0 02/39714 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 May 2002 (16.05.2002)

(10) International Publication Number

WO 02/39714 A2

(51) International Patent Classification’: HO04N

(21) International Application Number: PCT/US01/32517
(22) International Filing Date: 17 October 2001 (17.10.2001)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/247,389 8 November 2000 (08.11.2000) US
60/260,907 10 January 2001 (10.01.2001) US
60/284,594 17 April 2001 (17.04.2001) US

(71) Applicant (for all designated States except US): DIGI-
MARC CORPORATION [US/US]; 19801 SW 72nd Av-
enue, Suite 100, Tualatin, OR 97062 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): TIAN, Jun [CN/US];
Apt. B208, 6455 SW Nyberg Lane, Tualatin, OR 97062
(US).

(74) Agent: MEYER, Joel, R.; Digimarc Corporation, Suite
100, 19801 SW 72nd Avenue, Tualatin, OR 97062 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, 7ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: CONTENT AUTHENTICATION AND RECOVERY USING DIGITAL WATERMARKS

(57) Abstract: The disclosure describes methods for using digital watermarking to authenticate digital media signals, such as im-
ages, audio and video signals. It also describes techniques for using embedded watermarks to repair altered parts of a media signal
when alteration is detected. Alteration is detected using hashes, digital watermarks, and a combination of hashes and digital water-

marks.



WO 02/39714 PCT/US01/32517

10

15

20

- 25

Content Authentication and Recovery Using Digital Watermarks

Related Application Data

This patent application claims the benefit of U.S. Provisional Applications
60/247,389, filed November 8, 2000, 60/260,907, filed January 10, 2001, and
60/284,594, filed April 17, 2001, which are hereby incorporated by reference.

Technical Field

The invention relates to steganography, data hiding, and particularly, digital

watermarking of multimedia signals.

Background

Digital watermarking is a process for modifying physical or electronic media to
embed a machine-readable code into the media. The media may be modified such that
the embedded code is imperceptible or nearly imperceptible to the user, yet may be
detected through an automated detection process. Most commonly, digital
watermarking is applied to media signals such as images, audio signals, and video
signals. However, it may also be applied to other types of media objects, including
documents (e.g., through line, word or character shifting), software, multi-dimensional
graphics models, and surface textures of objects.

Digital watermarking systems typically have two primary components: an
encoder that embeds the watermark in a host media signal, and a decoder that detects
and reads the embedded watermark from a signal suspected of containing a watermark
(a suspect signal). The encoder embeds a watermark by altering the host media signal.
The reading component analyzes a suspect signal to detect whether a watermark is
present. In applications where the watermark encodes information, the reader extracts
this information from the detected watermark.

Several particular watermarking techniques have been developed. The reader is
presumed to be familiar with the literature in this field. Particular techniques for
embedding and detecting imperceptible watermarks in media signals are detailed in the

assignee’s co-pending application serial number 09/645,779, filed August 24, 2000,



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-2-

09/689,293, filed October 11, 2000, 09/503,881 filed February 14, 2000 and US Patent
5,862,260, which are hereby incorporated by reference.

Summary

The invention provides methods for embedding hidden data in media signals,
and methods for extracting this embedded data to detect alteration of the signal as well
as to repair the altered portion of the signal. One aspect of the invention is a method
for hiding auxiliary data in a media signal. This method compresses a first media
signal, and embeds the first media signal into a second media signal. In one
implementation, the second media signal is part of the first signal, and the compressed
part of the signal is extracted and used to repair altered portions of the media signal.

Another aspect of the invention is a method of decoding auxiliary data that has
been imperceptibly embedded into a host signal. The method decodes the auxiliary
signal, which represents a compressed version of the host signal. It then decompresses
the compressed version, and uses the decompressed version to authenticate the host
signal.

Another aspect of the invention is a method of digitally watermarking media
content. The method selects non-overlapping blocks A, B and C of the media content;
losslessly compresses blocks B and C of the content to form compressed content;
watermark embeds the compressed content into block B of the media content to form a
new block B’; creates a hash of block A and B’; watermark embeds the hash into block
C to create a new block C’; and combines blocks A, B’ and C’ to form watermarked
media content.

A compatible watermark decoder compares the hash with a new hash calculated
from the watermarked media content to determine whether the watermarked media
content is authentic. The decoder reconstructs original un-watermarked media content
by using watermark decoding to extract the compressed content and decompressing the
compressed content.

Another aspect of the invention is a method for encoding a reversible watermark
in a media signal. The method embeds a watermark message signal into a reference

media signal to create a watermarked reference signal, where the watermark message



WO 02/39714 PCT/US01/32517

10

15

20

25

30

signal includes information about a watermark embedder function used to embed the
watermark message signal into the reference signal. The method subtracts the
reference signal from the watermarked reference signal to form a difference signal, and
adds the difference signal to a host media signal to embed the watermark message
signal in the host signal. The adding of the difference signal is reversible by decoding
the information about the watermark embedder function from the host media signal,
using the information about the watermark embedder function to re-compute the
difference signal, and subtracting the difference signal from the host media signal to
restore the host signal.

