

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2015204503 B2

(54) Title
Novel vaccines against HPV and HPV-related diseases

(51) International Patent Classification(s)
C07K 16/28 (2006.01) **C07K 16/08** (2006.01)
A61K 39/12 (2006.01) **C07K 16/46** (2006.01)
A61K 39/395 (2006.01)

(21) Application No: **2015204503** (22) Date of Filing: **2015.01.13**

(87) WIPO No: **WO15/106281**

(30) Priority Data

(31) Number (32) Date (33) Country
62/002,718 **2014.05.23** **US**
61/926,821 **2014.01.13** **US**

(43) Publication Date: **2015.07.16**
(44) Accepted Journal Date: **2020.07.09**

(71) Applicant(s)
Baylor Research Institute

(72) Inventor(s)
Oh, Sangkon;Zurawski, Sandra;Zurawski, Gerard

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
WO 2010104747 A2
DIEHL L ET AL, "CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy", NATURE MEDICINE, NATURE PUB. CO, (1999-07-01), vol. 5, no. 7, pages 774 - 779
HUNG ET AL., "Therapeutic human papillomavirus vaccines: current clinical trials and future directions", EXPERT OPINION ON BIOLOGY THERAPY, (2008), vol. 8, no. 4, pages 421 - 439

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/106281 A1

(43) International Publication Date

16 July 2015 (16.07.2015)

(51) International Patent Classification:

C07K 16/28 (2006.01) *A61K 39/12* (2006.01)
C07K 16/08 (2006.01) *A61K 39/395* (2006.01)
C07K 16/46 (2006.01)

(21) International Application Number:

PCT/US2015/011236

(22) International Filing Date:

13 January 2015 (13.01.2015)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/926,821 13 January 2014 (13.01.2014) US
62/002,718 23 May 2014 (23.05.2014) US

(71) Applicant: BAYLOR RESEARCH INSTITUTE [US/US]; 3310 Live Oak Street, Suite 501, Dallas, TX 75204 (US).

(72) Inventors: OH, Sangkon; 45 Caterham Court, Baltimore, MD 21237 (US). ZURAWSKI, Sandra; 7620 Jordan Lane, Midlothian, TX 76065 (US). ZURAWSKI, Gerard; 7620 Jordan Lane, Midlothian, TX 76065 (US).

(74) Agent: SHISHIMA, Gina, N.; Fulbright & Jaworski, LLP, 98 San Jacinto Boulevard, Suite 1100, Austin, TX 78701 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2015/106281 A1

(54) Title: NOVEL VACCINES AGAINST HPV AND HPV-RELATED DISEASES

(57) Abstract: Embodiments relate to novel vaccines against human papillomavirus (HPV) and HPV-related diseases, including multiple types of cancers. The HPV vaccines are composed of anti-human dendritic cell (DC) surface receptor antibodies, including CD40, and E6/7 proteins of HPV 16 and 18. The technology described is not limited to making vaccines against HPV16- and HPV18-related diseases and can be applied to making vaccines carrying E6/7 from any type of HPV. The HPV vaccines described can target DCs, major and professional antigen presenting cells (APCs), and can induce and activate potent HPV E6/7-specific and strong CD4+ and CD8+ T cell responses. The HPV vaccines can be used for the prevention of HPV infection and HPV-related diseases as well as for the treatment of HPV-related diseases, including cancers.

DESCRIPTION

NOVEL VACCINES AGAINST HPV AND HPV-RELATED DISEASES

BACKGROUND OF THE INVENTION

[0001] This application claims the benefit of priority to U.S. Provisional Patent Application Serial No. 61/926,821, filed January 13, 2014, and U.S. Provisional Patent Application Serial No. 62/002,718, filed May 23, 2014, both of which are hereby incorporated by reference in their entirety.

[0002] The invention was made with government support under Grant No. U19 AI057234 awarded by the National Institutes of Health and the National Institute of Allergy and Infectious Diseases. The government has certain rights in the invention.

1. Field of the Invention

[0003] The present invention relates generally to the field of medicine. More particularly, it concerns new and novel vaccines against Human Papilloma Virus (HPV) and HPV-related diseases, including multiple types of cancers.

2. Description of Related Art

[0004] Human papillomavirus (HPV) is one of the most common sexually-transmitted pathogens. Current HPV prophylactic vaccine have shown significant clinical efficacy in the prevention of HPV infection, but it exhibits no efficacy in the treatment of infected patients and HPV-related cancers. HPV infection causes virtually all cervical cancers, and many anal, vaginal, vulvar, penile, and oropharyngeal (throat) cancers. Thus, the development of safe and effective vaccines for patients who are infected with HPV and have HPV-related cancers are in high demand. HPV infection also causes HIV-related malignancy and cancers.

[0005] Current HPV vaccines are recombinant virus-like particles made of capsid (L1) proteins of HPV 6, 11, 16, and 18. These vaccines can elicit strong antibody responses and thus can prevent HPV infection. To suppress viral replication and to eradicate HPV-related cancers, vaccines need to evoke strong T cell responses, particularly cytotoxic CD8+ lymphocytes (CTLs) that can kill virus-infected cells followed by the inhibition of HPV replication as well as HPV-related tumor cells.

[0006] Several types of vaccine models (including peptides, proteins, and DNA-based vaccines and vaccines carried by live-attenuated vectors) have been tested, but these vaccines have drawbacks either in efficacy or safety particularly in immunodeficient patients. This gap necessitates developing safe and potent immunotherapeutic vaccines against HPV-associated cancer.

[0007] A wealth of evidence has led to the conclusion that virtually all cases of cervical cancer are attributable to persistent infection by a subset of HPV types, especially HPV type 16 (HPV 16) and HPV type 18 (HPV 18). These HPV types also cause a proportion of other cancers of mucosa, including vulvar, vaginal, anal, penile, and oropharyngeal cancers. HPV 16 is the predominant type in squamous cell carcinoma of the cervix, and HPV 18 is the second most common type with prevalence ranging from 12.6% in Central/South America to 25.7% in South Asia. In addition, HPV 18 has been implicated in rapidly developing and potentially more aggressive cervical carcinomas. However, subclinical infections are the most common manifestation of HPV infection. Different studies reported between 15% and 36% of subclinical infections in sexually active adults.

SUMMARY OF THE INVENTION

[0008] Disclosed is a fusion protein comprising an anti-CD40 antibody or fragment thereof, comprising at least three complementarity determining regions from an anti-CD40 antibody, at least one peptide linker, and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the anti-CD40 antibody or fragment thereof comprises at least the variable region from an anti-CD40 antibody. The variable region can be from a light chain or heavy chain. In some embodiments, the anti-CD40 antibody or fragment thereof comprises at least the variable region from an anti-CD40 antibody light chain and at least the variable region from an anti-CD40 antibody heavy chain. In some embodiments, the anti-CD40 antibody or fragment thereof comprises six CDRs from an anti-CD40 antibody. In some embodiments, the anti-CD40 antibody or fragment thereof is humanized. In some embodiments, the peptide linker or linkers are a flexible linker. In some embodiments, the peptide linker or linkers comprise one or more glycosylation sites. In some embodiments, the peptide linker or linkers are Flexv1 (SEQ ID NO:5) and/or f1 (SEQ ID NO:6). In some embodiments, the HPV antigens are E6 and E7. In some embodiments, the fusion protein comprises the sequence of SEQ ID NO:19. In some embodiments, the fusion protein

comprises the sequence of SEQ ID NO:21. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E6 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E7 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 18 antigen.

[0009] Also disclosed is a fusion protein comprising the amino acid sequences of at least SEQ ID NOS:11-13 or SEQ ID NOS:14-16 and at least one human papillomavirus (HPV) E6 or E7 antigen. In some embodiments, the fusion protein comprises SEQ ID NOS:11-13 and SEQ ID NOS:14-16. In some embodiments, the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the fusion protein further comprises a peptide linker. In some embodiments, the peptide linker is a flexible linker. In some embodiments, the peptide linker comprises one or more glycosylation sites. In some embodiments, the peptide linker is Flexv1 (SEQ ID NO:5) and/or f1 (SEQ ID NO:6).

[0010] Also disclosed is a pharmaceutical composition comprising any of the above fusion proteins.

[0011] Also disclosed is a method of making any of the above fusion proteins comprising isolating the fusion protein from a recombinant host cell expressing the fusion protein.

[0012] Also disclosed is a composition comprising a dendritic cell targeting complex comprising an anti-CD40 antibody or fragment thereof comprising at least three complementarity determining regions from an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are an HPV type 16 or HPV type 18 antigen. In some embodiments, the anti-CD40 antibody or fragment thereof comprises at least the variable region from an anti-CD40 antibody. The variable region can be from a light chain or heavy chain. In some embodiments, the anti-CD40 antibody or fragment thereof comprises at least the variable region from an anti-CD40 antibody light chain and at least the variable region from an anti-CD40 antibody heavy chain. In some embodiments, the anti-CD40 antibody or fragment thereof comprises six CDRs from an anti-CD40 antibody. In some embodiments, the anti-

CD40 antibody or fragment thereof is humanized. In some embodiments, the peptide linker or linkers are a flexible linker. In some embodiments, the peptide linker or linkers comprise one or more glycosylation sites. In some embodiments, the peptide linker or linkers are selected from Flexv1 (SEQ ID NO:5) or f1 (SEQ ID NO:6). In some embodiments, the HPV antigens are E6 and E7. In some embodiments, the fusion protein comprises the sequence of SEQ ID NO:19. In some embodiments, the fusion protein comprises the sequence of SEQ ID NO:21. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E6 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E7 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 18 antigen.

[0013] In some embodiments the HPV E6 and E7 antigens are selected from SEQ ID NO: 1-4. In other embodiments the HPV E6 and E7 antigens are at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or 100%, or any range derivable therein, identical to any combination of SEQ ID NO: 1-4. In other embodiments the HPV E6 and E7 antigens are at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or 100%, or any range derivable therein, identical to SEQ ID NO: 1-4. In still other embodiments, the HPV E6 antigen is a 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115 or 120, or any range derivable therein, subset of contiguous amino acids of SEQ ID NO : 1 and/or 3 and the HPV E7 antigen is a 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115 or 120, or any range derivable therein, subset of contiguous amino acids of SEQ ID NO : 2 and/or 4.

[0014] Also disclosed is a vector comprising a polynucleotide sequence encoding a fusion protein comprising an anti-CD40 antibody or fragment thereof comprising at least three complementarity determining regions from an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody light chain variable region. In some embodiments, the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody heavy chain variable region. In some embodiments, the polynucleotide sequence encodes at least one HPV type 16 E6 antigen, at least one HPV type 16 E7 antigen or at least one HPV type 18 E6 antigen and at least one HPV type 18 E7

antigen. In some embodiments, the polynucleotide sequence encodes a polypeptide comprising SEQ ID NO: 19. In some embodiments, the polynucleotide sequence encodes a polypeptide comprising SEQ ID NO: 21. In some embodiments, the polynucleotide sequence encodes at least one HPV type 16 E6 antigen, at least one HPV type 16 E7 antigen, at least one HPV type 18 E6 antigen and at least one HPV type 18 E7 antigen.

[0015] Also disclosed is a method for preventing a human papillomavirus (HPV) infection comprising administering to a patient a composition comprising a dendritic cell targeting complex comprising an anti-CD40 antibody or fragment thereof comprising at least six complementarity determining regions from an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody light chain variable region and an anti-CD40 antibody heavy chain variable region. In some embodiments, the anti-CD40 antibody or fragment thereof is humanized. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 16 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen, at least one HPV E7 antigen is an HPV type 16 antigen, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 19. In some embodiments, dendritic cell targeting complex comprises SEQ ID NO: 21. In some embodiments, the composition further comprises an adjuvant. In some embodiments, the method further comprises administering to the patient a separate HPV vaccine. In some embodiments, the separate HPV vaccine is Gardasil™ or Cervarix™.

[0016] Also disclosed is a method for treating a human papillomavirus (HPV) infection comprising administering to a patient a composition comprising a dendritic cell targeting complex comprising an anti-CD40 antibody or fragment thereof comprising at least six complementarity determining regions from an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody light chain

variable region and an anti-CD40 antibody heavy chain variable region. In some embodiments, the anti-CD40 antibody or fragment thereof is humanized. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 16 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen, at least one HPV E7 antigen is an HPV type 16 antigen, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 19. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 21. In some embodiments, the method further comprises administering to the patient a separate HPV treatment.

[0017] Also disclosed is a method for inducing an immune response to at least one HPV epitope comprising administering to a patient a composition comprising a dendritic cell targeting complex comprising an anti-CD40 antibody or fragment thereof comprising at least six complementarity determining regions from an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody light chain variable region and an anti-CD40 antibody heavy chain variable region. In some embodiments, the anti-CD40 antibody or fragment thereof is humanized. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 16 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen, at least one HPV E7 antigen is an HPV type 16 antigen, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 19. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 21. In some embodiments, the composition further comprises an adjuvant. In some embodiments, the method further comprises administering to the patient a separate HPV vaccine. In some embodiments, the separate HPV vaccine is Gardasil™ or Cervarix™.

[0018] Also disclosed is a method for potentiating an immune response to at least one HPV epitope comprising administering to a patient a composition comprising a dendritic cell targeting complex comprising an anti-CD40 antibody or fragment thereof comprising at least six complementarity determining regions from an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody light chain variable region and an anti-CD40 antibody heavy chain variable region. In some embodiments, the anti-CD40 antibody or fragment thereof is humanized. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 16 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen, at least one HPV E7 antigen is an HPV type 16 antigen, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 19. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 21. In some embodiments, potentiating an immune response is directed towards potentiating or increasing or enhancing memory T-cells. In some embodiments, the method further comprises administering to the patient a separate HPV treatment.

[0019] Also disclosed is a method for preventing a human papillomavirus (HPV) related disease comprising administering to a patient a composition comprising a dendritic cell targeting complex comprising an anti-CD40 antibody or fragment thereof comprising at least six complementarity determining regions from an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody light chain variable region and an anti-CD40 antibody heavy chain variable region. In some embodiments, the anti-CD40 antibody or fragment thereof is humanized. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 16 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen, at least one HPV E7 antigen is an HPV type 16 antigen.

antigen is an HPV type 16 antigen, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 19. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 21. In some embodiments, the composition further comprises an adjuvant. In some embodiments, the HPV related disease is dysplasia, benign neoplasia, pre-malignant neoplasia or cancer. In some embodiments, the HPV related disease is cancer. In some embodiments, the cancer is cancer of the cervix, vulva, vagina, penis, anus, oropharynx, throat or lung. In some embodiments, the method further comprises administering to the patient a separate HPV vaccine. In some embodiments, the separate HPV vaccine is Gardasil™ or Cervarix™.

[0020] Also disclosed is a method for treating a human papillomavirus (HPV) related disease comprising administering to a patient a composition comprising a dendritic cell targeting complex comprising an anti-CD40 antibody or fragment thereof comprising at least six complementarity determining regions from an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody light chain variable region and an anti-CD40 antibody heavy chain variable region. In some embodiments, the anti-CD40 antibody or fragment thereof is humanized. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 16 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen, at least one HPV E7 antigen is an HPV type 16 antigen, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 19. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 21. In some embodiments, the HPV related disease is dysplasia, benign neoplasia, pre-malignant neoplasia or cancer. In some embodiments, the HPV related disease is cancer. In some embodiments, the cancer is cancer of the cervix, vulva, vagina, penis, anus, oropharynx, throat or lung. In yet further embodiments, the cancer is head and neck cancer. In some embodiments, the method further comprises administering to the patient a separate treatment. In some embodiments, the method further comprises administering to the patient a cancer treatment.

[0021] Also disclosed is a method of inhibiting HPV-infected cells in a patient comprising administering to the patient an effective amount of a composition comprising any of the above fusion proteins or vectors. In some embodiments, the HPV-infected cells are in a tumor.

[0022] Also disclosed is a method of reducing the size or mass of a tumor in a patient that is suffering from an HPV infection or the tumor comprises HPV-infected cells, comprising administering to the patient an effective amount of a composition comprising any of the above fusion proteins or vectors. The percent reduction in size or mass of the tumor or the percent regression of the tumor during or following treatment may be at least 10%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% to 100% or any derivable range therein. The percent reduction in size or mass of the tumor or the percent regression of the tumor may be such that the tumor size eases discomfort and improves the patient's quality of life or leads to, or is associated with, a clinically favorable outcome.

[0023] Disclosed is a method of extending survival or a patient or subject suffering from an HPV related disease comprising administering to a patient a composition comprising a dendritic cell targeting complex comprising an anti-CD40 antibody or fragment thereof comprising at least six complementarity determining regions from an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens. In some embodiments, the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody light chain variable region and an anti-CD40 antibody heavy chain variable region. In some embodiments, the anti-CD40 antibody or fragment thereof is humanized. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen and at least one HPV E7 antigen is an HPV type 16 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, at least one HPV E6 antigen is an HPV type 16 antigen, at least one HPV E7 antigen is an HPV type 16 antigen, at least one HPV E6 antigen is an HPV type 18 antigen and at least one HPV E7 antigen is an HPV type 18 antigen. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 19. In some embodiments, the dendritic cell targeting complex comprises SEQ ID NO: 21. In some embodiments, the HPV related disease is dysplasia, benign neoplasia, pre-malignant neoplasia or cancer. In some

embodiments, the HPV related disease is cancer. In some embodiments, the cancer is cancer of the cervix, vulva, vagina, penis, anus, oropharynx, throat or lung. In yet further embodiments, the cancer is head and neck cancer. In some embodiments, the method further comprises administering to the patient a separate treatment. In some embodiments, the method further comprises administering to the patient a cancer treatment. In some aspects, survival is extended by a period of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 days, or any range derivable therein. In some aspects, survival is extended by a period of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 weeks, or any range derivable therein. In some aspects, survival is extended by a period of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 months, or any range derivable therein. In some aspects, survival is extended by a period of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25 or 30 years, or any range derivable therein.

[0024] Any of the methods disclosed above may be implemented using any of the fusion proteins, compositions, and/or vectors disclosed above.

[0025] As used herein the specification, “a” or “an” may mean one or more. As used herein in the claim(s), when used in conjunction with the word “comprising”, the words “a” or “an” may mean one or more than one.

[0026] The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” As used herein “another” may mean at least a second or more.

[0027] Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.

[0028] Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

[0030] **Fig. 1:** Scheme for development of recombinant anti-DC receptor-E6/E7 vaccines.

[0031] **Fig. 2:** SDS-PAGE analysis of protein A affinity purified anti-DC receptor antibody fused to HPV16 E6 and E7 antigens.

[0032] **Fig. 3:** Anti-CD40-HPV16.E6/7 can efficiently bind to human blood DCs.

[0033] **Fig. 4:** Anti-CD40-HPV16.E6/7 can elicit HPV16.E6/7-specific CD4+ and CD8+ T-cell responses.

[0034] **Fig. 5:** Anti-CD40-HPV16.E6/7 can efficiently induce HPV16.E6/7-specific CD4+ and CD8+ T-cell responses.

[0035] **Fig. 6:** Anti-CD40-HPV16.E6/7 can suppress TC-1 tumor progression in human CD40Tg mice.

[0036] **Fig. 7:** Effect of adjuvant co-administration with anti-CD40-HPV16.E6/7.

[0037] **Fig. 8:** CD40HVac plus poly IC induces E6/7-specific CD8+ T cells in hCD40 transgenic animals.

[0038] **Fig. 9:** CD40HVac plus poly IC induces therapeutic immunity in hCD40Tg mice. (a) Survival curves. 10 mice per group. (b) TC-1 tumor progression. 10 mice per group.

[0039] **Fig. 10:** The percentage of E7-specific tetramer+CD8+ T cells in tumors, but not blood, inversely correlates with tumor volume.

[0040] **Fig. 11:** CD40HVac made with anti-CD40 (clone 12E12) is more efficient than that made with anti-CD40 (clone 12B6) at inducing E6/7-specific CD8+ T cell responses.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0041] As described in the Examples, an anti-CD40 antibody to which an HPV E6 and E7 antigen has been fused (called hereafter ‘anti-CD40-HPV16.E6/7’) has been shown to induce a strong immune response against said antigens (including a strong T-cell response). This provides an efficient and effective method of eliciting and potentiating an immune response to HPV antigens. Moreover, an anti-CD40-HPV16.E6/7 has been used in a prime-boost strategy in combination with a poly IC adjuvant to suppress TC-1 tumor progression in human CD40 transgenic mice. Thus, it has been demonstrated that said anti-CD40-HPV16.E6/7 can elicit E6/E7-specific CD8+ cytotoxic T lymphocytes and when administered with a poly IC adjuvant, serves as an efficient vaccine.

I. NUCLEIC ACIDS

[0042] In certain embodiments, there are recombinant nucleic acids encoding the proteins, polypeptides, or peptides described herein. Polynucleotides contemplated for use in methods and compositions include those encoding antibodies to DC receptors or binding portions thereof, HPV antigens, linker regions or adjuvants.

[0043] As used in this application, the term “polynucleotide” refers to a nucleic acid molecule that either is recombinant or has been isolated free of total genomic nucleic acid. Included within the term “polynucleotide” are oligonucleotides (nucleic acids 100 residues or fewer in length), recombinant vectors, including, for example, plasmids, cosmids, phage, viruses, and the like. Polynucleotides include, in certain aspects, regulatory sequences, isolated substantially away from their naturally occurring genes or protein encoding sequences. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be RNA, DNA (genomic, cDNA or synthetic), analogs thereof, or a combination thereof. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide.

[0044] In this respect, the term “gene,” “polynucleotide,” or “nucleic acid” is used to refer to a nucleic acid that encodes a protein, polypeptide, or peptide (including any sequences required for proper transcription, post-translational modification, or localization). As will be understood by those in the art, this term encompasses genomic sequences, expression cassettes, cDNA sequences, and smaller engineered nucleic acid segments that express, or may be adapted to express, proteins, polypeptides, domains, peptides, fusion

proteins, and mutants. A nucleic acid encoding all or part of a polypeptide may contain a contiguous nucleic acid sequence encoding all or a portion of such a polypeptide. It also is contemplated that a particular polypeptide may be encoded by nucleic acids containing variations having slightly different nucleic acid sequences but, nonetheless, encode the same or substantially similar protein (see above).

[0045] In particular embodiments, there are isolated nucleic acid segments and recombinant vectors incorporating nucleic acid sequences that encode polypeptides (e.g., an antibody or fragment thereof) that bind to DC receptors, are HPV antigens, are linker regions or are fusion proteins comprising any combination of a DC receptor antibody or antibodies or fragments thereof, HPV antigens (such as E6 or E7 from any HPV type) and linker regions. The term “recombinant” may be used in conjunction with a polypeptide or the name of a specific polypeptide, and this generally refers to a polypeptide produced from a nucleic acid molecule that has been manipulated *in vitro* or that is a replication product of such a molecule.

[0046] The nucleic acid segments, regardless of the length of the coding sequence itself, may be combined with other nucleic acid sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant nucleic acid protocol. In some cases, a nucleic acid sequence may encode a polypeptide sequence with additional heterologous coding sequences, for example to allow for purification of the polypeptide, transport, secretion, post-translational modification, or for therapeutic benefits such as targeting or efficacy. As discussed above, a tag or other heterologous polypeptide may be added to the modified polypeptide-encoding sequence, wherein “heterologous” refers to a polypeptide that is not the same as the modified polypeptide.

[0047] In certain embodiments, there are polynucleotide variants having substantial identity to the sequences disclosed herein; those comprising at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher sequence identity, including all values and ranges there between, compared to a polynucleotide sequence provided herein using the methods described herein (e.g., BLAST analysis using standard parameters). In certain

aspects, the isolated polynucleotide will comprise a nucleotide sequence encoding a polypeptide that has at least 90%, preferably 95% and above, identity to an amino acid sequence described herein, over the entire length of the sequence; or a nucleotide sequence complementary to said isolated polynucleotide.

Vectors

[0048] Polypeptides may be encoded by a nucleic acid molecule. The nucleic acid molecule can be in the form of a nucleic acid vector. The term “vector” is used to refer to a carrier nucleic acid molecule into which a heterologous nucleic acid sequence can be inserted for introduction into a cell where it can be replicated and expressed. A nucleic acid sequence can be “heterologous,” which means that it is in a context foreign to the cell in which the vector is being introduced or to the nucleic acid in which it is incorporated, which includes a sequence homologous to a sequence in the cell or nucleic acid but in a position within the host cell or nucleic acid where it is ordinarily not found. Vectors include DNAs, RNAs, plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant viruses), and artificial chromosomes (e.g., YACs). One of skill in the art would be well equipped to construct a vector through standard recombinant techniques (for example Sambrook *et al.*, 2001; Ausubel *et al.*, 1996, both incorporated herein by reference). Vectors may be used in a host cell to produce an antibody or fragment thereof that binds a dendritic cell receptor, an HPV antigen or antigens (e.g. E6 and/or E7 from one or multiple HPV types), a linker or multiple linker regions, an adjuvant or multiple adjuvants, any combination of the aforementioned proteins or a fusion protein or fusion proteins comprising any combination of the aforementioned proteins.

[0049] The term “expression vector” refers to a vector containing a nucleic acid sequence coding for at least part of a gene product capable of being transcribed. In some cases, RNA molecules are then translated into a protein, polypeptide, or peptide. Expression vectors can contain a variety of “control sequences,” which refer to nucleic acid sequences necessary for the transcription and possibly translation of an operably linked coding sequence in a particular host organism. In addition to control sequences that govern transcription and translation, vectors and expression vectors may contain nucleic acid sequences that serve other functions as well and are described herein.

Host Cells

[0050] As used herein, the terms “cell,” “cell line,” and “cell culture” may be used interchangeably. All of these terms also include their progeny, which is any and all subsequent generations. It is understood that all progeny may not be identical due to deliberate or inadvertent mutations. In the context of expressing a heterologous nucleic acid sequence, “host cell” refers to a prokaryotic or eukaryotic cell, and it includes any transformable organism that is capable of replicating a vector or expressing a heterologous gene encoded by a vector. A host cell can, and has been, used as a recipient for vectors or viruses. A host cell may be “transfected” or “transformed,” which refers to a process by which exogenous nucleic acid, such as a recombinant protein-encoding sequence, is transferred or introduced into the host cell. A transformed cell includes the primary subject cell and its progeny.

[0051] Some vectors may employ control sequences that allow it to be replicated and/or expressed in both prokaryotic and eukaryotic cells. One of skill in the art would further understand the conditions under which to incubate all of the above described host cells to maintain them and to permit replication of a vector. Also understood and known are techniques and conditions that would allow large-scale production of vectors, as well as production of the nucleic acids encoded by vectors and their cognate polypeptides, proteins, or peptides.

Expression Systems

[0052] Numerous expression systems exist that comprise at least a part or all of the compositions discussed above. Prokaryote- and/or eukaryote-based systems can be employed for use with an embodiment to produce nucleic acid sequences, or their cognate polypeptides, proteins and peptides. Many such systems are commercially and widely available.

[0053] The insect cell/baculovirus system can produce a high level of protein expression of a heterologous nucleic acid segment, such as described in U.S. Patents 5,871,986, 4,879,236, both herein incorporated by reference, and which can be bought, for example, under the name MAXBAC® 2.0 from INVITROGEN® and BACPACK™ BACULOVIRUS EXPRESSION SYSTEM FROM CLONTECH®.

[0054] In addition to the disclosed expression systems, other examples of expression systems include STRATAGENE®’s COMPLETE CONTROL Inducible Mammalian Expression System, which involves a synthetic ecdysone-inducible receptor, or its pET

Expression System, an *E. coli* expression system. Another example of an inducible expression system is available from INVITROGEN®, which carries the T-REX™ (tetracycline-regulated expression) System, an inducible mammalian expression system that uses the full-length CMV promoter. INVITROGEN® also provides a yeast expression system called the *Pichia methanolica* Expression System, which is designed for high-level production of recombinant proteins in the methylotrophic yeast *Pichia methanolica*. One of skill in the art would know how to express a vector, such as an expression construct, to produce a nucleic acid sequence or its cognate polypeptide, protein, or peptide.

II. PROTEINACEOUS COMPOSITIONS

[0055] Substitutional variants typically contain the exchange of one amino acid for another at one or more sites within the protein, and may be designed to modulate one or more properties of the polypeptide, with or without the loss of other functions or properties. Substitutions may be conservative, that is, one amino acid is replaced with one of similar shape and charge. Conservative substitutions are well known in the art and include, for example, the changes of: alanine to serine; arginine to lysine; asparagine to glutamine or histidine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; glycine to proline; histidine to asparagine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine. Alternatively, substitutions may be non-conservative such that a function or activity of the polypeptide is affected. Non-conservative changes typically involve substituting a residue with one that is chemically dissimilar, such as a polar or charged amino acid for a nonpolar or uncharged amino acid, and vice versa.

