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METHOD AND APPARATUS FOR 
CONVERTING DATA BETWEEN DIFFERENT 
WORD WIDTHS USING LINE GROUPING OF 

DATA SEGMENTS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the priority under 35 U.S.C. S 119 
of U.S. Provisional Patent Application No. 61/148,926 filed 
on Jan. 31, 2009 and entitled “Apparatus and Method for a 
Memory Controller', and also U.S. Provisional Patent Appli 
cation No. 61/148,927 filed on Jan. 31, 2009 and entitled 
Architecture for Advanced Integrated Circuit Providing 
Good Performance and Low Cost'. The disclosures of both of 
these provisional patent applications are hereby incorporated 
herein by reference in their entirety. 

FIELD OF THE INVENTION 

An embodiment of the invention relates to techniques for 
interfacing different circuits. More particularly, an embodi 
ment of the invention relates to techniques for converting data 
between different word widths. 

BACKGROUND OF THE INVENTION 

Programmable logic devices (PLDs) area well-known type 
of integrated circuit that can be programmed to perform 
specified logic functions. One type of PLD, the field program 
mable gate array (FPGA), typically includes an array of pro 
grammable tiles. These programmable tiles can include, for 
example, input/output blocks (IOBs), configurable logic 
blocks (CLBs), dedicated random access memory blocks 
(BRAM), multipliers, digital signal processing blocks 
(DSPs), processors, clock managers, delay lock loops 
(DLLs), and so forth. 

Each programmable tile typically includes both program 
mable interconnect and programmable logic. The program 
mable interconnect typically includes a large number of inter 
connect lines of varying lengths interconnected by 
programmable interconnect points (PIPs). The program 
mable logic implements the logic of a user design using 
programmable elements that can include, for example, func 
tion generators, registers, arithmetic logic, and so forth. 

The programmable interconnect and programmable logic 
are typically programmed by loading a stream of configura 
tion data into internal configuration memory cells that define 
how the programmable elements are configured. The con 
figuration data can be read from memory (e.g., from an exter 
nal PROM) or written into the FPGA by an external device. 
The collective states of the individual memory cells then 
determine the function of the FPGA. 

Another type of PLD is the Complex Programmable Logic 
Device, or CPLD. A CPLD includes two or more “function 
blocks' connected together and to input/output (I/O) 
resources by an interconnect Switch matrix. Each function 
block of the CPLD includes a two-level AND/OR Structure 
similar to those used in Programmable Logic Arrays (PLAS) 
and Programmable Array Logic (PAL) devices. In CPLDs, 
configuration data is typically stored on-chip in non-volatile 
memory. In some CPLDS, configuration data is stored on 
chip in non-volatile memory, then downloaded to volatile 
memory as part of an initial configuration (programming) 
Sequence. 

For all of these programmable logic devices (PLDs), the 
functionality of the device is controlled by data bits provided 
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2 
to the device for that purpose. The data bits can be stored in 
Volatile memory (e.g., static memory cells, as in FPGAs and 
some CPLDs), in non-volatile memory (e.g., FLASH 
memory, as in Some CPLDS), or in any other type of memory 
cell. 

Other PLDS are programmed by applying a processing 
layer, Such as a metal layer, that programmably interconnects 
the various elements on the device. These PLDs are known as 
mask programmable devices. PLDS can also be implemented 
in other ways, e.g., using fuse or antifuse technology. The 
terms “PLD and “programmable logic device include but 
are not limited to these exemplary devices, as well as encom 
passing devices that are only partially programmable. For 
example, one type of PLD includes a combination of hard 
coded transistor logic and a programmable Switch fabric that 
programmably interconnects the hard-coded transistor logic. 
PLDS are sometimes field programmed to define a memory 

controller that can interface the PLD to an external memory 
device. Circuitry within the PLD may include a user applica 
tion that utilizes a word width that is different from the word 
width of the memory. As data is transferred between the 
memory and the circuitry within the PLD, the data must be 
converted between the different word widths of the memory 
and the user application within the FPGA. A further consid 
eration in this regard is that, because the memory is an exter 
nal device, it could be any of a number of different memory 
devices that utilize various word widths. Although existing 
memory controllers programmed within PLDs have been 
generally adequate in regard to interfacing PLD circuitry to 
an external memory, they have not been entirely satisfactory 
in all respects. 

SUMMARY OF THE INVENTION 

One embodiment involves a circuit that includes configu 
ration identification structure configurable to identify a 
selected one of a plurality of different configurations each 
having associated therewith a respective one of a plurality of 
different integer numbers that are each greater than Zero, the 
integer number associated with the selected configuration 
being a selected integer number. The circuit further includes 
a first interface, a second interface, and a conversion section 
that is coupled to the first and second interfaces. The second 
interface includes a plurality of lines, the number of the lines 
being greater than or equal to the largest integer number in the 
plurality of integer numbers. The conversion section is 
responsive to the configuration identification structure, and 
organizes the lines of the second interface into line groups 
equal in number to the selected integer number, the conver 
sion section carrying out a conversion operation in which it 
Supplies to each line group a respective incoming data seg 
ment received through the first interface, wherein if the 
selected integer value is greater than one then the line groups 
are mutually exclusive and, during the conversion operation, 
a plurality of the incoming data segments equal in number to 
the selected number are successively received through the 
first interface and are Successively supplied to the respective 
line groups. 
A different embodiment involves a circuit that includes 

configuration identification structure configurable to identify 
a selected one of a plurality of different configurations each 
having associated therewith a respective one of a plurality of 
different integer numbers that are each greater than Zero, the 
integer number associated with the selected configuration 
being a selected integer number. The circuit further includes 
first and second interfaces, and a conversion section that is 
coupled to the first and second interfaces. The first interface 
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includes a plurality of lines, the number of the lines being 
greater than or equal to the largest integer number in the 
plurality of integer numbers. The conversion section is 
responsive to the configuration identification structure, and 
organizes the lines of the first interface into line groups equal 
in number to the selected integer number, the conversion 
section carrying out a conversion operation in which it Sup 
plies to the second interface a respective incoming data seg 
ment from each line group, wherein if the selected integer 
value is greater than one then the line groups are mutually 
exclusive and, during the conversion operation, the incoming 
data segments from the respective line groups are Supplied 
Successively to the second interface. 

Another embodiment relates to a method involving a cir 
cuit having configuration identification structure, a first inter 
face, and a second interface that includes a plurality of lines, 
the number of the lines being greater than or equal to the 
largest integer number in the plurality of integer numbers. 
The method includes: configuring the configuration identifi 
cation structure to identify a selected one of a plurality of 
different configurations each having associated therewith a 
respective one of a plurality of different integer numbers that 
are each greater than Zero, the integer number associated with 
the selected configuration being a selected integer number; 
organizing the lines of the second interface into line groups 
equal in number to the selected integer number, and carrying 
out a conversion operation in which each line group is Sup 
plied with a respective incoming data segment received 
through the first interface, wherein if the selected integer 
value is greater than one then the line groups are mutually 
exclusive and, during the conversion operation, a plurality of 
the incoming data segments equal in number to the selected 
number are successively received through the first interface 
and are Successively supplied to the respective line groups. 

Yet another embodiment relates to a method involving a 
circuit having configuration identification structure, having a 
first interface that includes a plurality of lines, the number of 
the lines being greater than or equal to the largest integer 
number in the plurality of integer numbers, and having a 
second interface. The method includes: configuring the con 
figuration identification structure to identify a selected one of 
a plurality of different configurations each having associated 
therewith a respective one of a plurality of different integer 
numbers that are each greater than Zero, the integer number 
associated with the selected configuration being a selected 
integer number, organizing the lines of the first interface into 
line groups equal in number to the selected integer number; 
and carrying out a conversion operation that includes Supply 
ing to the second interface a respective incoming data seg 
ment from each line group, wherein if the selected integer 
value is greater than one then the line groups are mutually 
exclusive and, during the conversion operation, the incoming 
data segments from the respective line groups are Supplied 
Successively to the second interface. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagrammatic view of an advanced field pro 
grammable gate array (FPGA) architecture that includes sev 
eral different types of programmable logic blocks. 

FIG. 2 is a diagrammatic view of another FPGA architec 
ture that is an alternative embodiment of and uses the same 
general architecture as the FPGA of FIG. 1, and that includes 
several different types of programmable logic blocks. 

FIG. 3 (which includes FIGS. 3A-3F) is a block diagram 
showing an apparatus in the form of a circuit that includes the 
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4 
FPGA of FIG. 1 and a dynamic random access memory 
(DRAM), the FPGA including a memory controller circuit. 

FIG. 4 is a high-level block diagram showing circuitry 
within a data port that is part of the memory controller circuit 
of FIG. 3. 

FIG. 5 is a block diagram showing in greater detail a 
control circuit that is part of the data port of FIG. 4. 

FIGS. 6-11 each depict a timing diagram showing various 
signals that occur within the control circuit of FIG. 5 during 
respective different operational configurations of the data 
port of FIG. 4. 

FIG. 12 is a block diagram showing in greater detail a read 
conversion circuit that is part of the data port of FIG. 4. 

FIG.13 is a block diagram showing in greater detail a write 
read conversion circuit that is part of the data port of FIG. 4. 

DETAILED DESCRIPTION 

FIG. 1 is a diagrammatic view of an advanced field pro 
grammable gate array (FPGA) architecture 100 that includes 
several different types of programmable logic blocks. For 
example, the FPGA architecture 100 in FIG. 1 has a large 
number of different programmable tiles, including multi-gi 
gabit transceivers (MGTs) 101, configurable logic blocks 
(CLBs) 102, random access memory blocks (BRAMs) 103. 
input/output blocks (IOBs) 104, configuration and clocking 
logic (CONFIG/CLOCKS) 105, digital signal processing 
blocks (DSPs) 106, specialized input/output blocks (I/O)107 
(e.g. configuration ports and clock ports), and other program 
mable logic 108 Such as digital clock managers, analog-to 
digital converters, system monitoring logic, and so forth. The 
FPGA 100 also includes dedicated processor blocks (PROC) 
110. 

In the FPGA 100, each programmable tile includes a pro 
grammable interconnect element (INT) 111 having standard 
ized connections to and from a corresponding interconnect 
element in each adjacent tile. Therefore, the programmable 
interconnect elements taken together implement the pro 
grammable interconnect structure for the illustrated FPGA. 
The programmable interconnect element (INT) 111 also 
includes the connections to and from the programmable logic 
element within the same tile, as shown by the examples 
included at the top of FIG. 1. 

For example, a CLB 102 can include a configurable logic 
element (CLE) 112 that can be programmed to implement 
user logic plus a single programmable interconnect element 
(INT) 111. A BRAM 103 can include a BRAM logic element 
(BRL) 113 in addition to one or more programmable inter 
connect elements. Typically, the number of interconnect ele 
ments included in a tile depends on the height of the tile. In the 
pictured embodiment, a BRAM tile has the same height as 
five CLBs, but other numbers (e.g., four) can also be used. A 
DSP tile 106 can include a DSP logic element (DSPL) 114 in 
addition to an appropriate number of programmable intercon 
nect elements. An IOB 104 can include, for example, two 
instances of an input/output logic element (IOL) 115 in addi 
tion to one instance of the programmable interconnect ele 
ment (INT) 111. As will be clear to those of skill in the art, the 
actual I/O pads connected, for example, to the I/O logic 
element 115 typically are not confined to the area of the 
input/output logic element 115. 

In the pictured embodiment, a columnar area near the 
center of the die (shown shaded in FIG. 1) is used for con 
figuration, clock, and other control logic. Horizontal areas 
109 extending from this column are used to distribute the 
clocks and configuration signals across the breadth of the 
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FPGA. In other embodiments, the configuration logic may be 
located in different areas of the FPGA die, such as in the 
corners of the die. 
Some FPGAs utilizing the architecture illustrated in FIG. 1 

include additional logic blocks that disrupt the regular colum 
nar structure making up a large part of the FPGA. The addi 
tional logic blocks can be programmable blocks and/or dedi 
cated logic. For example, the processor block PROC 110 
shown in FIG. 1 spans several columns of CLBs and BRAMs. 

FIG. 1 illustrates one exemplary FPGA architecture. For 
example, the numbers of logic blocks in a column, the relative 
width of the columns, the number and order of columns, the 
types of logic blocks included in the columns, the relative 
sizes of the logic blocks, the locations of the logic blocks 
within the array, and the interconnect/logic implementations 
included at the top of FIG.1 are purely exemplary. In an actual 
FPGA, more than one adjacent column of CLBs is typically 
included wherever the CLBs appear, to facilitate the efficient 
implementation of user logic, but the number of adjacent 
CLB columns varies with the overall size of the FPGA. 