Another aspect of the invention is a method for authenticating a watermarked

media signal that has been watermarked using a watermark embedding function on an

- un-watermarked version of the media signal. This method decodes a watermark

message from the watermarked media signal, wherein the watermark message includes
a hash of the un-watermarked media signal and watermark embedding information used
by the watermark embedding function to create the watermarked media signal. It
transforms the watermark embedding information and hash into a watermark difference
signal using the watermark embedding function. It subtracts the watermark difference
signal from the watermarked media signal to restore the un-watermarked media signal.
The method computes a new hash of the restored, un-watermarked media signal, and
compares the new hash with the hash decoded from the watermarked media signal to
determine the authenticity of the watermarked media signal.

Further features of the invention will become apparent from the following

detailed description.

Detailed Description

Authentication Watermarking Using Sorting Order Embedding To Embed
a Compressed Bit Stream in Another Signal

This section describes fragile and semi-fragile watermarking methods and
related systems and applications. One method embeds a compressed bit stream into a

host media signal. In particular, a watermark encoder embeds a compressed version of



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-4 -

the host media signal into the host signal. To authenticate a watermarked signal, a
compatible decoder extracts the watermark to recover the compressed version and
decompresses it. The decompressed signal may be compared with the watermarked
signal to detect alteration.

This section also describes a sorting order watermark embedding method and
compatible decoder. In this method, an embedder modulates the sorting order of
selected sets of samples in a media signal to encode auxiliary information in that signal.
The decoder analyzes the sorting order of the sets of samples, and maps the sorting
orders to a corresponding message symbols.

The following sections present a fragile watermarking method for media signal
authentication. The method creates a hash of a host media signal, such as a digital
image, and embeds the hash back into the host signal. In particular, one
implementation employs a compressed bit stream as the hash and embeds the bit stream
into the signal by a sorting order embedder.

While other forms of hashes may be used, compression tools are particularly
useful for generating a hash of a signal for use in authenticating that signal. For image
signals, the image compression tools (for example, the image compression standard
JPEG 2000) available today achieve exceptional compression performance. Even at a
very low bit rate, the compression tools provide good image quality, both subjectively
and objectively.

To authenticate a signal using a the compressed signal as a hash, a watermark
decoder first extracts the compressed bit stream. Next, the decoder constructs a
decompressed signal from the bit stream. By comparison of the signal to be
authenticated and the constructed decompressed image, one can tell whether or not the
image is authentic or altered.

If the signal is not authentic, the decoder can also locate the altered region and
recover that region from the constructed decompressed signal.

The following sections illustrate a watermarking implementation for
authenticating images. In this implementation, the embedder computes the hash of the
host image using the image compression standard JPEG 2000. JPEG 2000 is a

wavelet-based image compression system. For more information see, M. J. Gormish,



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-5

D. Lee, and M. W. Marcellin, “JPEG 2000: Overview, architecture, and applications,”
in Proceedings of the International Conference on Image Processing, Sep 2000. D.
Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I. Ueno, and F. Ono, “Embedded
block coding in JPEG 2000,” in Proceedings of the International Conference on Image
Processing, Sep 2000. W. Zeng, S. Daly, and S. Lei, “Point-wise extended visual
masking for JPEG-2000 image compression,” in Proceedings of the International
Conference on Image Processing, Sep 2000.

JPEG 2000 can compress several different types of still images (bi-level, gray-
level, color) with different characteristics (natural images, scientific, medical, military
imagery, text, and rendered graphics). Its compression performance is a significant
improvement over discrete cosine transform (DCT) based JPEG. G. Wallace, “The
JPEG still picture compression standard,” Communications of the ACM, vol. 34, no. 4,
pp-30-44, 1991.

In JPEG 2000, a discrete wavelet transform (DWT) first decomposes an image
into spatial frequency subbands. See, Stephane Mallat, “A theory of multiresolution
signal decomposition: the wavelet representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, no. 7, pp. 675-693, 1989.

Each subband is then partitioned into several blocks. Each block is coded
independently into embedded block bit stream by the EBCOT algorithm. See, D.
Taubman, “High performance scalable image compression with EBCOT,” IEEE
Transactions on Image Processing, Jul 2000. The EBCOT algorithm quantizes the
wavelet coefficients, groups the quantization bits by context modeling, and uses the
MQ binary arithmetic coder to further compress the bit stream. Finally the output of
MQ coder from all blocks are collected into packets to form the JPEG 2000 bit stream.

Besides its exceptional compression performance, JPEG 2000 provides quality
scalability, resolution scalability, and spatial scalability. In addition, a lower bit rate
image can be constructed by truncating the bit stream of a higher bit rate.

