(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
PCT

(51) Internationale Patentklassifikation?: C08L 63/00,
C08G 59/50, 59/62

(21) Internationales Aktenzeichen:
PCT/EP2004/050698

(22) Internationales Anmeldedatum:
4. Mai 2004 (04.05.2004)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
03010131.5 5. Mai 2003 (05.05.2003) EP

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US); SIKA TECHNOLOGY AG [CH/CH]; Zugerstrasse 50, CH-6340 Baar (CH).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US); WIGGER, Thomas
[CH/CH]; Lielistrasse 3, CH-8904 Aesch bei Birmensdorf (CH).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart); AE, AG, AL,
AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LI, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Veröffentlicht:
mit internationalem Recherchenbericht

Zur Erklärung der Zweischachtbenden-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: EPOXY RESIN COMPOSITIONS CONTAINING MANNICH BASES, SUITABLE FOR HIGH-TEMPERATURE APPLICATIONS

(54) Bezeichnung: MANNICHBASEN-ENTHALTENDE EPOXIDHARZZUSAMMENSETZUNGEN GEEIGNET ZUR ANWENDUNG BEI HOHEN TEMPERATUREN

(57) Abstract: The invention relates to two-component epoxy resin compositions which contain at least one Mannich base in the hardener component and are provided with a glass transition temperature of more than 80 °C after being cured at a temperature ranging between 5 °C and 60 °C. The inventive two-component epoxy resin compositions are used especially as adhesives.

MANNNICHBASEN-ENTHALTENDE EPOXIDHARZZUSAMMENSETZUNGEN
GEEIGNET ZUR ANWENDUNG BEI HOHEN TEMPERATUREN

Technisches Gebiet

Die Erfindung betrifft zweikomponentige Epoxidharzsysteme, welche durch Kalthärtung ausgehärtet werden und ohne nachfolgendes Tempern hohe Glasumwandlungstemperaturen aufweisen.

Stand der Technik

Es sind deshalb schon vermehrt Anstrengungen unternommen worden, Epoxidharzsysteme zu entwickeln, die eine hohe Glasumwandlungs-

Darstellung der Erfindung

Aufgabe der vorliegenden Erfindung ist es, eine zweikomponentige Epoxidharz-Zusammensetzung zur Verwendung zu stellen, welche nach Aushärtung bei einer Temperatur zwischen 5°C und 60°C eine hohe Glasmwandlungstemperatur aufweist.
Überraschenderweise wurde gefunden, dass dies durch den Einsatz von mindestens einer Mannichbasis in der Härter-Komponente erreicht werden kann.

Mit einer solchen zweikomponentigen Epoxidharz-Zusammensetzung können praxistaugliche Systeme formuliert werden, die einerseits bei Raumtemperatur aushärteten und andererseits nach der Aushärtung Glasumwandlungstemperaturen von höher als 80 °C aufweisen, ohne dass ein nachträgliches Tempern nötig ist, was zur verlässlichen Verwendung dieser Epoxidharz-Zusammensetzungen auch bei höheren Temperaturen führt.

Somit ist es ermöglicht, Epoxidharz-Zusammensetzungen auch für solche Anwendungen zu verwenden, wo eine übliche Hitzehärtung oder Tempern nicht möglich oder nicht gewünscht ist.

Weg zur Ausführung der Erfindung

Die vorliegende Erfindung betrifft eine zweikomponentige Epoxidharz-Zusammensetzungen, welche in der Härter-Komponente mindestens eine Mannichbasis enthalten, und nach Aushärtung bei einer Temperatur zwischen 5°C und 60°C eine Glasumwandlungstemperatur von mehr als 80°C aufweisen.

geeignete Mannichbasen lassen sich aus phenolischen Verbindungen, Formaldehyd, und Polyaminen herstellen.

Als phenolische Verbindungen sind insbesondere solche geeignet, welche an o- und / oder p-Stellung zur Phenolgruppe unsubstituierte Positionen aufweisen. Beispiele hierfür sind Hydroxynaphthaline, Polyhydroxynaphthaline, Alkylphenole, Dialklyphenole, verbrückte Phenole, wie
beispielsweise Tetrahydronaphtole. Auch polyphenolische Verbindungen, sowohl einkernige als auch mehrkernige, sind mitumfasst. Beispiele für solche polyphenolische Verbindungen sind BrenzKatechin, Resorcin, Pyrogallol, Phloroglucin, Bisphenol-A, Bisphenol-F.

Insbesondere als geeignete Mannichbasen haben sich gezeigt, zu deren Herstellung eine phenolische Verbindung der Formel (I) oder (II)

\[\text{OH} \]
\[\text{R}^1 \]
\[\text{OH} \]

sowie Formaldehyd und mindestens ein Polyamin verwendet werden, wobei \(R^1 \) hierbei H oder CH\(_3\) darstellen.

Als besonders bevorzugt gilt m-Kresol, wo in Formel (I) \(R^1 \) ein Wasserstoffatom darstellt.

Formaldehyd kann in dem Fachmann üblicherweise bekannten Formen direkt oder aus formaldehydabspaltenden Verbindungen zur Anwendung kommen. Bevorzugt ist Formaldehyd in Form als para-Formaldehyd oder als Formalin-Lösung. Besonders bevorzugt ist Formalin-Lösung.

