(51) Internationale Patentklassifikation: G01B 7/30, H02K 24/00

(11) Internationale Veröffentlichungsnummer: WO 90/12278

(43) Internationales Veröffentlichungsdatum: 18. Oktober 1990 (18.10.90)

(21) Internationales Aktenzeichen: PCT/AT90/00024

(22) Internationales Anmeldedatum: 3. April 1990 (03.04.90)

(30) Prioritätsdaten: A 810/89 6. April 1989 (06.04.89) AT

(72) Erfinder; und

(74) Anwalt: KRAUSE, Peter; Elin Energieanwendung Gesellschaft m.b.H., Penzinger Straße 76, A-1140 Wien (AT).

Veröffentlicht
Mit internationalem Recherchenbericht.

(54) Title: PROCESS FOR THE DETECTION WITHOUT A SENSOR OF THE ANGLE OF ROTATION IN UNDAMPED SYNCHRONOUS MACHINES, PREFERABLY EXCITED BY PERMANENT MAGNETS

(54) Bezeichnung: VERFAHREN ZUR SENSORLOSEN DREHWINKELERFASSUNG VON DÄMPFERLOSEN, VORZUGSWEISE PERMANENTMAGNETERREGTEN, SYNCHRONMASCHINEN

(57) Abstract

The reaction of abrupt voltage changes generated by a converter belonging to an undamped, preferably permanent-magnet-excited synchronous machine, and applied to said machine is measured and the rotor position is calculated from the angular dependence of the stator reactance.

(57) Zusammenfassung

Es wird die Rückwirkung von an eine dämpferlose, vorzugsweise permanentmagneterregte, Synchronmaschine abgesetzten Spannungssprüngen gemessen, die von einem zur Synchronmaschine gehörenden Umrichter generiert werden, und aus der Winkelabhängigkeit der Statorreaktanzi die Rotorstellung berechnet.

+ Siehe Rückseite
BENENNUNGEN VON “DE”

Bis auf weiteres hat jede Benennung von “DE” in einer internationalen Anmeldung, deren internationaler Anmeldetag vor dem 3. Oktober 1990 liegt, Wirkung im Gebiet der Bundesrepublik Deutschland mit Ausnahme des Gebietes der früheren DDR.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
</tr>
<tr>
<td>CF</td>
<td>Zentrale Afrikanische Republik</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland, Bundesrepublik</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>HR</td>
<td>Jugoslawien</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>LU</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LX</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritänien</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SO</td>
<td>Sozialistisches Sowjetisches Russisches Republik</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
</tbody>
</table>
Die Erfindung betrifft ein Verfahren zur sensorlosen Drehwinkelerfassung von dämpferlosen, vorzugsweise permanentmagneteregten, Synchronmaschinen, wobei die Rückwirkung von an die Synchronmaschine abgesetzten elektrischen Testsignalen gemessen wird.

Permanentmagneteregte Synchronmaschinen gewinnen durch die Fortschritte auf dem Sektor der Magnetmaterialien, der Leistungs- und Informationselektronik zunehmend an Bedeutung in der Antriebstechnik. Sie zeichnen sich gegenüber Asynchronmaschinen durch eine einfachere Regelungstechnische Struktur und höheren Wirkungsgrad aufgrund der sehr geringen Rotorverluste aus.

Für die Durchführung der Regelalgorithmen bei dynamisch hochwertigen feld- bzw. polradorientierten Regelkonzepten ergibt sich die Notwendigkeit eines mechanischen Gebers zur Erfassung der Polradposition. Es ist daher das Ziel vieler Forschungsaktivitäten, den mechanischen Geber durch mathematische Modelle oder durch Ausnützung physikalischer Effekte zu ersetzen.

Es sind verschiedene Verfahren zur Lageerfassung des Polrades einer permanentmagneteregten Synchronmaschine bekannt.

Nachteilig dabei ist, daß diese Auswertung erst ab einer gewissen Mindestdrehzahl erfolgen kann, da der induzierte Spannungsraumzeigerbetrag proportional mit der Drehzahl abnimmt.

