2011-0029759 Al (MACY, JR. WILLIAM W . et a l .) 03 February 2011 1-22

See the abstract, figs. 9 , 11, and claim 1 .

Further documents are listed in the continuation of Box C . patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

28 AUGUST 20 (28.08.2012) 29 AUGUST 2012 (29.08.2012)
Name and mailing address of the ISA/KR Authorized officer _

Korean Intellectual Property Office
'mm .. 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan Park Ji Eun f ' ' ,

t ' 302-70 ' P l f Korea

Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5696 ' ,
Form PCT/ISA/210 (second sheet) (My 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US20 11/067087

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2004-0054877 A 18 . 03 .2004 AU 1996-695 B2 23. 03 .2000
AU 2003-30 17 18 A1 25. 05 ,,2004
CA 2230108 1 06. 03 ,, 1997

CA 2230108 C 12. 12 ,,2000
CN 100338570 CO 19. 09 ,,2007
CN 100461093 CO 11.02 2009

CN 100492278 C 27. 05 ,,2009
CN 101620525 A 06. 0 1 ,,2010

CN 1107905 C 07. 05 ,,2003
CN 1200821 A 02. 12 ,, 1998

CN 1200821 CO 02. 12 1998

CN 1506807 A 23. 06 ,,2004
CN 1522401 A 18. 08 ,,2004

CN 1522401 CO 09. 08 ,,2006
CN 1801082 A 12. 07 ,,2006
CN 1813241 A 02. 08 2006

CN 1813241 CO 02. 08 ,,2006
EP 0847552 1 30. 0 1 ,,2002

EP 0847552 B1 30. 10 2002
EP 1639452 A2 29. 03 ,,2006

EP 1639452 B1 09. 09 ,,2009

P 03-750820 B2 0 1 . 03 ,,2006
P 04-064989 B2 19. 03 ,,2008
P 04-607105 B2 15. 10 2010

P 04-623963 B2 12. 11,,2010
JP 04-750157 B2 27. 05 ,,201 1

JP 11-51 1577 A 05. 10 ,, 1999

JP 2005-508043 A 24. 03 ,,2005
JP 2006-107463 A 20. 04 2006

JP 2007-526536 A 13 .09 ,,2007
JP 2009-009587 A 15. 0 1 ,,2009

JP 2010-282649 A 16. 12 ,,2010

JP 201 1-138541 A 14. 07 ,,201 1
JP 4750157 B2 17. 08 ,,201 1

KR 10-0329339 B1 06. 07 ,,2002
KR 10-0602532 B1 19. 07 ,,2006
KR 10-0831472 B1 22. 05 2008

US 05721892A A 24. 02 ,, 1998

US 05859997A A 12. 0 1 ,, 1999

US 05983256A A 09. 11,, 1999

US 060353 16A A 07. 03 ,,2000
US 2002-0059355 A1 16. 05 2002

US 2003-0050941 A1 13 .03 ,,2003
US 2003-0084082 A1 0 1 . 05 ,,2003

US 2003-0123748 A1 03. 07 2003
us 2003-013 1030 A1 10. 07 ,,2003
us 2004-0054878 A1 18. 03 ,,2004

us 2004-0054879 A1 18. 03 ,,2004
us 2004-0059889 A1 25. 03 ,,2004

Form PCT/ISA/210 (patent family annex) (y 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US20 11/067087

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2004-0073589 A1 15. 04. 2004
US 2004-0078404 A1 22. 04. 2004
US 2004-0098556 A1 20. 05 .2004
us 2004-01 17422 A1 17. 06 .2004
us 2004-01336 17 A1 08. 07 .2004
us 2004-0139 138 A1 15. 07 .2004
us 2004-02 106 16 A1 2 1 . 10 .2004
us 2004-0220992 A1 04. 11.2004
us 2005-01083 12 A 19. 05 .2005
us 2009-0265409 A1 22. 10 .2009
us 2009-0265523 A1 22. 10 .2009
us 2010-00 11042 A1 14. 0 1 .2010
us 201 1-0029759 A1 03. 02 .201 1
us 201 1-0035426 A1 10. 02 .201 1
us 6385634 B1 07. 05 .2002
us 6418529 B1 09. 07 .2002
us 6961845 B2 0 1 . 11.2005
us 7085795 B2 0 1 . 08 .2006
us 7272622 B2 18. 09 .2007
us 7340495 B2 04. 03 .2008
us 7392275 B2 24. 06 .2008
us 7395298 B2 0 1 . 07 .2008
us 7395302 B2 0 1 . 07 .2008
us 7424505 B2 09. 09 .2008
us 7430578 B2 30. 09 .2008
us 7509367 B2 24. 03 .2009
us 7624138 B2 24. 11.2009
us 7631025 B2 08. 12 .2009
us 7685212 B2 23. 03 .2010
us 7725521 B2 25. 05 .2010
us 7739319 B2 15. 06 .2010
us 7818356 B2 19. 10 .2010
us 8185571 B2 22. 05 .2012
us 8214626 B2 03. 07 .2012
us 8225075 B2 17. 07 .2012

o 03-03860 1 A1 08. 05 .2003
o 2004-040439 A2 13 .05 .2004

wo 2004-040439 A3 13 .05 .2004
wo 2005-006 183 A2 20. 0 1 .2005
wo 2005-006 183 A3 20. 0 1 .2005
wo 97-08610 A1 06. 03 . 1997

