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APPARATUS AND METHOD TO IMPROVE SCALABILITY OF GRAPHICS
PROCESSOR UNIT (GPU) VIRTUALIZATION

BACKGROUND

Field of the Invention

{00011 This invention relates generally to the field of computer processors. More
particalarly, the invention velates to an apparatus and method to improve the scalability of

graphics processor unit {GPU) virtualization.

Bescription of the Related Art

{6002] Static memory partitioning allows multiple virtual machines (VMS) to use
portions of physical memory pages concurrently. Under static partitioning, the VMs can execute
concurrently and access their memory in parallel because they use the different addresses.
Bowever static memory partitioning suffers from scalability issues, limiting the number of VMs
which can take advaniage of these techniques.  In data centers, for example, powerful servers
may be required to support tens or even bundreds of VMs concurrently. Basic static memory
partitioning technigues are ineffective in such an implementation.

BRIEY DESCRIPTION OF THE DRAWINGS

{00031 A better understanding of the present invention can be obtained from the
following detailed description in conjunction with the following drawings, in which:

{60841 FIG. 1 is a block diagram of an embodiment of a computer system with &
processor having one or more processor cores and graphics processors;

[0005] FIG. 2 18 a block diagram of one embodiment of a processor having one or more
processor cores, an integrated memory controller, and an integrated graphics processor;

{6006] F1G. 3 is a block diagram of one embodiment of a graphics processor which may
be a discreet graphics processing unit, or may be graphics processor integrated with a plurality of
processing cores;

{00871 FIG. 4 is a block diagram of an embodiment of a graphics-processing engine for a

graphics processor;

[0008] FIG, 5 is a block diagram of another embodiment of a graphics processor;
{0069] FIG. 6 is a block diagram of thread execution logic including an array of

processing elements;
{00161 FiG. 7 illustrates a graphics processor execution unit instruction format according

to an embodiment;
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[6011] FIG. 8 is a block diagram of another embodiment of a graphics processor which
includes a graphics pipeline, a media pipeling, a display engine, thread execution logic, and a
render output pipeline;

[0012] FIG. 9A is a block diagram ilfustrating a graphics processor conmmand format
according to an embodiment;

{6013] FiG. 98 is a block diagram illustrating a graphics processor command sequence
according to an embodirent;

[6014] FIG. 18 illastrates exemplary graphics software architectore for a data processing
systemn according to an embodiment;

{0015] FIG. 11 ilhustrates an exemplary 1P core development system that may be used to
manufacture an integrated circuit to perform operations according to an embodiment;

{6016] FiG. 12 illustrates an exemplary system on a chip integrated circuit that may be

fabricated using one or more 1P cores, according to an embodiment;

{00171 FIG. 13 illastrates an exemplary static giobal graphics memory space
partitioning;
{06018] Fi{s. 14 ithustrates one embodiment of a system architecture which includes

virtual machine (VM) set managerent logic and 3 VM sets-aware GPU scheduler;

{0019] FIG, 15 llustrates graphics memory address (GMADR) partitioning using VM
sets in accordance with one embodiment of the invention;

{00261 FiG, 16 illustrates an exeroplary GMADR layout for a particular VM in
accordance with one embodiment of the invention; and

{6021] FI:8. 17A-B illustrate VM scheduling in accordance with one embodiment of

the invention.

DETAILED DESCRIPTION
{6022] In the following description, for the purposes of explanation, numerous specific
details are sct forth in order to provide a thorough understanding of the embodiments of the
invention described below. 1t will be apparent, however, to one skilled in the art that the
cmbodiments of the invention may be practiced without some of these specific details. In other
instances, well-known structures and devices are shown in block diagram form to avoid
obscuring the underlying principles of the embodiments of the invention.

EXEMPLARY GRAPHICS PROCESSOR ARCHITECTURES AND DATA TYPES

§B6231 System Overview

{00241 Figure 1 is a block diagram of a processing system 100, according to an

embodiment. In various embodiments the system 100 includes one or more processors 102 and

o]
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one or more graphics processors 108, and may be a single processor deskiop system, a
multiprocessor workstation system, or a server system having a large number of processors 152
or processor cores 107, In on embodiment, the systern 100 is 2 processing platform incorporated
within a system-on-a-chip (80C) integrated circuit for use in mobile, handheld, or embedded
devices.

{6025] An embodiment of system 100 can include, or be incorporated within a scrver-
based gaming platform, a game console, including a game and media console, a mobile gaming
console, a handheld game console, or an online game conscle. In some embodiments system
100 is a mobile phone, smart phone, tablet computing device or mobile Internet device. Data
processing system 100 can also include, couple with, or be integrated within a wearable device,
such as a smart watch wearable device, smart eyewear device, augmented reality device, or
virtual reality device. In some embodiments, data processing system 100 is a television or set
top box device having one or more processors 102 and a graphical interface generated by one or
more graphics processors 108,

§30261 In some embodiments, the one or more processors 102 each include one or more
processor cores 107 to process instructions which, when executed, perform operations for system
and user software. In some embodiments, each of the one or more processor cores 107 is
configured to process a specific instruction set 109. In some embodiments, instruction set 109
may facilitate Complex Instruction Set Computing (CISC). Reduced Instruction Set Computing
(RISC), or computing via a Very Long Instruction Word (VLIW). Multiple processor cores 107
may each process a different instruction set 109, which may include instructions to facilitate the
emulation of other instruction sets. Processor core 107 may also include other processing
devices, such a Digital Signal Processor {DISP).

[0027] In some embodiments, the processor 102 includes cache memory 104, Depending
on the architecture, the processor 102 can have a single internal cache or multiple levels of
internal cache. In some embodiments, the cache memory is shared among various components
of the processor 102, In some emmbodiments, the processor 102 also uses an external cache {(e.g.,
a Level-3 (L.3) cache or Last Level Cache (LLC)) (not shown), which may be shared among
processor cores 107 using known cache coherency techniques. A register file 106 is additionally
included in processor 102 which may include different types of registers for storing different
types of data (e.g., integer vegisters, floating point registers, status registers, and an instruction
pointer register). Some registers may be geneval-purpose registers, while other registers may be
specific to the design of the processor 102,

{00281 In some embodiments, processor 102 is coupled 0 a processor bus 1100

transmit communication signals such as address, data, or control signals between processor 102

3
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and other components in system 100. In one embodiment the systermn 100 uses an exemplary
‘hub’ system architecture, including a memory controller hub 116 and an Input Cutput (1/0)
controller hub 130. A memory controlier hub 116 facilitates communication between a memory
device and other components of system 100, while an /O Controller Hub (ICH) 130 provides
connections to /O devices via a local I/O bus. In one embodiment, the logic of the memory
controlier hub 116 is integrated within the processor.

{0029] Memory device 120 can be a dynamic random access memory (DRAM) device, a
static random access memory (SRAM) device, flash memory device, phase-change memory
device, or some other memory device having suitable performance to serve as process memory.
In one embodiment the memory device 120 can operate as systern memory for the system 100, to
store data 122 and instructions 121 for use when the one or more processors 102 executes an
application or process. Memory controller hub 116 also couples with an optional external
graphics processor 112, which may communuicate with the one or more graphics processors 108
in processors 102 to perform graphics and media operations.

{60361 In some embodiments, ICH 130 enabies peripherals to connect to memory device
120 and processor 102 via a high-speed O bus. The I/O peripherals include, but are not limited
to, an audio controller 146, a firmware interface 128, a wircless transceiver 126 (e.g., Wi-Fi,
Bluetooth), a data storage device 124 (e.g., hard disk drive, {lash memory, etc.), and a legacy VO
controlier 140 for coupling legacy {e.g., Personal System 2 (PS/2)) devices to the system. One
or more Universal Serial Bus (USB) controllers 142 connect input devices, such as kevboard and
mouse 144 combinations. A network controller 134 may also couple to ICH 130, In some
embodiments, a high-performance network controtier (not shown) couples to processor bus 110.
It will be appreciated that the system 100 shown is exemplary and not limiting, as other types of
data processing systerns that are differently configured may also be used. For example, the /O
controfier hub 130 may be integrated within the one or more processor 102, or the memory
controller hub 116 and VO controller hub 130 may be integrated into a discreet external graphics
processor, such as the external graphics processor 112,

{00311 Figure 2 is a block diagram of an embodiment of a processor 200 having one or
more processor cores 202A-202N, an integrated memory controiler 214, and an integrated
graphics processor 208, Those elements of Figure 2 having the saroe reference numbers (or
names) as the elerments of any other figure herein can operate or function in any manney similar
to that described elsewhere herein, but are not imited to such. Processor 200 can include
additional cores up to and including additional core 202N represented by the dashed lined boxes.
Each of processor cores 202A-202N includes one or more internal cache units 204A-204N. In

some embodiments each processor core also has access to one or more shared cached units 206.
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{60321 The internal cache units 204A-204N and shared cache units 206 represent a cache
memory hierarchy within the processor 200. The cache memory hierarchy may include at least
oune level of instruction and data cache within each processor core and one ot moore levels of
shared roid-level cache, such as a Level 2 (1.2), Level 3 (1.3), Level 4 (1.4), or other levels of
cache, where the highest level of cache before external memory is classified as the LLC. In
some embodiments, cache coherency logic maintains coherency between the various cache units
206 and 204A-204N.

{0033] In some embodiments, processor 200 may also inciude a set of one or more bus
controller units 216 and a system agent core 210. The one or more bus controller units 216
manage a set of peripheral buses, such as one or more Peripheral Component Interconnect buses
{e.g., PCI, PCI Express). System agent core 210 provides management functionality for the
various processor components. In some embodiments, system agent core 210 inchudes one or
more integrated memory controlicrs 214 to manage access to various external mermory devices
(not shown).