FIG. 2 is a diagrammatic view of another FPGA architec 
ture 200 that is an alternative embodiment of and uses the 
same general architecture as the FPGA of FIG. 1, and that 
includes several different types of programmable logic 
blocks. The FPGA200 of FIG.2 includes CLBs 202, BRAMs 
203, I/O blocks divided into “I/O Banks' 204 (each including 
40 I/O pads and the accompanying logic), configuration and 
clocking logic 205, DSP blocks 206, clock I/O 207, clock 
management circuitry (CMT) 208, configuration I/O 217, and 
configuration and clock distribution areas 209. 

In the FPGA 200 of FIG. 2, an exemplary CLB 202 
includes a single programmable interconnect element (INT) 
211 and two different "slices', slice L (SL) 212 and slice M 
(SM) 213. In some embodiments, the two slices are the same 
(e.g. two copies of slice L, or two copies of slice M). In other 
embodiments, the two slices have different capabilities. In 
some embodiments, some CLBs include two different slices 
and some CLBs include two similar slices. For example, in 
some embodiments some CLB columns include only CLBs 
with two different slices, while other CLB columns include 
only CLBs with two similar slices. 

FIG. 3 (which includes FIGS. 3A-3F) is a block diagram 
showing an apparatus 230 in the form of a circuit that includes 
the FPGA 100 of FIG. 1, and a dynamic random access 
memory (DRAM) 232. The FPGA in FIG. 3 could alterna 
tively be the FPGA 200 of FIG. 2. FIG. 3 does not show 
everything in the FPGA 100. Instead, FIG. 3 shows only 
portions of the FPGA that are relevant to an understanding of 
the disclosed embodiment of the invention. 

The DRAM 232 is a standard double data rate (DDR) 
device with a standard memory interface. Alternatively, the 
DRAM 232 could be a memory of a different double data rate 
type (for example DDR2, DDR3, LPDDR, or mobile DDR). 
As another alternative, the DRAM 232 could be any of a 
variety of other memory devices. For example, the DRAM 
232 could be a memory of the type known as single data rate 
(SDR). The memory interface of the DRAM 232 includes a 
memory control input 233 for receiving MEMCTRL signals, 
a data interface 234 for receiving and outputting data, and an 
address input ADDR235 that receives a memory address. The 
data interface 234 is coupled to a data bus 236. The DRAM 
232 also includes an input 237 for receiving a signal MASK. 
As discussed in more detail later, the signal MASK can be 
used during a memory write to advise the DRAM 232 not to 
write data into certain memory locations within the memory 
aCCCSS, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
The DRAM 232 has a DRAM PIN COUNT that is an 

integer number representing the width of each memory loca 
tion in the DRAM, and that is also the width of the data 
interface 234 of the DRAM 232. For purposes of the follow 
ing discussion, it is assumed that the PIN COUNT of the 
DRAM 232 is 8 bits. Alternatively, however, the DRAM 
PIN COUNT could be 4 or 16 bits, or any other suitable 
number of bits. The DRAM 232 also has a memory burst 
length DRAM BL that is the number of memory words 
accessed during each memory access carried out by the 
DRAM 232. For purposes of the following discussion, it is 
assumed that the DRAM BL of the DRAM 232 is 8 words. 
Alternatively, however, the DRAM BL could be 4 words, or 
any other Suitable number of words. During each memory 
access, the DRAM 232 uses time slots equal in number to the 
DRAM BL, where one 8-bit word or memory location can be 
accessed during each time slot. In other words, during each 
memory access, the DRAM 232 has 8 timeslots during which 
it can read eight 8-bit words for a READ command, or write 
eight 8-bit words for a WRITE command. As a practical 
matter, during a WRITE command, less than 8 words may 
actually be written into the memory (as discussed in more 
detail later), but all 8 time slots still occur. During each 
memory access, the DRAM 232 can access up to eight 8-bit 
words, or 64bits in total. Accordingly, to transfer more than 
64 bits of data, a data transfer sequence involving an integer 
number of memory access cycles is needed, where the integer 
number is greater than or equal to 2. 
The DRAM 232 is conceptually divided into a series of 

contiguous blocks that are each equal in size to the 
DRAM BL and thus each have 64 bits, and that each have 
respective start and end memory address boundaries. READ 
and WRITE accesses each need to start and end on a bound 
ary. In instances where either the start or end memory address 
of a READ operation does not coincide with a boundary, the 
system ignores certain portions of memory blocks that are 
accessed during a READ. In instances where either the start 
or end memory address of a WRITE operation does not coin 
cide with a boundary, the signal MASK is used to tell the 
DRAM 232 to ignore selected memory locations that are not 
to be written during the memory access. 

In more detail, there are four different data transfer sce 
narios with regard to memory address boundaries. For 
example, a data transfer may have start and end memory 
addresses that each coincide with a memory boundary. In this 
case, no masking is needed. In another scenario, a data trans 
fer may have a start memory address that is aligned with a 
memory boundary and an end memory address that falls 
between memory boundaries. In this case, post-masking is 
carried out to ignore memory locations between the end 
memory address and the closest Subsequent memory address 
boundary. In yet another scenario, a data transfer may have a 
start memory address that falls between memory boundaries 
and an end memory address that is aligned with a memory 
address boundary. In this case, pre-masking is carried out to 
ignore memory locations between the start memory address 
and the closest previous memory address boundary. In a fur 
ther scenario, a data transfer may have start and end memory 
addresses that each fall between memory boundaries. In this 
case, both pre-masking and post-masking are needed. 
The FPGA 100 includes an FPGA fabric 238, and a 

memory controller 240 that serves as a data transfer portion. 
In regard to data to be written into or read from the DRAM 
232, the FPGA fabric 238 is configurable for transfers of data 
having one or more predetermined word widths. For example, 
the FPGA fabric 238 can be configured to receive and trans 
mit data having a word width of 32 bits, 64 bits, or 128 bits. 
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Alternatively, the FPGA fabric 238 could be designed to 
receive or transmit words having any other suitable width. In 
addition, the FPGA fabric 238 can be configured to receive 
and transmit data having a first word width that is one of 32, 
64, and 128 bits, and to also receive and transmit data having 
a second word width that is a different one of 32, 64, and 128 
bits. The memory controller 240 facilitates transfer of data 
between the FPGA fabric 238 and the DRAM 232. The 
memory controller 240 includes memory cells 239 that are 
configurable structure. The memory cells 239 store informa 
tion about the DRAM 232 and the memory controller 240. 
For example, the memory cells 239 store the memory burst 
length DRAM BL and the pin count DRAM PIN COUNT 
of the DRAM 232. Also, the memory cells 239 include data 
port configuration information for data ports that are in the 
memory controller 240, as well as priority information relat 
ing to command ports (command port priorities), as described 
in further detail later. The information stored in the memory 
cells 239 is specified by a user during field programming of 
the FPGA. 

The memory controller 240 includes a portion that is a data 
converter 241. The data converter 241 has an interface that is 
coupled to the data bus 236. Also, the data converter 241 has 
another interface that is coupled to a data bus 242 that is 32 
bits wide. In general, when the DRAM 232 is a DDR device, 
the data converter 241 converts data to and from the DDR 
format. More specifically, for a WRITE data transfer, the data 
converter 241 takes each word received from other circuitry 
within the memory controller, converts it into DDR format by 
splitting it into two halves, and then successively passes the 
two halves on to the DRAM 232. For a READ data transfer, 
the data converter captures each data word output by the 
DRAM 232, and synchronizes it to an internal clock signal of 
the memory controller 240. The data converter 241 takes two 
successive data words from the DRAM 232 (DDR format 
data), and combines them into a single larger data word that 
the data converter then passes on to other circuitry within the 
memory controller. 

Infurther detail, and as discussed above, the DRAM 232 in 
the disclosed embodiment has a PIN COUNT of 8 bits. With 
respect to data transfers between the DRAM 232 and the data 
converter 241, 8 bits of data are transferred on each edge of 
each pulse of a not-illustrated DQS signal. Accordingly, a 
total of 16 bits of data is transferred between the data con 
verter 241 and the DRAM 232 on each pulse of the DQS 
signal. Consequently, for a READ data transfer the data con 
verter 241 combines two 8-bit data words into a single 16-bit 
data word that is then passed on to other circuitry within the 
memory controller 240 over the data bus 242. For a WRITE 
data transfer, the data converter 241 takes each 16-bit data 
word arriving over the data bus 242, and divides it into two 
8-bit data words (DDR format data) that are successively sent 
to the DRAM 232 over the data bus 236. 

In an alternative embodiment the DRAM 232 could be a 
memory of the type known as a single data rate (SDR) device. 
In that situation, for both READ and WRITE data transfers, 
the data converter 241 would not alter the data passing 
through it in either direction. 

The memory controller 240 includes a data storage portion 
243 that is coupled between the FPGA fabric 238 and the data 
converter 241, and that is configurable by a user during field 
programming of the FPGA. The data storage portion 243 
temporarily stores data that is being transferred between the 
FPGA fabric 238 and the DRAM 232. The data storage por 
tion 243 includes eight independently controlled data ports 
244-251 that each include a first-in-first-out (FIFO) storage 
device serving as a storage element. Each of the data ports 
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244-251 can store up to 64 words that are each 32 bits wide. 
In addition, the data ports 244-251 can be concatenated dur 
ing field configuration. For example, two of the data ports 
244-251 can be concatenated to form a 64-bit data port, or 
four of the data ports 244-251 can be concatenated to form a 
128-bit data port. In this regard, the data storage portion 243 
can be configured to have (1) only 32-bit data ports, (2) a 
combination of 32-bit and 64-bit data ports, (3) only 64-bit 
data ports, or (4) only 128-bit data ports. In this manner, the 
memory controller 240 is configurable to facilitate transfer of 
FPGA data words having widths of 32, 64, and/or 128 bits. 
The data ports 244 and 246 provide unidirectional storage 

for data transfers from the DRAM 232 to the FPGA fabric 238 
(READ). The data ports 245 and 247 provide unidirectional 
storage for data transfers from the FPGA fabric 238 to the 
DRAM 232 (WRITE). The pair of data ports 244 and 245 and 
the pair of data ports 246 and 247 form respective bidirec 
tional dual data ports 252 and 253. The data ports 248-251 
also provide unidirectional data storage, and are each config 
urable to temporarily storing data during either READ or 
WRITE data transfers. The ports 248-251 must each be des 
ignated as either a read port or a write port during user con 
figuration, and that designation does not thereafter change. 
There are a variety of possible configurations for the data 
storage portion 243. 

In more detail, in one configuration the data storage portion 
243 is configured to have only 32-bit data storage elements. In 
this scenario, the data ports 244 and 246 each provide unidi 
rectional storage for READ data transfers and the data ports 
245 and 247 each provide unidirectional storage for WRITE 
data transfers. Moreover, the other four data ports 248-251 are 
independently configured so that each provides unidirec 
tional storage for one of READ data transfers or WRITE data 
transfers. Thus, the four data ports 248-251 could be config 
ured as (1) four data ports that each provide unidirectional 
storage for READ data transfers, (2) one data port that pro 
vides unidirectional storage for READ data transfers and 
three data ports that provide unidirectional storage for 
WRITE data transfers, (3) two data ports that provide unidi 
rectional storage for READ data transfers and two data ports 
that provide unidirectional storage for WRITE data transfers, 
(4) three data ports that provide unidirectional storage for 
READ data transfers and one data port that provides unidi 
rectional storage for WRITE data transfers, or (5) four data 
ports that each provide unidirectional storage for WRITE data 
transfers. 

In another scenario, the data storage portion 243 is config 
ured to have 64-bit data storage elements. For example, the 
data ports 244 and 246 can be concatenated and the data ports 
245 and 247 can be concatenated to form data storage ele 
ments that respectively provide for 64-bit READ and WRITE 
data transfers. When the data ports 244-247 are concatenated 
to form 64-bit storage elements, the data ports 248-251 can 
each be configured to operate as a 32-bit data port, or can 
alternatively be configured to define two 64-bit storage ele 
ments. For example, the data ports 248 and 250 can be con 
catenated to form a data storage element that handles 64-bit 
READ data transfers, and the data ports 249 and 251 can be 
concatenated to form a data storage element that handles 
64-bit WRITE data transfers. If the data ports 248-251 are 
concatenated to define two 64-bit storage elements, then the 
data ports 244-247 can be configured as either four 32-bit 
storage elements or as two 64-bit storage elements. 