US 7739319 B2 15 . 06 .20 10 AU 1996-695 11 B2 23. 03 .2000
AU 2003-30 17 18 A1 25. 05 .2004
CA 2230108 1 06. 03 . 1997

CA 2230108 C 12. 12 .2000
CN 100338570 CO 19. 09 .2007
CN 100461093 CO 11.02 .2009
CN 100492278 C 27. 05 .2009
CN 101620525 A 06. 0 1 .2010

Form PCT/ISA/210 (patent family annex) (y 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US20 11/067087

Patent document Publication Patent family Publication
cited in search report date member(s) date

CN 107905 C 07. 05 ,,2003

CN 1 008 1 A 02. 12 . 1998

CN 1200821 CO 02. 12 ,, 1998

CN 1506807 A 23. 06 ,,2004

CN 1522401 A 18. 08 ,,2004
CN 1522401 CO 09. 08 ,,2006
CN 1801082 A 12. 07 2006

CN 1813241 A 02. 08 ,,2006
CN 1813241 CO 02. 08 ,,2006

EP 0847552 1 30. 0 1 ,,2002
EP 0847552 B1 30. 10 ,,2002
EP 1639452 A2 29. 03 2006

EP 1639452 B1 09. 09 ,,2009
P 03-750820 B2 0 1 . 03 ,,2006

P 04-064989 B2 19. 03 ,,2008
P 04-607105 B2 15. 10 ,,2010
P 04-623963 B2 12. 11 2010

JP 04-750157 B2 27. 05 ,,201 1
JP 11-51 1577 A 05. 10 ,, 1999

JP 2005-508043 A 24. 03 2005
JP 2006-107463 A 20. 04,,2006

JP 2007-526536 A 13 .09 ,,2007

JP 2009-009587 A 15. 0 1 ,,2009
JP 2010-282649 A 16. 12 ,,2010
JP 201 1-138541 A 14. 07 201 1

JP 4750157 B2 17. 08 ,,201 1
KR 10-0329339 B1 06. 07 ,,2002

KR 10-0602532 B1 19. 07 ,,2006
KR 10-0831472 B1 22. 05 ,,2008
US 05721892A A 24. 02 1998

US 05859997A A 12. 0 1 ,, 1999

US 05983256A A 09. 11,, 1999

US 060353 16A A 07. 03 ,,2000

US 2002-0059355 A1 16. 05 ,,2002
US 2003-0050941 A 13 .03 ,,2003

US 2003-0084082 A1 0 1 . 05 ,,2003
US 2003-0123748 A1 03. 07 ,,2003
us 2003-013 1030 A1 10. 07 2003

us 2004-0054877 A1 18. 03 ,,2004
us 2004-0054878 A1 18. 03 ,,2004

us 2004-0054879 A1 18. 03 ,,2004
us 2004-0059889 A1 25. 03 ,,2004
us 2004-0073589 A1 15. 04 2004

us 2004-0078404 A1 22. 04,,2004
us 2004-0098556 A1 20. 05 ,,2004

us 2004-01 17422 A1 17. 06 2004
us 2004-01336 17 A1 08. 07 ,,2004
us 2004-0139 138 A1 15. 07 ,,2004

us 2004-02 106 16 A1 2 1 . 10 ,,2004
us 2004-0220992 A1 04. 11,,2004

Form PCT/ISA/210 (patent family annex) (y 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT /US2011/067087

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2005-01083 12 A1 19 05 2005
US 2009-0265409 A1 22 10 2009
us 2009-0265523 A1 22 10 2009
us 2010-00 11042 A1 14 0 1 2010
us 201 1-0029759 A1 03 02 201 1
us 201 1-0035426 A1 10 02 201 1
us 6385634 B1 07 05 2002
us 6418529 B1 09 07 2002
us 6961845 B2 0 1 11 2005
us 7085795 B2 0 1 08 2006
us 7272622 B2 18 09 2007
us 7340495 B2 04 03 2008
us 7392275 B2 24 06 2008
us 7395298 B2 0 1 07 2008
us 7395302 B2 0 1 07 2008
us 7424505 B2 09 09 2008
us 7430578 B2 30 09 2008
us 7509367 B2 24 03 2009
us 7624138 B2 24 11 2009
us 7631025 B2 08 12 2009
us 7685212 B2 23 03 2010
us 7725521 B2 25 05 2010
us 7818356 B2 19 10 2010
us 8185571 B2 22 05 2012
us 8214626 B2 03 07 2012
us 8225075 B2 17 07 2012

o 03-03860 1 1 08 05 2003
o 2004-040439 A2 13 05 2004

wo 2004-040439 A3 13 05 2004
wo 2005-006 183 A2 20 0 1 2005
wo 2005-006 183 A3 20 0 1 2005
wo 97-08610 1 06 03 1997

