(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization 4‘1”1)

52 IO O 0 T O

International Bureau

(43) International Publication Date
13 December 2007 (13.12.2007)

(10) International Publication Number

WO 2007/141112 A1l

(51) International Patent Classification:
GOG6F 21/00 (2006.01)

(21) International Application Number:

PCT/EP2007/054575
(22) International Filing Date: 11 May 2007 (11.05.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/423,342 9 June 2006 (09.06.2006) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; Armonk, NY 10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; Portsmouth, Hampshire PO6 3AU
(GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): O’NIELL, Clark,
McKerall [US/US]; 65 McKinley Avenue, Apt.#C1-11,
White Plains, NY 10606 (US). DEMENT, Jonathan,
James [US/US]; 8517 Cahill Drive, Austin, TX 78729
(US). DALE, Jason, Nathaniel [US/US]; 8508 Millway
Drive, Austin, TX 78757 (US). SPANDIKOW, Christo-
pher, John [US/US]; 13005 Heinemann Drive, Apt.#315,
Austin, TX 78727 (US).

(74) Agent: SEKAR, Anita; IBM United Kingdom Limited,
Intellectual Property Law, Hursley Park, Winchester,
Hampshire SO21 2IN (GB).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,

FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,

IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,

LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,

MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,

RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report
with amended claims

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SECURE BOOT ACROSS A PLURALITY OF PROCESSORS

210~ SYSTEM 220~ SECURE KEY SKEY
CONTROLLER STORAGE
280
POWER SKEY 2/30
GOOD
SIGNAL 250 260 FLASH ROM
b Z ENCRYPTED
PERVASIVE LOGIC SELECTOR BOOT CODE
240~ | RANDOM EVENT CONFIGURATION RANDOM %2
GENERATOR =1 | VALUE
BIT REGISTER
GENERATOR
242 N
262
ENCRYPTED
RANDOM BOOT CODE
PROCESSOR PROCESSOR SPE
SELECTION
VALUE 270
——————— —
o
_______ - o
o
_______ -
PROCESSOR

7141112 A1 I AF0 OO OO OO

(57) Abstract: A system and method for secure boot across a plurality of processors are provided. With the system and method, boot

& code is partitioned into a plurality of boot code partitions. Processors of a multiprocessor system are selected to be boot processors
& and are each provided with a boot code partition to execute in a predetermined boot code sequence. Each processor executes its
p p: p q p

=
=

boot code partition in accordance with the boot code sequence and signals to a next processor the successful and uncompromised
execution of its boot code partition. If any of the processors does not signal successful completion and/or uncompromised execution
of its boot code partition, the boot operation fails. The processors may be arranged, with regard to the boot operation, in a daisy
chain, ring, or master/slave arrangement, for example.

WO 2007/141112 A1 | NIN0A!] DA 000 0T 00000 00

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

SYSTEM AND METHOD FOR SECURE BOOT ACROSS A PLURALITY OF
PROCESSORS

Technical Field of the Invention

The present application relates generally to an improved data processing system and method.
More specifically, the present application is directed to a system and method for secure boot

across a plurality of processors.

Background of the Invention

As our society becomes increasingly dependent upon electronic communication and storage
of information, concerns over the security of digital information, such as personal information
and digital rights management (DRM), have increased. Morcover, the sophistication of
computer hackers and other unauthorized interlopers into computing systems has increased in
recent years. As a result, much effort has gone into the development of security systems for
computing devices so that such sensitive digital information may be secured from

unauthorized access.

One way in which an intruder may gain access to a computing system is to observe the boot
activity of a computing system through electrical interfaces and other observable
electromagnetic or thermal activity. By observing the boot activity in this way, the intruder
may deduce what data signals are being input and output by the boot processor, what
cryptographic algorithms are running on the processors, and the like. From this information,
an intruder may detect points in the boot sequence where unauthorized intrusion may be
made. Moreover, with secure boot sequences in which security keys are required for booting
of the system, the intruder may reverse the cryptographic algorithm used by the boot
processor to obtain access to the security keys and thereby be given complete access to the

computing system. Since the overall security of the computing system is often dependent

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

upon the security of the boot process, when the intruder gains access to the boot sequence,
the security of the entire system may be at risk.

Thus, it would be beneficial to have an apparatus and method that increases the difficulty of
monitoring the boot sequence of a processor so as to make the system more secure from

unauthorized intrusion.

DISCLOSURE OF THE INVENTION

The illustrative embodiments provide a system and method for selecting a random processor
to boot a multiprocessor system and for providing a secure boot across a plurality of
processors. By randomizing which processor will be used to boot the multiprocessor system,
the ability of unauthorized persons to monitor the electrical interfaces, thermal activity, and
other electromagnetic activity to obtain information about the boot sequence for purposes of
defeating the security of the system is made more difficult. For example, in a multiprocessor
system, the would-be intruder would either need to run the boot sequence many different
times while monitoring a single processor in hopes that it may be randomly selected as the
boot processor, or monitor all of the processors at boot in order to determine which one was
the actual boot processor. Both options require considerable effort on the part of the would-
be intruder that may act as a deterrent from actually attempting to monitor the system to
obtain boot sequence information or at least add significant delay to the time it would take the

would-be intruder to compromise the system.

With the mechanisms of the illustrative embodiments, pervasive logic is provided on a
multiprocessor system, such as a system-on-a-chip, that controls the boot operation of the
multiprocessor system. The pervasive logic includes a random event generator which
randomly selects which processor in the multiprocessor system is to be the boot processor
that runs the boot code to thereby bring the system into an operational state. Based on the
random selection of a boot processor, a configuration bit associated with the boot processor
is set indicating that processor to be the boot processor. Thereafter, the selected boot
processor is provided with the necessary security key(s) for secure booting of the

multiprocessor system into an operational state.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

In some illustrative embodiments, while the randomly selected processor performs the secure
boot operation, the other processors of the multiprocessor system perform operations to
mask the real secure boot operation. This masking may involve executing other code
sequences, other than the boot code sequence, that cause the processors to generate
electromagnetic and/or thermal outputs that, if monitored by an interloper, would make it
difficult for the interloper to distinguish which processor is performing the actual secure boot

operation.

One way in which a different code sequence may be generated is by inserting random delay
elements into the boot code that run loops which iterate a random amount. In this way, each
processor may run the boot code but with differing delay amounts thereby causing different
electromagnetic and thermal signatures to be generated. From an interloper’s perspective, it
will be very difficult to discern the actual boot processor from the other processors in the

multiprocessor system due to such masking.

In a further illustrative embodiment, the code sequences performed by the other processors
are the same boot code sequence that the randomly selected processor executes but with
dummy security keys. Thus, these other processors operate and look, to an interloper, as if
they are performing the secure boot operation. However, if the processors are monitored,
false electromagnetic and thermal outputs are identified that make it difficult for the interloper
to determine if the monitored processor is the actual randomly selected processor that is

performing the secure boot operation.

In a still further illustrative embodiment, masking of the randomly selected boot processor
may be performed by providing a dummy processor. The dummy processor appears, from an
electromagnetic, thermal, etc., monitoring apparatus perspective, as if it is unique by running
processes different from the boot code sequence on this dummy processor to thereby redirect
attacks on the system to this dummy processor. In this way, when an interloper attempts to
access the system by getting around the security mechanisms, the interloper only accesses a

dummy processor that does not have actual access to the rest of the multiprocessor system.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

In other illustrative embodiments, the boot code sequence may be distributed across a
plurality of processors in the multiprocessor system. By distributing the boot code sequence
across a plurality of processors in the multiprocessor system, the number of processors that
must be compromised in order to obtain complete information about the boot sequence and
thereby circumvent security measures is increased. Thus, the distributed boot operation of
the illustrative embodiments is more secure than multiprocessor data processing systems that
utilize a single secure core. Furthermore, by distributing the boot operation, if any portion of
the boot operation is compromised, the boot operation fails, thereby preventing an

unauthorized individual from circumventing the security of the system.

With this illustrative embodiment, the boot code sequence is partitioned into a plurality of
partitions such that each partition may be provided to a different processor of the
multiprocessor system. As cach partition of the boot code sequence is executed, that
partition must complete correctly on its respective processor before the boot code sequence
may proceed on another processor. A secure communication mechanism is used to
communicate satisfactory completion of a previous partition of the boot code sequence. This
secure communication mechanism may include a security token, such as an encrypted
password or other security identifier, e.g., a public/private encryption key pair, that indicates
that the previous session was not compromised. In this way, a chain of dependent “sessions”

are created that must complete satisfactorily.

The processors that are involved in the distributed execution of the boot code may be all of
the processors in the multiprocessor system or a sub-set of the processors in the
multiprocessor system. For example, a random selection mechanism, such as that described
above for selecting a single boot processor, may be used to randomly select a plurality of boot
processors to be used in booting the system in a distributed manner. Moreover, the particular
partitions of the boot code that are executed by the processors may be randomly selected
such that, with each power-on reset (POR) operation, the same processor may or may not
execute the same boot code partition as in a previous POR operation. Thus, randomization
may be performed with regard to which processors are involved in the distributed boot

operation as well as with regard to what boot code partitions each processor will execute.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

Other processors of the multiprocessor system, i.e. non-boot processors, may either not
perform any work during the distributed boot operation or may execute masking code
sequences, of one or more of the various masking code illustrative embodiments described
previously, to mask the boot code execution on the randomly selected sub-set of processors.
In other words, the distributed boot code sequence operation of the present illustrative
embodiment may be combined with one or more of the previously described illustrative

embodiments.

In one illustrative embodiment, a method is provided, in a data processing system having a
plurality of processors, for booting the data processing system. The method may comprise
partitioning boot code into a plurality of boot code partitions and loading, in cach of a
plurality of boot processors within the plurality of processors of the data processing system, a
boot code partition from the plurality of boot code partitions. The plurality of boot code
partitions may be executed on their respective associated boot processors as a plurality of
sessions to thereby boot the data processing system. The number of boot code partitions may

be equal to a number of boot processors.

If any session results in an unsuccessful or compromised execution of a boot code partition,
booting of the data processing system may fail. As execution of each boot code partition in
its associated session is completed, an associated boot processor of the plurality of processors
that executed the boot code partition may signal, to another boot processor associated with a
next boot code partition in a boot code sequence, the successful completion of the boot code

partition.

Executing the plurality of boot code partitions on their respective associated boot processors
may comprise utilizing a security mechanism on communications between boot processors to
ensure uncompromised execution of the plurality of boot code partitions on their respective
associated boot processors. The security mechanism may comprise at least one of passing a
security token between boot processors, passing a digital signature between boot processors,
using a password, passing a checksum of a boot code partition, or using public key/private

key encryption of the signals.

