wO 2016/105864 A 1[I I N0F V00 00000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/105864 A1

30 June 2016 (30.06.2016) WIPO I PCT
(51) International Patent Classification: (74) Agent: CRANDALL, Sean C.; Patent Capital Group, ¢/o
GOG6F 1/32(2006.01) GOG6F 1/26 (2006.01) CPA Global, 900 Second Avenue South, Minneapolis, MN
(21) International Application Number: 55402 (US).
PCT/US2015/062857 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
28 November 2015 (28.11.2015) BZ, CA. CH. CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: Enghsh DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
14/583,151 25 December 2014 (25.12.2014) Us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, 84, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(71) Applicant: INTEL CORPORATION [US/US];, 2200 TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Mission College Boulevard, Santa Clara, California 95054- . o
1549 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: NAGARAJAN, Ramadass; 10568 SW Wash- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
ington Street, Portland, Oregon 97225 (US). SHRALL, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Jeremy J.; 6373 SE Yamhill Street, Portland, Oregon TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
97215 (US). HALLNOR, Erik G.; 6415 SW 166th Place, DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Beaverton, Oregon 97007 (US). ABRAHAM, Vinit LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Mathew; 2683 NW Overlook Drive, Apt. 1428, Hillsboro, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Oregon 97124 (US). HARRINGTON, Ezra N.; 2990 NE GW,KM, ML, MR, NE, SN, TD, TG).
14th Avenue, Hillsboro, Oregon 97124 (US).
[Continued on next page]
(54) Title: POWER MANAGEMENT IN AN UNCORE FABRIC
(57) Abstract: In an example, a shared un-
CONTROLLED core memory fabric of a system-on-a-chip
SYSTEM VSRR T racE (SoC) is configured to provide real-time
0 T power management. The SoC may include a
' ' power management agent to inform the
shared fabric that the processing cores and
RT CORE AUXILIARY CORE | SHARED peripherals will be idle for a time, and to ne-
115-0 1232 115-1 UNCORE . .
FABRIC gotiate a power-saving state. The uncore fab-
™ 10 e ric may also include a local power manager
170-0 1220-0 that detects when no access requests have
V4 been received for a time, such as when cores
b are operating from cache. The shared fabric
SHARED T may then unilaterally enter a power-saving
VCRT INTERCONNECT |\ o state, and remain in that state until an access
1282t RESOURCES | 70 . . .
N 1230 - request is received. In the power-saving
i ™ state, power and/or clocks are gated, and the
fabric's state is stored in retention cells.
V4 When a new access request is received, an
o MEMORY ungated controller may handle preliminary
170-1 1220-1 processing while the local power manager
RN o, PERIAEAAL e ik restores the state and powers up the shared
12100 1200 12101 A fabric.

FIG. 12

WO 2016/105864 A1 |IIWAL 00T 00 00 O A A

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))
a patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

WO 2016/105864 PCT/US2015/062857

POWER MANAGEMENT IN AN UNCORE FABRIC

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of and priority to U.S. Non-Provisional
Patent Application No. 14/583,151 filed 25 December 2014 entitled “POWER
MANAGEMENT IN AN UNCORE FABRIC”, which is incorporated herein by reference in

its entirety.

FIELD

[0002] This disclosure pertains to computing system, and in particular (but not

exclusively) to a system and method for power management in an uncore fabric.

BACKGROUND

[0003] In many computer systems with multiple devices, an arbitration js performed
to provide access to a shared resource such as a shared memory. Different types of arbitration
mechanisms are provided to enable arbitration between the different agents or requestors. Some
systems use a fixed priority arbitration system in which different agents are allocated a
particular priority. However, this can lead to unfairness in usage and starvation of one or more
agent’s ability to obtain access to the shared resource. Other arbitration systems provide for a
round robin-based approach to allocating access to the shared resource,

[0004] In certain embodiments, the arbitration does not account for shared resource
factors such as power state. Thus, in one example, a request is granted access to the shared
resource and causes the resource to exit a low power state, although the device does not require

immediate access to the shared resource.

WO 2016/105864 PCT/US2015/062857

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIGURE 1 is a block diagram of a portion of a shared uncore memory fabric
according to one or more examples of the present Specification.

[0006] FIGURE 2 is a block diagram of a further detail of an admit arbiter according
to one or more examples of the present Specification.

[0007] FIGURE 3 is a flow diagram of a method for updating age values for an agent
upon a determination of an arbitration winner according to one or more examples of the present
Specification.

[0008] FIGURE 4 is a block diagram of an admit arbiter state machine according to
one or more examples of the present Specification.

[0009] FIGURE 5 is a flow diagram of a method for performing first level arbitration
in an admit arbiter according to one or more examples of the present Specification.

[0010] FIGURE 6 is a block diagram of a portion of a resource allocation logic
according to one or more examples of the present Specification.

[0011] FIGURE 7 is a block diagram of a scoreboard index generation logic
according to one or more examples of the present Specification.

[0012] FIGURE 8 is a block diagram of a state machine for a scheduler arbiter
according to one or more examples of the present Specification.

[0013] FIGURE 9 is a flow diagram of a method for performing memory scheduling
according to one or more examples of the present Specification.

[0014] FIGURE 10 is a block diagram of an SoC according to one or more examples
of the present Specification.

[0015] FIGURE 11 is a block diagram of components present in a computer system
according to one or more examples of the present Specification.

[0016] FIGURE 12 is a block diagram of an SoC in situ for controlling a controlled
system according to one or more examples of the present Specification.

[0017] FIGURE 13 is a block diagram of selected elements of a shared interconnect
fabric configured for dynamic power management according to one or more examples of the
present Specification.

[0018] FIGURE 14 is a flow diagram of a method of real-time power management

according to one or more examples of the present Specification.

2

WO 2016/105864 PCT/US2015/062857

DETAILED DESCRIPTION

[0019] In the following description, numerous specific details are set forth, such as
examples of specific types of processors and system configurations, specific hardware
structures, specific architectural and micro architectural details, specific register
configurations, specific instruction types, specific system components, specific
measurements/heights, specific processor pipeline stages and operation etc. in order to provide
a thorough understanding of the present invention. It will be apparent, however, to one skilled
in the art that these specific details need not be employed to practice the present invention. In
other instances, well known components or methods, such as specific and alternative processor
architectures, specific logic circuits/code for described algorithms, specific firmware code,
specific interconnect operation, specific logic configurations, specific manufacturing
techniques and materials, specific compiler implementations, specific expression of algorithms
in code, specific power down and gating techniques/logic and other specific operational details
of computer system haven’t been described in detail in order to avoid unnecessarily obscuring
the present invention.

[0020] In an example, a shared uncore memory fabric of a system-on-a-chip (SoC) is
configured to provide real-time power management. The SoC may include a power
management agent to inform the shared fabric that the processing cores and peripherals will be
idle for a time, and to negotiate a power-saving state. The uncore fabric may also include a
local power manager that detects when no access requests have been received for a time, such
as when cores are operating from cache. The shared fabric may then unilaterally enter a power-
saving state, and remain in that state until an access request is received. In the power-saving
state, power and/or clocks are gated, and the fabric’s state is stored in retention cells. When a
new access request is received, an ungated controller may handle preliminary processing while
the local power manager restores the state and powers up the shared fabric.

[0021] In wvarious embodiments, a shared memory fabric couples multiple
independent devices, also referred to herein as “agents,” to a shared memory (e.g., via an
intervening memory controller). In some embodiments, the shared memory fabric is an
interconnect structure of a single die semiconductor device that includes intellectual property
(IP) logic blocks of different types. The shared memory fabric may be configured to enable
compliance with quality of service (QoS) requirements for time-critical isochronous devices

while also providing memory bandwidth proportioning for non-isochronous devices, also
3

WO 2016/105864 PCT/US2015/062857

referred to herein as “best effort” devices. This fabric may be referred to as “uncore,” indicating
that the interconnects, registers, and other resources provided in the fabric are not part of the
processing cores that comprise the “agents.”

[0022] Reliable and predictable allocation and scheduling of memory bandwidth
occurs to support multiple devices and device types connected to the shared memory fabric.
By including QoS functionality in a common shared memory fabric (rather than a memory
controller or other non-fabric circuitry), the design may be more casily reused across multiple
semiconductor devices such as systems-on-a-chip (SOCs) since the design is independent of
memory technology.

[0023] Embodiments thus perform resource allocation, bandwidth apportioning and
time-aware QoS properties in a shared memory fabric to provide predictable and reliable
memory bandwidth and latencies to meet the requirements of devices connected to the fabric.

[0024] A class of service category is assigned to each device coupled to the shared
memory fabric. In an embodiment, this assignment can be identified using configuration
registers of the fabric. Multiple classes of service may be supported by the fabric. In one non-
limiting example, devices of two classes of service categories may be present, including an
isochronous class of service category used for latency sensitive devices and a best effort class
of service category used for devices that can tolerate longer latencies to service their requests
to memory. In some embodiments, latency sensitive devices include content rendering devices
such as, by way of non-limiting example, audio or video players, camera devices, and so forth,
while lower priority devices include processor cores, graphics processing units, and so forth.