In fragile watermarking applications, the watermark is designed to detect
changes in the signal in which it is embedded. One approach is to create a hash of the
host signal and embed the hash back into the host signal. The hash size should not be
too large since it will tend to degradé the quality of the signal in which it is embedded.



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-6-

However, to increase the accuracy of authentication, the hash should be as large as
possible.

The implementation makes this tradeoff and takes advantage of the compression
performance of JPEG 2000 by using the compressed bit stream from JPEG 2000 as the
hash of a digital image.

The implementation of the embedding process is as follows.

1. Compress the digital image to a low bit rate.

2. Take the compressed bit stream as a binary message and embed the binary

message into the original digital image.

The implementation of the authentication process is as follows.

1. Extract the compressed bit stream from the image.

2. Construct a decompressed image from the bit stream.

3. Compare the decompressed image and the image to be authenticated.

4. If the image is found altered, locate and recover the altered region by the

constructed decompressed image.

A detailed example of the embedding and authentication processes is explained
below.

As an example, we apply the watermarking method presented above to an
image. In this example, the image is compressed at a compression ratio 32:1 and the
compressed bit stream is embedded in the spatial domain. As such, on average, one
message bit of information is embedded into every four pixels.

The embedder uses a sorting order method to embed one message bit into a 2 by
2 block of pixels. The sorting order embedder sorts all pixels values in the block. In a 2
by 2 block, there are 81 possible sorting orders. The embedder partitions all possible
sorting orders into two groups, S1 and SO. If the message bit to be embedded is 0, and
the current sorting order is in SO, no action is needed. If the sorting order is in S1, the
embedder modifies these four pixel values so that the new sorting order will be in SO.

The message bit “1” is embedded similarly.



WO 02/39714

10

15

20

25

30

PCT/US01/32517

-7 -

After each of the compressed bit stream is embedded, the result is a

watermarked image in which the watermark is imperceptible.

To authenticate the watermarked image, the compressed bit stream is extracted

from the sorting order decoder and a decompressed image is constructed. If the

watermarked image has been modified after watermarking, the modification can be

detected by comparing the image to be authenticated and the decompressed image. In

addition, the altered region can be located and recovered from the decompressed image.

Based on the preceding description, the following points can be made:

In the JPEG 2000 bit stream, some header information (such as the size of
the image) can be discarded since it can be set to the same size as the host
image being authenticated. This will reduce the hash size.

As an alternative to embedding in blocks of samples in the spatial domain,
the compressed bit stream can be embedded in a transform domain as well,
such as the wavelet domain, Fourier domain, DCT, etc.

The sorting order embedder is not restricted to embedding auxiliary data
symbols in the spatial domain. It can also be employed in a transform
domain.

The compressed bit stream may be modulated by a pseudo random binary
sequence before it is embedded.

The watermarking method can be modified to be robust against JPEG 2000
compression (up to a chosen compression ratio). Since the JPEG 2000 is an
embedded coding, a lower bit rate image can be constructed by truncating
the bit stream of a higher bit rate. Thus, the embedder can embed the hash
into the selected quantization bits in the wavelet domain, and an inverse
DWT will give the watermarked image.

The embedding and decoding of the watermarking method can be done
blockwise. In such an approach, the blockwise embedder divides the host
signal into N by M blocks, compresses each block and embeds the bit
stream into another block.

This method can also be used to hide one media signal into another (such as

one image into another).



WO 02/39714 PCT/US01/32517

10

15

20

25

-8 -

e The compression process can be used to encode other types of watermark
messages. For example, if the watermark is a binary message, one could
compress the binary message by entropy coding to reduce its size (thus
increases the hiding capacity). Error correction code (ECC) such as
convolution codes or BCH codes may be used to encode the watermark
message. If an error correction coding is applied to the binary message

before embedding, then the compression will be employed before ECC.

Authentication Watermarking Enabling Recovery of the Original Un-
Watermarked Content

The disclosure describes a method of watermarking content, particularly
images, in a manner that enables authenticity of the content to be verified (e.g.,
determine whether the content has been altered) and also enables the original un-
watermarked content to be re-constructed.

The following description details a watermark embedding method, a
corresponding authentication and recovery method, and an example implementation.
The watermark embedding method is as follows:

[1] Divide the digital image I into three non-overlapping regions A, B, and C. For
example, A could be a spatial block, a frequency band, the six most significant bits, etc.
[2] Losslessly compress B and C, and use a watermark encoding process to store the
compressed bit stream in B, which results in a new B'. Examples of lossless
compression techniques include, for example, entropy coding methods like Huffman
coding, arithmetic coding, etc.

[3] Create a hash of A and B’, and use a wétermark encoding process to store the hash
in C, which results a new C'. Examples of hashes include secure hashes like SHA-1.

[4] Combining A, B', and C' gives the watermarked image.



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-9-

The authentication and recovery method is as follows:

[1] For a digital image 1 to be authenticated, divide it into three non-overlapping
regions a, b, and c, as in the first step of embedding.