10

15

20

25

WO 2007/141112 PCT/EP2007/054575

The method may further comprise randomly selecting the boot processors from the plurality
of processors, wherein the boot processors are a sub-set of the plurality of processors.
Masking code may be executed on processors of the plurality of processors that were not

randomly selected to be boot processors.

Moreover, the method may comprise randomly selecting which boot code partition is
associated with each boot processor. Each boot code partition may be different from other

boot code partitions.

Furthermore, the sessions for execution of boot code partitions on the boot processors may
be arranged in one of a daisy-chain arrangement, a ring arrangement, or a master/slave
arrangement. The data processing system may be a heterogeneous multiprocessor system-on-
a-chip having a first processor the operates according to a first instruction set and one or
more second processors that operate according to a second instruction set different from the

first instruction set.

In another illustrative embodiment, a data processing system is provided that comprises a
plurality of processors, a boot code storage coupled to the plurality of processors, and
pervasive logic coupled to the plurality of processors. The boot code storage may store boot
code that is partitioned into a plurality of boot code partitions. The pervasive logic may
perform various ones, and combinations of, the operations outlined above with regard to the

illustrative method embodiment described previously.

In yet another illustrative embodiment, a computer program product comprising a computer
useable medium having a computer readable program is provided. The computer readable
program, when executed on a data processing system, may cause the data processing system
to perform various ones, and combinations of, the operations outlined above with regard to

the illustrative method embodiment described previously.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

These and other features and advantages of the present invention will be described in, or will
become apparent to those of ordinary skill in the art in view of, the following detailed

description of the exemplary embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set forth in the appended
claims. The invention itself, however, as well as a preferred mode of use, further objectives
and advantages thereof, will best be understood by reference to the following detailed
description of an illustrative embodiment when read in conjunction with the accompanying

drawings, wherein:

Figure 1 is an exemplary block diagram of a multiprocessor system in which the illustrative

embodiments may be implemented;

Figure 2 is an exemplary diagram illustrating the primary operational components of a random

boot processor selection mechanism in accordance with one illustrative embodiment;

Figure 3A is an exemplary diagram illustrating a random selection mechanism in accordance

with one illustrative embodiment;

Figure 3B is a graphical representation of jitter introduced into the input to a LFSR counter

of a random event generator in accordance with one illustrative embodiment;

Figure 3C is an exemplary diagram illustrating an illustrative embodiment in which a secret
key and a plurality of randomly generated key values are provided to processors using parallel

signal lines;

Figures 4A-4D are exemplary diagrams illustrating masking operations for masking a secure
boot operation of a randomly selected boot processor in accordance with illustrative

embodiments;

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

Figure 5 is a flowchart outlining an exemplary operation for randomly selecting a processor in

a multiprocessor system as a boot processor;

Figure 6 is a flowchart outlining an exemplary operation for masking a boot code sequence in

accordance with one illustrative embodiment;

Figure 7A is an exemplary diagram illustrating a distributed boot operation configured as a

daisy chain or ring arrangement in accordance with one illustrative embodiment;

Figure 7B is an exemplary diagram illustrating a distributed boot operation configured as a

master/slave arrangement in accordance with one illustrative embodiment; and

Figure 8 is a flowchart outlining an exemplary operation for distributed booting of a

multiprocessor system in accordance with one illustrative embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The illustrative embodiments provide an apparatus and method for selecting a random
processor to boot on a multiprocessor system. The illustrative embodiments may be
implemented for use with any multiprocessor system in which one of the processors may be
selected for booting the multiprocessor system. Thus, the mechanisms of the illustrative
embodiments are applicable to symmetric multiprocessor (SMP) systems, heterogeneous

multiprocessor systems, non-coherent asymmetrical multiprocessor systems, and the like.

One multiprocessor system in which the illustrative embodiments may be implemented is the
Cell Broadband Engine (CBE) available from International Business Machines, Inc. of
Armonk, New York. The illustrative embodiments will be described with reference to the
CBE architecture, however, it should be appreciated that the description of the illustrative
embodiments is only exemplary and is not intended to state or imply any limitation with
regard to the types or configurations of the multiprocessor systems in which the mechanisms

of the illustrative embodiments may be implemented. Many modifications to the described

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

CBE architecture may be made without departing from the spirit and scope of the present

mvention.

Figure 1 is an exemplary block diagram of a data processing system in which aspects of the
present invention may be implemented. The exemplary data processing system shown in
Figure 1 is an example of the Cell Broadband Engine (CBE) data processing system. While
the CBE will be used in the description of the preferred embodiments of the present
invention, the present invention is not limited to such, as will be readily apparent to those of

ordinary skill in the art upon reading the following description.

As shown in Figure 1, the CBE 100 includes a power processor element (PPE) 110 having a
power processor unit(PPU) 116 and its L1 and L2 caches 112 and 114, and multiple
synergistic processor clements (SPEs) 120-134 that each has its own synergistic processor
unit (SPU) 140-154, memory flow control 155-162, local memory or store (LS) 163-170, and
bus interface unit (BIU unit) 180-194 which may be, for example, a combination direct
memory access (DMA), memory management unit (MMU), and bus interface unit. A high
bandwidth internal element interconnect bus (EIB) 196, a bus interface controller (BIC) 197,

and a memory interface controller (MIC) 198 are also provided.

The CBE 100 may be a system-on-a-chip such that each of the elements depicted in Figure 1
may be provided on a single microprocessor chip. Moreover, the CBE 100 is a
heterogeneous processing environment in which each of the SPUs may receive different
instructions from each of the other SPUs in the system. Moreover, the instruction set for the
SPUs is different from that of the PPU, e.g., the PPU may execute Reduced Instruction Set
Computer (RISC) based instructions while the SPUs execute Single Instruction Multiple Data
(SIMD) instructions.

The SPEs 120-134 are coupled to each other and to the L2 cache 114 via the EIB 196. In
addition, the SPEs 120-134 are coupled to MIC 198 and BIC 197 via the EIB 196. The MIC

198 provides a communication interface to shared memory 199. The BIC 197 provides a

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

10

communication interface between the CBE 100 and other external buses and devices, such as

a SouthBridgeTM communications processor, for example.

The PPE 110 is a dual threaded PPE 110. The combination of this dual threaded PPE 110
and the eight SPEs 120-134 makes the CBE 100 capable of handling 10 simultaneous threads
and over 128 outstanding memory requests. The PPE 110 acts as a controller for the other
eight SPEs 120-134 which handle most of the computational workload. The PPE 110 may be
used to run conventional operating systems while the SPEs 120-134 perform vectorized

floating point code execution, for example.

The SPEs 120-134 comprise a synergistic processing unit (SPU) 140-154, memory flow
control units 155-162, local memory or store 163-170, and bus interface units 180-194. The
local memory or store 163-170, in one exemplary embodiment, comprises a 256 KB
instruction and data memory which is visible to the PPE 110 and can be addressed directly by

software.

The PPE 110 may load the SPEs 120-134 with small programs or threads, chaining the SPEs
together to handle each step in a complex operation. For example, a set-top box
incorporating the CBE 100 may load programs for reading a DVD, video and audio
decoding, and display, and the data would be passed off from SPE to SPE until it finally
ended up on the output display. At 4GHz, each SPE 120-134 gives a theoretical 32 GFLOPS

of performance with the PPE 110 having a similar level of performance.

The memory flow control units (MFCs) 155-162 serve as an interface for an SPU to the rest
of the system and other elements. The MFCs 155-162 provide the primary mechanism for
data transfer, protection, and synchronization between main storage and the local storages
163-170. There is logically an MFC for each SPU in a processor. Some implementations can
share resources of a single MFC between multiple SPUs. In such a case, all the facilities and
commands defined for the MFC must appear independent to software for each SPU. The

effects of sharing an MFC are limited to implementation-dependent facilitics and commands.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

11

The illustrative embodiments provide an apparatus and method for selecting a random
processor, such as one of the SPEs 120-134, to boot a multiprocessor system, e.g., the CBE
100. By randomizing which SPE 120-134 will be used to boot the CBE 100, the ability of
unauthorized persons to monitor the electrical interfaces, thermal activity, and other
electromagnetic activity to obtain information about the boot sequence for purposes of
defeating the security of the CBE 100 is made more difficult.

With the mechanisms of the illustrative embodiments, pervasive logic 193 is provided on the
CBE 100 which controls the boot operation of the CBE 100. The pervasive logic 193
includes a random event generator which randomly selects which SPE 120-134 is to be the
boot processor that runs the boot code to thereby bring the system into an operational state.
Based on the random selection of a boot SPE 120-134, a configuration bit associated with the
selected SPE, e.g., SPE 120, is set indicating that SPE 120 to be the actual boot processor.
Thereafter, the selected SPE 120 is provided with the necessary security key(s) for secure
booting of the CBE 100 into an operational state. When the chosen SPE successfully
completes the secure boot procedure, it will transition from a secure state, wherein the MIC
198, Shared Memory 199, and a portion of the BIC 197 other than the communication link to
Flash Rom 230 in Figure 2 hereafter, are shutdown and prevented from operation, to an
unlocked state. Once the secure SPE enters the unlocked state, it will initiate the process of
fully enabling the MIC 198, BIC 197 (a process referred to as “training”), and all other
processors (SPEs and PPE) by executing the encrypted code provided by the Flash ROM
230. For more information regarding the secure boot process used in the Cell Broadband
Engine, reference is made to co-pending and commonly assigned U.S. Patent Application

Publication No. 20050021944, which is hereby incorporated by reference.

In some illustrative embodiments, while the randomly selected SPE 120 performs the secure
boot operation, the other SPEs 122-134 perform operations to mask the real secure boot
operation. This masking may involve executing other code sequences, other than the boot
code sequence, that cause the SPEs 122-134 to generate clectrical, electromagnetic, and/or
thermal outputs that, if monitored by an interloper, would make it difficult for the interloper

to distinguish which SPE 120-134 is performing the actual secure boot operation.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

12

One way in which a different code sequence may be generated is by inserting random delay
elements into the boot code that run loops which iterate a random amount. These random
delay elements are added so that while booting the processor, the secure-boot algorithm will
change in a random way to cause different electromagnetic and thermal signatures, thereby
making it difficult to compare two different boot operations over time. In this way, each SPE
120-134 may run the boot code but with differing delay amounts thereby causing different
electromagnetic and thermal signatures to be generated. Moreover, the same SPE 120-134
will generate different electromagnetic and thermal signatures each time it runs the secure
boot code. From an interloper’s perspective, it will be very difficult to discern the actual boot

SPE 120 from the other SPEs 122-134 in the CBE 100 due to such masking.