[0025] Time, in the form of a request deadline, is communicated from the isochronous
devices to the fabric to indicate to the fabric the required latency to complete a request to
memory. To enable synchronization, the fabric broadcasts a global timer to all isochronous
requesting agents. This global timer is continuously driven on outputs from the fabric so it is
available for sampling by the isochronous devices. Responsive to this time value, the agents
determine a latency requirement for completion of a request and add this latency value to the
global timer value to form a deadline for the request. As an example, the latency for a read can
be determined by the amount of data in the agent’s data buffer and the drain rate of the buffer
by the agent. If the agent consumes 1 cache line of data every 250 nanoseconds (ns) and has 8
cache lines of data in the buffer, the required deadline for a new request would 8x250ns or 2

microseconds (us) before the buffer is empty. Based on this communicated latency or deadline

4

WO 2016/105864 PCT/US2015/062857

value, the fabric may make better scheduling decisions based on knowledge of the current
power state of the memories and the required latencies for other unscheduled memory requests
pending in the fabric. This deadline communication may improve memory bandwidth and also
save system power.

[0026] The use of request deadlines provides the fabric with latency information for
each request from an isochronous device. Configuration registers programmed within the fabric
provide the fabric with information about the memory configuration such as the latency
required for the memories to exit a low power, e.g., self-refresh and state. The fabric also
controls when the memory controller causes the attached memory to enter and exit the self-
refresh state by sending an indication to the memory controller, e.g., in the form of a status
channel. The fabric determines when the memories should enter and exit self-refresh by
evaluating the latency requirements for all pending memory requests. Because the fabric has
knowledge of the required latency for all pending memory requests and required latency to exit
self-refresh, greater management of power state transitions of the memories may results in
additional power savings.

[0027] Embodiments may also provide for efficiency in memory bandwidth by
allowing memory requests to be scheduled out of order; however this may result in long
scheduling latencies for some requests. To resolve such concern, the fabric assigns a priority
level to each isochronous memory request, ¢.g., a high or low priority. When scheduling high
priority isochronous requests, the amount of out-of-order scheduling allowed is less than what
is acceptable when scheduling best effort or low priority isochronous requests. Limiting the
amount of out-of-order scheduling for high priority requests ensures that the request latency
requirement is met. Because request priority is determined from the deadline of the request, the
fabric can determine immediately after a request is scheduled what the priority levels of other
pending requests are for an isochronous device. Using the deadline method the priority level
of all pending requests change only when the global timer increments.

[0028] Embodiments may also improve portability and reuse of the sophisticated QoS
memory scheduling algorithms across multiple SoC implementations, in that intelligent
memory scheduling logic is incorporated in the fabric, while technology specific memory
controller logic may be implemented within the memory controller.

[0029] Embodiments may also incorporate anti-starvation algorithms into multiple

arbitration points of the fabric. In one embodiment, these anti-starvation algorithms include a

5

WO 2016/105864 PCT/US2015/062857

weighted age-based arbitration method used by an admit arbiter and an oldest of available
scheduling queues used in a memory scheduler and request tracker. In addition, request weights
may be used to switch between different priority levels at the arbitration points in the fabric
and for switching from scheduling read requests to write requests, in contrast to fixed-priority
arbitration in which requests from high priority isochronous devices always win.

[0030] In an embodiment, the shared memory fabric includes two arbitration points
that are used for scheduling requests being sent to the memory controller. The first arbitration
point is used to admit requests from the devices into the shared memory fabric and is referred
to as an “admit arbiter.” The second arbitration point is used to schedule the requests sent to
the memory controller from the shared memory fabric and is referred to as a “‘scheduler arbiter.”

[0031] Each device connected to the shared memory fabric has a request interface that
is connected between the device and fabric. The request interface supplies information about
the request that can be used for QoS memory scheduling. In an embodiment, this information
includes a memory address, order ID field and an opcode field. For isochronous devices an
additional field called a request deadline field is provided to indicate the required latency
needed to complete the request. Note that in some implementations of SoCs the memory fabric
interface may be connected to other fabrics or switches which allows multiple devices to share
a common request interface.

[0032] In one embodiment of an SoC, one or more requesting agents are designated
as “real-time” cores, while one or more requesting agents are designated as “auxiliary” cores,
which are provided on a best-effort basis. As an example, an SoC may be provided to control
industrial machinery, provide life support functions, control an autonomous or semi-
autonomous vehicle (such as a crash-avoidance system), or otherwise perform mission-critical
or safety-critical functionality. In this example, the SoC includes a dual-core processor, with a
first core acting as the real-time agent, and the second core acting as the auxiliary (best-cffort)
agent. Design considerations may drive a requirement that the real-time agent perform with a
guaranteed QoS so that it does not fail in its control function. The auxiliary agent may perform
other tasks that do not require a guaranteed QoS, such as providing a user interface, reporting
function, or other support function that does not have critical timing.

[0033] In certain applications, the auxiliary agent may provide excess traffic that
temporarily “floods” or otherwise overwhelms the uncore fabric so that the real-time agent is

temporarily unable to operate on its required guaranteed QoS. For example, if the auxiliary

6

WO 2016/105864 PCT/US2015/062857

agent provides a user interface, a user’s interaction with the interface may provide a stream of
data that overwhelms the uncore fabric so that real-time traffic is temporarily bottle necked.
This may result in a situation where the real-time agent encounters a failure condition.

[0034] To avoid such bottle necks, the uncore fabric may be divided into two or more
separate virtual channels. Separation into virtual channels may be accomplished by appending
to cach data packet flowing through the uncore fabric header information, including the agent
that either originated or is to receive the data, and in some cases the device or peripheral that
either originated or is to receive the data. For example, header information may designate a
particular packet as originating from “core 0” (in this example, the real-time agent) and routed
to DRAM. Another packet may be designated as originating from “core 17 (in this example,
the auxiliary agent) and routed to a user display. In this case, the arbiters described herein may
provide preemptive priority to the first packet over the second packet. In another example,
traffic from core 0 to a certain peripheral may be given increased priority, but may not be so
critical as to warrant preemptive scheduling. Advantageously, dividing traffic into multiple
virtual channels enables of any suitable priority scheme according to the requirements and
design parameters of a particular application.

[0035] In other embodiments of the present Specification, power savings can be
realized when certain portions of the system are permitted enter a low-power state when the
system goes idle. In one embodiment, a two-way negotiation may take place between the
requesting agent, such as a processing core, and the shared memory fabric. This negotiation
may be facilitated by a power management agent (PMA) that sits between the shared memory
resources and the processing cores.

[0036] In this two-way communication, the processing core may encounter a situation
in which it knows that it will not be needed for a given time period. As each core sends a signal
to the fabric indicating that it is going idle, the fabric keeps track of the signals. When the fabric
determines that all processing cores have gone idle, then the fabric itself may enter a low-power
state.

[0037] There are, however, limitations to this technique. For example, the fabric may
enter its low-power state only when all cores are able to successfully predict that they will be
idle for a fixed time. Furthermore, certain methods of powering down the fabric may results in
the fabric losing state information, or being left in a state where it will take significant time to

power back up and be ready for operation. Thus, the fabric may have to remain powered up for

7

WO 2016/105864 PCT/US2015/062857

shorter periods of time when it is doing no useful work, but when the overhead of powering
back up in uneconomical, or when the cores are not able to unanimously agree to go into a
lower power state.

[0038] Advantageously, the system and method of the present Specification provide
a gating mechanism wherein the fabric can unilaterally enter a low-power state by gating power
inputs and clock inputs from most of the fabric when the fabric remains idle for a given period,
such as a few microseconds. This condition may occur, for example, when the cores have
successfully filled their caches with useful data, and are operating on those data. In well-
designed software, this should be a fairly common occurrence, as a cache miss and read from
memory are very expensive in terms of computation time.

[0039] According to the present Specification, the uncore fabric may include a very
small ungated area including, for example, a local power manager, ungated controllers, and the
gates themselves. This portion of the fabric in one example is an “always on” portion that does
not power down so long as the fabric is normally functional. However, when the ungated
controller detects that the fabric has been idle for a short period of time, it shuts off the power
and clock gates to the gated portion of the shared memory fabric, thus realizing substantial
power savings while the processing cores work through their respective caches. This condition
may typically last for a period of several microseconds.

[0040] When a memory access request then comes in from one of the cores, the
ungated controller handles the initial work of routing the memory access request while the
power manager opens the gates to allow power and the clock signals to propagate through the
uncore fabric. This power and gate propagation typically occurs on a nanosecond scale, so that
the overhead associated with powering the uncore fabric back up is very small in relation to
the power savings realized by the gating.

[0041] Advantageously, the present Specification also provides retention cells, which
may be provided within the uncore fabric to store state information while power and clocks are
gated. The retention cells may be, in one example, suitable flip-flops that may be operable to
retain the state information while consuming little to no power. Thus, when the power and
clock signals wake up from a gating event, the retention cells are used to immediately restore
the uncore fabric to its previous operating state.

[0042] Inthe FIGURES below, FIGURES 1 —9 describe the underlying uncore fabric
architecture, including a priority and QoS scheme. FIGURES 10 and 11 provide example block

8

WO 2016/105864 PCT/US2015/062857

diagrams of an SoC and application thercof. FIGURE 12 provides an example block diagram
of an SoC in situ, including a real-time agent and a best-effort agent. FIGURE 13 provides a
block diagram of selected gated and ungated portions of a shared memory fabric. FIGURE 14
is a flow diagram of a method according to one or more examples of the present Specification.