Bei diesem Verfahren wird mittels elektrischer Testsignale die von den permanenten Magneten hervorgerufene, varierende magnetische Sättigung gemessen. Da sich diese Art der Messung reproduzieren läßt, ist die Rotorposition exakt feststellbar. Die für die Durchführung der Messung notwendige Kenntnis der Polarität der Magnete läßt sich durch Veränderung des magnetischen Arbeitspunktes und die Messung seiner Auswirkung auf die Impedanz feststellen.

Es ist hier die Ermöglichung der Rotorposition auch bei stillstehender Maschine möglich.

Der Nachteil dieser Methode besteht darin, daß durch die Notwendigkeit einer zusätzlichen analogen Stromquelle das Meßverfahren sehr aufwendig ist.
Auch die Dissertation "Die permanent erregte umrichtergespeiste Synchronmaschine ohne Polradgeber als drehzahlgeregelter Antrieb" von H. Vogelmann (Universität Karlsruhe, BRD, 1986) befasst sich mit einem Verfahren zur Ortung der Polradlage.

Bei den erwähnten Ortungsverfahren besteht also der Nachteil, daß sich damit nur bei Maschinen mit ausgeprägter Schenkelpolcharakteristik brauchbare Ergebnisse ergeben.
Aufgabe der Erfindung ist es daher, ein Verfahren zur geberlosen Lageerfassung des Rotors einer permanentmagnetregten Synchronmaschine durch Messung ausschließlich elektrischer Größen zu realisieren und die Nachteile bzw. Ungenauigkeiten der bekannten Verfahren zu vermeiden.

Die Aufgabe wird durch die Erfindung gelöst. Diese ist dadurch gekennzeichnet, daß die Testsignale Spannungssprünge sind, die ein zur zu messenden Synchronmaschine gehörender, speisender Umrichter generiert, und daß die ermittelten Meßdaten einem Rechner zugeführt werden, der aus der Abhängigkeit der Statorreaktanz die Rotorstellung berechnet, und daß zum Start der Synchronmaschine eine Vormagnetisierung eingestellt und je eine Messung bei feldschwächender und bei feldstärkender Wirkung durchgeführt wird.

Der Vorteil des erfindungsgemäßen Verfahrens besteht sowohl in seiner großen Genauigkeit als auch darin, daß für die Polradortung keine analogen Zusatzstromquellen benötigt werden, sondern der - ohnehin vorhandene - speisende Umrichter als Testsignalgenerator eingesetzt wird.

Weiters ist vorteilhaft, daß mit der Erfindung die exakte Polradortung bei beliebiger Last durchführbar ist.

Ein zusätzlicher Vorteil ist dadurch gegeben, daß der übersichtliche Schaltungsaufbau äußerste Betriebssicherheit garantiert.

Zudem kann das erfindungsgemäße Polradortungsverfahren bei den gängigen Regelkonzepten (Toleranzbandführung, Pulsmustervorgabe usw.) problemlos implementiert werden.
In einer Ausgestaltung der Erfindung werden zwei hintereinanderfolgende Testmessungen mit kurzer Meßfrequenz durchgeführt.

5 Auf diese Weise wird der Effekt der vom Magneten herrührenden rotatorisch induzierten Spannung kompensiert. Dadurch funktioniert das Verfahren bei allen Drehzahlen, wobei auch im tiefsten Drehzahlbereich und im Stillstand dieselbe hohe Genauigkeit gegeben ist.

10 Ein weiteres Merkmal der Erfindung besteht darin, daß eine Testmessung mit momentanen Schätzwerten von Drehwinkel und Drehzahl sowie einem Stromraumzeiger durchgeführt wird.

15 Dadurch ist es möglich, mit nur einer Messung und in Kombination mit tabellarischen Korrekturwerten, eine hohe Genauigkeit zu erzielen.