{30341 In some embodiments, one or more of the processor cores 202A-202N incinde
support for simultancous multi-threading. In such embodiment, the system agent core 216
includes components for coordinating and operating cores 202A-202N during multi-threaded
processing. System agent core 210 may additionally include a power control unit (PCU), which
includes logic and components to regulate the power state of processor cores 202A-202N and
graphics processor 208,

{0035] In some emboduments, processor 200 additionally inclades graphics processor
2038 to execute graphics processing operations. In some embodiments, the graphics processor
208 couples with the set of shared cache units 206, and the system agent core 210, including the
one or more integrated memory controllers 214, Tn some embodiments, a display controller 211
is coupled with the graphics processor 208 to drive graphics processor output 1o one or more
coupled displays. In some erabodiments, display controlier 211 may be a scparate module
coupled with the grapbics processor via at least one interconnect, or may be integrated within the
graphics processor 208 or systern agent core 210

{0036] In some embodiments, a ring based interconnect unit 212 is used to couple the
internal coroponents of the processor 200. However, an aliernative interconnect unit may be
used, such as a point-to-point interconnect, a switched interconnect, or other techniques,
including techniques well known in the art. In some embodiments, graphics processor 208
couples with the ring interconnect 212 via an IO link 213,

{00371 The exemplary VO link 213 represents at least one of nultiple varicties of /O

interconnects, including an on package I/0 interconnect which facilitates communication
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between various processor components and a high-performance embedded memory module 218,
such as an eDRAM module. In some embodiments, cach of the processor cores 202-202N and
graphics processor 208 use embedded memory modules 218 as a shared Last Level Cache.
[0038] In some embodiments, processor cores 202A-202N are horogenous cores
executing the same instruction set architectare. In another embodiment, processor cores 202A-
202N are heterogeneous in terms of instruction set architecture (ISA}, where one or more of
processor cores 202A-N execute a first instruction set, while at Jeast one of the other cores
executes a subset of the first instruction set or a different instruction set. In one embodiment
processor cores 202A-202N are heterogeneous in terms of microarchitecture, where one or more
cores having a relatively higher power consurnption couple with one or meore power cores having
a lower power consumption. Additionally, processor 200 can be implemented on one or more
chips or as an Sof_ integrated circuit having the tlustrated components, in addition to other
CcoOmponenis.
{0039] Figure 3 is a block diagram of a graphics processor 300, which may be a discrete
graphics processing unit, or may be a graphics processor integrated with a plurality of processing
cores. In some embodiments, the graphics processor communicates via a memory mapped VO
interface to registers on the graphics processor and with cornmands placed into the processor
memory. In some embodiments, graphics processor 300 includes a memory interface 314 to
access memory. Memory interface 314 can be an interface to local memory, ong or more
internal caches, one or moore shared external caches, and/or 1o system memory,
{00401 In some embodiments, graphics processor 300 also includes a display controlier
302 to drive display output data to a display device 320. Display controiler 302 includes
hardware for one or more overlay planes for the display and composition of multpie layers of
video or user interface elerents. In some embodiments, graphics processor 300 inchudes a video
codec engine 306 to encode, decode, or transcode media to, from, or hetween one or more media
encoding formats, including, but not hmited to Moving Picture Experts Group (MPE() formats
such as MPEG-2, Advanced Video Coding (AVC) formats such as H.264/MPEG-4 AVC, as

«ell as the Society of Motion Picture & Television Engineers (SMPTE) 421M/VC-1, and Joint
Photographic Experts Group (JPEG) formats such as JPEG, and Motion JPEG (MJPEG) formats.
{0041] in some embodiments, graphics processor 300 includes a block image transfer
(BLIT) engine 304 to performo two-dimensional (2D) rasterizer operations including, for
example, bit-boundary block transfers. However, in one embodiment, 2D graphics operations
are performed using one or more components of graphics processing engine (GPE) 310. In some
embodiments, graphics processing engine 310 is a compute engine for performing graphics

operations, inciuding three-dimensional (3D) graphics operations and media operations.
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[0042] In some embodiments, GPE 310 includes a 3D pipeline 312 for performing 3D
operations, such as rendering three-dimensional images and scenes using processing functions
that act upon 3D primitive shapes (¢.g., rectangle, triangle, etc.). The 3D pipeline 312 includes
programumable and fixed function elements that perform various tasks within the element and/or
spawn execution threads to a 3D/Media sub-system 315. While 3D pipeline 312 can be used to
perform media operations, an embodiment of GPE 310 also includes a media pipeline 316 that is
specifically used to perform media operations, such as video post-processing and image
enhancement.

{0043] In some embodiments, media pipeline 316 includes fixed function or
programmable logic units to perform one or more specialized media operations, such as video
decode acceleration, video de-interlacing, and video encode acceleration in place of, or on behalf
of video codec engine 306. In some embodiments, media pipeline 316 additionally includes a
thread spawning unit to spawn threads for execution on 31/Media sub-systern 315, The
spawrned threads perform computations for the media operations on one or more graphics
execution units inciuded in 3D/Media sub-system 315.

{0044] In some embodiments, 3D/Media subsystern 315 includes logic for executing
threads spawned by 3D pipeline 312 and media pipeline 316, In one embodiment, the pipelines
send thread execution requests to 3D/Media subsystemn 3135, which includes thread dispateh logic
for arbitrating and dispatching the various requests to available thread execution resources. The
cxecution resources include an array of graphics execution units to process the 3D and media
threads. In some embodiments, 3D/Media subsystem 315 includes one or more infernal caches
for thread instructions and data. In some embodiments, the subsystemn also includes shared
memory, including registers and addressable memory, to share data between threads and to store
output data.

{6045] ID/Media Processing

{0046] Figure 4 is a block diagram of a graphics processing engine 410 of a graphics
processor in accordance with some embodiments. In one embodiment, the GPE 410 is a version
of the GPE 310 shown in Figare 3. Elements of Figure 4 having the same reference mimbers
{or narnes) as the elements of any other figure herein can operate or functon in any manney
similar to that described elsewhere herein, but are not limited to such.

{60471 In some embodiments, GPE 410 couples with a command streamer 403, which
provides a command stream to the GPE 3D and media pipelines 412, 416. In some
embodiments, command streamer 403 is coupled to memory, which can be system memory, or
one or more of internal cache memory and shared cache memory. In some embodiments,

command steamer 403 receives commands from the memory and sends the commands to 3D
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pipeline 412 and/or media pipeline 416. The commands are directives fetched from a ring
buffer, which stores cornmands for the 3D and media pipelines 412, 416. In one embodiment,
the ring buffer can additionally include batch command buffers storing batches of multiple
commands. The 3D and media pipelines 412, 416 process the commands by performing
operations via logic within the respective pipelines or by dispatching one or more execution
threads to an cxecution unit array 414. In some embodiments, execution unit array 414 is
scalable, such that the array includes a variable number of execition units based on the target
power and performance level of GPE 410.

{0048] In some embodiments, a sampling engine 430 couples with memory (e.g., cache
memory or system memory) and execution unit array 414, In some embodiments, sampling
engine 430 provides a memory access mechanism for execution unit array 414 that allows
execution array 414 to read graphics and media data from memory. In some embodiments,
sampling engine 430 includes logic to perform specialized image sampling operations for media.
{00491 In some embodiments, the specialized media sampling logic in samopling engine
436 includes a de-notse/de-interlace module 432, a motion estimation module 434, and an tmage
scaling and filtering module 436. In some embodiments, de-noise/de-interlace module 432
includes logic o perform one or more of a de-noise or a de-interlace algorithm on decoded video
data. The de-interlace logic combines aliernating fields of interlaced video content 1110 a single
fame of video. The de-noise logic reduces or removes data noise from video and image data. In
some embodiments, the de-noise logic and de-interlace logic are motion adaptive and use spatial
or temporal filtering based on the amount of motion detected in the video data. In some
embodiments, the de-noise/de-interiace module 432 inchudes dedicated motion detection logic
(e.g., within the motion estimation engine 434).

{0050] in some embodiments, motion estirnation engine 434 provides hardware
acceleration for video operations by performing video acecleration functions such as motion
vector estimation and prediction on video data. The motion estimation engine determines
motion vectors that describe the transformation of image data hetween successive video frames.
In some embodiments, a graphics processor media codec uses video motion estimation engine
434 to perform operations on video at the macro-block level that may otherwise be too
computationally intensive to perform with a general-purpose processor. In some embodiments,
motion estimation engine 434 is generally available to graphics processor components to assist
with video decode and processing functions that are sensifive or adaptive to the divection or
magnitude of the motion within video data.

{00511 In some embodiments, image scaling and filtering module 436 performs image-

processing operations (o enhance the visaal guality of generated images and video. In some
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embodiments, scaling and filtering module 436 processes image and video data during the
sampling operation before providing the data to execution unit array 414.

{0052] In some embodiments, the GPE 410 includes a data port 444, which provides an
additional mechanism for graphics subsystems to access memory. In some embodiments, data
port 444 facilitates memory access for operations including render target writes, constant buffer
reads, scratch memory space reads/writes, and media surface accesses. In some embodiments,
data port 444 includes cache memory space to cache accesses to memory. The cache memory
can be a single data cache or separated into nultiple caches for the multiple subsystems that
access memory via the data port (e.g., a render buffer cache, a constant buffer cache, etc.). In
some embodiments, threads executing on an execution unif in cxecution unit array 414
communicate with the data port by exchanging messages via a data distribution interconnect that
couples each of the sub-systems of GPE 410.

§B6531 Execution {nits

{00341 Figure 5 is a block diagram of another embodiment of a graphics processor 500.
Elements of Figare 8 having the same reference mumbers (or names) as the elements of any
other figure herein can operate or function in any manner sitnilar to that described elscewhere
herein, but are not limited to such.

{0055] In some embodiments, graphics processor 500 inciudes a ring interconnect 502, a
pipeline front-end 504, a media engine 537, and graphics corgs 380A-580N. In some
embodiments, ring interconnect 502 couples the graphics processor to other processing units,
including other graphics processors or one or more general-purpose processor cores. In some
cmbodiments, the graphics processor is one of many processors integrated within a multi-core
processing system.

{00586] In some embodiments, graphics processor 500 receives batches of commands via
ring interconnect 502. The incoming commands are interpreted by a command streamer 503 in
the pipeline front-end 504. In some embodiments, graphics processor 50 includes scalable
execution logic to perform 3D geometry processing and media processing via the graphics
core(s} 380A-5B0N. For 3D geometry processing commmands, command streamner 503 supplies
commands to geometry pipeline 536. For at least some media processing commands, command
streamer 503 supplics the commands to a video front end 534, which couples with a media
engine 537. In some embodiments, media engine 337 includes a Video Quality Engine (VQE)
530 for video and image post-processing and a multi-format encode/decode (MFX) 533 engine
to provide hardware-accelerated media data encode and decode. In some embodiments,
geonmetry pipeline 536 and media engine 337 each generate execution threads for the thread

execution resources provided by at least one graphics core S80A.
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[0037] In some embodiments, graphics processor 500 includes scalable thread execution
resources featuring modular cores 380A-580N (sometimes referred to as core shices), cach
baving multiple sub-cores 350A-550N, 560A-560N (sometimes referred to as core sub-slices).
In some embodiments, graphics processor 500 can have any number of graphics cores 580A
through 580N, In some embodiments, graphics processor 300 includes a graphics core 580A
having at least a first sub-core S50A and a second core sub-core 560A. In other embodiments,
the graphics processor is a low power processor with a single sub-core (e.g., 350A). In some
embodiments, graphics processor 500 includes mulaple graphics cores S80A-580N, each
including a set of first sub-cores 550A-550N and a set of second sub-cores 560A-560N. Each
sub-core in the set of first sub-cores 550A-350N includes at least a first set of execution uniis
352A-552KN and media/texture samplers 354A-554N. Each sub-core in the set of second sub-
cores 560A-360N includes at east a second set of execution units 562A-362N and samplers
564A-5364N. In some embodiments, each sub-core SS0A-550N, 560A-560N shares a set of
shared resources 370A-570N. In some embodiments, the shared resources inchide shared cache
memory and pixel operation logic. Other shared resources may also be included in the various
cmbodiments of the graphics processor.

{0058] Figure 6 illustrates thread execution logic 600 including an array of processing
elements ernployed in some embodiments of a GPE. Elements of Figare 6 having the same
refercnce numbers {or names} as the elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but are not limited to such.