[0056] Proteins may be recombinant, or synthesized *in vitro*. Alternatively, a non-recombinant or recombinant protein may be isolated from bacteria. It is also contemplated that a bacteria containing such a variant may be implemented in compositions and methods. Consequently, a protein need not be isolated.

[0057] The term “functionally equivalent codon” is used herein to refer to codons that encode the same amino acid, such as the six codons for arginine or serine, and also refers to codons that encode biologically equivalent amino acids (see Table, below).

Codon Table

Amino Acids			Codons					
Alanine	Ala	A	GCA	GCC	GCG	GCU		
Cysteine	Cys	C	UGC	UGU				
Aspartic acid	Asp	D	GAC	GAU				
Glutamic acid	Glu	E	GAA	GAG				
Phenylalanine	Phe	F	UUC	UUU				
Glycine	Gly	G	GGA	GGC	GGG	GGU		
Histidine	His	H	CAC	CAU				
Isoleucine	Ile	I	AUA	AUC	AUU			
Lysine	Lys	K	AAA	AAG				
Leucine	Leu	L	UUA	UUG	CUA	CUC	CUG	CUU
Methionine	Met	M	AUG					
Asparagine	Asn	N	AAC	AAU				
Proline	Pro	P	CCA	CCC	CCG	CCU		
Glutamine	Gln	Q	CAA	CAG				
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGU
Serine	Ser	S	AGC	AGU	UCA	UCC	UCG	UCU
Threonine	Thr	T	ACA	ACC	ACG	ACU		
Valine	Val	V	GUA	GUC	GUG	GUU		
Tryptophan	Trp	W	UGG					
Tyrosine	Tyr	Y	UAC	UAU				

[0058] It also will be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids, or 5' or 3' sequences, respectively, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences flanking either of the 5' or 3' portions of the coding region.

[0059] The following is a discussion based upon changing of the amino acids of a protein to create an equivalent, or even an improved, second-generation molecule. For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules or loss of antigenicity in antigenic peptides or proteins. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid substitutions can be made in a protein sequence, and in its underlying DNA coding sequence, and nevertheless produce a protein with like properties. It is thus contemplated by the

inventors that various changes may be made in the DNA sequences of genes without appreciable loss of their biological utility or activity.

[0060] In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.

[0061] It also is understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Patent 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein. It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still produce a biologically equivalent and immunologically equivalent protein.

[0062] As outlined above, amino acid substitutions generally are based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take into consideration the various foregoing characteristics are well known and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

[0063] It is contemplated that in compositions there is between about 0.001 mg and about 10 mg of total polypeptide, peptide, and/or protein per ml. Thus, the concentration of protein (including a fusion protein) in a composition can be about, at least about or at most about 0.001, 0.010, 0.050, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 mg/ml or more (or any range derivable therein). Of this, about, at least about, or at most about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,

86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% may be an antibody that binds DC receptor or a fusion protein comprising an antibody that binds a DC receptor, and may be used in combination with other HPV antigens, linker regions or adjuvants described herein.

Polypeptides and Polypeptide Production

[0064] Embodiments involve polypeptides, peptides, and proteins and immunogenic fragments thereof for use in various aspects described herein. For example, specific antibodies are assayed for or used in binding to DC receptors and presenting HPV antigens. In specific embodiments, all or part of proteins described herein can also be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young, (1984); Tam *et al.*, (1983); Merrifield, (1986); and Barany and Merrifield (1979), each incorporated herein by reference. Alternatively, recombinant DNA technology may be employed wherein a nucleotide sequence that encodes a peptide or polypeptide is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression.

[0065] One embodiment includes the use of gene transfer to cells, including microorganisms, for the production and/or presentation of proteins. The gene for the protein of interest may be transferred into appropriate host cells followed by culture of cells under the appropriate conditions. A nucleic acid encoding virtually any polypeptide may be employed. The generation of recombinant expression vectors, and the elements included therein, are discussed herein. Alternatively, the protein to be produced may be an endogenous protein normally synthesized by the cell used for protein production.

[0066] In a certain aspects an DC receptor or receptor fragment comprises substantially all of the extracellular domain of a protein which has at least 85% identity, at least 90% identity, at least 95% identity, or at least 97-99% identity, including all values and ranges there between, to a sequence selected over the length of the fragment sequence.

[0067] Also included in immunogenic compositions are fusion proteins composed of HPV antigens, or immunogenic fragments of HPV antigens (e.g., E6 or E7). HPV antigens may be from any type (e.g. type 16 or type 18). For example an HPV antigen may be selected from a single or combination of HPV type. An HPV antigen or combination of HPV antigen may be from HPV type 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120. Alternatively, embodiments also include individual fusion proteins of HPV proteins or immunogenic fragments thereof or anti-DC receptor antibodies or fragments thereof, as a fusion protein with heterologous sequences such as a provider of T-cell epitopes or purification tags, for example: β -galactosidase, glutathione-S-transferase, green fluorescent proteins (GFP), epitope tags such as FLAG, myc tag, poly histidine, or viral surface proteins such as influenza virus haemagglutinin, or bacterial proteins such as tetanus toxoid, diphtheria toxoid, CRM197.

Antibodies and Antibody-Like Molecules

[0068] In certain aspects, one or more antibodies or antibody-like molecules (e.g., polypeptides comprising antibody CDR domains) may be obtained or produced which have a specificity for a DC receptor. These antibodies may be used in various diagnostic or therapeutic applications described herein.

[0069] As used herein, the term “antibody” is intended to refer broadly to any immunologic binding agent such as IgG, IgM, IgA, IgD and IgE as well as polypeptides comprising antibody CDR domains that retain antigen binding activity. Thus, the term “antibody” is used to refer to any antibody-like molecule that has an antigen binding region, and includes antibody fragments such as Fab', Fab, F(ab')2, single domain antibodies (DABs), Fv, scFv (single chain Fv), and polypeptides with antibody CDRs, scaffolding domains that display the CDRs (e.g., anticalins) or a nanobody. For example, the nanobody can be antigen-specific VHH (e.g., a recombinant VHH) from a camelid IgG2 or IgG3, or a CDR-displaying frame from such camelid Ig. The techniques for preparing and using various antibody-based constructs and fragments are well known in the art. Means for preparing and characterizing antibodies are also well known in the art (See, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference).

[0070] “Mini-antibodies” or “minibodies” are also contemplated for use with embodiments. Minibodies are sFv polypeptide chains which include oligomerization domains at their C-termini, separated from the sFv by a hinge region (Pack, *et al.*, 1992). The

oligomerization domain comprises self-associating α -helices, e.g., leucine zippers, that can be further stabilized by additional disulfide bonds. The oligomerization domain is designed to be compatible with vectorial folding across a membrane, a process thought to facilitate *in vivo* folding of the polypeptide into a functional binding protein. Generally, minibodies are produced using recombinant methods well known in the art. See, e.g., Pack *et al.* (1992); Cumber *et al.* (1992).

[0071] Antibody-like binding peptidomimetics are also contemplated in embodiments. Liu *et al.*, 2003 describe “antibody like binding peptidomimetics” (ABiPs), which are peptides that act as pared-down antibodies and have certain advantages of longer serum half-life as well as less cumbersome synthesis methods.

[0072] Alternative scaffolds for antigen binding peptides, such as CDRs are also available and can be used to generate DC receptor-binding molecules in accordance with the embodiments. Generally, a person skilled in the art knows how to determine the type of protein scaffold on which to graft at least one of the CDRs arising from the original antibody. More particularly, it is known that to be selected such scaffolds must meet the greatest number of criteria as follows (Skerra, 2000): good phylogenetic conservation; known three-dimensional structure (as, for example, by crystallography, NMR spectroscopy or any other technique known to a person skilled in the art); small size; few or no post-transcriptional modifications; and/or easy to produce, express and purify.

[0073] The origin of such protein scaffolds can be, but is not limited to, the structures selected among: fibronectin and preferentially fibronectin type III domain 10, lipocalin, anticalin (Skerra, 2001), protein Z arising from domain B of protein A of *Staphylococcus aureus*, thioredoxin A or proteins with a repeated motif such as the “ankyrin repeat” (Kohl *et al.*, 2003), the “armadillo repeat”, the “leucine-rich repeat” and the “tetratricopeptide repeat”. For example, anticalins or lipocalin derivatives are a type of binding proteins that have affinities and specificities for various target molecules and can be used as DC receptor-binding molecules. Such proteins are described in US Patent Publication Nos. 20100285564, 20060058510, 20060088908, 20050106660, and PCT Publication No. WO2006/056464, incorporated herein by reference.

[0074] Scaffolds derived from toxins such as, for example, toxins from scorpions, insects, plants, mollusks, etc., and the protein inhibitors of neuronal NO synthase (PIN) may also be used in certain aspects.

[0075] Monoclonal antibodies (MAbs) are recognized to have certain advantages, e.g., reproducibility and large-scale production. Embodiments include monoclonal antibodies of the human, murine, monkey, rat, hamster, rabbit and chicken origin.

[0076] “Humanized” antibodies are also contemplated, as are chimeric antibodies from mouse, rat, or other species, bearing human constant and/or variable region domains, bispecific antibodies, recombinant and engineered antibodies and fragments thereof. As used herein, the term “humanized” immunoglobulin refers to an immunoglobulin comprising a human framework region and one or more CDR's from a non-human (usually a mouse or rat) immunoglobulin. The non-human immunoglobulin providing the CDR's is called the “donor” and the human immunoglobulin providing the framework is called the “acceptor”. A “humanized antibody” is an antibody comprising a humanized light chain and a humanized heavy chain immunoglobulin. In order to describe antibodies of some embodiments, the strength with which an antibody molecule binds an epitope, known as affinity, can be measured. The affinity of an antibody may be determined by measuring an association constant (Ka) or dissociation constant(Kd). Antibodies deemed useful in certain embodiments may have an association constant of about, at least about, or at most about 10e6, 10e7, 10e8, 10e9 or 10e10 M or any range derivable therein. Similarly, in some embodiments antibodies may have a dissociation constant of about, at least about or at most about 10e-6, 10e-7, 10e-8, 10e-9 or 10e-10. M or any range derivable therein. These values are reported for antibodies discussed herein and the same assay may be used to evaluate the binding properties of such antibodies

[0077] In certain embodiments, a polypeptide that specifically binds to DC receptors is able to bind a DC receptor on the surface of the cells and present an HPV antigen that allows the generation of a robust immune response. Moreover, in some embodiments, the polypeptide that is used can provide protective immunity against HPV or provides a means of therapy for HPV by generating a robust immune response.

1. Methods for Generating Antibodies

[0078] Methods for generating antibodies (*e.g.*, monoclonal antibodies and/or monoclonal antibodies) are known in the art. Briefly, a polyclonal antibody is prepared by immunizing an animal with a DC receptor polypeptide or a portion thereof in accordance with embodiments and collecting antisera from that immunized animal.

[0079] A wide range of animal species can be used for the production of antisera. Typically the animal used for production of antisera is a rabbit, a mouse, a rat, a hamster, a guinea pig or a goat. The choice of animal may be decided upon the ease of manipulation, costs or the desired amount of sera, as would be known to one of skill in the art. It will be appreciated that antibodies can also be produced transgenically through the generation of a mammal or plant that is transgenic for the immunoglobulin heavy and light chain sequences of interest and production of the antibody in a recoverable form therefrom. In connection with the transgenic production in mammals, antibodies can be produced in, and recovered from, the milk of goats, cows, or other mammals. See, *e.g.*, U.S. Pat. Nos. 5,827,690, 5,756,687, 5,750,172, and 5,741,957.

[0080] As is also well known in the art, the immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Suitable adjuvants include any acceptable immunostimulatory compound, such as cytokines, chemokines, cofactors, toxins, plasmodia, synthetic compositions or vectors encoding such adjuvants.

[0081] Adjuvants that may be used in accordance with embodiments include, but are not limited to, IL-1, IL-2, IL-4, IL-7, IL-12, -interferon, GMCSF, BCG, aluminum hydroxide, MDP compounds, such as thur-MDP and nor-MDP, CGP (MTP-PE), lipid A, poly IC, montanide, GMCSF, and monophosphoryl lipid A (MPL). RIBI, which contains three components extracted from bacteria, MPL, trehalose dimycolate (TDM) and cell wall skeleton (CWS) in a 2% squalene/Tween 80 emulsion is also contemplated. MHC antigens may even be used. Exemplary adjuvants may include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed *Mycobacterium tuberculosis*), incomplete Freund's adjuvants and/or aluminum hydroxide adjuvant.

[0082] In addition to adjuvants, it may be desirable to coadminister biologic response modifiers (BRM), which have been shown to upregulate T cell immunity or downregulate suppressor cell activity. Such BRMs include, but are not limited to, Cimetidine (CIM; 1200

mg/d) (Smith/Kline, PA); low-dose Cyclophosphamide (CYP; 300 mg/m²) (Johnson/ Mead, NJ), cytokines such as -interferon, IL-2, or IL-12 or genes encoding proteins involved in immune helper functions, such as B-7.

[0083] The amount of immunogen composition used in the production of antibodies varies upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen including but not limited to subcutaneous, intramuscular, intradermal, intraepidermal, intravenous, intratumoral and intraperitoneal. The production of antibodies may be monitored by sampling blood of the immunized animal at various points following immunization.

[0084] MAbs may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Patent 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified protein, polypeptide, peptide or domain, be it a wild-type or mutant composition. The immunizing composition is administered in a manner effective to stimulate antibody producing cells.

[0085] The methods for generating monoclonal antibodies (MAbs) generally begin along the same lines as those for preparing polyclonal antibodies. In some embodiments, Rodents such as mice and rats are used in generating monoclonal antibodies. In some embodiments, rabbit, sheep or frog cells are used in generating monoclonal antibodies. The use of rats is well known and may provide certain advantages (Goding, 1986, pp. 60 61). Mice (e.g., BALB/c mice) are routinely used and generally give a high percentage of stable fusions.

[0086] MAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography. Fragments of the monoclonal antibodies can be obtained from the monoclonal antibodies so produced by methods which include digestion with enzymes, such as pepsin or papain, and/or by cleavage of disulfide bonds by chemical reduction. Alternatively, monoclonal antibody fragments can be synthesized using an automated peptide synthesizer.

[0087] It is also contemplated that a molecular cloning approach may be used to generate monoclonal antibodies. In one embodiment, combinatorial immunoglobulin

phagemid libraries are prepared from RNA isolated from the spleen of the immunized animal, and phagemids expressing appropriate antibodies are selected by panning using cells expressing the antigen and control cells. The advantages of this approach over conventional hybridoma techniques are that approximately 104 times as many antibodies can be produced and screened in a single round, and that new specificities are generated by H and L chain combination which further increases the chance of finding appropriate antibodies.

[0088] Another embodiment concerns producing antibodies, for example, as is found in U.S. Patent No. 6,091,001, which describes methods to produce a cell expressing an antibody from a genomic sequence of the cell comprising a modified immunoglobulin locus using Cre-mediated site-specific recombination is disclosed. The method involves first transfecting an antibody-producing cell with a homology-targeting vector comprising a lox site and a targeting sequence homologous to a first DNA sequence adjacent to the region of the immunoglobulin loci of the genomic sequence which is to be converted to a modified region, so the first lox site is inserted into the genomic sequence via site-specific homologous recombination. Then the cell is transfected with a lox-targeting vector comprising a second lox site suitable for Cre-mediated recombination with the integrated lox site and a modifying sequence to convert the region of the immunoglobulin loci to the modified region. This conversion is performed by interacting the lox sites with Cre in vivo, so that the modifying sequence inserts into the genomic sequence via Cre-mediated site-specific recombination of the lox sites.

[0089] Alternatively, monoclonal antibody fragments can be synthesized using an automated peptide synthesizer, or by expression of full-length gene or of gene fragments in *E. coli*.

[0090] It is further contemplated that monoclonal antibodies may be further screened or optimized for properties relating to specificity, avidity, half-life, immunogenicity, binding association, binding disassociation, or overall functional properties relative to the intended treatment or protective effect. Thus, it is contemplated that monoclonal antibodies may have 1, 2, 3, 4, 5, 6, or more alterations in the amino acid sequence of 1, 2, 3, 4, 5, or 6 CDRs of monoclonal antibodies or humanized antibodies provided herein. It is contemplated that the amino acid in position 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 of CDR1, CDR2, CDR3, CDR4, CDR5, or CDR6 of the VJ or VDJ region of the light or heavy variable region of antibodies may have an insertion, deletion, or substitution with a conserved or non-conserved amino acid.

Such amino acids that can either be substituted or constitute the substitution are disclosed above.

[0091] In some embodiments, fragments of a whole antibody can perform the function of binding antigens. Examples of binding fragments are (i) the Fab fragment constituted with the VL, VH, CL and CH1 domains; (ii) the Fd fragment consisting of the VH and CH1 domains; (iii) the Fv fragment constituted with the VL and VH domains of a single antibody; (iv) the dAb fragment (Ward, 1989; McCafferty *et al.*, 1990; Holt *et al.*, 2003), which is constituted with a VH or a VL domain; (v) isolated CDR regions; (vi) F(ab')2 fragments, a bivalent fragment comprising two linked Fab fragments (vii) single chain Fv molecules (scFv) , wherein a VH domain and a VL domain are linked by a peptide linker which allows the two domains to associate to form an antigen binding site (Bird *et al.*, 1988; Huston *et al.*, 1988); (viii) bispecific single chain Fv dimers (PCT/US92/09965) and (ix) "diabodies", multivalent or multispecific fragments constructed by gene fusion (WO94/13804; Holliger *et al.*, 1993) . Fv, scFv or diabody molecules may be stabilized by the incorporation of disulphide bridges linking the VH and VL domains (Reiter *et al.*, 1996). Minibodies comprising a scFv joined to a CH3 domain may also be made (Hu *et al.* 1996). The citations in this paragraph are all incorporated by reference.

[0092] Antibodies also include bispecific antibodies. Bispecific or bifunctional antibodies form a second generation of monoclonal antibodies in which two different variable regions are combined in the same molecule (Holliger & Winter, 1999). Their use has been demonstrated both in the diagnostic field and in the therapy field from their capacity to recruit new effector functions or to target several molecules on the surface of tumor cells. Where bispecific antibodies are to be used, these may be conventional bispecific antibodies, which can be manufactured in a variety of ways (Holliger *et al.*, 1993), e.g. prepared chemically or from hybrid hybridomas, or may be any of the bispecific antibody fragments mentioned above. These antibodies can be obtained by chemical methods (Glennie *et al.*, 1987; Repp *et al.*, 1995) or somatic methods (Staerz & Bevan, 1986) but likewise by genetic engineering techniques which allow the heterodimerization to be forced and thus facilitate the process of purification of the antibody sought (Merchand *et al.*, 1998). Examples of bispecific antibodies include those of the BiTE™ technology in which the binding domains of two antibodies with different specificity can be used and directly linked via short flexible peptides. This combines two antibodies on a short single polypeptide chain. Diabodies and

scFv can be constructed without an Fc region, using only variable domains, potentially reducing the effects of anti-idiotypic reaction. The citations in this paragraph are all incorporated by reference.

[0093] Bispecific antibodies can be constructed as entire IgG, as bispecific Fab'2, as Fab'PEG, as diabodies or else as bispecific scFv. Further, two bispecific antibodies can be linked using routine methods known in the art to form tetravalent antibodies.

[0094] Bispecific diabodies, as opposed to bispecific whole antibodies, may also be particularly useful because they can be readily constructed and expressed in *E. coli*. Diabodies (and many other polypeptides such as antibody fragments) of appropriate binding specificities can be readily selected using phage display (WO94/13804) from libraries. If one arm of the diabody is to be kept constant, for instance, with a specificity directed against a DC receptor, then a library can be made where the other arm is varied and an antibody of appropriate specificity selected. Bispecific whole antibodies may be made by alternative engineering methods as described in Ridgeway *et al.*, 1996), which is hereby incorporated by reference.

Antibody and Polypeptide Conjugates

[0095] Embodiments provide antibodies and antibody-like molecules against DC receptors, polypeptides and peptides that are linked to at least one agent to form an antibody conjugate or payload. In order to increase the efficacy of antibody molecules as diagnostic or therapeutic agents, it is conventional to link or covalently bind or complex at least one desired molecule or moiety. Such a molecule or moiety may be, but is not limited to, at least one effector or reporter molecule. Effector molecules comprise molecules having a desired activity, e.g., cytotoxic activity or immunostimulatory activity. Non-limiting examples of effector molecules which have been attached to antibodies include adjuvants, toxins, therapeutic enzymes, antibiotics, radio-labeled nucleotides and the like. By contrast, a reporter molecule is defined as any moiety which may be detected using an assay. Non-limiting examples of reporter molecules which have been conjugated to antibodies include enzymes, radiolabels, haptens, fluorescent labels, phosphorescent molecules, chemiluminescent molecules, chromophores, luminescent molecules, photoaffinity molecules, colored particles or ligands, such as biotin. The following US patent applications are incorporated by reference to the extent they disclose antibodies, portions of antibodies, antigens, linkers, specific sequences of such antibodies, antigens and linkers, adjuvants, other

components of a fusion protein or therapeutic composition, host cell or composition, sources of dendritic cells and culturing/activating of dendritic cells and derivatives of and from dendritic cells, and methods of use involving such fusion proteins: 12/024,036; 12/024,897; 12/025,010; 12/026,095; 12/036,138; 12/036,158; 12/504,463; 12/717,778; 12/717,789; 12/717,804; 12/718,365; 12/882,052; 12/882,052; 13/100,684; 13/208,993; 13/269,951; 13/282,112; 13/415,564; 13/424,582; 13/430,206; 13/594,397; 13/596,526; WO2010/104749; 13/465,371; 13/397,932; PCT/US13/72217; and PCT/US2013/05839.

[0096] Certain examples of antibody conjugates are those conjugates in which the antibody is linked to a detectable label. “Detectable labels” are compounds and/or elements that can be detected due to their specific functional properties, and/or chemical characteristics, the use of which allows the antibody to which they are attached to be detected, and/or further quantified if desired.

[0097] Antibody conjugates include those intended primarily for use *in vitro*, where the antibody is linked to a secondary binding ligand and/or to an enzyme (an enzyme tag) that will generate a colored product upon contact with a chromogenic substrate. Examples of suitable enzymes include, but are not limited to, urease, alkaline phosphatase, (horseradish) hydrogen peroxidase or glucose oxidase. Preferred secondary binding ligands are biotin and/or avidin and streptavidin compounds. The use of such labels is well known to those of skill in the art and are described, for example, in U.S. Patents 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241; each incorporated herein by reference.

[0098] Molecules containing azido groups may also be used to form covalent bonds to proteins through reactive nitrene intermediates that are generated by low intensity ultraviolet light (Potter & Haley, 1983). In particular, 2- and 8-azido analogues of purine nucleotides have been used as site-directed photoprobes to identify nucleotide binding proteins in crude cell extracts (Owens & Haley, 1987; Atherton *et al.*, 1985). The 2- and 8-azido nucleotides have also been used to map nucleotide binding domains of purified proteins (Khatoon *et al.*, 1989; King *et al.*, 1989; and Dholakia *et al.*, 1989) and may be used as antibody binding agents.

[0099] Several methods are known in the art for the attachment or conjugation of an antibody to its conjugate moiety. Some attachment methods involve the use of a metal

chelate complex employing, for example, an organic chelating agent such a diethylenetriaminepentaacetic acid anhydride (DTPA); ethylenetriaminetetraacetic acid; N-chloro-p-toluenesulfonamide; and/or tetrachloro-3 -6 -diphenylglycouril-3 attached to the antibody (U.S. Patent Nos. 4,472,509 and 4,938,948, each incorporated herein by reference). Monoclonal antibodies may also be reacted with an enzyme in the presence of a coupling agent such as glutaraldehyde or periodate. Conjugates with fluorescein markers are prepared in the presence of these coupling agents or by reaction with an isothiocyanate. In U.S. Patent No. 4,938,948 (incorporated herein by reference), imaging of breast tumors is achieved using monoclonal antibodies and the detectable imaging moieties are bound to the antibody using linkers such as methyl-p-hydroxybenzimidate or N-succinimidyl-3-(4-hydroxyphenyl)propionate.

[00100] In some embodiments, derivatization of immunoglobulins by selectively introducing sulfhydryl groups in the Fc region of an immunoglobulin, using reaction conditions that do not alter the antibody combining site are contemplated. Antibody conjugates produced according to this methodology are disclosed to exhibit improved longevity, specificity and sensitivity (U.S. Pat. No. 5,196,066, incorporated herein by reference). Site-specific attachment of effector or reporter molecules, wherein the reporter or effector molecule is conjugated to a carbohydrate residue in the Fc region have also been disclosed in the literature (O'Shannessy *et al.*, 1987, incorporated herein by reference). This approach has been reported to produce diagnostically and therapeutically promising antibodies which are currently in clinical evaluation.

2. Dendritic cell specific antibodies

[00101] In certain aspects, antibodies used to target HPV antigens to dendritic cells are dendritic cell specific antibodies and bind dendritic cell receptors or receptors expressed by dendritic cells. Some of the antibodies that may be used for this purpose are known in the art.

[00102] In some embodiments anti-DCIR antibodies are used to target HPV antigens to dendritic cells. One example includes anti-dendritic cell immunoreceptor monoclonal antibody conjugates, wherein the conjugate comprises antigenic peptides that are loaded or chemically coupled to the antibody. Such antibodies are described in US application no. 61/332,465 and are incorporated herein by reference.

[00103] In other embodiments anti-CD40 antibodies are used to target HPV antigens to dendritic cells. Compositions and methods for the expression, secretion and use of anti-CD40 antibodies as vaccines and antigen delivery vectors with one linked antigenic peptides are described in WO 2010/104761; all methods disclosed are incorporated herein by reference. In some embodiments the anti-CD40 antibody comprises the heavy chain and light chain variable region from monoclonal antibody 12E12, 11B6 or 12B4. In other embodiments the anti-CD40 antibody comprises the heavy chain and light chain CDRs from monoclonal antibody 12E12, 11B6 or 12B4.

[00104] In certain aspects anti-LOX-1 antibodies are used to target HPV antigens to dendritic cells. One example of such an antibody can be used to target the LOX-1 receptor on immune cells and increase the effectiveness of antigen presentation by LOX-1 expressing antigen presenting cells. Examples of such LOX-1 antibodies are described in WO 2008/103953, the contents of which are incorporated herein by reference.

[00105] In other aspects anti-CLEC-6 antibodies are used to target HPV antigens to dendritic cells. One example of such antibodies include anti-CLEC-6 antibodies used to increase the effectiveness of antigen presentation by CLEC-6 expressing antigen presenting cells. Such antibodies are described in WO 2008/103947, the methods and contents of which are incorporated herein by reference.

[00106] In yet other embodiments anti-Dectin-1 antibodies are used to target HPV antigens to dendritic cells. Anti-Dectin-1 antibodies that increase the effectiveness of antigen presentation by Dectin-1 expressing antigen presenting cells are described in WO 2008/118587, the contents of which are incorporated herein by reference.

[00107] In certain aspects, peptide linkers are used to link dendritic cell specific antibodies and HPV antigens to be presented. Peptide linkers may incorporate glycosylation sites or introduce secondary structure. Additionally these linkers increase the efficiency of expression or stability of the fusion protein and as a result the efficiency of antigen presentation to a dendritic cell. Such linkers may include SSVSPTTSVHPTPTSVPPPTPKSSP (SEQ ID NO: 6); PTSTPADSSTITPTATPTATPTIKG (SEQ ID NO:29); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO:30); QTPTNTISVTPTNNSTPTNNNSNPKNP (SEQ ID NO: 5); or

TNGSITVAATAPTVPTVNATPSAA (SEQ ID NO: 31). These examples and others are discussed in WO 2010/104747, the contents of which are incorporated herein by reference.

[00108] In other embodiments an immune adjuvant is directly fused to the dendritic cell specific antibody in order to enhance the efficacy of the vaccine. In certain aspects the immune adjuvant may be a toll-like receptor (TLR) agonist. TLR agonists comprise flagellins from *Salmonella enterica* or *Vibrio cholerae*. TLR agonists may be specific for certain TLR classes (i.e., TLR2, TLR5, TLR7 or TLR9 agonists) and may be presented in any combination or as any modification. Examples of such immune adjuvants are described in US Application No. 13/208,993, 13/415,564, and in WO 2012/021834, the contents of all of which are incorporated herein by reference. US Patent Publications 2012/0039,916 and 2012/023,102 are incorporated by reference to the extent they disclose different TLR agonists.

