发明名称

一种医用多孔含钛材料表面分子筛涂层材料
及其制备方法

摘要

本发明涉及生物医用材料的表面改性领域，具体为一种医用多孔含钛材料表面分子筛涂层材料及其制备方法。医用多孔含钛材料具有开放多孔状结构，分子筛涂层具有多重孔道结构，具有良好的成骨细胞相容性，可促进成骨细胞的增殖和分化；所述分子筛涂层在材料表面负载均匀、结合牢固，有利于提高材料的抗腐蚀性能，减少材料毒性物质的释放。所述分子筛涂层的制备方法为原位水热合成法，通过控制水热合成溶液组成、合成条件，可调控分子筛硅铝比、晶体取向、晶间孔体积分数，从而达到调控涂层表面形貌、表面能、表面电荷和亲（疏）水性能。该方法适用于复杂结构的材料，且制备条件温和，工艺简单、能耗低，显示出进一步开发成新型硬组织植入材料的潜力。
1. 一种医用多孔含钛材料表面分子筛涂层材料，其特征在于，
医用多孔含钛材料具有开放多孔状结构，三维连通网络结构的网孔尺寸为 1.5 毫米，
孔体积分数为 80%；分子筛涂层在医用多孔含钛材料表面负载均匀，沸石分子筛涂层具有
由沸石分子筛的微孔以及沸石晶体相互搭接形成的微米、亚微米级孔隙所组成的多重孔道
结构，沸石分子筛涂层的孔体积分数为 60%；所述沸石分子筛涂层的多重孔道中，沸石分子
筛微孔的孔径为 0.51~0.56 纳米，所占孔体积分数为 26%；微米级孔隙的孔径为 1~2 微米，
所占孔体积分数为 14%；亚微米级孔隙的孔径为 2~50 纳米，所占孔体积分数为 60%；
或者，医用多孔含钛材料具有开放多孔状结构，孔径为 1.0 毫米，孔体积分数为 70%；
分子筛涂层在医用多孔含钛材料表面负载均匀，沸石分子筛涂层具有由沸石分子筛的微
孔以及沸石晶体相互搭接形成的微米、亚微米级孔隙所组成的多重孔道结构，沸石分子筛
涂层的孔体积分数为 56%；所述沸石分子筛涂层的多重孔道中，沸石分子筛微孔的孔径为
0.51~0.56 纳米，所占孔体积分数为 22%；微米级孔隙的孔径为 1~2 微米，所占孔体积分数为
10%；亚微米级孔隙的孔径为 2~50 纳米，所占孔体积分数为 68%；
或者，医用多孔含钛材料具有开放多孔状结构，三维连通网络结构的网孔尺寸为 1.0
毫米，孔体积分数为 70%；分子筛涂层在医用多孔含钛材料表面负载均匀，沸石分子筛涂层
具有由沸石分子筛的微孔以及沸石晶体相互搭接形成的微米、亚微米级孔隙所组成的多重
孔道结构，沸石分子筛涂层的孔体积分数为 70%；所述沸石分子筛涂层的多重孔道中，沸石
分子筛微孔的孔径为 0.56~0.67 纳米，所占孔体积分数为 45%；微米级孔隙的孔径为 1~1.5
微米，所占孔体积分数为 10%；亚微米级孔隙的孔径为 2~30 纳米，所占孔体积分数为 45%。
2. 按照权利要求 1 所述的医用多孔含钛材料表面分子筛涂层材料，其特征在于，沸石
分子筛包括 ZSM-5 型沸石、silicalite-1 型沸石、TS-1 型沸石、丝光型沸石、Y 型沸石、β
型沸石或 A 型沸石。
3. 按照权利要求 1 所述的医用多孔含钛材料表面分子筛涂层材料，其特征在于，医用
多孔含钛材料包括：纯钛、钛合金、含钛金属间化合物或含钛陶瓷材料。
4. 按照权利要求 3 所述的医用多孔含钛材料表面分子筛涂层材料，其特征在于，含钛
陶瓷材料的结构参数如下：具有三维连通网络结构，网孔尺寸为 1.5 毫米，孔体积分数为
80%。
5. 按照权利要求 1 所述的医用多孔含钛材料表面分子筛涂层材料的制备方法，其特征
在于，采用原位水热合成法在医用多孔含钛材料表面制备分子筛涂层。
一种医用多孔含钛材料表面分子筛涂层材料及其制备方法