{0059] In some emboduments, thread execution logic 600 includes a pixel shader 602, a
thread dispatcher 604, instruction cache 606, a scalable execution unit array including a plurality
of cxecution units H08A-608N, a sampler 610, a data cache 612, and a data port 614. In one
embodiment the included components are interconnected via an interconnect fabric that links to
each of the components. In some embodiments, thread execution logic 600 includes one or more
connections [0 memory, such as system memory or cache memory, through one or more of
instruction cache 606, data port 614, sampler 610, and exccution unit array 608 A-608N. In some
embodiments, each execution unit (e.g. 608A) is an individual vector processor capable of
executing multiple simultancous threads and processing mulaple data elements in paraliel for
cach thread. In some embodiments, execution unit array 608 A-608N includes any number
individual execution units.

{0060] in some embodiments, execution unit array 608A-608N is primarily used to
execute “shader” programs. In some embodiments, the execution units in array 608A-608N
cxecute an instruction st that includes native support for many standard 3D graphics shader

instructions, such that shader programs from graphics libraries (e.g., Direct 3D and Open(L) are
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executed with a minimal translation. The execution vnits support vertex and geometry
processing (€.g., vertex programs, geomeiry programs, vertex shaders), pixel processing (e.g2.,
pixel shaders, fragment shaders) and general-purpose processing (€.g., compute and media
shaders).

{0061] Each execution unit in execution unit array 608A-608N operates on arrays of data
elements. The number of data elements is the “execution size,” or the number of channels for
the instruction.  An exccution channel is a logical unit of execution for data element access,
masking, and flow control within instructions. The mumber of channels may be independent of
the number of physical Arithmetic Logic Units (ALUs) or Floating Point Units (FPUs) for a
particular graphics processor. In some embodiments, exccution units 608A-608N support
integer and floating-point data types.

{60621 The execution unit instruction sct inchudes single instruction multiple data
(5IMDB) instructions. The various data elements can be stored as a packed data type in a register
and the execution unit will process the various elements based on the data size of the clements.
For example, when operating on a 256-bit wide vecior, the 256 bits of the vector are stored in a
register and the execution unit operates on the vector as four separate 64-bit packed data
clements (Quad-Word (QW) size data clements), cight separate 32-bit packed data clements
(Double Word (DW) size data clements), sixteen separate 16-bit packed data slements (Word
(W) size data elements), or thirty-two scparate §-bit data clements (byte (B) size data elements).
However, different vector widths and register sizes arc possible.

{6063] One or more internal instruction caches {e.g., 606) are included in the thread
execution logic 600 to cache thread instructions for the execution units. In some embodiments,
one or more data caches (e.g., 612) are included to cache thread data during thread execution. In
some embodiments, sampler 610 i3 included to provide texture sampling for 3D operations and
media sampling for media operations. In some embodiments, sampier 610 includes specialized
texture or media sampling functionality {o process texture or media data during the sampling
process before providing the sampled data to an executfion unit.

{00641 During execution, the graphics and roedia pipelines send thread initiation requests
to thread execution logic 600 via thread spawning and dispatch logic. In some embodiments,
thread execution logic 600 includes a local thread dispatcher 604 that arbitrates thread initiation
requests from the graphics and media pipelines and instantiates the requested threads on one or
more execution units 508A-608N. For example, the geometry pipeline (e.g., 536 of Figure 5)
dispatches vertex processing, tessellation, or geometry processing threads to thread exccution
logic 600 (Figure 6). In some embodiments, thread dispatcher 604 can also process runtime

thread spawning requests from the executing shader programs.
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[0065] Oncee a group of geometric objects has been processed and rasterized into pixel
data, pixel shader 602 is invoked to further compute output information and cause results to be
written to output surfaces (c.g., color buffers, depth buffers, stencil buffers, cte.). In some
embodiments, pixel shader 602 calculates the values of the various vertex attributes that are to be
interpolated across the rasterized object. In some embodiments, pixel shader 602 then executes
an application programming interface {APH-supplied pixel shader program. To execute the pixel
shader program, pixel shader 602 dispatches threads to an execution unit (e.g., 6USA) via thread
dispatcher 604. In some embodiments, pixel shader 602 uses texture sampling logic in sampler
610 to access texture data in texture maps stored in memory. Arithmetic operations on the
texture data and the input geometry data compute pixel color data for each geometric fragment,
or discards one or more pixels from further processing.

{03066] In some embodiments, the data port 614 provides a memory access mechanism
for the thread execution logic 600 output processed data to memory for processing on a graphics
processor output pipeline. In some embodiments, the data port 614 includes or couples to one or
more cache memories (e.g., data cache 612) to cache data for memory access via the data port.
{0067 ] Figure 7 is a block diagram illustrating a graphics processor instruction formats
700 according to some embodimenis. In one or more embodiment, the graphics processor
execution units support an instruction set having instructions in multiple formats. The solid lined
boxes illustrate the components that are generally included in an execution unit instruction, while
the dashed lines include componcents that arc optional or that are only included in a sub-set of the
instructions. In some embodiments, instruction format 700 described and illustrated are macro-
instroctions, in that they are instructions supplied to the execution unit, as opposed {0 micro-
operations resuiting from instruction decode once the instruction is processed.

[0068] In some embodiments, the graphics processor execution units natively support
instructions in a 128-bit format 710. A 64-bit compacted instruction format 730 is available for
somce instructions based on the selected instruction, instruction options, and number of operands.
The native 128-bit format 710 provides access to all instruction options, while some options and
operations are restricted in the 64-bit format 730. The native instructions available in the 64-bit
format 730 vary by embediment. In some embodiments, the instraction is compacted in part
using a set of index values in an index field 713. The execution unit hardware refercnces a set of
compaction tables based on the index values and uses the compaction table outputs to veconstruct
a native instruction in the 128-bit format 710

{6069] For cach format, instruction opcode 712 defines the operation that the execution
unit is to perform. The exccution units execute cach instruction in parallel across the multiple

data elements of cach operand. For example, in response to an add instruction the execution unit
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performs a simultancouns add operation across each color channel representing a texture clement
or picture element. By default, the execution unit performs each instruction across ali data
channels of the operands. In some embodiments, instruction control ficld 714 enahles control
over cerfain execution options, such as channels selection (e.g., predication) and data channel
order {e.g., swizzle). For 128-bit instructions 710 an exec-size field 716 limits the number of
data channels that will be executed in parallel. In some embodiments, exec-size field 716 is not
available for use in the 64-bit compact instruction format 730.

{60701 Some execution unit instructions have ap to three operands including two source
operands, srcQ 722, secl 722, and one destination 718, In some embodiments, the execution
uniis support dual destination instructions, where one of the destinations is implied. Data
manipulation instructions can have a third source operand (e.g., SRC2 724), where the
instruction opcode 712 determines the number of source operands. An instruction’s last source
operand can be an immediate {.g., hard-coded) value passed with the instruction.

{60713 In some embodiments, the 128-bit instruction format 710 inclades an
access/address mode information 726 specifving, for example, whether direct register addressing
made or indirect regisier addressing mode is used. When direct register addressing mode is
used, the register address of one or more operands is directly provided by bits in the instruction
710.

{60721 in some embodiments, the 12&-bit instruction format 710 includes an
accessfaddress mode field 726, which specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode to define a data access alignment for the
instruction. Some embodiments support access modes including a 16-byte aligned access mode
and a I-byte aligned access maode, where the byte alighment of the access mode determines the
access alignment of the instruction operands. For example, when in a first mode, the instruction
710 may use byte-aligned addressing for source and destination operands and when in a second
mode, the instruction 710 may use 16-byte-aligned addressing for all source and destination
operands.

{60731 In one embodiment, the address mode portion of the access/address mode field
726 determines whether the instruction is to use direct or indirect addressing. When direct
register addressing mode is used bits in the instruction 710 directly provide the register address
of one or more operands. When indirect register addressing mode is used, the register address of
one or more operands may be computed based on an address register valoe and an address
tmmediate field in the instruction.

{00741 In some embodiments instructions are grouped based on opcode 712 bit-fickds to

simplify Opcode decode 740. For an 8-bit opcode, bits 4, 5, and 6 allow the execution unit to
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determine the type of opcode. The precise opoode grouping shown is merely an example. In
some embodiments, a move and logic opcode group 742 includes data movement and logic
imstructions (¢.g.. move (mov), compare (cmp)). In some embodiments, move and logic group
742 shares the five most significant bits (MSB), where move (roov) instructions are in the form
of §000xxxxb and logic instructions are in the form of 000 xxxxb. A flow control instruction
group 744 (e.g., call, jump (jmp)) includes instructions in the form of 0010xxxxb (c.g., 0x20). A
miscellancous instruction group 746 includes a mix of instructions, including synchronization
instroctions {e.g., wait, send) in the form of 001 1xxxxb (e.g., 0x30). A parallel math instruction
group 748 includes component-wise arithmetic instructions {(e.g., add, multply {mub)) in the
form of 0100xxxxb (e.g., 0x40). The parallel math group 748 performs the arithmetic operations
in paraliel across data channels. The vector roath group 750 includes arithmetic instructions
(e.g., dp4) in the form of 0101xxxxb (e.g., 0x50). The vector math group performs arithmetic

such as dot product calculations on vector operands.

{G6075] Graphics Pipeline
[0076] Figure 8 is a block diagram of another embodiment of a graphics processor 800.

Elements of Figure 8 having the same reference numbers {or names) as the elements of any
other figure herein can operate or function in any manner similar to that described elsewhere
herein, but are not limited to such.

{60771 In some embodiments, graphics processor 800 includes a graphics pipeline 820, a
media pipeline 830, a display engine 844, thread execution logic 850, and a render output
pipeline 870. In some embodiments, graphics processor 800 is a graphics processor within a
multi-core processing sysiem that includes one or more general purpose processing cores. The
graphics processor is controlled by register writes to one or more control registers (not shown} or
via conunands issued to graphics processor 300 via a ring interconnect 802, In some
embodiments, ring interconnect 802 couples graphics processor 800 to other processing
components, such as other graphics processors or general-purpose processors. Commands from
ring tnterconnect 802 are interpreted by a conunand streamer 803, which supplies instructions to
individual components of graphics pipeline 820 or media pipeline 830.

{30781 In some embodiments, command streamer 803 directs the operation of a vertex
fetcher 805 that reads vertex data from memory and executes veriex-processing commands
provided by coramand streamer 803, In some embodiments, vertex fetcher 803 provides vertex
data to a vertex shader 807, which performs coordinate space transformation and lighting
opcrations to cach vertex. In some embodiments, vertex fetcher 805 and vertex shader 807
execute vertex-processing instructions by dispatching execution threads to execution units 8324,

8528 via a thread dispatcher 83 1.
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{60791 In some embodiments, exccution units 852A, 8528 are an array of vector
processors having an instruction set for performing graphics and media operations. In some
cmbodiments, exccution units 852A, 8528 have an attached 1.1 cache 831 that is specific for
cach array or shared between the arrays. The cache can be configured as a data cache, an
instruction cache, or a single cache that is partitioned 1o contain data and instractions in different
partitions.