[00109] In some embodiments, the compositions and fusion proteins comprising dendritic cell antibodies and HPV antigens are used to treat HPV related diseases or an HPV related pathology. In some embodiments, an HPV related disease is dysplasia, benign neoplasia, pre-malignant neoplasia or cancer (malignant neoplasia). In some embodiments, the tissue or organ affected by dysplasia, benign neoplasia, pre-malignant neoplasia or cancer is the cervix, vulva, vagina, penis, anus, oropharynx, head and neck, throat or lung. In some specific embodiments the HPV related diseases or an HPV related pathology is cervical intraepithelial neoplasia (CIN), vulvar intraepithelial neoplasia (VIN), penile intraepithelial neoplasia (PIN), and/or anal intraepithelial neoplasia (AIN). In still other embodiments, the compositions and fusion proteins comprising dendritic cell antibodies and HPV antigens are used to treat HPV related Common warts, Plantar warts, Flat warts, Anogenital warts, Anal lesions, Genital cancers, Epidermodysplasia verruciformis, Focal epithelial hyperplasia (oral), Oral papillomas, Oropharyngeal cancer, Verrucous cyst or Laryngeal papillomatosis.

III. METHODS OF TREATMENT

[00110] As discussed above, the compositions and methods of using these compositions can treat a subject (e.g., prevent an HPV infection or HPV related disease or evoke a robust or potentiate an immune response to HPV or HPV related disease) having, suspected of having, or at risk of developing an infection or related disease, related to HPV.

[00111] As used herein the phrase “immune response” or its equivalent “immunological response” refers to a humoral (antibody mediated), cellular (mediated by antigen-specific T cells or their secretion products) or both humoral and cellular response directed against a protein, peptide, or polypeptide of the invention in a recipient patient. Treatment or therapy can be an active immune response induced by administration of immunogen or a passive therapy effected by administration of a fusion protein composition, immunogenic composition or protein composition comprising an antibody/antigen fusion protein, antibody/antigen fusion protein containing material, or primed T-cells.

[00112] For purposes of this specification and the accompanying claims the terms “epitope” and “antigenic determinant” are used interchangeably to refer to a site on an antigen to which B and/or T cells respond or recognize. B-cell epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation. Methods of determining spatial conformation of epitopes include those methods described in *Epitope Mapping Protocols* (1996). T cells recognize continuous epitopes of about nine amino acids for CD8 cells or about 13-15 amino acids for CD4 cells. T cells that recognize the epitope can be identified by *in vitro* assays that measure antigen-dependent proliferation, as determined by ³H-thymidine incorporation by primed T cells in response to an epitope (Burke *et al.*, 1994), by antigen-dependent killing (cytotoxic T lymphocyte assay, Tigges *et al.*, 1996, incorporated by reference) or by cytokine secretion.

[00113] The presence of a cell-mediated immunological response can be determined by proliferation assays (CD4 (+) T cells) or CTL (cytotoxic T lymphocyte) assays. The relative contributions of humoral and cellular responses to the protective or therapeutic effect of an immunogen can be distinguished by separately isolating IgG and T-cells from an immunized syngeneic animal and measuring protective or therapeutic effect in a second subject. As used herein and in the claims, the terms “antibody” or “immunoglobulin” are used interchangeably.

[00114] Optionally, an antibody or preferably an immunological portion of an antibody, can be chemically conjugated to, or expressed as, a fusion protein with other

proteins. For purposes of this specification and the accompanying claims, all such fused proteins are included in the definition of antibodies or an immunological portion of an antibody.

[00115] In one embodiment a method includes treatment for a disease or condition caused by or suspected of being caused by an HPV pathogen. In certain aspects embodiments include methods of treatment of HPV infection, such as an infection acquired from an HPV positive individual. In some embodiments, the treatment is administered in the presence of HPV antigens. Furthermore, in some examples, treatment comprises administration of other agents commonly used against viral infection.

[00116] The therapeutic compositions are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective. The quantity to be administered depends on the subject to be treated. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner. Suitable regimes for initial administration and boosters are also variable, but are typified by an initial administration followed by subsequent administrations.

[00117] The manner of application may be varied widely. Any of the conventional methods for administration of a polypeptide therapeutic are applicable. These are believed to include oral application on a solid physiologically acceptable base or in a physiologically acceptable dispersion, parenterally, by injection and the like. The dosage of the composition will depend on the route of administration and will vary according to the size and health of the subject.

[00118] In certain instances, it will be desirable to have multiple administrations of the composition, e.g., 2, 3, 4, 5, 6 or more administrations. The administrations can be at 1, 2, 3, 4, 5, 6, 7, 8, to 5, 6, 7, 8, 9, 10, 11, 12 twelve week intervals, including all ranges there between.

Combination Therapy

[00119] The compositions and related methods, particularly administration of an antibody that binds DC receptor and delivers an HPV antigen or antigens or peptide or peptides to a patient/subject, may also be used in combination with the administration of traditional anti-viral therapies or anti-cancer therapies or drugs. These include, but are not

limited to, entry inhibitors, CCR5 receptor antagonists, nucleoside reverse transcriptase inhibitors, nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors, integrase inhibitors and maturation inhibitors. Anti-cancer therapies include but are not limited to chemotherapy, radiotherapy or radiation therapy.

[00120] The compositions and related methods, particularly administration of an antibody that binds DC receptor and delivers an HPV antigen or antigens or peptide or peptides to a patient/subject, may also be used in combination with the administration of one or more anti-cancer drugs that include but are not limited to Abiraterone Acetate, Abitrexate (Methotrexate), Abraxane (Paclitaxel Albumin-stabilized Nanoparticle Formulation), ABVD, ABVE, ABVE-PC, AC, AC-T, Adcetris (Brentuximab Vedotin), ADE, Ado-Trastuzumab Emtansine, Adriamycin (Doxorubicin Hydrochloride), Adrucil (Fluorouracil), Afatinib Dimaleate, Afinitor (Everolimus), Aldara (Imiquimod), Aldesleukin, Alemtuzumab, Alimta (Pemetrexed Disodium), Aloxi (Palonosetron Hydrochloride), Ambochlorin (Chlorambucil), Amboclorin (Chlorambucil), Aminolevulinic Acid, Anastrozole, Aprepitant, Aredia (Pamidronate Disodium), Arimidex (Anastrozole), Aromasin (Exemestane), Arranon (Nelarabine), Arsenic Trioxide, Arzerra (Ofatumumab), Asparaginase Erwinia chrysanthemi, Avastin (Bevacizumab), Axitinib, Azacitidine, BEACOPP, Bendamustine Hydrochloride, BEP, Bevacizumab, Bexarotene, Bexxar (Tositumomab and I 131 Iodine Tositumomab), Bleomycin, Bortezomib, Bosulif (Bosutinib), Bosutinib, Brentuximab Vedotin, Cabazitaxel, Cabozantinib-S-Malate, CAF, Campath (Alemtuzumab), Camptosar (Irinotecan Hydrochloride), Capecitabine, CAPOX, Carboplatin, CARBOPLATIN-TAXOL, Carfilzomib, CeeNU (Lomustine), Cerubidine (Daunorubicin Hydrochloride), Cervarix (Recombinant HPV Bivalent Vaccine comprising recombinant L1 protein of HPV types 16 and 18), Cetuximab, Chlorambucil, CHLORAMBUCIL-PREDNISONE, CHOP, Cisplatin, Clafen (Cyclophosphamide), Clofarabine, Clofarex (Clofarabine), Clofarabine, CMF, Cometriq (Cabozantinib-S-Malate), COPP, COPP-ABV, Cosmegen (Dactinomycin), Crizotinib, CVP, Cyclophosphamide, Cyfos (Ifosfamide), Cytarabine, Cytarabine, Liposomal, Cytosar-U (Cytarabine), Cytoxan (Cyclophosphamide), Dabrafenib, Dacarbazine, Dacogen (Decitabine), Dactinomycin, Dasatinib, Daunorubicin Hydrochloride, Decitabine, Degarelix, Denileukin Diftitox, Denosumab, DepoCyt (Liposomal Cytarabine), DepoFoam (Liposomal Cytarabine), Dexrazoxane Hydrochloride, Docetaxel, Doxil (Doxorubicin Hydrochloride Liposome), Doxorubicin Hydrochloride, Doxorubicin Hydrochloride Liposome, Dox-SL (Doxorubicin Hydrochloride Liposome), DTIC-Dome (Dacarbazine),

Efudex (Fluorouracil), Elitek (Rasburicase), Ellence (Epirubicin Hydrochloride), Eloxatin (Oxaliplatin), Eltrombopag Olamine, Emend (Aprepitant), Enzalutamide, Epirubicin Hydrochloride, EPOCH, Erbitux (Cetuximab), Eribulin Mesylate, Erivedge (Vismodegib), Erlotinib Hydrochloride, Erwinaze (Asparaginase Erwinia chrysanthemi), Etopophos (Etoposide Phosphate), Etoposide, Etoposide Phosphate, Evacet (Doxorubicin Hydrochloride Liposome), Everolimus, Evista (Raloxifene Hydrochloride), Exemestane, Fareston (Toremifene), Faslodex (Fulvestrant), FEC, Femara (Letrozole), Filgrastim, Fludara (Fludarabine Phosphate), Fludarabine Phosphate, Fluoroplex (Fluorouracil), Fluorouracil, Folex (Methotrexate), Folex PFS (Methotrexate), FOLFIRI, FOLFIRI-BEVACIZUMAB, FOLFIRI-CETUXIMAB, FOLFIRINOX, FOLFOX, Folotyn (Pralatrexate), FU-LV, Fulvestrant, Gardasil (Recombinant HPV Quadrivalent Vaccine comprising recombinant L1 protein of HPV types 6, 11, 16, and 18), Gazyva (Obinutuzumab), Gefitinib, Gemcitabine Hydrochloride, GEMCITABINE-CISPLATIN, GEMCITABINE-OXALIPLATIN, Gemtuzumab Ozogamicin, Gemzar (Gemcitabine Hydrochloride), Gilotrif (Afatinib Dimaleate), Gleevec (Imatinib Mesylate), Glucarpidase, Goserelin Acetate, Halaven (Eribulin Mesylate), Herceptin (Trastuzumab), HPV Bivalent Vaccine, Recombinant, HPV Quadrivalent Vaccine, Recombinant, Hycamtin (Topotecan Hydrochloride), Ibritumomab Tiuxetan, Ibrutinib, ICE, Iclusig (Ponatinib Hydrochloride), Ifex (Ifosfamide), Ifosfamide, Ifosfamidum (Ifosfamide), Imatinib Mesylate, Imbruvica (Ibrutinib), Imiquimod, Inlyta (Axitinib), Intron A (Recombinant Interferon Alfa-2b), Iodine 131 Tositumomab and Tositumomab, Ipilimumab, Iressa (Gefitinib), Irinotecan Hydrochloride, Istodax (Romidepsin), Ixabepilone, Ixempra (Ixabepilone), Jakafi (Ruxolitinib Phosphate), Jevtana (Cabazitaxel), Kadcyla (Ado-Trastuzumab Emtansine), Keoxifene (Raloxifene Hydrochloride), Kepivance (Palifermin), Kyprolis (Carfilzomib), Lapatinib Ditosylate, Lenalidomide, Letrozole, Leucovorin Calcium, Leukeran (Chlorambucil), Leuprolide Acetate, Levulan (Aminolevulinic Acid), Linfox (Chlorambucil), LipoDox (Doxorubicin Hydrochloride Liposome), Liposomal Cytarabine, Lomustine, Lupron (Leuprolide Acetate), Lupron Depot (Leuprolide Acetate), Lupron Depot-Ped (Leuprolide Acetate), Lupron Depot-3 Month (Leuprolide Acetate), Lupron Depot-4 Month (Leuprolide Acetate), Marqibo (Vincristine Sulfate Liposome), Matulane (Procarbazine Hydrochloride), Mechlorethamine Hydrochloride, Megace (Megestrol Acetate), Megestrol Acetate, Mekinist (Trametinib), Mercaptopurine, Mesna, Mesnex (Mesna), Methazolastone (Temozolomide), Methotrexate, Methotrexate LPF (Methotrexate), Mexate (Methotrexate), Mexate-AQ (Methotrexate), Mitomycin C, Mitozytrex (Mitomycin C), MOPP, Mozobil (Plerixafor), Mustargen

(Mechlorethamine Hydrochloride), Mutamycin (Mitomycin C), Mylosar (Azacitidine), Mylotarg (Gemtuzumab Ozogamicin), Nanoparticle Paclitaxel (Paclitaxel Albumin-stabilized Nanoparticle Formulation), Navelbine (Vinorelbine Tartrate), Nelarabine, Neosar (Cyclophosphamide), Neupogen (Filgrastim), Nexavar (Sorafenib Tosylate), Nilotinib, Nolvadex (Tamoxifen Citrate), Nplate (Romiplostim), Obinutuzumab, Ofatumumab, Omacetaxine Mepesuccinate, Oncaspar (Pegaspargase), Ontak (Denileukin Diftitox), OEPA, OPPA, Oxaliplatin, Paclitaxel, Paclitaxel Albumin-stabilized Nanoparticle Formulation, Palifermin, Palonosetron Hydrochloride, Pamidronate Disodium, Panitumumab, Paraplat (Carboplatin), Paraplatin (Carboplatin), Pazopanib Hydrochloride, Pegaspargase, Peginterferon Alfa-2b, PEG-Intron (Peginterferon Alfa-2b), Pemetrexed Disodium, Perjeta (Pertuzumab), Pertuzumab, Platinol (Cisplatin), Platinol-AQ (Cisplatin), Plerixafor, Pomalidomide, Pomalyst (Pomalidomide), Ponatinib Hydrochloride, Pralatrexate, Prednisone, Procarbazine Hydrochloride, Proleukin (Aldesleukin), Prolia (Denosumab), Promacta (Eltrombopag Olamine), Provenge (Sipuleucel-T), Purinethol (Mercaptopurine), Radium 223 Dichloride, Raloxifene Hydrochloride, Rasburicase, R-CHOP, R-CVP, Recombinant HPV Bivalent Vaccine, Recombinant HPV Quadrivalent Vaccine, Recombinant Interferon Alfa-2b, Regorafenib, Revlimid (Lenalidomide), Rheumatrex (Methotrexate), Rituxan (Rituximab), Rituximab, Romidepsin, Romiplostim, Rubidomycin (Daunorubicin Hydrochloride), Ruxolitinib Phosphate, Sclerosol Intrapleural Aerosol (Talc), Sipuleucel-T, Sorafenib Tosylate, Sprycel (Dasatinib), STANFORD V, Sterile Talc Powder (Talc), Steritalc (Talc), Stivarga (Regorafenib), Sunitinib Malate, Sutent (Sunitinib Malate), Sylatron (Peginterferon Alfa-2b), Synovir (Thalidomide), Synribo (Omacetaxine Mepesuccinate), TAC, Tafinlar (Dabrafenib), Talc, Tamoxifen Citrate, Tarabine PFS (Cytarabine), Tarceva (Erlotinib Hydrochloride), Targretin (Bexarotene), Tasigna (Nilotinib), Taxol (Paclitaxel), Taxotere (Docetaxel), Temodar (Temozolomide), Temozolomide, Temsirolimus, Thalidomide, Thalomid (Thalidomide), Toposar (Etoposide), Topotecan Hydrochloride, Toremifene, Torisel (Temsirolimus), Tositumomab and I 131 Iodine Tositumomab, Totect (Dexrazoxane Hydrochloride), Trametinib, Trastuzumab, Treanda (Bendamustine Hydrochloride), Trisenox (Arsenic Trioxide), Tykerb (Lapatinib Ditosylate), Vandetanib, VAMP, Vectibix (Panitumumab), VeIP, Velban (Vinblastine Sulfate), Velcade (Bortezomib), Velsar (Vinblastine Sulfate), Vemurafenib, VePesid (Etoposide), Viadur (Leuprolide Acetate), Vidaza (Azacitidine), Vinblastine Sulfate, Vincasar PFS (Vincristine Sulfate), Vincristine Sulfate, Vincristine Sulfate Liposome, Vinorelbine Tartrate, Vismodegib, Voraxaze (Glucarpidase), Vorinostat, Votrient (Pazopanib Hydrochloride),

Wellcovorin (Leucovorin Calcium), Xalkori (Crizotinib), Xeloda (Capecitabine), XELOX, Xgeva (Denosumab), Xofigo (Radium 223 Dichloride), Xtandi (Enzalutamide), Yervoy (Ipilimumab), Zaltrap (Ziv-Aflibercept), Zelboraf (Vemurafenib), Zevalin (Ibritumomab Tiuxetan), Zinecard (Dexrazoxane Hydrochloride), Ziv-Aflibercept, Zoladex (Goserelin Acetate), Zoledronic Acid, Zolinza (Vorinostat), Zometa (Zoledronic Acid) and Zytiga (Abiraterone Acetate).

[00121] The compositions and related methods, particularly administration of an antibody that binds DC receptor and delivers an HPV antigen or antigens or peptide or peptides to a patient/subject, may also be used in combination with the administration of radiation therapy that includes but is not limited to X-rays, gamma rays, and charged particles. The radiation may be delivered by a machine outside the body (external-beam radiation therapy), or it may come from radioactive material placed in the body near cancer cells (internal radiation therapy or brachytherapy). Internal radiation therapy may be systemic (e.g. radioactive iodine). External-beam radiation therapy may include, but is not limited to, 3-dimensional conformal radiation therapy (3D-CRT), Intensity-modulated radiation therapy (IMRT), Image-guided radiation therapy (IGRT), Tomotherapy, Stereotactic radiosurgery (SRS), Stereotactic body radiation therapy (SBRT), Proton therapy or other charged particle beams (e.g., electron beams). Internal radiation therapy or brachytherapy may comprise interstitial brachytherapy which uses a radiation source placed within tumor tissue and may be used to deliver a dose higher than external beam radiation while causing less damage to normal tissue. Brachytherapy may be given as a low-dose rate or high-dose rate treatment. In additional embodiments, brachytherapy may be permanent or temporary. Radiation therapy may comprise systemic radiation therapy. Systemic radiation therapy may comprise a swallowed or injected radioactive substance, that includes, but is not limited to any single, multiple or combination dose of Radioactive iodine (^{131}I), ibritumomab tiuxetan (Zevalin®), 131 tositumomab (Bexxar®), samarium-153-lexidronam (Quadramet®) and strontium-89 chloride (Metastron®) or any monoclonal bound to a radioactive substance. The dose of radiation according to different embodiments may be tailored to the specific disease, condition or cancer being treated. In some embodiments, the single or total dose may be 1-10 gray(Gy) , 10-20 Gy, 20-40 Gy, 40-60 Gy, or 60-80 Gy, or any value or rage derivable therein. In some embodiments, radiation therapy or dose may be fractionated. In one embodiment, a total dose may be fractionated per day or per week. In certain embodiments

the daily fractionated dose may be 1.8 – 2 Gy. It is contemplated that a total dose may be fractionated into daily or weekly doses in the range of 0.1 Gy to 10 Gy.

[00122] In one aspect, it is contemplated that a therapy is used in conjunction with antiviral or anti-cancer therapies. Alternatively, the therapy may precede or follow the other agent treatment by intervals ranging from minutes to weeks. In embodiments where the other agents and/or a proteins or polynucleotides are administered separately, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the therapeutic composition would still be able to exert an advantageously combined effect on the subject. In such instances, it is contemplated that one may administer both modalities within about 12-24 h of each other and, more preferably, within about 6-12 h of each other. In some situations, it may be desirable to extend the time period for administration significantly, however, where several days (2, 3, 4, 5, 6 or 7) to several weeks (1, 2, 3, 4, 5, 6, 7 or 8) lapse between the respective administrations.

[00123] In yet another aspect, a vaccine may be administered as part of a prime/boost strategy. A priming vaccine dose can be administered using a DC specific antibody fused to an HPV antigen in any of the embodiments described herein. A vaccine boost can be administered through the use of a second vaccine, either of the same type or from a different type of vaccine. Examples of a separate HPV vaccine include Gardasil™ (recombinant HPV quadrivalent vaccine comprising recombinant L1 protein of HPV types 6, 11, 16, and 18) or Cervarix™ (recombinant HPV bivalent vaccine comprising recombinant L1 protein of HPV types 16 and 18). Additional examples of such different vaccines include naked DNA vaccines or a recombinant viruses. The second vaccine may comprise additional HPV antigens apart from the E6 or E7 antigens that may be used in the first vaccine. It is also contemplated that the second vaccine may comprise an HPV protein such as an E6 or E7 protein plus an adjuvant either directly linked or administered independently.

[00124] Various combinations of therapy may be employed, for example antiviral or anti-cancer therapy is “A” and an antibody vaccine that comprises an antibody that binds a DC receptor and delivers an HPV antigen or a peptide or consensus peptide thereof is “B”:

A/B/A B/A/B B/B/A A/A/B A/B/B B/A/A A/B/B/B B/A/B/B

B/B/B/A B/B/A/B A/A/B/B A/B/A/B A/B/B/A B/B/A/A

B/A/B/A B/A/A/B A/A/A/B B/A/A/A A/B/A/A A/A/B/A

[00125] Administration of the antibody compositions to a patient/subject will follow general protocols for the administration of such compounds, taking into account the toxicity, if any, of the composition. It is expected that the treatment cycles would be repeated as necessary. It is also contemplated that various standard therapies, such as hydration, may be applied in combination with the described therapy.

General Pharmaceutical Compositions

[00126] In some embodiments, pharmaceutical compositions are administered to a subject. Different aspects may involve administering an effective amount of a composition to a subject. In some embodiments, an antibody that binds DC receptor and delivers an HPV antigen or a peptide or consensus peptide thereof may be administered to the patient to protect against or treat infection by one or more HPV types or protect or treat against one or more HPV related diseases such as cancer. Alternatively, an expression vector encoding one or more such antibodies or polypeptides or peptides may be given to a patient as a preventative treatment. Additionally, such compositions can be administered in combination with an antibiotic, antiviral or anticancer agent. Such compositions will generally be dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium.

[00127] The phrases “pharmaceutically acceptable” or “pharmacologically acceptable” refer to molecular entities and compositions that do not produce an adverse, allergic, or other untoward reaction when administered to an animal or human. As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredients, its use in immunogenic and therapeutic compositions is contemplated. Supplementary active ingredients, such as other anti-infective agents and vaccines, can also be incorporated into the compositions.

[00128] The active compounds can be formulated for parenteral administration, e.g., formulated for injection via the mucosal, intravenous, intramuscular, sub-cutaneous, intratumoral or even intraperitoneal routes. Typically, such compositions can be prepared as

either liquid solutions or suspensions; solid forms suitable for use to prepare solutions or suspensions upon the addition of a liquid prior to injection can also be prepared; and, the preparations can also be emulsified.

[00129] The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil, or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that it may be easily injected. It also should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.

[00130] The proteinaceous compositions may be formulated into a neutral or salt form. Pharmaceutically acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

[00131] A pharmaceutical composition can include a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion, and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

[00132] Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other

ingredients enumerated above, as required, followed by filtered sterilization or an equivalent procedure. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques, which yield a powder of the active ingredient, plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[00133] Administration of the compositions will typically be via any common route. This includes, but is not limited to oral, nasal, or buccal administration. Alternatively, administration may be by orthotopic, intradermal, subcutaneous, intramuscular, intraperitoneal, intratumoral, intranasal, or intravenous injection. In certain embodiments, a vaccine composition may be inhaled (e.g., U.S. Patent 6,651,655, which is specifically incorporated by reference). Such compositions would normally be administered as pharmaceutically acceptable compositions that include physiologically acceptable carriers, buffers or other excipients.

[00134] An effective amount of therapeutic or prophylactic composition is determined based on the intended goal. The term “unit dose” or “dosage” refers to physically discrete units suitable for use in a subject, each unit containing a predetermined quantity of the composition calculated to produce the desired responses discussed above in association with its administration, *i.e.*, the appropriate route and regimen. The quantity to be administered, both according to number of treatments and unit dose, depends on the protection desired.

[00135] Precise amounts of the composition also depend on the judgment of the practitioner and are peculiar to each individual. Factors affecting dose include physical and clinical state of the subject, route of administration, intended goal of treatment (alleviation of symptoms versus cure), and potency, stability, and toxicity of the particular composition.

[00136] Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically or prophylactically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above.

IV. EXAMPLES

[00137] The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1 – Recombinant fusion proteins of anti-DC receptors (DCRs) and HPV E6 and E6 fusion proteins

[00138] The inventors' scheme for the development of expression constructs for production of anti-DC receptor antibodies fused to E6 and E7 sequences from HPV 16 and 18 is given in Fig. 1. The scheme identifies an order of antigen cassettes encoding E6 and E7 from HPV 16 and 18 that is efficiently secreted and are intact when fused to the H chain C-terminus. There are 64 possible combinations of just these 4 sequences, and very many more when interspersed with flexible linker sequences. The inventors' strategy is a stepwise approach starting with each antigen alone, with and without a preceding flexible linker [8 initial constructs], then selecting those vectors that express most efficiently for adding on additional cassettes. Each cycle of construction and testing takes one week. Establishing the final production CHO-S cell lines take a further 8 weeks, including scale-up to levels suitable for vaccine production to preclinical studies in human *in vitro* and animal *in vivo*.

[00139] A transient expression vector encoding the antibody heavy chain has an in-frame Nhe I site at the C-terminus and antigen or flexible linker encoding Spe I – Not I cassettes are inserted between the vector Nhe I and Not I sites. The vector Nhe I site is lost in this ligation, but each cassette encodes a new C-terminal in-frame Nhe I site. Thus, additional antigen or linker cassettes can be added in an iterative fashion. Each new construct is transiently transfected into 293F cells with a matching light chain vector and at 72 hr secreted vaccine is isolated by protein A affinity and analyzed by SDS.PAGE. Constructs that express well are the preferred vectors for adding new cassettes (Fig. 1).

[00140] The inventors have engineered expression constructs with HPV16 E6 and E7 and HPV18 E6 and E7 sequences fused to antibody heavy chain C-terminii. Constructs

with HPV16 or HPV18 E6 or HPV16 or HPV18 E7 sequences fused directly to an anti-dendritic cell receptor antibody heavy chain C-terminal codon failed to be secrete any detectable vaccine when co-transfected into 293F cells with a matching light chain expression vector (not shown). However, similar vectors incorporating a flexible linker sequence (Flex v1), secreted the vaccines (Fig. 2, lanes 1 and 3). Furthermore, constructs adding HPV E6 onto the Flex v1 HPV E7 vector and vice versa, also secreted vaccine (Fig. 2, lanes 2 and 4). Successful expression of such vaccines is independent on the variable region sequences. Thus, the Flex v1-HPV E6/E7 sequence was transferred to established vectors for stable expression of anti-CD40-Flex v1-HPV16 or 18 E6-HPV16E7, anti-Langerin- Flex v1-HPV16 or 18 E6-HPV16E7 and control hIgG4-Flex-v1-HPV16 or 18 E6-HPV16E7 in CHO-S cells.

[00141] Anti-CD40-HPV16.E6/7 can efficiently bind to DCs in peripheral blood of healthy donors. Peripheral blood mononuclear cells (PBMCs) were acquired from the blood of healthy individuals. PBMCs were incubated for 15 min on ice in the presence of different amounts of anti-CD40-HPV16.E6/7 or control IgG4-HPV16.E6/7 proteins. Cells were washed vigorously and then stained with anti-E6/7 antibodies to detect cell surface bound proteins. As shown in Fig. 3, anti-CD40-HPV16.E6/7 can efficiently bind to human blood DCs (CD3-CD19-CD14-HLA-DR+CD11c+). In contrast, IgG4-HPV16.E6/7 did not bind to the same DCs. Anti-CD40-HPV18.E6/7 also bound to DCs in peripheral blood of healthy donors (data not shown).