技术领域
[0001] 本发明涉及生物医用材料的表面改性领域，具体为一种医用多孔含钛材料表面分子筛涂层及其制备方法。

背景技术
[0002] 在生物医用材料中，多孔含钛材料（如钛、钛合金、含钛金属间化合物和含钛陶瓷材料）凭借其优良的生物相容性、耐磨蚀性、综合力学性能和工艺性能逐渐成为牙齿种植体、骨创伤产品以及人工关节等人造硬组织替代物和修复物的首选材料。多孔含钛医用材料具有开放多孔结构，允许新骨细胞组织在内生长及体液的传输，多孔结构能促进成骨细胞在含钛医用种植材料表面和孔隙中的生长，新的骨组织在植入物孔内生长形成交错连通的连接，能够加强植入物与自体骨的连接强度，并且其强度及杨氏模量可以通过对孔体积分数的调整而自然骨相匹配，因此是较为理想的生物医学植入材料。

[0003] 但是含钛材料的结构和性质与骨组织相差很大，钛是一种生物惰性材料，通常不能像生物活性材料那样与骨组织发生化学键的结合，它与骨的结合是一种机械结合，对机体组织的组织愈合无明显促进作用，愈合时间较长，利用表面改性技术不仅可以提高多孔含钛材料表面的稳定性和耐蚀性，还可以赋予其生物活性，可以使新骨直接沉积于材料表面，而无纤维结缔组织的中隔层。因此有必要对含钛材料表面进行改性，以改善其生物学性能，更好的适应临床需要。

[0004] 针对含钛材料存在的不足，采用表面工程的方法对其进行改性，有望大幅度提高其综合性能，从而更适用于医学应用的要求。近年来，国内外学者就医用含钛材料的表面改性开展了大量的工作，其总体思路是在含钛材料表面生成有机（如蛋白质、酶等）或无机（如羟基磷灰石、二氧化钛等）生物活性涂层。表面改性方法大致分为三类：物理改性法、化学改性法以及生物化学方法。物理改性法如等离子喷涂法等生产成本高，制得的羟基磷灰石涂层与含钛材料之间为物理结合，存在结合力较弱，稳定性差的缺点，且绝大部分喷涂为直线喷涂，对复杂形状的含钛材料容易造成涂层厚度不均匀问题。化学改性法如酸碱处理法等对含钛材料的腐蚀性大，而且制得的二氧化钛涂层结构疏松，结合牢固性有待提高。生物化学方法是将蛋白质或酶等有机高分子物质通过物理吸附、化学键合、以及载体附着等方法结合到含钛材料表面，其优势在于能够直接、有效地提高含钛材料的生物活性，但在如何保证反应后蛋白质或酶等的生物活性方面还需要进行大量的研究。更为重要的是，由于多孔含钛医用材料具有开放多孔状结构，常规改性手段很难在其表面制备负载均匀、结合牢固的改性涂层。迄今为止，还没有一种表面改性的多孔含钛材料成功应用于临床。

[0005] 分子筛是具有均匀孔结构的结晶硅铝酸盐，一般作为催化剂、催化剂载体或吸附剂在石油化工、环保等领域得到了广泛应用。同时，分子筛晶体还具有较好的生物相容性、对生物分子有着极高的固定能力，是一种良好的蛋白、酶固定化以及转移载体且分子筛晶体为化学惰性、无有毒物质释放，表现出其在生物医学领域的潜力。将分子筛晶体以涂层形式负载于多孔含钛材料表面并应用于生物医学领域有以下三点好处：第一，分子筛具有良
好的生物活性及离子交换能力，有利于蛋白质、钙、磷离子在分子筛表面富集，促进骨细胞的形成与分化。第二，分子筛晶体为化学惰性，可以作为防腐涂层，防止多孔含钛材料受体内电解质的侵蚀，而引起的有毒物质释放。第三，分子筛晶体的弹性模量为30～40GPa，与骨头的弹性模量具有更好的匹配性能。基于以上优点，在多孔含钛材料表面制备分子筛涂层层有利于提高材料的生物相容性和化学稳定性，解决多孔含钛材料植入过程中存在的微量离子释放、污染组织、引起发热等不良反应的问题。