US 7155601 B2 26 . 12 .2006 us 2002-1 12 147 A1 15 08 2002

US 201 1-0029759 A 1 03 . 02 .20 11 AU 1996-695 11 B2 23 03 2000
AU 2003-30 1 18 A1 25 05 2004
CA 2230108 1 06 03 1997
CA 2230108 C 12 12 2000
CN 100338570 CO 19 09 2007
CN 100461093 CO 11 02 2009
CN 100492278 C 27 05 2009
CN 101620525 A 06 0 1 2010
CN 1107905 C 07 05 2003
CN 1200821 A 02 12 1998

CN 1200821 CO 02 12 1998
CN 1506807 A 23 06 2004
CN 1522401 A 18 08 2004
CN 1522401 CO 09 08 2006
CN 1801082 A 12 07 2006

Form PCT/ISA/210 (patent family annex) (y 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US20 11/067087

Patent document Publication Patent family Publication
cited in search report date member(s) date

CN 1813241 A 02. 08 ,,2006

CN 1813241 CO 02. 08 .2006
EP 0847552 1 30. 0 1 ,,2002
EP 0847552 B1 30. 10 ,,2002

EP 1639452 A2 29. 03 ,,2006
EP 1639452 B1 09. 09 ,,2009
JP 03-750820 B2 0 1 . 03 2006

P 04-064989 B2 19. 03 ,,2008
P 04-607105 B2 15. 10 ,,2010

P 04-623963 B2 12. 11,,2010
JP 04-750157 B2 27. 05 ,,201 1
JP 11-51 1577 A 05. 10 1999

JP 2005-508043 A 24. 03 ,,2005
JP 2006-107463 A 20. 04,,2006

JP 2007-526536 A 13 .09 ,,2007
JP 2009-009587 A 15. 0 1 ,,2009
JP 2010-282649 A 16. 12 2010

JP 201 1-138541 A 14. 07 ,,201 1
JP 4750157 B2 17. 08 ,,201 1

KR 10-0329339 B1 06. 07 2002
KR 10-0602532 B1 19. 07 ,,2006

KR 10-0831472 B1 22. 05 ,,2008

US 05721892A A 24. 02 ,, 1998

US 05859997A A 12. 0 1 ,, 1999

US 05983256A A 09. 11 1999

US 060353 16A A 07. 03 ,,2000
US 2002-0059355 A1 16. 05 ,,2002

US 2003-0050941 A1 13 .03 ,,2003
US 2003-0084082 A1 0 1 . 05 ,,2003
US 2003-0123748 A1 03. 07 2003

us 2003-013 1030 A1 10. 07 ,,2003
us 2004-0054877 A1 18. 03 ,,2004

us 2004-0054878 A1 18. 03 ,,2004

us 2004-0054879 A1 18. 03 ,,2004
us 2004-0059889 A 25. 03 ,,2004

us 2004-0073589 A1 15. 04,,2004
us 2004-0078404 A1 22. 04,,2004
us 2004-0098556 A1 20. 05 2004

us 2004-01 17422 A1 17. 06 ,,2004
us 2004-01336 17 A1 08. 07 ,,2004

us 2004-0139 138 A1 15. 07 ,,2004
us 2004-02 106 16 A1 2 1 . 10 ,,2004
us 2004-0220992 A1 04. 11 2004

us 2005-01083 12 A1 19. 05 ,,2005
us 2009-0265409 A1 22. 10 ,,2009

us 2009-0265523 A1 22. 10 2009
us 2010-00 11042 A1 14. 0 1 ,,2010
us 201 1-0035426 A1 10. 02 ,,201 1

us 6385634 B1 07. 05 ,,2002
us 6418529 B1 09. 07 ,,2002

Form PCT/ISA/210 (patent family annex) (y 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US20 11/067087

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 6961845 B2 0 1 .. 11.,2005

us 7085795 B2 0 1 . 08 .2006
us 7272622 B2 18. 09 ,,2007
us 7340495 B2 04. 03 ,,2008

us 7392275 B2 24. 06 ,,2008
us 7395298 B2 0 1 . 07 ,,2008
us 7395302 B2 0 1 . 07 2008

us 7424505 B2 09. 09 ,,2008
us 7430578 B2 30. 09 ,,2008

us 7509367 B2 24. 03 ,,2009
us 7624138 B2 24. 11,,2009
us 7631025 B2 08. 12 2009

us 7685212 B2 23. 03 ,,2010
us 7725521 B2 25. 05 ,,2010

us 7739319 B2 15. 06 ,,2010
us 7818356 B2 19. 10 ,,2010
us 8185571 B2 22. 05 2012

us 8214626 B2 03. 07 ,,2012
us 8225075 B2 17. 07 ,,2012

o 03-03860 1 A1 08. 05 2003
o 2004-040439 A2 13 .05 ,,2004

wo 2004-040439 A3 13 .05 ,,2004

wo 2005-006 183 A2 20. 0 1 ,,2005
wo 2005-006 183 A3 20. 0 1 ,,2005
wo 97-08610 1 06. 03 1997

Form PCT/ISA/210 (patent family annex) (y 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