{00801 In some emboduments, graphics pipeline 820 includes tessellation components to
perform hardware-accelerated tesseliation of 3D objects. In some embodiments, a
programmabile hull shader 811 configures the tessellation operations. A programmable domain
shader 817 provides hack-end evaluation of tessellation output. A tesscllator 813 operates at the
direction of hull shader 811 and contains special purpose logic to generate a set of detailed
geometric objects based on a coarse geometric model that is provided as input to graphics
pipeline 820. In some embodiments, if tessellation is not used, tessellation components 811,
813, 817 can be bypassed.

[6081] In some embodiments, complete geometric objects can be processed by a
geometry shader 819 via one or more threads dispatched to execution units 852A, 8528, or can
proceed directly to the clipper 829. In some embodiments, the geometry shader operates on
entire geometric objects, rather than vertices or patches of vertices as in previous stages of the
graphics pipeline. If the tessellation is disabled the geometry shader 819 receives input from the
vertex shader 807, In some embodiments, gocometry shader 819 is programmable by a geometry
shader program to perform geometry tessellation if the tesscllation units are disabled.

[0082] Before rasterization, a clipper 829 processes vertex data. The clipper 829 may be
a fixed function clipper or a programmabile clipper having clipping and geometry shader
functions. In some embodiments, a rasterizer and depth test component 873 in the render output
pipeline 870 dispatches pixel shaders to convert the geometric objects into their per pixel
representations. In some embodiments, pixel shader logic is included in thread execution logic
850. In some embodiments, an application can bypass the rasterizer 873 and access un-
rasterized vertex data via a stream out unit §23.

{0083] The graphics processor 800 has an interconnect bus, interconnect fabric, or some
other interconnect mechanism that allows data and message passing amongst the major
components of the processor. In some embodiments, execution units 8524, §52B and associated
cache(s) 851, texture and media sampler 834, and texture/sampler cache 858 interconnect via a
data port 856 to perform memory access and communicate with render output pipeline
components of the processor. In some embodiments, sampler 854, caches 851, 858 and
execution units 852A, 852B each have separate memory access paths.

is



WO 2016/205975 PCT/CN2015/000462

[0084] In some embodiments, render output pipeline 870 contains a rasterizer and depth
test component 873 that converts vertex-based objects into an associated pixel-based
representation. In some embodiments, the rasterizer logic includes a windower/masker unit to
perform figed function triangle and line rasterization. An associated render cache 878 and depth
cache 879 are also available in some embodiments. A pixel operations component 877 performs
pixel-based operations on the data, though in some instances, pixel operations associated with
21 operations (e.g. bit block image transfers with blending) are performed by the 2D engine 841,
or substituted at display time by the display controller 843 using overlay display planes. In some
embodiments, a shared L3 cache 875 is available to all graphics components, allowing the
sharing of data without the use of main systerm memory.

{0085] In some embodiments, graphics processor media pipeline 830 includes a media
engine 837 and a video front end 834, In some emabodiments, video front end 834 receives
pipeline commands from the conunand strearaer 803, In some embodiments, media pipeline 830
includes a separate command streamer. In some embodiments, video front-end 834 processes
media commands before sending the command to the media engine 837. In some embodiments,
media engine 337 includes thread spawning functionality to spawn threads for dispatch to thread
execution logic 850 via thread dispatcher 831.

{0086] in some embodiments, graphics processor 800 includes a display engine 840, In
some embodiments, display engine 840 is external to processor 800 and couples with the
graphics processor via the ring interconnect 802, or some other intercounect bus or fabric. In
some embodiments, display engine 840 includes a 2D engine 8§41 and a display controller §43.
In some embodiments, display engine 840 contains special purpose logic capable of operating
independently of the 3D pipeling. In some embodiments, display controller 843 couples with a
display device {not shown), which may be a systern integrated display device, as in a laptop
compater, or an external display device attached via a display device connector.

{0087] In some embodiments, graphics pipeline 820 and media pipeling 830 are
configurable to perform operations based on multiple graphics and media programming
interfaces and are not specific to any one application programming interface (AP, In some
embodiments, driver software for the graphics processor translates AP calls that are specificto a
particular graphics or media library into commands that can be processed by the graphics
processor. In some embodiments, support is provided for the Open Graphics Library (OpenGL)
and Open Computing Language (Open’L) from the Khronos Group, the Divect3D library from
the Microsoft Corporation, or support may be provided to both OpenGL and D3D. Support may

also be provided for the Open Source Computer Vision Library (Open(CV). A future AP with a

16



WO 2016/205975 PCT/CN2015/000462

compatible 3D pipeline would also be supported if a mapping can be made from the pipeline of
the future APT to the pipeline of the graphics processor.

[0088] Graphics Pipeline Programyning

[0089] Figure 9A is a block diagram illastrating a graphics processor command format
900 according to some embodiments. Figare 9B is a block diagram illustrating a graphics
processor command sequence 910 according to an erabodiment. The solid lined boxes in Figure
94 illustrate the components that are generally included in a graphics command while the dashed
lines include components that are optional or that are only included in a sub-set of the graphics
commands. The exerapiary graphics processor command format 900 of Figure 9A includes data
fields to wdentify a target clicnt 902 of the command, a command operation code (opcode) 904,
and the relevant data 906 for the command. A sub-opcode 905 and a command size 908 are also
included in some commands.

{00901 In some embodiments, client 902 specifies the client unit of the graphics device
that processes the command data. In some embodiments, a graphics processor command parser
examines the client ficld of each command to condition the further processing of the command
and route the command data to the appropriate client unit. In some embodiments, the graphics
processor client units inchide a memory interface unit, a render unit, a 2D unit, a 3D unit, and a
media umt. Each client unit has a corresponding processing pipeline that processes the
commands. Once the command is received by the client unit, the client unit reads the opcode
304 and, if present, sub-opcode 905 to determine the operation to perform. The client unit
performs the cornmand using information in data field 906. For some comands an explicit
command size 908 is expected to specify the size of the command. In some embodiments, the
command parser automatically determines the size of at least some of the commands based on
the command opcode. In some emmbodiments commands are aligned via rmultiples of a double
word.

{60921] The flow diagram in Figure 9B shows an exemplary graphics processor
command sequence 910, In some embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor uses a version of the conmmand
sequence shown to set up, execute, and terminate a set of graphics operations. A sample
command sequence is shown and described for purposcs of example only as embodiments are
not limited to these specific commands or to this command sequence. Morcover, the commands
may be issued as batch of commands in 2 command sequence, such that the graphics processor
will process the sequence of comumands in at least partially concurrence.

{00921 In some embodiments, the graphics processor command sequence 910 may begin

with a pipeline flush command 912 1o cause any active graphics pipeling to complete the
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currently pending commands for the pipeline. In some embodiments, the 3D pipeline 922 and
the media pipeline 924 do not operate concwrrently. The pipeline flush is performed to cause the
active graphics pipeline to complete any pending commands. In response to a pipeline flush, the
command parser for the graphics processor will pause command processing until the active
drawing engines complete pending operations and the relevant read caches are invalidated.
Optionally, any data in the render cache that is marked ‘dirty’ can be flushed to memory. In
some embodiments, pipeline flush comumand 912 can be used for pipeline synchronization or
before placing the graphics processor into a low power state.

{0093] In some embodiments, a pipeline select command 913 is used when a command
scquence requires the graphics processor to explicitly switch between pipelines. in some
embodiments, a pipeline select cormmand 913 is required only once within an execution context
before issuing pipeline commands unless the context is to issue commands for both pipelines. In
some embodiments, a pipeline flush command is 912 is required immediately before a pipeline
switch via the pipeline select coramand 913,

[0094] In some embodiments, a pipeline control command 914 configures a graphics
pipeline for operation and is used to program the 3D pipeline 922 and the media pipeline 924. In
some embodiments, pipeline control comumnand 914 configures the pipeline state for the active
pipeline. In one embodiment, the pipeline control command 914 is used for pipeline
synchronization and to clear data from ong or more cache memorics within the active pipeline
hefore processing a batch of commands.

{30931 In some embodiments, return buffer state commands 916 ave used to configure a
set of return buffers for the respective pipelines to write data. Some pipeline operations require
the allocation, selection, or configuration of one or more return buffers into which the operations
write intermediate data during processing. In some embodiments, the graphics processor also
uses one or more returm butfers to store cutput data and to perform cross thread communication.
In some embodiments, the return buffer state 916 includes sclecting the size and number of
return buffers to use for a set of pipeline operations.

{0096] The remaining commands in the command sequence differ based on the active
pipeline for operations. Based on a pipeline determination 920, the command sequence is
tatlored to the 3D pipeline 922 beginning with the 3D pipeline state 930, or the media pipeline
924 beginning at the media pipeline state 940.

{0097] The commands for the 3D pipeline state 930 include 3D state setting commands
for vertex buffer state, vertex clement state, constant color state, depth buffer state, and other
state variables that are to be configured before 3D primnitive conumnands are processed. The

values of these commands are determined at least in part based the particular 30 APl inuse. In
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some embodiments, 3D pipeline state 930 commands are also able to selectively disable or
bypass certain pipeline elements if those clements will not be used.

{G098] In some embodiments, 3D primitive 932 command is used to submit 3D
primitives to be processed by the 3D pipeline. Commands and associated parareters that are
passed to the graphics processor via the 3D primitive 932 command are forwarded to the vertex
fetch function in the graphics pipeline. The vertex fetch function uses the 3D primitive 932
comrmand data to gencrate vertex data structures. The vertex data structures are stored in one or
more return buffers. In some embeodiments, 3D primitive 832 command is used to perform
vertex operations on 3D primitives via vertex shaders. To process vertex shaders, 3D pipeline
922 dispatches shader cxecution threads to graphics processor execution units.

[0099] in some embodiments, 3D pipeline 922 is triggered via an execute 934 command
or event. In some embodiments, a register write triggers conunand execution. In some
cmbodiments execution is triggered via a “go’ or ‘kick’ command in the comumand sequence. In
one embodiment command execution is triggered using a pipeline synchronization command to
ftush the command sequence through the graphics pipeline. The 3D pipeline will perform
geometry processing for the 3D primitives. Once operations are complete, the resulting
geometric objects are rasterized and the pixel engine colors the resulting pixels. Additional
commands to contro] pixel shading and pixel back end operations may also be included for those
opcrations.

{00100] In some embodiments, the graphics processor command sequence 910 follows the
media pipeline 924 path when performing media operations. In general, the specific use and
manner of programmung for the media pipeline 924 depends on the media or compute operations
to be performed. Specific media decode operations may be offloaded to the media pipeline
during media decode. In some embodiments, the media pipeline can also be bypassed and media
decode can be performed i whole or in part using resources provided by one or more general
purpose processing cores. In onc embodiment, the media pipeline also includes clements for
general-purpose graphics processor unit (GPGPU) operations, where the graphics processor is
used to perform SIMD vector operations using computational shader programs that are not
explicitly related to the rendering of graphics primitives.