Unter 'Polyamin' wird eine Verbindung verstanden, welche zwei oder mehrere primäre Aminogruppen aufweist. Solche Polyamine sind dem Fachmann auf dem Gebiet der Epoxid- und Polyurethan-Chemie als Vernetzungsmitte bekannt. Besonders geeignet sind:

- Aliphatische Polyamine wie Ethyldiamin, 1,2- und 1,3-Propandiamin, 2-Methyl-1,2-propandiamin, 2,2-Dimethyl-1,3-propandiamin, 1,3- und 1,4-Butandiamin, 1,3- und 1,5-Pentandiamin, 1,5-Diamino-2-methylpentan (MPMD), 1,6-Hexandiamin, 2,2,4- und 2,4,4-
Trimethyl/hexamethylen/diamin, 1,7-Heptandiamin, 1,8-Octandiamin, 4-
Aminomethyl-1,8-octandiamin, Methyl-bis-(3-aminopropyl)amin, 1,3-
Diaminopentan (DAMP), 2,5-Dimethyl-1,6-hexamethylen/diamin,
Diethylentriamin, Triethylentetramin (3,6-Diaza-octamethylen/diamin), Tetra-
ethylpentammin, Pentamethylenhexamin, Dipropylentriamin, Tripropyl-
tetramin, Tetrapropylpentammin, 4,7-Diaza-decamethylen-1,10-diamin sowie
Mischungen der vorgenannten Polyamine.

cycloaliphatische Polyamine wie 1,3- und 1,4-Diaminocyclohexan, 1,2-
Diaminocyclohexan (DCH), Bis-(4-aminocyclohexyl)-methan (PACM), Bis-(4-
amino-3-methylcyclohexyl)-methan, Bis-(4-amino-3-ethylcyclohexyl)-methan,
Bis-(4-amino-3,5-dimethylcyclohexyl)-methan, 1-Amino-3-aminomethyl-3,5,5-
trimethylcyclohexan (= Isophorondiamin oder IPDA), 2- und 4-Methyl-1,3-dia-
imocyclohexan, 1,3- und 1,4-Bis-(aminomethyl)cyclohexan, 1,3,2,5(2,6)-Bis-
(aminomethyl)-bicyclo[2.2.1]heptan (NBDA, hergestellt von Mitsui Chemicals),
3(4),8(9)-Bis-(aminomethyl)-tricyclo[5.2.1.02,6]decan, 3,9-Bis-(3-aminopropyl)-
2,4,8,10-tetraoxaspiro[5.5]undecan, 1,3- und 1,4-Xylylendiamin, Octahydro-
4,7-methano-indene-2,5-diamin, Octahydro-4,7-methano-indene-1,6-diamin,
Ethergruppen-haltige aliphatische Polyamine wie Bis-(2-aminoethyl)ether, und
höhere Oligomere davon, sowie Mischungen der vorgenannten Polyamine.
aromatische Amine wie Toluylendiamin, Phenylendiamin, 4,4-
methylen/dianilin (MDA) sowie Mischungen der vorgenannten Polyamine.

Bevorzugt sind Polyamine ausgewählt aus der Gruppe umfassend
DAMP, IPDA, 1,3- und 1,4-Diaminocyclohexan, 1,2-Diaminocyclohexan 1,3-
und 1,4-Butandiamin, 1,3- und 1,5-Pentandiamin, MPMD, 1,3-Xylylendiamin,
1,3-Bis-(aminomethyl)cyclohexan, Diethylentriamin, Triethylentetramin (3,6-
Diaza-octamethylen/diamin), Tetraethylen/diamin, Pentamethylenhexamin,
Dipropylentriamin, Tripropylentetramin, Tetrapropylpentammin, 4,7-Diaza-
decamethylen-1,10-diamin, Bis-(4-aminocyclohexyl)-methan, Bis-(4-amino-3-
methylcyclohexyl)-methan, 3(4),8(9)-Bis-(aminomethyl)-tricyclo[5.2.1.02,6]deca
sowie Mischungen davon.
Besonders bevorzugt sind die Polyamine ausgewählt aus der Gruppe umfassend 1,3-Xylylendiamin, 1,3-Bis-(aminomethyl)cyclohexan, Diethylentriamin, Triethylentetramin (3,6-Diaza-octamethylen-diamin), Tetraethylpentamint, IPDA, 1,2-Diaminocyclohexan, 4,7-Diaza-decamethylen-1,10-diamin sowie Mischungen davon.

Selbstverständlich sind auch Mischungen solcher Polyamine mit anderen Polyaminen oder anderen Aminen möglich.

Mannichbasen lassen sich aus phenolischen Verbindungen, Formaldehyd, und Polyaminen herstellen. Die Herstellung von Mannichbasen ist nach üblichen Verfahren möglich.