发明内容

【0006】本发明的目的在于提供一种医用多孔含钛材料表面分子筛涂层及其制备方法，解决现有多孔含钛材料表面改性技术的涂层与载体结合力较弱，涂层抗腐蚀性、生物活性差等问题。采用本发明方法制备的沸石分子筛涂层在多孔含钛材料表面负载均匀，结合牢固；沸石分子筛涂层具有微孔和沸石晶体之间搭接形成的微米、亚微米的双重孔径结构且具有较强的亲水性，有利于细胞在其表面附着；沸石分子筛涂层负载均匀，结合牢固，有利于提高材料的抗腐蚀性能，减少材料毒性物质的释放。

【0007】本发明的技术方案是：

【0008】一种医用多孔含钛材料表面分子筛涂层材料，所述分子筛涂层具有双重孔道结构，具有良好的成骨细胞相容性，可促进成骨细胞的增殖和分化；所述分子筛涂层在材料表面负载均匀，结合牢固，有利于提高材料的抗腐蚀性能，减少材料毒性物质的释放。所述分子筛涂层的制备方法为原位水热合成法，通过控制水热合成溶液组成、合成条件，可调控分子筛硅铝比、晶体取向、晶间孔径分数，从而达到调控涂层表面性能；表面能，表面电荷和亲（疏）水性能。该方法适用于复杂形貌的材料，且制备条件温和，工艺简单，能耗低，显示了进一步开发成熟型硬组织植入材料的潜力。

【0009】本发明中，分子筛涂层通过原位水热合成的方式生长于多孔含钛材料表面。分子筛涂层在医用多孔含钛材料表面负载均匀，结合牢固；沸石分子筛涂层具有由沸石分子筛的微孔以及沸石晶体相互搭接形成的微米、亚微米级孔隙所组成的双重孔道结构，分子筛晶体之间互相搭接形成的孔隙尺寸为5纳米～50微米（优选为20纳米～10微米），分子筛涂层厚度为20纳米～100微米（优选为50纳米～20微米），沸石分子筛涂层的孔体积分数为10～90%（优选为20～60%）。所述沸石分子筛包括ZSM-5型沸石、silicalite-1型沸石、TS-1型沸石、丝光型沸石、Y型沸石、β型沸石或A型沸石等。所述医用多孔含钛材料包括钛、钛合金、含钛金属间化合物或含钛陶瓷材料。

【0010】本发明医用多孔含钛材料具有开放多孔状结构，孔径为0.1～20毫米，孔体积分数为10～90%。

【0011】沸石分子筛涂层的双重孔道结构中，沸石分子筛微孔的孔径为0.2纳米～2纳米，所占孔体积分数为10～50%；微米级孔道的孔径为1～10微米，所占孔体积分数为20～80%；亚微米级孔道的孔径为2～1000纳米，所占孔体积分数为50～90%。

【0012】本发明中，含钛载体表面原位生长分子筛涂层的方法可以使用中国发明专利申请（申请号：ZL201010199071.0）中提到的多孔碳化硅载体表面高晶间孔隙率ZSM-5型沸石涂层材料及其制备方法。含钛载体表面原位生长分子筛涂层的方法可以使用中国发明专利申请（申请号：ZL 201010199076.3）中提到的多孔碳化硅载体表面单层、小轴取向ZSM-5型沸石层。
石涂层材料及其制备方法。含钛载体表面原位生长分子筛涂层的方法可以使用中国发明专利申请 (申请号 : ZL 200910013245.7) 中提到的碳化硅/陶瓷表面多孔沸石分子筛涂层材料及其制备方法。以上方法通过在医用多孔含钛材料表面预置硅胶体，并控制二次生长溶液的碱度、营养物质浓度及碱金属离子加入量，实现沸石晶体在医用多孔含钛材料表面择优生长并控制沸石晶体形貌。本发明中，含钛载体表面原位生长分子筛涂层的方法还可以使用中国发明专利申请 (申请号 : ZL 201110156980. 0) 中提到的一种基于多孔碳化硅载体的超细分子筛封固化催化剂材料及其制备方法。该方法将胶态分子筛前驱体涂覆在经改性处理的泡沫碳化硅载体表面，通过蒸汽相反应，将分子筛前驱体转化为超细分子筛晶体并实现涂层与载体之间的牢固结合。控制胶态分子筛前躯体的合成条件及添加造孔剂的方法，可以控制分子筛晶体尺寸、硅铝比及晶间孔体积分数。