In yet another scenario, the data storage portion 243 is 
configured to have only 128-bit storage elements. In this 
scenario, the data ports 244, 246, 248, and 250 are concat 
enated to form a data storage element that provides temporary 
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storage for 128-bit words during READ data transfers, and 
the data ports 245,247,249, and 251 are concatenated to form 
a data storage element that provides temporary storage for 
128-bit words during WRITE data transfers. 
To facilitate the discussion that follows, assume that in 

FIG. 3 the data storage portion 243 is configured to provide 
for a combination of 32-bit and 64-bit data storage elements. 
In particular, assume that the data ports 244 and 246 are 
concatenated and that the data ports 245 and 247 are concat 
enated to form two 64-bit storage elements that respectively 
provide temporary storage for READ and WRITE data trans 
fers. In addition, assume that the data ports 248 and 250 are 
each configured to provide temporary 32-bit storage for 
READ data transfers, while the data ports 249 and 251 are 
each configured to provide temporary 32-bit storage for 
WRITE data transfers. 

Each of the data ports 244-251 produces a status flag signal 
STATUS FLAG that is supplied to the FPGA fabric 238. In 
particular, status flag signals STATUS FLAG OR, STATUS 
FLAG OW, STATUS FLAG 1R, STATUS FLAG 1W, STA 
TUS FLAG 2, STATUS FLAG 3, STATUS FLAG 4, and 
STATUS FLAG 5 are respectively produced by the data ports 
244-251. Each STATUS FLAG signal indicates when the 
associated data port is empty if that data port is configured for 
READs, or indicates when that data port is full if the data port 
is configured for WRITEs. If two or four data ports are con 
catenated, then only one STATUS FLAG corresponding to 
the last of those concatenated data ports is actually used. For 
example, in the configuration of FIG. 3, the signal STATUS 
FLAG 1R for data port 246 is used to indicate when concat 
enated data ports 244 and 246 are empty, while STATUS 
FLAG OR for data port 244 is ignored. Similarly, the signal 
STATUS FLAG 1W for data port 247 is used to indicate when 
concatenated data ports 245 and 247 are full, while STATUS 
FLAG OW for data port 245 is ignored. Each of the STATUS 
FLAGs from the data ports 248 and 250 indicates when that 
data port is empty. Also, each of the STATUS FLAGs from the 
data ports 249 and 251 indicates when that data port is full. 
Each of the data ports 244-251 is coupled to a respective one 
of eight bidirectional buses 255-262 that each extend between 
that data port and the FPGA fabric 238, and that each include 
lines for control signals, as well as 32 lines for data signals. 
Each of the buses 255-262 and the associated STATUS FLAG 
signal serve as an interface between the fabric 238 and a 
respective one of the data ports 244-251. Each of the data 
ports 244-251 is also coupled to the common data bus 242 that 
is 32 bits wide. Also, the data ports 244-251 have respective 
enable inputs 282-289 for receiving respective active-high 
enable signals DF EN OR, DF ENOW, DF EN 1R, DF EN 
1W, DF EN 2, DF EN3, DF EN4, and DF EN 5. Each of 
these enable signals independently enables a respective data 
port 244-251 to accept and store data, or to output previously 
stored data. 

Each of the data ports 244-251 has a respective one of eight 
mask outputs 293-300 at which it can produce a respective 
one of eight active-high signals MASK OR, MASK 0W. 
MASK 1R, MASK 1W, MASK 2, MASK3, MASK 4, and 
MASK5. These mask signals each depend on the correspond 
ing enable signal. For example, consider data port 244. If the 
enable signal DF EN OR that is received at the enable input 
282 is asserted, the mask signal MASKOR at the mask output 
293 is set to a logic low. Conversely, if the enable signal 
DF EN OR that is received at the enable input 282 is deas 
serted, the mask signal MASK OR at the mask output 293 is 
set to a logic high. The memory controller 240 includes an 
eight-input NOR gate 284 with 8 inverting inputs that are 
coupled to the respective mask outputs 293-300 of the data 
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10 
ports 244-251. The NOR gate 284 outputs a signal MASK 
that is supplied to the mask input 237 of the DRAM 232. 
An explanation is now provided of the operation of the data 

storage portion 243 for a data transfer of a 64-bit word from 
the FPGA fabric 238 to the DRAM 232, or in other words a 
memory WRITE. As discussed above, it is being assumed for 
the sake of this discussion that data ports 245 and 247 are 
concatenated to form a 64-bit storage element. Assume that 
the 64-bits of data are to be supplied through the 64-bit data 
storage element defined by the concatenated ports 245 and 
247. The FPGA fabric 238 first checks the signal STATUS 
FLAG1W from the data port 247 in order to determine 
whether data ports 245 and 247 are currently full. If they are, 
then the fabric 238 waits. Otherwise, the fabric 238 can put 
data into the concatenated data ports 245 and 247. More 
specifically, the FPGA fabric 238 transfers half of the 64-bits 
in parallel across the data bus 255 and into the data port 245, 
while simultaneously transferring the other half of the 64 bits 
in parallel across the data bus 256 and into the data port 247. 
Later, the data ports 245 and 247 are sequentially enabled so 
that the 32 bits of data stored in each of these data ports are 
sequentially transferred across the data bus 242 and into the 
data converter 241 in Successive groups of sixteen bits. As 
previously discussed, the data converter 241 splits each 16-bit 
word into two 8-bit words that are then transferred succes 
sively across the data bus 236 and into the DRAM 232. 

In greater detail, first the enable signal DF EN 0W is 
asserted to enable the data port 245 so that the 32 bits in that 
data port are transferred in two Successive groups of sixteen 
bits to the data converter 241. The data converter 241 divides 
each 16-bit data word received from the data port 245 into a 
pair of 8-bit data words that conform with the DDR standard, 
and then successively transfers these two 8-bit data words 
over the data bus 236 to the DRAM 232. The data port 245 
remains enabled until all 32 bits have been transferred. Then, 
the enable signal DF ENOW is deasserted to disable the data 
port 245, and the enable signal DF EN 1W is asserted to 
enable the data port 247, so that the 32 bits in data port 247 are 
transferred in two successive groups of sixteen bits over the 
data bus 242 to the data converter 241. The data converter 241 
divides each 16-bit data word received from the data port 247 
into two 8-bit data words that conform with the DDR stan 
dard, and successively transfers these 8-bit data words over 
the data bus 236 to the DRAM 232. The data port 247 remains 
enabled until all 32 bits have been transferred. This is one 
example of how data is transferred from the FPGA fabric 238 
to the DRAM 232. 
An explanation is now provided of the operation of the data 

storage portion 243 for a data transfer of 64 bits of data from 
the DRAM 232 to the FPGA fabric 238 (READ). As dis 
cussed above, it is being assumed for the sake of this discus 
sion that data ports 244 and 246 are concatenated to form a 
64-bit storage element. Assume that the FPGA fabric 238 
decides the 64-bit data storage element defined by the con 
catenated data ports 244 and 246 is to be used for the transfer. 
The DRAM 232 supplies to the data converter 241 the 64 bits 
of data as eight Successive 8-bit words. Then, as previously 
explained, the data converter 241 combines successive pairs 
of the 8-bit words to obtain four 16-bit words, and then it 
supplies the 64 bits of data over the data bus 242 to the data 
ports 244 and 246 in successive words or groups of 16 bits 
each. The enable signals DF EN OR and DF EN 1R are 
sequentially asserted so that the data ports 244 and 246 are 
sequentially enabled to store this incoming data. First the 
enable signal DF EN OR is asserted so that the data port 244 
accepts from the bus 242 two successive 16-bit words, until 
the 32-bit width of the data port 244 is filled. When the width 
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of the data port 244 is full, the enable signal DF EN OR is 
deasserted so that the data port 244 is disabled. Then the 
enable signal DF EN 1R is asserted so that the data port 246 
accepts from the bus 242 the next two successive 16-bit 
words. This is one example of how data is accepted and stored 
by the storage portion 243 during a READ transfer. This data 
is temporarily stored in the data storage portion 243 until the 
FPGA fabric 238 retrieves it. In this regard, the signal STA 
TUS FLAG 1R from data port 246 indicates to the fabric 238 
whether the concatenated data ports 244 and 246 are empty or 
contain data. If STATUS FLAG 1R indicates they contain 
data, then in due course the FPGA fabric 238 retrieves this 
data from the data ports 244 and 246 in a manner so that all 
64-bits are simultaneously transferred in parallel from the 
data ports 244 and 246 to the fabric over the two buses 255 and 
257. 
The memory controller 240 further includes a command 

storage portion 306 that is coupled to the FPGA fabric 238, 
and that includes six command ports 309-314. The six com 
mand ports 309-314 include two command ports 309 and 310 
that each correspond to a respective one of the two bidirec 
tional dual data ports 252 and 253, and includes four com 
mand ports 311-314 that each correspond to a respective one 
of the other four data ports 248-251. The command ports 
309-314 include FIFOs that can each store up to 4 commands 
each, for later processing by the memory controller 240. The 
command ports 309-314 each have an input that is coupled to 
a respective one of six command data lines CMD 0, CMD 1. 
CMD 2, CMD 3, CMD 4, and CMD 5, which are each also 
coupled to the FPGA fabric 238. The command storage por 
tion 306 receives commands from the FPGA fabric 238 that 
call for transfers of databetween the FPGA fabric 238 and the 
DRAM 232. 
The command ports 309-314 each have an input for receiv 

ing a respective one of six active-high signals CMD STATUS 
FLAG 0, CMD STATUS FLAG 1, CMD STATUS FLAG 2, 
CMD STATUS FLAG 3, CMD STATUS FLAG 4, and CMD 
STATUS FLAG 5. Each of these signals indicates to the 
associated command port that a command is being read from 
that command port. Moreover, the command ports 309-314 
each have an output that provides a respective one of six 
active-high signals FULL FLAG 0, FULL FLAG 1, FULL 
FLAG 2, FULL FLAG 3, FULL FLAG 4, and FULL FLAG 5 
to the FPGA fabric 238, in order to indicate when that com 
mand port is full. In addition, the command ports 309-314 
each have an output that provides a respective one of six 
active-high signals EMPTY FLAG 0, EMPTY FLAG 1, 
EMPTY FLAG 2, EMPTY FLAG 3, EMPTY FLAG 4, and 
EMPTY FLAG5. Each of these EMPTY FLAG signals indi 
cates when the corresponding command port is empty. 
The command port priorities stored in the memory cells 

239 inform the memory controller 240 of a user-specified 
order in which the command ports should be polled and read. 
During operation of the memory controller 240, the command 
ports are checked in an order specified by the command 
priorities, and the first command port that is not empty and 
meets some other conditions is selected. In that regard, the 
memory controller 240 includes a command selector 318 that 
is a six-to-one selector for selecting one of the six command 
ports 309-314. The command selector 318 has six inputs that 
are each coupled to a respective one of the command ports 
309-314, a select input that receives a 3-bit select signal 
CMD PORT SEL, and an output to which it supplies a 
selected command CMD. 
The memory controller 240 includes a controller core 319 

that is coupled between the command selector 318 and the 
DRAM 232. The controller core 319 includes a command 
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request output 320 that outputs a signal CMD REQ for 
requesting that a command be read from the command Stor 
age portion 306, as discussed in more detail later. The con 
troller core 319 also has an input 321 that receives a signal 
CMD IN. The signal CMD IN indicates that a command is 
currently being read from the command storage portion 306. 
The controller core 319 further includes a command input 
324 that is coupled to the output of the selector 318, and that 
receives a command CMD. In addition, the controller core 
319 includes a command count input 325 that receives a 
signal CMD CNT. The signal CMD CNT is received when a 
command is being read from the command storage portion 
306, and indicates the minimum number of memory access 
cycles that must be executed by the DRAM 232 in order to 
carry out the data transfer request in the selected command. 
The controller core 319 also includes a FIFO 328 that is a 
storage section for temporarily storing information about 
each command received from the output of the command 
selector 318. The FIFO 328 stores up to 4 words, and there 
fore can store information relating to up to 4 commands 
received from the output of the command selector 318. This 
information is later used by the controller core 319 when 
executing those commands. For example, for each command, 
the FIFO 328 stores a memory address from the command, 
and information indicating whether the command is a read or 
write request. Also, the FIFO328 stores the CMD CNT value 
provided for that command at the command count input 325. 
The controller core 319 has outputs that supply control and 

addressing signals to the DRAM 232 for execution of a com 
mand. In particular, the controller core 319 includes a 
memory control output 329 that supplies the signals MEM 
CTRL to the memory control input 233 of the DRAM 232. 
Moreover, the controller core 319 includes a memory address 
output ADDR 330 that supplies a memory address to the 
memory address input ADDR 235 of the DRAM 232. In 
addition, the controller core 319 includes an output 331 at 
which it produces a memory read enable signal MEMORY 
READ EN that is actuated at the start of a memory READ. 
Also, the controller core 319 includes an output 332 at which 
it produces a memory write enable signal MEMORY WRITE 
EN that is actuated at the start of a memory WRITE. 