[2] Create the hash of a and b, and compare it with the hash decoded from ¢ using a
watermark decoding process compatible with the encoding process. If they are exactly
the same, i is classified as authenticated.

[3] If i is authenticated, decompress the watermark embedded into b by first decoding
the watermark in b and then decompressing the watermark to derive b' and c'.

[4] Combine a, b', and c'. We claim it is the original, unwatermarked image.

One implementation of the above (embedding) method is as follows:
[1] We define a haar transform of two integers m and n
a=round((m+n)/2),b=m - n.
For example, if m = 150, n = 81, we have
a =round((150+81)/2) =round(231/2) =116
b=150-81=69
As it can be easily seen, we can retrieve m and n from a and b.
[2] For a digital image, we apply the haar transform row by row, then column by
column, as like a one level wavelet transform. We can also define the low frequency L
(from the a part) and high frequency H (from the b part), as in a wavelet domain.
[3] We take the LL (the average part from a) as region A.
[4] We take the last 160 bits from HH as region C.
[5] We take the LH, HL, and HH except the last 160 bits as region B.
[6] Arithmetic coding on all bits from LH, HL, and HH, and store the compressed bit
stream in B.
[7] Run the secure hash algorithm on A and B, and generate a 160-bit hash.
[8] Store the 160-bit hash in C.

Before applying lossless compression in [6], the implementation prepares the

integer coefficients, x, for lossless compression as follows:



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-10-

Sign(x) =1, when x >=0.
Sign(x) =0, when x <0.

The absolute value of x (abs(x)) is set to abs(x) + 1. The resulting number is
represented as a binary sequence, bib;....b,, where b;=0,1. Since b; is always 1, the

implementation does not code b;.

In other words,

bibs....b, is represented as b;...by,.

The new binary string, bib,....b, , is used as input to the lossless coding process,
which in this implementation is an arithmetic coder described in “Arithmetic coding for
data compression”, I.H. Witten, R. Neal, and J.G. Cleary, Communications of the
ACM, 30:520-540, June 1987, which is hereby incorporated by reference. An example
source code implementation of the arithmetic coder is provided in this paper.

In decoding, the inverse of the lossless coding method is used to reconstruct b,...by,
which is then used to reconstruct x by performing the inverse of the method described

above.

Content Authentication and Recovery from Tampering Using Embedded

Compressed Bit Streams

This section describes a method for authenticating a media signal and for
restoring regions of the signal when tampering has been detected.

To illustrate the method, we use the example of a digital image, though it also
applies to other media signal types like audio and video signals. The method
determines whether local regions of an image have been altered, and if so, recovers the
tampered regions.

There are two components to the method: the embedder and the detector. The
embedder calculates a hash of an input digital image, and embeds the hash into the

digital image. The detector re-computes the hash of a suspect image, extracts the hash



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-11 -

from the image, and finally, compares the re-computed and extracted hashes. If they
differ, it proceeds to recover tampered regions. A more detailed description of an
implementation follows below.

The embedder partitions a digital image into two non-overlapping regions. The
first region 1s relatively large compared to the second, and contains most of the
perceptually important visual content. The second region is smaller and contains
almost no perceptually important visual content.

The embedder embeds a hash of the first region into the second region.
Preferably the hash should have the following attributes:

e Unique- identical images produce identical hashes

o Capacity- the hash should be small so that it will not degrade the quality of the
image when embedded into the second region

¢ Confidence- if two images have the same hash, they should be perceptually
similar (no visual differences)

e Invariance- the hash of the image before and after embedding should be the

same

In one implementation, the embedder divides the image into blocks, then
partitions each block into regions (namely, region I and region II). One example
partitioning is to separate the most significant bits from the least significant bits (e.g.,
for an 8 bit per pixel image, region I comprises the 7 most significant bits and region II
comprises the least significant bit. Next, it compresses region I of each block to
compute a hash for that block. In particular, it performs a JPEG 2000 compression of
region I. It then embeds the compressed bit stream of region I of a block (a source
block) into region II of one or more different blocks (the target block(s)). This process
is repeated for each block such that each block carries the compressed bit stream of one
or more other blocks.

One example implementation uses a JPEG 2000 compression ratio of 32:1 to
create the hash, but the actual compression ratio chosen can vary depending on data
hiding capacity, image quality, and confidence level. For added security, the hash

(namely, the compressed bit stream) is modulated by a pseudo random binary sequence.



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-12 -

The embedding process proceeds as follows:

1. partition region II of a block into N sub-regions;

2. for each source block, compute a fragile hash of the compressed bit stream
of the source block;

3. for each source block, compute N permutations, where the permutations
map N-1 instances of the compressed bit stream of the source block and the
fragile hash of the source block to N corresponding sub-regions in target
blocks;

4. Embed the compressed bit streams and fragile hash into region II of selected
target blocks by replacing bits in corresponding sub-regions of region II

with N-1 permutations and one fragile hash.