20 An Hand von Ausführungsbeispielen soll nun die Erfindung, unter Verwendung dreistrangiger Synchronmaschinen, näher erläutert werden. (Dasselbe erfindungsgemäße Prinzip ist für Synchronmaschinen mit anderen Strangzahlen in gleicher Weise anwendbar.) Dabei zeigt Fig. 1 ein Meßverfahren mit fixen Meßzeiten. In Fig. 2 ist die Integration des erfindungsgemäßen Verfahrens in eine Spannungssteuerung mit fixem Pulsmuster dargestellt. Die Anwendung der Erfindung mit definierten Stromänderungen bei einem Antrieb mit Toleranzband-Stromregler ist in Fig. 3 aufgezeigt. In allen drei Figuren ist die Schaltung jeweils nur für einen Strang der Statorwicklung gezeichnet; sie ist für die beiden anderen Stränge selbstverständlich analog.

35 Das erfindungsgemäße Verfahren basiert auf der Tatsache, daß bei Luftspaltinduktionswerten von etwa 1 Tesla gewisse Eisenpartien in der Maschine gesättigt werden.
Bei Permanentmagneterregung werden in erster Linie die Statorzähne beträchtlich gesättigt. Weiters ist, bei entsprechender Auslegung, eine gewisse Sättigung im Joch denkbar.

Um die sich bei Messung mittels einer analogen Testspannungsquelle und sinusförmigen Testsignalen ergebenden Nachteile (Messung nur bei stillstehendem, unbelastetem Rotor möglich; großer Meß- und Rechenaufwand; Testsignalgenerator als Zusatzeinrichtung ist während der Messung anstatt des Umrichters auf die Synchronmaschine
geschaltet), zu vermeiden, ist beim erfindungsgemäßen Verfahren der Umrichter selbst als Testsignalgenerator eingesetzt.

Stillstehende Maschine:

Rotierende Maschine:
Durch Kombination von zwei Messungen wird der Effekt der rotatorisch induzierten Spannung weitestgehend eliminiert. Es werden zwei Messungen durchgeführt, wobei nach der ersten Messung in einem Zweig (beispielsweise Zweig A oder alternativ in allen anderen Zweigen außer A; beides bewirkt eine Messung in die gleiche Raumzeigerrichtung) eine Schalthandlung durchgeführt wird. Sodann wird der Wert der Messung 2 vom Wert der Messung 1 subtrahiert. Der Spannungsunterschiedraumzeiger weist in die Richtung des mit dem geschalteten Wechselrichterzweig verbundenen Stranges, so daß es genügt, die Stromänderung während der Intervalle I und II nur im betreffenden Strang zu messen. (Durch die verschiedenen Induktivitäten aufgrund der Vorsättigung weichen Spannungs- und Meßstromraumzeiger leicht voneinander ab. Bei üblichen Sättigungsverhältnissen beträgt diese Abweichung maximal 7 Grad. Diese Abweichung ist jedoch ein reproduzierbarer Effekt und dadurch ein korrigierbarer Fehler.) Durch diese
Meßstrategie wird die Auswirkung der rotatorisch induzierten Spannung kompensiert.

Bei höheren Drehzahlen ist die Drehung während der Meßzeit nicht vernachlässigbar. In diesem Fall kann der Meßvorgang des Intervalls II in zwei Teilmessungen aufgespaltet werden, wobei der erste Teil vor und der zweite Teil nach Interval I durchgeführt wird. (In beiden Teilmessungen wird der gleiche Spannungsraumzeiger angelegt.) Dadurch tritt jeweils praktisch derselbe (mittlere) Wert der induzierten Spannung auf.

Auch die induzierte Spannung ist bei höheren Drehzahlen nicht vernachlässigbar. Durch diese Spannung erfolgt die Stromänderung nicht mehr parallel zum angelegten Statorspannungsraumzeiger, sondern in die Richtung der Differenz zwischen Statorspannungs- und induziertem Spannungsraumzeiger. Die Messung erfolgt also scheinbar in den Intervallen I und II in mehr oder weniger abweichende Raumzeigerichtungen. Es ist (unter Verwendung der Raumzeigerrechnung), mathematisch eindeutig nachweisbar, daß die Messung durch die Differenzbildung der zwei Intervalle wirklich den Induktivitätswert der gewünschten Richtung liefert.