Es hat sich gezeigt, dass ein zweistufiges Herstellverfahren von Vorteil ist. Hierbei werden in einer ersten Stufe die phenolische Verbindung, insbesondere eine phenolische Verbindung der Formel (I) oder (II), mit Formaldehyd unter Einfluss einer Base zur Reaktion gebracht. Diese Base kann ein tertiäres Amin, Alkalihydroxid, Erdalkalihydroxid oder Mischungen davon sein. Besonders geeignet sind tertiäre Amine, insbesondere tertiäre Amine, die zusätzlich noch primäre Aminogruppen aufweisen, wie beispielsweise 1-(2-Aminoethyl)-piperazin. Bevorzugt sind tertiäre Amine der Formel (III), in welchen die Reste R^2 ein C$_1$-C$_6$-Alkyl darstellen und $n = 1, 2$, oder 3 bedeuten.

![III](image)

Als R^2 bevorzugt ist $R^2 = \text{Methyl oder Ethyl, insbesondere } R^2 = \text{Methyl}$. Als n bevorzugt ist $n = 2$.

Vorteilhaft wird in der ersten Stufe der Formaldehyd zu einer Mischung der phenolischen Komponente und der Base, insbesondere zu einer Mischung
der phenolischen Verbindung der Formel (I) oder (II) und einem tertiären Amins, zugegeben. Die Zugebe ist vorteilhaft derart gestaltet, dass unter Kühlung der ebenfalls gekühlte Formaldehyd langsam zu gegeben wird, so dass nur ein geringfügiger Temperaturanstieg festgestellt wird.

5 In einer zweiten Stufe wird eine Umsetzung mit mindestens einem Polyamin durchgeführt. Vorteilhaft wird in der zweiten Stufe langsam das aus der ersten Stufe resultierende Produkt zum Polyamin zugegeben.

Dem Fachmann ist klar, dass bei dieser Art von Umsetzung in geringem Masse auch noch nicht reagierte Bestandteile im Endprodukt vorhanden sein können.

Unter gewissen Bedingungen führen jedoch auch einstufige Verfahren, in welchen phenolische Komponente, Formaldehyd und Polyamin zur Reaktion gebracht werden zu Mannichbasen, die in erfindungsgemäßen Epoxidharz-Zusammensetzungen verwendet werden können.

Die Mannichbase weist neben sekundären Aminogruppen auch primäre Aminogruppen auf.

Die Mannichbase weist vorteilhaft keinen oder zumindest einen kleinen Anteil an mehrkernigen Oligomeren auf. Bevorzugt ist der Oligomeranteil kleiner als 20 Gewichts-%, insbesondere kleiner als 10 Gewichts-% bezogen auf das Gewicht der Mannichbase.

Weiterhin vorteilhaft ist, wenn die Mannichbase weniger als 1 Gewichts-%, insbesondere weniger als 0.5 Gewichts-%, bevorzugt weniger als 0.1 Gewichts-%, an nicht reagierter phenolischer Verbindung bezogen auf das Gewicht der Mannichbase aufweist.
Die Mannichbase weist vorteilhaft eine niedrige Viskosität auf. Für die Formulierung von Klebstoffen sind insbesondere geeignet Viskositäten 200 bis 1000 mPas, insbesondere zwischen 200 und 700 mPas.

10 Die Herstellung einer solchen Härterkomponente kann auf üblichen Rühwerken erfolgen.

Insbesondere als N-Glycidylether geeignet sind p-Hydroxyaminobenzol-Triglycidyladdukt, MXDA-Tetraglycidyladdukt, MDA-Tetraglycidyladdukt.

Weitere Bestandteile können Extender, Verdünner, Beschleuniger, Zusatzstoffe wie Additive, Pigmente und Füllstoffe darstellen. Bei der Verwendung von Reaktivverdünern, Extendern und Verdünnern ist stark darauf zu achten, dass die dadurch verursachte Erniedrigung der Glasumwandlungstemperatur nicht so gross ausfällt, dass die Glasumwandlungstemperatur der ausgehärteten Epoxidharz-Zusammensetzung tiefer als die geplante Gebrauchstemperatur des Epoxidsystems zu liegen kommt.

Die Herstellung einer solchen Epoxidharz-Komponente kann auf üblichen Rührwerken erfolgen.

Verstärkung eingesetzt. Als wichtige Anwendung ist der Einsatz als struktureller Klebstoff.

Es wurde weiterhin gefunden, dass diese Systeme längere Topfzeiten aufweisen als bekannte Mannichbasen, welche aus Phenol, p-tert.-Butylphenol, Nonylphenol und/oder Bisphenol-A sowie Polyaminen mittels konventioneller Technik hergestellt werden.

Die zweikomponentige Epoxidharz-Zusammensetzung wird gemischt und appliziert. Sie kann kaltgehärtet werden, d.h. bei Temperaturen zwischen 5°C und 60 °C ausgehärtet werden. Vorteilhaft werden die Komponenten ebenfalls bei Temperaturen zwischen 5 und 60 °C gemischt und appliziert.

Der Verzicht von künstlich zugeführter Wärme reduziert Applikations- sowie Fertigungskosten. Großflächige Objekte können zudem mit üblichen Mitteln nur schwer bis gar nicht künstlich erwärmt werden. Das Wegfallen der Notwendigkeit einer solchen künstlich erzeugten großflächigen Erwärmung
lässt erst Anwendungen auf grossen Objekten zu, wie sie im Hoch- oder Tiefbau üblich sind.