In a further illustrative embodiment, the code sequences performed by the other SPEs 122-
134 are the same boot code sequence that the randomly selected SPE 120 executes but with
dummy security keys. Thus, these other SPEs 122-134 operate and look, to an interloper, as
if they are performing the secure boot operation. However, if the SPEs 122-134 are
monitored, false electrical, electromagnetic, and thermal outputs are identified that make it
difficult for the interloper to determine if the monitored SPE is the actual randomly selected

SPE 120 that is performing the secure boot operation.

In a still further illustrative embodiment, masking of the randomly selected boot SPE 120 may
be performed by providing a dummy SPE (not shown). The dummy SPE appears, from an
electromagnetic, thermal, etc., monitoring apparatus perspective, as if it is unique by running
processes different from the boot code sequence on this dummy SPE to thereby redirect
attacks on the CBE 100 to this dummy SPE. In this way, when an interloper attempts to
access the system by getting around the security mechanisms, the interloper only accesses a
dummy SPE that does not have actual access to the rest of the CBE 100. Furthermore, if the
intruder compromises the dummy SPE and attempts to execute code, the dummy SPE can

then shutdown the rest of the CBE 100 to prevent further intrusion attempts.

Each of the above mentioned illustrative embodiments will now be described in greater detail.

It should be appreciated that, while each illustrative embodiment will be described separately

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

13

herein, the illustrative embodiments may be combined in various ways so as to achieve even
greater security of the multiprocessor system, e.g., CBE 100. Thus, any combination of the
illustrative embodiments that is deemed suitable to a particular situation and multiprocessor

environment is intended to be within the spirit and scope of the present invention.

Figure 2 is an exemplary diagram illustrating the primary operational components of a random
boot processor selection mechanism in accordance with one illustrative embodiment. Tt
should be appreciated that, for simplicity of the explanation of the illustrative embodiments,
Figure 2 only shows one processor of a multiprocessor system in detail. However, it should
be appreciated that each of the processors of the multiprocessor system have a similar
arrangement of elements and operate in a similar manner to that of the processor that is
explicitly shown in Figure 2. Any number of processors may be included in the
multiprocessor system without departing from the spirit and scope of the present invention.
However, for purposes of explanation of the illustrative embodiments, it will be assumed that

the number of processors is eight as in the CBE architecture shown in Figure 1.

As shown in Figure 2, the primary operational components of a random boot processor
selection mechanism include a system controller 210, a secure key storage 220, a flash ROM
230, and pervasive logic 240. In one illustrative embodiment, taking the CBE architecture of
Figure 1 as exemplary, elements 210-240 may be elements that are provided on the chip in
which the CBE architecture is implemented. That is, these elements 210-240 may be built
into the logic of a multiprocessor system-on-a-chip (SoC) and thus, the operations performed
by these elements 210-240 may be performed on-chip. Alternatively, one or more of the

elements may be provided off chip, e.g., the flash ROM 230 may be provided off-chip.

The system controller 210 is responsible for performing the initial operations of a power on
reset (POR) to bring the power of the system to an acceptable and stable level. That is, the
system controller 210 is responsible for bringing up the voltages, turning on the system clock,
and other initial operations required for bringing the multiprocessor system to a state where
boot operations may begin, as is generally known in the art. As part of this POR operation,

the processors 280-290 are brought up in a secure mode of operation. In this secure mode of

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

14

operation, the processor’s local stores are not accessible outside the processor. The system
controller 210, once these initial operations are completed and the system is at an acceptable

power state, signals a “power good” state to the pervasive logic 240.

In response to the “power good” signal from the system controller 210, the pervasive logic
240 begins a boot operation for booting the multiprocessor system into an operational state
such that software programs may begin to execute. As part of this boot operation, a random
event generator 242 of the pervasive logic 240 randomly selects one of the processors, e.g.,
processor 280, to be the boot processor for the multiprocessor system. The random event
generator 242 generates a signal that is sent to each of the processors of the multiprocessor
system. The signal is logically high only for the processor that is selected as the boot
processor. This signal effectively sets the value in the configuration bit register 250 of the
randomly selected processor 280 to a value, e.g., “1”, indicative of this processor 280 being
the boot processor. The other processors will have their configuration bit values in their
respective configuration bit registers kept at an initial value, thereby indicating that these

processors are not the randomly selected boot processor for the multiprocessor system.

The boot code for booting the multiprocessor system is stored in an encrypted format in flash
ROM 230. The encrypted boot code 232 may be provided to each of the processors 280-
290. That is, as part of the boot sequence, each of the processors 280-290 may attempt to
read the encrypted boot code 232 from the flash ROM 230. However, since only one of the
processors has been randomly selected as the boot processor, only one of the processors will
be able to decrypt the encrypted boot code 232 and properly execute it so as to bring the
multiprocessor system to an operational state. This is achieved through the use of a selector
260 provided in each of the processors that selects between the secret key that is the key
value used to decrypt the encrypted boot code 232 and a randomly generated key value that
will not be able to decrypt the encrypted boot code 232.

The value stored in the configuration bit register 250 is used to generate a selector signal that
is provided to the selector 260. For example, selector 260 may be a multiplexer that receives

the secure key (Skey) from the secure key storage 220 as one input, a randomly generated

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

15

key value from a random value generator 262 as a second input, and the select signal from the
configuration bit register 250 indicating which of the two inputs to select. If the
configuration bit register 250 stores a value indicative of the processor being the randomly
selected boot processor, then the Skey input is selected. If the configuration bit register 250
stores a value indicative that the processor is not the randomly selected boot processor, then
the randomly generated key value input may be selected by the selector 260. The selected
key value is then output to the SPE 270.

The SPE 270 receives the selected key value and the encrypted boot code 232. The SPE 270
then attempts to decrypt the encrypted boot code 232. If the selected key value is the Skey
from the secure key storage 220, then the SPE 270 will be able to properly decrypt the
encrypted boot code 232 and execute the boot code instructions therein to bring the system
to an operational state. If the selected key value is not the Skey from the secure key storage
220, then the decryption will fail and the SPE 270 will not be able to execute the boot code

instructions.

The above process for randomly selecting a boot processor and booting the multiprocessor
system using the randomly selected boot processor may be performed with each power-on
reset (POR) operation performed by the multiprocessor system. Thus, each time the
multiprocessor system is booted, a different one of the plurality of processors may be
randomly selected to be the boot processor. As a result, a potential intruder into the system
will not be able to determine, a priori, which processor is the boot processor and direct
measurements of electromagnetic and thermal conditions of the multiprocessor system to that

particular processor.

On the contrary, the potential intruder must either monitor a single processor through
multiple boot-up operations of the multiprocessor system in hopes that the single processor
will eventually be selected as the random processor to be the boot processor or the potential
intruder must monitor all of the processors to thereby identify which processor is the boot
processor and attempt to obtain the necessary information through measurements of its

individual electromagnetic and thermal conditions. In an eight processor system, for example,

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

16

the difficulty in monitoring the boot sequence is made eight times more difficult since all eight
processors must be monitored. Moreover, more probes and hardware would be need to do

such monitoring, thereby adding to the difficulty of attempting such monitoring.

Figure 3A is an exemplary diagram illustrating a random selection mechanism in accordance
with one illustrative embodiment. As described above, the principle idea behind the
illustrative embodiments is the random selection of a processor, from a plurality of
processors, to be the boot processor for the multiprocessor system. In order to do this
random selection, a random event generator and selector mechanism are provided. The
random event generator is provided in pervasive logic of the multiprocessor system while a
selector is provided in association with each of the processors, in the illustrative
embodiments. Figure 3A provides a depiction of one implementation of a random event

generator and selector in accordance with one illustrative embodiment.

As shown in Figure 3A, the random event generator 310, which may correspond to the
random event generator 242 in Figure 2, for example, includes a linear feedback shift register
(LFSR) counter 320, a ring oscillator 330, and a selector signal register/decoder 340. The
ring oscillator 330 is a device composed of an odd number of NOT gates whose output
oscillates between two voltage levels. The NOT gates, or inverters, are attached in a chain
with the output of the last inverter being fed back into the first inverter. The last output of a
chain of an odd number of inverters is the logical NOT of the first input. This final output is
asserted a finite amount of time after the first input is asserted. The feedback of this last
output to the input causes an unstable oscillation that will vary in time according to random

elements such as electromagnetic noise on the power supply and temperature.

The output of the ring oscillator 330 is provided as an input to the LFSR counter 320 along
with a clock signal clk. The LFSR counter 320 is a shift register whose input bit is a linear

function of its previous state. The only linear functions of single bits are XOR and inverse-

XOR and thus, the LFSR is a shift register whose input bit is driven by the exclusive-or

(XOR) of some bits of the overall shift register value.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

17

The initial value of the LFSR counter 320 is called the seed, and because the operation of the
register is deterministic, the sequence of values produced by the LFSR counter 320 is
completely determined by its current (or previous) state. A LFSR counter 320 with a well-
chosen feedback function can produce a sequence of bits which appears random and which
has a very long cycle. In the illustrative embodiments, this randomness is made more
apparent in that the input to the LFSR counter 320 is a product of the oscillation produced by
the ring oscillator 330 and the discrepancy between the frequency of the ring oscillator 330

and the input clock clk which vary independently of one another.

The LFSR counter 320 receives, as input, the output from the ring oscillator 330 and the
clock signal clk, and generates an output bit stream that is stored in selector signal
register/decoder 340. The inverters of the ring oscillator 330 introduce a delay in the output
signal to the LFSR counter 320 and thus, there is a discrepancy between the frequency of the
ring oscillator 330 and the input clock clk. This discrepancy between the frequencies gives
rise to jitter in the input to the LFSR counter 320, as depicted in Figure 3B. This jitter
provides a measure of randomness which randomizes the output generated by the LFSR

counter 320.

The output of the LESR counter 320 is stored in the selector signal register/decoder 340. In
the depicted example, the LFSR counter 320 is a 3-bit counter which generates a 3-bit output
that is interpreted to encode a value 1-8. A decoder function of the selector signal
register/decoder 340 selects one of the 8 unique outputs based on the random 3-bit input
value. Based on the state of the bits stored in the selector signal register 340, high or low
state signals are output to the configuration bit registers of the various processors, e.g.,
SPEO-SPE7 120-134 in Figure 1, to thereby set the values stored in the configuration bit
registers and thus, select one of the processors to be the boot processor for the

multiprocessor system.

Once the configuration bit register values are set, these values are used to provide selector
signals to the corresponding selectors 350-370. As shown in Figure 3A, the selector signal is

provided to a multiplexer 352, 362, 372, along with an Skey input and a random key value

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

18

input. Based on the state of the selector signal, either the Skey input or the random key value
input is selected by each of the multiplexers 352, 362, 372. The random key value inputs may
be generated by one or more random value generators of the same or a different type from the
random event generator configuration described above for selecting the boot processor. That
is, a similar random event generator configuration as described above may be used to
randomly generate a key value having a same length as the Skey. These random key values

are then input to the multiplexers 352, 362, and 372.