[00142] Anti-CD40-HPV16.E6/7 can efficiently activate E6/7-specific memory CD4+ and CD8+ T cells from HPV-related cancer patients. Evaluated next was the *in vitro* immunogenicity of anti-CD40-HPV16.E6/7 using PBMCs from HPV-positive head and neck cancer patients. Patient PBMCs were loaded with recombinant HPV16.E6/7 proteins, anti-CD40-HPV16.E6/7, or peptide pool of HPV16.E6/7 proteins. In this experiment, the same molar concentration of E6/7 in each protein was applied to compare the levels of E6/7-specific IFNg-expressing CD4+ and CD8+ T cell responses. After 7 days in vitro culture, PBMCs were restimulated for 5h with peptide pool of E6/7 in the presence of brefeldin A and then cells were stained for IFNg expression. Fig. 4 shows that anti-CD40-HPV16.E6/7 was more efficient than HPV16.E6/7 at eliciting IFNg+CD4+ and IFNg+CD8+ T cell responses. The levels of HPV16.E6/7-specific IFNg+CD4+ T cell responses elicited with anti-CD40-HPV16.E6/7 was similar to those elicited by the peptide pool that was used as a positive control. Thus, our new vaccine models composed of anti-DCR and HPV antigens, including

E6/7, is highly effective in activating antigen-specific cellular immune responses in the patients who have HPV-related cancers. Furthermore, such HPV antigen (E6 and E7)-specific CD8+ CTLs are expected to efficiently suppress tumor progression and could result in the rejection of tumors in patients.

[00143] Anti-CD40-HPV16.E6/7 can prime E6/7-specific CD4+ and CD8+ T cell responses in vivo. To test the in vivo immunogenicity of anti-CD40-HPV16.E6/7 vaccine, human CD40 transgenic mice were used. Five animals were immunized s.c. with 30 ug anti-CD40-HPV16.E6/7 plus poly IC on day 0 and then boosted twice with the same vaccine. On day 7 after the second boosting, CD4+ and CD8+ T cells were purified from spleens and then restimulated with one of HPV16.E6/7 peptide clusters 1-5, none, a peptide pool of prostate specific antigen (PSA), or a HPV16.E6/7 peptide pool. Fig. 5 shows that anti-CD40-HPV16.E6/7 induce HPV16 E6/7 peptide clusters 2 and 3-specific CD4+ and cluster 5-specific CD8+ T cell responses in the human CD40 transgenic mice. Importantly, the levels of E6/7-specific CD8+ T cell responses were greater than the levels of E6/7-specific CD4+ T cell responses. This indicates that anti-CD40-HPV16.E6/7 vaccines are particularly efficient in eliciting CD8+ CTLs that can kill HPV-infected cells and tumor cells. Each dot in Fig. 5 represent the data generated with a single mouse.

[00144] Anti-CD40-HPV16.E6/7 can suppress TC-1 tumor progression in the human CD40 transgenic mice. Efficacy of anti-CD40-HPV16.E6/7 plus poly IC vaccine was tested in TC-1 challenged human CD40 transgenic mice. Two groups of animals (Human CD40+ and human CD40- mice, 5 mice per group) were challenged on day 0 with TC-1 tumor cell line subcutaneously. On days 6 and 12, animals were immunized with anti-CD40-HPV.E6/7 plus poly IC. Tumor progression was assessed and presented in Fig. 6. By day 14 after TC-1 challenge, both human CD40+ and CD40- mice developed similar sizes of tumors. In the human CD40- animals TC-1 tumor progressed quickly and reached 1000 mm³ on day 25 after the challenge. However, TC-1 tumor progression in the human CD40+ mice was significantly delayed. Our data demonstrate that anti-CD40-HPV16.E6/7 vaccine targets human CD40 and thus elicits E6/7-specific CD8+ CTLs, as shown in Fig. 5, that suppress TC-1 tumor progression in the animals.

[00145] The effects of poly IC, poly IC plus montanide, GM-CSF plus montanide, and montanide alone on the immunogenicity of anti-CD40-HPV.E6/7 vaccine was tested in the human CD40 transgenic mice. Four animals in each group were immunized s.c. with 30

ug anti-CD40-HPV.E6/7 alone or anti-CD40-HPV16.E6/7 with indicated adjuvants (Fig. 7). After 7 days, blood from individual animals were harvested and stained with tetramer. As shown in the figure below, poly IC was able to effectively promote anti-CD40-HPV16.E6/7-specific CD8+ T cell responses. Montanide alone or GM-CSF in montanide did not significantly promote E6/7-specific CD8+ T cell responses.

[00146] Sequences below are based on the humanized 12E12 anti-human CD40 VK2 VH2 antibody – protein sequences are the expected mature secreted protein sequence and the DNA sequences include the initiator ATG and the leader peptide region. Alternately, the HPV18 sequences can be grafted onto the C-terminus of the VK2 chain and a broader spectrum vaccine produced by combining this with the HPV16 sequences on the VH2 H chain.

HPV 16 E6	see below	SEQ ID NO:1
HPV 16 E7	see below	SEQ ID NO:2
HPV 18 E6	see below	SEQ ID NO:3
HPV 18 E7	see below	SEQ ID NO:4
Flexv1	see below	SEQ ID NO:5
f1	see below	SEQ ID NO:6
hAnti-CD40VK2-LV-hIgGK-C	see below	SEQ ID NO:7
hAnti-CD40VH2-LV-hIgG4H-C	see below	SEQ ID NO:8
Anti-CD4012E12 light chain variable region	see below	SEQ ID NO:9
Anti-CD4012E12 heavy chain variable region	see below	SEQ ID NO:10
Anti-CD40 12E12 CDR1L	SASQGISNYLN	SEQ ID NO:11
Anti-CD40 12E12 CDR2L	YTSILHS	SEQ ID NO:12
Anti-CD40 12E12 CDR3L	QQFNKLPPT	SEQ ID NO:13
Anti-CD40 12E12 CDR1H	GFTFSYYMY	SEQ ID NO:14
Anti-CD40 12E12 CDR2H	YINSGGGSTYYPDTVKKG	SEQ ID NO:15
Anti-CD40 12E12 CDR3H	RGLPFHAMDY	SEQ ID NO:16

HPV 16 E6

MHQKRTAMFQDPQERPRKLPQLCTELQTTIHDIIILECVYCKQQLLRREVGDFAFRDL
CIVYRDGNPYAVCDKCLKFYSKISEYRHYCYSVYGTTLSEQQYNKPLCDLLIRCINCQ
KPLCPE
(SEQ ID NO:1)

HPV 16 E7

MHGDTPTLHEYMLDLQPETTDLYGYGQLNDSSEEDEIDGPAGQAEPDRAHYNIVTF
CCK
(SEQ ID NO:2)

HPV 18 E6

MARFEDPTRPYKLPDLCTELNTSLQDIEITCVYCKTVLELTEVGEFAFKDLFVVYRD
SIPHAACHKCIDFYSRIRELRHYSDSVYGDITLEKLTNTGLYNLLIRCLRCQKPLNP
(SEQ ID NO:3)

HPV 18 E7

MHGPKATLQDIVLHLEPQNEIPV DLLGHGQLSDSEEENDEIDGVNHQHLPARRAEPQ
RHTMLCMCCK
(SEQ ID NO:4)

Flexv1

QTPTNTISVTPTNNSTPTNNNSNPKNP
(SEQ ID NO:5)

f1

SSVSPTTSVHPTPTSVPPPTKSSP
(SEQ ID NO:6)

hAnti-CD40VK2-LV-hIgGK-C

DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYYTSILHSGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQQFNKLPPFTGGGTKLEIKRTVAAPSVFIF
PPSDEQLKSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS
LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
(SEQ ID NO:7)

hAnti-CD40VH2-LV-hIgG4H-C

EVKLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQAPGKGLEWVAYINSGG
GSTYYPDTVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARRGLPFHAMDYWG
QGTLTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSG
VHTFPAVLQSSGLYSLSSVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPC
PPCPAPEFEGGPSVFLFPPKPKDLMISRTPEVTCVVVDVQFNWYVDGVE
VHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAK
GQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPV
LSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
(SEQ ID NO:8)

Anti-CD4012E12 light chain variable region

DIQMTQTTSSLSASLGDRVTISCSASQGISNYLNWYQQKPDGTVKLLIYYTSILHSGVP
SRFSGSGSGTDYSLTIGNLEPEDIATYYCQQFNKLPPFTGGGTKLEIK
(SEQ ID NO:9)

Anti-CD4012E12 heavy chain variable region

CEVKLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQTPEKRLEWVAYINSGG
GSTYYPDTVKGRFTISRDNAKNTLYLQMSRLKSEDTAMYYCARRGLPFHAMDYWG
QGTSVTVS
(SEQ ID NO:10)

hAnti-CD40VK2-LV-hIgGK-C

DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYYTSILHSGV
PSRFSGSGSGTDYTLTISSLQPEDFATYYCQQFNKLPPFTGGGTKLEIKRTVAAPSVFIF

PPSDEQLKSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS
LSSTTLSKADYEKHKVYACEVTHQGLSSPVTKSFRGEC
(SEQ ID NO:17)

hAnti-CD40VK2-LV-hIgGK-C DNA sequence (includes the leader peptide region)
ATGAGGGTCCCCGCTCAGCTCCTGGGGCTCTGCTGCTCTGGCTCCAGCGCGC
 GATGTGATATCCAGATGACACAGAGCCCTCCTCCCTGTCTGCCTCTGTGGAGA
 CAGAGTCACCACCATCACCTGCAGTGCAAGTCAGGGCATTAGCAATTATTAACTGG
 TATCAGCAGAAACCAGGCAAGGCCGTTAAACTCCTGATCTATTACACATCAATT
 TACACTCAGGAGTCCCCTCAAGGTTCAGTGGCAGTGGGTCTGGGACAGATTATAC
 CCTCACCACATCAGCTCCCTGCAGCCTGAAGATTTCGCCACTTACTATTGTCAGCAG
 TTTAATAAGCTCCTCCGACGTTGGAGGCACCAAACCTCGAGATCAAACGAA
 CTGTGGCTGCACCACATCTGTCTTCATCTTCCC GCCATCTGATGAGCAGTTGAAATCT
 GGAAC TGCCCTGTTGTGCCTGCTGAATAACTCTATCCCAGAGAGGCCAAAG
 TACAGTGGAAAGGTGGATAACGCCCTCCAATCGGTAACCTCCAGGAGAGTGTCA
 CAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCCTGACGCTGA
 GCAAAGCAGACTACGAGAAACACAAAGTCTATGCCTGCGAAGTCACCCATCAGG
 GCCTGAGCTGCCCGTCACAAAGAGCTTCAACAGGGAGAGTGTAG
(SEQ ID NO:18)

hAnti-CD40VH2-LV-hIgG4H-C-Flex-v1-HPV16-E6-HPV16-E7-f1
 (Bold, italicized single underline sequence is HPV16 E6; bold, italicized double underline sequence is HPV16 E7; non-bolded, non-italicized single underlined (Flexv1) and non-bolded, non-italicized double underlined (f1) sequences are flexible glycosylated linker sequences)
 EVKLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQAPGKGLEWVAYINSGG
 GSTYYPDTVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCARRGLPFHAMDYWG
 QGTLVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVWSNSGALTSG
 VHTFPALQSSGLYSLSSVVTVPSSSLGKTYTCNVVDHKPSNTKVDKRVESKYGPPC
 PPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVE
 VHNAKTKPREEQFNSTYRVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAK
 GQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPV
 LDSDGFFFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLKGASQTPTN
TISVTPTNNSTPTNNSNPKPNPAS**MHQKRTAMFQDPOERPRKLPQLCTELOTTIHDII**
LECVYCKOQLLRREVGDFAFRDLCIVYRDGNPYAVCDKCLKFYSKISEYRHYCYSVY
GTTLEQQYNKPLCDLLIRCINCOKPLCPEASMHGDTPTLHEYMLDLOPETTDLYGYG
OLNDSSEEDEIDGPAGQAEPDRAHYNIVTFCCKASSSVPTTSVHPTPTSVPPPTK**SPAS**
(SEQ ID NO:19)

hAnti-CD40VH2-LV-hIgG4H-C-Flex-v1-HPV16-E6-HPV16-E7-f1 DNA sequence
 (includes the leader peptide region)

ATGGGTTGGAGCCTCATCTTGCTCTTCTTGCTGCTGTTGCTACCGCGTGTCCACTC
 CGAAGTGAAGCTGGTGGAGTCTGGGGAGGCTTAGTGCAGCCGGAGGGTCCCT
 GAAACTCTCTGTGCAACCTCTGGATTCACTTCAGTGA
 CTATTACATGTATTGGG
 TTCGCCAGGCCAGGCAAGGGCCTGGAGTGGGTGCACATACATTAAATTCTGGTGG
 TGGTAGCACCTATTATCCAGACACTGTAAAGGGCCGATTCA
 CCCCACATCTCCAGAGAC
 AATGCCAAGAACACCCTGTACCTGCAAATGAACAGCCTGAGGGCCGAGGACACA
 GCCGTGTATTACTGTGCAAGACGGGGTTACCGTTCCATGCTATGGACTATTGGG
 GTCAAGGAACCCTGGTCACCGTCTCAGCCAAAACGAAGGGCCCATCCGTCTT

CCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGC
 CTGGTCAAGGACTACTCCCCGAACCGGTGACGGTGTGGAACTCAGGCGCCC
 TGACCAGCGCGTGACACCTCCGGCTGTCTACAGTCCTCAGGACTCTACTC
 CCTCAGCAGCGTGGTGACCGTGCCTCCAGCAGCTGGCACGAAGACCTACAC
 CTGCAACGTAGATACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTC
 CAAATATGGTCCCCATGCCACCCCTGCCAGCACCTGAGTTCGAAGGGGGACC
 ATCAGTCTCCTGTTCCCCAAAACCCAAGGACACTCTCATGATCTCCGGACC
 CCTGAGGTCACGTGCGTGGTGGACGTGAGGCCAGGAAGACCCCAGGTCCAG
 TTCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGGACAAAGCCGG
 GAGGAGCAGTTAACACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACC
 AGGACTGGCTGAACGGCAAGGAGTACAAGTCAAGGTCTCCAACAAAGGCCTCC
 CGTCCTCCATCGAGAAAACCATCTCAAAGCCAAGGGCAGCCCCGAGAGCCAC
 AGGTGTACACCCCTGCCCTGAGGAGATGACCAAGAACCAAGGTAGCC
 TGACCTGCCTGGTCAAAGGCTCTACCCCAGCGACATGCCGTGGAGTGGAGA
 GCAATGGGCAGCCGGAGAACAAACTACAAGACCACGCCCTCCGTGCTGGACTCCG
 ACGGCTCCTCTCCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGG
 AGGGGAATGTCTTCTCATGCTCCGTATGCATGAGGCTCTGCACAAACCAACTACAC
 ACAGAAGAGCCTCTCCGTCTGGTAAAGCTAGTCAGACCCCCACCAACACC
 ATCAGCGTACCCCCACCAACAAACAGCACCCCCACCAACAAACAGCAACCCCAAG
 CCCAACCCCGTAGTATGCACCAAAAAAGGACCGCAATGTTCAAGGACCCCCAA
 GAGAGGCCCCGCAAACCTGCCACAACTTGCACGGAGCTGCAGACAACAAATACAT
 GACATCATTCTCGAATGTGTTACTGTAAGCAGCAGTTGTCGAAGAGAAGTGG
 GAGACTTCGCTTCAGAGACCTGTGTATCGTATATCGCGATGGCAATCCTATGC
 CGTCTGCGATAAATGCCTCAAGTTTACTCCAAGATCAGCGAGTACCGGCACTAC
 TGTTACTCTGTGTATGGGACTACCCCTCGAACAGCAGTATAACAAGCCGCTGTGCG
 ATCTCCTTATCCGGTGCATTAACGCCAGAACCAACTGTGTCTGAGGCTAGTAT
 GCACGGGATACCCCCACACTCCACGAATACATGCTTGATTGCAACCTGAAACCG
 ACCGACCTGTACGGCTATGGTCAGCTGAATGACTCCAGCGAGGAAGAGGATGAG
 ATTGACGGACCGGCAGGCCAGGCCAGGCCAGACCGGGCTCATTATAACATCGTG
 ACTTCTGCTGTAAGGCTAGTAGCAGCGTGAGCCCCACCACCAGCGTGCACCCCA
 CCCCCACCAAGCGTCCCCCACCAAGAGCAGCCCCCTAGCTGA
 (SEQ ID NO:20)

hAnti-CD40VH2-LV-hIgG4H-C-Flex-v1-HPV18E6-HPV18E7-f1

(Bold, italicized single underline sequence is HPV18 E6; bold, italicized double underline sequence is HPV18 E7; non-bolde, non-italicized single underlined (Flexv1) and non-bolde, non-italicized double underlined (f1) sequences are flexible glycosylated linker sequences)

EVKLVESGGGVQPGGSLKLSCATSGFTFSDYYMYWVRQAPGKGLEWVAYINSGG
 GSTYYPD~~T~~VKG~~R~~FTISRDNAKNTLYLQMNSLRAEDTA~~V~~YYCARRGLPFHAMDYWG
 QGTLVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVWSNSGALTSG
 VHTFP~~A~~LQSSGLYSLSSVTV~~P~~SSSLGT~~K~~TYTCNVDHKPSNTKVDKRVESKYGPPC
 PPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVE
 VHNAKTKPREEQFN~~ST~~YRV~~V~~SLTVLHQDW~~L~~NGKEYKCKVSNKGLPSSIEKTISKAK
 GQP~~R~~PQVY~~T~~L~~P~~SQ~~E~~EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK~~T~~PPV
 LDSDGSFFLYSRLTV~~D~~KS~~R~~WQEGNVFSCSVMHEALHNHYTQ~~K~~SL~~S~~LGKAS~~Q~~PTN
 TIS~~V~~PTNN~~S~~PTNN~~S~~NP~~K~~PNP~~A~~**SMARFEDPTRPYKL****PDLCTE****NTS****QDIEITCVY**
KT**VLEL****TEVGEFA****KDLF****VYRDSIPHA****ACHKC****IDFYSR****IELRHYS****DSVYGD****TLEKL**
TNTGLY**NLLIRCLRC****OKPLNP****ASMHGPKATL****QD****IVLHLEPQNEIPV****DLLGHGQLSDS**

EEENDEIDGVNHQHLPARRAEPQRHTMLCMCKASSSVSPTTSVHPTPTSVPPPTPK
SSPAS
(SEQ ID NO:21)

hAnti-CD40VH2-LV-hIgG4H-C-Flex-v1-HPV18E6-HPV18E7-f1 DNA sequence
(includes the leader peptide region)

ATGGGTTGGAGCCTCATCTTGCTCTTCTTGCTGCTGTTGCTACGCGTGTCCACTCGAAAGTGAAGCTGGTGGAGTCTGGGGAGGCTTAGTGCAGCCGGAGGGTCCCTGAAACTCTCCTGTGCAACCTCTGGATTCACTTCACTGACTATTACATGTATTGGGTTCGCCAGGCCAGGCAAGGGCCTGGAGTGGGTCGCATACATTAATTCTGGTGGTGGTAGCACCTATTATCCAGACACTGTAAAGGGCCGATTCACCATCTCCAGAGACAAATGCCAAGAACACCCTGTACCTGCAAATGAACAGCCTGAGGGCCGAGGACACA GCCGTGTATTACTGTGCAAGACGGGGTTACCGTTCCATGCTATGGACTATTGGG GTCAAGGAACCTGGTCACCGTCTCCTCAGCCAAACGAAGGGCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTGGAACTCAGGCGCCCTGACCGAGCGGTGGACAGAGAGTTGAGTC CAAATATGGTCCCCATGCCAACCTGCCAGCACCTGAGTTGAAGGGGGACCATCAGTCTCCTGTTCCCCAAAACCAAGGACACTCTCATGATCTCCCGGACC CCTGAGGTCACGTGCGTGGTGGACGTGAGCCAGGAAGACCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCAATAATGCCAAGACAAAGCCGGGAGGAGCAGTTCAACAGCACGTACCGTGGGTGGACGTGAGCGTCAGCTGGCCTCACCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCATCGAGAAAACCATCTCAAAGCCAAGGGCAGCCCGAGAGGCCACAGGTGTACACCTGCCCTGCCCCATCCCAGGAGGAGATGACCAAGAACCCAGGTGAGCC TGACCTGCCTGGTCAAAGGCTCTACCCAGCGACATGCCGTGGAGTGGGAGAGCAATGGCAGCCGGAGAACAACTACAAGGACACGCCCTCCAGGGCTCCTCTACAGCAGGCTAACCGTGGACAGCGACATGCCGTGGAGTGGACTCCGACGGCTCCTCTACAGCAGGCTAACCGTGGACAGCGACATGCCGTGGAGTGGCAGGAGGGGAATGTCTCTCATGCTCCGTGATGCATGAGGCTCTGCACAAACCACACACAGAACAGCCTCTCCCTGTCTGGTAAAGCTAGTCAGACCCCAACCAACACC ATCAGCGTGACCCCCACCAACAACAGCACCCCCACCAACAAACAGCAACCCCAAGCCAACCCGCTAGTATGCCAGATTGAGGATCCAACACGCCGACCTACAAATTGCCGGACCTTGCACGGAGCTGAACACTTCCCTGCAGGACATAGAAATTACCTGCGTCTACTGCAAGACCGTTCTCGAAGTACAGAGAAGTAGGCAGGTTGCCTATAAGTGTATCGACTCTATTCTAGGATCCGGGAGCTCAGACACTATAGCGATTCCGTGTACGGCGACACACTTGAGAAGCTCACTAACACCCGGCTGTACAACCTCCTGATCCGGTGTGTGAGGTGTCAAACCCCTGAATCCTGCTAGTATGCACGGCCTAAGGCCACAC TGCAAGATATTGTCCTCCATCTCGAACCCCCAGAATGAGATACCAGTGGACCTTCTGGCCACGGACAGTTGTCCGATAGCGAGGAGGAAAACGACGAAATCGACGGTGT TAACCACCAAGCACTGCCGGCTGGAGGGCAGAGCCCCAGAGACATACCATGCTGTGCATGTGTTGCAAAGCTAGTAGCAGCGTGAGCCCCACCACCGCGTGCACCC CACCCCCACCACCGTCCCCCACCAAGAGCAGCCCCGCTAGCTGA
(SEQ ID NO:22)

Example 2 – Recombinant fusion proteins of anti-DC receptors (DCRs), TLR ligands, and HPV sequences

[00147] Below is an example of a TLR2 ligand (tri-acylated cohesin, expressed in *E. coli*) where the C residue in the D1 leader domain is lipidated, this can be non-covalently attached to anti-CD40-HPV vaccine when the anti-CD40 has, e.g., a Dockerin domain fused to either the C-terminus or the L chain or the H chain C-terminus distal to the HPV E6/7 sequences.

D1-6His-Cohesin-Nhe-Spe-Not (note that additional cancer antigen sequences can be added distal to the Cohesin domain)

MKKLLIAAMMAAALAAACSQEAKQEVKAEAVQAVESDVKDTAMGSSHHHHHSSGL
VPRGSHMASMDLDAVRIKVDTVNAKPGDTVNIPVRFSGIPSKGIANCDFVYSYDPNV
LEIIIEIKPGELIVDPNPTKSFDTAVYPDRKMIVFLFAEDSGTGAYAITKDGVFATIVAK
VKEGAPNGLSVIKFVEVGGFANNDLVEQKTQFFDGGVNVDGTTEPATPTTPVTTPTT
TDDLLDAASLIKSEF
(SEQ ID NO:23)

D1-6His-Cohesin-Nhe-Spe-Not DNA sequence

ATGAAAAAACTGCTGATTGCCGCCATGATGGCTGCAGCTCTGCCGCATGCAGCC
AGGAAGCCAAACAGGAAGTGAAAGAAGCCGTGCAGGCCGTGAAAGCGATGTG
AAAGATACCGCCATGGGCAGCAGCCATCATCATCATCACAGCAGCGGCCTG
GTGCCCGCGGGCAGCCATATGGCTAGTATGGATCTGGATGCAGTAAGGATTAAA
GTGGACACAGTAAATGCAAAACCGGGAGACACAGTAAATATACCTGTAAGGATT
AGTGGTATACCATCCAAGGGAATAGCAAACGTGACTTGTATACAGCTATGACC
CGAATGTACTTGAGATAATAGAGATAAAACCGGGAGAATTGATAGTTGACCGA
ATCCTACCAAGAGCTTGATACTGCAGTATATCCTGACAGAAAGATGATAGTATT
CCTGTTGCGGAAGACAGCGGAACAGGGAGCGTATGCAATAACTAAAGACGGAGT
ATTGCTACGATAGTAGCGAAAGTAAAAGAAGGAGCACCTAACGGCTCAGTGT
AATCAAATTGAGAAGTAGGGGATTGCGAACAAATGACCTTGTAGAACAGAA
GACACAGTTCTTGACGGTGGAGTAAATGTTGGAGATACAACAGAACCTGCAAC
ACCTACAACACCTGTAACAACACCGACAACACAGATGATCTAGATGCAGCTAG
CTTAATTAAAAGTAGTGAATTCTGA
(SEQ ID NO:24)

[00148] Below is an example of an anti-CD40 L chain bearing a preferred TLR5L Flagellin domain (shown underlined). This would be co-transfected with the matching H chain bearing HPV E6/7 antigen at the C-terminus.

hAnti-CD40VK2-LV-hIgGK-C-Flgn1-Flgn2

(underlined sequence is Flagellin domain)

DIQMTQSPSSLSASVGDRVTITCSASQGISNYLNWYQQKPGKAVKLLIYYTSILHSGV
PSRFSGSGSGTDYLTISLQPEDFATYYCQQFNKLPPTFGGGTKLEIKRTVAAPSVFIF
PPSDEQLKSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS
LSSTLTLKADYEKHKVYACEVTHQGLSSPVTKSFRGECASIERLSSGLRINSAKDD

AAGQAIANRFTANIKGLTQASRNANDGISIAQTTEGALNEINNNLQRVRELAVQSAN
STNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVLAQDNTLTIQVGANDGETIDIDL
KQINSQTLGLDLSLNQASQPELAEEAAKTTENPLQKIDAALAQVDALRSDLGAVQN
RFNSAITNLGNTVNNLSEARSRIEDSDYATEVSNMSRAQILQAS
(SEQ ID NO:25)

hAnti-CD40VK2-LV-hIgGK-C-Flgn1-Flgn2 DNA sequence

ATGAGGGTCCCCGCTCAGCTCTGGGCTCCTGCTCTGGCTCCAGGCGCGC
GATGTGATATCCAGATGACACAGAGGCCCTCCCTCCGTCTGCCTCTGTGGGAGA
CAGAGTCACCATCACCTGCAGTGCAAGTCAGGGCATTAGCAATTATTAAACTGG
TATCAGCAGAAACCAGGCAAGGCCGTTAAACTCCTGATCTATTACACATCAATT
TACACTCAGGAGTCCCCTCAAGGTTAGTGGAGTGGCTGGGACAGATTATAC
CCTCACCCTCAGCTCCCTGCAGCCTGAAGATTGCGCCACTTACTATTGTCAGCAG
TTAATAAGCTCCTCCGACGTTGGAGGCACCAAACCTCGAGATCAAACGAA
CTGTGGCTGCACCATCTGTCTTCATCTTCCCACATCTGATGAGCAGTTGAAATCT
GGAACTGCCTCTGTTGTGCCTGCTGAATAACTTCTATCCAGAGAGGCCAAAG
TACAGTGGAAAGGTGGATAACGCCCTCAATCGGTAACTCCCAGGAGAGTGTCA
CAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCCTGACGCTGA
GCAAAGCAGACTACGAGAAACACAAAGTCTATGCCCTGCGAAGTCACCCATCAGG
GCCTGAGCTGCCCGTCACAAAGAGCTTCAACAGGGAGAGTGTGCTAGTATCG
AGCGTCTGTCTGGTCTGCGTATCAACAGCGCAGAACATCAAAGGTCTGACTCAGGCTTCCGT
GGCGATTGCTAACCGTTTACCGCGAACATCAAAGGTCTGACTCTGCTAACAGC
AACGCTAACGACGGTATCTCCATCGCGCAGACCACTGAAGGGCGCTGAACGAA
ATCAACAAACAACCTGCAGCGTGTGCGTGAACCTGGCGGTTCACTGCTAACAGC
ACTAACTCCCAGTCTGACCTCGACTCCATCCAGGCTGAAATCACCCAGCGCCTGA
ACGAAATCGACCGTGTATCCGGTCAGACTCAGTTAACGGCGTGAAGACTCCTGG
CGCAGGACAACACCCCTGACCATCCAGGTTGGTGCACAGCAGCGTGAAGACTATCG
ATATCGATCTGAAGCAGATCAACTCTCAGACCCCTGGCCTGGATTCACTGAACGT
GCAGGCTAGTCAACCAAGAGCTGGCGGAAGCAGCCGCTAAAACCACCGAAAACCC
GCTGCAGAAAATTGATGCCCGCTGGCGCAGGTGGATGCGCTGCGCTTGATCTG
GGTGCAGGTTACAAACCGTTCAACTCCGCTATCACCAACTTGGCAATACCGTAA
ACAACCTGTCTGAAGCGCGTAGCCGTATCGAAGATTCCGACTACGCGACCGAAG
TTTCCAACATGTCTCGCGCGCAGATTCTGCAGGCTAGCTGA
(SEQ ID NO:26)

[00149] Below is an example of analogous HPV 18 E6/7 sequences fused to DC-targeting antibody H chain (in this case anti-Langerin). This can be fused instead to the H chain of the preferred antiCD40 antibody in place of the HPV 16 sequences, or fused downstream of the HPV 16 sequences, or fused to the anti-CD40 L chain – in each case making a vaccine bearing both HPV 16 and HPV 18 sequences.