{00101 ] in some ermbodiments, media pipeline 924 s configured in a similar roanner as
the 3D pipeline 922. A sect of media pipeline state commands 940 are dispatched or placed mto
in a command queue before the media object commands 942. In some embodiments, media
pipeline state commands 940 include data to configure the media pipeline elements that will be
used o process the media objects, This includes data to configure the video decode and video

encode logic within the media pipeline, such as encode or decode format. In some embodiments,
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media pipeline state commands 940 also support the use one or more pointers to “indirect” state
clements that contain a baich of state settings.

{00102] in some embodiments, media object commands 942 supply pointers to media
objects for processing by the media pipeline. The media objects include memory buffers
containing video data to be processed. In some embodiments, all media pipeline states must be
valid before issuing a media object command 942. Once the pipeline state is configured and
media object comumands 942 are queued, the media pipeline 924 is triggered via an execute
command 944 or an equivalent execute event {e.g., register write). Output from media pipeline
924 may then be post processed by operations provided by the 3D pipeline 922 or the media
pipeline 924. In some embodiments, GPGPU operations are configured and executed in a
similar manner as media operations.

[00163] CGraphics Software Architecture

{00104] Figure 10 illustrates exemplary graphics software architecture for a data
processing system 1000 according to some embodiments. In some emboduments, software
architecture includes a 3D graphics application 1010, an operating system 1020, and at least one
processor 1030, In some embodiments, processor 1030 includes a graphics processor 1032 and
one or more general-purpose processor core(sy 1034, The graphics application 1010 and
operating system 1020 each execute in the system memory 1050 of the data processing system.
{00105] In some embodiments, 3D graphics application 1010 contains one or more shader
programs inchuding shader instructions 1812, The shader language instmactions may bein a
high-level shader language, such as the High Level Shader Language (HLSL) or the OpenGL
Shader Language (GLSL). The application also includes executable instructions 10i4ina
machine language suitable for execution by the general-purpose processor core 1034, The
application also includes graphics objects 1016 defined by vertex data.

{00106] In some embodiments, operating system 1020 is a Microsoft® Windows®
opcrating system from the Microsoft Corporation, a proprictary UNIX-like operating system, or
an open source UNIX-like operating system using a variant of the Linux kernel. When the
Direct3D API is in use, the operating systera 1020 uses a front-end shader compiler 1024 to
compile any shader insteuctions 1012 in HLSL into a lower-level shader language. The
cornpilation may be a just-in-tirne (JI'T) compilation or the application can perform shader pre-
compilation. In some embodirents, high-level shaders are compiled into low-level shaders
during the compilation of the 3D graphics application 1010.

{60107] In some embodiments, user mode graphics driver 1026 contains a back-end
shader compiler 1027 to convert the shader instructions 1012 into a hardware specific

representation. When the OpenGL AP is in use. shader instructions 1012 in the GLSL high-
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level language are passed to a user mode graphics driver 1026 for compilation. In some
embodiments, user mode graphics driver 1026 uses operating system kernel mode functions
1028 o communicate with a kernel mode graphics driver 1029, In some embodiments, kernel
mode graphics driver 1029 commumicates with graphics processor 1032 to dispatch commands
and instructions.

§B0I08] IP Core Implemeniations

{00109] One or more aspects of at least one embodiment may be implemented by
representative code stored on a machine-readable medium which represents and/or defines logic
within an integrated circuit such as a processor. For example, the machine-readable medium
may include instructions which represent various logic within the processor. When read by a
machine, the instructions may cause the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,” are reusabie units of logic for an
integrated circuit that may be stored on a tangible, machine-readable medium as a hardware
model that describes the structure of the integrated circuit. The hardware model may be supplied
to various customers or manufacturing factlities, which load the hardware model on fabrication
machines that manufacture the integrated circuit. The integrated circuit may be fabricated such
that the circult performs operations described in association with any of the embodiments
described herein.

{00110] Figure 11 is a block diagram illustrating an IP core development system 1100
that may be used to manufacture an integrated circuit to perform operations according 1o an
embodiment. The [P core development systera 1100 may be used to generate modular, re-usable
designs that can be incorporated into a larger design or used to construct an entire integrated
circuit {(e.g., an SOC integrated circuit). A design facility 1130 can generate a software
simutlation 1110 of an IP core design in a high level prograroming language (e.g., C/C++). The
software simulation 1110 can be used to design, test, and verify the behavior of the {P core. A
register transfer level (RTL) design can then be created or synthesized from the simulation
model 1100. The RTL design 1115 is an abstraction of the behavior of the integrated circuit that
models the flow of digital signals between hardware registers, inchiding the associated logic
performed using the modeled digital signals. In addition to an RTL design 1115, lower-level
designs at the logic level or transistor level may also be created, designed, or synthesized. Thus,
the particular details of the initial design and simulation may vary.

{00111} The RTL design 1115 or equivalent may be further synthesized by the design
facility into a hardware model 1126, which may be in a hardware description langunage (HDL), or
some other representation of physical design data. The HDL may be further simulated or tested
to verify the IP core design. The 1P core design can be stored for delivery to a 3¢ party
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fabrication facility 1165 using non-volatile memory 1140 (e.g., hard disk, flash memory, or any
non-volatile storage medium). Alternatively, the IP core design may be transmitted (e.g., via the
Internet) over a wired connection 1150 or wircless connection 1160. The fabrication facility
1165 may then fabricate an integrated circuit that is based at least in part on the 1P core design.
The fabricated integrated circuit can be configured to perform operations in accordance with at
least one embodiment described herein.

{00112] Figure 12 is a biock diagram illustrating an exemplary system on a chip
integrated circuit 1200 that may be fabricated using one or more IP cores, according to an
cembodiment. The exemplary integrated circuit includes one or more application processors 1205
(e.g., CPUs), at least one graphics processor 1210, and may additionally include an image
processor 1215 and/or a video processor 1220, any of which may be a modular IP core from the
same or multiple ditferent design facilities. The integrated circuit inciudes peripheral or bus
logic including a USB controller 1225, UART controller 1230, an SPY/SDIO controller 1235,
and an PS/°C controller 1240. Additionally, the integrated circuit can inchude a display device
1245 coupled to one or more of a high-definition multimedia interface (HDMI) controller 1250
and a mobile indusiry processor interface (MIPI) display interface 1255, Storage may be
provided by a flash memory subsystemm 1260 including flash memory and a flash memory
controlier. Memory interface may be provided via a memory controller 1263 for access to
SDRAM or SRAM memory devices. Some integrated circuits additionally inchude an embedded
security engine 1270

{00113] Additionally, other logic and circuaits may be included in the processor of
integrated circuit 1200, including additional graphics processors/cores, peripheral interface

controllers, of general purpose processor cores.

APPARATUS AND METHOD TO IMPROVE THE SCALABILITY

OF GRAPHICS PROCESSOR UNIT {(GPLU) VIRTUALIZATION
{00114] As mentioned above, static memory partitioning allows multiple virtual machines
{(VMs) to use portions of physical memory pages concurrently. Under static partitioning, the
VMs can execute concwrently and access their memory in parallel because they use the different
addresses. However static memory partitioning suffers from scalability issues, limiting the
number of VMs which can take advantage of these techniques. In data centers, for example,
powerful servers may be required to support tens or even hundreds of VMs concurrently. Basic
static memory partitioning techniques are incffective in such an implerentation.
{00115} On the other hand, memory over-commitment technology is currently used to

improve the utilizaton of physical memory pages to allow more virtoal machines torun on a
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physical machine without the extra cost of upgrading the system memory. However, in the GPU
virtualization area, the size of GPU graphics memory is limited, particularly for the global
graphbics memory which is subjected to a 2GB limit due to the Hinitation of the Global Graphics
Translation Table (GGTT). Because the GPU global graphics memory may be accessed by both
CPUs and muitiple GPU engines at same time, static partitioning technologies are used in
today’s GPU virtualization solutions. Figure 13 illustrates the allocation 1300 of a 2GB graphics
memory space between four different VMs (VM1-YM4) which includes 512MB allocated to the
graphics aperture and 1536MB allocated as high graphics memory space. Thus, cach VM is
individually allocated a 128MB aperture space and 384MB high graphics memory space. Asa
result, static partitioning of global graphics memory limits the number of VMs that arc supported
{e.g., 4 VMs for Windows guests and 8 VMSs for Limx guests) due to the minimal size
requirement in the guest 085 GPU driver.

{00116} slobal graphics memory partitioning (GGMP) may be acceptable for client usage
but becomes a serious problem for server and datacenter usage where a powerful server may be
required to support tens or potentially hundreds of VMs, such as for virtual desktop
infrastructure (VDI) usage (i.c., a service that hosts user desktop environments on remote
SEYVers).

[00117] GGTT entry save/restore {GES) performed at the time of a VM switch, may also
bie used to address the problem. For example, some embodiments of the invention described
herein improve performance by copying the portion of guest GGTT entries to physical GGTT
when the VM is scheduled-in {e.g., overlapping the entries of the scheduled-out VM), to provide
the map of current guest’s global graphics memory {except the aperture which, in one
cmbodiment, is still partitioned because of CPU utilization). The page frame number used in the
guest GGTT entries may need to be converted into the physical page frame number when
copying to the physical GGTT.

{00118] GES provides improved scalability but copying the GGTT entries during a VM
switch takes time, and may result in a significant performance overhead. For example, one write
of a GGTT entry may take ~100 cycles, and to copy the entive GGTT table (312K entries) may
takes 100%512K = 50M cycles, which takes 800M cycles or ~40% of a 2GHz core cycles, if the
VM is scheduled in the frequency of 16 Hz.

[00119] One embodiment of the invention provides for improved GPU VM scalability
using a hybrid GMADR {graphics memory addvess) virtualization which combines the Global
Graphics Memory Partitioning (GGMP) and GGTT entry save/restore {(GES) mechanisms to
achicve the best tradeoff between scalability and performance. In particular, Figure 14

iHustrates an architecture in accordance with one embodiment of the invention which includes
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VM set management logic 1413 which categories VMs into N different GPU VM sets (e.g.,
set_A, set_B, set_ and set_D), and partitions the GMADR space among different GPU VM
sets, but shares the GMADR within each GPU VM set. For example, in one embodiment, the
GGMP is partitioned among different sets to support 4 or 8 sets (as one example), but GES is
used within a set to run 4 or 8 VMS per set, for a total of 16 to 64 VMs. In this manner,
significantly more VMs may be run per GPU, which dramatically improves scalability while
mitigating the overbead of the GGT'T entry copy, because the size of the entries used within a
GPU VM set is at most 17X of the entire GGTT where X is set to a threshold value such as X =
2,4, 8, 16, etc (i.e., with the help of GGMP).

{60120] in addition, one embodiment includes a VM-sets aware GPU scheduler 1412
which performos scheduling in accordance with the defined GPU sets. For example, in a 4+ core
system, using the configuration described herein, 4+ VMS may be executed concurrently, and the
W M-sets aware GPU scheduler 1412 will try best to choose the VMs from different GPU VM
sets {(e.g., one VM from one GPU VM set), so that the physical GGTT can bold all the
transations for the 44+ selected VMSs (because of partitioning). In some embodiments deseribed
below, the {CPU (not shown) may also include a VM aware scheduler which implements similar
scheduling techniques, assuming that the CPU may access the GMADR (i.e., the CPU visible
part) such as the aperwure.