[0043] FIGURE 1is ablock diagram of a portion of a shared memory fabric according
to one or more examples of the present Specification. As shown in FIGURE 1, a shared memory
fabric 100 is coupled between a plurality of agents 115-0 — 115-3 (generically agent 115) and
a memory controller 170. Note that in some embodiments more than one memory controller is
present. While not shown for ease of illustration, the memory controller may be coupled to a
system memory such as a dynamic random access memory (DRAM) or other system memory.

[0044] In the embodiment shown in FIGURE 1, different types of agents are coupled
to shared memory fabric 100. Specifically, the different agents include a first class of service
(COS) agent type, namely so-called isochronous agents and a second class of service agent
type, namely so-called best effort COS agents. As secen, each of the agents 115 may
communicate request information to an admit arbiter 120. In turn, admit arbiter 120 may
communicate corresponding control type information back to the agents. In addition, the
isochronous agents (namely agents 115-1 and 115-3 in the embodiment of FIGURE 1) further
include an additional link to communicate request deadline information to admit arbiter 120.
To this end, these agents may be further configured to receive global timing information from
a global timer 150, also coupled to both admit arbiter 120 and a scheduler arbiter 130.

[0045] In the embodiment of FIGURE 1, admit arbiter 120 may be configured to
receive incoming requests from agents 115 (and request deadline information from isochronous
agents) and to select appropriate requests to admit to scheduler arbiter 130. To aid in its
arbitration process, admit arbiter 120 receives configuration information from a set of
configuration registers 160, further coupled to scheduler arbiter 130. In addition, a request and
coherency tracker 140 may be coupled to arbiters 120 and 130. In general, tracker 140 may
include multiple scoreboards 142, a data buffer 144, and corresponding address tag storage
145, control queues 146 and other resources such as various buffers, logic such as resource
allocation logic 148, and so forth. In some implementations, the tag array and data buffer may
be located elsewhere than the tracker. It should be noted that the block diagram of FIGURE 1

is intended to be non-limiting, and that other elements may be present in various embodiments.

WO 2016/105864 PCT/US2015/062857

[0046] The shared memory fabric may include certain finite resources that are first
allocated before a request from a requesting agent can be granted by the admit arbiter. These
resources include available entries in the internal data buffer and address tag storage. Other
finite resources include available entries in the memory scheduler and request tracker
scoreboards. There is a one-to-one correspondence in resources for the fabric’s internal data
buffer, tag array and memory scheduler scoreboard. In an embodiment, these resources are
allocated to a predetermined region (e.g., a cache line width such as 64 bytes) of memory. Each
active request is also allocated its own entry in the request and coherency tracker, but multiple
requests to the same region in memory share the same entry in the data butler, tag array and
memory scheduler scoreboard. Although it is possible for more than one request to be allocated
to the same data buffer, tag array, and scheduler scoreboard entry, only one read request is
scheduled to the memory controller for all outstanding read requests in the request and
coherency tracker.

[0047] The request interface for all devices connects to the admit arbiter of the fabric.
Isochronous devices use the deadline field of the request bus to indicate to the fabric the
required latency to complete the request. The fabric sends a global timer value to all
isochronous devices that are attached to the fabric. For each request to be sent to the fabric, the
isochronous device, ¢.g., in a deadline logic, determines the required latency needed for the
request to complete and adds the value to the current value of the global timer in order to create
the request deadline. Different methods may be used by different isochronous devices to
determine the required latency for the request, but all isochronous devices indicate to the fabric
the request latency using a deadline field of the request interface.

[0048] In an embodiment, the admit arbiter has two levels of priority. There is a high
priority path in the arbiter that is used for urgent isochronous requests. A request is considered
urgent if the requesting agent is configured as an isochronous agent and the deadline field of
the request is less than a value stored in a configuration register specifying a threshold value,
referred to as an “urgency threshold value.” The admit arbiter also has a low priority path used
for best effort requests and for isochronous requests that are not considered urgent. The final
level of arbitration is done using a priority selector that selects between the winner of the high
priority arbitration and the winner of the low priority arbitration.

[0049] In one embodiment, the admit arbiter final selector has two modes that can he

selected using a configuration register. The first mode is a fixed priority mode in which,

10

WO 2016/105864 PCT/US2015/062857

assuming at least one high priority request is present at the input of the admit arbiter, the
selector chooses the winner of the high priority arbitration path before choosing the winner of
the low priority arbitration path. The second mode of the final selector is a weighted round
robin mode in which the final selector switches between granting the high priority path to
granting the low priority path after N number of high priority requests are granted. The selector
then grants M number of low priority requests from the winner of the low priority path before
switching back to granting requests from the high priority path. In an embodiment, the values

2

for N and M may be referred to as “grant counts,” and are specified using configuration
registers.

[0050] FIGURE 2 is a block diagram disclosing further details of an admit arbiter
according to one or more examples of the present Specification. As shown in FIGURE 2, arbiter
120 receives incoming requests from the requesting agents. In this illustration, requesting
agents 115-0 and 115-1 are non-isochronous or best effort agents, while agents 115-2 and 115-
3 are isochronous agents. Note that the isochronous agents may include or be coupled to
deadline determination logic 118 that is used to calculate required latency for requests. In an
embodiment in which at least some of the agents are third party IP blocks, this logic can be
implemented in wrapper or interface logic that couples the agent to the shared memory fabric.

[0051] In the embodiment shown, admit arbiter 120 includes a first age-based arbiter
122 and a second age-based arbiter 124, which correspond to low and high priority age-based
arbiters, respectively. Thus as seen, requests from all agents 115 are provided to first arbiter
122, while only requests from isochronous agents 115-2 and 115-3 are provided to second
arbiter 124. To determine whether a particular request from one of the isochronous agents is of
an urgent status, a pair of deadline checker logics 120-1 and 120-n, are each coupled to receive
requests from a corresponding one of the isochronous agents, as well as global timing
information from global timer 150. Based on a comparison of the deadline information
provided by the agent and the global timing information, an indication of an urgent status for a
corresponding request can be provided to second arbiter 124.

[0052] In operation, arbiters 122 and 124 operate to select an arbitration winner from
a set of incoming requests. In the embodiment shown, this determination is based in part on
information from an age storage 126 that stores an age value for each of the agents. The
corresponding winners from each of the arbiters may be coupled to a priority arbiter selector

125 that selects based on mode of operation a corresponding request to provide to scheduler

11

WO 2016/105864 PCT/US2015/062857

arbiter 130 (FIGURE 1). To this end, selector 125 may select a request for admission to the
scheduler arbiter based at least in part on information in a priority storage 129. It should be
noted that the block diagram of FIGURE 2 is intended to be non-limiting, and that other
elements may be present in various embodiments.

[0053] Weighted Age-Based Arbitration Details

[0054] The age-based algorithm implemented by the admit arbiter is such that the
requesting agent which has waited the longest since last being granted by the arbiter will be
given the highest priority level. Once an agent has received the highest priority level, the
priority level for that agent will not change unless that agent has been granted by the arbiter. In
this way, starvation issues that may occur in certain embodiments of round robin arbitration
may be avoided by ensuring that the priority level for a requesting agent can only increase in
priority level until that requesting agent has been granted by the arbiter.

[0055] The admit arbiter also allows for agent weights to be assigned to all requesting
agents. Weights are used to allocate a percentage of the request bandwidth for each requesting
agent. In an embodiment, a weight value is specified for each agent via a value stored in an
agent weight configuration register. In one non-limiting example, the percentage of request
bandwidth that is allocated to an agent is equal to the agent weight value divided by the sum
of weights for all agents.

[0056] Weighted Age-Based Algorithm

[0057] The admit arbiter weighted age-based algorithm is based on the relative age of
when a requesting agent was last granted by the arbiter. For each requesting agent that connects
to the admit arbiter, there is one age counter instantiated and one weight counter instantiated.

[0058] Both the high priority and low priority arbitration paths in the admit arbiter
share common age and weight counters for the agents connected to the admit arbiter. The
updating of the requesting agent’s age and weight registers is determined by the final selector
(namely the priority arbiter selector 125) after choosing the final arbitration winner.

[0059] In an example, the age registers (e.g., of age storage 126) for all requesting
agents are first initialized responsive to receiving a reset input to the admit arbiter. When reset
asserts, the age registers are initialized to unique values in a range starting at 0 and ending at a
value of N — 1, where the value of N equals the number of request interfaces connected to the

admit arbiter.

12

WO 2016/105864 PCT/US2015/062857

[0060] Prior to any requests being asserted by the requesting agents, the agent weight
counters (e.g., of weight storage 128) are initialized from programmed values in the agent
weight configuration registers of the fabric. Once the weight counters initialize, the counter for
an agent decrements by one for each request granted for that agent. Once an agent’s weight
counter reaches zero and if the agent is granted again by the admit arbiter, the counter is
reloaded with the value programmed in the configuration register for that agent’s weight.

[0061] In one embodiment, the age-based arbitration method performed in first and
second arbiters 122 and 124 uses a request bit vector (each arbiter having its own vector) to
determine the winner of the arbitration. When a request is asserted for an agent the arbiter uses
the age value for the requesting agent as the priority level of the request. The priority levels for
the arbiter and thus the range of the bit vector width is from 0 to N — 1. The age-based
algorithm guarantees that the age values for all requesting agents are always unique and
therefore there is always only one winner per arbitration.