Anti-Langerin15B10H-LV-hIgG4H-C-HPV18E7-HPV18E6-f1

(Bold, italicized single underline sequence is HPV18 E6; bold, italicized double underline sequence is HPV18 E7; non-bolded, non-italicized double underlined (f1) sequence is a flexible glycosylated linker sequence)

QVQLRQSGPELVKPGASVKSCKASGYTFTDYVISWVKQRTGQGLEWIGDIYPGSG
YSFYNENFKGKATLTADKSSTTAYMQLSSLTSEDSAVYFCATYYNYPFAYWGQGTL
VTVSAAKTTGPSVPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF

PAVLQSSGLYSLSSVTVPSLGTKYTCNVVDHKPSNTKVDKRVESKGPPCPCPA
 PEFEGGPSVFLPPPKDLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAK
 TKPREEQFNSTYRVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQP
 PQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPVLDSDG
 SFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLGKASMHGPKATLQ
DIVLHLEPQNEIPV DLLGHGQLSDSEEENDEIDGVNHQHLPARRAEPQRHTMLCMC
CKASMARFEDPTRRPYKLPLCTELNTSLODIEITCVYCKTLELTVGEFAFKDLFV
VYRDSIPHAACHKCIDFYSRIRELRHYSDSVYGDTLEKLTNTGLYNLLIRCLRCOKPL
NPASSSVPTTSVHPTPTSVPPPTKSSPAS

(SEQ ID NO:27)

Anti-Langerin15B10H-LV-hIgG4H-C-HPV18E7-HPV18E6-f1 DNA sequence

ATGGAATGGAGGATCTTCTCTCATCCTGTCAAGGAAC TGCAAGGTGTCCACTCCC
 AGGTTCAGCTGCGGCAGTCTGGACCTGAGCTGGTAAGCCTGGGCTTCAGTGA
 AGATGTCCTGCAAGGCTCTGGATACACATTACTGACTATGTTATAAGTTGGGT
 GAAGCAGAGAACTGGACAGGGCCTGGAGTGATTGGAGATATTTATCCTGGAAAG
 TGGTTATTCTTCTACAATGAGAACTTCAAGGGCAAGGCCACACTGACTGCAGAC
 AAATCCTCCACCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGA
 CGGTCTATTCTGTGCAACCTACTATAACTACCCCTTGCTTACTGGGGCCAAGGG
 ACTCTGGTCACTGTCTGCAGCCAAAACAACGGGCCATCCGTCTCCCCCTGG
 CGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGCTGCCTGGTCA
 AGGACTACTTCCCCGAACCGGTGACGGTGTGGAACTCAGGCGCCCTGACCA
 GCGCGTGCACACCTCCGGCTGTCTACAGTCCTCAGGACTCTACCCCTCAG
 CAGCGTGGTGACCGTGCCCTCCAGCAGCTGGCACGAAGACCTACACCTGCAA
 CGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGTCAA
 ATA TGGTCCCCCATGCCACCCCTGCCAGCACCTGAGTTGAAGGGGACCATCAGTC
 TTCCTGTTCCCCCAAAACCAAGGACACTCTCATGATCTCCGGACCCCTGAGG
 TCACGTGCGTGGTGGACGTGAGCCAGGAAGACCCGAGGTCCAGTTCAACT
 GGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGGGAGGAG
 CAGTTCAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCTGCACCAGGACT
 GGCTGAACGGCAAGGAGTACAAGTGAAGGTCTCAAACAAAGGCCTCCGCTCCT
 CCATCGAGAAAACCATCTCAAAGCCAAGGGCAGCCCCGAGAGGCCACAGGTGT
 ACACCCCTGCCCCCATCCCAGGAGGAGATGACCAAGAACCAAGGTCAGCCTGACCT
 GCCTGGTCAAAGGCTCTACCCCAGCGACATCGCCGTGGAGTGGAGAGCAATG
 GGCAGCCGGAGAACAACTACAAGACCAAGCAGCCTCCGTGCTGGACTCCGACGGCT
 CCTTCTCCTCTACAGCAGGCTAACCGTGGACAAGAGAGCAGGTGGCAGGAGGG
 ATGTCTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACACACAGAA
 GAGCCTCTCCCTGTCTGGTAAAGCTAGTATGCACGGGCTAACGCCACACTG
 CAAGATATTGTCCTCCATCTCGAACCCAGAATGAGATAACCAGTGGACCTCTGG
 GCCACGGACAGTTGTCCGATAAGCGAGGAGAAAACGACGAAATCGACGGTGT
 ACCACCAGCACTGCCCCGTCGGAGGGCAGAGCCCCAGAGACATACCATGCTGT
 GCATGTGTTGCAAAGCTAGTATGCCAGATTGAGGATCCAACACGCCACCTTA
 CAAATTGCCGGACCTTGCACGGAGCTGAACACTTCCCTGCAGGACATAGAAATT
 ACCTGCGTCACTGCAAGACCGTTCTCGAAGTACAGAAGTAGGCAGGTTGCGT
 TTAAAGATCTGTTGCGTGGTATCGGGATAGCATTCCCCACGCAGCTGTCA
 GTGTATCGACTCTATTCTAGGATCCGGGAGCTCAGACACTATAGCGATTCCGT
 TACGGCGACACACTTGAGAAGCTCACTAACACCGGGCTGTACAACCTCCTGATCC
 GGTGCTGAGGTGTAGAAACCCCTGAATCCTGCTAGTAGCAGCGTGAGCCCCAC
 CACCAGCGTGCACCCACCCCCACCGCGTCCCCCCCCACCCACCAAGAGCAG
 CCCCCTAGCTGA

(SEQ ID NO:28)

Example 3 - CD40 targeting HPV vaccine (CD40HVac)

[00150] CD40HVac plus poly IC induces E6/7-specific CD8+ CTLs in human CD40 transgenic B6 (hCD40Tg) mice. hCD40Tg and WT animals (5 mice/group) were immunized subcutaneously (SC) with 30 µg CD40HVac plus 50 µg poly IC in PBS (100 µl) and boosted twice two weeks apart. The amounts of CD40HVac and poly IC were predetermined in separate experiments. Seven days after the second boosting, IFN γ ELISPOT was performed using purified CD8+ T cells from spleens (Fig. 8a). Compared to WT mice, hCD40Tg mice elicited increased numbers of CD8+IFN γ + T cells. The inventors also observed that hCD40Tg mice had increased E7-specific CD8+ T cells in the blood, as measured by tetramer staining (Fig. 8b). In addition, CD40HVac plus poly IC induced greater levels of E6/7-specific CD4+ T cell responses in hCD40Tg mice than in WT animals (not shown). Taken together, the inventors concluded that CD40HVac targets human CD40 in vivo and can thus elicit E6/7-specific cellular responses. The inventors also found that CD40HVac plus poly IC (adjuvant) was more potent than CD40HVac alone at eliciting E6/7-specific T cell responses in hCD40Tg mice (data not shown), although humanized anti-CD40 antibody used in CD40HVac has an agonistic property.

[00151] CD40HVac plus poly IC can mount therapeutic immunity in hCD40Tg animals. hCD40Tg mice (10 mice per group) were SC challenged with HPV E6/7-expressing TC-1 tumor cells (5×10^4). The inventors confirmed that animals harbor palpable tumors on day 6 after TC-1 challenge. Animals were then immunized SC, intramuscularly (IM), or intraperitoneally (IP) with 30 µg CD40HVac plus 50 µg poly IC on days 6, 12, and 24. A control group was kept without immunization. Fig. 9a shows that all animals receiving CD40HVac plus poly IC survived while all control animals died. Injection of poly IC alone did not promote survival (data not shown). In a separate experiment, we measured progression of TC-1 tumors by assessing tumor volume (Fig. 9b). All control animals (10 mice) developed tumors and died within 40 days of TC-1 challenge. In contrast, CD40HVac plus poly IC treatment suppressed tumor progression. It is also of note that some of the treated animals developed large tumors ($200-600 \text{ mm}^3$), and these tumors regressed over time during vaccination. Taken together, the inventors concluded that CD40HVac elicits therapeutic immunity in hCD40Tg mice. Furthermore, the data indicated that the route of

immunization is an important factor that could impact the overall therapeutic efficacy of the CD40HVac regimen.

[00152] CD8+ CTL infiltration into tumors is critical for tumor regression. Human CD40 transgenic (hCD40Tg) mice were SC challenged with high numbers of TC-1 tumor cells (2×10^5 cells). Animals were then immunized with 30 μ g CD40HVac plus 50 μ g poly IC on days 6 and 12. Without vaccination, all animals died within 25 days after the tumor challenge. On day 60, the percentages of H2-Db (RAHYNIVTF) tetramer+CD8+ T cells in tumors and blood were assessed (Fig. 10). The percentage of tetramer+CD8+ T cells in the tumor (left) inversely correlates with tumor volume. There was no such correlation between the percentage of tetramer+CD8+ T cells in the blood (right) or spleen (not shown) and the tumor volume. Thus, infiltration of antigen-specific CD8+ CTLs into tumors is critical for tumor regression. Thus, we anticipate the improvement of CD40HVac efficacy by promoting effector cell infiltration into and retention within mucosal tumors.

[00153] CD40HVac made with anti-CD40 (12E12 clone) is more efficient than CD40HVac made with anti-CD40 (12B4 clone) at eliciting HPV16.E6/7-specific CD8+ T cell responses. The inventors compared recombinant fusion proteins made with three different clones of anti-CD40 mAbs (12E12 and 12B4) for their ability to prime HPV16.E6/7-specific CD8+ T cell responses. The inventors used poly IC as an adjuvant. hCD40Tg animals received three doses of recombinant fusion proteins (30 μ g/dose) plus poly IC (50 μ g/dose) via s.c. Seven days after the third immunization, the percentage of E7-specific CD8+ T cells in the blood were determined by tetramer staining. As shown in left panel of Fig. 11a, recombinant fusion proteins made with 12E12 was more efficient than those made with 12B4 clone at inducing E6/7-specific CD8+ T cell responses. The inventors also found that anti-CD40 (12E12)-HPV16.E6/7 was more efficient than anti-CD40 (12B6)-HPV16.E6/7 at eliciting IFN γ +CD8+ T cell responses by ELISPOT assay using splenocytes (left panel in Fig. 11b). HPV16.E6/7 fused with the two clones of anti-CD40 mAbs resulted in similar levels of E6/7-specific IFN γ +CD4+ T cell responses (right panel in Fig. 11b).

* * *

[00154] All of the methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be

apparent to those of skill in the art that variations may be applied to the methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

[00155] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

[00156] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates

REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988

Atherton *et al.*, 1985

Ausubel *et al.*, 1996

Barany and Merrifield, 1979

Bird *et al.*, 1988

Burke *et al.*, 1994

Cumber *et al.*, 1992

Dholakia *et al.*, 1989
Epitope Mapping Protocols (1996)
Glennie *et al.*, 1987
Goding, 1986, pp. 60 61
Holliger *et al.*, 1993
Holliger & Winter, 1999
Holt *et al.*, 2003
Hu *et al.* 1996
Huston *et al.*, 1988
Khatoon *et al.*, 1989
King *et al.*, 1989
Kohl *et al.*, 2003
Kyte and Doolittle, 1982
Liu *et al.*, 2003
McCafferty *et al.*, 1990
Merchand *et al.*, 1998
Merrifield, 1986
O'Shannessy *et al.*, 1987
Owens & Haley, 1987
Pack, *et al.*, 1992
Potter & Haley, 1983
Reiter *et al.*, 1996
Repp *et al.*, 1995
Ridgeway *et al.*, 1996
Sambrook *et al.*, 2001
Skerra, 2000
Skerra, 2001
Staerz & Bevan, 1986
Stewart and Young, 1984
Tam *et al.*, 1983
Tigges *et al.*, 1996
Ward, 1989
U.S. Patent 3,817,837
U.S. Patent 3,850,752

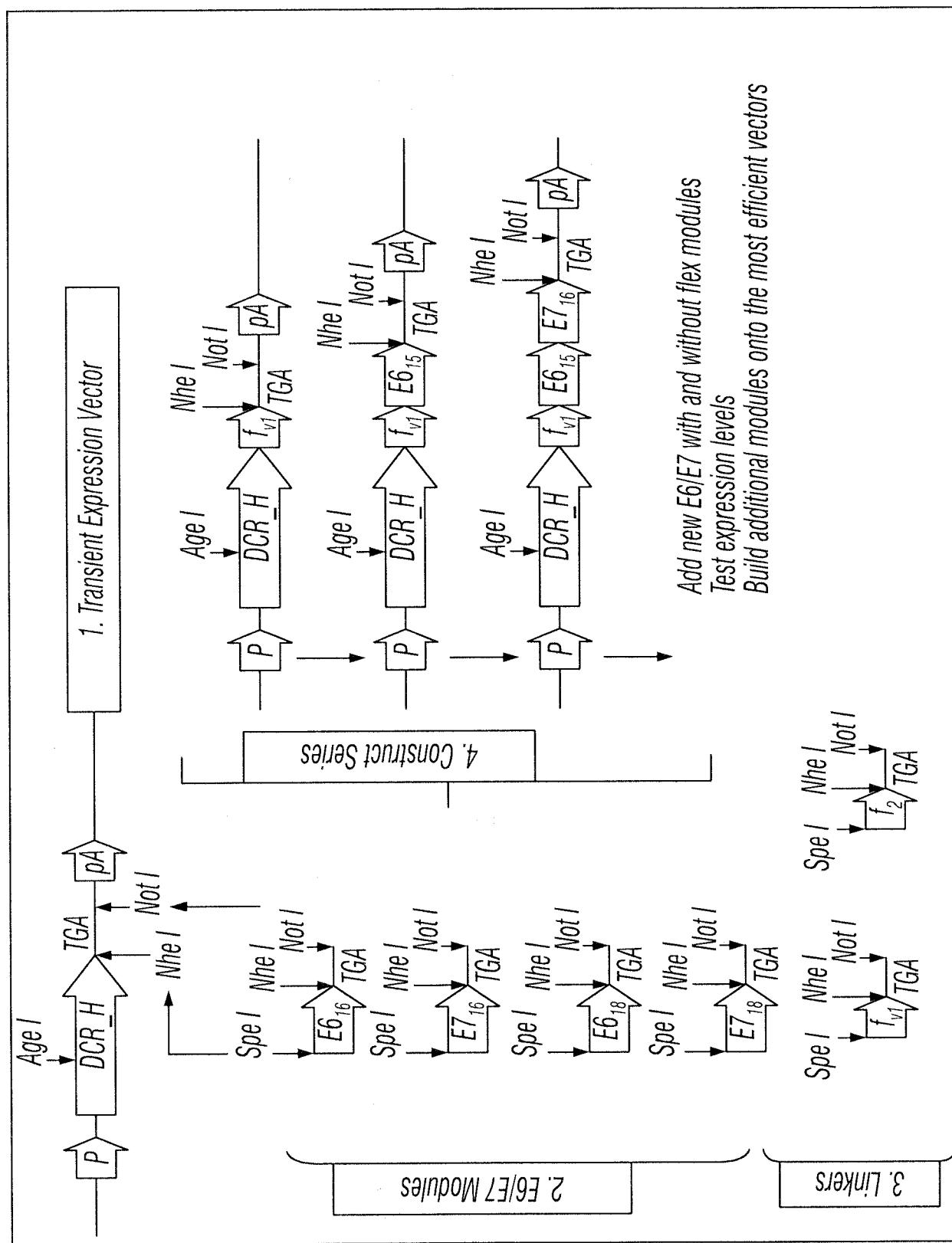
24 Oct 2019

2015204503

U.S. Patent 3,939,350
U.S. Patent 3,996,345
U.S. Patent 4,196,265
U.S. Patent 4,277,437
U.S. Patent 4,275,149
U.S. Patent 4,366,241
U.S. Patent 4,472,509
U.S. Patent 4,554,101
U.S. Patent 4,879,236
U.S. Patent 4,938,948
U.S. Patent 5,196,066
U.S. Patent 5,741,957
U.S. Patent 5,750,172
U.S. Patent 5,756,687
U.S. Patent 5,827,690
U.S. Patent 5,871,986
U.S. Patent 6,091,001
U.S. Patent 6,651,655
U.S. Patent Publication No. 2005/0106660
U.S. Patent Publication No. 2006/0058510
U.S. Patent Publication No. 2006/0088908
U.S. Patent Publication No. 2010/0285564
U.S. Patent Publication No. 2012/0039,916
U.S. Patent Publication No. 2012/023,102
U.S. Provisional Patent No. 61/332,465
US Patent Application No. 12/024,036
US Patent Application No. 12/024,897
US Patent Application No. 12/025,010
US Patent Application No. 12/026,095
US Patent Application No. 12/036,138
US Patent Application No. 12/036,158
US Patent Application No. 12/504,463
US Patent Application No. 12/717,778
US Patent Application No. 12/717,789

24 Oct 2019

2015204503


US Patent Application No. 12/717,804
US Patent Application No. 12/718,365
US Patent Application No. 12/882,052
US Patent Application No. 12/882,052
US Patent Application No. 13/100,684
US Patent Application No. 13/208,993
US Patent Application No. 13/269,951
US Patent Application No. 13/282,112
US Patent Application No. 13/415,564
US Patent Application No. 13/424,582
US Patent Application No. 13/430,206
US Patent Application No. 13/594,397
US Patent Application No. 13/596,526
US Patent Application No. 13/465,371
US Patent Application No. 13/397,932
PCT Publication No. WO2006/056464
PCT Publication No. WO94/13804
PCT Publication No. WO 2008/103947
PCT Publication No. WO 2008/103953
PCT Publication No. WO 2008/118587
PCT Publication No. WO 2010/104747
PCT Publication No. WO 2010/104749
PCT Publication No. WO 2010/104761
PCT Publication No. WO 2012/021834
PCT Patent Application No. PCT/US92/09965
PCT Patent Application No. PCT/US13/72217
PCT Patent Application No. PCT/US2013/05839

The Claims Defining The Invention Are As Follows

1. A fusion protein comprising an anti-CD40 antibody or fragment thereof, comprising at least three complementarity determining regions (CDRs) from each of a heavy and light chain variable region of an anti-CD40 antibody, at least one peptide linker and at least one human papillomavirus (HPV) E6 or E7 antigen, wherein the E6 or E7 antigen or antigens are HPV type 16 or HPV type 18 antigens, wherein the at least one HPV E6 or E7 antigen comprises a peptide comprising the amino acid sequence of at least one of SEQ ID Nos: 1, 3 and 4.
2. The fusion protein of claim 1, wherein the anti-CD40 antibody or fragment thereof is humanized.
3. The fusion protein of claim 1 or claim 2, wherein the peptide linker or linkers comprise one or more glycosylation sites.
4. The fusion protein of claim 1 or claim 2, wherein the peptide linker or linkers are Flexv1 (SEQ ID NO:5) and/or f1 (SEQ ID NO:6).
5. The fusion protein of claim 1, wherein the fusion protein comprises one HPV E6 antigen of SEQ ID NO: 1 or 3 and one HPV E7 antigen of SEQ ID NO:2 or 4.
6. The fusion protein of claim 5, wherein the fusion protein comprises the sequence of SEQ ID NO:19.
7. The fusion protein of claim 5, wherein the fusion protein comprises the sequence of SEQ ID NO:21.
8. The fusion protein of claim 5, wherein the fusion protein comprises a heavy chain variable region comprising CDR1, CDR2, and CDR3 of SEQ ID Nos: 14-16, respectively, and a light chain variable region comprising CDR1, CDR2, and CDR3 SEQ ID Nos:11-13, respectively.
9. A method of making a fusion protein of any one of claims 1 to 8 comprising isolating the fusion protein from a recombinant host cell expressing the fusion protein.

10. A method for inducing an immune response to at least one HPV epitope comprising administering to a patient a composition comprising a dendritic cell targeting complex comprising the fusion protein of any one of claims 1 to 8.
11. The method of claim 10, wherein the anti-CD40 antibody or fragment thereof comprises an anti-CD40 antibody light chain variable region comprising a CDR1, CDR2, and CDR3 of SEQ ID Nos:11-13, respectively, and an anti-CD40 antibody heavy chain variable region comprising a CDR1, CDR2, and CDR3 of SEQ ID Nos:14-16, respectively.
12. The method of claim 10, wherein the anti-CD40 antibody or fragment thereof is humanized.
13. The method of claim 10, wherein the complex comprises one HPV E6 antigen of SEQ ID NO: 1 or 3 and one HPV E7 antigen of SEQ ID NO:2 or 4.
14. The method of claim 11, wherein the complex comprises the HPV antigens of SEQ ID NO:1 and 2.
15. The method of claim 11, wherein the complex comprises the HPV antigens of SEQ ID NO:3 and 4.
16. The method of claim 13, wherein the dendritic cell targeting complex comprises SEQ ID NO: 19.
17. The method of claim 14, wherein the dendritic cell targeting complex comprises SEQ ID NO: 21.
18. The method of any one of claims 10 to 17, wherein the composition further comprises an adjuvant.
19. The method of any one of claims 10 to 18, further comprising administering to the patient a separate HPV vaccine.
20. The method of claim 19, wherein the separate HPV vaccine is Gardasil™ or Cervarix™.

21. A method for treating a human papillomavirus (HPV) related disease comprising administering to a patient a composition comprising a dendritic cell targeting complex comprising the fusion protein of claim 1, wherein CDR1, CDR2, and CDR3 of the heavy chain variable region comprises SEQ ID Nos: 14-16, respectively, and CDR1, CDR2, and CDR3 of the light chain variable region comprises SEQ ID Nos:11-13, respectively, and wherein the antigens comprise SEQ ID NO:1 or 3 and 2 or 4.
22. Use of a composition comprising a dendritic cell targeting complex comprising the fusion protein of any one of claims 1 to 8 in the manufacture of a medicament for inducing an immune response to at least one HPV epitope.
23. Use of a composition comprising a dendritic cell targeting complex comprising the fusion protein of claim 1 in the manufacture of a medicament for treating a human papillomavirus (HPV) related disease, wherein CDR1, CDR2, and CDR3 of the heavy chain variable region of the fusion protein comprises SEQ ID Nos: 14-16, respectively, and CDR1, CDR2, and CDR3 of the light chain variable region of the fusion protein comprises SEQ ID Nos:11-13, respectively, and wherein the antigens comprise SEQ ID NO:1 or 3 and 2 or 4.