601211 Additional details of the apparatus 1400 shown in Figure 14 will now be
provided, outside of the context of VM sets, followed by a detailed description of operations
performed by the VM set management logic 1413 and VM-sets aware GPU scheduler 1412 to
improve scalability. One embodiment of the apparatus 1400 may include multiple VMs, e.g.,
VM 1430 and VM 1440, managed by hypervisor 1410, including access to a full array of GPU
features in GPU 1420, A virtual GPU (vGPL), e.g., v(GPU 1460, may access the full
functionality provided by GPU hardware, e.g., GPU 1420 based on the GPU virtualization
technology. In vartous embodiments, hypervisor 1410 may track, manage resources and
lifecycles of one or more vGPUs. Although only v(GPU 1460 is shown in Figure 14, hypervisor
1410 may inchude other vGPUs. In some embodiments, viGPU 1460 may include virtual GPU
devices presented to VMs 1430, 1440 and may be interactive with nauve GPU drivers. VM
1430 or VM 1440 may then access the full array of GPU features and use virtual GPU devices in
vGPU 1460 to access virtual graphics processors. For instance, once VM 1430 is trapped into
hypervisor 1410, hypervisor 1410 may manipulate a vGPU instance, e.g., vGPU 1460, and
determine whether VM 1430 may access virtual GPU devices in vGPU 1460. The vGPU
context may be switched per quantum or event. In some embodiments, the context swiich may

happen per GPU render engine, e.g., 3D render engine 1422 or blitter render engine 1424. The
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periodic switching allows multiple VMs to share a physical GPU in a manner that is transparent
to the workloads of the VMs 1430, 1440.

j60122] GPU virtualization may take various forms. In some embodiments, VM 1430
may be enabled with device “pass-through,” which is a virtualization model where the entire
GPU 1420 is presented to VM 1430 as if they are directly connected. Much like a single central
processing unit (CPU) core may be assigned for exclusive use by VM 1430, GPU 1420 may also
be assigned for exclusive use by VM 1430 (e.g., for a limited time). Another virtualization
model is tmesharing, where GPU 1420 or portions of it may be shared by multiple VMs, e.g.,
VM 1430 and VM 1440, in a nmltiplexing fashion. Other GPU virtmalization models may also
be used by apparatus 1400 in other embodireents. In various embodiments, graphics memory
associated with GPU 1420 may be partitioned, and allotted to various vGPUSs in hypervisor
1410.

{00123] In various embeduments, grapbics ranslation tables (GTTs) may be used by VMs
and/or GPU 1420 to map graphics processor memory to systern memory or to translate GPLU
virtual addresses to physical addresses. In some embodiments, hypervisor 1410 may manage
graphics memory mapping via shadow GTTs, and the shadow GTTs may be held in &2 vGPU
instance, ¢.g., vGPLU 1460. In various embodiments, cach VM may have a corresponding
shadow GTT to hold the mapping between graphics memory addresses and physical memory
addresses. In some embodiments, the shadow (3TT may be shared and maintain the mappings
for multiple VMs. In some embodiments, cach VM (2.2, VM 1430 and VM 1440), may include
both per-process and global GTTs.

{00124} In some embodiments, apparatus 1400 may use system memory as graphics
memory. System memory may be mapped into multiple virtual address spaces by GPU page
tables. Apparatus 1400 may support global graphics memory space and per-process graphics
memory address space. The global graphics memory space may be a virtual address space, e.g.,
2B, mapped through a global graphics translation table {GGTT). The lower portion of this
address space may be referred to as the aperture, accessible by both the GPU 1420 and the CPU
{(not shown). The upper portion of this address space is called high graphics memory space or
hidden graphics memory space, which may be used by GPU 1420 only. In various
cmbodiments, shadow global graphics translation tables (SGGTTs) may be used by VM 1430,
VM 1440, bypervisor 1410, or GPU 1420 for translating graphics memory addresses to
respective sysiem memory addresses based on a global memory address space.

{00125] In full GPU virtualization, a static global graphics memory space partitioning
scheme may face a scalahility problem. For example, as discussed above with respect to Figure
13, for a global graphics memory space of 2 GB, the first 512 megabyte (MB) virtual address
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space may be reserved for aperture, and the remaining 1536 MB may become the high (hidden)
graphics memory space. With the static global graphics memory space partitioning scheme, cach
VM with full GPU virtuzalization cnabled may be allotted with 128 MB aperture and 384 MB
bigh graphics memory space. Therefore, the 2 GB global graphics memory space may only
accommodate a maximum of four VM as previously discussed.

{00126] Besides the scalability problem, VMs with limited graphics memory space may
also suffer performance degradation. Sometimes, severe performance downgrade may be
observed in some media-heavy workloads of a media application when it uses GPU media
hardware acceleration extensively. As an example, to decode one channel 1080p H.264/
Advanced Video Coding (AVC) hit stream, at least 40 MB of graphics memory may be needed.
Thus, for 10 channels of 1080p H264/AVC bit stream decoding, at least 400 MB of graphics
memory space may be needed. Meanwhile, some graphic memory space may have to be set
aside for surface composition/color conversion, switching display frame buffer during the
decoding process, ete. In this case, 512 MB of graphics memory space per VM may be
imsufficient for 2 VM to run multiple video encoding or decoding.

{00127} in some embodiments, apparatus 1400 may achieve GPU graphics memory
overcommmitment with on-demand SGGTTs. In some embodiments, hypervisor 1410 may
construct SGGTTs on demand, which may include all the to-be-used transiations for graphics
memory virteal addresses from different GPU components’ owner VMs. In some embodiments,
at least one VM managed by hypervisor 1410 may be allotied with more than static partitioned
global graphics memory address space as well as memory. In some emnbodiments, at least one
VM managed by hypervisor 1410 may be allotted with or able to access the entire high graphics
memory address space. In some embodiments, at least one VM managed by hypervisor 1410
may be allotted with or able to access the entire graphics memory address space.

{00128] Hypervisor 1410 may use command parser 1418 to detect the potential memory
working set of a GPU rendering cngine for the commands submitted by VM 1430 or VM 1440,
In various erebodiments, VM 1430 may have respective command butfers (not shown) 1o hold
commands from 3D workload 1432 or media workload 1434, Similarly, VM 1440 may have
respective command buffers (not shown) to hold commands from 3D workload 1442 or media
workload 1444, In other embodiments, YM 1430 or VM 1440 may have other types of graphics
workloads.

{00129] In various embodiments, command parser 1418 may scan a command from a VM
and determine if the command contains memory operands. If yes, the command parser may read
the related graphics memory space mappings, ¢.g., from a GTT for the VM, and then write it into

a workload specific portion of the SGGTT. After the whole command buffer of a workioad
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gets scanned, the SGGTT that holds memory address space mappings associated with this
workload may be generated or updated. Additionally, by scanning the {o-be-executed commands
from VM 1430 or VM 1440, command parser 1418 may also improve the security of GPU
operations, such as by mitigating malicious operations.

{00130] in some embodiments, one SGGTT may be generated to hold translations for all
workloads from all VMs. In some embodiments, one SGGTT may be generated to hold
translations for all workloads, e.g., from one VM only. The workload specific SGGTT portion
may be constructed on demand by command parser 1418 to hold the translations for a specific
workload, e.g., 3D workload 1432 from VM 1430 or media workload 1444 from VM 1440.
{01313 in some embodiments, the VM-sets aware GPU scheduler 1412 may construct
such on-demand 5GGTT at the time of execution. A specific hardware engine may only use a
small portion of the graphics memory address space allocated to VM 1430 at the time of
execution, and the GPU context switch happens infrequently. To take advantage of such GPU
features, hypervisor 1410 may use the SGGTT for VM 1430 to only hold the in-execution and
to-be-executed translations for various GPU components rather than the entire portion of the
global graphics memory address space allotted to VM 1430,

{00132] The YM-sets aware GPU scheduler 1412 may be separated from the scheduler for
CPU in apparatus 1400. To take the advantage of the hardware parallelism in some
embodiments, GPU scheduler 1412 may schedule the workloads separately for different GPU
cngines, e.g.. 3D render engine 1422, blitter render engine 1424, video command streamer
(VCS) render engine 1426, and video enhanced command streamer (VECS) render engine 1428,
For example, VM 1430 may be 3D intensive, and 3D workload 1432 may need to be scheduled
to 30 render engine 1422 at a moment. Meanwhile, VM 1440 may be media-intensive, and
media workload 1444 may need to be scheduled to VS render engine 1426 and/or VECS render
engine 1428, In this case, GPU scheduler 1412 may schedule 3D workload 1432 from VM 1430
and media workload 1444 from VM 1440 separately.

{00133] In various embodiments, GPU scheduler 1412 may track in-executing SGGTTs
used by respective render engines in GPU 1420, In this case, bypervisor 1410 may retain a per-
render engine SGGTT for tracking all executing graphic memory working sets in respective
render engines. In some embodiments, hypervisor 1410 may retain a single SGGTT for tracking
all in-executing graphic memory working sets for all render engines. In some embodiments,
such tracking may be based on a separate in-executing SGGTT queue (not shown). In some
embodiments, such tracking may be based on markings on SGGTT quene 1414, e.g., using a
registry. In some embodiments, such tracking mayv be based on markings on workload queue

1416, e.g., using a regisiry.
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{00134} During the scheduling process, the VM-sets aware GPU scheduler 1412 may
examine the SGGTT from SGGTT quene 1414 for a to-be-scheduled workload from workload
queue 1416, In some embodiments, to schedule the next VM for a particelar render engine, GPU
scheduler 1412 may check whether the graphic memory working sets of the particular workload
used by the VM for that render engine conflict with the in-executing or to-be-cxecuted graphic
memory working seis by that render engine. In other embodiments, such conflict checks may
cxtend to check with the in-executing or to-be-executed graphic memory working sets by all
other render engines. In various embodiments, sach conflict checks may be based on the
corresponding SGGTTs in SGGTT queue 1414 or based on SGGTTs retained by hypervisor
1410 for tracking all in-executing graphic memory working sets in respective render engines as
discussed hereinbefore.

{60135] i there is no contlict, VM-sets aware GPU scheduler 1412 may integrate the in-
cxecuting and to-be-cxecuted graphic memory working sets together. In some embodiments, a
resulting SGGTT for the in-executing and to-be-executed graphic memory working sets for the
particular render engine may also be generated and stored, e.g., in SGGTT queue 1414 orin
other data storage means. In some embodiments, a resulting SGGTT for the in-executing and to-
be-executed graphic memory working sets for all render engines associated with one VM may
also be generated and stored if the graphics memory addresses of all these workloads do not
conflict with each other.

{00136] Before submitting a selected VM workload to GPU 1420, hypervisor 1410 may
write corresponding SGGTT pages into GPU 1420, e.g., 1o graphics transiation tables 1450.
Thus, hypervisor 1410 may enable this workload to be executed with corvect mappings in the
global graphics memory space. In various embodiments, all such translation entries may be
written into graphics translation tables 1450. Graphics translation tables 1450 may contain
separate tables per VM to hold for these translation entries in some embodiments. Graphics
translation tables 1450 may also contain separate tables per render engine to hold for these
transfation cntries in other embodiments. In various embodiments, graphics translation tables
1450 may contain, at least, to-be-executed graphics memory addresses.