Zum Start des Systems ist es unbedingt notwendig, die Polarität des Permanentmagneten zu bestimmen, da sonst die bestimmte Rotorposition mit einer Unsicherheit von 180 Grad (elektrisch) behaftet ist. Dies ist darin begründet, daß die Induktivitätsschwankungen sich zweimal pro elektrischer Umdrehung wiederholen.

Im vorliegenden Fall erfolgt die Polaritätsbestimmung durch alleinige Verwendung des Umrichters. Nach der Bestimmung der Richtung minimaler und maximaler Induktivität, welche unmittelbar mit der Polradlage bzw. der Magnetisierungsrichtung des Rotors zusammenhängt, wird in
etwa diese Richtung ein relativ großer Statorstromraumzeiger aufgebracht, wodurch eine gewisse Verschiebung des magnetischen Arbeitspunktes erfolgt. In diesem neuen magnetischen Arbeitspunkt wird nun eine Induktivitätsmessung, wie zuvor beschrieben, durchgeführt. Ob dieses Zusatzsignal eine Erhöhung oder eine Verminderung der Sättigung gebracht hat, kann entschieden werden, wenn genau die entgegengesetzte Zusatzdurchflutung aufgebracht und wieder die differentielle Induktivität bestimmt wird.

Legt man einen konstanten Spannungsraumzeiger an die Maschine, so ändert sich der Betrag des mit dem Stator verketteten Flusses linear mit der Zeit, während der Strom progressiv zunimmt, wenn der Bereich magnetischer Sättigung erreicht wird. Die Messung der Induktivität erfolgt beispielsweise mit einem konstanten Stromänderungsintervall. Die Zeiten zwischen den Schalthandlungen sind dann ein Maß für die differentielle Induktivität.

Die geringe Statorinduktivität hat zur Folge, daß selbst Ströme in der Größenordnung des Nennwertes keine gravierende Änderung der Sättigungsverhältnisse in der Maschine nach sich ziehen. Es werden zwar die "Induktivitäts-Ellipsen" etwas abgeplattet, jedoch bleibt der Verlauf der winkelabhängigen Induktivität erhalten und der Effekt messbar. Es besteht die Möglichkeit, die lastabhängigen Sättigungsverhältnisse in einem Festwertspeicher abzulegen und die entsprechenden Kennwerte je nach Laststrom abzufragen. Die Lastpunkte können dahingehend eingeschränkt werden, daß nur flussnormale, also drehmomentbildende Statorstromkomponenten auftreten.

Bei Vorgabe eines festen Meßintervalls wird die Zeit des Intervalls I gleich der des Intervalls II und konstant gesetzt. Nimmt man an, daß die Induktivität in Richtung des Stranges A gemessen werden soll, so ist der Zustand der Wechselrichterzweige A, B, C im Intervall I beispielsweise 1, 0, 0 (1 bedeutet: Wechselrichterzweig an positivem Zwischenkreispotential) und im Intervall II beispielsweise 0, 0, 0 oder 1, 1, 1 oder 0, 1, 1. In jedem Fall zeigt der Differenzspannungsraumzeiger in Richtung zur Strangachse A. Legt man gedanklich die reelle Achse des Raumzeiger-Koordinatensystems in die zu messende Strangachse, so ergibt sich, daß der Kehrwert der gesuchten Induktivität proportional der Differenz der betreffenden Strangstromänderungen im Intervall I und II ist.