2/11

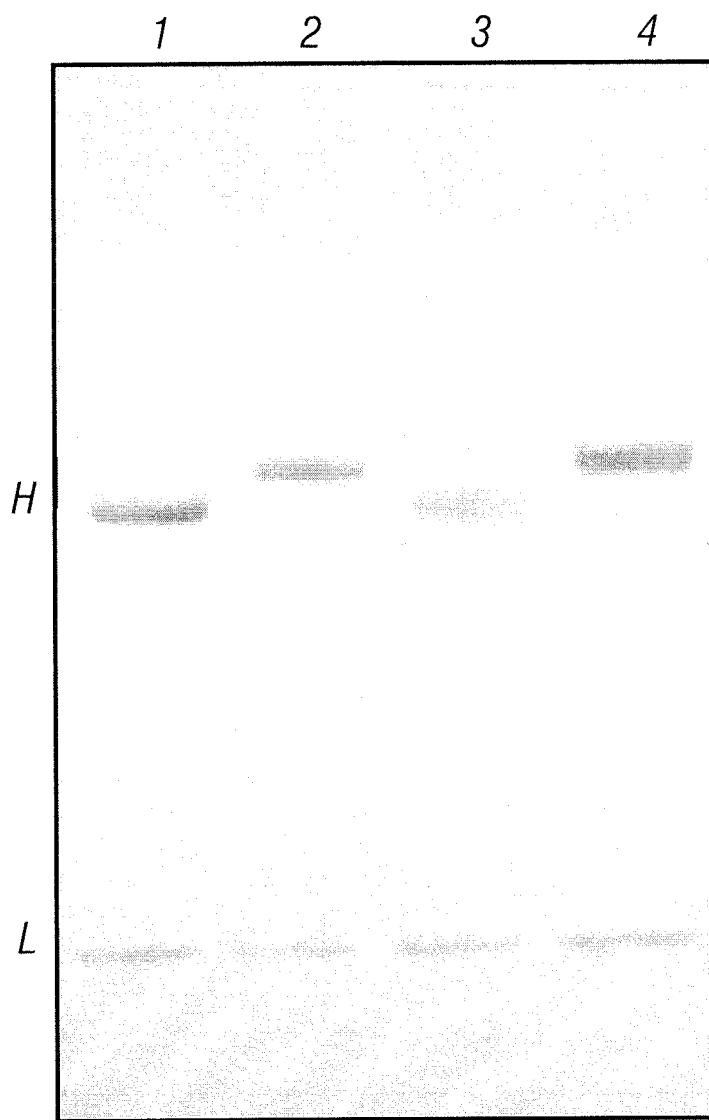


FIG. 2

3/11

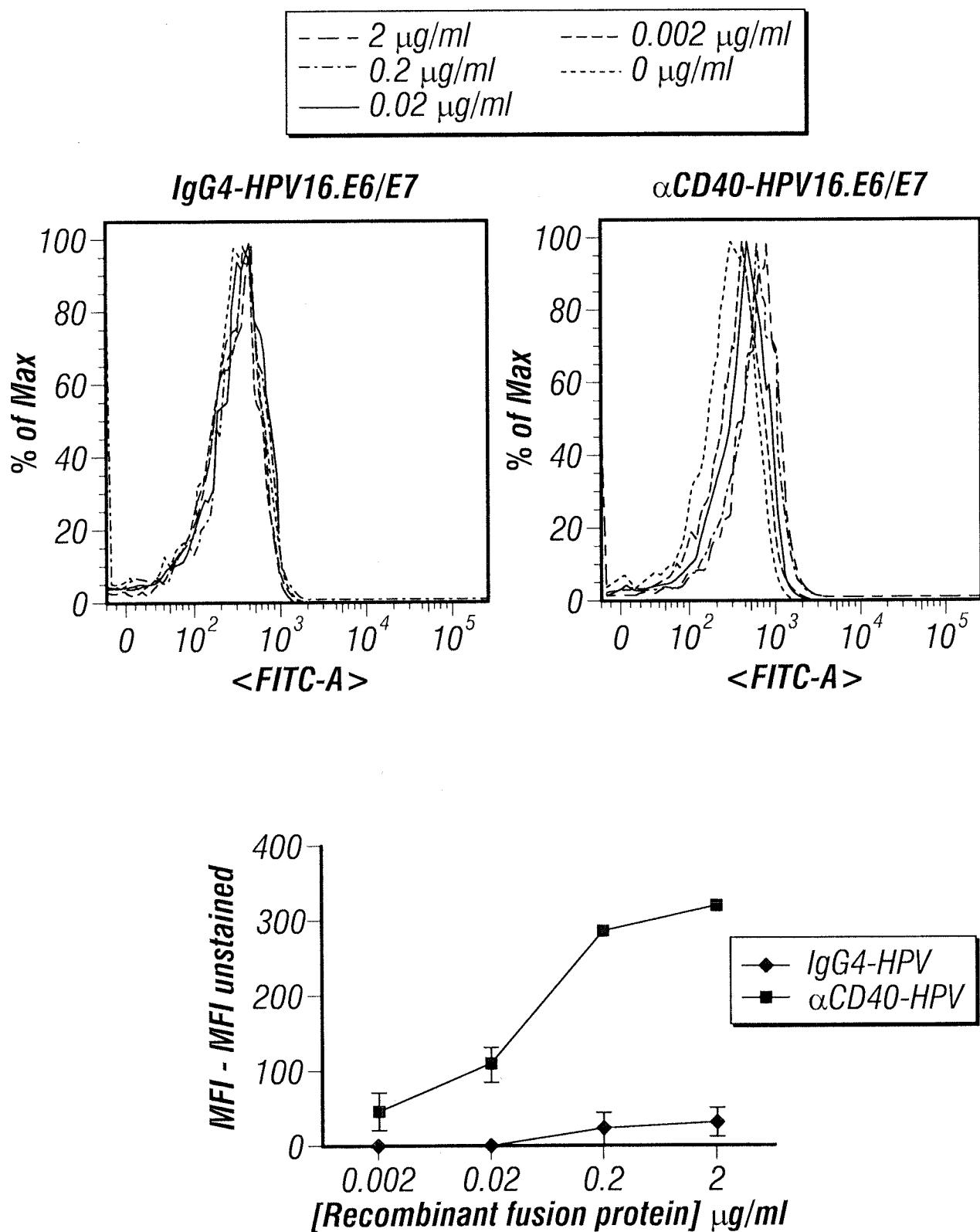


FIG. 3

4/11

Restimulation with

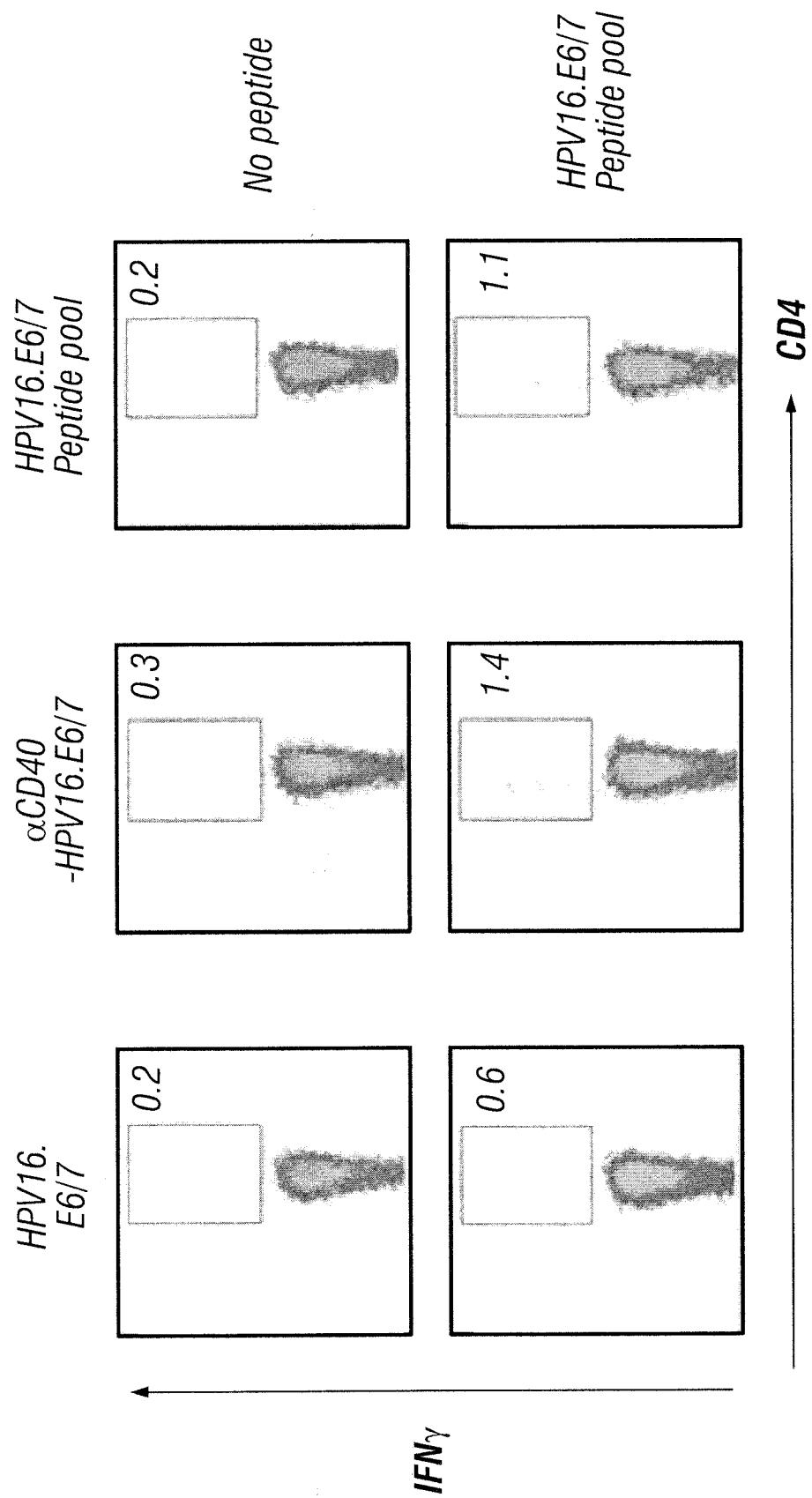
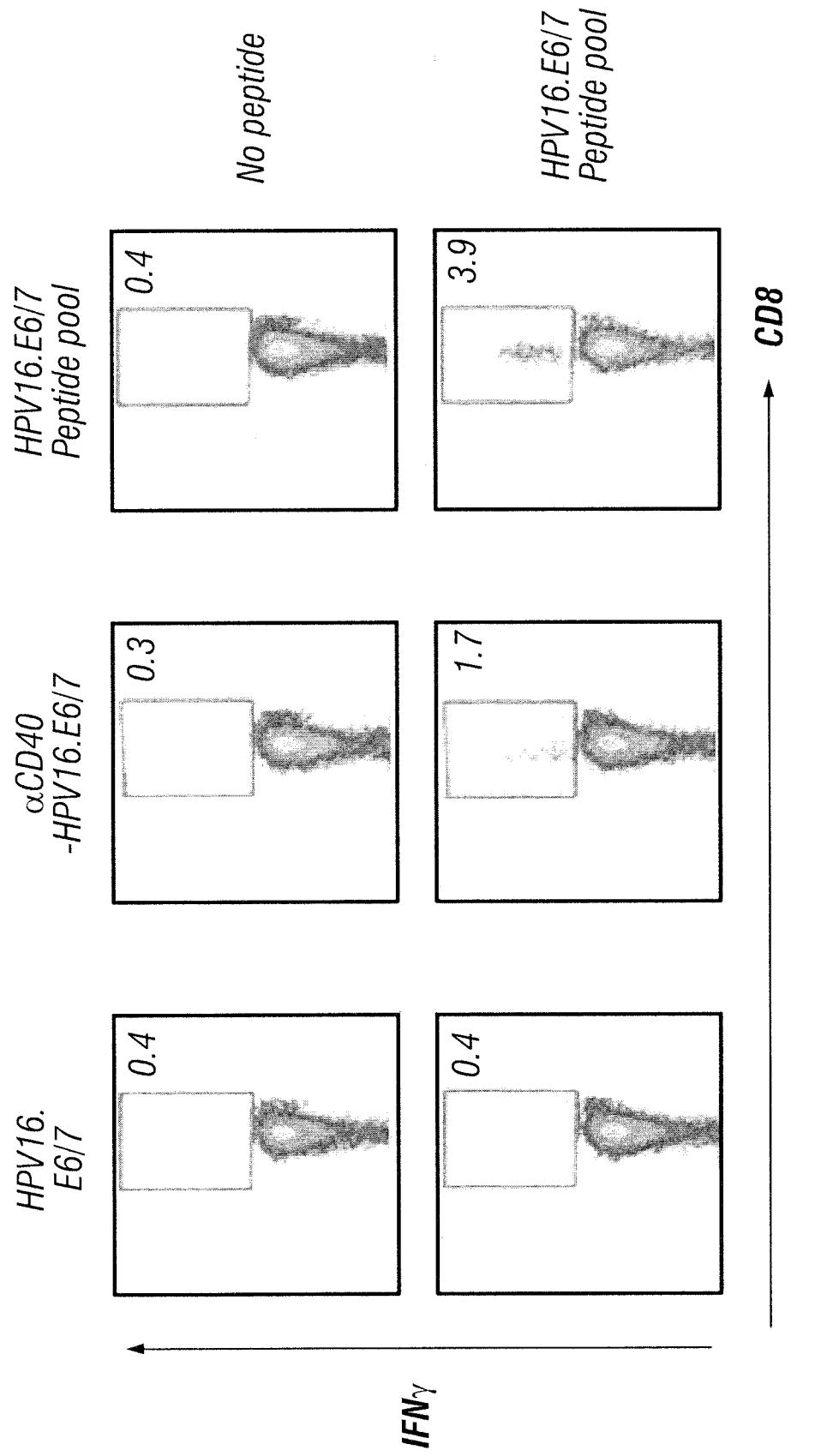



FIG. 4

5/11

Restimulation with

FIG. 4
(Cont'd)

6/11

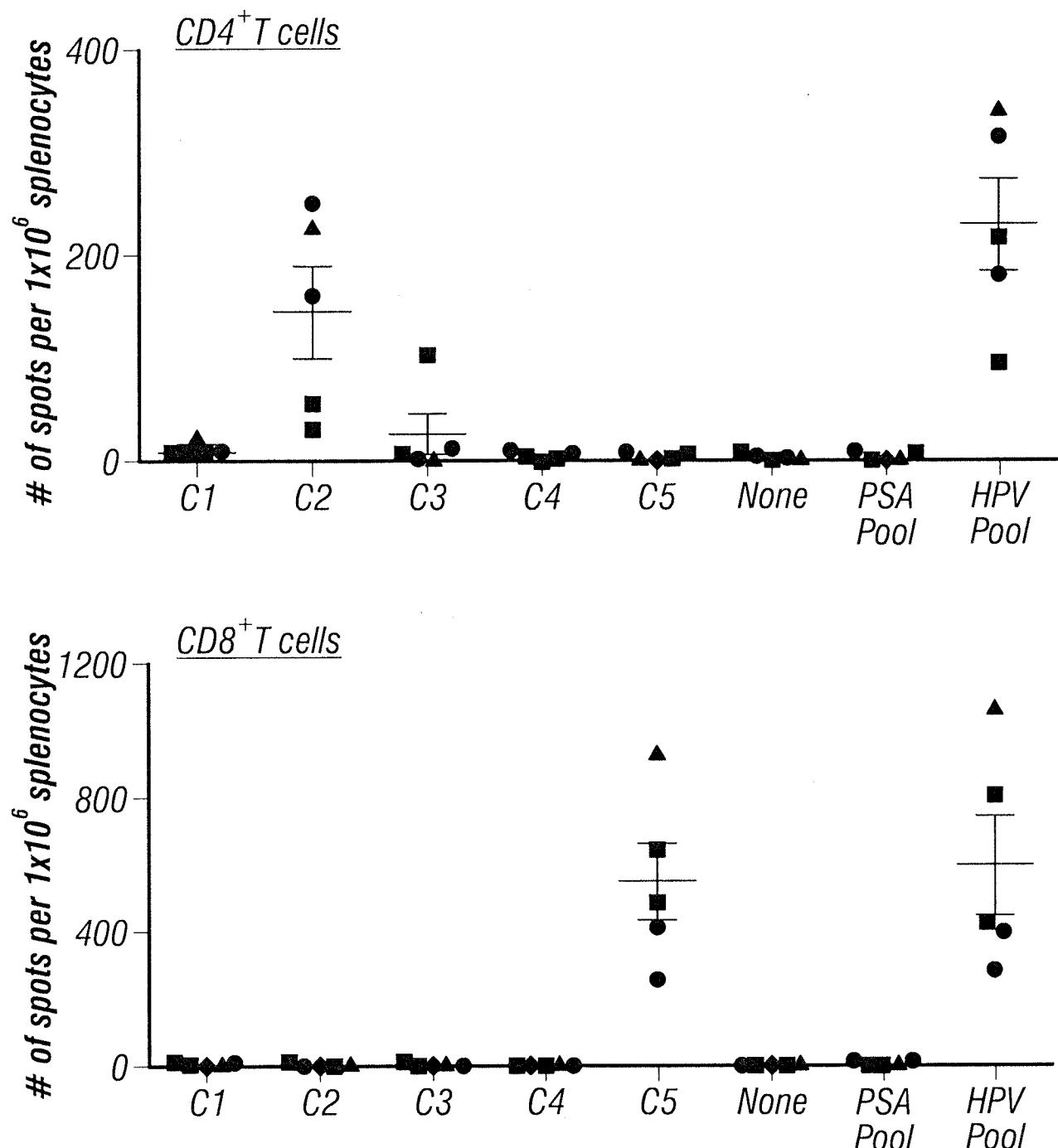


FIG. 5

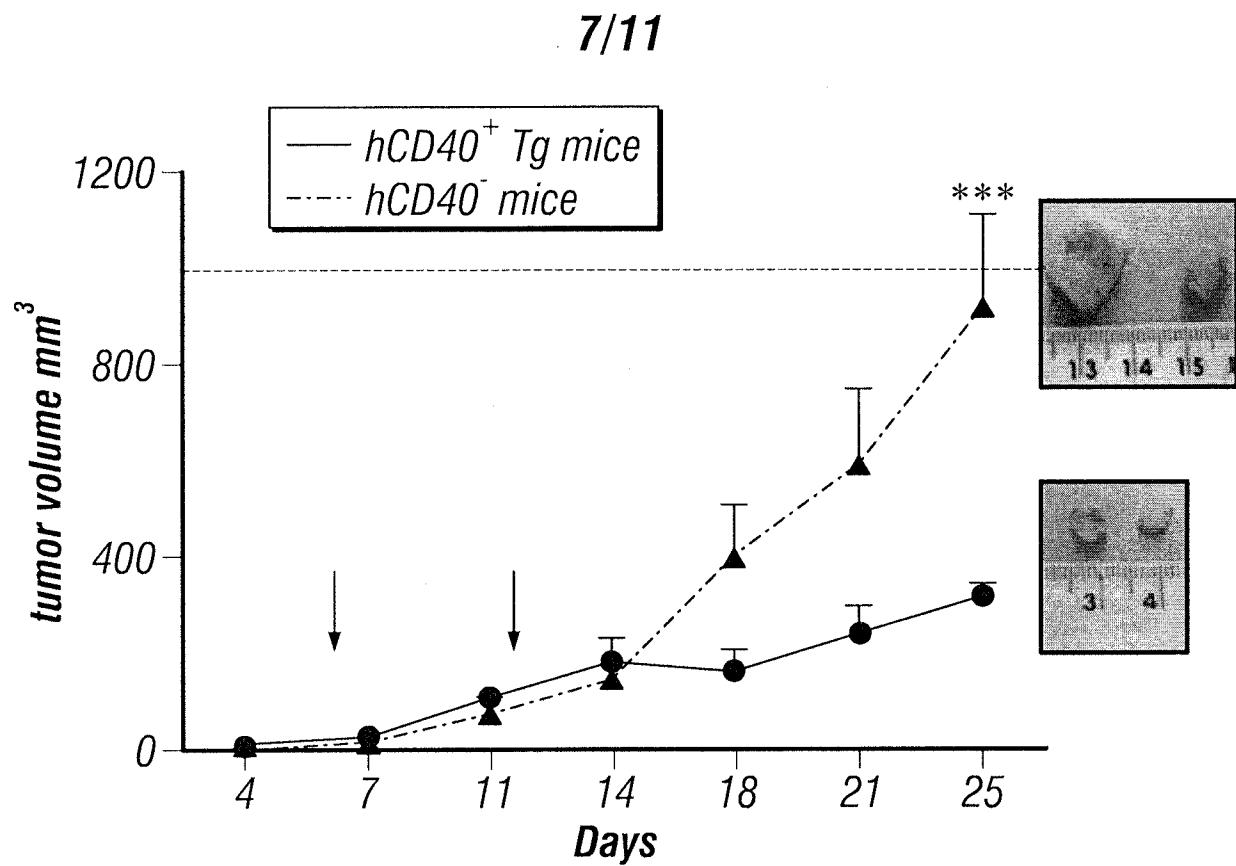


FIG. 6

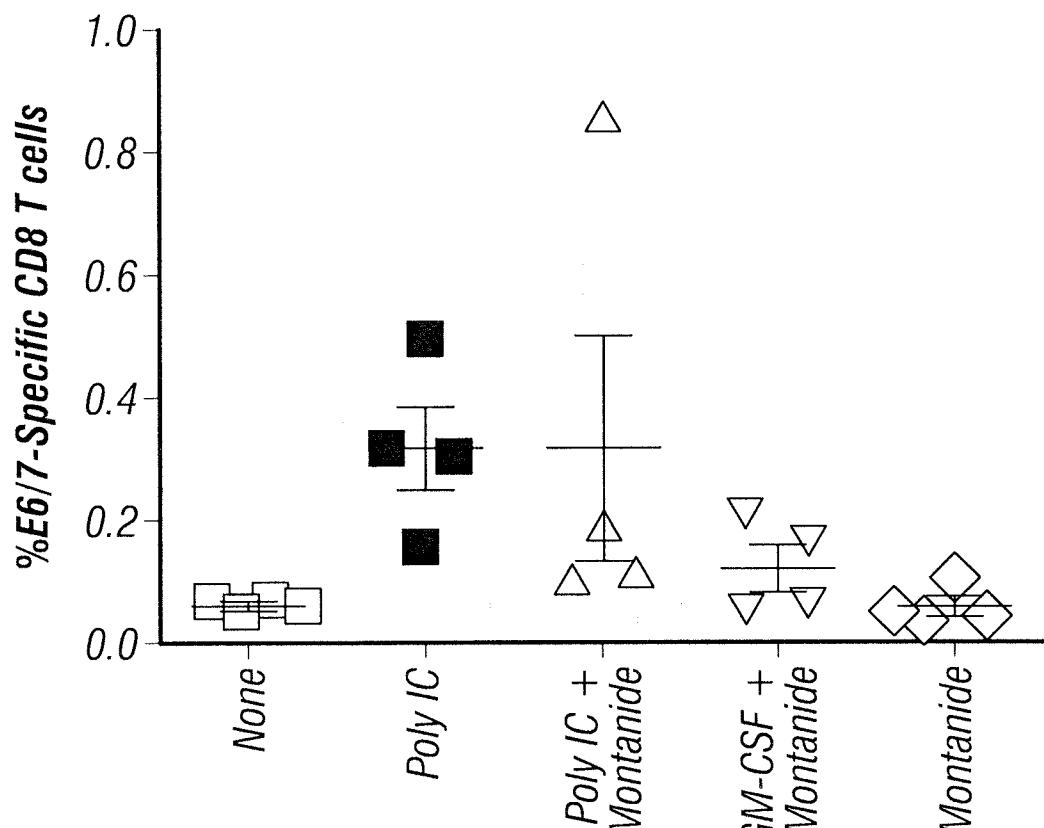


FIG. 7

8/11

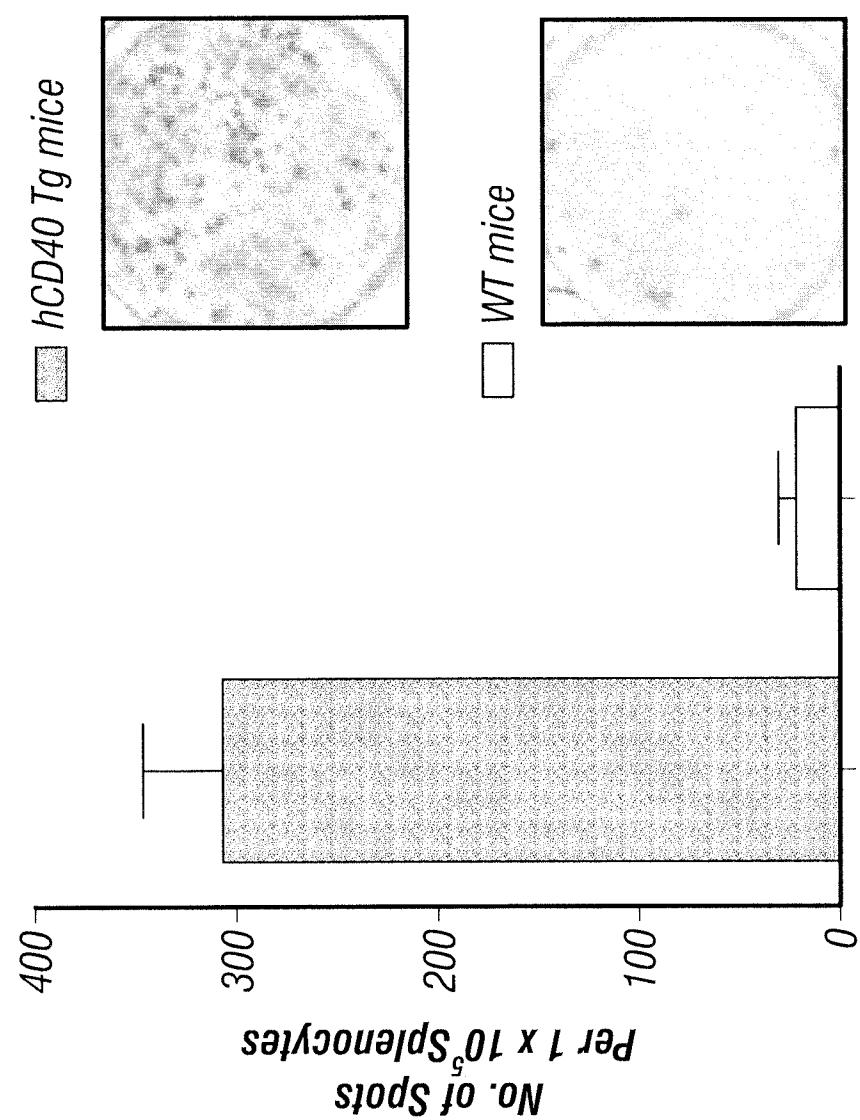
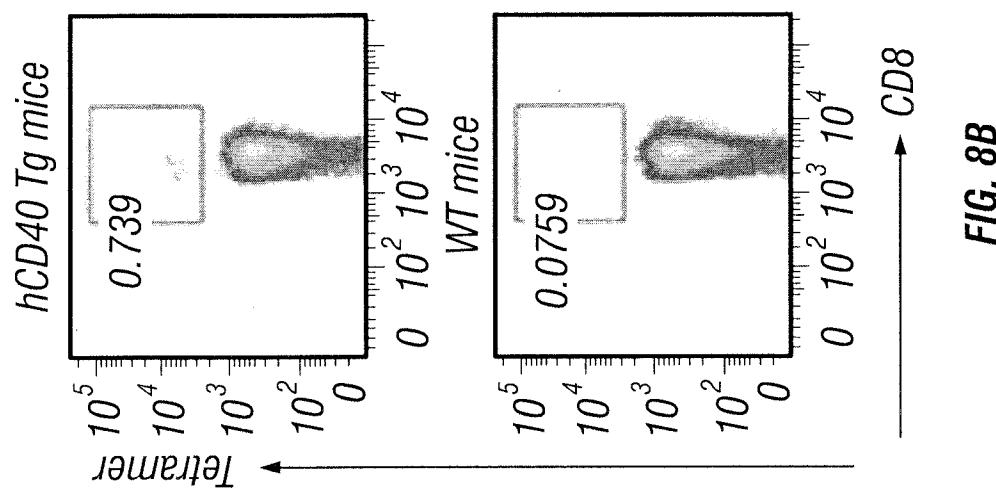