The fragile hash is referred to as “fragile” because even slight modifications of
the data input to the hash create different hash outputs. Examples include MD4, MDS5,
SHS, a check sum, etc. In one implementation, the embedder computes the fragile hash
of the modulated, compressed bit stream for the source block.

The number of sub-regions of region Il may vary. In one implementation where
the compression ratio is 32:1, we use 4 sub-regions. As such, there are three redundant
instances of the compressed bit stream for each block, and one fragile hash. Generally
speaking, the embedder embeds repeated instances of a first hash (the compressed bit
stream), and one or more instances of a fragile hash of the first hash. We refer to the
first hash as the “redundant hash.”

To authenticate a suspect image, a detector reverses the embedding process. It
proceeds as follows:

1. Divides the suspect image into blocks as in the embedder;

2. Partition each block into region I and region II as in the embedder;

3. In each block, compress region I (JPEG 2000 compression at the same
compression ratio as the embedder);

4. Modulate the compressed bit stream of step 3 with the same pseudo random

number sequence used in the embedder;



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-13 -

5. Use the permutation to find the target blocks carrying the N-1 versions of the
compressed bit stream for each source block, and the fragile hash of the source
block; and

6. Evaluate the authenticity by comparing the N-1 versions of the compressed bit

stream and fragile hash.

There are a number of possible schemes for verifying the authenticity using the
redundant hashes (e.g., the compressed bit streams) and the fragile hash (the hash of the
redundantly embedded hash). In one implementation, the detector compares each of
the extracted redundant hashes for a block with the re-computed hash for that block and
signals that tampering has occurred when at least one of the extracted hashes does not
match the re-computed hash.

In this implementation, there are three possibilities when the detector finds
tampering: \

1. one of the N-1 target blocks or the source block (excluding its LSBs) has been
tampered;
2. The LSBs of one of the N-1 target blocks has been tampered; or

3. Both 1 and 2 have occurred.

The fragile hash of the source block serves as a guide for recovering the original
image data of the tampered target block. When there is a mis-match between the re-
computed version of the redundant hash and one or more of the embedded redundant
hashes for a source block, the detector extracts the embedded fragile hash and compares
it with the fragile hash of each of the redundant hashes for the source block as well as
the fragile hash of the re-computed hash. If the embedded fragile hash matches the
fragile hash of the re-computed hash of the source block, then the MSBs of the source
block have not been altered. However, tampering has occurred in the LSBs of the
target blocks for which the fragile hash does not match.

If the embedded fragile hash does not match the fragile hash of the source
block, but does match the fragile hash of one or more of the embedded hashes for that
block, then the MSBs of the source block have been altered. Any one of the



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-14 -

compressed bit streams with matching fragile hashes can then be used to reconstruct the
MSBs of the source block. In particular, the compressed bit stream extracted from one
of the target blocks is decompressed and used to replace the MSBs of the source block.

If the embedded fragile hash does not match the fragile hash of the re-computed
hash or the fragile hash of any of the embedded redundant hashes, then the detector
forms a new bit stream for the source block by combining the compressed bit stream
for that block and the embedded bit streams for that block. One way to combine these
data sets is to pick the bit value for each bit that occurs most frequently. If the
compressed bit stream for the source block does not match the stream formed by
combining these data sets, then the stream formed from combining the data sets can be
decompressed to reconstruct an approximation of the original source block.

There are number of possible variations to this process. For example, the
redundant hashes for a particular block can be used as an error correction code, where
the redundant hashes are extracted from the target blocks and combined to form a
single composite hash. This composite hash can be used to reconstruct the source
block when the detector determines that it has been altered using the analyses described
above. Either the composite hash or the individual instances of the redundant hash may
be compared with the recomputed hash to detect alteration. Further, the extracted
fragile hash can then be compared with the fragile hash of the source block, and the
fragile hash of the composite hash or the individual instances of the redundant hash to
detect alteration.

While the above technique is illustrated for images, it may also be applied to
video and audio signals. For example, the same technique may be applied to video
frames. Also, the technique may be applied to a digital audio signal by segmenting the
audio signal into blocks, partitioning those blocks into regions, and compressing the
first region of each block and embedding it into the second region of one or more other
blocks.

The above technique may also be applied to compressed bit streams
representing images, video or audio. For example, the compressed bit stream is
segmented into blocks, and the blocks are partitioned into regions, one region

containing perceptually relevant information, and another region containing less



WO 02/39714 PCT/US01/32517

10

15

20

25

-15 -

perceptually relevant information. A hash or compressed version of the first region of

each block is then embedded into one or more of the second regions of other blocks.