[0062] The arbiter updates the age registers for all agents when the weight counter for
the winner of the request arbitration has reached zero. In one embodiment, the age registers for
all agents are updated according to the following rules that guarantee the age values for the
agents are always a unique value:

a. Rule 1: when the agent’s age equals the age of the winner of the
arbitration, the age register for that agent is set to zero to indicate
youngest request age or lowest priority.

b. Rule 2: when the agent’s age is less than the winner of the arbitration,
the agent’s age register is incremented by 1.

c. Rule 3: when the agent’s age is greater than the winner of the arbitration,
the agent’s age register does not change.

[0063] FIGURE 3 is a flow diagram of a method for updating age values for an agent
upon determining an arbitration winner according to one or more examples of the present
Specification. This method may be performed in one example to update age values when the
winner’s weight value equals zero. As seen, method 200, which may be performed by the
priority arbiter selector, begins by determining whether the age value of an agent equals the
winner value (decision block 210). If so, control passes to block 215 where the age value for
this winning agent can be updated to the lowest priority level, which in an embodiment may be

equal to zero. From both of block 215 and decision block 210, control passes to decision block

13

WO 2016/105864 PCT/US2015/062857

220 where it can be determined whether the age value is less than the winner value (namely
corresponding to the age of the agent). If so, control passes to block 225 where the agent’s age
value can be updated, e.g., incremented. If none of these conditions occur, the agent’s age is
greater than the winner of the arbitration, and as such the age value for this particular agent
does not change. Note that method 200 can be performed for each agent at the conclusion of
cach arbitration round when a winner is selected. It should be noted that the flow chart of
FIGURE 3 is intended to be non-limiting, and that other operations may be present in various
embodiments.

[0064] FIGURE 4 is a block diagram of an admit arbiter state machine according to
one or more examples of the present Specification. As shown in FIGURE 4, state machine 250,
which may be present within admit arbiter 120 of FIGURE 1, first enters into an initialization
(INIT) state 255 from a reset assertion. From this state, control passes into an active state 260
in which it remains so long as no requests are received. When a request is received and a granted
agent has a weight of zero, control passes to an update age state 270 in which age storages are
updated and a weight counter for an arbitration winner is reloaded to a predetermined value,
¢.g., obtained from a configuration register. Control then passes to one of active state 260,
decrement agent weight state 280, or remains at update age state 270, depending upon whether
an additional request is present and a value of the granted agent’s weight.

[0065] Similarly at decrement agent weight state 280, a winner arbitration weight
counter is decremented. But here no weight counter reloads are performed. It should be noted
that the state machine block diagram of FIGURE 4 is intended to be non-limiting, and that
other states and operations may be present in various embodiments.

[0066] The states and descriptions of the state machine of FIGURE 4 includes the

following;:
State Description
Init Reset is asserted:
Agent weights reloaded to values in configuration registers
Agent age registers set to unique Agent ID values
Active No Agent Requests:
Agent age and weight registers remain in same state
Decrement Age Requests asserted from one or more agents.
Weights Winner of arbitration weight counter is non-zero.
Weight counter of winner is decremented.
Update Age Requests asserted from one or more agents.
Winner of arbitration weight counter is zero.

14

WO 2016/105864 PCT/US2015/062857

Agent age registers updated.
Weight counters for winner of arbitration reload to value in
configuration registers.

[0067] FIGURE 5 is a flow diagram of a method 300 for performing first-level
arbitration in an admit arbiter according to one or more examples of the present Specification.
As shown in FIGURE 5, method 300 may be performed within the admit arbiter both for
purposes of performing arbitration between incoming memory requests, as well as updating
various age and weight values based upon an arbitration. As seen in FIGURE 5, method 300
may begin by receiving a memory request from a device coupled to the fabric (block 310).
More specifically to illustrate operation with regard to deadline-based requests from a latency-
sensitive device, we can assume in one example that this memory request includes or is
associated with a deadline value and is thus provided from an isochronous or latency-sensitive
device. As one such example this latency-sensitive device is a media player. As seen, control
passes to decision block 315, where it can be determined whether the deadline value is greater
than a latency threshold. In an embodiment, this latency threshold is a minimum latency from
the time a request is received until it is completed (e.g., by provision of requested data back to
the requesting device provision of a write completion for a write request). Note that the deadline
value is in one embodiment a maximum latency that the requesting device can tolerate for
handling the memory request.

[0068] Ifitis determined that the deadline value is greater than the latency threshold,
control passes to block 320b, where the memory request is forwarded to a low-priority arbiter.
Otherwise control passes to block 320a, where the memory request is forwarded to a high-
priority arbiter.

[0069] Note the presence of parallel paths such that at block 325 (blocks 325a and
325b), an arbitration is performed in the corresponding arbiter that is based on a bit vector
associated with the age values for the devices that provide requests to the corresponding arbiter.
Next at block 330 (blocks 330a and 330b), the winning memory requests are forwarded to a
final arbiter. At block 335, a final arbitration is performed to select the winner memory request.

[0070] Depending upon a mode of configuration for this final arbiter, the winner
request can be selected from the high priority arbiter only, or a weighting between high priority

and low priority paths may occur. Thus at this point the winning memory request is forwarded

15

WO 2016/105864 PCT/US2015/062857

to a memory scheduler scoreboard where it can be stored in an entry to thus enable arbitration
in the memory scheduler arbiter to consider this memory request.

[0071] Various updating operations may further be performed responsive to selection
of'a winner by the final arbiter. Specifically, at decision block 340 it can be determined whether
the weight value of the winner agent equals zero. If so, control passes to block 345 where this
weight value can be updated to its configured value, e.g., stored in a configuration register of
the shared memory fabric. Control next passes to block 350 where the age values for all agents
can be updated (block 350). To this end all non-winning agents may have their age value
incremented, while the winning agent may have its age value set to a lowest priority value. e.g.,
zero. If instead at decision block 340 it is determined that the weight value of the winner agent
1S not zero, control passes to block 355 where the weight value of the winner agent is
decremented. It should be noted that the flow chart of FIGURE 5 is intended to be non-limiting,
and that other operations may be present in various embodiments.

[0072] Shared Memory Fabric Shared Resource Allocation

[0073] The memory fabric includes logic to allow for fair allocation of the shared
resources within the fabric, e.g., the resource allocation logic 148 of FIGURE 1. In one
embodiment, these shared resources are the fabric’s internal data buffer, address tag storage
and request tracker scoreboards. Since there are no dedicated resources for any of the
requesting agents, mechanisms may limit the number of outstanding requests that are pending
in the fabric for each of the agents, while also allowing entries to be reserved for an agent, e.g.,
by reserving virtual entries in these shared resources. The fabric allows for the Specification of
agent limits to prevent any one requesting agent from using up all the available shared resources
of the fabric.

[0074] A portion of the memory scheduling algorithm deals with minimizing the
performance impact of read-to-write turnaround times for memory technologies. In order
minimize the number of times the memory scheduler switches between scheduling read
requests to scheduling write requests, a flush pool is used for queuing write requests. The flush
pool allows write requests targeting memory to be accumulated in the memory fabric until
enough write requests have been received to allow the fabric’s memory scheduler to send the
write requests to the memory controller as a burst of back-to-back requests. In order to prevent
all available resource in the fabric to be used up by the flush pool, a flush limit can be specified.

When specified, the flush limit causes the fabric to block new write requests from all agents at

16

WO 2016/105864 PCT/US2015/062857

the admit arbiter until the number of entries in the flush pool is less than the value programmed
for the flush pool.

[0075] Memory Fabric Flush Pool for Write Requests

[0076] When a write request is received from a requesting agent, the fabric transfers
the write data from the requesting agent to an internal data buffer. Once the new data is written
to the fabric’s internal data buffer and the request is retired from the agent’s point of view, the
buffer entry is considered to be in the “flush pool”. For coherent memory traffic the fabric may
receive snooped requests from the requesting agents. Snooped requests can be either read or
write requests to memory. When the fabric receives a snooped read or write request from a
requesting agent, it sends a snoop request to all caching agents coupled to the fabric. The
caching agents will respond to a snooped request that hits in their cache and will return the
write back (WB) data for a cache line that has been modified by the caching agent. The WB
data is then written into the fabric’s internal data buffer and is then considered to be included
in the flush pool of write requests targeting memory. When the number of entries in the flush
pool reaches the value programmed for the flush limit, new write requests, e.g., as determined
by decoding of the request opcode field, are blocked at the admit arbiter.

[0077] Memory Fabric Reservations and Limits

[0078] The memory fabric allows reservations to be specified for any agent using
agent reservation configuration registers. Using these configuration registers the user can
specify the number of entries in the memory fabric to reserve for each agent. The reserved
entries for an agent are the first entries allocated to the agent and the last entries to be retired
for the agent. In order to determine if an agent’s reserved entries are being allocated or retired,
cach agent has a request counter that is compared against the value specified in the
configuration register. If the value in the request counter is less than or equal to the value in
the configuration register, the agent’s reserved entries are being used.

[0079] The mechanism used to provide agents with reserved entries varies over the
full threshold limit as reserved entries are allocated or freed for requesting agents. Initially, the
lull threshold for all agents is calculated by subtracting the total number of reserved entries for
all agents (e.g., as specified by configuration registers) from the total number of entries in the
scoreboards. As reserved entries are allocated to an agent, an accumulator is used to adjust the
full threshold based on the total number of reserved entries that have been used. Agents that

have used their reserved entries or do not have reserved entries specified are blocked when the

17

WO 2016/105864 PCT/US2015/062857

total number of pending requests in the memory fabric reaches this adjusted full threshold.
Agents that have not used their reserved entries are not blocked by the admit arbiter until they
have used all their reserved entries and the total number of pending requests reaches the
adjusted full threshold limit.