FIG. 8A

FIG. 8B

9/11

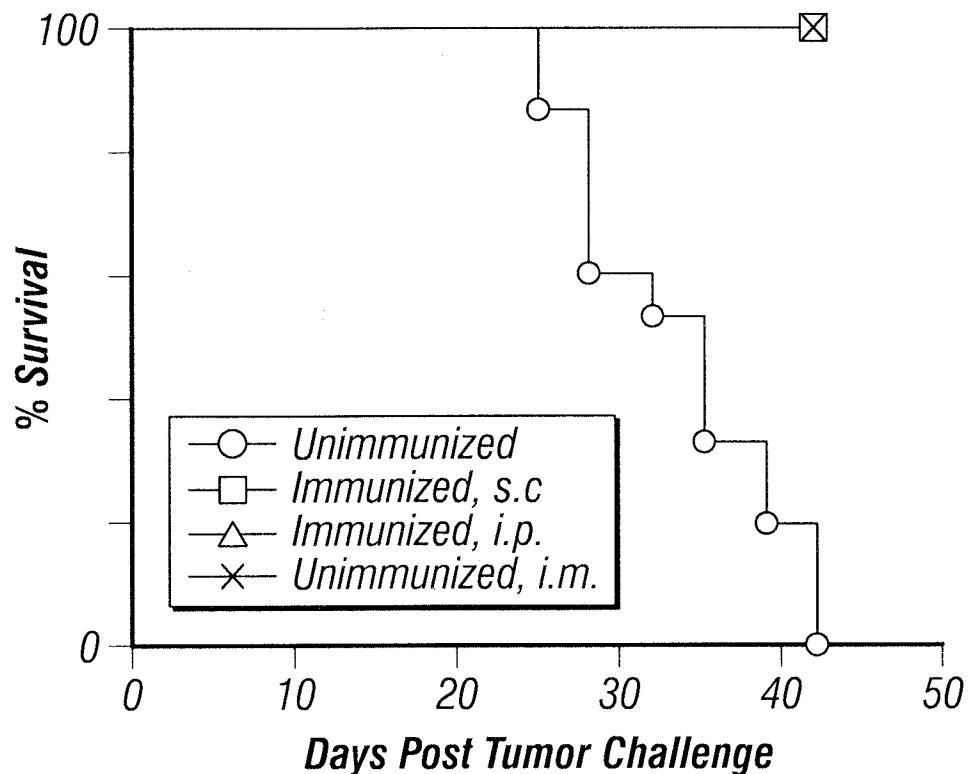


FIG. 9A

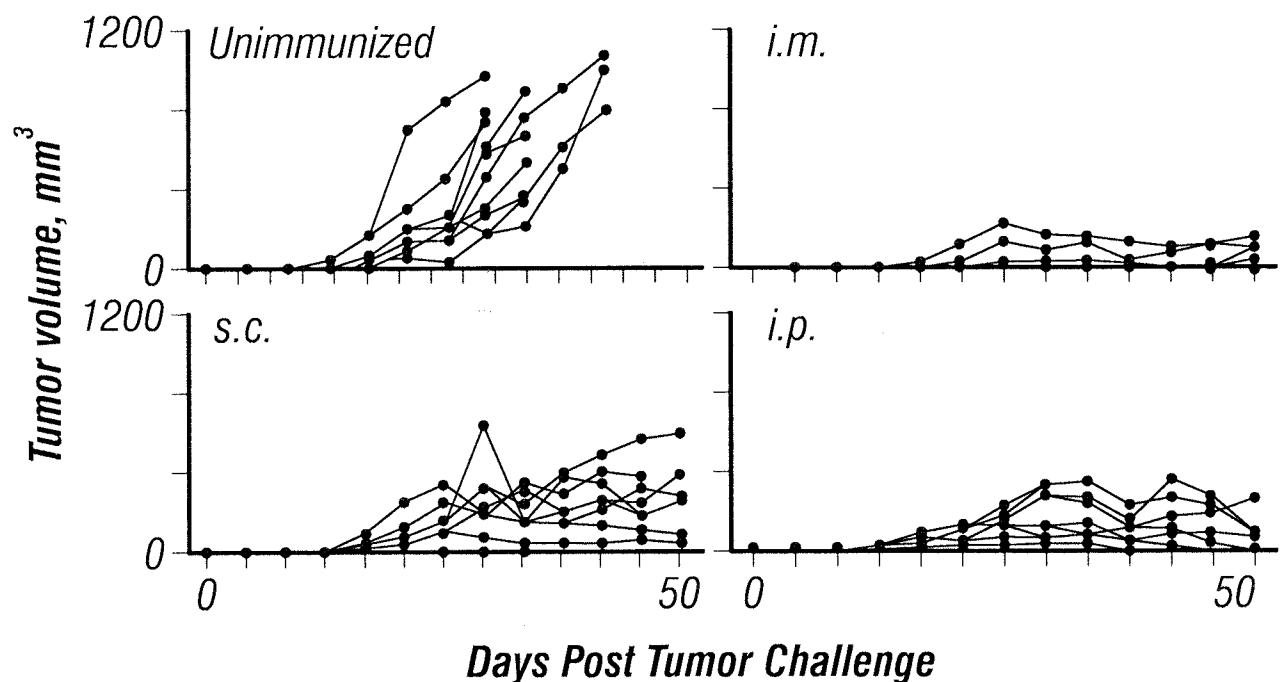


FIG. 9B

10/11

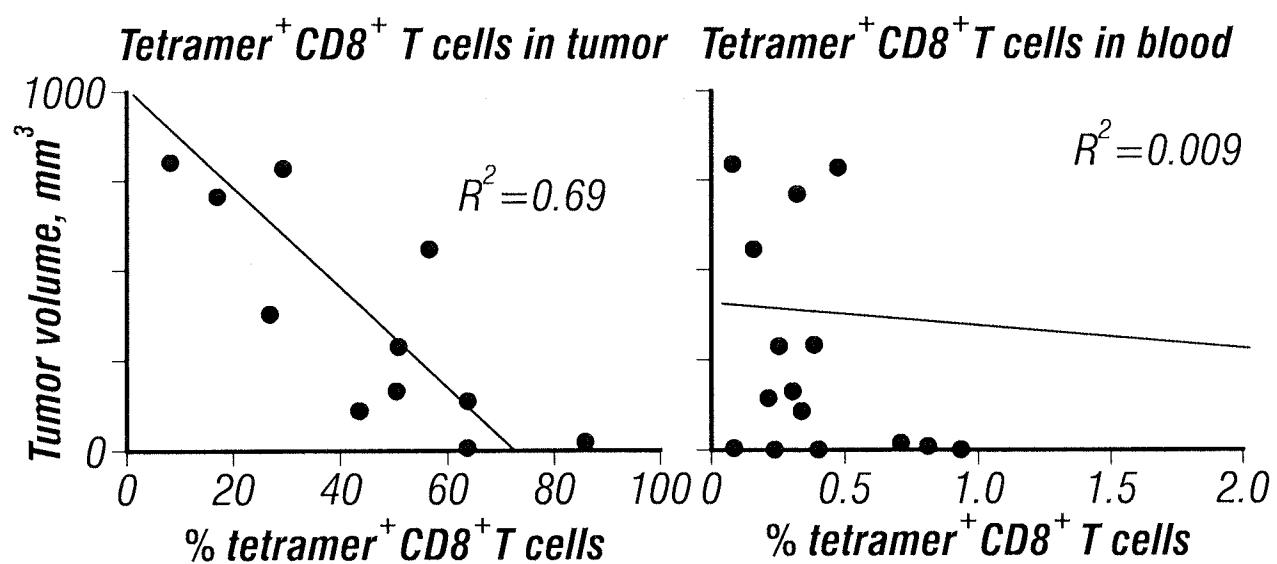


FIG. 10

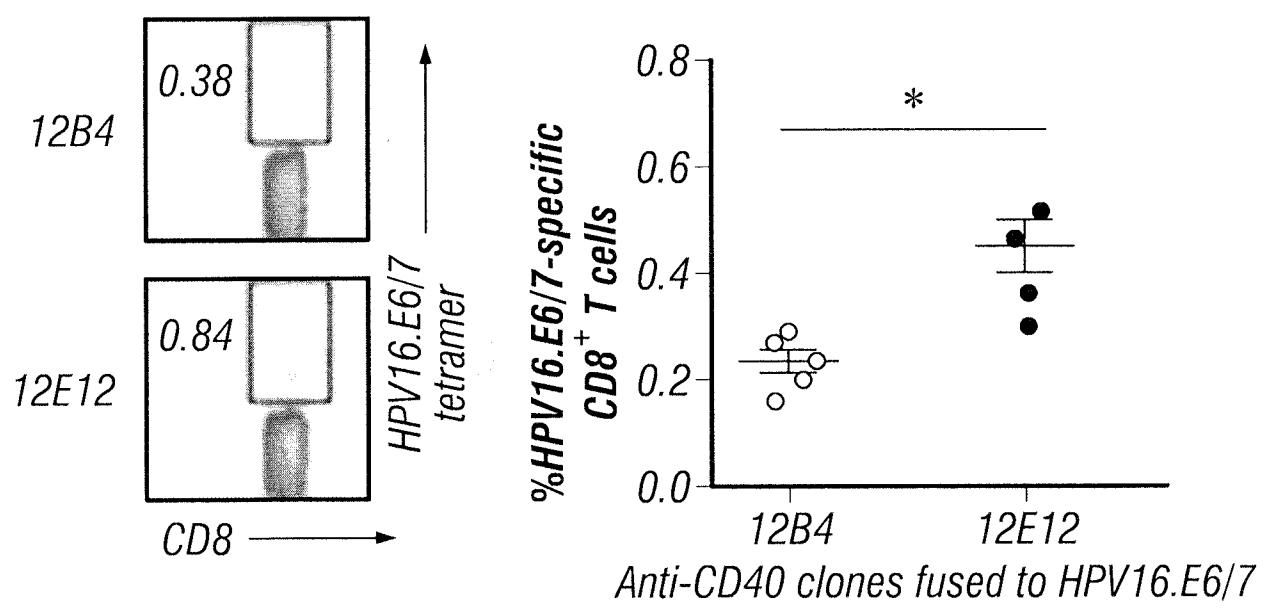


FIG. 11A

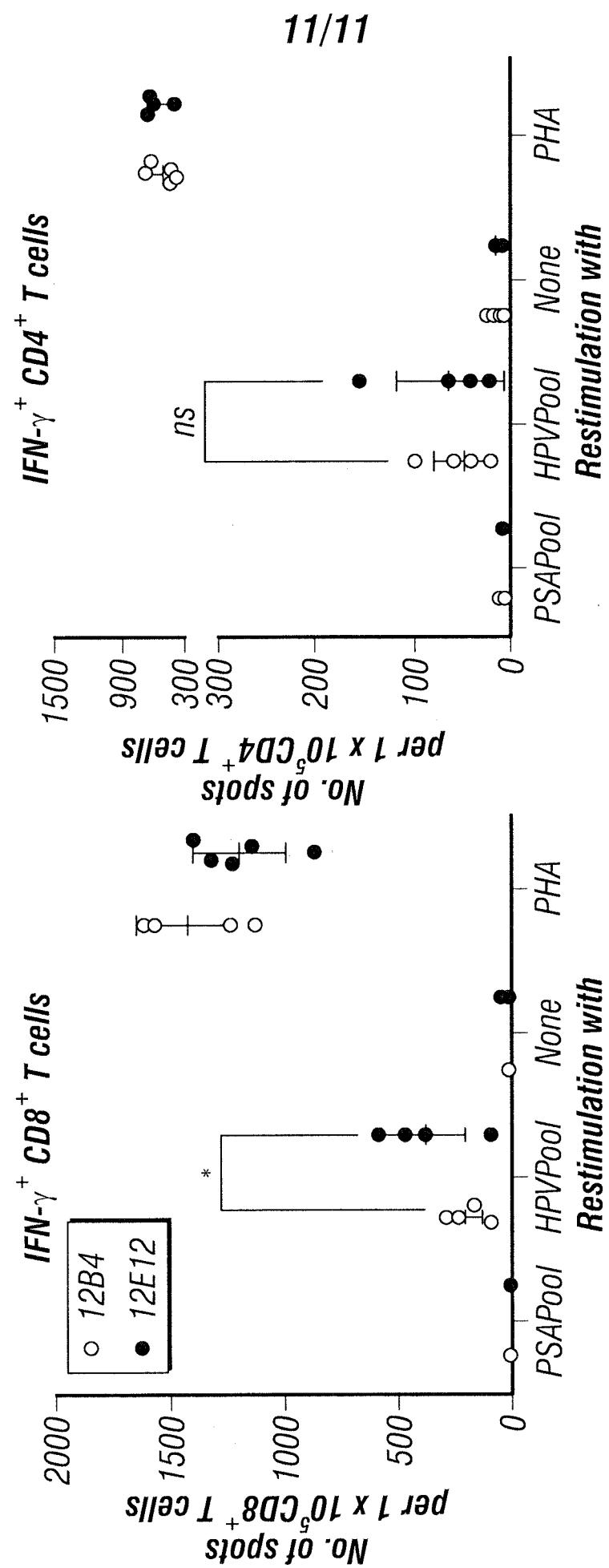


FIG. 11B

BHCSP0404WO. txt
SEQUENCE LISTING

<110> Oh, Sangkon
Zurawski, Gerard
Zurawski, Sandra

<120> NOVEL VACCINES AGAINST HPV AND HPV-RELATED DISEASES

<130> BHCS. P0404WO

<140> UNKNOWN

<141> 2015-01-13

<150> 61/926, 821
<151> 2014-01-13

<150> 62/002, 718
<151> 2014-05-23

<160> 31

<170> PatentIn version 3.5

<210> 1
<211> 120
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 1

Met His Gln Lys Arg Thr Ala Met Phe Gln Asp Pro Gln Glu Arg Pro
1 5 10 15

Arg Lys Leu Pro Gln Leu Cys Thr Gln Leu Gln Thr Thr Ile His Asp
20 25 30

Ile Ile Leu Glu Cys Val Tyr Cys Lys Gln Gln Leu Leu Arg Arg Glu
35 40 45

Val Gln Asp Phe Ala Phe Arg Asp Leu Cys Ile Val Tyr Arg Asp Gln
50 55 60

Asn Pro Tyr Ala Val Cys Asp Lys Cys Leu Lys Phe Tyr Ser Lys Ile
65 70 75 80

Ser Glu Tyr Arg His Tyr Cys Tyr Ser Val Tyr Gln Thr Thr Leu Glu
85 90 95

Gln Gln Tyr Asn Lys Pro Leu Cys Asp Leu Leu Ile Arg Cys Ile Asn
100 105 110

Cys Gln Lys Pro Leu Cys Pro Glu
115 120

<210> 2

<211> 60

<212> PRT

BHCSP0404W0. txt

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 2

Met His Gly Asp Thr Pro Thr Leu His Glu Tyr Met Leu Asp Leu Glu
1 5 10 15

Pro Glu Thr Thr Asp Leu Tyr Gly Tyr Gly Glu Leu Asn Asp Ser Ser
20 25 30

Glu Glu Glu Asp Glu Ile Asp Glu Pro Ala Gly Glu Ala Glu Pro Asp
35 40 45

Arg Ala His Tyr Asn Ile Val Thr Phe Cys Cys Lys
50 55 60

<210> 3

<211> 114

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 3

Met Ala Arg Phe Glu Asp Pro Thr Arg Arg Pro Tyr Lys Leu Pro Asp
1 5 10 15

Leu Cys Thr Glu Leu Asn Thr Ser Leu Glu Asp Ile Glu Ile Thr Cys
20 25 30

Val Tyr Cys Lys Thr Val Leu Glu Leu Thr Glu Val Glu Glu Phe Ala
35 40 45

Phe Lys Asp Leu Phe Val Val Tyr Arg Asp Ser Ile Pro His Ala Ala
50 55 60

Cys His Lys Cys Ile Asp Phe Tyr Ser Arg Ile Arg Glu Leu Arg His
65 70 75 80

Tyr Ser Asp Ser Val Tyr Glu Asp Thr Leu Glu Lys Leu Thr Asn Thr
85 90 95

Gly Leu Tyr Asn Leu Leu Ile Arg Cys Leu Arg Cys Glu Lys Pro Leu
100 105 110

Asn Pro

<210> 4

<211> 67

<212> PRT

BHCSP0404W0. txt

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 4

Met His Gly Pro Lys Ala Thr Leu Glu Asp Ile Val Leu His Leu Glu
1 5 10 15

Pro Glu Asn Glu Ile Pro Val Asp Leu Leu Gly His Glu Glu Leu Ser
20 25 30

Asp Ser Glu Glu Glu Asn Asp Glu Ile Asp Glu Val Asn His Glu His
35 40 45

Leu Pro Ala Arg Arg Ala Glu Pro Glu Arg His Thr Met Leu Cys Met
50 55 60

Cys Cys Lys
65

<210> 5

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 5

Glu Thr Pro Thr Asn Thr Ile Ser Val Thr Pro Thr Asn Asn Ser Thr
1 5 10 15

Pro Thr Asn Asn Ser Asn Pro Lys Pro Asn Pro
20 25

<210> 6

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 6

Ser Ser Val Ser Pro Thr Thr Ser Val His Pro Thr Pro Thr Ser Val
1 5 10 15

Pro Pro Thr Pro Thr Lys Ser Ser Pro
20 25

<210> 7

<211> 214

<212> PRT

<213> Artificial Sequence

BHCSP0404W0.txt

<220>
<223> Synthetic Peptide

<400> 7

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Ser Ala Ser Gln Gly Ile Ser Asn Tyr
20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Val Lys Leu Leu Ile
35 40 45

Tyr Tyr Thr Ser Ile Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Gl u Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Asn Lys Leu Pro Pro
85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Gl u Ile Lys Arg Thr Val Ala Ala
100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Gl u Gln Leu Lys Ser Gly
115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Gl u Ala
130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
145 150 155 160

Gl u Ser Val Thr Gl u Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Gl u Lys His Lys Val Tyr
180 185 190

Al a Cys Gl u Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
195 200 205

Phe Asn Arg Gly Gl u Cys
210

<210> 8
<211> 446
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

BHCSP0404W0. txt

<400> 8

Gl u Val Lys Leu Val Gl u Ser Gl y Gl y 10 Leu Val Gl n Pro Gl y Gl y 15
1 5

Ser Leu Lys Leu Ser Cys Al a Thr Ser Gl y Phe Thr Phe Ser Asp Tyr 30
20 25

Tyr Met Tyr Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val 45
35 40

Al a Tyr Ile Asn Ser Gl y Gl y Ser Thr Tyr Tyr Pro Asp Thr Val 60
50 55

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Leu Tyr 80
65 70 75

Leu Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Val Tyr Tyr Cys 95
85 90

Al a Arg Arg Gl y Leu Pro Phe His Al a Met Asp Tyr Trp Gl y Gl n Gl y 110
100 105

Thr Leu Val Thr Val Ser Ser Al a Lys Thr Lys Gl y Pro Ser Val Phe 125
115 120

Pro Leu Al a Pro Cys Ser Arg Ser Thr Ser Gl u Ser Thr Al a Al a Leu 140
130 135

Gl y Cys Leu Val Lys Asp Tyr Phe Pro Gl u Pro Val Thr Val Ser Trp 160
145 150 155

Asn Ser Gl y Al a Leu Thr Ser Gl y Val His Thr Phe Pro Al a Val Leu 175
165 170

Gl n Ser Ser Gl y Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 190
180 185

Ser Ser Leu Gl y Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro 205
195 200

Ser Asn Thr Lys Val Asp Lys Arg Val Gl u Ser Lys Tyr Gl y Pro Pro 220
210 215

Cys Pro Pro Cys Pro Al a Pro Gl u Phe Gl u Gl y Gl y Pro Ser Val Phe 240
225 230 235

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 255
245 250

Gl u Val Thr Cys Val Val Val Asp Val Ser Gl n Gl u Asp Pro Gl u Val
Page 5

BHCSP0404W0. txt

260

265

270

Gl n Phe Asn Trp Tyr Val Asp Gl y Val Gl u Val His Asn Al a Lys Thr
 275 280 285

Lys Pro Arg Gl u Gl u Gl n Phe Asn Ser Thr Tyr Arg Val Val Ser Val
 290 295 300

Leu Thr Val Leu His Gl n Asp Trp Leu Asn Gl y Lys Gl u Tyr Lys Cys
 305 310 315 320

Lys Val Ser Asn Lys Gl y Leu Pro Ser Ser Ile Gl u Lys Thr Ile Ser
 325 330 335

Lys Al a Lys Gl y Gl n Pro Arg Gl u Pro Gl n Val Tyr Thr Leu Pro Pro
 340 345 350

Ser Gl n Gl u Gl u Met Thr Lys Asn Gl n Val Ser Leu Thr Cys Leu Val
 355 360 365

Lys Gl y Phe Tyr Pro Ser Asp Ile Al a Val Gl u Trp Gl u Ser Asn Gl y
 370 375 380

Gl n Pro Gl u Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 385 390 395 400

Gl y Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp
 405 410 415

Gl n Gl u Gl y Asn Val Phe Ser Cys Ser Val Met His Gl u Al a Leu His
 420 425 430

Asn His Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Leu Gl y Lys
 435 440 445

<210> 9

<211> 107

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 9

Asp Ile Gl n Met Thr Gl n Thr Thr Ser Ser Leu Ser Al a Ser Leu Gl y
 1 5 10 15

Asp Arg Val Thr Ile Ser Cys Ser Al a Ser Gl n Gl y Ile Ser Asn Tyr
 20 25 30

Leu Asn Trp Tyr Gl n Gl n Lys Pro Asp Gl y Thr Val Lys Leu Leu Ile
 35 40 45

BHCSP0404W0. txt

Tyr Tyr Thr Ser Ile Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Gly Asn Leu Glu Pro
65 70 75 80

Gl u Asp Ile Ala Thr Tyr Tyr Cys Gl n Gl n Phe Asn Lys Leu Pro Pro
85 90 95

Thr Phe Gly Gly Thr Lys Leu Gl u Ile Lys
100 105

<210> 10

<211> 119

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 10

Cys Gl u Val Lys Leu Val Gl u Ser Gly Gly Gly Leu Val Gl n Pro Gly
1 5 10 15

Gly Ser Leu Lys Leu Ser Cys Ala Thr Ser Gly Phe Thr Phe Ser Asp
20 25 30

Tyr Tyr Met Tyr Trp Val Arg Gl n Thr Pro Gl u Lys Arg Leu Gl u Trp
35 40 45

Val Ala Tyr Ile Asn Ser Gly Gly Gly Ser Thr Tyr Tyr Pro Asp Thr
50 55 60

Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu
65 70 75 80

Tyr Leu Gl n Met Ser Arg Leu Lys Ser Gl u Asp Thr Ala Met Tyr Tyr
85 90 95

Cys Ala Arg Arg Gly Leu Pro Phe His Ala Met Asp Tyr Trp Gly Gl n
100 105 110

Gly Thr Ser Val Thr Val Ser
115

<210> 11

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 11

BHCSP0404W0. txt

Ser Ala Ser Gln Gly Ile Ser Asn Tyr Leu Asn
1 5 10

<210> 12
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 12

Tyr Thr Ser Ile Leu His Ser
1 5

<210> 13
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 13

Gln Gln Phe Asn Lys Leu Pro Pro Thr
1 5

<210> 14
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 14

Gly Phe Thr Phe Ser Asp Tyr Tyr Met Tyr
1 5 10

<210> 15
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 15

Tyr Ile Asn Ser Gly Gly Gly Ser Thr Tyr Tyr Pro Asp Thr Val Lys
1 5 10 15

Gly

<210> 16
<211> 10
<212> PRT

BHCSP0404W0. txt

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 16

Arg Gly Leu Pro Phe His Ala Met Asp Tyr
1 5 10

<210> 17

<211> 214

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 17

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Ser Ala Ser Gln Gly Ile Ser Asn Tyr
20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Val Lys Leu Leu Ile
35 40 45

Tyr Tyr Thr Ser Ile Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Asn Lys Leu Pro Pro
85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala
100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190

BHCSP0404W0. txt

Ala Cys Glu Val Thr His Glu Gly Leu Ser Ser Pro Val Thr Lys Ser
195 200 205

Phe Asn Arg Glu Gly Glu Cys
210

<210> 18
<211> 705
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Primer

<400> 18
atgagggtcc ccgctcagct cctggggctc ctgctgctct ggctcccagg cgcgcatgt 60
gatatccaga tgacacagag cccttcctcc ctgtctgcct ctgtgggaga cagagtcacc 120
atcacctgca gtgcaagtca gggcattagc aattattaa actggtatca gcagaaacca 180
ggcaaggccg ttaaactcct gatctattac acatcaattt tacactcagg agtcccatca 240
aggttcagtg gcagtgggtc tggacagat tataccctca ccatcagctc cctgcagcct 300
gaagatttcg ccacttacta ttgtcagcag ttaataaagc ttccctccgac gttcggtgga 360
ggcaccaaac tcgagatcaa acgaactgtg gctgcaccat ctgtcttcat cttccgcac 420
tctgatgagc agttgaaatc tggaaactgcc tctgttgtgt gcctgctgaa taacttctat 480
cccagagagg ccaaagtaca gtggaggtg gataacgcac tccaatcggg taactccag 540
gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 600
ctgagcaaag cagactacga gaaacacaaa gtctatgcct gcaagtcac ccatcaggc 660
ctgagctcgc ccgtcacaaa gagttcaac agggagagt gttag 705

<210> 19
<211> 688
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 19

Glu Val Lys Leu Val Glu Ser Gly Gly Leu Val Glu Pro Gly Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Thr Ser Gly Phe Thr Phe Ser Asp Tyr
20 25 30

Tyr Met Tyr Trp Val Arg Glu Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Tyr Ile Asn Ser Gly Gly Ser Thr Tyr Tyr Pro Asp Thr Val
50 55 60

BHCSP0404W0. txt

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Val Tyr Tyr Cys
85 90 95

Al a Arg Arg Gl y Leu Pro Phe His Al a Met Asp Tyr Trp Gl y Gl n Gl y
100 105 110

Thr Leu Val Thr Val Ser Ser Al a Lys Thr Lys Gl y Pro Ser Val Phe
115 120 125

Pro Leu Al a Pro Cys Ser Arg Ser Thr Ser Gl u Ser Thr Al a Al a Leu
130 135 140

Gl y Cys Leu Val Lys Asp Tyr Phe Pro Gl u Pro Val Thr Val Ser Trp
145 150 155 160

Asn Ser Gl y Al a Leu Thr Ser Gl y Val His Thr Phe Pro Al a Val Leu
165 170 175

Gl n Ser Ser Gl y Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
180 185 190

Ser Ser Leu Gl y Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro
195 200 205

Ser Asn Thr Lys Val Asp Lys Arg Val Gl u Ser Lys Tyr Gl y Pro Pro
210 215 220 225

Cys Pro Pro Cys Pro Al a Pro Gl u Phe Gl u Gl y Gl y Pro Ser Val Phe
225 230 235 240

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
245 250 255

Gl u Val Thr Cys Val Val Asp Val Ser Gl n Gl u Asp Pro Gl u Val
260 265 270

Gl n Phe Asn Trp Tyr Val Asp Gl y Val Gl u Val His Asn Al a Lys Thr
275 280 285

Lys Pro Arg Gl u Gl u Gl n Phe Asn Ser Thr Tyr Arg Val Val Ser Val
290 295 300

Leu Thr Val Leu His Gl n Asp Trp Leu Asn Gl y Lys Gl u Tyr Lys Cys
305 310 315 320

Lys Val Ser Asn Lys Gl y Leu Pro Ser Ser Ile Gl u Lys Thr Ile Ser
325 330 335

BHCSP0404W0. txt

Lys Al a Lys Gl y Gl n Pro Arg Gl u Pro Gl n Val Tyr Thr Leu Pro Pro
340 345 350

Ser Gl n Gl u Gl u Met Thr Lys Asn Gl n Val Ser Leu Thr Cys Leu Val
355 360 365

Lys Gl y Phe Tyr Pro Ser Asp Ile Al a Val Gl u Trp Gl u Ser Asn Gl y
370 375 380

Gl n Pro Gl u Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
385 390 395 400

Gl y Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp
405 410 415

Gl n Gl u Gl y Asn Val Phe Ser Cys Ser Val Met His Gl u Al a Leu His
420 425 430

Asn His Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Leu Gl y Lys Al a Ser
435 440 445

Gl n Thr Pro Thr Asn Thr Ile Ser Val Thr Pro Thr Asn Asn Ser Thr
450 455 460

Pro Thr Asn Asn Ser Asn Pro Lys Pro Asn Pro Al a Ser Met His Gl n
465 470 475 480

Lys Arg Thr Al a Met Phe Gl n Asp Pro Gl n Gl u Arg Pro Arg Lys Leu
485 490 495

Pro Gl n Leu Cys Thr Gl u Leu Gl n Thr Thr Ile His Asp Ile Ile Leu
500 505 510

Gl u Cys Val Tyr Cys Lys Gl n Gl n Leu Leu Arg Arg Gl u Val Gl y Asp
515 520 525

Phe Al a Phe Arg Asp Leu Cys Ile Val Tyr Arg Asp Gl y Asn Pro Tyr
530 535 540

Al a Val Cys Asp Lys Cys Leu Lys Phe Tyr Ser Lys Ile Ser Gl u Tyr
545 550 555 560

Arg His Tyr Cys Tyr Ser Val Tyr Gl y Thr Thr Leu Gl u Gl n Gl n Tyr
565 570 575

Asn Lys Pro Leu Cys Asp Leu Leu Ile Arg Cys Ile Asn Cys Gl n Lys
580 585 590

Pro Leu Cys Pro Gl u Al a Ser Met His Gl y Asp Thr Pro Thr Leu His
595 600 605

BHCSP0404W0. txt

Gl u Tyr Met Leu Asp Leu Gl n Pro Gl u Thr Thr Asp Leu Tyr Gl y Tyr
 610 615 620

Gl y Gl n Leu Asn Asp Ser Ser Gl u Gl u Gl u Asp Gl u Ile Asp Gl y Pro
 625 630 635 640

Al a Gl y Gl n Al a Gl u Pro Asp Arg Al a His Tyr Asn Ile Val Thr Phe
 645 650 655

Cys Cys Lys Al a Ser Ser Ser Val Ser Pro Thr Thr Ser Val His Pro
 660 665 670

Thr Pro Thr Ser Val Pro Pro Thr Pro Thr Lys Ser Ser Pro Al a Ser
 675 680 685

<210> 20
 <211> 2124
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Primer

<400> 20							
atgggttgg a	gcctcatctt	gctttcctt	gtcgctgtt	ctacgcgtgt	ccactccgaa	60	
gtgaagctgg	tggagtctgg	gggaggctta	gtgcagcccg	gagggtccct	gaaactctcc	120	
tgtgcaacct	ctggattcac	tttca	tattacatgt	atgggttgc	ccaggccccca	180	
ggcaaggggcc	tggagtgggt	cgcatacatt	aattctggtg	gtggtagcac	ctattatcca	240	
gacactgtaa	agggccgatt	caccatctcc	agagacaatg	ccaagaacac	cctgtacctg	300	
caa	atgaaca	gcctgagggc	cgaggacaca	gccgtgtatt	actgtgcaag	360	
ccgttccatg	ctatggacta	ttggggtcaa	gaaacctgg	tcaccgtctc	ctcagccaaa	420	
acgaaggggcc	catccgtctt	ccccctggcg	ccctgctcca	ggagcacctc	cgagagcaca	480	
gccgcctgg	gctgcctgg	caaggactac	ttcccccgaac	cgtgacgggt	gtcg	540	
tcaggcgccc	tgaccagcgg	cgtcacacc	ttcccggt	tcctacagtc	ctcaggactc	600	
tactccctca	gcagcgttgt	gaccgtgcc	tccagcagct	tggcacgaa	gac	660	
tgcaacgtag	atcacaagcc	cagcaacacc	aagg	tgaca	gtccaaat	720	
ggtccccat	gcccaccc	cccagcac	ttca	gat	gtccaaat	780	
ttccccccaa	aaccaagga	cactctcatg	atctcccg	ccctgaggt	acgtgcgtg	840	
gtgg	tgagccagga	agaccccgag	gtccagttca	actgg	gtgg	900	
gagg	tgac	aaagccgcgg	gaggagcagt	tc	gtaccgtgt	960	
gtc	tcaccgtctt	gcaccaggac	tggctgaacg	gcaaggagta	caagtgc	1020	
gtc	tcaccgtctt	gcaccaggac	tggctgaacg	gcaaggagta	caagtgc	1080	
cccc	ca	aaaggcctccc	gtcctccatc	gagaaaacca	tctccaaagc	caaaggcag	1140
cccc	ca	cccc	ccatcccagg	aggagatgac	caagaaccag		

BHCSP0404W0.txt

gtcagcctga	cctgcctgg	caaaggcttc	taccccgacg	acatgcgcgt	ggagtgggag	1200
agcaatgggc	agccggagaa	caactacaag	accacgcctc	ccgtgctgga	ctccgacggc	1260
tccttcttcc	tctacagcag	gctaaccgtg	gacaagagca	ggtggcagga	gggaaatgtc	1320
ttctctatgct	ccgtgatgca	tgaggctctg	cacaaccact	acacacagaa	gagcctctcc	1380
ctgtctctgg	gtaaagctag	tcagacccccc	accaacacca	tcagcgtgac	ccccaccaac	1440
aacagcaccc	ccaccaacaa	cagcaacccc	aagcccaacc	ccgctagtat	gcaccaaaaa	1500
aggaccgcaa	tgtttcagga	cccccaagag	aggcccgca	aactgccaca	actttgcacg	1560
gagctgcaga	caacaataca	tgacatcatt	ctcgaatgtg	tttactgtaa	gcagcagttg	1620
ttgcgaagag	aagtgggaga	cttcgcttc	agagacctgt	gtatcgata	tcgcgatggc	1680
aatccttatg	ccgtctgcga	taaatgcctc	aagtttact	ccaagatcag	cgagtaccgg	1740
cactactgtt	actctgtgta	tggactacc	ctcgaacagc	agtataacaa	gccgctgtgc	1800
gatctcctta	tccggtgcat	taactgccag	aagccactgt	gtcctgaggc	tagtatgcac	1860
ggggatacc	ccacactcca	cgaatacatg	cttgattgc	aacctgaaac	gaccgacctg	1920
tacggctatg	gtcagctgaa	tgactccagc	gaggaagagg	atgagattga	cggaccggca	1980
ggccaggccg	agccagaccg	ggctcattat	aacatcgta	cttctgctg	taaggctagt	2040
agcagcgtga	gccccaccac	cagcgtgcac	cccacccca	ccagcgtgcc	ccccacccccc	2100
accaagagca	gccccgctag	ctga				2124