Fig. 1 zeigt die Integration dieser Variante in eine stromgeregelte, permanentmagneterregte Synchronmaschine mit zeitdiskreter Schaltzustandssteuerung, und zwar in einen Strang (1) der Statorwicklung. Die Regelung des Strangstromes erfolgt so, daß mit Hilfe eines Komparators (2) ohne Hysterese ein Soll-Ist-Vergleich durchgeführt wird, welcher dann zu diskreten, äquidistanten Zeitpunkten als Kriterium verwendet wird, ob ein betroffener Wechselrichter-Brückenzweig (3) bis zum nächsten Abfragezeitpunkt auf positives oder negatives Zwischenkreispotential geschaltet wird bzw. bleibt. Die Zeitdiskretisierung erfolgt mittels eines D-Flipflops (4).

Die zusätzliche Meßeinrichtung besteht aus einer Logik (5), welche unabhängig vom Soll-Ist-Vergleich bei Bedarf einen Meßzyklus durchführt. Dieser besteht, wie bereits erwähnt, aus zwei Zeitperioden I und II, die in diesem Fall gleich lang sind. Bei höherer Drehzahl kann die Messung auf vier Zeitperioden ausgedehnt werden (Zyklenfolge I-II-II-I oder umgekehrt), wodurch für beide
Meßabschnitte die gleiche mittlere Rotorposition vorliegt.

In Fig. 2 wird das anhand von Fig. 1 beschriebene Verfahren in eine Spannungssteuerung mit fixem Pulsmuster integriert. Dabei werden in das Pulsmuster die Meßzyklen direkt eingefügt; die Signalverarbeitung wird dann über Statusleitungen informiert, wann ein Meßzyklus durchgeführt wird. Fig. 2 zeigt wiederum die Statorwicklung einer permanentmagneterregten Synchronmaschine - mit der erfindungsgemäßen Schaltung für einen Strang (21) - und einen Wechselrichter-Brückenzweig (22). Ein Pulsmustergenerator (23) mit integrierten Meßzyklen erhält über zwei Leitungen (24 bzw. 25) die Spannungs- bzw. Frequenzvorgabe von einem Steuerungsmodul (26). Die Übermittlung des Ansteuersignals vom Pulsmustergenerator (23) zum Wechselrichter-Brückenzweig (22) erfolgt über eine Leitung (30). Die Stromistwerterfassung zur Messung der Stromänderung erfolgt über einen Stromwandler (28), der
Stromistwert wird über eine Leitung (29) dem Steuerungsmodul (27) zugeführt.

Ein wichtiger Spezialfall ist gegeben, wenn die Stromänderung des Meßabschnittes I definiert und gleich der negativen Änderung des Abschnittes II gesetzt ist. In diesem Fall sind die Zeiten der Meßabschnitte I und II zu messen. Die Summe ihrer Kehrwerte ist dann proportional der invertierten Induktivität. Dieses Verfahren eignet sich besonders gut zur Implementierung bei Maschinen mit Toleranzband-Stromregelung, wie in Fig. 3 gezeigt wird.

Das Prinzip der Stromregelung beruht darauf, daß die Differenz zwischen Strom-Soll und -Istwert einem hysteresebehaupteten Komparator (42) zugeführt wird. Der logische Ausgang des Komparators (42) steuert einen für einen Strang (41) zuständigen Wechselrichter-Brückenzweig (43), wodurch der Strom (meist) am Verlassen des durch die Hysterese definierten Toleranzbandes gehindert wird.

Die Erweiterung für die Positions messung besteht - ähnlich wie beim Verfahren nach Fig. 1 - aus einer übergeordneten Logik (45) für den Meßvorgang, wodurch eine Kontrolle über eine Wechselrichter-Treiber- und Ansteuerlogik (44), unabhängig vom Komparator (42), möglich ist. Die Stromsichererfassung erfolgt über einen Stromwandler (46), der Stromistwert wird dem N-Eingang des Komparators (42) zugeführt. Von einem Steuerungsmodul (47) erfolgt die Information bezüglich des Stromsollwertes an den P-Eingang des Komparators (42). Zwei Leitungen (48 bzw. 49) verbinden das Steuerungsmodul (47) mit der übergeordneten Logik (45) für den Meßvorgang und übertragen die Informationen über den Komparator- bzw. Brückenstatus.
Ein Meßzyklus wird nun durchgeführt, indem der Stromsollwert im betreffenden Zweig konstant gehalten und Schaltheilung in den anderen Zweigen unterbunden werden. Dadurch wird im erstgenannten Strang (41) der gewünschte Stromverlauf erreicht. Die Komparatorfunktion in diesem Zweig bleibt aufrecht. Da bei diesem Verfahren nur Zeiten gemessen werden, ist hier, im Gegensatz zum Verfahren nach Fig. 1, keine Analog/Digitalwandlung für einen angeschlossenen Rechner erforderlich.
PATENTANSPRÜCHE