[0080] Agent limits may also be specified in configuration registers of the memory
fabric. These agent limits may be disabled by setting the request limit for an agent to zero, in
an embodiment. When agent limits are disabled any agent may be allocated all existing entries
of the request tracker. In order to prevent a single agent from using all request tracker entries,
a request limit can be specified for the agent. When the agent’s request counter reaches the
request limit specified for the agent the request input to the admit arbiter for that agent is
disabled. When the request tracker retires requests for the agent and the agent’s request counter
becomes less than the agent’s request limit, the request input to the admit arbiter for that agent
1s enabled.

[0081] FIGURE 6 is a block diagram of a portion of a resource allocation logic
according to one or more examples of the present Specification. As shown in FIGURE 6, logic
360 may be used to control allocation of various resources shared between all of the agents. As
seen, an adder 368 determines a total number of reserved entries based on agent reserve values
received from a configuration storage 365. From this total reserve entry value, a number of tag
entries are subtracted at subtracter 370. The resulting value is provided through a flip-flop 372
to an adder 375 which combines this value with a number of reserved entries used, received
from flip-flop 374 that is alternately incremented and decremented based on increment and
decrement reserve count values, described further below.

[0082] As such, the sum generated by adder 375 corresponds to an adjusted full
threshold value that is provided to one input of a comparator 382 that further receives a number
of allocated tag entries from flip-flop 376. If it is determined that the adjusted full threshold
value is less than or equal to this number of allocated tag entries, a full flag is generated and
used to mask requests of agents that have no reserve entries or have used their reserve entries.

[0083] As further seen, another comparator 380 is configured to receive a given
requestor’s reserve configuration value and a request counter value for that requestor (from
flip-flop 378). The comparator thus generates an indication as to whether that requester has any
free reserved entries, which is provided as an input to a pair of AND gates 384 and 385 that

further receive indications of a channel grant and a retirement of an entry for that channel. As

18

WO 2016/105864 PCT/US2015/062857

such, these AND gates thus generate, respectively the increment and decrement values for the
corresponding requestor. Similar logic and operations are performed for the other requestors,
with all increment and decrement reserve values being provided to corresponding OR gates
386 and 387 that respectively generate the increment reserve count value and the decrement
reserve count value.

[0084] Finally, the request counter value for a requestor is provided to another
comparator 390 along with a configured limit value for that requestor to thus determine whether
this requestor has reached its limit. If so, an indication of this limit is used to mask off the
requests from this agent for further arbitration. It should be noted that the block diagram of
FIGURE 6 is intended to be non-limiting, and that other operations may be present in various
embodiments.

[0085] Shared Memory Fabric Scheduler Arbitration Details

[0086] Embodiments may incorporate multiple scheduling algorithms to enhance
reuse across multiple SoCs that support different memory technologies. The fabric’s memory
scheduler logic contains advanced QoS scheduling algorithms, and is also optimized to
minimize performance bottlenecks that are commonly found in most memory technologies.
The typical performance bottlenecks that occur using, e.g., DRAM memories include entering
and exiting of low power memory states, read-write turnaround times, consecutive memory
accesses to the same DRAM bank but to different rows of memory, and consecutive memory
accesses to different DRAM memory ranks. By including complex out-of-order scheduling
algorithms in the shared memory fabrics scheduling logic, the fabric can be adapted to many
different SoCs by attaching simplified technology-specific constraint solvers to the fabric to
support their unique requirements for memory technologies or configurations.

[0087] In addition to improving the portability of the memory scheduling logic,
embodiments also provide predictability of memory request latency in that the combination of
advanced out-of-order scheduling algorithm with QoS scheduling logic results in improved
predictability of the maximum request latency, in that the memory controller has much less
flexibility to reorder memory requests.

[0088] Once arequest is granted by the admit arbiter, it is enqueued into the scheduler
scoreboard. The scheduler scoreboard stores information about the request that it uses to
forward the request to the memory controller in order to perform a read or write to memory. In

one embodiment, the information includes request address, request length, command type (read

19

WO 2016/105864 PCT/US2015/062857

or write), class of service category, memory channel, memory bank, memory rank, and page
hit/miss status.

[0089] Memory Scheduler Oldest of Available Queue

[0090] Embodiments provide for out-of-order page aware scheduling that is based on
a history of requests sent to the memory controller, although the fabric has no direct knowledge
of the true state of the memory bank. More specifically, the fabric’s memory scheduler uses
the scheduler scoreboard as a history buffer of requests that have been sent to memory. Because
the scheduler scoreboard is used to reflect the history of requests, it seeks to retain the status
information for a request in the scoreboard as long as possible. The memory scheduler uses a
structure called the oldest of available queue to determine the oldest scoreboard entry that is
available to be reallocated.

[0091] The oldest of available queue is also used by the memory scheduler to avoid
starvation issues that can arise due to the out-of-order scheduling of the requests to memory.
The fabric’s memory scheduler uses the oldest of available queue to determine how many
requests of the same class of service category and type, read or write, have bypassed the oldest
pending request to memory. Once the number of requests that have bypassed the oldest request
reaches a preprogrammed limit (e.g., set by software) the fabric’s memory scheduler disables
out-of-order scheduling of requests and grants the oldest pending request.

[0092] As mentioned above, the scheduler keeps track of the relative age of all
requests in its scoreboard using the oldest of available queue. When a request targeting a new
memory address is granted by the admit arbiter an index pointer into the scheduler scoreboard
is enqueued into the tail entry of the oldest of available queue which is then considered to be
the newest request. When all pending requests have completed transferring data to/from the
requesting agents and to/from the memory controllers, a scoreboard entry is available to be
reallocated and can be reallocated for a new request granted by the admit arbiter. Due to the
out-of-order scheduling, the oldest entry in the oldest of available queue may not always be
available for reallocation.

[0093] To select the scoreboard entry to be re-allocated to a new request, the scheduler
detects whether all outstanding requests to a scoreboard entry have completed. In one
embodiment, the scheduler uses a request bit vector having a length equal to the number of
scoreboard entries to indicate which entries are available for reallocation. A bit set to 1 in the

request bit vector indicates the entry corresponding to that bit position is available for

20

WO 2016/105864 PCT/US2015/062857

reallocation. The request bit vector is then sent to the oldest of available queue. The oldest of
available queue uses the indexes stored in the queue to select the bit in the request vector
corresponding to the request for that entry of the queue. Each entry of the queue is associated
with a unique bit in the request vector and a “find first” function is performed starting from the
oldest entry in the queue to determine the oldest available request to be reallocated. After
determining the oldest available entry to be reallocated, the scoreboard index for that entry is
output from the oldest of available queue.

[0094] FIGURE 7 is a block diagram of scoreboard index generation logic according
to one or more examples of the present Specification. As shown in FIGURE 7, logic 400
includes a plurality of flip-flops 410-0 — 410-n, coupled in a serial configuration to store a
corresponding scoreboard index. As seen, flip-flops 410 are configured to receive a scoreboard
index corresponding to an index pointer into a scoreboard of the scheduler which is also the
index to the tag array and data buffer. Flip-flops 410 may be configured in an order from newest
(namely flip-flop 410-0) to an oldest (namely flip flop 410-n). In a non-limiting example, each
flip flop may be a D-type flip-flop. In other embodiments, any suitable storage element may be
used.

[0095] As seen, an output of each flip-flop 410 is coupled to one of a corresponding
plurality of multiplexer 420-0 — 420-n, each of which is further configured to receive a bit of a
scoreboard request vector. As such, this bit vector provides an indication. e.g., via a set bit to
indicate that a corresponding scoreboard entry is available for reallocation. Using the outputs
from multiplexers 420, a grant signal can be generated either directly from the comparator
output (as from comparator 420-n) or via a corresponding one of logic gates 430-0 — 430-n
(which in the embodiment shown are configured as AND gates having a first input received
from a corresponding multiplexer 420 and a second input corresponding to an inverted output
of a corresponding OR gate 425-0 — 425-(n — 2)). In this way only a single one of the grant
signals may be active at a time.

[0096] As further seen in FIGURE 7, the grant output signals may be coupled to a
corresponding one of a plurality of AND gates 435-0 — 435-n, also configured to receive an
incoming index signal. In turn the outputs from AND gates 435 may be coupled to an OR gate
440 to thus output a scoreboard index corresponding to the oldest available entry such that a
“l1 — hot” multiplexer function is performed to provide a “one hot” multiplexing of the

scoreboard index of the granted request. It should be noted that the block diagram of FIGURE
21

WO 2016/105864 PCT/US2015/062857

7 is intended to be non-limiting, and that other elements may be present in various
embodiments.

[0097] Shared Memory Fabric Memory Scheduling Details

[0098] In an example, the fabric memory scheduler contains three state machines that
work together to schedule requests sent to the memory controller.

[0099] FIGURE 8 is a block diagram of a state machine for a scheduler arbiter
according to one or more examples of the present Specification. As shown in FIGURE 8§, state
machine 500, which may be performed in hardware, software and/or firmware such as
scheduler arbiter 130 of FIGURE 1, may begin by entering into an initialization state INIT
upon reset of the system. Control next passes into a self-refresh state machine 510 that includes
an “enter” self-refresh state 512, a “request” self-refresh state 513, and an “exit” self-refresh
state 516.