{60137} In some of the embodiments described below, a different policy is implemented
for the lower memory space (aperture) 1454 and the upper memory space 1452, Certain
embodiments, for example, only focus on the upper memory space (used hy the GPU only). The
lower memory space 1454 is more problematic because CPU may access it as well. Thus, in
some embodiments, the techniques described herein are applied to the upper memory space only
while a static partitioning policy is used for the lower memory space. In other erabodiments,

however, a scheduler is used to schedule the CPU within the lower memory space in a similar
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manner to the various GPU engines {see, 2.g., Section C.4. below entitled “Co-existence of GPU
VM sets-aware GPU scheduler and CPU scheduler”). Unless otherwise stated, the techniques
described below are limited to the upper memory space.

[0138] In one embodiment, if there s a conflict determined by VM-sets aware GPU
scheduler 1412, it may then defer the schedule-in of that VM, and try to schedule-in another
worklioad of the same or a different VM instead. In some embodiments, such conflict may be
detected if two or more VMs may attempt to use a same graphics memory address, e.g., for a
same render engine or two different render engines. In some embodiments, GPU scheduler 1412
may change the scheduler policy to avoid selecting one or more of the rendering engings, which
have the potential to conflict with cach other. In some embodiments, VM-sets aware GPU
scheduler 1412 may postpone the schedule-in of the conflicting VM to mitigate the conflict.
{60139] In some embodiments, the memory ovarcommitment scheme in GPU
virtualization as discussed herein may co-exist with static global graphics memory space
partitioning schemes and with the VM sets processing techniques described below. As an
example, the aperture in lower memory space 1454 may still be used for static partition among
all VMs and the high graphics memory space in upper memory space 1452 may be used for the
memaory overconynitment scheme. Compared to the static global grapbics memory space
partitioning scheme, memory overcommit scheme in GPU virtualization may enable each VM to
use the entire high graphics memory space in upper memory space 1452, which may allow some

applications inside cach VM to use greater graphic memory space for improved performance.

{301401 A. GMADR Virtualization and Map

{00141} As mentioned above, in one embodiment, VM sets management logic 1413
categorics VMs into different GPU VM sets {e.g., set_A, set_B, sct_C and set_D), and partitions
the GMADR high memory address space among different GPU VM sets, but shares the
GMADR (c.g., the CPU-invisible portion of the address space) within each GPU VM set. As
mentioned, for the lower GM address space (aperture), static partitioning of the low address
space 1s performed among all VMs. Figure 15 illustrates a hybrid GMADR virtualization
employed in one embodiment, which combines the Global Graphics Memory Partitioning
(GGMP)Y and GGTT entry/switch (GES) technigues to achieve the best tradeoff of scalability and
performance. in the illustrated hybrid GMADR implementation, the physical GMADR are
partitioned among GPU VM sets 1501 for higher end GMADR (i.e., accessible to GPU). The
specific example in Figure 15 utilizes four GPU VM sets: VM set 8, VM set 1, VM set 2, and
YM set 3, which partition the GMADR high space. In one embodiment, multiple VMs

dynamically share the high GMADR space of each GPU VM set. In Figure 15, for example,
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VM Set 2 is shared by VM2 _0 through VM2 _3. Thus, in this example, for cach VM2 _Xx, the
GMADDR high address space is limited to the scope of GPU VM set 2. in one embodiment, the
GMADR space used by other GPU VM sets are all presented as reserved in VMZ_x.

[00142] Note that in the iHustrated exarople, only higher end GMADR are shown. The
details of the aperture 1502 (ie., the lower end) are not shown but, in one embodiment, static
partitioning is applied to the aperture.

{301431 As used herein, the term “GPU VM means the VM osing the GPU resources
with mediate passthrough. It may not necessarily inclnde the VMs that use emulated graphics

devices such as a standard VGA card and/or framebutfer devices, for example.

{60144] B. GMADR Dvnamic Swiich
[00145] In one embodiment, when different VMs of a GPU VM set are scheduled in, the

GGTT entries of the new VM may be copied to the physical GGTT in place of the old GGTT
cntries of the original VM. For example, Figure 16 illustrates an exemplary GMADR 1601
partitioned among four different GPU VM sets (0-3) and also shows the GMADR layout 1601
when VM2 _0 has been scheduled (Le., using available GMADR space 1618) and when VM2 _3
has been scheduled (i.e., using the same GMADR space 1610 for VM2_3).
{00146] For example, if the previously executed VM is VMZ2_1 (the GGTT entry of
VM2 1 resides in the physical GGTT), and the next VM 1s VM2 _0, the noxt VM's GGTT
entries may be copied to the physical GGTT in accordance with the following pseude code:

Arprev=VM2_1, next=VM2_0

B: p_ggtt_pte = the first partitioned address of GPU VM set 2 (vim2_start) in physical
GGTT (shown in Figure 16), and v_ggtt_pte = the first partitioned address in guest GGTT.
Note that the hypervisor may maintain both the physical GGTT instance and the guest GGTT
instance.

C: while (p_ggtt_pte <vm2_end) {
X = Fy_ggtt_pte++;
Y =map X to the shadow PTE with corresponding conversion to generate the
shadow or physical instance (for exarmple, the guest page number needs to be converted
to host page number, and/or other atiributes per guest PTE/shadow PTE virtualization
policy).
{00147} Fp_ggtt_pte++ =Y

s

This way, the overhead of GGTT entry copy is reduced to be % of that using the GES
solution alone, and thercfore improves the performance. In addition, at most 4 VMs can be run

concurrently which is impossible using GES.



WO 2016/205975 PCT/CN2015/000462

{01481 . GPU VM Sets-Aware Scheduler 1412

{00149] In one embodiment, the GPU 1420 has multiple execution engines, such as 3D
rendering engine 1422, blitter render engine 1424, VS rendering engine 1426, and VECS
render engine 1428, Hach engine may execute an instance of a guest GPU (e.g., in a per-ring
scheduler). This works well with GMADR space partitioning but may result in problems with
GES and the approach described herein where the GGTT maps of two or more VMs™ GMADR
may conflict, such as VM2_0 & VM2 _1 in the example provided above.

{00150} By way of a specific example, Figore 174 illustrates scheduling in which VM1_0
is followed by VM1 _1, resulting in GGTT entry copying for the shared GMADR space.
Similarly, VM2_0 is followed by VM2 _1, VM3_0is followed by VM3_1, and VM4 _0 is
followed by ¥YM4_1, requiring additional GGTT entry copying for each of these shared
GMADR spaces. Thus, scheduling the same set of VMs sequentially, as shown in Figare 174,
may cause frequent GGTT entry copying, which incurs a lot of virtualization overhead and

therefore suboptimal performance.

i GPU VM sets-aware scheduler with sufficient rendering engines

{00151] in this embodimoent, the number of GPU hardware engines is larger than the
number of GPU VM sets (engine # > VM set #). In other words, the GPU hardware can execute
VMs from different VM sets concurrently.

{00152} The GPU VM sets-aware GPU scheduler 1412 may then perform a best effort to
select VMs from different GPU VM sets for execution concurrently. That is to say, using
VM1_y, VM2 _z and VM3_w to be executed concurrently.

[B0153] in one embodiment, if available VMs from different GPU VM sets to run
concurrently cannot be identified, part of the GPU engines may wait until they are availabie. For
example, it VM2_0, VMZ_1, VM2 _2 & VM2 _3 are all unavailable to run at a given time, the
scheduler 1412 may only select the VMO_x, VM1_y, and VM3 _w to run at this time. This way,

the scheduler can maximize the use of GPU hardware resources.

2. GPU VM sets-aware scheduler with fewer rendering engines
[00154] In some embodiments, the number of GPU hardware engines is less than the

number of GPU VM sets. By way of example, there may be four GPU VM sets, but only two
GPU engines (c.g., engines 1 & 2). In this embodiment, the scheduler may choose {wo VMs

from different VM sets to execute concurrently. For example, if GPU engine 1 is executing the
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instance of VM2 _0, the GPU scheduler 1412 should choose a VM from either GPU VM set 0, 1
or 3, for the GPU cngine to execute.

{G0155] in one embodiment, if available VMs from 2 GPU VM sets cannot be found to
run concurrently cannot be identified, the GPU engines may wait until they are available. For
given time, the scheduler 1412 may only select the VM1 _x ( a single VM), to run at this time.
This way, the scheduler can maximize the use of GPU bardware resources. Said more generally,
if there are N GPU engines and M VM sets, the GPU scheduler 1412 will attempt to schedule the
M VM sets such that YMs from different VM sets are executed concurrently on each of the ¥
GPU engines. In one ecmbodiment, this embodiment may be used for cases where the number of
VM sets (M} are less than or equal to the number of GPU engines (N}, In another embodiment,
the number of VM sets is greater than the number of GPU engines, in which case the GPU
scheduler 1412 will distribute the VM sets among the GPU engines o ensure that cach VM set
receives a fair amount of GPU engine processing resources (e.g., using the scheduling techniques
described herein).

3. Pre-load GGTT entries under GPU VM set-aware scheduler

{00156] In another embodiment, the GGTT entries may be pre-loaded for the next-to-be-
scheduled VMs, so that the GGTT entry copy operation can be speculatively completed before
the VM is sclected to run. This way, the cost (latency) of copying the GGTT entries in hybrid
GMADR virtualization can be reduced.

{00157} As mentioned above, schedoling the same set of VMs sequentially, as shown in
Figure 17A, may cause frequent GGTT entry copying, which incurs a lot of virtualization
overhead and therefore suboptimal performance. In contrast, Figure 17B iftustrates an
exemplary round robin scheduler as an example in which scheduling is performed on one VM
from each set in sequence, then the next VM from each set, and so on. MNote that in Figure 178,
there may only be one engine to execute the guest instance, but the concept can be applicd to
situation of multiple engines as well. The copy of the GGTT entries of VM1_1 can be done by

&

CPU, when the GPU engine is executing VM2 _0/ VM3 _0/VM4_ 0.

4: Co~existence of GPU VM sets-aware GPU scheduler and CPU scheduler

{00158] As mentioned, the above embodiments are applied to the high GMADR space
which is accessed by the GPU only as shown in Figures 13-16 (e.g., Figure 15 shows the
aperture within which these technigues arc not used). However, in one embodiment of the

invention, this policy is applied to apertures as well, which are accessed by the CPU. In this
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embodiment, the CPU scheduler coordinates with the GPU scheduler to schedule-in the VMs
from different GPU VM sets for either CPU or GPU to execute. In one embodiment, for
cxample, CPU(s) are treated for scheduling purposes as one of the GPU engines. in addition, the
GPU VM sets-aware scheduler concept may be applied to the CPU scheduler.

{00159] The above techniques help mitigate the scalability issues due to the size limitation
of the aperture. Note that the term GPU VM means the VM using the GPU resources (shared
GGTT) with mediate pass-thru. It does not include the VMs that use emulated graphics device
such as a standard VGA card and/or PV framebufter devices for example.