Reversible Watermarking and Authentication of Media Signals

The following description details a digital watermarking process where the
watermark embedding process is reversible from the standpoint that it enables recovery
of the original un-modified host signal. The particular method described below inserts
information about the embedding function into a watermark message payload. The
payload includes two components: the watermark message (which includes a hash of
the host image for authentication applications) and the embedding function
information. In the watermark detection stage, when the payload is successfully
decoded, it unveils the embedding function information. Based on such information,
the watermarked image (or other media content like audio, video) undergoes the
reverse of the embedding procedure to remove the watermark and derive the original,
un-watermarked image.

The following is an example of an implementation for a grayscale image using a
watermark embedder plugin of the Adobe Photoshop program from Digimarc
Corporation:

Embedding:
[1] For an image X, create a hash H of X. The hashing function could be the secure
hashing algorithm, (SHA-1), 2-D hashing, compressed bit stream, etc.
[2] Create a mid-gray image G with all pixel values being 128. This image G serves as
a reference signal.
[3] Watermark G using the Adobe Photoshop watermark embedder plugin, where the
payload consists of H and the watermark durability. If the watermark durability is
fixed at some constant known to the detector, e.g., 1 (or another constant), then the
watermark durability does not need to be put into payload. Assume the watermarked
image is G'.
[4] Define

X'=X+G-G



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-16 -

The subtraction of the reference signal G from the watermarked reference signal
G’ giVes a watermark difference signal, D =G’ — G.

As an alternative to steps [1-4], the implementer may create a difference signal
by the following steps:

[a] form the watermark message from the hash, watermark embedder
information (a gain value), and error detection bits (e.g., CRC bits),

[b] perform error correction encoding of the message (such as convolution
encoding, BCH encoding, etc.),

[c] multiplying or XORing the resulting binary number with a binary antipodal
pseudorandom sequence generated from a key seed number to form a spread spectrum
signal, and

[d] mapping the spread spectrum signal into a two dimensional image and
multiplying the image pixel values by the gain value to form a watermark difference
signal D.

[5] X' will be the watermarked image of X.

Detection:
[1] Use the Digimarc watermark reader plugin in Adobe Photoshop to detect a possibly
watermarked image X'.

Alternatively, the implementer may create a watermark reader compatible with
the alternative embedder described above:

[a] cross correlate the watermarked image with the pseudorandom sequence
mapped into an image to decode estimates of error correction encoded bits.

[b] perform error correction decoding of the message bit estimates (such as
convolution encoding, BCH encoding, etc.).

[c] use decoded error detection bits to check for errors to determine if valid

message is present. If so, the detection process has succeeded.

[2] If [1] of the detection process has succeeded, watermark the mid-gray image G with

the decoded payload. Assume the watermarked image is G". Alternatively, create a



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-17 -

watermark difference signal, D’, from the decoded payload using embedder steps [4][a-
d].
[3] Define

X'=X'+G-G" X"=X'-D’)
[4] Compare the hash from the decoded payload with the hash of X".
[5] If the hash match exactly, then X" (and equivalently X") is authenticated and X" is
also the original, un-watermarked image.

The discrete values of a digital media signal are usually bounded in a fixed
range. For example, in an eight bit grayscale image, the pixel value is an integer
between 0 and 255. Thus, when the embedder adds a watermark difference signal D to
an image X, it takes into account the overflow and underflow problems. The overflow
refers to the case when the pixel value is above the upper limit (which will be larger
than 255 in a eight bit grayscale image); the underflow refers to the case when the pixel
value is below the lower limit (which will be lower than 0 in a eight bit grayscale
image).

In the embedding stage, when an overflow (or underflow) happens at some
pixel, the embedder records the pixel location and the overflow (or underflow) value,
which is the difference between the upper (or lower) limit and the pixel value. For
example, after adding the watermark difference signal D, if the pixel value x' is 256,
then the embedder records the location of X' and the overflow value 1, and changes the
value of x' to 255; Similarly if the pixel value x" is -1, then the embedder records the
location of x" and the underflow value -1, and changes the value of x" to 0.

The watermark embedding is processed block by block, where the image is
subdivided into contiguous rectangular blocks of pixels. The overflow and underflow
locations and values of one block are stored in the payload of another block. Such
overflow and underflow information can also be employed for authentication, since the
pixel values at overflow locations must be 255 in the case of eight bit grayscale, and the
pixel values at underflow locations must be 0 in the case of eight bit grayscale.

In one implementation, the overflow and underflow pixel locations and values
for a first image block are included as part of the watermark embedder information in

the watermark payload embedded in a second image block, such as a neighboring



WO 02/39714 PCT/US01/32517

10

15

20

25

-18 -

block, or a block that has a relationship with the first block specified by a key. This
key may be an index to the first block embedded in the second block, or an offset
specifying the position of the block from which the data originated. At decoding, the
decoder decodes the payload information, including the overflow/underflow
information, and uses this information to restore the original image after decoding step
[3] and before authentication step [4].