1. Verfahren zur sensorlosen Drehwinkelerfassung von
dämpferlosen, vorzugsweise permanentmagneterregten,
Synchronmaschinen, wobei die Rückwirkung von an die
Synchronmaschine abgesetzten elektrischen Testsi-
gnalen gemessen wird, dadurch gekennzeichnet, daß
die Testsignale Spannungssprünge sind, die ein zur
zu messenden Synchronmaschine gehörender, speisender
Umrichter generiert, und daß die ermittelten Meßda-
ten einem Rechner zugeführt werden, der aus der
Winkelabhängigkeit der Statorreaktanz die Rotor-
stellung berechnet, und daß zum Start der Synchron-
maschine eine Vormagnetisierung eingestellt und je
eine Messung bei felsschwächender und bei
feldstärkender Wirkung durchgeführt wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
daß zwei hintereinanderfolgende Testmessungen mit
kurzer Meßfrequenz durchgeführt werden.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
daß eine Testmessung mit momentanen Schätzwerten von
Drehwinkel und Drehzahl sowie einem Stromraumzeiger
durchgeführt wird.
INTERNATIONAL SEARCH REPORT

International Application No PCT/AT 90/00024

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl. \(^5\) G01B 7/30, H02K 24/00

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl. (^5)</td>
<td>G01B; G01D, G08C, H02K</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, (^) with indication, where appropriate, of the relevant passages (^)</th>
<th>Relevant to Claim No. (^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 4743786 (ICHIKAWA ET AL) 10 May 1988, see the whole document</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4764767 (ICHIKAWA ET AL) 16 August 1988, see the whole document</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>FR, A5, 2082308 (MOSKOVSKY ORDENA LENINA ENERGETICHESKY INSTITUT) 10 December 1971, see the whole document</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>SE, B, 372858 (ALLMÄNNA SVENSKA ELEKTRISKA AB) 13 January 1975 see the whole document</td>
<td>1</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: *

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 20 June 1990 (20.06.90)

Date of Mailing of this International Search Report 06 July 1990 (06.07.90)

International Searching Authority EUROPEAN PATENT OFFICE

Signature of Authorized Officer

Form PCT/ISA/210 (second sheet) (January 1985)
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. PCT/AT 90/00024
SA 35740

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on 24/05/90.
The European Patent office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP-A- 62046202</td>
<td>28/02/87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 61122504</td>
<td>10/06/86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62047501</td>
<td>02/03/87</td>
</tr>
<tr>
<td>FR-A5- 2082308</td>
<td>10/12/71</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>SE-B- 372858</td>
<td>13/01/75</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European patent Office, No. 12/82
INTERNATIONALER RECHERCHENBERICHT

I. KLASSEIFIKATION DES ANMELDUNGSGENSTANDS (bei mehreren Klassifikationssymbolen sind alle anzugeben)⁶
Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC
Int.Cl.⁵ G 01 B 7/30, H 02 K 24/00

II. RECHERCHIERTE SACHGEBIETE
Rechercherter Mindestprüfstoff⁷
Klassifikationssystem Klassifikationssymbole
Int.Cl.⁵ G 01 B; G 01 D, G 08 C; H 02 K
Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen⁸