Typischerweise werden die erfindungsgemässe zweikomponentige Epoxidharz-Zusammensetzungen bei Raumtemperatur oder bei leicht erhöhter Temperatur gemischt, appliziert und anschliessend bei dieser Umgebungstemperatur ausgehärzt. Nach Aushärtung kann beim Gebrauch des gehärteten Epoxidharzes die Temperatur bis nahe an die Glasmwandlungstemperatur gelangen, ohne dass die mechanischen Eigenschaften zu stark negativ beeinflusst werden. Insbesondere bei der Verwendung des Epoxidharz-Zusammensetzungs als Klebstoff darf bei der Gebrauchstemperatur die Krafteintragung zwischen den Klebepartnern nicht markant beeinträchtigt werden oder eine Versagen der Haftung oder ein Kriechen des Klebstoffs auftreten.

Die erfindungsgemässe zweikomponentige Epoxidharz-Zusammensetzungen weisen nach der Aushärtung eine Glasmwandlungstemperatur von über 80°C, vorzugsweise über 100°C, insbesondere im Bereich zwischen 100°C und 150°C, auf.

Weiterhin können erfindungsgemäße zweikomponentige Epoxidharz-Zusammensetzungen als Kunststoffmatrix für die Herstellung von faserverstärkten Composites eingesetzt werden. So lassen sich beispielsweise Kohlen- oder Glasfasern in eine zweikomponentige Epoxidharz-Zusammensetzung einbetten und können im ausgehärteten Zustand als Faser-Composite, beispielsweise in Form einer Lamelle, zum Einsatz kommen.

Ebenso können beispielsweise Fasergewebe oder -gelege mittels einer zweikomponentigen Epoxidharz-Zusammensetzung auf ein Bauwerk appliziert werden, und dort mit dem Bauwerk zusammen ein faserverstärktes Composite bilden.

Beispiele

Die im Folgenden genannten Beispiele dienen zur Veranschaulichung der Erfindung.

Beispiel einer zweistufigen Mannichbasenherstellung

Herstellung 1. Stufe

86,4 g m-Kresol wurde in einem Glaskolben vorgelegt und mit 81,3 g 1,3-N,N-Dimethylaminopropylamin versetzt. Das Gemisch wurde auf 20°C gekühlt und dann wurde langsam und unter Kühlung 197 g kalte Formalinlösung (36,5 % in Wasser) zugetropft. Es trat eine deutliche Wärmelöschung auf. Die Innentemperatur wurde zwischen 40°C und 45°C gehalten. Nach der Beendigung der Zugabe wurde noch während 1 Stunden bei 40 – 45°C gerührt.
Herstellung 2. Stufe

Das in Tabelle 1 angegebene Polyamin wurde im Reaktor bei RT unter Stickstoff vorgelegt, auf 80°C erwärmt und das aus der ersten Stufe resultierende Zwischenprodukt unter Rühren langsam zugegossen. Es trat eine milde Wärmetönung auf. Unter Stickstoff wurde aufgeheizt auf ca. 110°C und gleichzeitig das Reaktionswasser unter Normaldruck abdestilliert. Nach 80% der theoretischen Menge Reaktionswasser wurde Vakuum angelegt und bis zur theoretischen Wassermenge abdestilliert.

Beispiel einer einstufigen Mannichbasenherstellung

342 g 1,2 Diaminocyclohexan (DCH), 129 g Aminoethylpiperazin, sowie 122 g 3,5-Xylenol wurden vorgelegt. Unter Kühlung wurde bei einer Temperatur von 20 bis 30°C 197 g kalt Formalinlösung (36.5 % in Wasser) zugetropt. Es trat eine erhebliche Wärmetönung auf. Unter Stickstoff wurde aufgeheizt auf ca. 110°C und gleichzeitig das Reaktionswasser unter Normaldruck abdestilliert. Nach 80% der theoretischen Menge Reaktionswasser wurde Vakuum angelegt und bis zur theoretischen Wassermenge abdestilliert.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Polyamin</th>
<th>Eingesetzte Menge Polyamin in 2 stufiger Herstellung (g)</th>
<th>Viskosität (mPas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB1</td>
<td>DETA</td>
<td>330</td>
<td>288</td>
</tr>
<tr>
<td>MB2</td>
<td>Laromin C260</td>
<td>638</td>
<td>14180</td>
</tr>
<tr>
<td>MB3</td>
<td>DCH</td>
<td>306</td>
<td>466</td>
</tr>
<tr>
<td>MB4</td>
<td>IPD</td>
<td>457</td>
<td>3272</td>
</tr>
<tr>
<td>MB5</td>
<td>MXDA</td>
<td>365</td>
<td>772</td>
</tr>
<tr>
<td>Ref. 1</td>
<td>Laromin C260</td>
<td>-</td>
<td>151</td>
</tr>
<tr>
<td>Ref. 2</td>
<td>IPD</td>
<td>-</td>
<td>19</td>
</tr>
</tbody>
</table>

Tabelle 1: Mannichbasen und Referenzen.