<210> 21
 <211> 689
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Synthetic Peptide

<400> 21

Gl u	Val	Lys	Leu	Val	Gl u	Ser	Gl y	Gl y	Gl y	Leu	Val	Gl n	Pro	Gl y	Gl y
1				5				10						15	

Ser	Leu	Lys	Leu	Ser	Cys	Al a	Thr	Ser	Gl y	Phe	Thr	Phe	Ser	Asp	Tyr
								20				25		30	

Tyr	Met	Tyr	Trp	Val	Arg	Gl n	Al a	Pro	Gl y	Lys	Gl y	Leu	Gl u	Trp	Val
						35		40			45				

Al a	Tyr	Ile	Asn	Ser	Gl y	Gl y	Gl y	Ser	Thr	Tyr	Tyr	Pro	Asp	Thr	Val
					50					60					

Lys	Gl y	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Al a	Lys	Asn	Thr	Leu	Tyr
					65				75				80		

Leu	Gl n	Met	Asn	Ser	Leu	Arg	Al a	Gl u	Asp	Thr	Al a	Val	Tyr	Tyr	Cys
					85				90				95		

BHCSP0404W0. txt

Ala Arg Arg Gly Leu Pro Phe His Ala Met Asp Tyr Trp Gly Glu Gly
100 105 110

Thr Leu Val Thr Val Ser Ser Ala Lys Thr Lys Gly Pro Ser Val Phe
115 120 125

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
165 170 175

Glut Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
180 185 190

Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro
195 200 205

Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro
210 215 220

Cys Pro Pro Cys Pro Ala Pro Glu Phe Glu Gly Gly Pro Ser Val Phe
225 230 235 240

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
245 250 255

Glu Val Thr Cys Val Val Asp Val Ser Glu Glu Asp Pro Glu Val
260 265 270

Glut Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
275 280 285

Lys Pro Arg Glu Glu Glu Phe Asn Ser Thr Tyr Arg Val Val Ser Val
290 295 300

Leu Thr Val Leu His Glu Asp Trp Leu Asn Glu Lys Glu Tyr Lys Cys
305 310 315 320

Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser
325 330 335

Lys Ala Lys Gly Glu Pro Arg Glu Pro Glu Val Tyr Thr Leu Pro Pro
340 345 350

Ser Glu Glu Glu Met Thr Lys Asn Glu Val Ser Leu Thr Cys Leu Val
355 360 365

BHCSP0404W0. txt

Lys Gl y Phe Tyr Pro Ser Asp Ile Ala Val Gl u Trp Gl u Ser Asn Gl y
370 375 380

Gl n Pro Gl u Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
385 390 395 400

Gl y Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp
405 410 415

Gl n Gl u Gl y Asn Val Phe Ser Cys Ser Val Met His Gl u Ala Leu His
420 425 430

Asn His Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Leu Gl y Lys Ala Ser
435 440 445

Gl n Thr Pro Thr Asn Thr Ile Ser Val Thr Pro Thr Asn Asn Ser Thr
450 455 460

Pro Thr Asn Asn Ser Asn Pro Lys Pro Asn Pro Ala Ser Met Ala Arg
465 470 475 480

Phe Gl u Asp Pro Thr Arg Arg Pro Tyr Lys Leu Pro Asp Leu Cys Thr
485 490 495

Gl u Leu Asn Thr Ser Leu Gl n Asp Ile Gl u Ile Thr Cys Val Tyr Cys
500 505 510

Lys Thr Val Leu Gl u Leu Thr Gl u Val Gl y Gl u Phe Ala Phe Lys Asp
515 520 525

Leu Phe Val Val Tyr Arg Asp Ser Ile Pro His Ala Ala Cys His Lys
530 535 540 545

Cys Ile Asp Phe Tyr Ser Arg Ile Arg Gl u Leu Arg His Tyr Ser Asp
550 555 560

Ser Val Tyr Gl y Asp Thr Leu Gl u Lys Leu Thr Asn Thr Gl y Leu Tyr
565 570 575

Asn Leu Leu Ile Arg Cys Leu Arg Cys Gl n Lys Pro Leu Asn Pro Ala
580 585 590

Ser Met His Gl y Pro Lys Ala Thr Leu Gl n Asp Ile Val Leu His Leu
595 600 605

Gl u Pro Gl n Asn Gl u Ile Pro Val Asp Leu Leu Gl y His Gl y Gl n Leu
610 615 620

Ser Asp Ser Gl u Gl u Gl u Asn Asp Gl u Ile Asp Gl y Val Asn His Gl n
625 630 635 640

BHCSP0404W0. txt

Hi s Leu Pro Al a Arg Arg Al a Gl u Pro Gl n Arg His Thr Met Leu Cys
645 650 655

Met Cys Cys Lys Al a Ser Ser Ser Val Ser Pro Thr Thr Ser Val His
660 665 670

Pro Thr Pro Thr Ser Val Pro Pro Thr Pro Thr Lys Ser Ser Pro Al a
675 680 685

Ser

<210> 22
<211> 2127
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Primer

<400> 22
atgggttgg a gcctcatctt gctttcctt gtcgctgtt ctacgcgtgt ccactccgaa 60
gtgaagctgg tggagtctgg gggaggctta gtgcagcccg gagggtccct gaaactctcc 120
tgtgcaacct ctggattcac tttcagtgac tattacatgt attgggttcg ccaggcccc 180
ggcaagggcc tggagtgggt cgcatacatt aattctggtg gtggtagcac ctattatcca 240
gacactgtaa agggccgatt caccatctcc agagacaatg ccaagaacac cctgtacctg 300
caaatgaaca gcctgagggc cgaggacaca gccgtgtatt actgtgcaag acgggggtta 360
ccgttccatg ctatggacta ttggggtcaa ggaaccttgg tcaccgtctc ctcagccaaa 420
acgaagggcc catccgtctt cccctggcg ccctgctcca ggagcacctc cgagagcaca 480
gccgcctgg gctgcctggt caaggactac ttcccccgaac cggtgacgggt gtcgtggAAC 540
tcaggcgccc tgaccagcgg cgtgcacacc ttcccgctg tcctacagtc ctcaggactc 600
tactccctca gcagcgtggt gaccgtgcc tccagcagct tgggcacgaa gacctacacc 660
tgcaacgtag atcacaagcc cagcaacacc aaggtggaca agagagtga gtccaaatat 720
ggtcccccat gcccaccctg cccagcacct gagttcgaag ggggaccatc agtcttcctg 780
ttccccccaa aacccaagga cactctcatg atctcccgaa cccctgaggt cacgtgcgtg 840
gtggtggacg tgagccagga agaccccgag gtccagttca actggtagtggatggcgtg 900
gaggtgcata atgccaagac aaagccgcgg gaggagcagt tcaacagcac gtaccgtgtg 960
gtcagcgtcc tcaccgtcct gcaccaggac tggctgaacg gcaaggagta caagtgcag 1020
gtctccaaca aaggcctccc gtcctccatc gagaaaacca tctccaaagc caaaggccag 1080
ccccgagagc cacaggtgta caccctgccc ccatcccagg agagatgac caagaaccag 1140
gtcagcctga cctgcctggt caaaggcttc taccggcagcg acatgcgcgt ggagtggag 1200
agcaatggc agccggagaa caactacaag accacgcctc ccgtgctgga ctccgacggc 1260

BHCSP0404W0.txt

tccttcttcc	tctacagcag	gctaaccgtg	gacaagagca	ggtggcagga	gggaaatgtc	1320
ttctctatgct	ccgtgatgca	tgaggctctg	cacaaccact	acacacagaa	gagcctctcc	1380
ctgtctctgg	gtaaagctag	tcagacccccc	accaacacca	tcagcgtgac	ccccaccaac	1440
aacagcaccc	ccaccaacaa	cagcaacccc	aagcccaacc	ccgctagtat	ggccagattc	1500
gaggatccaa	cacgcccgacc	ttacaaattg	ccggaccttt	gcacggagct	gaacacttcc	1560
ctgcaggaca	tagaaattac	ctgcgtctac	tgcaagaccg	ttctcgaact	gacagaagta	1620
ggcgagtttgc	cgtttaaaga	tctgttcgtg	gtgtatcggg	atagcattcc	ccacgcagct	1680
tgtcataagt	gtatcgactt	ctattctagg	atccgggagc	tcagacacta	tagcgattcc	1740
gtgtacggcg	acacacttga	gaagctca	aacacccggc	tgtacaacct	cctgatccgg	1800
tgcttgaggt	gtcagaaacc	cctgaatcct	gctagtatgc	acgggcctaa	ggccacactg	1860
caagatattg	tcctccatct	cgaaccccg	aatgagatac	cagtggacct	tctggccac	1920
ggacagttgt	ccgatagcga	ggagggaaac	gacgaaatcg	acggtgttaa	ccaccagcac	1980
ttgccggctc	ggagggcaga	gccccagaga	cataccatgc	tgtgcatgtg	ttgcaaagct	2040
agtagcagcg	tgagccccac	caccagcgtg	caccccaccc	ccaccagcgt	gccccccacc	2100
ccaccaaga	gcagccccgc	tagctga				2127

<210> 23

<211> 242

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 23

Met	Lys	Lys	Leu	Leu	Ile	Ala	Ala	Met	Met	Ala	Ala	Ala	Leu	Ala	Ala	Ala	
1					5				10					15			

Cys	Ser	Gln	Gl u	Ala	Lys	Gln	Gl u	Val	Lys	Gl u	Ala	Val	Gln	Ala	Val	
			20				25						30			

Gl u	Ser	Asp	Val	Lys	Asp	Thr	Ala	Met	Gly	Ser	Ser	His	His	His	His
			35			40						45			

His	His	Ser	Ser	Gly	Leu	Val	Pro	Arg	Gly	Ser	His	Met	Ala	Ser	Met
			50			55					60				

Asp	Leu	Asp	Ala	Val	Arg	Ile	Lys	Val	Asp	Thr	Val	Asn	Ala	Lys	Pro
					65					75				80	

Gly	Asp	Thr	Val	Asn	Ile	Pro	Val	Arg	Phe	Ser	Gly	Ile	Pro	Ser	Lys
					85				90				95		

Gly	Ile	Ala	Asn	Cys	Asp	Phe	Val	Tyr	Ser	Tyr	Asp	Pro	Asn	Val	Leu
					100			105					110		

BHCSP0404W0. txt

Gl u Ile Ile Gl u Ile Lys Pro Gl y Gl u Leu Ile Val Asp Pro Asn Pro
115 120 125

Thr Lys Ser Phe Asp Thr Al a Val Tyr Pro Asp Arg Lys Met Ile Val
130 135 140

Phe Leu Phe Al a Gl u Asp Ser Gl y Thr Gl y Al a Tyr Al a Ile Thr Lys
145 150 155 160

Asp Gl y Val Phe Al a Thr Ile Val Al a Lys Val Lys Gl u Gl y Al a Pro
165 170 175

Asn Gl y Leu Ser Val Ile Lys Phe Val Gl u Val Gl y Gl y Phe Al a Asn
180 185 190

Asn Asp Leu Val Gl u Gl n Lys Thr Gl n Phe Phe Asp Gl y Gl y Val Asn
195 200 205

Val Gl y Asp Thr Thr Gl u Pro Al a Thr Pro Thr Thr Pro Val Thr Thr
210 215 220

Pro Thr Thr Asp Asp Leu Asp Al a Al a Ser Leu Ile Lys Thr Ser
225 230 235 240

Gl u Phe

<210> 24
<211> 729
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Primer

<400> 24
atgaaaaaac tgctgattgc cgccatgatg gctgcagctc tggccgcattc cagccaggaa 60
gccaaacagg aagtgaaaga agccgtgcag gccgtggaaa gcgtatgtgaa agataccgccc
atggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat 120
atggctagta tggatctgga tgcagtaagg attaaagtgg acacagtaaa tgcaaaaccg
ggagacacag taaatatacc tgtaagattc agtggtatac catccaaggg aatagcaaac 180
tgtgactttt tatacagcta tgacccgaat gtacttgaga taatagagat aaaaccggga
gaattgatag ttgacccgaa tcctaccaag agctttgata ctgcagtata tcctgacaga 240
aagatgatag tattcctgtt tgccggaaac agcggaaacag gagcgtatgc aataactaaa
gacggagttat ttgctacgt agtagcgaaa gtaaaagaag gagcacctaa cgggctcagt 300
gtaatcaaattt tgtagaagt aggcggattt gcgaacaatg accttgtaga acagaagaca
cagttctttc acgggtggagt aaatgttggaa gatacaacag aacctgcaac acctacaaca 360
600
660

cctgtaccaa	caccgacaac	aacagatgtat	ctagatgcag	ctagcttaat	taaaactagt	720
gaattctga						729

<210> 25
 <211> 448
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Synthetic Peptide

<400> 25

Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	Ala	Ser	Val	Gly
1				5				10						15	

Asp	Arg	Val	Thr	Ile	Thr	Cys	Ser	Ala	Ser	Gln	Gly	Ile	Ser	Asn	Tyr
			20				25						30		

Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Val	Lys	Leu	Leu	Ile
			35			40						45			

Tyr	Tyr	Thr	Ser	Ile	Leu	His	Ser	Gly	Val	Pro	Ser	Arg	Phe	Ser	Gly
				50		55					60				

Ser	Gly	Ser	Gly	Thr	Asp	Tyr	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Pro
65				70				75						80	

Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Phe	Asn	Lys	Leu	Pro	Pro
				85				90					95		

Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys	Arg	Thr	Val	Ala	Ala
				100				105				110			

Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu	Gln	Leu	Lys	Ser	Gly
				115			120					125			

Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe	Tyr	Pro	Arg	Glu	Ala
				130			135				140				

Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu	Gln	Ser	Gly	Asn	Ser	Gln
145					150				155				160		

Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp	Ser	Thr	Tyr	Ser	Leu	Ser
				165			170				175				

Ser	Thr	Leu	Thr	Leu	Ser	Lys	Ala	Asp	Tyr	Glu	Lys	His	Lys	Val	Tyr
				180				185				190			

Ala	Cys	Glu	Val	Thr	His	Gln	Gly	Leu	Ser	Ser	Pro	Val	Thr	Lys	Ser
				195			200				205				

Phe Asn Arg Gly Glu Cys Ala Ser Ile Glu Arg Leu Ser Ser Gly Leu

BHCSP0404W0.txt

210

215

220

Arg Ile Asn Ser Ala Lys Asp Asp Ala Ala Glu Glu Ala Ile Ala Asn
225 230 235 240

Arg Phe Thr Ala Asn Ile Lys Glu Leu Thr Glu Ala Ser Arg Asn Ala
245 250 255

Asn Asp Glu Ile Ser Ile Ala Glu Thr Thr Glu Glu Ala Leu Asn Glu
260 265 270

Ile Asn Asn Asn Leu Glu Arg Val Arg Glu Leu Ala Val Glu Ser Ala
275 280 285

Asn Ser Thr Asn Ser Glu Ser Asp Leu Asp Ser Ile Glu Ala Glu Ile
290 295 300

Thr Glu Arg Leu Asn Glu Ile Asp Arg Val Ser Glu Glu Thr Glu Phe
305 310 315 320

Asn Glu Val Lys Val Leu Ala Glu Asp Asn Thr Leu Thr Ile Glu Val
325 330 335

Glu Ala Asn Asp Glu Glu Thr Ile Asp Ile Asp Leu Lys Glu Ile Asn
340 345 350

Ser Glu Thr Leu Glu Leu Asp Ser Leu Asn Val Glu Ala Ser Glu Pro
355 360 365

Glu Leu Ala Glu Ala Ala Glu Lys Thr Thr Glu Asn Pro Leu Glu Lys
370 375 380

Ile Asp Ala Ala Leu Ala Glu Val Asp Ala Leu Arg Ser Asp Leu Glu
385 390 395 400

Ala Val Glu Asn Arg Phe Asn Ser Ala Ile Thr Asn Leu Glu Asn Thr
405 410 415

Val Asn Asn Leu Ser Glu Ala Arg Ser Arg Ile Glu Asp Ser Asp Tyr
420 425 430

Ala Thr Glu Val Ser Asn Met Ser Arg Ala Glu Ile Leu Glu Ala Ser
435 440 445

<210> 26
<211> 1407
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Primer

<400> 26

BHCSP0404W0.txt

atgagggtcc	ccgctcagct	cctggggctc	ctgctgctct	ggctcccagg	cgcgcatgt	60
gatatccaga	tgacacagag	ccttcctcc	ctgtctgcct	ctgtggaga	cagagtcacc	120
atcacctgca	gtgcaagtca	ggcattagc	aattattaa	actggtatca	gcagaaacca	180
ggcaaggccg	ttaaactcct	gatctattac	acatcaattt	tacactcagg	agtcccatca	240
aggtcagtg	gcagtgggtc	tggacagat	tataccctca	ccatcagctc	cctgcagcct	300
gaagatttcg	ccacttacta	ttgtcagcag	tttaataagc	ttcctccgac	gttcggtgga	360
ggcaccaaac	tcgagatcaa	acgaactgtg	gctgcaccat	ctgtcttcat	cttccgcca	420
tctgatgagc	agttgaaatc	tggaactgcc	tctgttgtgt	gcctgctgaa	taacttctat	480
cccagagagg	ccaaagtaca	gtggaaggtg	gataacgccc	tccaatcggg	taactccag	540
gagagtgtca	cagagcagga	cagcaaggac	agcacctaca	gcctcagcag	caccctgacg	600
ctgagcaaag	cagactacga	gaaacacaaa	gtctatgcct	gcgaagtcac	ccatcagggc	660
ctgagctcgc	ccgtcacaaa	gagttcaac	agggagagt	gtgctagtat	cgagcgtctg	720
tcttctggtc	tgcgtatcaa	cagcgcgaaa	gacgatgcgg	caggtcagggc	gattgctaac	780
cgttttaccg	cgaacatcaa	aggctgact	caggctccc	gtaacgctaa	cgacggtatc	840
tccatcgcbc	agaccactga	aggcgcgctg	aacgaaatca	acaacaacct	gcagcgttg	900
cgtgaactgg	cggttcagtc	tgctaacagc	actaactccc	agtctgaccc	cgactccatc	960
caggctgaaa	tcacccagcg	cctgaacgaa	atcgaccgtg	tatccggtca	gactcagttc	1020
aacggcgtga	aagtccctggc	gcaggacaac	accctgacca	tccaggttgg	tgccaacgac	1080
ggtgaaacta	tcgatatcga	tctgaagcag	atcaactctc	agaccctggg	cctggattca	1140
ctgaacgtgc	aggctagtc	accagagctg	gcggaagcag	ccgctaaaac	caccgaaaac	1200
ccgctgcaga	aaattgatgc	cgcgctggcg	caggtggatg	cgctgcgctc	tgatctgggt	1260
gcggtacaaa	accgttcaa	ctccgctatc	accaacttgg	gcaataccgt	aaacaacctg	1320
tctgaagcgc	gtagccgtat	cgaagattcc	gactacgcga	ccgaagtttc	caacatgtct	1380
cgcgccaga	ttctgcagggc	tagctga				1407

<210> 27
 <211> 658
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Synthetic Peptide

<400> 27

Gln Val Gln Leu Arg Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
 20 25 30

Val Ile Ser Trp Val Lys Gln Arg Thr Gly Gln Gly Leu Glu Trp Ile
 Page 22

35

40

45

Gly Asp Ile Tyr Pro Gly Ser Gly Tyr Ser Phe Tyr Asn Glu Asn Phe
 50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Thr Thr Ala Tyr
 65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys
 85 90 95

Ala Thr Tyr Tyr Asn Tyr Pro Phe Ala Tyr Trp Gly Gln Gly Thr Leu
 100 105 110

Val Thr Val Ser Ala Ala Lys Thr Thr Gly Pro Ser Val Phe Pro Leu
 115 120 125

Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys
 130 135 140

Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser
 145 150 155 160

Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
 165 170 175

Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser
 180 185 190

Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn
 195 200 205

Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro
 210 215 220

Pro Cys Pro Ala Pro Glu Phe Glu Gly Pro Ser Val Phe Leu Phe
 225 230 235 240

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
 245 250 255

Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe
 260 265 270

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
 275 280 285

Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
 290 295 300

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
 Page 23

BHCSP0404W0.txt

305	310	315	320
Ser Asn Lys Gl y Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala			
325	330	335	
Lys Gl y Gl n Pro Arg Gl u Pro Gl n Val Tyr Thr Leu Pro Pro Ser Gl n			
340	345	350	
Gl u Gl u Met Thr Lys Asn Gl n Val Ser Leu Thr Cys Leu Val Lys Gl y			
355	360	365	
Phe Tyr Pro Ser Asp Ile Ala Val Gl u Trp Gl u Ser Asn Gl y Gl n Pro			
370	375	380	
Gl u Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gl y Ser			
385	390	395	400
Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gl n Gl u			
405	410	415	
Gl y Asn Val Phe Ser Cys Ser Val Met His Gl u Ala Leu His Asn His			
420	425	430	
Tyr Thr Gl n Lys Ser Leu Ser Leu Ser Leu Gl y Lys Ala Ser Met His			
435	440	445	
Gl y Pro Lys Ala Thr Leu Gl n Asp Ile Val Leu His Leu Gl u Pro Gl n			
450	455	460	
Asn Gl u Ile Pro Val Asp Leu Leu Gl y His Gl y Gl n Leu Ser Asp Ser			
465	470	475	480
Gl u Gl u Gl u Asn Asp Gl u Ile Asp Gl y Val Asn His Gl n His Leu Pro			
485	490	495	
Al a Arg Arg Al a Gl u Pro Gl n Arg His Thr Met Leu Cys Met Cys Cys			
500	505	510	
Lys Al a Ser Met Al a Arg Phe Gl u Asp Pro Thr Arg Arg Pro Tyr Lys			
515	520	525	
Leu Pro Asp Leu Cys Thr Gl u Leu Asn Thr Ser Leu Gl n Asp Ile Gl u			
530	535	540	
Ile Thr Cys Val Tyr Cys Lys Thr Val Leu Gl u Leu Thr Gl u Val Gl y			
545	550	555	560
Gl u Phe Al a Phe Lys Asp Leu Phe Val Val Tyr Arg Asp Ser Ile Pro			
565	570	575	
His Al a Al a Cys His Lys Cys Ile Asp Phe Tyr Ser Arg Ile Arg Gl u			

580

585

590

Leu Arg His Tyr Ser Asp Ser Val Tyr Gly Asp Thr Leu Glu Lys Leu
 595 600 605

Thr Asn Thr Gly Leu Tyr Asn Leu Leu Ile Arg Cys Leu Arg Cys Glu
 610 615 620

Lys Pro Leu Asn Pro Ala Ser Ser Ser Val Ser Pro Thr Thr Ser Val
 625 630 635 640

His Pro Thr Pro Thr Ser Val Pro Pro Thr Pro Thr Lys Ser Ser Pro
 645 650 655

Ala Ser

<210> 28
 <211> 2031
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Primer

<400> 28
 atggaatgga ggatcttct cttcatcctg tcaggaactg caggtgtcca ctcccaggtt 60
 cagctgcggc agtctggacc ttagctggtg aagcctgggg cttcagtgaa gatgtcctgc 120
 aaggcttctg gatacacatt tactgactat gttataagtt gggtaagca gagaactgga 180
 cagggccttg agtggattgg agatattttat cctggaagtg gttattctt ctacaatgag 240
 aacttcaagg gcaaggccac actgactgca gacaaatcct ccaccacagc ctacatgcag 300
 ctcagcagcc tgacatctga ggactctgca gtctatttct gtgcaaccta ctataactac 360
 cctttgctt actggggcca aggactctg gtcactgtct ctgcagccaa aacaacgggc 420
 ccatccgtct tccccctggc gccctgctcc aggagcacct ccgagagcac agccgcctg 480
 ggctgcctgg tcaaggacta cttcccgaa ccggtgacgg tgcgtggaa ctcaggcgcc 540
 ctgaccagcg gcgtgcacac cttcccgct gtcctacagt cctcaggact ctactccctc 600
 agcagcgtgg tgaccgtgcc ctccagcagc ttgggcacga agacctacac ctgcaacgta 660
 gatcacaagc ccagcaacac caaggtggac aagagatgg agtccaaata tggccccca 720
 tgcccaccct gcccagcacc ttagttgaa gggggaccat cagtcttcct gttccccca 780
 aaacccaagg acactctcat gatctccgg acccctgagg tcacgtgcgt ggtggtgac 840
 gtgagccagg aagaccccgaa ggtccagttc aactggtagc tggatggcgt ggaggtgcac 900
 aatgccaaga caaagcccgaa ggaggagcag ttcaacagca cgtaccgtgt ggtcagcgtc 960
 ctcaccgtcc tgcaccagga ctggctgaac ggcaaggagt acaagtgcac ggtctccaac 1020
 aaaggcctcc cgtcctccat cgagaaaacc atctccaaag ccaaaggcga gccccgagag 1080

BHCSP0404W0.txt

ccacagggtgt	acaccctgcc	cccatcccg	gaggagatga	ccaagaacca	ggtcagcctg	1140
acctgcctgg	tcaaaggctt	ctaccccagc	gacatcgccg	tggagtggga	gagcaatggg	1200
cagccggaga	acaactacaa	gaccacgcct	cccggtctgg	actccgacgg	ctcctcttc	1260
ctctacagca	ggctaaccgt	ggacaagagc	aggtggcagg	agggaatgt	cttctcatgc	1320
tccgtgatgc	atgaggctct	gcacaaccac	tacacacaga	agagcctctc	cctgtctctg	1380
gttaaagcta	gtatgcacgg	gcctaaggcc	acactgcaag	atattgtcct	ccatctcgaa	1440
ccccagaatg	agataccagt	ggaccttctg	ggccacggac	agttgtccga	tagcgaggag	1500
gaaaacgacg	aaatcgacgg	tgttaaccac	cagcacttgc	cggctcggag	ggcagagccc	1560
cagagacata	ccatgctgtg	catgtgttgc	aaagctagta	tggccagatt	cgaggatcca	1620
acacgcccac	cttacaaatt	gccggacctt	tgcacggagc	tgaacacttc	cctgcaggac	1680
atagaaatta	cctgcgtcta	ctgcaagacc	gttctcgaac	tgacagaagt	aggcgagttt	1740
gcgtttaaag	atctgttcgt	ggtgtatcg	gatagcattc	cccacgcagc	ttgtcataag	1800
tgtatcgact	tctattctag	gatccggag	ctcagacact	atagcgattc	cgtgtacggc	1860
gacacacttg	agaagctcac	taacaccggg	ctgtacaacc	tcctgatccg	gtgcttgagg	1920
tgtcagaaac	ccctgaatcc	tgctagtagc	agcgtgagcc	ccaccaccag	cgtgcacccc	1980
accccccacca	gcgtcccccc	caccccccacc	aagagcagcc	ccgctagctg	a	2031

<210> 29

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 29

Pro	Thr	Ser	Thr	Pro	Ala	Asp	Ser	Ser	Thr	Ile	Thr	Pro	Thr	Ala	Thr
1				5					10				15		

Pro	Thr	Ala	Thr	Pro	Thr	Ile	Lys	Gly
				20				25

<210> 30

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 30

Thr	Val	Thr	Pro	Thr	Ala	Thr	Ala	Thr	Pro	Ser	Ala	Ile	Val	Thr	Thr
1				5					10				15		

Ile	Thr	Pro	Thr	Ala	Thr	Thr	Lys	Pro
				20				25

BHCSP0404W0. txt

<210> 31
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 31

Thr Asn Gly Ser Ile Thr Val Ala Ala Thr Ala Pro Thr Val Thr Pro
1 5 10 15

Thr Val Asn Ala Thr Pro Ser Ala Ala
20 25