In the course of operation, the controller core 319 requests 
a command by producing the signal CMD REQ at the output 
320. In due course, the controller core 319 receives the signal 
CMD IN at the input 321, which indicates that a command is 
being read from the command storage portion 306 and is 
present at the command input 324 of the controller core 319. 
The controller core 319 also receives the signal CMD CNT at 
its input 325. The controller core 319 stores in its FIFO 328 
Some of the information from the command that is being read 
in, along with the CMD CNT value, as discussed above. The 
controller core 319 repeats this process in an effort to keep the 
FIFO 328 filled with information and CMD CNT values for 
up to four different commands, pausing temporarily when 
ever the FIFO 328 happens to be full. Meanwhile, the con 
troller core 319 is separately and independently executing 
these commands as they reach the opposite end of the FIFO 
328. At any time, when the controller core 319 is ready to 
execute a command that has reached the end of the FIFO 328, 
the controller core 319 uses the information about the com 
mand from the FIFO328 to supply the appropriate addressing 
and control signals to the DRAM 232. 
The memory controller 240 includes an arbiter 338 that 

determines the order in which commands are read in from the 
command ports, based in part on the priority information 
stored in the memory cells 239. Also, the arbiter 338 controls 
the data ports 244-251 in a manner causing them to partially 
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assemble and disassemble data that is being transferred 
between the FPGA fabric 238 and the DRAM 232, as outlined 
earlier. 
The arbiter 338 is coupled to the command storage portion 

306, the command selector 318, the memory cells 239, the 
controller core 319, and the data storage portion 243. The 
arbiter has a set of inputs 343-346 that are coupled to the 
memory cells 239 and that respectively receive the memory 
burst length DRAM BL, the memory pin count DRAMPIN 
COUNT, the data port configuration, and the command port 
priorities. The arbiter 338 also has a set of command port 
empty flag inputs 350-355 that each receive a respective one 
of the EMPTY FLAG signals from the command ports 309 
314. These signals let the arbiter know whether or not each of 
the command ports 309-314 is currently empty. In addition, 
the arbiter 338 has a command request input 359 that receives 
the signal CMD REQ from the command request output 320 
of the controller core 319. In response to receiving the signal 
CMD REQ from the controller core 319, the arbiter 338 
selects and reads a command from one of the command ports 
309-314 in the command storage portion 306, as discussed 
later. 
The arbiter 338 includes a command port select output 360 

for supplying the select signal CMD PORT SEL that con 
trols the six-to-one selector 318. The signal CMD PORT 
SEL selects which one of the command ports 309-314 should 
be read, based on factors such as the command port priorities 
stored in the memory cells 239, and the EMPTY FLAG 
signals. The handling of priorities is discussed in more detail 
later. 
The arbiter 338 further has a command input 361 that is 

coupled to the output of the selector 318, and that receives the 
selected command CMD. Moreover, the arbiter 338 includes 
some FIFOs 362 that store information about a command 
received at the command input 361, and other information 
determined by the arbiter, as discussed in more detail later. 
Each of the FIFOs 362 can store up to 4 words. 

In addition, the arbiter 338 includes a set of command port 
status outputs 364-369 that each supply a respective one of 
the six signals CMD STATUS FLAGS 0-5 to a respective one 
of the command ports 309-314. In addition, the arbiter 338 
has an output 375 that supplies the signal CMD IN to the 
controller core 319 to indicate that a command is being read 
from the command storage portion 306. Moreover, the arbiter 
338 includes a command count output 376 that supplies the 
CMD CNT value to the command count input 325 of the 
controller core 319. 
The arbiter 338 includes a memory read enable input 381 

that is coupled to the memory read enable output 331 of the 
controller core 319, and that receives the signal MEMORY 
READ EN. In addition, the arbiter 338 includes a memory 
write enable input 382 that is coupled to the memory write 
enable output 332 of the controller core 319, and that receives 
the signal MEMORY WRITE EN. The arbiter further 
includes a SUBPORT FIFO 383 that Stores the addresses of 
selected data ports 244-251 that are currently being used for 
a data transfer. The SUBPORT FIFO 383 is 4 words deep, and 
therefore can store up to four addresses. For example, in a 
32-bit data transfer, only one of the 32-bit data ports 244-251 
is used, and the SUBPORT FIFO 383 stores only one data 
port address. In a 64-bit data transfer, two of the 32-bit data 
ports 244-251 are used, and the SUBPORT FIFO 383 stores 
two data port addresses. In a 128-bit data transfer, four of the 
32-bit data ports are used, and the SUBPORT FIFO 383 stores 
four data port addresses. 
The arbiter 338 also includes a set of enable outputs 391 

398 that are each coupled to a respective one of the data ports 
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344-251, and that each carry a respective one of the enable 
signals DF EN OR, DF EN OW, DF EN 1R, DF EN 1W, 
DF EN 2, DF EN3, DF EN4, and DF EN 5. 

In operation, the arbiter 338 receives a command request 
signal CMD REQ from the controller core 319. The com 
mand request signal CMD REQ prompts the arbiter 338 to 
read a command CMD from the command storage portion 
306. In more detail, the arbiter 338 selects a command port 
from the command storage portion 306 via the selector 318. 
The selection is based on factors that include the command 
priorities stored in the memory cells 239, and the signals 
EMPTY FLAG 0-5 that are received at the inputs 343-346. 
The arbiter 338 goes through the EMPTYFLAG signals from 
the command ports in a predetermined sequence defined by 
the command priorities, and selects the first command port 
that is not empty. 
When a command is read from the command storage por 

tion 306, the command CMD is supplied to the output of the 
selector 318. That command CMD arrives at the command 
input 361 of the arbiter 338. The arbiter 338 extracts certain 
information from the command CMD, and stores that infor 
mation in the FIFOs 362. For example, from the command 
CMD, the arbiter 338 extracts a portion of the memory 
address, a user burst length that is the amount of data 
requested to be transferred, and the address of the data port 
through which the data is to be transferred. In addition, the 
arbiter 338 generates masking information (discussed in 
greater detail later) that is stored in the FIFOs 362 and that 
indicates whether it is necessary to ignore portions of 
memory blocks that are accessed in carrying out a data trans 
fer. Also, the arbiter 338 sends the controller core 319 the 
signal CDM IN to indicate to the controller core 319 that a 
command is being read in. Moreover, the arbiter 338 gener 
ates and sends the value CMD CNT to the controller core 319 
for that command. In addition, after a command has been read 
in, the arbiter 338 actuates a respective one of the signals 
CMD STATUS FLAG 0-5, in order to advise the selected 
command port that a command is being read from that com 
mand port. After one or more commands have been read by 
the arbiter 338, the arbiter waits for one of the signals 
MEMORY READEN and MEMORY WRITE EN to go high. 
If the signal MEMORY READEN goes high, the arbiter 338 
facilitates a read transfer, as discussed in more detail below. If 
the signal MEMORY WRITE EN goes high, the arbiter 338 
facilitates a write transfer, as also discussed in more detail 
below. 
A high-level description of the operation of the entire 

memory controller 240 will now be provided. The memory 
controller 240 facilitates transfers of data between the FPGA 
fabric 238 and the DRAM 232. As discussed above, for pur 
poses of this discussion it is being assumed that the DRAM 
232 has a burst length of 8 words, and that the word width of 
the DRAM is 8 bits. Also recall that, for purposes of this 
discussion, it is being assumed that the data port configuration 
is such that the data ports 244 and 246 are concatenated for 
64-bit read transfers, the data ports 245 and 247 are concat 
enated for 64-bit write transfers, data ports 248 and 250 are 
each separately configured for 32-bit read transfers, and data 
ports 249 and 251 are each configured for 32-bit write trans 
fers. Before providing a write command to the command 
storage portion 306, the FPGA fabric 238 loads the data to be 
transferred into the appropriate data port. For example, the 
FPGA fabric looks at the STATUS FLAG signal from the 
particular data port that is to be used to temporarily store data 
for the transfer. When the STATUS FLAG is asserted, the 
corresponding data port is full, and the fabric 238 has to wait 
before providing that data port with data. When that STATUS 
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FLAG is deasserted, the corresponding data port is available 
to accept data. The FPGA fabric 238 can then supply all of the 
data to be transferred to the appropriate data port before 
providing the associated write command to the command 
storage portion 238. 
The FPGA fabric 238 supplies the command storage por 

tion 306 with commands in the following manner. The FPGA 
fabric 238 checks to see ifa command port FIFO is full before 
loading a command into that command port. When any one of 
the command ports 309-314 is full, its FULL FLAG is 
asserted so that the FPGA fabric 238 knows that command 
port is full. The FPGA fabric 238 selectively loads commands 
into the command ports 309-314 that are not full, as necessary 
for desired memory reads or writes. In due course, the con 
troller core 319 requests that a command be read in from the 
command storage portion 306, by Supplying the signal CMD 
REQ to the arbiter 338. The arbiter 338 then selects a com 
mand port based on the EMPTY FLAG signals 350-353, and 
the command port priorities specified by the memory cells 
239. For example, as explained earlier, the arbiter 338 selects 
a command port by going through the EMPTY FLAGS of the 
command ports in a predetermined sequence that is defined 
by the command port priorities stored in the memory cells 
239, and by selecting the first command port in that sequence 
that is not empty. The arbiter 338 accesses the selected com 
mand port by sending the appropriate select signal CMD 
PORT SEL to the select input of the command selector 318. 
The selected command is then supplied to the output of the 
command selector 318. 
The command Supplied to the output of the command 

selector 318 makes its way to the command inputs 324 and 
361 of the controller core 319 and the arbiter 338, respec 
tively. The controller core 319 receives the command at its 
input 324, and extracts certain information from that com 
mand. Meanwhile, the arbiter 338 receives the same com 
mand at its input 361, and also extracts information from the 
command. 
The arbiter uses the DRAM BL, the DRAM PIN 

COUNT, and the DATA PORT CONFIGURATION from the 
memory cells 239, along with some information extracted 
from the command, to determine masking information and a 
value CMD CNT corresponding to that command. After 
determining the command count CMD CNT, the arbiter 338 
supplies the command count CMD CNT to the input 325 of 
the controller core 319. The arbiter 338 then supplies the 
signal CMD IN to the controller core 319 to indicate that a 
command is currently being read from the command storage 
portion 306, and is arriving at the input 324 of the controller 
core. The controller core 319 stores the CMD CNT value in 
the FIFO 328, along with information extracted from the 
command. Such as a starting memory address, and whether 
the memory access will be a READ or WRITE. Meanwhile, 
the arbiter 338 stores the mask information it has generated 
into the FIFOs 326, along with information extracted from the 
command, such as the userburst length, and the address of the 
data port that will be used for the transfer. The arbiter 338 
sends one of the signals CMD STATUS FLAGs 0-5 to the 
command port from which the command is being read, so that 
the command port knows that a command is being read from 
it. This process of filling up the FIFOs 328 and 362 in the 
controller core 319 and arbiter 338, respectively, is carried out 
generally continuously in an effort to keep the FIFOs filled 
with up to four commands, with temporary pauses whenever 
the FIFOs become temporarily full. 

Meanwhile, in parallel with this process of loading com 
mands into the FIFOs 328 and 362, the controller core 319 
and the arbiter 338 are executing commands as commands 
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reach the opposite ends of the FIFOs 328 and 362. When a 
command is executed by the controller core 319 and the 
arbiter 338, the information previously stored for that com 
mand in the FIFOs 328 and 362 is extracted and used to 
execute the command. 
The controller core 319 initiates execution of each com 

mand by sending the starting memory address to the ADDR 
input 235 of the DRAM 232, and by sending control signals 
to the MEMCTRL inputs 233 of the DRAM 232. Moreover, 
the controller core 319 supplies a read or write enable signal 
MEMORY READEN or MEMORY WRITEEN to the arbi 
ter 338 at one of its respective inputs 381 and 382. In response 
to receipt of either of these signals, the arbiter 338 reads from 
its FIFOs 362 the information for that command, and then 
loads the SUBPORT FIFO 383 with one or more data port 
addresses that are to be used for the data transfer. Based on the 
command and mask information stored in the FIFOs 362, the 
arbiter 338 selectively asserts the DF EN signals in a manner 
so that the particular data port(s) being used for that data 
transfer are enabled at appropriate times. 