[0100] As seen in FIGURE 8 from exit self-refresh state 516, control passes into a
“read/write” grant state machine 520 that in turn includes a “grant read request” state 522 and
a “grant write request” state 524. From these states control in turn passes into a “read” state
machine 530 that includes a plurality of states, namely a “bypass grant” state 532, a “high
priority read request” grant state 534, a “best effort” grant read request state 536, and a “low
priority” isochronous grant read request state 538. It should be noted that the block diagram of
FIGURE 8 is intended to be non-limiting, and that other elements and modifications may be
present in various embodiments.

[0101] Self-Refresh State Machine

[0102] Embodiments may control when the memories are allowed to enter and exit
the low power memory state, also referred to as the self-refresh state. The self-refresh state
machine is responsible for controlling when to send an indication to the memory controller to
enter or exit self-refresh. For best effort read requests, the self-refresh state machine transitions
immediately to the exit self-refresh state. For isochronous read requests, the memory scheduler
checks the request deadline to determine if it is to exit self-refresh in order to satisfy the
required read latency for the request. To determine if exiting self-refresh is required for meeting
the isochronous read requirement, the memory scheduler subtracts the deadline of the request
from the current value of the global timer. The result of the subtraction is checked against a
configuration register in the fabric that is programmed to reflect the worst case latency needed

for the memory controller to exit self-refresh and the fabric to return data to the request agent.

22

WO 2016/105864 PCT/US2015/062857

[0103] For write requests, the fabric counts the number of dirty entries in the flush
pool and checks the result against a programmable threshold value, termed the flush high water
mark. If the number of dirty entries exceeds the value of the flush high water mark, the self-
refresh state machine passes control to the exit self-refresh state. In addition, the fabric checks
for read/write conflicts to the same tag address in which the request is blocked by the admit
arbiter. When the fabric determines that a request is blocked by an address conflict, agent limit
or if the request tracker or memory scheduler scoreboards are full, control passes from the self-
refresh state machine to the exit self-refresh state. The fabric also contains a configuration
register that can be programmed to disable entering self-refresh, in an embodiment.

[0104] When the memory scheduler sends an indication to the memory controller to
exit self-refresh, requests may begin to be sent to the memory controller. The memory
scheduler continues to send an indication to the memory controller to remain out of self-refresh
while it is actively sending memory requests to the memory controller. When the memory
scheduler completes sending all read requests to the memory controller and the number of write
requests in the flush pool is below the casual high water mark limit, the memory scheduler
transitions to the request self-refresh slate.

[0105] In the request self-refresh state if no new requests are granted by the admit
arbiter the state machine transitions to the “enter self-refresh” state after a programmable delay
value called the “enter self-refresh delay” is met. In an embodiment, this delay is programmed
in configuration registers in the fabric. If new requests are granted by the admit arbiter, the
self-refresh state machine may transition to the “exit self-refresh” state under certain
conditions. If a new best effort read request is received or if a write request is received that
results in the number of entries in the flush pool exceeding the number programmed in the flush
high water mark configuration register, the self-refresh state machine transitions from the
request self-refresh state back to the exit self-refresh state. If an isochronous read request is
received when the state machine is in the request self-refresh state, the deadline value of the
request is checked against a programmed value called the “enter self-refresh” threshold. If the
deadline latency is greater than the enter-self-refresh threshold, the state machine continues in
request sell-refresh state if the deadline latency for a request is below the enter self-refresh
threshold, the state machine will transition to the exit self-refresh state.

[0106] The self-refresh state machine drives status to the memory controller to remain

out of self-refresh until the state machine transitions to the enter self-refresh state. Once in the

23

WO 2016/105864

enter self-refresh state, the state machine sends an indication to the memory controller to enter

PCT/US2015/062857

self-refresh.
[0107] Table 2 below is a description of a self-refresh state machine in accordance
with an embodiment of the present Specification.
Current Condition Description Next State Outputs
State
Unknown Reset Reset pin asserted Enter Self Fabric drives
Refresh indication to
memory
controller to
enter self
refresh
Enter Self Memory Number of flush Enter Self Fabric drives
Refresh Scheduler entries less than Flush | Refresh indication to
Idl HWM and no Best memory
Effort Read Requests controller to
and no ISOC read enter self
requests with refresh
deadline times less
than Exit Self Refresh
Threshold
Enter Self Exist Self Number of flush Exit Self Fabric drives
Refresh Refresh 1 entries greater than Refresh indication to
Flush HWM or Best memory
Effort Read Requests controller to
or ISOC read requests exit self
with deadline times refresh.
less than Exit Self
Refresh Threshold or
ISOC read request
blocked by Agent
Limit or Fabric
Scoreboard full
indications
Exit Self Memory Isochronous or Best Exit Self Fabric drives
Refresh Scheduler Effort read requests Refresh indication to
Active pending or number of memory
Flush Pool entries controller to
above Casual HWM Exit Self
Refresh
Exit Self Request Self | No Isochronous or Request Self | Fabric drives
Refresh Refresh Best Effort read Refresh indication to
requests pending and memory

24

WO 2016/105864

PCT/US2015/062857

number of Flush Pool controller to
entries is below Exit Self
Casual HWM Refresh

Request Self | Exit Self Received Isochronous | Exit Self Fabric drives

Refresh Refresh 2 read request with Refresh indication to
deadline less than memory
Enter Self Refresh controller to
Threshold or Received Exit Self
Best Effort Read Refresh
request spending
number of Flush Pool,
entries is now above
Flush HWM

Request Self | Request Self | No Best Effort read Enter Self Fabric drives

Refresh Refresh requests received and | Refresh indication to
number of Flush Pool memory
entries is blow Flush controller to
HWM and Enter Self Enter Self
Refresh timer is Refresh
greater than Enter Self
Refresh Delay value

[0108] Read/Write Grant State Machine
[0109] In an embodiment, the memory scheduler uses configurable threshold values

to specify when to start and stop transferring a burst of write requests to the memory controller.
The memory scheduler may perform different types of transfers of write data to memory. e.g.,
a high priority transfer and a low priority transfer, also termed herein as a high priority flush
of write requests and casual flush of write requests to memory, respectively. When the number
of entries in the flush pool reaches or exceeds a threshold value (the flush high water mark),
the memory scheduler begins scheduling a high priority write flush to memory and begins
sending write requests to the memory controller. The memory scheduler continues to schedule
write requests using the high priority flush mechanism until the number of entries in the flush
pool reaches or is less than a threshold value (the flush low water mark).

[0110] A casual flush may also be performed by the fabric memory scheduler. A
casual flush is triggered when the memory scheduler has completed sending all read requests
to the memory controller and the number of entries in the flush pool exceeds a threshold value

(the casual flush limit). In an embodiment, the casual flush limit can be typically set lower than

the high water mark, but greater than or equal to the low water mark, for performance reasons.

25

WO 2016/105864 PCT/US2015/062857

In some cases this casual flush limit can be set to 0 to flush all write data to memory. Once the
last read request is sent to the memory controller, if the number of entries in the flush pool is
above the casual flush limit, a counter called the casual flush timer starts incrementing every’
clock cycle. If no new read requests to memory are received by the fabric and the casual flush
timer reaches the value specified by the casual flush delay, which is a threshold stored in a
configuration register, the memory scheduler begins sending write requests to the memory
controller. This casual flush continues until the number of entries in the flush pool is less than
the casual flush limit or until a new read request is received by the fabric.

[0111] The read/write grant state machine is responsible for switching from granting
read requests to granting write requests. In an embodiment, the memory scheduler is
configurable to allow write requests to have priority over read requests or to use weights when
switching between read requests and write requests (in order to prevent starvation of reads
when the system is saturated by write requests). When weights are enabled, the memory fabric
uses configuration registers to specify the read and write weights independently.

[0112]

Table 3 below is a description of a read/write grant state machine in

accordance with an embodiment of the present Specification.

Current State | Condition Description Next State Outputs
Unknown Reset Reset Pin asserted Grant Read Memory
Requests scheduler
sends Read
Requests to
Memory
Controller
Grant Read Grant Read | Number of flush Grant Read Memory
Requests Requests entries less than Request scheduler
Flush HWM and sends read
read/write weights requests to
disabled or number memory
of flush entries is controller
greater than HWM
and read/write
weights enabled
and read weight
count is greater
than 0
Grand Read Grant Number of flush Grant Write Memory
Request Write entries greater than | Requests scheduler
Request Flush HWM and sends write

26

WO 2016/105864

PCT/US2015/062857

read/write weights
disabled or number
of flush entries is
greater than HWM
and Read/Write
weights enabled
and read weight
count is equal to 0
or no read requests
pending and
number of flush
entries is greater
than casual HWM
and casual timer has
expired

requests to
memory
controller

Grant Write
Request

Grant
Write
Request

Number of flush
entries greater than
Flush HWM and
read/write weights
disabled or number
of flush entries is
greater than LWM
and read/write
weights enabled
and write count is
greater than 0

Grant Write
Request

Memory
scheduler
sends write
requests to
memory
controller

Grant Write
Requests

Grant Read
Requests

Pending read
requests and
number of flush
entries less than
Flush LWM or
pending read
requests and
number of flush
entries is greater
than LWM and
read/write weights
enabled and write
weight count is
equalto0

Grant Read
Request

Memory
scheduler
sends read
requests to
memory
controller

[0113]
[0114]

Read State Machine
The read state machine is responsible for switching between high priority
isochronous read requests, best effort read requests and low priority isochronous read requests.