The system is designed such that, by way of the decoder function describe above, for
example, only one of the selector signals that are input to the multiplexers 352, 362, 372 will
select the Skey input while all the others will select a random key value input. The outputs
from the multiplexers 352, 362, and 372 are provide to the corresponding SPEs so that the
SPEs may utilize these outputs for either decrypting boot code and executing the boot code,
in the case of the randomly selected boot processor, or attempting to decrypt the boot code
and failing to boot the multiprocessor system, as in the case of all other processors in the

multiprocessor system.

It should be appreciated that the mechanisms described above for providing a random event
generator and selector are only exemplary and are not intended to state or imply any
limitation with regard to the types of random event generators and selectors that may be used
with the illustrative embodiments. For example, rather than using a ring oscillator and LFSR
counter arrangement as shown in Figure 3A, other random event generators may be utilized.
For example, a thermal sensor may be used to measure thermal noise which may then be used
to generate a random event for selecting one of the processors as a boot processor. Similarly,
a quantum dot (gq-dot), or semiconductor nanocrystals, may be used to measure quantum
source effects that may be used as a source of randomness for selecting a processor as the
boot processor. Any strong source of randomness may be used with the illustrative
embodiments to provide a random selection of a processor for use as the boot processor for

the multiprocessor system.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

19

Moreover, it should be appreciated that while Figure 3A shows the ring oscillator 330 having
five inverters, the illustrative embodiments are not limited to such. Rather, any number of
inverters, so long as there are an odd number of inverters, may be used without departing
from the spirit and scope of the present invention. In fact, in order to provide additional jitter
in the input to the LFSR counter 320, it may be desirable to add additional inverters to the
chain of inverters in the ring oscillator 330 so as to introduce even more discrepancy between
the frequency of the input clock signal clk and the input from the ring oscillator 330. The
amount of discrepancy may be selected based on the desired operational characteristics for

the particular multiprocessor system in which the illustrative embodiments are implemented.

Furthermore, while Figures 2 and 3A depict the random key value being generated by a
separate random key value generator for each processor, the illustrative embodiments are not
limited to such. Rather, a single random key value generator may be provided for all of the
processors with the random key value generator generating one or more random key values
that are input to the processors. Thus, for example, the random key value generator may
generate a single random key value that is provided to all of the processors, a separate
random key value for cach individual processor (in which case seven different random key
values may be generated, for example), or any number of random key values that may be

selectively provided to the various processors of the multiprocessor system.

In one illustrative embodiment, as illustrated in Figure 3C, a plurality of random key value
generators 390 may be provided that each output a different random key value. Alternatively,
as mentioned above, a single random key value generator may be used in replacement of these
separate random key value generators. These random key values may be provided as inputs
to the selectors, e.g., multiplexers 391 and 392, of the processors, e.g., SPEs 393 and 394, in
the multiprocessor system along with the secure key (Skey) from an Skey storage 395, e.g.,
an eFuse, that is actually used to decrypt the boot code for booting of the multiprocessor
system. As shown, the randomly generated key values and the Skey value may be
multiplexed and provided on eight identical signal lines to each of the multiplexers 391 and
392 so as to make it more difficult for an intruder to isolate one of the lines as being a signal

line from the secure key storage 395.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

20

The eight total key value inputs may be provided to the multiplexers 391 and 392 and the
select signals from the random event generator 396 in the pervasive logic 397 may be used to
select one of the eight inputs. In this case, rather than simply selecting between the Skey
input and a random key value, the multiplexers 391 and 392 may select between the Skey
input and seven random key values. Thus, a first processor may select the Skey input, based
on the random selection of this first processor as the boot processor, a second processor may
select a third random key value, a third processor may select a fourth random key value, a
fifth processor may select a first random key value, and so on. Thus, each processor may
receive a different key value, either the Skey or a randomly generated key value. As a result,
it becomes difficult for an intruder to discern which key value is the correct key value when

monitoring bus traffic of the multiprocessor system.

It should be further appreciated that the mechanisms shown in Figures 3A and 3C are
preferably provided in lower layer metal layers of the ceramic package in which the
multiprocessor system is provided, or the lowest layer of interconnect, if the design is on a
single chip. Since the ability to probe electrical and thermal characteristics of a
multiprocessor system is currently limited to the upper layers of the multiprocessor ceramic
package, by placing these elements in the lower layer metal layers, the ability to probe the
operation of these elements is made more difficult. Thus, it is very difficult, if not impossible,
for a would-be intruder to monitor the thermal and electrical characteristics of the random

event generator and selectors so as to determine the key values provided by these elements.

Using the mechanisms above, a processor within a plurality of processors of a multiprocessor
system may be randomly selected to boot the multiprocessor system. In this way, the ability
to monitor the electrical and thermal characteristics of the processors so as to obtain secret
information, e.g., the secret keys, used to boot the multiprocessor system is made more
difficult and potentially becomes a deterrent to those who may wish to access the

multiprocessor system without authorization.

While the above mechanism for randomly selecting a processor to boot the multiprocessor

system provide a good amount of protection against monitoring of the boot sequence, it may

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

21

still be possible for an unauthorized individual to “hack” the system if such an individual is
persistent enough. In order to make such monitoring virtually impossible, the illustrative
embodiments provide additional mechanisms for masking the boot sequence on the randomly
selected processor such that the unauthorized individual is not able to discern which
processor is correctly performing the actual boot sequence for booting the multiprocessor

system.

In one illustrative embodiment, the masking operation involves each of the processors that
were not selected to be the boot processor running a different set of instructions to thereby
generate masking electrical and thermal signatures that make it difficult to discern the boot
processor from the other processors in the system. The code sequences that are run by the
different processors may be the same default code sequence that is provided either in a
memory associated with the processor, or is otherwise accessible by the processors when the
processors are not able to decrypt the boot code sequence. For example, the default code
sequence may be provided in a secure portion of a local store associated with each of the
processors. Alternatively, the default code sequence may be provided in a flash ROM or

other storage device provided on or off-chip.

When the processor is not able to decrypt the actual encrypted boot code received from the
flash ROM, the processor may default back to this secure portion of local storage which
causes the processor to execute instructions to mask the boot code sequence being performed
on another processor. This sequence of instructions may not generate any useable
information and may serve only a masking function. Alternatively, this sequence of
instructions may be used to perform operations for monitoring the system during the boot

operation, or other useful operations, for example.

In one illustrative embodiment, the code that is executed on each of the non-sclected
processors, 1.e. the non-boot processors, is the same. In illustrative embodiments where the
code that is executed by each of the non-selected processors is the same, the code that is run
on cach of these non-selected processors preferably is code that generates electrical and

thermal profiles that resemble the actual boot code but do not provide any of the secret

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

22

information that an intruder would require in order to circumvent the security of the
multiprocessor system. Such code may perform similar operations to that of the actual boot
code but not access the sensitive portions of the multiprocessor system. In fact, in one
illustrative embodiment, the same boot code that is used to boot the multiprocessor system
may be used by the non-selected processors but with access to the secure key (Skey) and

other privileged information being made inaccessible.

As a result, the thermal profile and bus traffic of these non-selected processors will
approximate the actual boot sequence. Thus, from the perspective of an intruder using
monitoring probes to monitor the thermal profile, bus traffic, and the like, the intruder will be
unable to decipher which core is performing the actual boot operation since all of the cores
will look the same via the monitoring probes. Such ambiguity deters tampering and makes it

more difficult to isolate the real boot code sequence, secret key information, and the like.

In other illustrative embodiments, each of the non-selected processors may execute a
different set of instructions. By executing different sets of instructions on each of the non-
selected processors, none of the processors look unique when monitored using electrical or
thermal probes. As a result, a distinguishing characteristic, such as thermal profile or bus

traffic, cannot be identified by probes so as to identify which processor is the boot processor.

These different sets of instructions may be randomly selected for each of the processors in the
multiprocessor system. Thus, for example, differing start addresses for code sequences
stored in an on-chip storage device, e.g., a flash ROM or the like, may be randomly selected
and provided to the processors of the multiprocessor system. The processors may then begin
executing instructions at the randomly selected start addresses thereby generating different

thermal profiles and bus traffic that masks the actual boot code sequence.

One way in which to provide different code sequences for the different processors is to
provide boot code that has random delay elements inserted into the boot code. These delay
clements may be, for example, loops that iterate a random number of times. Such delay

elements may be provided both in the actual boot code sequence run by the randomly selected

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

23

boot processor and in the boot code sequences run by the non-selected processors. This
random delay causes the boot code to “look” different on each of the processors from the
perspective of an intruder monitoring the thermal and bus traffic characteristics of the
processors. As a result, it is not possible for the intruder to discern which processor is

running the actual boot code that boots the multiprocessor system.

In yet another illustrative embodiment, a dummy processor is provided that looks as though it
is unique when monitored by an intruder. This illustrative embodiment is a combination of
the previous embodiments in which one processor is randomly selected to be the boot
processor, one processor of the non-selected processors is selected to be a dummy processor
that runs code that provides a unique thermal and bus traffic profile from the boot code
sequence, and the other processors run code sequences that replicate the thermal profile and
bus traffic of the actual boot code sequence as close as possible. In this way, the intruder will
detect the dummy processor as being unique from the other processors and will conclude that
this processor is running the actual boot code sequence. Thus, the intruder will direct its
attacks to this dummy processor rather than the actual boot processor that appears to be
similar to the other processors from a thermal profile and bus traffic standpoint. Furthermore,
if the intruder attempts to run code or otherwise actively interfere with the dummy processor,

the dummy processor can then signal a system shutdown.

Figures 4A-4D are exemplary diagrams illustrating masking operations for masking a secure
boot operation of a randomly selected boot processor in accordance with illustrative
embodiments. Figure 4A illustrates a first masking operation in which code that appears,
from a monitoring probe standpoint, to be the same as the boot code sequence is run on each
of the non-selected processors. As shown in Figure 4A, SPEO 410 is randomly selected, such
as by use of the mechanisms described previously, to be the boot processor for the
multiprocessor system 400. Thus, SPEO 410 receives the secret key, decrypts the boot code
sequence from the flash ROM, and executes the actual boot code operations required to bring
the multiprocessor system 400 into an operational state. The other SPEs, i.e. SPE1-SPE7
412-424, execute code that looks like the boot code sequence from the perspective of a

monitoring probe.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

24

As described above, the code sequence that the other SPEs 412-424 run may be default code
sequences provided in a secure portion of local storage which causes the SPE 412-424 to
execute instructions to mask the boot code sequence being performed on SPE0 410. The
code that is run on each of these non-selected SPEs 412-424 preferably is code that generates
electrical and thermal profiles that resemble the actual boot code but do not provide any of
the secret information that an intruder would require in order to circumvent the security of
the multiprocessor system. Such code may perform similar operations to that of the actual

boot code but not access the sensitive portions of the multiprocessor system 400,

Figure 4B illustrates another illustrative embodiment in which different randomly selected
algorithms are run on each of the non-selected processors. As shown in Figure 4B, SPEO is
again selected to be the boot processor and thus, runs the boot code for booting the
multiprocessor system 400 into an operational state. Each of the other SPEs 412-424 run a
separate randomly selected algorithm that generates different thermal profiles and different
bus traffic on the EIB. Thus, each SPEQ-7 appears to be unique when compared to each of
the other SPEs 410-424. Thus, it is not possible to discern which SPEO-7 410-424 is the

actual boot processor for booting the multiprocessor system 400.