After correcting for overflow/underflow errors for a particular block, the
decoder then recomputes the hash of the restored image block and compares it with the
hash decoded from the watermark payload. If the hash does not match, the image block
is not authentic. Otherwise, it is deemed authentic. This process is repeated for other
watermarked blocks in the 1mage to check their authenticity.

A watermarked block of samples may carry the overflow/underflow data for
more than one other block, as long as the data in that watermark payload specifies from
which other block that data originated (e.g., using a block index or offset). Also, if the
watermark embedder strength is uniform across an image or part of an image, it need
not be carried in every block. Instead, one block can carry the strength parameter that
applies to many blocks, along with a parameter indicating the blocks to which that
parameter should be applied. In this manner, watermark control parameters for two or
more blocks may be stored in the watermark payload of a single block. This block
based embedding of control parameters enables the watermark control parameters to
vary from block to block across the host signal.

This technique may be extended to other media types, including audio and

video, as well as other watermark embedder/detector methods.

Concluding Remarks

Having described and illustrated the principles of the technology with reference
to specific implementations, it will be recognized that the technology can be
implemented in many other, different, forms. For example, the method may be applied
to other data types, like audio, video and geometric models for computer generated

graphics, etc. To provide a comprehensive disclosure without unduly lengthening the



WO 02/39714 PCT/US01/32517

10

15

20

25

-19-

specification, applicants incorporate by reference the patents and patent applications
referenced above.

While the invention is illustrated with reference to images, it also applies to
other media types including audio. In the case of audio, the signal hash may be
computed from and embedded into temporal blocks of an audio signal. The watermark
embedding may modulate features in the time, frequency, or some other transform
domain of the host audio signal block.

In addition to a hash, the watermark may be used to convey other information,
such as an identifier of the content, an index to related metadata, rendering control
instructions, etc. For example, the watermark can carry a network address or index to a
network address to link the watermarked signal to a network resource such as a related
web site. Some blocks may be used to carry a hash, while others may be used to carry
other payload information, such as metadata, or a pointer to metadata stored in an
external database.

The methods, processes, and systems described above may be implemented in
hardware, software or a combination of hardware and software. For example, the
auxiliary data encoding processes may be implemented in a programmable computer or
a special purpose digital circuit. Similarly, auxiliary data decoding may be
implemented in software, firmware, hardware, or combinations of software, firmware
and hardware. The methods and processes described above may be implemented in
programs executed from a system’s memory (a computer readable medium, such as an
electronic, optical or magnetic storage device).

The particular combinations of elements and features in the above-detailed
embodiments are exemplary only; the interchanging and substitution of these teachings
with other teachings in this and the incorporated-by-reference patents/applications are

also contemplated.



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-20-

I claim:
1. A method for hiding auxiliary data in a media signal, the method comprising:
compressing a first media signal; and

embedding the first media signal into a second media signal.

2. The method of claim 1 wherein the first media signal is at least a part of the

second media signal.

3. The method of claim 1 wherein the embedding includes associating a symbol
with a sorting order, determining a sorting order of a block of samples, and modulating
the sorting order of the block of samples as necessary to make the sorting order match

the sorting order associated with a symbol to be embedded.

4. A computer readable medium on which is stored software for performing the

method of claim 1.

5. A method of decoding auxiliary data that has been imperceptibly embedded
into a host signal:

decoding the auxiliary signal, which represents a compressed version of the host
signal;

decompressing the compressed version;

using the decompressed version to authenticate the host signal.

6. The method of claim 5 wherein the decoding includes using a sorting order
decoder to analyze sorting order of selected blocks of samples, and to look up a symbol

corresponding to the sorting order.

7. A computer readable medium on which is stored software for performing the

method of claim 5.



WO 02/39714 PCT/US01/32517
-21 -

8. The method of claim 5 wherein the decoding is performed on blocks of the

host signal.

9. The method of claim 8 wherein auxiliary data decoded from one block of the
5  host signal is used to authenticate another block of the host signal.

10. A method of watermarking media content comprising:

selecting non-overlapping blocks A, B and C of the media content;

losslessly compressing blocks B and C of the content to form compressed
10 content;

watermark embedding the compressed content into block B of the media

content to form a new block B’; |
creating a hash of block A and B’;
watermark embedding the hash into block C to create a new block C’; and

15 combining blocks A, B’ and C’ to form watermarked media content.
11. The method of claim 10 wherein the media content is an image.

12. The method of claim 10 wherein the media content is an audio signal.

20
13. A computer readable medium having software for executing the method of
claim 10.
14. A watermark decoder for decoding the hash from the watermarked media
25 content created by the method of claim 10, the decoder operable to compare the

hash with a new hash calculated from the watermarked media content to

determine whether the watermarked media content is authentic.

15. The watermark decoder of claim 14 further including a decoder for

30 reconstructing original un-watermarked media content by using watermark



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-22-

decoding to extract the compressed content and decompressing the compressed

content.

16. A computer readable medium on which is stored software for implementing

the watermark decoder of claim 14.