[0013] 本发明中，泡沫碳化钛陶瓷材料可以使用中国发明专利申请 (申请号 : CN201110061463.5) 中提到的一种 TiC/Ti 复合泡沫材料及其制备方法。将剪裁后的泡沫塑料浸入由含钛粉末、高残碳率树脂、无水乙醇混合制成的浆料中，取出后除去多余浆料，经半固化→高温固化→热解，得到与原始泡沫形状一样的，由碳化钛与热解碳组成的泡沫状骨架。上述泡沫骨架经浸渍包含溶解→烘干→高频感应加热增钛，循环若干次，最终制得 TiC/Ti 复合泡沫材料。该技术工艺简单，无需复杂设备。所制备的复合泡沫材料致密度和抗压强度较高，具有一定的韧性以及良好的焊接性能。

[0014] 本发明具有如下有益效果：

[0015] 1. 本发明中分子筛涂层在多孔含钛材料表面的生长机制是，分子筛晶体在多孔含钛材料表面形成核、生长的过程，分子筛晶体与含钛载体材料之间实现了化学结合，分子筛层负载均匀、结合牢固，有利于提高材料的抗腐蚀性能，减少材料毒性物质的释放。

[0016] 2. 本发明通过在医用多孔含钛材料上预制沸石前躯体溶胶层，沸石晶体可以在载体表面有取向性的生长，互相搭接，形成了双重孔道结构，见图 1b。这样的结构有利于细胞在其表面附着，提高了多孔含钛材料的生物活性。

[0017] 3. 分子筛晶体具有较强的亲水性，有利于蛋白质在其表面吸附；同时，分子筛晶体具有较强的离子交换能力，易于和 Ca、P 离子进行交换，具有良好的成骨细胞相容性，可促进成骨细胞的增殖和分化，显示了进一步开发成新型硬组织植入材料的潜力。

[0018] 4. 本发明中分子筛涂层制备条件温和，对多孔含钛材料的力学性能影响很小，该涂层制备工艺不受载体形状限制，可以在形状复杂的载体表面制备所需的生物活性涂层。

附图说明

[0019] 图 1(a)→(b) 为 ZSM-5/ 泡沫碳化钛复合材料的宏观及微观形态。其中，图 1(a) 图为宏观形态；图 1(b) 图为微观形态。

[0020] 图 2 为 ZSM-5/ 泡沫碳化钛复合材料的物相结构分析结果。

具体实施方式

[0021] 下面通过实施例详述本发明。

[0022] 实施例 1
本实施例所用泡沫碳化钛陶瓷 TiC/Ti 合金材料具有开放多孔状结构，其结构参数如下：三维连通网络结构的空孔尺寸为 1.5 毫米，孔体积分数为 80％。

泡沫碳化钛陶瓷表面 ZSM-5 型沸石分子筛涂层材料的制备方法：

首先，制备沸石前躯体溶胶。将正硅酸乙酯、四丙基氢氧化铵、去离子水按摩尔比 1 : 0.32 : 32 混合。待正硅酸乙酯完全水解后，在反应釜中，在 110℃，水热合成 4h。将泡沫碳化钛前躯体在上述法制备的沸石前躯体溶胶中浸渍，用离心机甩去多余溶胶、室温干燥 12h，沸石前躯体溶胶的厚度为 0.5 ~ 1 微米。配制二次生长溶液，正硅酸乙酯、四丙基氢氧化铵、去离子水按摩尔比 1 : 0.110 : 110 混合。将泡沫碳化钛陶瓷放入上述溶液中，泡沫碳化钛陶瓷与反应溶液的重量比 1 : 10，泡沫碳化钛用聚四氟乙烯支撑架固定在距反应釜底部 1.5 厘米处，溶液体积为 40 毫升，反应釜容积为 100 毫升。水热反应所用的温度为 160℃，时间为 36 小时，压力为溶液汽化产生的自生压力。反应完成之后，试样在 100℃的去离子水中反复清洗数次，再用频率为 40Hz 超声波清洗机清洗 20 分钟，以除去残余溶液和与基体弱连接的分子筛晶体。将清洗后试样放入烘干箱，在 100℃条件下干燥 12 小时。烘干后试样在马弗炉中，600℃焙烧 6 小时（升温速度为 2℃/min，随炉冷却）。得到的 ZSM-5 型分子筛晶粒大小为 1×5×10 微米，分子筛涂层厚度为 10 微米。