As mentioned above, these different algorithms may be randomly selected for each of the
SPEs 412-424 in the multiprocessor system. Thus, for example, differing start addresses for
code sequences stored in an on-chip storage device, e.g., a flash ROM or the like, may be
randomly selected and provided to the SPEs 412-424. The SPEs 412-424 may then begin
executing instructions at the randomly selected start addresses thereby generating different

thermal profiles and bus traffic that masks the actual boot code sequence.

Alternatively, the boot code may be provided to each of the SPEs 410-424 with random delay
elements inserted into the boot code. These delay elements may be, for example, loops that
iterate a random number of times, This random delay causes the boot code to “look”
different on each of the SPEs 410-424 from the perspective of an intruder monitoring the

thermal and bus traffic characteristics of the processors. As a result, it is not possible for the

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

25

intruder to discern which processor is running the actual boot code that boots the

multiprocessor system.

Figure 4C illustrates another illustrative embodiment in which a dummy processor is provided
to which attacks from an intruder may be redirected. As shown in Figure 4C, SPEO is the
randomly selected boot processor executing the boot sequence. SPE1-SPE4 412-418 and
SPE6-SPE7 422-424 run code that looks like the boot code sequence from a thermal and bus
traffic monitoring perspective, as in the embodiment described above with regard to Figure
4A. SPES5 420, on the other hand, runs a randomly selected algorithm which may be

randomly selected in a similar manner as described above with regard to Figure 4B.

Thus, from the perspective of an intruder monitoring the characteristics of the processors
410-424, all of the SPE0-SPE4 410-418 and SPE6-SPE7 422-424 look to be executing the
same code. SPES 420, however, appears to be unique from the other SPEs. Hence, an
intruder wishing to attack the boot sequence of the multiprocessor system may redirect
attacks against SPES 420 rather than the actual boot processor SPEO 410 since, to the

intruder, it appears that SPES 420 is the actual boot processor.

Just as the actual boot processor is randomly sclected with each power-on reset (POR)
operation, the dummy processor may be randomly selected from the non-selected processors
as well. Thus, with each POR operation, a different boot processor and dummy processor
may be selected, thereby making it more difficult for an intruder to deduce which processor is
performing an actual boot sequence that may be compromised in order to obtain access to the

multiprocessor system.

For completeness, Figure 4D illustrates the illustrative embodiment previously described
above in which the boot code that is used to boot the system is executed by each of the
processors. In this illustrative embodiment, only the randomly selected boot processor is
given access to the secret key (Skey) while the other processors receive randomly selected
keys (Rkeyl-Rkey7). Each of the processors attempts to decode and execute the boot code
using the key that was supplied to them, e.g., the Skey or an Rkey. Only the randomly

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

26

selected boot processor will be able to correctly decrypt the boot code and execute it to bring
the data processing system into an operational state. However, to an outside monitor, it will
appear as if all of the processors are booting the system, thereby masking the actual boot
processor, since each of them will be performing similar tasks to attempt to decrypt and boot
the system. That is, each of the processors will generate a similar thermal and/or electrical
signature that makes it difficult for a would-be intruder to discern which processor is the

actual boot processor using measuring probes and the like.

Through the use of the random selection of the boot processor and the masking of the boot
sequence, as provided by the illustrative embodiments, it becomes very difficult for any
would-be intruder into the multiprocessor system to be able to discern which processor is
performing a boot code sequence. Thus, it becomes very difficult for a would-be intruder to
monitor thermal profiles and bus traffic of the processors and identify secret key information
for use in accessing the encrypted boot code. Moreover, it becomes difficult for a would-be
intruder to identify places in the boot code sequence where intrusion into the system is
possible. Hence, the multiprocessor system is made more secure from unauthorized access to

the boot sequence.

Figures 5-6 are flowcharts outlining an exemplary operation for randomly selecting a
processor in a multiprocessor system as a boot processor and for masking the boot code
sequence. It will be understood that each block of the flowchart illustrations, and
combinations of blocks in the flowchart illustrations, can be implemented by computer
program instructions. These computer program instructions may be provided to a processor
or other programmable data processing apparatus to produce a machine, such that the
instructions which execute on the processor or other programmable data processing
apparatus create means for implementing the functions specified in the flowchart block or
blocks. These computer program instructions may also be stored in a computer-readable
memory or storage medium that can direct a processor or other programmable data
processing apparatus to function in a particular manner, such that the instructions stored in

the computer-readable memory or storage medium produce an article of manufacture

10

15

20

25

WO 2007/141112 PCT/EP2007/054575

27

including instruction means which implement the functions specified in the flowchart block or

blocks.

Accordingly, blocks of the flowchart illustrations support combinations of means for
performing the specified functions, combinations of steps for performing the specified
functions and program instruction means for performing the specified functions. It will also
be understood that each block of the flowchart illustrations, and combinations of blocks in the
flowchart illustrations, can be implemented by special purpose hardware-based computer
systems which perform the specified functions or steps, or by combinations of special purpose
hardware and computer instructions.

Figure 5 outlines an exemplary operation for random selection of a boot processor for
booting a multiprocessor system. As shown in Figure 5, the operation starts with the system
controller performing a power-on reset (POR) operation (step 510). After performance of
the initial POR operations, the system controller provides a “power good” signal to the
pervasive logic of the multiprocessor system (step 520) and the pervasive logic initiates a

random boot operation (step 530).

The pervasive logic randomly selects a processor from a plurality of processors to be the boot
processor (step 540). The pervasive logic then sets the configuration bits of the processors
based on the random selection (step 550) and signals the processors to begin the boot
operation (step 560). A flash ROM provides the encrypted boot code to the processors and
key values are provided to the processors from a secret key storage and random key
generator (step 570). The processors then select the keys that are to be used by the
processors based on the setting of their configuration bits (step 580). The processors attempt
to decrypt the boot code based on the selected keys (step 590). The selected processor
decrypts the boot code using the secret key and boots the system (step 595). It should be
noted that the attempt to decrypt the boot code by all other non-selected processors will fail

and only the selected processor will be able to boot the system. The operation then ends.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

28

Figure 6 is a flowchart outlining an exemplary operation for masking a boot code sequence in
accordance with one illustrative embodiment. The operation outlined in Figure 6 may be

performed in each processor of a multiprocessor system, for example.

As shown in Figure 6, the processor receives a signal to begin a boot operation (step 610).
This step may correspond to step 530 in Figure 5, for example. The processor attempts to
decrypt the boot code (step 620) and a determination is made as to whether the decrypt
attempt failed (step 630). If the decrypt was successful, i.e. the processor is the randomly
selected boot processor, then the boot code is executed to thereby bring the multiprocessor

system to an operational state (step 640).

If the decryption failed, then a code sequence to execute to mask the boot sequence is
selected (step 650). As mentioned above, depending upon the particular embodiment, the
selection of a masking code sequence may be based on a default code sequence in a secure
portion of a local store, a randomly selected starting address, the use of boot code with
random delay elements, or the like. The masking code sequence is run (step 660) and a
determination is made as to whether the system is in an operational state, i.e. the boot
sequence has completed (step 670). If not, the operation returns to step 660 and continues to
run the masking code sequence. If the system is in an operational state, then the execution of

the masking code sequence is ended (step 680) and the operation terminates.

Thus, the above illustrative embodiments provide a mechanism by which a processor may be
randomly selected from a plurality of processors as a boot processor for booting a
multiprocessor system to an operational state. The illustrative embodiments further provide a
mechanism for masking the boot code sequence being executed by a randomly selected
processor so as to make it difficult for an intruder to discern which processor has been
randomly selected to execute the actual boot code sequence. Using these mechanisms, a
multiprocessor system is made more secure by making it extremely difficult for an intruder to

gain access to the system through monitoring the boot code sequence.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

29

The above illustrative embodiments are described in terms of the boot code sequence being
performed by a single processor in a multiprocessor system. However, the illustrative
embodiments are not limited to such. In other illustrative embodiments, the boot code
sequence may be distributed across a plurality of processors in the multiprocessor system, as
described hereafter. By distributing the boot code sequence across a plurality of processors
in the multiprocessor system, the number of processors that must be compromised in order to
obtain complete information about the boot sequence and thereby circumvent security

measures is increased.

Thus, the distributed boot operation of the illustrative embodiments described hereafter is
more secure than multiprocessor data processing systems that utilize a single secure core.
Furthermore, by distributing the boot operation, if any portion of the boot operation is
compromised, the boot operation fails, thereby preventing an unauthorized individual from
circumventing the security of the system. In other words, while the would-be intruder may
compromise a portion of the boot operation, the would-be intruder is not able to compromise
the all of the boot operation and thus, is not able to obtain access to the multiprocessor data

processing system.

With this illustrative embodiment, the boot code sequence is partitioned into a plurality of
partitions such that each partition may be provided to a different processor of the
multiprocessor system. As each partition of the boot code sequence is executed, that
partition must complete correctly on its respective processor before the boot code sequence
may proceed on another processor. A secure communication mechanism is used to
communicate satisfactory completion of a previous partition of the boot code sequence. This
secure communication mechanism may include a security token, such as an encrypted
password or other security identifier, ¢.g., a public/private encryption key pair, that indicates
that the previous session was not compromised. In this way, a chain of dependent *“sessions”

are created that must complete satisfactorily.

The processors that are involved in the distributed execution of the boot code may be all of

the processors in the multiprocessor system or a sub-set of the processors in the

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

30

multiprocessor system. For example, a random selection mechanism, such as that described
above for selecting a single boot processor, may be used to randomly select a plurality of boot
processors to be used in booting the system in a distributed manner. Moreover, the particular
partitions of the boot code that are executed by the processors may be randomly selected
such that, with each power-on reset (POR) operation, the same processor may or may not
execute the same boot code partition as in a previous POR operation. Thus, randomization
may be performed with regard to which processors are involved in the distributed boot

operation as well as with regard to what boot code partitions each processor will execute.