The read state machine can be configured to operate in one of multiple modes. In one
27

WO 2016/105864

embodiment, two such modes are provided. A first mode is a fixed priority mode where the
read state machine gives high priority isochronous reads highest priority, best effort read
requests medium priority, and low priority isochronous read requests receive the lowest
priority. A second mode is to enable the use of weights for switching between high priority
isochronous reads and best effort read requests. In this mode, low priority isochronous requests

are only granted when there are no longer any high priority isochronous or best effort read

requests.

[0115]

PCT/US2015/062857

Table 4 is a description of a read state machine according to the present

Specification.
Currenl State | Condition Description Nexi Sate Ouiputs
Unbnowst Renst Revet Pin Sasorted Bypass Grant Enabbe Bypass

path from
output of Admit

Ay {0
Maynory
controtier

Bypass Grant

Reguest

No Bead Reguests
Pending In Scheduler

Bypass Grant

Enable Bypass
path from
oyt of Admit
Aghiier to
Mentory

Bypass Grant

Reguests

Ot of Solf Retresh
ard High Priosity
ISOC Reguests
Pending

Cirant High
Fririty 1500
Requests

Sends High
Briority Read
requesty 1o
Meawry

caniretisr

Bypass Gramt

Bt Hitort
Reguests

(het of Self Refrash
and Mo High Pricrity
ISOC Bequests and
Best Effort Reguests
peading

Grant Bext
Effort Reguests

Mamory
Schedaler
Sends Best
Effot Reagd
fegquesis o

28

WO 2016/105864

PCT/US2015/062857

Maomwory
eusysilar

Bypass Urand

Low Friswity
SO

Requesty

Out of Selt Rufresh
angd No High Privvity
IS0 Reyuests
No Best ,
Resprosts and Low
Priovity 180
Requests Pending

Gran Low
Priority 180C
Reguests

Mmwory
Schedaler
'Ci&‘mﬁs Lo‘,\-

{fumi'm.,kf

{irant High
Priority 1SOC
Hequests

High Priovity
RIS

Raguesis

Out of Sell Refresh
and High Priosity
1300 Reguests
Pending and 8OO
Weights not egual

Cirnyt High
Prority ISOC

Reguoesis

Memory
Schedudee

1 High
i }*‘\ ek
i‘i:‘{ilihhii% s
Memory
controlier

{arant High
Prioviny 1800
Recuesta

Baost Effm’_t
Reouests

Out of Sell Refresh
and No High Fooviny
1500 Requests
Pending and ISDC
Wesghte equad § and
Best Eftort Reguests
pemding

Uivamt Best
Effort Boguests

\f-"mm‘\-'
‘u }h chber

TRCURSES (]
Maomory
contralier

Grrant High
Frioeity 15OC
Requasis

Loww Priounty
ISGC

Heuests

st of Self Rafrash
and Mo High Pricovity
ISGC Reguests and
Ky Best Effort
Reguests and Low
Privgity INOC
Renuests Pending

Grad Low
Prinvity 1800
Regueests

Maomory
Scheduler
Sends Low
Pricrity Read
TEQUESES R
Memory
cuntrodier

Crrant High
Priovity 1SGC
Regussts

N Bead
Requests
Pending

Orat of Bedf Refresh
ansd Mo High Priovidy
ISQC Requests and
N Best Effo
Hegues =\0 Laow
Frinvity i%f)i“
Bespiosts

Bypass Gram

Enable Bypass
path from
it of Adait
Arhiter to
Moy
controller

Grant Hast

Best Effon

Ot of Self Relresh

Grant Bast

Meawry

29

WO 2016/105864

PCT/US2015/062857

Eftort Regquesty

Regquesty

andd Nox High Priveity
BOC Reguests o
I \\'mazus popual O
arsid Be ;
Roguasts Pvmzi~ﬁ

Eifort Roguests

Scheshuler
Sonds Best
Efort Read
TR G
Maomory
controdier

Clrant Bost
Eftort Reguests

HMigh Priovity

SO0

Reguests

Ot of Salf Refresh
and High Frionty
ISOC Reguests
Pencing and 150U
Weights potegual Q or

Uirant High
Priovity 1508

squests

7’

Memory
Schedule
Sends High
Priceity Read
TEGRESES 10

BE weights equad 1§ Memory
cotroiler
Civarst Best Low Priovity | (ot of Self Relresh Grant Low Memory

Effort Requests

1SGO
Reguesiy

and No High Paovity
SO0 Reguesty and
No Best Bffon
Roguests and Low
Priority 1I8GC
Requests Pending

Priority IR
Reguesty

Schedaler
Sends Low
Priorisy Read
IE&I;‘:K}E‘BK&{ o
Mooy
contratier

(rmi‘sﬁ Best
AiTort Requests

Ne Kead
Reguasts
Pomding

Chst of Self Refresh
aned No High Priovity
SO Rewpests and
Nop Best Efitw
Reguests angd No Loaw
Priodity 1I80C
Reoguests

Bypass Grang

Enable Bypras
path from
ontput of Admil
Arlstter to
Memory
cotrntler

Grant Low
Priovity 1I80C
Rt’qws

RL\; et

Chit of Soff Refresh
and High Priosity
BOC Requests
Penching

Lavand High
Prinrity 1SOC
Respuests

Memnary
Scheduler
Sends High
Prigrity Read
TRCRIIRLN (G
Memory

controlier
Groant Low Best Effeut Cuap of Ralf Redrosh {airant Best Memory

Priority 1ISOC
Hevuests

and Mo High Priority
BOC Reguests and
Bt Effort Requests

Bftort Reguests

Schedwler
Sends Best
Eifort Read

30

WO 2016/105864 PCT/US2015/062857

pevding reuests o
Maomory
contoiler
Cirant Low Low Prioriey | Out of Seif Refresh Cirand Loow Memory
Privrity ISOC R and Ny High Pricenty | Prineine 1ISOC | Schechader

Heguests Reguesis ESOC Requeests and Heguests
No Be it
Requests and Low reguesis o
Prionty 1500 Memory
Reguests Pending coantratier
Chisaet Loww Mo Read Ot of Self Refresh Bypass Grast Crable Bypass
Priveity ISOC Reguests and No High Poiority path from
Reguests Pending SO0 Begprests and s of Adalt
No Best Effon Arbiter to
Raguests and No Low Meowory
Priority 1ISOC condrolier
Kaguests

[0116] Scheduler Agent Weights

[0117] The memory scheduler uses agent weights for proportioning memory
bandwidth between agents within the same class of service category. In an embodiment,
configuration registers specify the weight value for each requesting agent, and a weight counter
is provided for each agent. The agent weight configuration registers are common between the
admit arbiter and the memory scheduler.

[0118] When there are no requests pending in the memory scheduler for any of the
agents connected to the fabric, the agent weight counters are loaded with values specified in
the agent weight configuration registers. When requests are granted by the admit arbiter and
enqueued into the memory scheduler scoreboard, an agent ID field is stored in the memory
scheduler scoreboard along with the request information. When the memory scheduler grants
a request in its scoreboard, the agent ID field is used to determine the source of the request and
the weight counter for that agent is decremented by one. Once an agent’s weight counter has
reached zero, the remaining requests for that agent are masked and no longer take part in the
scheduler arbitration. When an agent is masked from arbitration due to its weight counter
reaching zero, the memory scheduler continues to schedule requests from the remaining agents.
Once the weight counters for all agents have reached zero or if an agent’s weight counter is
non-zero but there are no remaining requests for that agent, all agent weight counters are
reloaded with the values from agent weight configuration registers.

[0119] FIGURE 9 is a block diagram of a method for performing memory scheduling

according to one or more examples of the present Specification. As shown in FIGURE 9,

31

WO 2016/105864 PCT/US2015/062857

method 600 may be performed by a scheduler arbiter of the shared memory fabric. As seen,
method 600 may begin by selecting a memory request from the memory scheduler scoreboard
for delivery to a memory controller (block 610). Various considerations may be taken into
account in determining the appropriate entry including state of the memory, state of the various
requests, relationship between address locations of the pending requests and so forth. Next at
block 620 the weight value for the selected agent is updated. In an embodiment a decrementing
of the weight value is performed. Note that while the initial value for the weight value for the
agents 1s the same as obtained from the configuration register also used by the admit arbiter,
understand that different weight counters are provided for each arbiter to enable independent
control of these weight values.

[0120] Still referring to FIGURE 9, next at decision block 630 it can be determined
whether the weight value of the selected agent is equal to zero. Note that in one non-limiting
example, this determination may be in an embodiment in which zero is the lowest priority
value. If it is determined that the weight value is zero, control passes to block 640 where this
selected agent is masked from further arbitration within the memory scheduler.