如图 1 (a) ~ (b) 所示，本实施例中，沸石分子筛涂层具有由沸石分子筛的微孔以及沸石晶体相互搭接形成的微孔、亚微米级孔隙所组成的多重孔道结构，沸石分子筛涂层的孔体积分数为 60％。

所述沸石分子筛涂层的多重孔道中，沸石分子筛微孔的孔径为 0.51 ~ 0.56 纳米，所占孔体积分数为 26％；微米级孔隙的孔径为 1 ~ 2 微米，所占孔体积分数为 14％；亚微米级孔隙的孔径为 2 ~ 50 纳米，所占孔体积分数为 60％。

如图 1 所示，从 ZSM-5/泡沫碳化钛复合材料的物相结构分析结果可以看出，经过水热合成后，由样品 X 射线衍射峰由原始样品的 TiC 单相，变为 TiC 与 ZSM-5 型分子筛的二相结构，进一步说明了 ZSM-5 型分子筛在泡沫碳化钛表面生长的事实。

实施例 2

本实施例中，泡沫钛合金 (Ti-6Al-1V) 的制备过程如下：将泡沫塑料切割成所需形状后浸泡在含有 Ti-6Al-1V 合金粉末的浆料中，干燥浸浆泡沫塑料使溶剂挥发后，加热使有机海绵体分解或热解，进一步加热使留下的 Ti-6Al-1V 合金粉末烧结，冷却后即得到具有连通孔隙的泡沫 Ti-6Al-1V 合金材料。泡沫钛合金 (Ti-6Al-1V) 具有开放多孔状结构，孔径为 1.0 毫米，孔体积分数为 70％。

泡沫钛合金 (Ti-6Al-1V) 表面 ZSM-5 型沸石分子筛涂层材料的制备方法：

首先，原位生长沸石种胶体。将正硅酸乙酯、四丙基氢氧化铵、去离子水按摩尔比 1 : 0.25 : 29 混合。待正硅酸乙酯完全水解后，将泡沫钛合金及上述溶液置于反应釜中，在 100℃，水热合成 5.5h。原位生长沸石种胶体后，用离心机甩去多余溶胶，室温干燥 12h。配制二次生长溶液，正硅酸乙酯、四丙基氢氧化铵、硝酸铝、氯化钠、去离子水按摩尔比 1 : 0.17 : 0.026 : 0.1 : 200 混合。泡沫碳化钛陶瓷与反应溶液的重量比为 1 : 25，泡沫钛合金用聚四氟乙烯支架固定在距反应釜底部 2 厘米处；溶液体积为 55 毫升，反应釜容积为 100 毫升。水热反应所用的温度为 165℃，时间为 36 小时，压力为溶液汽化产生的自生压力。反应完成之后，试样在 100℃的去离子水中反复清洗数次，再用频率为 40Hz 超声波
清洗机，清洗20分钟，以除去残余溶液和与基体弱连接的沸石晶体。将清洗后试样放入烘干箱，在100℃条件下干燥12小时。烘干后试样在马弗炉中，550℃焙烧6小时（升温速度为2℃/min，随炉冷却）。得到的ZSM-5型分子筛晶粒大小为2.3×1.2×0.8μm³微米，分子筛涂层厚度为2微米。