17. A method for encoding a reversible watermark in a media signal
comprising:

embedding a watermark message signal into a reference media signal to create a
watermarked reference signal, where the watermark message signal includes
information about a watermark embedder function used to embed the watermark
message signal into the reference signal;

subtracting the reference signal from the watermarked reference signal to form a
difference signal; and

adding the difference signal to a host media signal to embed the watermark
message signal in the host signal;

wherein adding the difference signal is reversible by decoding the information
about the watermark embedder function from the host media signal, using the
information about the watermark embedder function to re-compute the difference
signal, and subtracting the difference signal from the host media signal to restore the
host signal.

18. The method of claim 17 further including:
computing a hash of the host signal; and including the hash in the watermark
message signal such that the message signal includes the hash and the information

about the watermark embedder function.

19. The method Aof claim 17 wherein the information about the watermark

embedder function is a watermark durability parameter.

20. The method of claim 17 wherein the host signal is a still image.



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-23-

21. The method of claim 20 wherein the reference signal is an image of

substantially uniform pixel values.

22. The method of claim 21 wherein the reference signal comprises uniform
pixel values at a mid-level between a range of possible pixel values between a lowest

possible value and a highest possible value.

23. A computer readable medium on which is stored software for performing

the method of claim 17.

24. A method for authenticating a watermarked media signal that has been
watermarked using a watermark embedding function on an un-watermarked version of
the media signal, comprising:

decoding a watermark message from the watermarked media signal, wherein the
watermark message includes a hash of the un-watermarked media signal and watermark
embedding information used by the watermark embedding function to create the
watermarked media signal;

transforming the watermark embedding information and hash into a watermark
difference signal using the watermark embedding function;

subtracting the watermark difference signal from the watermarked media signal
to restore the un-watermarked media signal;

computing a new hash of the restored, un-watermarked media signal; and

comparing the new hash with the hash decoded from the watermarked media

signal to determine the authenticity of the watermarked media signal.

25. The method of claim 24 wherein transforming includes watermark
embedding a reference signal with the hash and watermark embedding information to
compute a watermarked reference signal, computing a difference signal between the
watermarked reference signal and the reference signal to compute the watermark

difference signal.



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-24 -

26. The method of claim 25 wherein the reference signal comprises an image

having substantially uniform pixel values.

27. A computer readable medium on which is stored software for performing

the method of claim 24.

28. A method for encoding a reversible watermark in a media signal
comprising:

creating a watermark difference signal carrying information about a watermark
embedder function used to embed the watermark message signal into the difference
signal; and

adding the difference signal to a host media signal to embed the watermark
message signal in the host signal;

wherein adding the difference signal is reversible by decoding the information
about the watermark embedder function from the host media signal, using the
information about the watermark embedder function to re-compute the difference
signal, and subtracting the difference signal from the host media signal to restore the
host signal.

29. A computer readable medium on which is stored software for performing
the method of claim 28.

30. A method of hiding auxiliary data in a media signal, the method
comprising:

dividing the media signal into blocks;

partitioning the media signal into two regions;

for a plurality of the blocks, compressing the media signal from a first region of
a block and embedding redundant instances of the compressed media signal of the

block into a second region of two or more blocks.



WO 02/39714 PCT/US01/32517

10

15

20

25

30

-25-

31. The method of claim 30 including:
for a plurality of blocks, computing a fragile hash of the first region of the
media signal for the block and embedding the fragile hash into a second region of one

or more blocks.

32. The method of claim 31 wherein the fragile hash comprises a fragile hash
of the compressed media signal of the block.

33. The method of claim 31 wherein the second region of blocks in the media
signal are partitioned into sub-regions and the sub-regions for the blocks are embedded
with a fragile hash from another block and instances of the compressed media signal

from the first region of other blocks.

34. A computer readable media on which is stored software for performing the

method of claim 30.

35. The method of claim 30 wherein the second region comprises one or more
least significant bits of data samples of the media signal, and embedding of redundant

instances comprises replacing least significant bits of the data samples.

36. The method of claim 30 wherein the redundant instances are scrambled

before the embedding using a key.

37. The method of claim 30 wherein the redundant instances are mapped to

different blocks for embedding according to a permutation.

38. A method of authenticating a media signal using hidden embedded data in
the media signal, the method comprising:
dividing the media signal into blocks;

partitioning the blocks into regions;



WO 02/39714 PCT/US01/32517
-26 -

for a plurality of blocks, extracting hidden compressed bit streams of a first
region other blocks from a second region in the blocks;
for a plurality of blocks, evaluating whether a block is altered by comparing the
extracted compressed bit streams for a block with the media signal in the first region of
5  the block; and ‘
when an altered block is detected by the comparison, using a fragile hash to
identify location of altered data, and using an extracted compressed bit stream to

replace the altered data.

10



	Abstract
	Bibliographic
	Description
	Claims