For a READ data transfer, the DRAM 232 transfers data in 
successive words of 8 bits each over the data bus 236 and into 
the data converter 241. Each pair of successive 8-bit words 
that are supplied to the data converter 241 are combined into 
a single 16-bit word that is subsequently transferred over the 
data bus 242 to the data storage portion 243. The arbiter 338 
produces the appropriate enable signals DF EN so that the 
data is accepted by and stored in the appropriate data port or 
ports in the data storage portion 243. Eventually, 32 bits of 
data is stored in each data port being used for the 64-bit 
READ transfer. In due course, the FPGA fabric 238 simulta 
neously reads from the two data ports being used for the 
transfer the 32 bits of data stored in each of those data ports. 

For a WRITE data transfer, the arbiter 338 asserts one or 
more of the enable signals DF EN enable so that the 32 bits 
of data in each data port being used for the WRITE transfer 
are transferred in Successive groups of sixteen bits over the 
data bus 242 and into the data converter 241. Each 16-bit word 
that is supplied to the data converter 241 is divided into a pair 
of 8-bit data memory words that are successively transferred 
over the data bus 236 to the DRAM 232. In some situations, 
the start memory address and/or end memory address of the 
data being transferred falls on an address that is not on a 
memory address boundary. In Such a situation, as to memory 
locations in the memory access that are before and/or after the 
locations being written, no data port is enabled, and thus the 
signal MASK goes high to tell the DRAM 232 that it should 
not change data that is already in those memory locations. 
The eight data ports 244-251 are generally similar, and 

therefore only one of them is described in greater detail 
below. In particular, the data port 248 will now be discussed 
in more detail. FIG. 4 is a high-level block diagram showing 
circuitry within the data port 248. FIG. 4 does not show 
everything within the data port 248, but instead shows only 
portions of the circuitry that facilitate an understanding of the 
disclosed embodiment of the invention. As discussed earlier, 
the data port 248 includes a FIFO, which is shown at 401. The 
FIFO 401 can store up to 64 words that are each 32 bits wide. 
The FIFO 401 generates the status flag signal STATUS FLAG 
2, and in addition is coupled to the fabric 238 through the bus 
259. 
The data port 248 also includes a read conversion circuit 

406 that is coupled to the FIFO 401 by a 32-bit bus RPIN31: 
O>, and that is also coupled to the data converter 241 (FIG. 3) 
through the bus 242. As discussed earlier, the data converter 
241 takes DDR data from the DRAM memory 232, and 
converts it to SDR format, which is then passed to the data 
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port 248 over the bus 242. If the DRAM memory 232 is a 
DDR device that has a PIN COUNT (word width) of 4, 8 or 
16 bits, then the data converter 241 will convert this to words 
that are respectively 8, 16, or 32 bits. In configurations where 
the data converter 241 provides 8-bit or 16-bit words to the 
data port 248, a further data conversion is needed to convert 
these into 32-bit words that are compatible with the FIFO 
401. The read conversion circuit 406 performs this data con 
version, in a manner described in more detail later. 
The data port 248 also includes a write conversion circuit 

408, which is coupled to the FIFO 401 by a 32-bit bus 
WPIN-31:0>, and that is also coupled through the bus 242 to 
the data converter 241. In effect, the write conversion circuit 
408 is the functional opposite of the read conversion circuit 
406. In particular, in configurations where the data converter 
241 expects to receive 8-bit or 16-bit words from the data port 
248, the write conversion circuit 408 takes 32-bit words from 
the FIFO 401, and converts them into 8-bit or 16-bit words. 
The write conversion circuit 408 is described in more detail 
later. 
The data port 248 also includes a control circuit 411 that 

controls both the read conversion circuit 406 and the write 
conversion circuit 408. The control circuit 411 receives two 
system clock signals SYSCLK0 and SYSCLK90. In the dis 
closed embodiment, the signals SYSCLK0 and SYSCLK90 
are 400 MHZ clock signals that are synchronized with each 
other, but the signal SYSCLK90 has a phase lag of 90° with 
respect to the signal SYSCLK0. These clock signals could 
alternatively have some other frequency, and/or some other 
phase relationship. The control circuit 411 also receives the 
port enable signal DF EN2 that was discussed above in asso 
ciation with FIG.3. The data port 248 includes an inverter 413 
having an input coupled to the port enable signal DF EN2, 
and having an output that serves as the mask signal MASK2. 

FIG. 5 is a block diagram showing in greater detail the 
control circuit 411 within the data port 248 of FIG. 4. FIG.5 
does not show all of the circuitry within the control circuit 
411, but instead shows only portions of the circuitry that are 
relevant to an understanding of the disclosed embodiment of 
the invention. The control circuit 411 includes configurable 
memory cells 451 that serve as configuration identification 
structure, and that are similar to the memory cells 239 (FIG. 
3). The information stored in the memory cells 451 is speci 
fied by a user during field programming of the FPGA 100. The 
memory cells 451 store a binary bit that controls a signal 
RDWRB, which does not change after the memory cells 451 
are field programmed. As discussed earlier, the data port 248 
is configured during field programming to operate as either a 
read data port or a write data port. The signal RDWRB speci 
fies whether the data port 248 is to operate as a read data port 
or a write data port. In particular, if the signal RDWRB is a 
logic high, then the data port 248 operates as a read data port, 
whereas if RDWRB is a logic low, then the data port operates 
as a write data port. The memory cells 451 also store the value 
PIN COUNT which, as discussed earlier, is the word width 
of the DRAM memory 232, and is a value of either 4, 8 or 16. 
This is identically the same PIN COUNT value that is stored 
in the memory cells 239 (FIG. 3), but a duplicate value is 
stored locally at 451 for convenience. 
The control circuit 411 includes a decode circuit 453 that is 

responsive to the signal PIN COUNT from the memory cells 
451. The decode circuit 453 has three outputs MAX1, MAX2 
and MAX4, which after field programming are static and do 
not change. If the signal PIN COUNT is 4, then MAX4 is 
always a logic high, and MAX1 and MAX2 are always a logic 
low. If the signal PIN COUNT is 8, then MAX2 is always a 
logic high, and MAX1 and MAX4 are always a logic low. If 
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the signal PIN COUNT is 16, then MAX1 is always a logic 
high, and MAX2 and MAX4 are always a logic low. 
The decode circuit 453 also produces a 2-bit output signal 

MAX CYCLES, which after field programming is static and 
does not change. If the value of PIN COUNT is 4, 8 or 16, 
then the signal MAX CYCLES is respectively “10”, “01’, or 
“00 
The control circuit 411 includes a 2-bit counter 456, which 

is a Gray code counter. That is, the normal count sequence is 
“00”, “01”, “11”, and “10, so that only one bit changes at a 
time in order to avoid a possible race condition. The data 
inputs of the counter 456 are coupled to ground. An inverter 
457 inverts the system clock signal SYSCLK0, and supplies 
this inverted clock to a clock input of the counter 456. The 
counter 456 has an active-low reset input that is coupled to the 
port enable signal DF EN2. The output of the counter 456 is 
a 2-bit signal PINCYCLES. 
The control circuit 411 includes a compare circuit having 

one input coupled to the signal PINCYCLES from the output 
of the counter 456, and another input coupled to the signal 
MAX CYCLES from the output of the decode circuit 453. 
When signals at the two inputs of the compare circuit 461 are 
equal, the compare circuit 461 sets its output signal EQUAL 
to a logic one. Otherwise, the output of the compare circuit 
461 is a logic low. The output signal EQUAL from the com 
pare circuit 461 is coupled to a load enable input of the 
counter 456. The operation of the counter 456 will be dis 
cussed in more detail later. 
The control circuit 411 includes a further decode circuit 

464 having inputs coupled to the signal PIN CYCLES from 
the output of the counter 456. The decode circuit 464 has four 
outputs CYCLE1, CYCLE2, CYCLE3 and CYCLE4. For 
each of the four possible states of the counter 456, one of the 
outputs of the decode circuit 464 will be a logic high, and the 
other three will be a logic low. In particular, when the signal 
PIN CYCLES from the counter 456 is “00, then CYCLE1 
will be a logic high, and CYCLE2, CYCLE3 and CYCLE4 
will be a logic low. When the signal PINCYCLES from the 
counter 456 is “01, then CYCLE 2 will be a logic high, and 
CYCLE1, CYCLE3, and CYCLE4 will all be a logic low. 
When the signal PINCYCLES from the counter 456 is “11”, 
then CYCLE3 will be a logic high, and CYCLE1, CYCLE2 
and CYCLE4 will all be a logic low. When the signal PIN 
CYCLES from the counter 456 is “10, then CYCLE4 will be 
a logic high, and CYCLE1, CYCLE2 and CYCLE3 will all be 
a logic low. 
The control circuit 411 includes an inverter 468 having an 

input coupled to the system clock signal SYSCLK90. The 
control circuit 411 also includes four 3-input NAND gates 
471-474, which each have one input coupled to the output of 
the inverter 468, and which each have another input coupled 
to the signal RDWRB from the memory cells 451. The 
remaining input of each of the NAND gates 471-474 is 
coupled to a respective one of the signals CYCLE1. 
CYCLE2, CYCLE3 and CYCLE4 from decode circuit 464. 
The outputs of the NAND gates 471-474 are respective inter 
mediate signals SYSPULSE1, SYSPULSE2, SYSPULSE3, 
and SYSPULSE4. 
The control circuit 411 includes a selector 481 having three 

sections 481A, 481B and 481C that each function as a three 
to-one selector. These three selector sections are all con 
trolled in response to the memory word width signal PIN 
COUNT from the memory cells 451. In each of the selector 
sections 481A, 481B and 481C, one input is selected if the 
signal PIN COUNT indicates the memory word width is 4 
bits, another input is selected if the signal PIN COUNT 
indicates the memory width is 8 bits, and the remaining input 
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is selected if the signal PIN COUNT indicates the memory 
word width is 16 bits. As discussed earlier, the signal PIN 
COUNT becomes fixed at the time offield programming, and 
thus the selections made by each of the selector sections 
481A, 481B and 481C also become fixed at the time of field 
programming, and do not dynamically change during system 
operation. 

The “16' input of selector section 481A, the “16” input of 
selector section 481 B, and the “8” and “16’ inputs of selector 
section 481C are each coupled to the signal SYSPULSE1 
from gate 471. The “8” input of selector section 481A, the “8” 
input of selector section 481B, and the “4” input of selector 
section of 481C are each coupled to the signal SYSPULSE2 
from gate 472. The “4” input of selector section 481B is 
coupled to the signal SYSPULSE3 from gate 473. The “4” 
input of selector section 481A is coupled to the signal 
SYSPULSE4 from gate 474. The selector sections 481A, 
481B and 481C have respective outputs CP3, CP2 and CP1. 
The control circuit 411 includes a non-inverting buffer 488 
having an input coupled to the signal SYSPULSE1 from gate 
471. The buffer 488 outputs a signal CP0. 