III. EINSCHLÄGIGE VERÖFFENTLICHUNGEN⁹
Art ¹ Kennzeichnung der Veröffentlichung¹¹, soweit erforderlich unter Angabe der maßgeblichen Teile¹² Betr. Anspruch Nr.¹³
A US, A, 4743786 (ICHIKAWA ET AL) 10 Mai 1988, siehe Dokument insgesamt 1
A US, A, 4764767 (ICHIKAWA ET AL) 16 August 1988, siehe Dokument insgesamt 1
A FR, A5, 2082308 (MOSKOVSKY ORDENA LENINA ENERGETICHESKY INSTITUT) 10 Dezember 1971, siehe Dokument insgesamt 1

* Besondere Kategorien von angegebenen Veröffentlichungen¹⁰:
 "A" Veröffentlichung, die den allgemeinen Stand der Technik
definiert, aber nicht als besonders bedeutsam anzusehen ist
 "E" Älteres Dokument, das jedoch erst am oder nach dem interna-
tionalen Anmeldedatum veröffentlicht worden ist
 "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch
die Entdeckung zu sichern, oder die die Veröffent-
lungserfordert eine andere im Recherchenbericht be-
nommenen Veröffentlichung belegt werden soll oder die aus ein-
em anderen besonderen Grund angegeben ist (wie ausgeführt)
 "O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
eine Benutzung, eine Ausstellung oder andere Maßnahmen
bezieht
 "P" Veröffentlichung, die vor dem internationalen Anmeldeda-
tum, aber nach dem beanspruchten Prioritätsdatum veröffent-
licht worden ist
 "T" Spätere Veröffentlichung, die nach dem internationalen An-
meldedatum oder dem Prioritätsdatum veröffentlicht worden
ist und mit der Anmeldung nicht kollidiert, sondern nur zum
Verständnis des der Erfindung zugrundeliegenden Prinzips
oder der ihr zugrundeliegenden Theorie angegeben ist
 "X" Veröffentlichung von besonderer Bedeutung, die beanspruc-
tete Erfindung kann nicht als neu oder auf erfinderischer Tätig-
keit beruhend betrachtet werden
 "Y" Veröffentlichung von besonderer Bedeutung, die beanspruc-
tete Erfindung kann nicht als auf erfinderischer Tätigkeit be-
ruhend betrachtet werden, wenn die Veröffentlichung mit
einer oder mehreren anderen Veröffentlichungen dieser Katego-
rie in Verbindung gebracht wird und diese Verbindung für
ihn als überlagert anzusehen ist
 "Z" Veröffentlichung, die Mitglied derselben Patentfamilie ist

IV. BESCHIEINUNG
Datum des Abschlusses der internationalen Recherche 20. Juni 1990
Abschiedsdatum des internationalen Recherchenberichts 06 JUL 1990
Internationale Recherchenbehörde
Europäisches Patentamt
Unterschrift des bevollmächtigten Bediensteten
M. T. Zelaar

Formblatt PCT/ISA/219 (Blatt 2) (Januar 1995)
<table>
<thead>
<tr>
<th>P.</th>
<th>Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SE, B, 372858 (ALLMÄNNA SVENSKA ELEKTRISKA AB)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>13 Januar 1975,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>siehe Dokument insgesamt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----------</td>
<td></td>
</tr>
</tbody>
</table>

Formblatt PCT/ISA/210 (Zusatzbogen) (Januar 1985)
ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT
ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR. PCT/AT 90/00024

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 24/05/90.
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP-A- 62046202</td>
<td>28/02/87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 61122504</td>
<td>10/06/86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62047501</td>
<td>02/03/87</td>
</tr>
<tr>
<td>FR-A- 2082308</td>
<td>10/12/71</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td>SE-B- 372858</td>
<td>13/01/75</td>
<td>KEINE</td>
<td></td>
</tr>
</tbody>
</table>

Für nähere Einzelheiten zu diesem Anhang: siehe Amtsblatt des Europäischen Patentamts, Nr. 12/82

EPO FORM P6473