{00160} in this detailed description, reference is made to the accompanying drawings,
which form a part hercof, wherein like nurmerals designate like parts throughout, and in which is
shown by way of illustration ermnbodiments that may be practiced. It is to be understood that
other ermabodiments may be utilized and structural or fogical changes may be made without
departing from the scope of the present disclosure. Therefore, the following detailed description
is not to be taken in a imiting sense, and the scope of embodirents is defined by the appended
claims and their equivalents.

{00161} Various operations may be described as multiple discrete actions or operations in
turn, in a manner that is most helpful in understanding the claimed subject matter. However, the
order of description should not be construed as to imply that these operations are necessarily
order dependent. In particular, these operations may not be performed in the order of
presentation. Operations described may be performed in a different order than the described
cmbodiment. Various additional operations may be performed and/or described operations may
be omitted in additional embodiments.

[00162] For the purposes of the present disclosure, the phrase “A and/or B” means (A),
(B}, or (A and B). For the purposes of the present disclosure, the phrase “A, B, and/or € means
(A), (B), (C), (A and B), (A and O, (B and C), or (A, B, and ). Where the disclosure recites
*a” or “a first” element or the equivalent thereof, such disclosure includes one or more such
clements, neither requiring nor excluding two or more such elements. Further, ordinal indicators
{e.g., first, second, or third) for identified elements are used to distinguish between the clements,
and do not indicate or imnply a required or lHimited nomber of such elements, nor do they indicate
a particular position or order of such elements unless otherwise specifically stated.

{60163} Reference in the description to one embodiment or an embodiment means that a
particular feature, structure, or characteristic described in connection with the embodiment is
included in at least one embodiment of the invention. The description may use the phrases “in
one embodiment,” “in another embodiment,” “in some ¢mbodiments,” “in embodiments,” “in

various embodiments,” or the like, which may cach refer to one or more of the same or different
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cmbodiments. Furthermore, the terms “comprising,” “inchiding,” “having,” and the like, as used
with respect to embodiments of the present disclosure, are synonymous.

{00164] in embodiments, the term “engine” or “module” or “logic” may refer to, be part
of, or include an application specific integrated circuit (ASIC), an electronic circuit, a processor
{(shared, dedicated, or group), and/or memory (shared, dedicated, or group) that execute one or
more software or firmware programs, a combinational logic circuit, and/or other suitable
components that provide the described functionality. In emshodiments, an engine or a module
may be implemented in firmware, hardware, software, or any combination of firmware,
hardware, and software.

{00165] Embodiments of the invention may include various steps, which have been
described above. The steps may be embodied in machine-executable instructions which may be
used to cause a general-purpose or special-purpose processor to perform the steps. Alternatively,
these steps may be performed by specific hardware components that contain hardwired logic for
performing the steps, or by any combination of prograromed computer components and custom
hardware components.

{00166] As described herein, instructions may refer to specific configurations of hardware
such as application specific infegrated circuits (ASICs) configured to perform certain operations
or having a predetermined functionality or software instractions stored in memory embodied in a
non-transitory computer readable medium. Thus, the techniques shown in the figures can be
implemented using code and data stored and executed on one or more clectronic devices {e.g., an
end station, a network element, etc.). Such electronic devices stove and communicate (internally
and/or with other electronic devices over a network) code and data using computer machine-
readable media, such as non-transitory computer machine-readable storage media (e.g., magnetic
disks; optical disks; random access memory; read only memory; flash memory devices; phase-
change memory) and transitory computer machine-readable communication media {e.g.,
electrical, optical, acoustical or other form of propagated signals — such as carrier waves, infrared
signals, digital signals, etc.).

{00167} In addition, such electronic devices typically include a set of one or more
processors coupled to one or more other components, such as one or more storage devices (non-
transitory machine-readable storage media), user input/output devices (e.g., a keyboard, a
touchsereen, and/or a display), and network connections. The coupling of the set of processors
and other components is typically through one or more busses and bridges (also termed as bus
controllers). The storage device and signals carrying the network traffic respectively represent
one of more machine-readable storage media and machine-readable communication media.

Thus, the storage device of a given electronic device typically stores code and/or data for
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execution on the set of one or more processors of that electronic device. Of course, one or more
parts of an embodiment of the invention may be implemented using different combinations of
software, firmware, and/or hardware. Throughout this detailed description, for the purposes of
explanation, numerous specific details were set forth in order to provide a thorough
understanding of the present invention. It will be apparent, however, to one skilled in the art that
the invention may be practiced without some of these specific details. In certain instances, well
known structures and functions were not described in elaborate detail in ovder to avoid obscuring
the subject matter of the present invention. Accordingly, the scope and spirit of the invention

should be judged in terms of the claims which follow.
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CLAIMS

What is claimed is:

1. A apparatus comprising:

graphics processing unit (GPU) to process graphics comamands and responsively render a
plarality of image frames;

a hypervisor to virtualize the GPU to share the GPU among a plurality of virtual
machines (VMs); and

VM sct management logic o establish a phrality of VM sets, each set comprising a
plurality of VMs, the VM set management logic to partition graphics memaory address
(GMAIDR) space across each of the VM sets but to share the GMADR space between VMs

within each VM set.

2. The apparatus as in claim 1 further comprising:
a VM set aware GPU scheduler to schedule a first VM from a first VM set for execution

on the GPU using the GMADR region assigned to the first VM set.

3. The apparatus as in clairo 2 wherein the VM set aware GPU scheduler is to swap
out a second VM within the first VM set to execute the first VM, wherein to swap out the second
VM, the VM set aware scheduler is to copy global graphics translation table (GGTT) entries

associated with the fitst VM to 3 physical GGTT.

4. The apparatus as in claim 3 wherein the physical GGTT is to be stored ina

system memory.

5. The apparatus as in claim 3 wherein the VM set aware GPU scheduler is to
replace GGTT entries of the second VM with GGTT entries of the first VM within the physical

GGTT when swapping out the seccond VM.

6. The apparatus as in claim 1 wherein the GMADR space does not include a

graphics aperture space to be shared by a central processing unit (CPLU).

7. The apparatus as in claim 2 wherein the GMADR space includes a graphics
aperture space shared by a CPU, wherein the VM set aware GPU scheduler and/or a CPU
scheduler is to schedule access by the CPU and/or by each of the VMs 10 access the graphics

aperfure space.
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g. The apparatus as in clair 2 wherein the VM set aware GPU scheduler is to
perform round robin scheduling across VM sets, wherein at least one VM from cach VM set is

scheduled in sequence until a VM has been scheduled from each VM set.

9. The apparatus as in claim 8 wherein a first VM from a first VM set is scheduled,
followed by a second VM from a second VM set, followed by a third VM from a third VM,

followed by a fourth VM from a fourth VM set, followed by a fifth VM from the first VM set.

10. The apparatus as in clairn 8 wherein for N GPU engines, N VMs are scheduled to

execute concurrently on the N GPU engines.

11. The apparatus as in claim 10 wherein each of the N VMs are from different VM
sets.
12. A method comprising:

processing graphics commands and rendering a plurality of image frames on a graphics
processing unit (GPUY;

virtualizing the GPU with a hypervisor to share the GPU among a plurality of virtual
machines (VMs); and

cstablishing a plurality of VM sets, cach sct comprising a plurality of VMs;

partitioning graphics memory address (GMADR) space across each of the VM sets but to

share the GMADR space between VMs within cach VM set.

13. The method as in claim 12 further comprising:
scheduling a first VM from a first VM set for execution on the GPU using the GMADR

region assigned to the first VM sct.

14. The method as in claim 13 further comprising:

swapping out a sccond ¥M within the first VM set to execute the first VM, wherein o
swap out the second VM; and

responsively copying global graphics ranslation table (GGTT) entries associated with the

first VM to a physical GGTT.

N
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15. The method as in claim 14 wherein the physical GGTT is to be stored in a system
Memory.
16. The method as in claim 14 further comprising:

replacing GGTT entries of the second VM with GGTT entries of the first VM within the

physical GGTT when swapping out the second VM.

17. The method as in claim 12 wherein the GMADR space does not include a

graphics aperture space to be shared by a central processing unit (CPU).

18. The method as in claum 13 wherein the GMADR space includes a graphics
aperture space shared by a CPU, wherein scheduling is performed by a VM set aware GPU
scheduler and/or a CPU scheduler to schedule access by the CPU and/or by cach of the VMs to

access the graphics aperture space.

19, The method as in claim 13 wherein scheduling comprises performing round robin
scheduling across VM sets, wherein at least one VM from cach VM set is scheduled in sequence

until a VM has been scheduled from each VM set.

20. The method as in claim 19 wherein a first VM from a first VM set is scheduled,
followed by a second VM from a second VM set, followed by a third VM from a third VM,
followed by a fourth VM from a fourth VM set, followed by a fifth VM from the first VM set.

21. The method as in claim 19 wherein for N GPU engines, N VMs are scheduled to

execute concurrently on the N GPU engines.

22. The method as in claim 21 wherein each of the N VMs are from different VM

sefs.

23 A systern comprising:

a mermory to stove data and program code;

a central processing unit (CPU) comprising an instruction cache for caching a portion of
the program code and a data cache for caching a portion of the data, the CPU further comprising
cxecution logic to execute the program code and responsively process the data, at least a portion

of the program code comprising graphics commands;
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a graphics processing unit (GPU) to process the graphics commands and responsively
render a plurality of image frames;

a hypervisor to virtualize the GPU to share the GPU among a phurality of virtual
machines (VMas); and

VM set management logic to establish a plurality of VM sets, cach set comprising a
plurality of VMs, the VM set management logic to partition graphics memory address
(GMADR) space across each of the VM sets but to share the GMADR space between VMs

within each VM set.

24, The system as in clairm 23 further comprising:
a VM set aware GPU scheduler to schedule a first VM from a first VM set for execution

on the GPU using the GMADR region assigned to the first VM set.

25. The systern as in claim 24 wherein the VM set aware GPLI scheduler is to swap
out a second VM within the first VM set (o execute the first VM, wherein to swap out the second
VM, the VM set aware schaduler is to copy global graphics translation table (GGTT) entries

associated with the first VM to a physical GGTT.

26. The system as in claim 25 wherein the physical GGTT is to be stored in a system
Memory.
27. The system as in claim 25 wherein the VM set aware GPU scheduler is to replace

GGTT entries of the second VM with GGTT entries of the first VM within the physical GGTT

when swapping out the second VM.

28. The system as in claim 23 wherein the GMADR space does not include a graphics

aperture space to be shared by a central processing unit (CPU).

29. The system as in claim 24 wherein the GMADR space includes a graphics
aperture space shared by a CPU, wherein the VM set aware GPU scheduler and/or a CPU
scheduler is to schedule access by the CPU and/or by each of the VMs to access the graphics

aperiure space.
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30. The system as in claim 24 wherein the VM set aware GPU scheduler is to perform
round robin scheduling across VM sets, wherein at least one VM from cach VM set is scheduied

in sequence until a VM has been scheduled from each VM set.
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