The signals MAX1, MAX2, MAX4, RDWRB, CYCLE1, 
CYCLE2, CYCLE3, CYCLE4, and SYSCLK90 are all sup 
plied to the WRITE conversion circuit 408 (FIG. 4). The 
signals PIN COUNT, CP0, CP1, CP2 and CP3 are all sup 
plied to the READ conversion circuit 406 (FIG. 4). 
The operation of the control circuit 411 will now be 

described. During the foregoing discussion, it has been 
assumed for the purpose of convenience that the DRAM 
memory 232 (FIG. 3) has a word width of 8bits. However, the 
control circuit 411 operates differently for each of the various 
possible word widths of the DRAM memory 232. Accord 
ingly, for clarity, the operation of the control circuit 411 will 
be described separately for each permissible word width of 
the DRAM memory in the disclosed embodiment. Assume 
first that the memory cells 451 are configured during field 
programming so that the value PIN COUNT indicates the 
word width of the DRAM memory 232 is 4 bits, and so that 
the signal RDWRB is a logic high to indicate that the data port 
248 is to operate as a read data port. As discussed earlier, the 
output MAX4 from the decode circuit 453 will be a logic 
high, and the outputs MAX1 and MAX2 will each be a logic 
low. The output MAX CYCLES from the decode circuit 453 
will have the value '10'. In response to successive leading 
edges of the clock signal at its clock input, the counter 456 
will progressively count up through states “00”, “01”. “11”. 
and “10. When the counter reaches state “10, the compare 
circuit 461 will determine that its two inputs are equal, and 
will change its output signal EQUAL fro a logic low to a logic 
high, thereby actuating the load enable input of the counter 
456. Consequently, on the next leading edge at its clockinput, 
the counter 456 will be loaded with the value '00' from its 
data input, thereby restarting the count cycle. 
As the counter 456 successively counts through the states 

“00”, “01”, “11” and “10, the decode circuit 464 will respec 
tively actuate the signals CYCLE1, CYCLE2, CYCLE3 and 
CYCLE4. The gates 471-474 will all be enabled, because the 
signal RDWRB is a logic high. During each of the signals 
CYCLE1, CYCLE2, CYCLE3 and CYCLE4, the respective 
gates 471, 472, 473, and 474 will produce respective narrower 
active-low pulses on signals SYSPULSE1, SYSPULSE2, 
SYSPULSE3 and SYSPULSE4. The PIN COUNT signal 
will be causing each of the selector sections 481A, 481B and 
481C to always be selecting the “4” input thereof. As a result, 
the signals CP0, CP1, CP2 and CP3 will be respectively 
identical to the signals SYSPULSE1, SYSPULSE2, 
SYSPULSE3 and SYSPULSE4. FIG. 6 is a timing diagram 
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showing various signals that occur within the control circuit 
411 during operation with this particular configuration, in the 
manner just described. 
Assume next that the DRAM memory 232 still has a word 

width of 4 bits, but that the data port 248 has been configured 
during field programming to be a write data port rather than a 
read data port. In other words, the signal RDWRB from the 
memory cells 451 will be a logic low rather than a logic high. 
The effect on the circuit 411 is that the four NAND gates 
471-474 will all be disabled. As a result, each of the signals 
SYSPULSE1, SYSPULSE2, SYSPULSE3, SYSPULSE4, 
CP0, CP1, CP2 and CP3 will always be a logic high. FIG. 7 is 
a timing diagram showing various signals that occur within 
the control circuit 411 during operation with this particular 
configuration. 
Assume now that the DRAM memory 232 has a word 

width of 8 bits, and that the data port 248 is configured to be 
a read data port. The memory cells 451 will be set during field 
programming so that the signal PIN COUNT has a value of 8, 
and so that the signal RDWRB is a logic high. The signal 
MAX2 from the decode circuit 453 will be a logic high, and 
the signals MAX1 and MAX4 will each be a logic low. The 
signal MAX CYCLES from the decode circuit 453 will have 
a value "01. In this case, the counter 456 will count from 
state “00 to state “01, at which point the compare circuit 
461 will determine that its two inputs are equal, and will 
actuate the EQUAL signal at its output, thereby causing the 
counter to be loaded with the value “00 from its data input to 
restart the count cycle. As the counter 456 successively counts 
through the two states "00 and “01, the decode circuit 464 
will respectively actuate the signals CYCLE1 and CYCLE2. 
Since the counter 456 never reaches state “11” or state “10’, 
the signals CYCLE3 and CYCLE4 will each always be a 
logic low. In turn, the gates 471 and 472 will produce the 
signals SYSPULSE1 and SYSPULSE2, but the gates 473 and 
474 will not produce the signals SYSPULSE3 and 
SYSPULSE4. The selector sections 481A, 481B and 481C 
will each be continuously selecting the “8” input thereof. 
Consequently, the signals CP0 and CP1 will each be identi 
cally the same as the signal SYSPULSE1, and the signals CP2 
and CP3 will each be identical to the signal SYSPULSE2. 
FIG. 8 is a timing diagram showing various signals that occur 
within the control circuit 411 during operation with this con 
figuration. 
Assume now that the DRAM memory 232 has a word 

width of 8 bits, but that the data port 248 is configured to be a 
write data port rather thana read data port. In other words, the 
signal RDWRB from the memory cells 451 will always be a 
logic low, thereby disabling all of the gates 471-474. As a 
result, the signals SYSPULSE1, SYSPULSE2, 
SYSPULSE3, SYSPULSE4, CP0, CP1, CP2 and CP3 will all 
be a continuous logic high. FIG. 9 is a timing diagram show 
ing various signals that occur within the control circuit 411 
during operation with this configuration. 
Assume now that the DRAM memory 232 has a word 

width of 16 bits, and is to operate as a read data port. During 
field programming, the memory cells 451 are set so that the 
signal PIN COUNT has a value of 16, and so that the signal 
RDWRB is a logic high. The signal MAX1 from the decode 
circuit 453 will always be a logic high, and the signals MAX2 
and MAX4 will each always be a logic low. The signal MAX 
CYCLES from the decode circuit 453 will have a value of 
“00'. When the counter 456 is in its initial “00' state, the 
compare circuit 461 will determine that its two inputs are 
equal, and will actuate the EQUAL signal at its output. Con 
sequently, the loadenable input of the counter456 will always 
be enabled, and on every clock the counter 456 will be loaded 
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with the value"00 from its data input. As a result, the counter 
never has a chance to count, and never leaves its initial state of 
“00. Therefore, the output signal PIN CYCLES from the 
counter will always be "00'. As a result, the signal CYCLE1 
from the decode circuit 464 will be a continuous logic high, 
and the signals CYCLE2, CYCLE3 and CYCLE4 from the 
decode circuit 464 will each be a continuous logic low. The 
signal SYSPULSE1 will be equivalent to the system clock 
SYSCLK90, and the signals SYSPULSE2, SYSPULSE3 and 
SYSPULSE4 will each be a continuous logic high. The selec 
tor sections 481A, 481B and 481C will each be continuously 
selecting the “16’ input thereof, and thus the signals CP0. 
CP1, CP2 and CP3 will each be identically the same as the 
signal SYSPULSE1. FIG. 10 is a timing diagram showing 
various signals that occur within the control circuit 411 dur 
ing operation with this configuration. 
Assume now that the DRAM memory 232 has a word 

width of 16 bits, but that the data port 248 is configured to be 
a write data port rather than a read data port. In other words, 
the signal PIN COUNT from the memory cells 451 will have 
the value 16, and the signal RDWRB will be a logic low, and 
will disable each of the NAND gates 471-474. As a result, the 
signals SYSPULSE1, SYSPULSE2, SYSPULSE3, 
SYSPULSE4, CP0, CP1, CP2 and CP3 will each be a con 
tinuous logic high. FIG. 11 is a timing diagram showing 
various signals that occur within the control circuit 411 dur 
ing operation with this configuration. 

FIG. 12 is a block diagram showing in greater detail the 
read conversion circuit 406 of FIG. 4. The read conversion 
circuit 406 includes a selector 501 having seven sections 
501A, 501B, 501C, 501D, 501E, 501F and 501G that each 
function as a three-to-one selector. The selector 501 is con 
trolled by the signal PIN COUNT that specifies the memory 
word width, and the seven sections of the selector each have 
three inputs “4”, “8” and “16’ that correspond to the respec 
tive possible memory word widths of 4 bits, 8 bits and 16 bits 
in the disclosed embodiment. 
The read conversion circuit 406 receives signals from the 

data converter 241 (FIG. 3) on 32 lines DQIP<15:0> and 
DQIN<15:0>. The “4” input of selector section 501A, the “8” 
input of selector section 501B, the “4” input of selector sec 
tion 501C, the “4” input of selector section 501E, the “8” 
input of selector section 501F, and the “4” input of selector 
section 501G each receive the input signals DQIN<3:0>. The 
“8” input of selector section 501A, the “16’ input of selector 
section 501C, and the “8” input of selector section 501E each 
receive the input signals DQIN<7:4>. The “16' input of 
selector section 501A receives the input signals DQIN<15: 
12>. The “4” input of selector section501B, all three inputs of 
selector section 501D, and the “4” input of selector section 
501 Fall receive the input signals DQIP<3:0>. The “16' input 
of selector section 501D receives the input signals DQIN<11: 
8>. The “8” input of selector section 501C and the “8” and 
“16’ inputs of selector section 501G each receive the input 
signal DQIP<7:4>. The “16' input of selector section 501E 
receives the input signals DQIP<15:12). The “16” input of 
selector section 501F receives the input signals DQIP<11:8>. 
The selector sections 501A through 501G produce respective 
outputs MUX-31:28), MUX-27:24), MUX-23:20>, 
MUX<19:16>, MUX<15:12), MUX<11:8) and MUX<7: 
4>. 
The read conversion circuit 406 includes four 8-bit regis 

ters 521,522,523 and 524, which are respectively clocked by 
the signals CP3, CP2, CP1 and CP0 from the control circuit 
411. The data inputs of the register 521 are coupled to the 
signals MUX31:28) and MUX-27:24) from the outputs of 
selector sections 501A and 501B. The data inputs of the 
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register 522 are coupled to the signals MUX-23:20> and 
MUX-19:16> from the outputs of selector sections 501C and 
501D. The data inputs of the register 523 are coupled to the 
signals MUX<15:12) and MUX-11:8) from the outputs of 
selector sections 501E and 501F. The inputs to the register 
524 are coupled to the signals MUX-7:4 from the output of 
selector section 501G, and to the input signals DQIP<3:0>. 
The registers 521, 522, 523 and 524 produce respective out 
put signals onlines RPIN31:24), RPIN-23:16>, RPIN<15: 
8> and RPIN-7:02, which are all supplied to the FIFO 401 
(FIG. 4). The lines DQIP<15:0> and DQIN<15:0> represent 
an input interface, lines MUX<31:28), MUX-27:24), 
MUX<23:20>, MUX-19:16>, MUX<15:12), MUX-11:8), 
MUX-7:42 and DQIP<3:0> represent an intermediate inter 
face 531, and lines RPIN31:0> represent an output inter 
face. The registers 521-524 are effectively 8-bit register seg 
ments that collectively define a 32-bit register. 
The operation of the read conversion circuit 406 of FIG. 12 

will now be described, including a separate discussion for 
each of the three possible memory word widths of 4, 8 and 16 
bits. First, assume that the DRAM memory 232 has a word 
width of 4 bits, such that the signal PIN COUNT has a value 
of 4, and causes each of these seven selector sections 501A 
501G to continuously select the “4” input thereof. Although 
the read conversion circuit 406 has 16 input lines at DQIP<15: 
O>, and another 16 input lines at DQIN<15:0>, when the 
memory has a word width of 4 bits, the data converter 241 
provides data on only a subset of these lines. The control 
circuit 411 will be generating control signals as shown in the 
timing diagram of FIG. 6. 

In more detail, during a first time slot, the data converter 
241 provides an 8-bit segment of data on lines DQIP<3:0> 
and DQIN<3:0>. The selector section 501G is selecting its 
“4” input, and supplies the 4 bits on lines DQIN<3:0> to its 
output. A clock occurs on line CP0, thereby clocking into 
register 524 the first 8 bits of data from the data converter 241. 
Then, during a second time slot, the data converter 241 pro 
vides another 8-bit segment of data on the same input lines 
(DQIP<3:0> and DQIN<3:0>). The selector sections 501E 
and 501F supply these 8 bits to the input of register of 523, 
where they are clocked into register 523 by a pulse on line 
CP1. Next, during a third time slot, the data converter 241 
provides another 8-bit segment of data on lines DQIP<3:0> 
and DQIN<3:0>. The selector sections 501C and 501D sup 
ply these 8 bits to the inputs of register 522, where they are 
clocked into that register by a pulse online CP2. Then, during 
a fourth time slot, the data converter 241 provides yet another 
8-bit segment of data on lines DQIP<3:0> and DQIN<3:0>. 
The selector sections 501A and 501B supply these 8 bits to 
the inputs of register 521, where they are clocked into that 
register by a pulse online CP3. Thus, during each of the four 
time slots, an 8-bit data segment from the input lines is Sup 
plied to a respective one of four different groups of the lines 
in interface 531. After the fourth time slot, the 32 bits loaded 
into the registers 521-524 can be accepted in parallel by the 
FIFO 401 across the 32-bit bus RPIN 31:0>. 
Now assume that, instead of a word width of 4 bits, the 