Other processors of the multiprocessor system, i.e. non-boot processors, may either not
perform any work during the distributed boot operation or may execute masking code
sequences, of one or more of the various masking code illustrative embodiments described
previously, to mask the boot code execution on the randomly selected sub-set of processors,
In other words, the distributed boot code sequence operation of the present illustrative
embodiment may be combined with one or more of the previously described illustrative

embodiments without departing from the spirit and scope of the present invention.

Figure 7A is an exemplary diagram illustrating a distributed boot operation configured as a
daisy chain or ring arrangement in accordance with one illustrative embodiment. As shown in
Figure 7A, a plurality of processors 720-750 are provided for booting the multiprocessor data
processing system. In the depicted example, all of the co-processors, i.e. SPEs, are utilized in
the distributed boot operation while the control processor, e.g., PPE, does not execute the
distributed boot code. Of course, in other illustrative embodiments, the PPE may also be
included in the distributed boot operation. Moreover, in other illustrative embodiments, as
mentioned previously, only a sub-set of the processors in the multiprocessor data processing

system may be used to perform the distributed boot operation.

The encrypted boot code 710, which may be stored in a storage device associated with the
multiprocessor data processing system, such as in Flash ROM 230 in Figure 2, for example,
may be partitioned into separately executable partitions, i.c. boot code partitions 1 to n. For

example, the partitions may be provided as modules or routines in the encrypted boot code

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

31

that are separately encrypted using the same encryption algorithm and the same secret key
(Skey). Preferably, the number of boot code partitions is equal to the number of processors
that will be involved in the distributed boot operation, i.e. the number of boot processors.
However, in some illustrative embodiments, such as in a ring arrangement of the boot
processors, the number of boot code partitions is not limited the number of boot processors

and may be any number of partitions less than or greater than the number of boot processors.

The distributed boot operation is performed under the control of the pervasive logic 790,
which may be the same pervasive logic 193 in Figure 1, for example. The pervasive logic
790, through the user of the random event generator, for example, may randomly select the
processors 720-750 to be used as boot processors as well as may randomly select which
partition each of the randomly selected processors 720-750 will execute. In such an
embodiment, the pervasive logic 790 may keep track of the order in which the boot code
partitions are to be executed in order to ensure the security of the boot code sequence
through use of a secure communication mechanism that indicates whether or not a previous
session of the distributed boot operation has been compromised. For simplicity of the present
description, however, it will be assumed that, in the depicted example, all of the processors,
or at least the co-processors, of the multiprocessor system are utilized in the distributed boot
operation and that boot code partitions are provided to the processors 720-750 in sequential

order.

The pervasive logic 790 provides selector signals to the processors 720-750 for selecting
which boot code partition is to be executed by each of the processors 720-750. In addition,
the pervasive logic 790 provides key value selector signals for causing the processor 720-750
to select the Skey, from Skey storage, as the key to be used to decrypt their corresponding
boot code partitions. The processors 720-750 decrypt their boot code partition using the
supplied Skey and then execute the boot code partition in the proper sequence either by virtue
of the arrangement of the processors 720-750 in a daisy chain architecture or under the

control of the pervasive logic 790, for example.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

32

In the depicted example, SPEO 720 begins the distributed boot operation by decrypting its
boot code partition 1, executing the boot code partition, and then securely communicating the
successful completion of the boot code partition 1 to SPE1 730. Moreover, a security
mechanism may be utilized between the SPEs for indicating that the previous session, i.e. the
session comprised of the execution of the previous boot code partition, was not
compromised. The security mechanism may be, for example, passing a security token, digital
signature, password, a checksum of the previous boot code partition, using public key/private
key encryption of the successful completion message, or the like. Any security mechanism
that may be used to communicate whether or not the previous session of a distributed boot
operation was compromised or not is intended to be within the spirit and scope of the present

invention.

After receiving confirmation of the successful and uncompromised completion of the boot
code partition 1 execution, the SPE1 730 may decrypt its boot code partition 2, execute the
boot code partition, and then communicate its successful completion of boot code partition 2
to SPE2 740. This process may continue until all of the processors have signaled that they
have completed their portion of the distributed boot operation without being compromised.
Any break in this dependency chain of boot code partitions, e.g., any signaling of unsuccessful
execution or compromised execution, results in a failed boot which may be signaled to the
system controller. Once all of the boot code partitions have completed successfully, the
multiprocessor data processing system is in an operative state in which software applications

may be executed on the various processors.

The illustrative embodiment described above utilizes a daisy-chain arrangement of the
processors with regard to the boot code partitions that are executed on the processors. Other
arrangements that ensure a sequential execution of boot code partitions may be utilized
without departing from the spirit and scope of the present invention. For example, an
extension of the daisy-chain arrangement above is to provide a ring arrangement of the
processors with regard to the distributed boot operation such that the last processor, ¢.g.,
SPE7 750, communicates back to the first processor, e.g., SPEO 720, which is selected as the

“primary” boot processor, its successful and uncompromised completion of execution of its

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

33

boot code partition. In this way, the security mechanism, e.g., the security token, an
incremented count value, etc., which is passed from one session to the next through the ring
arrangement may be used at the primary boot processor to verify uncompromised execution

of the entire distributed boot operation.

Moreover, a ring arrangement of processors allows a greater number of boot code partitions
to be utilized than the number of boot processors. Thus, if only a sub-set of processors in the
multiprocessor data processing system are selected to be boot processors, this sub-set of
processors may execute any number of boot code partitions when arranged in a ring
arrangement with regard to the distributed boot operation. This gives rise to the ability of the
pervasive logic 790 to not only randomly select which processors in the multiprocessor data
processing system are to be boot processors, but also to randomly select how many
processors will be boot processors in the distributed boot operation. Thus, in a first POR
operation, four processors may be selected to be boot processors while in a subsequent POR
operation three boot processors may be selected. The pervasive logic 790 may contain logic
for randomly selecting a number of processors to select to be boot processors which then is
used to control the random selection of processors as previously described above.

Another possible arrangement of boot processors with regard to a distributed boot operation
is to provide a master/slave arrangement. Figure 7B is an exemplary diagram illustrating a
distributed boot operation configured as a master/slave arrangement in accordance with one
illustrative embodiment. As shown in Figure 7B, one processor 760 is designated the master
processor. This processor may be one of the co-processors, €.g., an SPE, or the control
processor, e.g., the PPE. The slave processors, e.g., SPEQ-SPE7 720-750, each are
responsible for completing their boot code partition and securely communicating to the
master core that they have finished execution and have not been compromised, in a similar
manner as described above in Figure 7A. Once the master processor 760 has received signals
from each of the slave processors 720-750, and validated that it has not been compromised
itself, then the multiprocessor data processing system is permitted to enter an operational

state in which software applications may be executed.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

34

It should be appreciated that while a daisy-chain, ring, and master/slave arrangement of
processors with regard to a distributed boot operation have been described herein, the present
invention is not limited to only these described arrangements. Rather any arrangement of
processors with regard to a distributed boot operation may be used with the mechanisms of
the illustrative embodiments without departing from the spirit and scope of the present

mvention.

Figure 8 is a flowchart outlining an exemplary operation for distributed booting of a
multiprocessor system in accordance with one illustrative embodiment. As shown in Figure 8,
the operation starts with the pervasive logic receiving a “power good” signal from the system
controller (step 810). The pervasive logic selects the processors to be boot processors from
the plurality of processors in the multiprocessor data processing system (step 820). As
mentioned above, such selection may result in all of the processors being selected or some
sub-set of the processors in the multiprocessor data processing system being selected to be
boot processors. Such selection may be performed using a random event generator in the

pervasive logic, for example.

The pervasive logic selects the boot code partitions to be assigned to the selected boot
processors (step 830). A next boot code partition is executed by an associated boot
processor (step 840). The boot processor determines whether the execution of the boot code
partition was successful and uncompromised (step 850). If not, a boot failure is signaled to

the system controller (step 860) and the operation terminates.

If the boot code partition executes successfully and is not compromised, then the boot
processor determines if the all boot code partitions have been executed successfully (step
870). If not, the operation returns to step 840 and the next boot code partition is executed by
its associated boot processor. If all of the boot code partitions have been executed
successfully, the boot processor signals the successful boot of the data processing system to
the system controller (step 880) and the operation terminates.

Thus, as set forth above, the illustrative embodiments, in addition to randomly selecting a

single boot processor and performing masking operations on other processors of the

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

35

multiprocessor data processing system, provides mechanisms for distributing the boot
operation over a plurality of processors. The illustrative embodiments provide mechanisms
for randomly selecting boot processors, randomly selecting boot code partitions to be
executed on selected boot processors, and to ensure the security of the execution of the boot
code partitions by the various boot processors. All of these various mechanisms aid is
increasing the security of the multiprocessor data processing system from unauthorized

monitoring of the boot operation.

The illustrative embodiments may take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing both hardware and software
clements. In a preferred embodiment, the invention is implemented in software, which

includes but is not limited to firmware, resident software, microcode, etc.

Furthermore, the illustrative embodiments may take the form of a computer program product
accessible from a computer-usable or computer-readable medium providing program code for
use by or in connection with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer readable medium may be any
apparatus that may contain, store, communicate, propagate, or transport the program for use

by or in connection with the instruction execution system, apparatus, or device.

The medium may be an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory (RAM), a read-only memory (ROM),
a rigid magnetic disk and an optical disk. Current examples of optical disks include compact

disk — read only memory (CD-ROM), compact disk — read/write (CD-R/W) and DVD.

The circuits as described above may be part of the design for an integrated circuit chip. The
chip design may be created in a graphical computer programming language, and stored in a
computer storage medium (such as a disk, tape, physical hard drive, or virtual hard drive such

as in a storage access network). If the designer does not fabricate chips or the

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

36

photolithographic masks used to fabricate chips, the designer may transmit the resulting
design by physical means (e.g., by providing a copy of the storage medium storing the design)
or electronically (e.g., through the Internet) to such entities, directly or indirectly. The stored
design may then be converted into the appropriate format (e.g., GDSII) for the fabrication of
photolithographic masks, which typically include multiple copies of the chip design in
question that are to be formed on a wafer. The photolithographic masks may be utilized to

define areas of the wafer (and/or the layers thereon) to be etched or otherwise processed.

The resulting integrated circuit chips may be distributed by the fabricator in raw wafer form
(that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged
form. In the latter case the chip may be mounted in a single chip package (such as a plastic
carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a
multichip package (such as a ceramic carrier that has either or both surface interconnections
or buried interconnections). In any case the chip may then be integrated with other chips,
discrete circuit elements, and/or other signal processing devices as part of either (a) an
intermediate product, such as a motherboard, or (b) an end product. The end product may be
any product that includes integrated circuit chips, ranging from toys and other low-end
applications to advanced computer products having a display, a keyboard or other input
device, and a central processor. Moreover, the end products in which the integrated circuit
chips may be provided may include game machines, game consoles, hand-held computing
devices, personal digital assistants, communication devices, such as wireless telephones and
the like, laptop computing devices, desktop computing devices, server computing devices, or

any other computing device.