Tabelle 1 zeigt die Eigenschaften der auf Raumtemperatur abgekühlten Mannichbasen. Die angegebenen Viskositäten beziehen sich auf eine Abmischung mit 5 Gew.-% Beschleuniger Tris-(2,4,6-dimethylamino-
methyl)-phenol (Araldite HY-960, Vantico). Die Viskosität wurde als Rotationsviskometrie mittels Rheomat (Kegel/Platte) nach DIN EN ISO 3219 bestimmt. Ref. 1 und Ref. 2, als Vergleich, sind keine Mannichbasen, sondern Amine.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Topfzeit</th>
<th>Tg (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB1</td>
<td>20min</td>
<td>103</td>
</tr>
<tr>
<td>MB2</td>
<td>1h 54min</td>
<td>105</td>
</tr>
<tr>
<td>MB3</td>
<td>47min</td>
<td>128</td>
</tr>
<tr>
<td>MB4</td>
<td>48min</td>
<td>122</td>
</tr>
<tr>
<td>MB5</td>
<td>27min</td>
<td>109</td>
</tr>
<tr>
<td>Ref. 1</td>
<td>4h 49min</td>
<td>59</td>
</tr>
<tr>
<td>Ref. 2</td>
<td>1h 37min</td>
<td>73</td>
</tr>
</tbody>
</table>

Tabelle 2 Eigenschaften der Zusammensetzungen.

Die Topfzeit wurde von einer 100g- Mischung in einem isolierten zylindrischen Becher bei 23°C mittels Geltimer bestimmt.

Die Glasmwandlungstemperatur (Tg) wurde gemäss EN 12614 mittels DSC ermittelt. Hierzu wurde die ausgehärtete Probe zuerst auf +5°C gekühlt und anschliessend mit einer Heizrate von 10K / Minute auf 160°C (Relaxation des Polymergefüges) in einem ersten Durchlauf erhitzt. Danach wurde die Probe mit 50K / Minute auf +5°C gekühlt und bei 5°C während für 10 Minuten gehalten und in einem zweiten Durchlauf mit einer Heizrate von 10K /
Minute auf 160°C erhitzt. Aus dem Messdiagramm des zweiten Durchlaufs wurde die Glasumwandlungstemperatur (Tg) aus der halben Höhe ermittelt.

Tabellen 1 und 2 zeigen, dass die Mannichbasen hergestellt werden können, die einerseits eine niedrige Viskosität aufweisen und andererseits dass mit solchen Mannichbasen enthaltenden Zusammensetzungen, im Gegensatz zu bekannten kalthärtenden Polyaminen (Ref. 1 und Ref. 2), höhere Glasumwandlungstemperaturen erreicht werden können.

Tabelle 3 zeigt Härter, welche eine Abmischung von Mannichbasen mit Polyaminen darstellen.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Mannichbasen-Polyamin-Mischung</th>
<th>Verhältnis Mannichbase/Polyamin w/w</th>
<th>Viskosität (mPas)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB6</td>
<td>MB1/DETA</td>
<td>1:1</td>
<td>51</td>
</tr>
<tr>
<td>MB7</td>
<td>MB3/DETA</td>
<td>1:1</td>
<td>29</td>
</tr>
<tr>
<td>MB8</td>
<td>MB1/DCH</td>
<td>1:1</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabelle 3 Eigenschaften von Mannichbasen/Polyamin-Abmischungen.
* Bestimmt als Abmischung mit 5 Gew.-% Beschleuniger Tris-(2,4,6-dimethylaminomethyl)-phenol (Araldite HY-680, Vantico)

Tabelle 4 zeigt die Eigenschaften von zweikomponentigen Epoxidharz-
Zusammensetzungen enthaltend Mannichbasen/Polyamin-Härter aus Tabelle 3 Die zur Ermittlung dieser Werte verwendeten Methode wurden bereits beschrieben.
<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Topfzeit</th>
<th>Tg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB6</td>
<td>32 min</td>
<td>98</td>
</tr>
<tr>
<td>MB7</td>
<td>27 min</td>
<td>110</td>
</tr>
<tr>
<td>MB8</td>
<td>55 min</td>
<td>108</td>
</tr>
<tr>
<td>Ref. 1</td>
<td>4h 49min</td>
<td>69</td>
</tr>
<tr>
<td>Ref.2</td>
<td>1h 37min</td>
<td>73</td>
</tr>
</tbody>
</table>

Tabelle 4: Eigenschaften von Mannichbasen/Polyamin-Abmischungen enthaltenden Zusammensetzungen.

Tabelle 5 zeigt die Eigenschaften der Mannichbasen, welche gemäß einem ein- oder zweistufigem Verfahren hergestellt wurden, beziehungsweise die Eigenschaften einer diesen enthaltenden zweikomponentigen Epoxidharz-Zusammensetzung. Die zur Ermittlung dieser Werte verwendeten Methode wurden bereits beschrieben.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Stufen</th>
<th>Polyamin</th>
<th>Phenolische Verbindung</th>
<th>Viskosität * (mPas)</th>
<th>Tg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB3</td>
<td>2</td>
<td>DCH</td>
<td>m-Kresol</td>
<td>466</td>
<td>128</td>
</tr>
<tr>
<td>MB9</td>
<td>2</td>
<td>DCH</td>
<td>3,5-Xylenol</td>
<td>497</td>
<td>125</td>
</tr>
<tr>
<td>MB10</td>
<td>1</td>
<td>DCH</td>
<td>3,5-Xylenol</td>
<td>2036</td>
<td>93</td>
</tr>
</tbody>
</table>

Tabelle 5: Vergleich von ein- und zweistufigem Herstellverfahren.