[0033] 实施例3

本实施例中，沸石分子筛涂层具有由沸石分子筛的微孔以及沸石晶体相互搭接形成的微米、亚微米级孔隙所组成的多重孔道结构，沸石分子筛涂层的孔体积分数为56%。

[0034] 所述沸石分子筛涂层的多重孔道中，沸石分子筛微孔的孔径为0.51～0.56纳米，所占孔体积分数为22%；微米级孔隙的孔径为1～2微米，所占孔体积分数为10%；亚微米级孔隙的孔径为2～50纳米，所占孔体积分数为68%。

[0035] 实施例4

[0036] 本实施例所用多孔含钛金属间化合物（TiB）具有开放多孔状结构，其结构参数如下：三维连通网络结构的网孔尺寸为1.0毫米，孔体积分数为70%。

[0037] 多孔含TiB表面β型沸石分子筛涂层材料的制备方法：

[0038] 首先，利用离子聚合物对多孔TiB材料进行表面改性，具体过程为将多孔TiB材料在50wt%的十六烷基三甲基溴化铵水溶液中浸渍2小时。将正硅酸乙酯、偏铝酸钠、四乙基氢氧化铵、去离子水按摩尔比1：0.5：0.5：20混和，待正硅酸乙酯完全水解后，将经过表面改性的多孔TiB材料及上述溶液置于反应釜中，在140℃水热合成48h，制备超细分子筛前躯体。在其中加入占前躯体8wt%的聚乙烯醇、1.5wt%的聚乙烯醇为造孔剂。将硼酸钛载体在上述胶体中浸渍20分钟，吹去多余浆料，65℃干燥处理2小时。将上述浸渍超细分子筛前躯体的多孔TiB材料用聚四氟支撑架固定在距反应釜底部6.5厘米处；在反应釜内加入50毫升去离子水，反应釜容积为500毫升。蒸汽相转化所用的温度为180℃，时间为48小时，压力为500kPa，压力为蒸汽化产生的自生压力。反应完成之后，试样在100℃的去离子水中反复清洗数次，再用频率为40Hz超声波清洗机，清洗20分钟，以除去残余溶液和与基体弱连接的分子筛晶体。将清洗后试样放入烘干箱，在100℃条件下干燥12小时。烘干后试样在马弗炉中，550℃焙烧6小时（升温速度为2℃/min，随炉冷却）。得到的超细β型分子筛涂层的晶体尺寸为70～30微米，涂层厚度为1～2微米。

[0039] 本实施例中，沸石分子筛涂层具有由沸石分子筛的微孔以及沸石晶体相互搭接形成的微米、亚微米级孔隙所组成的多重孔道结构，沸石分子筛涂层的孔体积分数为70%。

[0040] 所述沸石分子筛涂层的多重孔道中，沸石分子筛微孔的孔径为0.56～0.67纳米，所占孔体积分数为45%；微米级孔隙的孔径为1～1.5微米，所占孔体积分数为10%；亚微米级孔隙的孔径为2～30纳米，所占孔体积分数为45%。

[0041] 实施例结果表明，采用不同外径尺寸、不同材料的医用多孔含钛材料，通过在载体表面预制沸石前躯体溶液，利用低浓度溶液二次生长的方法，可以在载体表面制备具有多重孔道结构的沸石分子筛涂层，通过控制二次生长溶液的组成可以合成不同类型的沸石分子筛涂层。或通过，首先，将胶态分子筛前躯体涂覆在经改性处理的泡烧化钛载体表面，然后，通过蒸汽相处理，将分子筛前躯体转化为超细分子筛晶体并实现涂层与载体之间的牢固结合的方法，制备纳米分子筛涂层。

[0042] 本发明中，分子筛涂层具有多重孔道结构，具有良好的成骨细胞相容性，可促进成骨细胞的增殖和分化；所述分子筛涂层在材料表面负载均匀、结合牢固，有利于提高材料的
抗腐蚀性能，减少材料毒性物质的释放。分子筛涂层的制备方法为原位水热合成法。通过控制水热合成溶液组成、合成条件，可调控分子筛硅铝比、晶体取向，晶间孔体积分数，从而达到调控涂层表面形态、表面能、表面电荷和亲（疏）水性能。该方法适用于复杂形貌的材料，且制备条件温和，工艺简单、能耗低，显示了进一步开发成新型硬组织植入材料的潜力。
图 1(a)

图 1(b)
图 2