The description of the present invention has been presented for purposes of illustration and
description, and is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the
art. The embodiment was chosen and described in order to best explain the principles of the
invention, the practical application, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with various modifications as are suited to

the particular use contemplated.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

37

CLAIMS

1. A method, for use with a data processing system having a plurality of processors, for
booting the data processing system, comprising;

partitioning boot code into a plurality of boot code partitions;

loading, in each of a plurality of boot processors within the plurality of processors of
the data processing system, a boot code partition from the plurality of boot code partitions;
and

executing the plurality of boot code partitions on their respective associated boot

processors as a plurality of sessions to thereby boot the data processing system.

2. The method of claim 1, wherein, as execution of each boot code partition in its
associated session is completed, an associated boot processor of the plurality of processors
that executed the boot code partition is operable to signal, to another boot processor
associated with a next boot code partition in a boot code sequence, the successful completion

of the boot code partition.

3. The method of claim 1 or claim 2, wherein executing the plurality of boot code
partitions on their respective associated boot processors comprises:

utilizing a security mechanism in communications between boot processors to ensure
uncompromised execution of the plurality of boot code partitions on their respective

associated boot processors.

4. The method of claim 3, wherein the security mechanism comprises at least one of
passing a security token between boot processors, passing a digital signature between boot
processors, using a password, passing a checksum of a boot code partition, or using public

key/private key encryption of the signals.

5. The method of any preceding claim, wherein a number of boot code partitions is equal

to a number of boot processors.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

38

6. The method of any preceding claim, further comprising:
randomly selecting the boot processors from the plurality of processors, wherein the

boot processors are a sub-set of the plurality of processors.

7. The method of claim 6, further comprising:
executing masking code on processors of the plurality of processors that were not

randomly selected to be boot processors.

8. The method of any preceding claim, further comprising:
randomly selecting which boot code partition is associated with each boot processor,

wherein each boot code partition is different from other boot code partitions.

9. The method of any preceding claim, wherein the sessions for execution of boot code
partitions on the boot processors are operable to be arranged in one of a daisy-chain

arrangement, a ring arrangement, or a master/slave arrangement.

10. An apparatus, for use with a data processing system comprising a plurality of
processors; for booting the data processing system, comprising:

means for partitioning boot code into a plurality of boot code partitions;

means for loading, in each of a plurality of boot processors within the plurality of
processors of the data processing system, a boot code partition from the plurality of boot
code partitions; and

means for executing the plurality of boot code partitions on their respective associated

boot processors as a plurality of sessions to thereby boot the data processing system.

11. The apparatus of claim 10, further comprising: means for, as execution of each boot
code partition in its associated session is completed, signaling, by an associated boot
processor of the plurality of processors that executed the boot code partition to another boot
processor associated with a next boot code partition in a boot code sequence, the successful

completion of the boot code partition.

10

15

20

25

30

WO 2007/141112 PCT/EP2007/054575

39

12. The apparatus of claim 10 or claim 11, further comprising: means for utilizing a
security mechanism in communications between boot processors to ensure uncompromised

execution of the plurality of boot code partitions.

13. The apparatus of claim 12, wherein the security mechanism comprises at least one of
passing a security token between boot processors, passing a digital signature between boot
processors, using a password, passing a checksum of a boot code partition, or using public

key/private key encryption of the signals.

14. The apparatus of any of claims 10 to 13, wherein a number of boot code partitions is

equal to a number of boot processors.

15. The apparatus of any of claims 10 to 14, further comprising: means for randomly
selecting the boot processors from the plurality of processors, and wherein the boot

processors are a sub-set of the plurality of processors.

16. The apparatus of claim 15, further comprising: means for executing masking code on
processors of the plurality of processors that were not randomly selected to be boot

Processors.

17. The apparatus of any of claims 10 to 16, further comprising: means for randomly
selecting which boot code partition is associated with each boot processor, and wherein each

boot code partition is different from other boot code partitions.

18. The apparatus of any of claims 10 to 17, wherein the sessions for execution of boot
code partitions on the boot processors are operable to be arranged in one of a daisy-chain

arrangement, a ring arrangement, or a master/slave arrangement.

19. A computer program comprising program code means adapted to perform the steps of

any of claims 1 to 9 when said program is run on a computer.

WO 2007/141112 PCT/EP2007/054575

40

AMENDED CLAIMS
received by the International Bureau on 22 October 2007 (22.10.2007)

1. A method, for use with a data processing system having a plurality of processors, for
booting the data processing system, comprising:
partitioning boot code into a plurality of boot code partitions;
loading, in each of a plurality of boot processors within the plurality of processors of
the data processing system, a boot code partition from the plurality of boot code partitions;
executing the plurality of boot code partitions on their respective associated boot
processors as a plurality of sessions to thereby boot the data processing system; and
randomly selecting the boot processors from the plurality of processors, wherein the

boot processors are a sub-set of the plurality of processors.

2. The method of claim 1, wherein, as execution of each boot code partition in its
associated session is completed, an associated boot processor of the plurality of processors
that executed the boot code partition is operable to signal, to another boot processor
associated with a next boot code partition in a boot code sequence, the successful completion

of the boot code partition.

3. The method of claim 1 or claim 2, wherein executing the plurality of boot code
partitions on their respective associated boot processors comprises:

utilizing a security mechanism in communications between boot processors to ensure
uncompromised execution of the plurality of boot code partitions on their respective

associated boot processors.

4. The method of claim 3, wherein the security mechanism comprises at least one of
passing a security token between boot processors, passing a digital signature between boot
processors, using a password, passing a checksum of a boot code partition, or using public

key/private key encryption of the signals.

5. The method of any preceding claim, wherein a number of boot code partitions is

equal to a number of boot processors.

AMENDED SHEET (ARTICLE 19)

WO 2007/141112 PCT/EP2007/054575

41

6. The method of any preceding claim, further comprising:
executing masking code on processors of the plurality of processors that were not

randomly selected to be boot processors.

7. The method of any preceding claim, further comprising:
randomly selecting which boot code partition is associated with each boot processor,

wherein each boot code partition is different from other boot code partitions.

8. The method of any preceding claim, wherein the sessions for execution of boot code
partitions on the boot processors are operable to be arranged in one of a daisy-chain

arrangement, a ring arrangement, or a master/slave arrangement.

9. An apparatus, for use with a data processing system comprising a plurality of
processors; for booting the data processing system, comprising:

means for partitioning boot code into a plurality of boot code partitions;

means for loading, in each of a plurality of boot processors within the plurality of
processors of the data processing system, a boot code partition from the plurality of boot
code partitions;

means for executing the plurality of boot code partitions on their respective
associated boot processors as a plurality of sessions to thereby boot the data processing
system; and

means for randomly selecting the boot processors from the plurality of processors,

and wherein the boot processors are a sub-set of the plurality of processors.

10. The apparatus of claim 9, further comprising: means for, as execution of each boot
code partition in its associated session is completed, signaling, by an associated boot
processor of the plurality of processors that executed the boot code partition to another boot
processor associated with a next boot code partition in a boot code sequence, the successful

completion of the boot code partition.

AMENDED SHEET (ARTICLE 19)

WO 2007/141112 PCT/EP2007/054575

42

11. The apparatus of claim 9 or claim 10, further comprising: means for utilizing a
security mechanism in communications between boot processors to ensure uncompromised

execution of the plurality of boot code partitions.

12. The apparatus of claim 11, wherein the security mechanism comprises at least one of
passing a security token between boot processors, passing a digital signature between boot
processors, using a password, passing a checksum of a boot code partition, or using public -

key/private key encryption of the signals.

13. The apparatus of any of claims 9 to 12, wherein a number of boot code partitions is

equal to a number of boot processors.

14. The apparatus of any of claims 9 to 13, further comprising: means for executing
masking code on processors of the plurality of processors that were not randomly selected to

be boot processors.

15. The apparatus of any of claims 9 to 14, further comprising: means for randomly
selecting which boot code partition is associated with each boot processor, and wherein each

boot code partition is different from other boot code partitions.
16. The apparatus of any of claims 9 to 15, wherein the sessions for execution of boot
code partitions on the boot processors are operable to be arranged in one of a daisy-chain

arrangement, a ring arrangement, or a master/slave arrangement.

17. A computer program comprising program code means adapted to perform the steps of

any of claims 1 to 8 when said program is run on a computer.

AMENDED SHEET (ARTICLE 19)

WO 2007/141112 PCT/EP2007/054575

1/9 1/00
CELL BROADBAND ENGINE
12\'0 12\'2 124 126 128 130 1;2 1'/34
SPU SPU SPU SPU SPU SPU SPU SPU
140(| [(142 | [|12a| | ||248] | | |248]| | [150] | |{152]] | |154
s | | e et TS T T s s

163] | | |64 | [|285] | | [1e8]] ||167|| ||1e8|] | [169] [|170

Y 3 1 3 Y
Y | i Y 1 1 1

MFC MFC MFC MFC MFC MFC MFC MFC
155 | | 1288| | | |x57|| | |258] | ||1s9] | | |160]| ||161]] | |162

A 4 A [Y 4 [
A 4 y Y 4 Y 4 Y y

BIU BiU BIU BIU BiU BIU BIU BIU
180 | [|282| | | |x84]| |18 | |188] | | 190 | | [1¢2][| | 124

A

EIB
196
A f 3 A A A
Y
L2
114-"| CACHE
1 ‘ \ \ \ y
PERVASIVE
o CALC1HE PPE MIC LoGie BIC
T ‘ J \ \ A A \
L 198 193 197
1161 PPU 110
A A Y
EXTERNAL
SHARED
A BUSES/
FIG. 1 199-"1 MEMORY DEVIGES

PCT/EP2007/054575

WO 2007/141112

2/9

062
. H0SS3004d -
lllllllllllllll —
llllllll I' ‘I =7
||||||||||||||| I.I.' O
llllllll I' O ‘I - =7
lllllllllllllll I' O
llllllll |v ‘I — e T T
02 INVA
N NOILDF13S
> 3dS H0SS3I004d H0SS3D0Yd
3009 1009 INOANVY
Q3LdAHONT $
¢9¢
\ e
d01VHINID H3LSIH3Y Lig £
767 INTVA] - HOLYHINID L
3009 1004 401037138 21907 INSYAHI
Q3LdAHONT 7 N]
INOY HSY 14 09¢ 052 N_,m%_m
om\m ADIS Mwm HIMOJ
I9VHOLS YITIOHINOD
ADIS ADIIHNOIS Pqzz WILSAS N.012
C DIA