* Bestimmt als Abmischung mit 5 Gew.-% Beschleuniger Tris-(2,4,6-dimethylaminomethyl)-phenol (Araldite HY-960, Vantico)

Aus Tabelle 5 ist ersichtlich, dass sowohl ein- als auch zweistufige Verfahren zu geeigneten Mannichbasen beziehungsweise zu geeigneten
Zusammensetzungen führen, dass aber das zweistufige Verfahren vorteilhaft, sowohl in der Viskosität als auch der Glasumwandlungstemperatur ist.

Beispiele: Verwendung als Klebstoff

Es wurden die folgenden, in Tabelle 6 angebenden, Härterkomponenten hergestellt. Diese wurden zusammen mit der bereits beschriebenen Epoxidharz-Komponente ausgehärtet. Im Falle der gefüllten Komponente wurde zur Aushärtung in Bsp. 4 ebenfalls eine gefüllte Harzkomponente verwendet, die aus 25 Gew.-% Harz, 60 Gew.-% Quarzsand sowie 15 Gew.-% Quarzmehl bestand.

Die Zugfestigkeit wurde an Prüfkörpern, welche bei 23°C und 50 % relativer Luftfeuchtigkeit während 7 Tagen ausgehärtet wurden, nach ISO 527 mit einer Zuggeschwindigkeit von 5 mm/min bestimmt.

Die Stahlfestigkeit wurde auf verklebten Stahlprüfkörpern, welche bei 23°C und 50 % relativer Luftfeuchtigkeit während 7 Tagen ausgehärtet wurden, nach ISO 4624 mit 100 N/s bestimmt.

<table>
<thead>
<tr>
<th></th>
<th>Bsp.1</th>
<th>Bsp.2</th>
<th>Bsp.3</th>
<th>Bsp.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Härterkomponente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB1 (Gew.-%)</td>
<td>95</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MB6 (Gew.-%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>MB7 (Gew.-%)</td>
<td>-</td>
<td>95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MB8 (Gew.-%)</td>
<td>-</td>
<td>-</td>
<td>95</td>
<td>-</td>
</tr>
<tr>
<td>Tris-(2,4,6-dimethylaminomethyl)-phenol (Gew.-%)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Quarzsand (Gew.-%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>32</td>
</tr>
<tr>
<td>Quarzmehl (Gew.-%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>47</td>
</tr>
<tr>
<td>Zugfestigkeit (MPa)</td>
<td>31</td>
<td>41</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Stahlfestigkeit (MPa)</td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Tg (°C)</td>
<td>101</td>
<td>110</td>
<td>108</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabelle 6 Zummmensetzungen als Klebstoff.
Patentansprüche

1. Zweikomponentige Epoxidharz-Zusammensetzung, dadurch gekennzeichnet, dass sie in der Härter-Komponente mindestens eine Mannichbase enthält und nach Aushärtung bei einer Temperatur zwischen 5°C und 60°C eine Glasumwandlungstemperatur von mehr als 80°C aufweist.

2. Zweikomponentige Epoxidharz-Zusammensetzung gemäß Anspruch 1, dadurch gekennzeichnet, dass für die Herstellung der Mannichbase eine phänolische Verbindung der Formel (I) oder (II)

\[
\begin{align*}
\text{(I)} & \\
\text{(II)}
\end{align*}
\]

mit \(R^1 = H\) oder \(CH_3\),

sowie Formaldehyd und mindestens ein Polyamin verwendet werden.

3. Zweikomponentige Epoxidharz-Zusammensetzung gemäß Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass für die Herstellung der Mannichbase eine phänolische Verbindung der Formel (I) mit \(R^1 = H\) verwendet wird.

4. Zweikomponentige Epoxidharz-Zusammensetzung gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für die Herstellung der Mannichbase in einer ersten Stufe mindestens eine phänolische Verbindung der Formel (I) oder (II) mit Formaldehyd in
Gegenwart eines tertiären Amins zur Reaktion gebracht wird und in einer
darauf folgenden Stufe mit mindestens einem Polyamin umgesetzt wird.

5. Zweikomponentige Epoxidharz-Zusammensetzung gemäß Anspruch 4,
dadurch gekennzeichnet, dass das tertiäre Amin die Formel (III) aufweist

\[
\begin{align*}
\text{R}^2 & \quad \text{N} \quad \text{R}^2 \\
\text{H}_2 & \quad \text{H} \\
\text{NH}_2 & \quad \text{NH}_2 \\
\end{align*}
\]

(III)

mit \(\text{R}^2 = \text{C}_1-\text{C}_6\)-Alkyl und \(n = 1, 2, \) oder 3.

6. Zweikomponentige Epoxidharz-Zusammensetzung gemäß einem der
vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die
Mannichbase nebst sekundären auch primären Aminogruppen aufweist.