DRAM memory 232 has a word width of 8 bits. The signal 
PIN COUNT will have a value of 8, and will be causing each 
of the selector sections 501A-501G to be continuously select 
ing the “8” input thereof. The control circuit 411 will be 
generating control signals as shown in the timing diagram of 
FIG.8. The data converter circuit will use a different subset of 
the input lines, and in particular will use lines DQIP<7:0> and 
DQIN<7:0>. During a first time slot, the data converter 241 
will provide a 16-bit segment of data on the lines DQIP<7:4> 
and DQIN<7:0>. The selector sections 501E and 501F will 
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supply the signals DQIN<7:0> to the input of register 523. At 
the same time, the selector section 501G will supply the 
signals DQIP<7:4> to the input of register 524, and the input 
signals DQIP<3:0> will be directly present at other inputs of 
the register 524. The registers 523 and 524 will simulta 
neously receive pulses onlines CP0 and CP1, thereby loading 
into these two registers the 16 bits of data present at their 
inputs. Then, during a second timeslot, the data converter 241 
will supply another 16-bit segment of data on lines DQIP<7: 
0> and DQIN<7:0>. The selector sections 501A and 501B 
will supply signals DQIN<7:0> to the inputs of register 521, 
and the selector sections 501C and 501D will supply signals 
DQIP<7:0> to the inputs of register 522. The registers 521 
and 522 will be simultaneously loaded by pulses onlines CP2 
and CP3. Thus, during each of the two timeslots, a 16-bit data 
segment from the input lines is supplied to a respective one of 
two different groups of the lines in interface 531. After the 
second time slot, the 32 bits loaded into the registers 521-524 
can be accepted in parallel by the FIFO 401 across the 32-bit 
bus RPIN-31:Os. 
Now assume that, instead of a word width of 4 or 8bits, the 

DRAM memory 232 has a word width of 16 bits. The signal 
PIN COUNT will have a value of 16, and will be causing 
each of the selector sections 501A-501G to continuously 
select the “16” input thereof. The control circuit 411 will be 
generating control signals as shown in the timing diagram of 
FIG. 10. The data converter 241 will supply a 32-bit segment 
of data on all 32 of the lines DQIP<15:0> and DQIN<15:0>. 
The selector sections 501A and 501B will supply the signals 
DQIN<15:8> to the inputs of register 521, the selector sec 
tions 501C and 501D will supply the signals DQIN<7:0> to 
the inputs of register 522, the selector sections 501E and 501F 
will supply the signals DQIP<15:8> to the inputs of register 
523, the selector section 501G will supply the signals 
DQIP<7:4> to inputs of register524, and the signals DQIP<3: 
O> will be applied directly to other inputs of 524. The four 
registers 521-524 will all be clocked simultaneously by 
simultaneous pulses on the lines CP0, CP1, CP2 and CP3. 
Thus, during a single time slot, a 32-bit data segment from the 
input lines is Supplied to a single group of 32 lines in the 
interface 531. After that single time slot, the 32 bits loaded 
into the registers 521-524 can be accepted in parallel by the 
FIFO 401 across the 32-bit bus RPIN31:0>. It will be noted 
that, when the memory word width is respectively 4 bits, 8 
bits or 16 bits, the read conversion circuit effectively treats the 
overall 32-bit register defined by register segments 521-524 
as having (1) four 8-bit sections 521, 522, 523 and 524, (2) 
two 16-bit sections 521-522 and 523-524, or (3) a single 
32-bit section 521-524. 

FIG. 13 is a block diagram showing in greater detail the 
write conversion circuit 408 of FIG. 4. The write conversion 
circuit 408 includes a selector 551 that is controlled by the 
signals CYCLE1, CYCLE2, CYCLE3, CYCLE4, MAX1, 
MAX2 and MAX4 from the control circuit 411 (FIG. 5). The 
selector 551 includes four sections 551A, 551B, 551C and 
551D. The selector section 551A functions as a five-to-one 
selector, the selection section 551B functions as a seven-to 
one selector, the selector section 551C functions as two-to 
one selector, and the selector section 551D functions as a 
three-to-one selector. Each input to each selector section is 
selected either (1) by one of the control signals supplied to the 
selector, or (2) by a combination of two of the control signals 
Supplied to the selector. In this regard, for example, if a 
selector input is labeled “CYCLE2-MAX4, it means that 
particular input is selected when the two signals CYCLE2 and 
MAX4 are both a logic high. Only one input of each selector 
section is selected at any given point in time. 
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The write conversion circuit 408 receives 32 input lines 

WPIN<31:0> from the FIFO 401 (FIG. 4). The selector sec 
tion 551A has an input CYCLE1 that is coupled to input lines 
WPIN<3:0>, an input CYCLE2-MAX4 that is coupled to 
input lines WPIN<11:8), an input CYCLE2-MAX2 that is 
coupled to input lines WPIN<19:16>, an input CYCLE3 that 
is coupled to input lines WPIN-19:16>, and an input 
CYCLE4 that is coupled to input lines WPIN<27:24). The 
selector section 551B has an input CYCLE1 MAX4 that is 
coupled to inputlines WPIN<7:4>, an input CYCLE1-MAX2 
that is coupled to input lines WPIN-11:8), an input 
CYCLE2-MAX4 that is coupled to input lines WPIN<15: 
12>, an input CYCLE1 MAX1 that is coupled to input lines 
WPIN<19:16>, an input CYCLE3 that is coupled to input 
lines WPIN<23:20>, an input CYCLE2-MAX2 that is 
coupled to input lines WPIN<27:24), and an input CYCLE4 
that coupled to input lines WPIN<31:28d. The selector sec 
tion 551C has an input CYCLE2 that is coupled to input lines 
WPIN<23:20>, and an input CYCLE1 that is coupled to input 
lines WPIN<7:4>. The selector section 551D has an input 
CYCLE1-MAX2 that is coupled to input lines WPIN<15: 
12>, an input CYCLE1 MAX1 that is coupled to input lines 
WPIN<23:20>, and an input CYCLE2that is coupled to input 
lines WPIN31:28). The selector sections 551A, 551B, 
551C and 551D produce respective outputs PMUX<3:0>, 
NMUX-3:0>, PMUX<7:4> and NMUX<7:4>. 
The write conversion circuit 408 includes an inverter 556 

having an input coupled to the signal RDWRB, and includes 
an AND gate 557 having one input coupled to the output of 
inverter 556, and another input coupled to the system clock 
signal SYSCLK90. The write conversion circuit 408 also 
includes four 4-bit registers 561, 562, 563 and 564, and two 
8-bit registers 565 and 566. The registers 561-566 each have 
a clock input coupled to the output of the AND gate 557. The 
data inputs of register 561 are coupled to the signals 
PMUX<3:0> from the selector section 551A, the data inputs 
of register 562 are coupled to the signals NMUX-3:0> from 
selector section 551B, the data inputs of register 563 are 
coupled to the signals PMUX-7:4 from selector section 
551C, and the data inputs of register 564 are coupled to the 
signals NMUX<7:42 from selector section 551D. The data 
inputs of register 565 are coupled to input signals WPIN-15: 
8>, and the data inputs of register 566 are coupled to input 
signals WPIN<31:24). The registers 561-566 collectively 
hold 32 bits of data, and the outputs of these registers are 
supplied to the data converter 241 on 32 lines DQOP<15:0> 
and DQON<15:0>. The input lines WPIN<31:0> serve as an 
input interface, and the lines DQOP<15:0> and DQON<15: 
0> serve as an output interface. The lines PMUX<3:0>, 
NMUX-3:0>, PMUX-7:42, NMUX-7:42, WPIN<15:8> 
and WPIN31:24) serve as an intermediate interface 581 
within the write conversion circuit 408. 
The operation of the write conversion circuit 408 will now 

be described, including a separate discussion for each of the 
permissible memory word widths in the disclosed embodi 
ment. If the data port 248 is configured to be a read data port, 
the signal RDWRB will be a logic high, and the output of 
inverter 556 will be a logic low, thereby forcing the output of 
the AND gate 557 to be a continuous logic low. As a result, the 
registers 561-566 will not be clocked, and thus the write 
conversion circuit 408 is effectively disabled. On the other 
hand, if the data port 248 is configured to be a write data port, 
then the signal RDWRB will be a logic low, and the output of 
inverter 556 will a logic high, thereby permitting the system 
clock signal SYSCLK90 to pass through the AND gate 557 
without change and to be applied to the clock inputs of each 
of the registers 561-566. 



US 8,239,604 B1 
25 

Assume first that the memory has a word width of 4 bits. 
The control signals supplied to the selector 551 by the control 
circuit 411 of FIG. 5 will be as shown in the timing diagram 
of FIG.7. A conversion operation will involve four successive 
time slots, during which the FIFO 401 will be continuously 
presenting the same 32 bits of data on the input lines 
WPIN<31:0>. Although there are 32 output lines DQOP<15: 
0> and DQON<15:0>, when the memory width is 4 bits, the 
data converter 241 will be accepting data on only a Subset of 
these lines, which are lines DQOP<3:0> and DQON<3:0>. 
As discussed earlier, when the memory width is 4 bits, the 
signal MAX4 will be a continuous logic high, and the signals 
MAX1 and MAX2 will each be a continuous logic low. Dur 
ing the first time slot, the signal CYCLE1 will be a logic high. 
The input lines WPIN<3:0> will be supplied from the 
CYCLE1 input of selector section 551A to the register 561, 
and the input lines WPIN<7:4> will be supplied from the 
CYCLE1-MAX4 input of selector section 551B to the regis 
ter 562. This 8-bit data segment will be clocked into the 
registers 561 and 562, and supplied across lines DQOP<3:0> 
and DQON<3:0> to the data converter 241. Selector sections 
551C-551D and registers 563-566 are not relevant, because 
they relate to output lines that the data converter 241 is cur 
rently ignoring. 

During the second time slot, the signal CYCLE2 is high. 
The input signals WPIN<11:8) at the CYCLE2-MAX4 input 
of selector section 551A are supplied to the register 561, and 
the input signals WPIN<15:12) at the input CYCLE2-MAX4 
of selector section 551B are supplied to the register 562. This 
8-bit data segment is then clocked into the registers 561 and 
562, and supplied to the data converter 241. 

During the third time slot, the signal CYCLE3 is a logic 
high. The input signals WPIN<19:16> at the CYCLE3 input 
of selector section 551A are supplied to the register 561, and 
the input signals WPIN<23:20> at the CYCLE3 input of 
selector section 551B are supplied to the register 562. This 
8-bit data segment is then clocked into the registers 561 and 
562, and supplied to the data converter 241. 

During the fourth time slot, the signal CYCLE4 is high. 
The input signals WPIN<27:24) at the CYCLE4 input of 
selector section 551A are supplied to the register 561, and the 
inputs WPIN<31:28) at the CYCLE4 input to selector sec 
tion 551B are supplied to the register 562. This 8-bit data 
segment is clocked into the registers 561 and 562, and Sup 
plied to the data converter 241. Thus, during these four time 
slots, all 32 bits on input lines WPIN<31:0> are supplied to 
the data converter 241 in four groups of 8 bits each. It will be 
noted that, during each of the four time slots, an 8-bit data 
segment from a respective different group of eight of the input 
lines WPIN31:0> is selected and supplied to the data con 
verter 241. 
Assume now that, instead of a word width of 4 bits, the 

DRAM memory 232 has a word width of 8 bits. As discussed 
earlier, the signal MAX2 will be a continuous logic high, and 
the signals MAX1 and MAX4 will each be a continuous logic 
low. The data converter 241 will be accepting data on a subset 
of the output lines, which are lines DQOP<7:0> and 
DQON<7:0>. The data conversion will involve two succes 
sive time slots. The timing diagram of FIG. 9 shows signals 
that the write conversion circuit 408 receives from the control 
circuit 411 of FIG. 5 in this operational configuration. 

During the first time slot, the signal CYCLE1 is a logic 
high. The signals from input lines WPIN3:0> at the 
CYCLE1 input of selector section 551A will be supplied to 
the inputs of register 561, the signals on input lines 
WPIN-11:8) at the CYCLE1-MAX2 of Selector Section 
551B will be supplied to the inputs of register 562, the signals 
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on input lines WPIN<7:4> at the CYCLE1 input of selector 
section 551C will be supplied to the inputs of register 563, and 
the signals on input lines WPIN-15:12> at the 
CYCLE1-MAX2 input of selector section 551D will be sup 
plied to the inputs of register 564. This 16-bit data segment 
will be clocked into the registers 561, 562, 563 and 564, and 
then supplied to the data converter 241 on lines DQOP<7:0> 
and DQON<15:0>. The registers 565 and 566 are not rel 
evant, because the data converter 241 is ignoring their out 
puts. 