PCT/EP2007/054575

WO 2007/141112

3/9

0/ /3dsol

/ A

13dS0L 09€
— \ 4
\ ¢lE N £ 03dsoL 0SE
* i =2 7
\ 29¢ A
HOLVHINID JOVHO0IS o oo L \
INTVA WOANYY ADIS 1 1 \ ZC¢ AN
HOLVHINID IOVHOLS
40L0313S INVAWOONYY | | ADIS t t
HOLYHINID 3IOVHOLS
| 431813 18 401938 INTYA WOANVY ADIS
NOLLVHNSIINOD
| 43LsIo3y Lig 40133138
NOILYHNYIANOD
| waLsiv3y Lg
SHOSSIN0Yd NOILYENDIANOD
HIHLO NI
SHOLDITAS
H3H10 OL
P — I I
|
i |
. | i
ove | b-m-mmmm - A -
\ i
’ 028 ~[3nnoo 0ee
< ys41 [0
HOLVHINID INIAT INOANYY
VE DIA g

WO 2007/141112 PCT/EP2007/054575

v
A
FIG. 3B
-t
SAMPLE
391‘
PERVASIVE LOGIC “ SEY | a0
RANDOM EVENT RANDOM KEY SI;S?SE
GENERATOR/ GeneraToR ||IF
SELECTOR 390 5US OF
’ ™ KEY-WIDTH
396 |
0:7, \ /
/
L speo
393
SELECTOR BUS IS "ONE-HOT" —»] L 391
/
VALID COMBINATIONS:
10000000 o
01000000 °
00100000
00010000 L sPE7
00001000 294
00000100 228
00000010 L
00000001
™-392
FIG. 3C —

WO 2007/141112

PCT/EP2007/054575
400 5/9
41 {)‘ N 414 '4/18 }22
SPED SPE2 SPE4 SPE6
RUNS RUNS CODE RUNS CODE RUNS CODE
SO0 THAT LOOKS THAT LOOKS THAT LOOKS
CODE LIKE BOOT LIKE BOOT LIKE BOOT
CODE CODE CODE
405
> i b & U i
3 il i T
SPET SPE3 SPE5 SPE7
RUNS CODE RUNS CODE RUNS CODE RUNS CODE
THAT LOOKS THAT LOOKS THAT LOOKS THAT LOOKS
LIKE BOOT LIKE BOOT LIKE BOOT LIKE BOOT
CODE CODE CODE CODE
412 s FIG. 44 420 424
41 \0‘ 41 \4‘ 418 422
400 s s
S SPEO SPE2 SPE4 SPE6
RUNS RUNS RUNS RUNS
BOOT RANDOM RANDOM RANDOM
CODE ALGORITHM B ALGORITHM D ALGORITHM F
405
3 b w3 i
3) i T
SPE1 SPE3 SPE5 SPE7
RUNS RUNS RUNS RUNS
RANDOM RANDOM RANDOM RANDOM
ALGORITHM A ALGORITHM C ALGORITHM E ALGORITHM G
412 s FIG. 4By

424

WO 2007/141112 PCT/EP2007/054575
6/9
410 414 418 422
\\ \\ FIG. 4C ‘/ {/
400~
SPEQ SPE2 SPE4 SPE6
RUNS RUNS CODE RUNS CODE RUNS CODE
BOOT THAT LOOKS THAT LOOKS THAT LOOKS
CODE LIKE BOOT LIKE BOOT LIKE BOOT
CODE CODE CODE

405
o 4

§ o I

PPE K >
ey e R A
SPE1 SPE3 SPE5 SPE7
RUNS CODE RUNS CODE RUNS RUNS CODE
THAT LOOKS THAT LOOKS RANDOM THAT LOOKS
LIKE BOOT LIKE BOOT ALGORITHM A LIKE BOOT
CODE CODE CODE
410 414 418 422
\ \\ FIG. 4D / /
400~
SPEO SPE2 SPE4 SPE6
RUNS BOOT RUNS BOOT RUNS BOOT RUNS BOOT
CODE CODE CODE CODE
SKEY RKEY2 RKEY4 RKEY6

405
o

| - 0

%
412 @
™\

SPE1

RUNS BOOT
CODE

RKEY1

>
4 i 02
SPE3 SPES SPE7
RUNS BOOT RUNS BOOT RUNS BOOT
CODE CODE CODE

RKEY3 RKEY5 RKEY7

WO 2007/141112

FIG. 5

510~

POR OPERATION

!

920~

POWER GOOD SIGNAL FROM
SYSTEM CONTROLLER

!

530~

INITIATE RANDOM
BOOT OPERATION

!

540~

RANDOMLY SELECT PROCESSOR
FROM PLURALITY OF PROCESSORS
TO BE BOOT PROCESSOR

!

950~

SET CONFIGURATION BITS OF
PROCESSORS BASED ON
RANDOM SELECTION

!

560"

SIGNAL PROCESSORS TO
BEGIN BOOT OPERATION

!

570"

PROVIDE ENCRYPTED
BOOT CODE AND KEY
VALUES TO PROCESSORS

!

580"

PROCESSORS SELECT KEYS
BASED ON CONFIGURATION
BIT VALUES

!

590"

PROCESSORS ATTEMPT
DECRYPT OF BOOT CODE
BASED ON SELECTED KEYS

!

595

SELECTED PROCESSOR
DECRYPTS BOOT CODE USING
SECRET KEY AND BOOTS SYSTEM

END

PCT/EP2007/054575

7/9

FIG. 6

RECEIVE SIGNAL
TO BEGIN BOOT
OPERATION

610~

!

DECRYPT
BOOT CODE

620~

DECRYPTION
FAIL?

Y

SELECT CODE TO
EXECUTE TO MASK
BOOT SEQUENCE

650~

EXECUTE
BOOT CODE
SEQUENCE

Y

RUN MASKING

660-"| CODE SEQUENCE

SYSTEM
IN OPERATIONAL
STATE?

670

END MASKING

680-"| CODE SEQUENCE

N
640

Y

(_ END)

WO 2007/141112 PCT/EP2007/054575
8/9 ENCRYPTED BOOT CODE SEQUENCE
FIG. 74 0
BOOT CODE | BOOT CODE . BOOT CODE | BOOT CODE
PARTITION 1 | PARTITION 2 PARTITION 6 | PARTITION 7
SIGNAL SIGNAL SIGNAL
SUCCESSFUL SUCCESSFUL SUCCESSFUL
¥ UNCOMPROMISED _ § _ UNCOMPROMISED Y UNCOMPROMISED 4
COMPLETION COMPLETION COMPLETION
SPEO — >4 SPE1 zzz=— > SPE6 3 SPE7
FT 720 730 F ° oo T N-740 7507 ¥¥
| Il pmemem————— Jd |
| | [|
| | : I
:___ L—'___j |l r—————— Trr————"—————— J
______________ 1 _I__:_]
SELECT SIGNALS ~“F-1-1-7
PERVASIVE
790-"| LOGIC SKEY
ENCRYPTED BOOT
CODE SEQUENCE
710
FIG. 7B y
BOOT CODE | BOOT CODE o BOOT CODE | BOOT CODE
PARTITION 1 | PARTITION 2 PARTITION 6 | PARTITION 7
L 720 1 730 740~ 750~ l
SPEQ SPET o0 o SPEG SPE7
f f ! f
| SIGNAL ! [———————-— 3 |
| SUCCESSFUL | | r—— ||~~~ ——-
|| uncompromiseD | —
| COMPLETION | || SIGNAL
| | — SUCCESSFUL
| 3 X UNCOMPROMISED
b= T COMPLETION
T |\
SELECT SIGNALS ~“F-T-1-+ vV {}
PERVASIVE
790~ LogC SPE/PPE N760

WO 2007/141112 PCT/EP2007/054575

9/9

FIG. 8

RECEIVE POWER-GOOD
SIGNAL FROM SYSTEM
CONTROLLER

!

820~ SELECT BOOT
PROCESSORS

!

SELECT BOOT CODE
PARTITIONS TO ASSIGN TO
EACH BOOT PROCESSOR

"y
EXECUTE NEXT BOOT CODE
PARTITION IN ASSOCIATED

BOOT PROCESSOR

810~

830~

840~

EXECUTION
OF BOOT CODE
PARTITION SUCCESSFUL AND
UNCOMPROMISED

SIGNAL BOOT
OPERATION FAILURE |-860

ALL BOOT
CODE PARTITIONS
SUCCESSFUL AND
UNCOMPROMISED

SIGNAL SUCCESSFUL
8801 BOOT OF SYSTEM

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2007/054575

A. CLASSIFICATION OF SUBJECT MATTER
N BOBF21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation 1o the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

page 2, paragraphs 16,18

X US 6 839 849 B1 (UGON MICHEL [FR] ET AL) 1-5,
4 January 2005 (2005-01-04) 8-14,
17-19
column 5, Tline 64 - column 6, Tine 45
column 8, T1ine 25 - column 9, Tine 6
column 12, line 38 - line 47
X US 2004/255172 Al (DAYAN RICHARD A [US] ET 1,3,5,9,
AL) 16 December 2004 (2004-12-16) 10,12,
14,18,19

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

'A* document defining the general state of the art which is not
considered to be of particular relevance

'E* earlier document but published on or after the international
filing date

‘L* document which may throw doubts on priotity claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

' later document published after the international filing date

or priority date and not in conflict with the application but
fited to understand the principle or theoty underlying the
nvention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to Involve an inventive step when the
document is combined with one or more other such docu-
lrnelr‘:’ts, such combination being obvious to a person skilled
n the art.

document member of the same patent family

Date of the actual completion of the international search

3 September 2007

Date of mailing of the international search report

12/09/2007

Name and mailing address of the 1SA/
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel, (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Arbutina, Ljiljana

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent famlly members

International application No

PCT/EP2007/054575
Patent document Publication Patent family Pubfication
cited in search report date member(s) date
US 6839849 Bl 04-01-2005 AT 278981 T 15-10-2004
BR 9908268 A 24-10-2000
CN 1292109 A 18-04-2001
DE 69920880 D1 11-11-2004
DE 69920880 T2 27-10-2005
EP 1057094 Al 06-12-2000
FR 2787900 Al 30-06-2000
WO 0039660 Al 06-07-2000
HK 1035238 Al 11-06-2004
JP 2002533825 T 08-10-2002
TW 463101 B 11-11-2001
US 2004255172 Al 16-12-2004 NONE

Form PCT/ISA/210 (patent tamily annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - amend-body
	Page 43 - amend-body
	Page 44 - amend-body
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - wo-search-report
	Page 55 - wo-search-report