7. Zweikomponentige Epoxidharz-Zusammensetzung gemäß einem der
vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das
Polyamin ausgewählt ist aus der Gruppe umfassend DAMP, IPDA, 1,3-
und 1,4-Diaminocyclohexan, 1,2-Diaminocyclohexan 1,3- und 1,4-Butan-
diamin, 1,3- und 1,5-Pentandiamin, MPMD, 1,3-Xylyldiamin, 1,3-Bis-
(aminomethyl)cyclohexan, Diethylentriamin, Triethylentetramin (3,8-
Diazaoctamethylendiamin), Tetraethylpentamin, Pentamethylen-
hexamin, Dipropylentriamin, Tripropylentetramin, Tetrapropylpentamin,
4,7-Diaza-decamethylen-1,10-diamin, Bis-(4-aminocyclohexyl)-methan,
Bis-(4-amino-3-methylcyclohexyl)-methan, 3(4),8(9)-Bis-(aminomethyl)
-tricyc[5.2.1.0^2,6]decan sowie Mischungen davon.

8. Zweikomponentige Epoxidharz-Zusammensetzung gemäß einem der
vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das
Polyamin ausgewählt ist aus der Gruppe umfassend 1,3-Xylyldiamin,
1,3-Bis-(aminomethyl)cyclohexan, Diethylentriamin, Triethylentetramin
(3,6-Diaza-octamethylendiamin), Tetraethylpentamin, IPDA, 1,2-
Diaminocyclohexan, 4,7-Diaza-decamethylen-1,10-diamin sowie
Mischungen davon.
9. Zweikomponentige Epoxidharz-Zusammensetzung gemäß einem der
vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die
Aushärtung bei einer Temperatur zwischen 10°C und 50°C, insbesondere
zwischen 10°C und 30°C erfolgt.

10. Zweikomponentige Epoxidharz-Zusammensetzung gemäß einem der
vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach
Aushärtung die Glasumwandlungstemperatur über 100°C liegt,
sowie insbesondere zwischen 100°C und 150 °C liegt.

11. Verwendung einer zweikomponentigen Epoxidharz-Zusammensetzung
gemäß einem der Ansprüche 1 bis 10 als Klebstoff.

12. Verwendung einer zweikomponentigen Epoxidharz-Zusammensetzung
gemäß Anspruch 11, dadurch gekennzeichnet, dass der Klebstoff zur
strukturellen Verstärkung eingesetzt wird.

13. Verwendung einer zweikomponentigen Epoxidharz-Zusammensetzung
gemäß Anspruch 12, dadurch gekennzeichnet, dass der Klebstoff für
das Verkleben von faserverstärkten Composites mit Bauwerken
verwendet wird.

14. Verwendung einer zweikomponentigen Epoxidharz-Zusammensetzung
gemäß einem der Ansprüche 1 bis 10 als Kunststoff-Matrix für die
Herstellung von faserverstärkten Composites.

15. Faserverstärkte Composites, dadurch gekennzeichnet, dass zu ihrer
Herstellung eine zweikomponentige Epoxidharz-Zusammensetzung
gemäß einem der Ansprüche 1 bis 10 verwendet wird.
16. Verfahren zum Verkleben, dadurch gekennzeichnet, dass eine zweikomponentige Epoxidharz-Zusammensetzung gemäß einem der Ansprüche 1 bis 10 auf mindestens eine Festkörperoberfläche angebracht wird und anschliessend mit mindestens einer weiteren Festkörperoberfläche kontaktiert wird.

17. Ausgehärtete Produkte, welche aus einer zweikomponentigen Epoxidharz-Zusammensetzung gemäß einem der Ansprüche 1 bis 10 erhalten wurden.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>C08L63/00 C08G59/50 C08G59/62</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 7 C08L C08G</td>
</tr>
</tbody>
</table>

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2002/019463 A1 (SCHERZER WOLFGANG ET AL) 14 February 2002 (2002-02-14) paragraphs 0026! - 0032!, 0043!; claims 1,3</td>
<td>1-17</td>
</tr>
<tr>
<td>X</td>
<td>US 6 465 601 B1 (WIESENDANGER ROLF ET AL) 15 October 2002 (2002-10-15) column 1, line 39 - column 2, line 45; claims 1-3; example 1; table 2</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 * "A" document defining general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish publication date of another document or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Date of actual completion of the international search: 20 August 2004

Date of mailing of the international search report: 02/09/2004

Authorized officer: Zeslawski, W
INTERNATIONAL SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00/01659 A (CIBA SC HOLDING AG) 13 January 2000 (2000-01-13) page 8, line 12 - page 11, line 2; claims 17,18</td>
<td>1,4,6, 9-17</td>
</tr>
<tr>
<td>X</td>
<td>US 5 783 644 A (ANDO KAZUHIKO ET AL) 21 July 1998 (1998-07-21) page 1, lines 9,10 column 2, line 9 - column 3, line 7 column 11, line 24 - column 13, line 55 column 15, line 26 - line 45; claim 1; tables 1,2,4</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>US 4 129 556 A (ZONDLER HELMUT ET AL) 12 December 1978 (1978-12-12) the whole document</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>US 4 698 401 A (KLEIN DIETER H ET AL) 6 October 1987 (1987-10-06) the whole document</td>
<td>1-17</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002037862 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 265484 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5828501 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2402454 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1419573 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60103042 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0172869 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1268603 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003528952 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9913665 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1127531 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59904762 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1114076 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0015687 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2193746 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002524629 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1114076 T</td>
</tr>
<tr>
<td>WO 0001659 A</td>
<td>13-01-2000</td>
<td>AU 755205 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4775599 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9911692 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1307557 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69911775 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69911775 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2207246 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002519480 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6262148 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69606934 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69606934 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0758661 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5688876 A</td>
</tr>
<tr>
<td>US 4129556 A</td>
<td>12-12-1978</td>
<td>CH 602857 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1109997 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2754535 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2373569 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1546259 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 53073300 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 556197 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3930985 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8504999 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1244990 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3563628 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 434385 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8505313 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0154789 A1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8606432 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 853744 A ,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 57889 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 74200 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 163158 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61500071 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 63023207 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9200722 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 853823 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 161264 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 34089 G</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C08L63/00 C08559/50 C08559/62