In the second time slot, the signal CYCLE2 will be a 
continuous logic high. The signals on input lines WPIN-19: 
16> at the CYCLE2-MAX2 input of selector section 551A 
will be supplied to the inputs of register of 561, the signals on 
input lines WPIN<27:24) at the CYCLE2-MAX2 input of 
selector section 551B will be supplied to the inputs of register 
562, the signals on input lines WPIN<23:20> at the CYCLE2 
input of selector section 551C will be supplied to the inputs of 
register 563, and the signals on input lines WPIN31:28> at 
the CYCLE2 input of selector section 551D will be supplied 
to the inputs of register 564. This 16-bit data segment will be 
clocked into the registers 561-564, and then supplied to the 
data converter 241. Thus, in two successive time slots, all 32 
bits on the input lines WPIN 31:0> are supplied to the data 
converter 241. It will be noted that, during each of the two 
time slots, a 16-bit data segment from a respective different 
group of 16 of the input lines WPIN<31:0> is selected and 
supplied to the data converter 241. 
Assume now that, instead of a word width of 4 or 8bits, the 

DRAM memory 232 instead has a word width of 16 bits. As 
discussed earlier, the signal MAX1 will be a continuous logic 
high, and the signals MAX2 and MAX4 will each be a con 
tinuous logic low. The signal CYCLE1 will be a continuous 
logic high, and the signals CYCLE2, CYCLE3 and CYCLE4 
will each be a continuous logic low. The timing diagram of 
FIG.11 shows signals provided to the write conversion circuit 
408 by the control circuit 411 in this configuration. A single 
time slot is used to transfer all 32 bits from the input lines 
WPIN<31:0> to the 32 output lines DQOP<15:0> and 
DQON<15:0>. During this single time slot, the signals on 
input lines WPIN<3:0> at the CYCLE1 input of the selector 
section 551A are supplied to the inputs of register 561, the 
signals on input lines WPIN<19:16> at the CYCLE1-MAX1 
input of selector section 551B are supplied to the inputs of 
register 562, the signals on input lines WPIN-7:4 at the 
CYCLE1 input of selector section 551C are supplied to the 
inputs of register 563, the signals on input lines WPIN-23: 
20> at the CYCLE1-MAX1 input of selector section 551Dare 
Supplied to the inputs of register564, the signals on inputlines 
WPIN-15:8> are supplied directly to the inputs of register 
565, and the signals on input lines WPIN-3 1:24 are Sup 
plied directly to the inputs of register 566. This 32-bit data 
segment is clocked simultaneously into all of the registers 
561-566, and then supplied to the data converter 241. It will 
be noted that, during the single time slot, a 32-bit data seg 
ment from the entire group of all 32 input lines WPIN<31:0> 
is supplied to the data converter 241. 

Although a selected embodiment has been illustrated and 
described in detail, it should be understood that substitutions 
and alterations are possible without departing from the spirit 
and scope of the present invention, as defined by the claims 
that follow. 
What is claimed is: 
1. An apparatus comprising a circuit that includes: 
configuration identification structure configurable to iden 

tify a selected one of a plurality of different configura 
tions each having associated therewith a respective one 
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of a plurality of different integer numbers that are each 
greater than Zero, the integer number associated with the 
Selected configuration being a selected integer number; 

a first interface; 
a second interface that includes a plurality of lines, the 5 
number of the lines being greater than or equal to the 
largest integer number in the plurality of integer num 
bers; and 

a conversion section that is coupled to the first and second 
interfaces, and that is responsive to the configuration 
identification structure, the conversion section organiz 
ing the lines of the second interface into line groups 
equal in number to the selected integer number, the 
conversion section carrying out a conversion operation 
in which it Supplies to each line group a respective 
incoming data segment received through the first inter 
face, wherein if the selected integer value is greater than 
one then the line groups are mutually exclusive and, 
during the conversion operation, a plurality of the 20 
incoming data segments equal in number to the selected 
number are successively received through the first inter 
face and are successively supplied to the respective line 
groups. 

2. An apparatus according to claim 1, 25 
wherein the first interface includes a plurality of lines; and 
wherein the conversion section includes a plurality of 

Selector sections, each selector section being controlled 
by the configuration identification structure, having an 
output, and having a plurality of inputs that are each 30 
coupled to a subset of the lines of the first interface, the 
outputs of the selector sections being supplied to lines of 
the second interface. 

3. An apparatus according to claim 1, 
including a third interface having a plurality of lines; 35 
wherein the conversion section includes a register having 

inputs coupled to the lines of the second interface, and 
having outputs coupled to the lines of the third interface, 
the conversion section viewing the register as having 
sections equal in number to the selected integer number, 40 
each data segment received through the first interface 
being loaded into a respective registersection, wherein if 
the selected integer value is greater than one then during 
the conversion operation the incoming data segments are 
loaded Successively into the respective registersections. 45 

4. An apparatus according to claim 3, 
wherein the register includes a plurality of segments equal 

in number to the selected integer number, and 
including a control section that generates a plurality of 

control signals as a function of the selected configura- 50 
tion identified by the configuration identification sec 
tion, and that Supplies to each register segment a respec 
tive one of the control signals. 

5. An apparatus according to claim 4, wherein the control 
section generates a plurality of intermediate signals, and 55 
includes a signal selector that is responsive to the configura 
tion identification section, that has inputs responsive to the 
intermediate signals, and that has outputs each carrying a 
respective one of the control signals, the signal selector Sup 
plying the intermediate signals selectively to its outputs in 60 
dependence on the selected configuration identified by the 
configuration identification section. 

6. An apparatus comprising a circuit that includes: 
configuration identification structure configurable to iden 

tify a selected one of a plurality of different configura- 65 
tions each having associated therewith a respective one 
of a plurality of different integer numbers that are each 
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greater than Zero, the integer number associated with the 
Selected configuration being a selected integer number; 

a first interface that includes a plurality of lines, the number 
of the lines being greater than or equal to the largest 
integer number in the plurality of integer numbers; 

a second interface; and 
a conversion section that is coupled to the first and second 

interfaces, and that is responsive to the configuration 
identification structure, the conversion section organiz 
ing the lines of the first interface into line groups equal in 
number to the selected integer number, the conversion 
section carrying out a conversion operation in which it 
Supplies to the second interface a respective incoming 
data segment from each line group, wherein if the 
Selected integer value is greater than one then the line 
groups are mutually exclusive and, during the conver 
sion operation, the incoming data segments from the 
respective line groups are Supplied Successively to the 
second interface. 

7. An apparatus according to claim 6. 
wherein the second interface includes a plurality of lines: 
wherein the conversion section includes a plurality of 

Selector sections, each selector section having a plurality 
of inputs that are each coupled to a subset of the lines of 
the first interface, and having an output, the outputs of 
the selector sections being Supplied to lines of the sec 
ond interface; and 

including a control section that is responsive to the con 
figuration identification structure and that generates 
Select signals for the selector sections as a function of the 
Selected configuration. 

8. An apparatus according to claim 6, 
including a third interface having a plurality of lines; and 
wherein the conversion section includes a register having 

inputs coupled to the lines of the second interface, and 
having outputs coupled to the lines of the third interface, 
each data segment received through the first interface 
being loaded into the register, wherein if the selected 
integer value is greater than one then during the conver 
sion operation the incoming data segments are succes 
sively loaded into a section of the register. 

9. An apparatus according to claim 8. 
wherein the second interface includes a plurality of lines: 
wherein the conversion section includes a plurality of 

Selector sections, each selector section having a plurality 
of inputs that are each coupled to a subset of the lines of 
the first interface, and having an output, the outputs of 
the selector sections being Supplied to lines of the sec 
ond interface; 

including a control section that is responsive to the con 
figuration identification structure and that generates 
Select signals for the selector sections as a function of the 
Selected configuration; and 

wherein the select signals generated by the control section 
include a plurality of control signals that are equal in 
number to the largest integer number in the plurality of 
integer numbers, and that are selectively controlled in a 
manner dependent on the selected configuration. 

10. An apparatus according to claim 9, wherein the control 
section includes a counter that carries out a cyclic count 
sequence dependent on the selected configuration, and 
includes a decode circuit having inputs coupled to the outputs 
of the counter, and having outputs that carry decode signals 
each serving as a respective one of the control signals. 

11. A method involving a circuit having configuration iden 
tification structure, a first interface, and a second interface 
that includes a plurality of lines, the number of the lines being 
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greater than or equal to the largest integer number in the 
plurality of integer numbers, the method comprising: 

configuring the configuration identification structure to 
identify a selected one of a plurality of different configu 
rations each having associated therewith a respective 
one of a plurality of different integer numbers that are 
each greater than Zero, the integer number associated 
with the selected configuration being a selected integer 
number, 

organizing the lines of the second interface into line groups 
equal in number to the selected integer number; and 

carrying out a conversion operation in which each line 
group is Supplied with a respective incoming data seg 
ment received through the first interface, wherein if the 
Selected integer value is greater than one then the line 
groups are mutually exclusive and, during the conver 
sion operation, a plurality of the incoming data segments 
equal in number to the selected number are Successively 
received through the first interface and are successively 
Supplied to the respective line groups. 

12. A method according to claim 11, 
wherein the first interface includes a plurality of lines; 
wherein the conversion section includes a plurality of 

Selector sections each having an output, and having a 
plurality of inputs that are each coupled to a subset of the 
lines of the first interface, the outputs of the selector 
sections being Supplied to lines of the second interface; 
and 

controlling the selector sections as a function of the 
Selected configuration identified by the configuration 
identification structure. 

13. A method according to claim 11, 
including a third interface having a plurality of lines, and a 

register having inputs coupled to the lines of the second 
interface, and having outputs coupled to the lines of the 
third interface; 

including viewing the register as having sections equal in 
number to the selected integer number, and 

including loading each data segment received through the 
first interface into a respective register section, wherein 
if the selected integer value is greater than one then 
during the conversion operation the incoming data seg 
ments are loaded Successively into the respective regis 
tersections. 

14. A method according to claim 13, 
wherein the register includes a plurality of segments equal 

in number to the selected integer number, 
including generating a plurality of control signals as a 

function of the selected configuration identified by the 
configuration identification section; and 

including Supplying to each register segment a respective 
one of the control signals. 

15. A method according to claim 14, 
including generating a plurality of intermediate signals; 
including a signal selector that has inputs responsive to the 

intermediate signals, and that has outputs each carrying 
a respective one of the control signals; and 

causing the signal selector to selectively supply to its out 
puts intermediate signals selected in dependence on the 
Selected configuration identified by the configuration 
identification section. 

16. A method involving a circuit having configuration iden 
tification structure, having a first interface that includes a 
plurality of lines, the number of the lines being greater than or 
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equal to the largest integer number in the plurality of integer 
numbers, and having a second interface, the method compris 
ing: 

configuring the configuration identification structure to 
identify a selected one of a plurality of different configu 
rations each having associated therewith a respective 
one of a plurality of different integer numbers that are 
each greater than Zero, the integer number associated 
with the selected configuration being a selected integer 
number, 

organizing the lines of the first interface into line groups 
equal in number to the selected integer number; and 

carrying out a conversion operation that includes Supplying 
to the second interface a respective incoming data seg 
ment from each line group, wherein if the selected inte 
ger value is greater than one then the line groups are 
mutually exclusive and, during the conversion opera 
tion, the incoming data segments from the respective 
line groups are Supplied Successively to the second inter 
face. 

17. A method according to claim 16, 
wherein the second interface includes a plurality of lines: 
including a plurality of selector sections, each selector 

section having a plurality of inputs that are each coupled 
to a subset of the lines of the first interface, and having an 
output, the outputs of the selector sections being Sup 
plied to lines of the second interface; and 

generating select signals that control the selector sections 
as a function of the selected configuration. 

18. A method according to claim 16, 
including a third interface having a plurality of lines; 
including a register having inputs coupled to the lines of the 

second interface, and having outputs coupled to the lines 
of the third interface; and 

loading into the register each data segment received 
through the first interface, wherein if the selected integer 
value is greater than one then the incoming data seg 
ments are Successively loaded into one section of the 
register. 

19. A method according to claim 18, 
wherein the second interface includes a plurality of lines: 
including a plurality of selector sections, each selector 

section having a plurality of inputs that are each coupled 
to a subset of the lines of the first interface, and having an 
output, the outputs of the selector sections being Sup 
plied to lines of the second interface; 

generating select signals that control the selector sections 
as a function of the selected configuration; 

wherein the select signals include a plurality of control 
signals that are equal in number to the largest integer 
number in the plurality of integer numbers; and 

wherein the generating the control signals includes selec 
tively controlling the select signals in a manner depen 
dent on the selected configuration. 

20. A method according to claim 19, 
including carrying out with a counter a cyclic count 

sequence that is dependent on the selected configura 
tion; and 

carrying out the generating of the control signals in a man 
ner that includes Supplying outputs of the counter to 
inputs of a decode circuit, the control signals including 
signals from outputs of the decode circuit. 
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