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE
Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C08L C08G

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Beitrach kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absätze ‘0026! – ‘0032!, ‘0043!; Ansprüche 1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absätze ‘0009! – ‘0021!, ‘0025! – ‘0027!, ‘0055!; Ansprüche 1,6–8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spalte 1, Zeile 39 – Spalte 2, Zeile 45; Ansprüche 1-3; Beispiel 1; Tabelle 2</td>
<td></td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche
20. August 2004

Abschließendes Datum des internationalen Recherchenberichts
02/09/2004

Name und Postanschrift der internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5816 Patentlaan 2 NL-2280 HV Ridderkerk
Tel. (+31-70) 340-2040, Fax: 31 651 epos nl

Bevollmächtigter Bediensteter
Zeslawski, W
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>
| X | WO 00/01659 A (CIBA SC HOLDING AG)
Seite 8, Zeile 12 - Seite 11, Zeile 2;
Ansprüche 17,18 | 1,4,6,
9-17 |
| X | US 5 783 644 A (ANDO KAZUHIKO ET AL)
Seite 1, Zeilen 9,10
Spalte 2, Zeile 9 - Spalte 3, Zeile 7
Spalte 11, Zeile 24 - Spalte 13, Zeile 55
Spalte 15, Zeile 26 - Zeile 45; Anspruch 1; Tabellen 1,2,4 | 1-17 |
| A | US 4 129 556 A (ZONDLER HELMUT ET AL)
12. Dezember 1978 (1978-12-12)
das ganze Dokument | 1-17 |
| A | US 4 698 401 A (KLEIN DIETER H ET AL)
das ganze Dokument | 1-17 |
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 2002037862 A2</td>
<td>06-02-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 265484 T</td>
<td>15-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5828501 A</td>
<td>08-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2402454 A1</td>
<td>04-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1419573 T</td>
<td>21-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60103042 D1</td>
<td>03-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0172869 A2</td>
<td>04-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1268603 A2</td>
<td>02-01-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003528952 T</td>
<td>30-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9913665 A</td>
<td>05-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1127351 B</td>
<td>12-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59094762 D1</td>
<td>30-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1114076 T3</td>
<td>07-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0015687 A1</td>
<td>23-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2193746 T3</td>
<td>01-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002524629 T</td>
<td>06-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1114076 T</td>
<td>31-07-2003</td>
</tr>
<tr>
<td>WO 0001659 A</td>
<td>13-01-2000</td>
<td>AU 755205 B2</td>
<td>05-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4775599 A</td>
<td>24-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9911692 A</td>
<td>20-03-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1307557 T</td>
<td>08-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69911775 D1</td>
<td>06-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69911775 T2</td>
<td>06-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2207246 T3</td>
<td>16-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002519480 T</td>
<td>02-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6262148 B1</td>
<td>17-07-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69606934 D1</td>
<td>13-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69606934 T2</td>
<td>19-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0758661 A2</td>
<td>19-02-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5688876 A</td>
<td>18-11-1997</td>
</tr>
<tr>
<td>US 4129556 A</td>
<td>12-12-1978</td>
<td>CH 602857 A5</td>
<td>15-08-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1109997 A1</td>
<td>29-09-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2754535 A1</td>
<td>15-06-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2373569 A1</td>
<td>07-07-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1546259 A</td>
<td>23-05-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 53073300 A</td>
<td>29-06-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 556197 B2</td>
<td>23-10-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3930985 A</td>
<td>27-08-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8504999 A</td>
<td>21-01-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1244990 A1</td>
<td>15-11-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3563628 D1</td>
<td>11-08-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 434385 A</td>
<td>25-09-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8503513 A1</td>
<td>15-08-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0154789 A1</td>
<td>18-09-1985</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(e) der Patentfamilie</td>
<td>Datum der Veröffentlichung</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 8606432 A1</td>
<td>01-10-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 853744 A, B,</td>
<td>27-09-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 57889 B1</td>
<td>05-05-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 74200 A</td>
<td>30-09-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 163158 A1</td>
<td>20-08-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61500071 T</td>
<td>16-01-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 63023207 B</td>
<td>16-05-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9200722 B1</td>
<td>21-01-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 853823 A</td>
<td>27-09-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 161264 B</td>
<td>17-04-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 34089 G</td>
<td>22-09-1989</td>
</tr>
</tbody>
</table>