[0121] From both of decision blocks 630 and 640, control passes to decision block
650 where it can be determined whether the weight value of all agents equals zero. If so, control
passes to block 660 where the weight values for all the agents can be updated to their configured
values, ¢.g., obtained from a configuration register of the fabric. Otherwise, control passes from
decision block 650 to decision block 670 to determine whether there are any remaining requests
in the memory scheduler for agents having a non-zero weight value. If so, those requests can
be handled. e.g., via another iteration of method 600. Otherwise if no additional requests
remain, control passes to block 660 where the weight values can be updated as described. It
should be noted that the flow diagram of FIGURE 9 is intended to be non-limiting, and that
other elements and modifications may be present in various embodiments.

[0122] Table 5 below provides example operation of memory scheduling for plurality

of clock cycles, based on initial weight values for three agents as follows:

32

WO 2016/105864

Agentt) Weight

Agent | Welght = 3
fght= 1

Age 2 W

PCT/US2015/062857

Apend
i Hey

yXati}

2 Reg
Rauak

Agent

Carant

M:;;'sk

{ oy

Falsg | Pl 2 Fabse 3
st
2 frag Vadwe {4 True False 2 Frue Fabwe § False {apat
3 Troe Patee 1 4 Tyge Fibse § True Falbsa i False
4 Trne 4 Trie False H True T i False
i
3 fne | Falee 13 Trae False i T Ty {) False LRIt
i Troe | fake (2 Trye b § Frue Trse 4 False Ciennt
‘ Aot
e 3 §Pvae | Yese 2 frne | True 0 1% {araes
: Agend
; 3
8 REEN i §Tree | Yo £ Teme | Truwg it} Trug Tiraet

Agent
i

&

Toue

i Tyee

Fale

Tene

Yoo

Virgforos
Viadse

{iram
A gﬁ)}:f
I

T

i Tyue

Fabse

{aam
:'\g&:‘-l}:f
i}

i

Troe

i Tvee

T

Yalpe

yas

{ivean
Sgond

3
4

T

D Vs

P e

Traw

Faphugs

swsigit
Agand

~
13 Trae | Valse 12 i True false i frue | Tris i Vadne {ivaet
i ; Sgend
; 4
14 Tre False 11 | lee falss i frue e i ¥ Cirsik

Agord
&

Ty

X

| Tene

iH Treas False 1 4 § Tene False 2 T Faabsss § False
17 Trws §oPalse 13 Fades e Trus Fabsa § False Cheant

Apot

2
H

Trowe

WO 2016/105864 PCT/US2015/062857

[0123] Out of Order Page Aware Scheduling

[0124] The memory scheduler reorders requests sent to the memory controller and
seeks to optimize the stream of requests for the maximum memory bandwidth possible. The
memory scheduler contains configuration registers programmed to provide the scheduler with
information about the memory controller to which it is attached. In one embodiment, these
configuration registers include information about what address bits are used for the memory
channel, bank, rank and row addresses. Using the memory configuration information
programmed in the configuration registers the memory scheduler determines the bank, rank,
row, and channel of each request in the scheduler scoreboard. The memory scheduler
scoreboard also contains a page hit status bit for each request that is used to optimize requests
sent to the memory controller so that requests to the same page in memory are sent to the
memory controller before sending request to a different page.

[0125] After initialization and before any requests are sent to the memory controller,
the memory scheduler clears all page hit status bits in its scoreboard. As requests are sent to
the memory controller the memory scheduler updates the page hit status bits in the scoreboard
to indicate whether other requests are to the same page or to a different page in memory.
Although the scheduler is not aware of the actual state of the page in a given memory bank,
these page hit status bits may be used as a hint as to which requests are the best candidates to
send to the memory controller for optimal memory bandwidth.

[0126] When a request is sent to the memory controller, the memory scheduler
compares the channel, rank and bank information for all other requests pending in the
scoreboard. If the channel, rank and bank information of a scoreboard entry matches a request
that is sent to the memory controller the row address of the entry is compared against the row
address of the request sent to the memory controller. If the row address of a scoreboard entry
matches for the request the page hit status bit is set to 1; if the row address does not match the
request the page hit status bit is set to 0 indicating a page miss. For scoreboard entries where
the channel, rank or bank bits are different than the request sent to the memory controller, no
update of the page hit status occurs.

[0127] As new requests are granted by the admit arbiter and enqueued into the
scheduler scoreboard, the row address information is compared against all entries currently in
the scoreboard. If the row address of the new request matches one or more entries in the

scheduler scoreboard and the page hit status bit of any matching entries is set, the page hit

34

WO 2016/105864 PCT/US2015/062857

status for the new request is also set. If the row address does not match any entries in the
scoreboard or all entries it matches have the page hit status set to zero, the page hit status for
the new request is also set to zero.

[0128] Using the page hit and rank status information stored in the scheduler
scoreboard, the memory scheduler reorders requests sent to the memory controller based on a
priority encoded scheduling scheme that has been determined to provide optimal bandwidth
for most DRAM-based memory technologies. The memory scheduler grants higher priority
requests before granting requests with lower priority levels.

[0129] Table 6 below shows the different priority levels used by a memory scheduler

in accordance with one embodiment of the present Specification.

Memory Scheduler Page Aware Scheduling Priority

Pagebit Statas Rank Status Priority Level
Pagchit Same Rank Priority Level 3 (Highest)
Pagehit Different Rank Friority Level 2

Pasemiss Same Hank Friovity Leved |

Pageanisg DHfferent Rank Priority Level @ {Lowest)

[0130] Age Based Memory Scheduling and Starvation Prevention

[0131] In order to prevent starvation of requests due to the out-of-order page aware
scheduling algorithm, the concept of age is used at least in part to schedule requests. For each
class of service (COS) category, the memory scheduler contains a configuration register to
specify an out-of-order (OOQ) scheduling limit. To provide a shorter maximum read latency
for the isochronous COS category, the OOO scheduling limit is typically set to a smaller value
than the OOO scheduling limit of the best effort COS category. The memory scheduler creates
a request hit vector for all pending requests in its scoreboard for the best effort and isochronous
COS categories. These request bit vectors are sent to the oldest of available queue, which
determines the oldest request that is still pending. The oldest of available queue outputs a one
hot encoded bit vector with the bit set to 1 to indicate the oldest request. As the memory
scheduler grants requests OOO based on its page aware scheduling algorithm, the memory
scheduler counts how many requests were granted that were not the oldest pending request for
each COS category. Once the counter reaches the OOO scheduling limit for the COS category,
which may be determined by performance analysis done for worst case acceptable latency for
a COS category, the page aware scheduling logic is disabled and the oldest request for the COS
category is granted by the memory scheduler. Any time the oldest request for a COS category

35

WO 2016/105864 PCT/US2015/062857

is granted, the counter for that COS category is reset to zero. To provide the lowest possible
latency for a COS category the OOO scheduling limit can be programmed to zero, essentially
disabling the page aware scheduling logic for that COS category. When the OOO scheduling
limit is set to zero for a COS category, requests to memory may be scheduled using request
age, which is determined by the oldest of available queue.

[0132] Best Effort Maximum Latency Starvation Prevention

[0133] For best effort read requests, the fabric utilizes the deadline storage
information in the scheduler scoreboard to store a value that is used to specify a maximum
latency value for scheduling best effort requests. The scoreboard is a pool of entries and a
request stored in the scoreboard may be either a best effort or isochronous request determined
by the request’s class of service category, also stored in the scoreboard for each request. In the
case a request in the scoreboard is a best effort read request, a maximum allowable latency.
e.g., a preprogrammed value stored in a configuration register, is used to schedule the request.
When the request is enqueued in the scoreboard and is a best effort read request the maximum
latency value is added to the current value of the global timer. Once the global timer reaches
the value stored for the best effort requests’” maximum latency, page aware scheduling is
ignored for the request and results in the request being scheduled when it is the oldest request
pending. ¢.g., as determined by the oldest of available queue.

[0134] Request Tracker Write Priority and Weights

[0135] The request tracker is responsible for the transfer of data from the requesting
agents to the internal memory butler of the fabric. The write protocol used by the shared
memory fabric causes all write data to be transferred in request order from the requesting agent
to the internal memory buffer in the fabric. In one embodiment, the request tracker uses
separate linked lists per agent to preserve the ordering of the write requests. The request tracker
may perform coherency checks for a write request prior to transferring data from the requesting
agent to the internal data buffer.

[0136] For write requests, the request tracker may be configured to support one or
more priority levels. When a request is granted by the admit arbiter the deadline information
for the request is stored in an array having a length corresponding to the number of entries in
the request tracker. The fabric uses a threshold value, e.g., stored in a configuration register, to
specify when a request deadline value is considered to be high priority. Each deadline value

for a request is compared against the threshold value programmed in the configuration register.

36

WO 2016/105864 PCT/US2015/062857

When the deadline latency is less than the value in the configuration register, a bit is set in the
tracker’ s scoreboard entry for the request indicating the request is a high priority request.

[0137] When enabled for two priority level operation, if a write request for an agent
reaches the head of the linked list and the high priority bit is set for the request the write request
is considered to be high priority. If any write requests at the head of any of the agent linked
lists indicate the write request is a high priority request, all low priority write requests at the
head of the other linked list for other agents are masked before being input to the write request
arbiter. If multiple requests of the same priority level are present at the head of the agent linked
lists, an arbitration is performed to select which agent to choose to transfer the write data.

[0138] Request Tracker Write Request Arbiter

[0139] The write request arbiter uses a weighted priority based fair arbiter to select
which agent to transfer write data. The weights for the write request arbiter are programmed in
configuration registers in the request tracker. The write arbiter assigns each agent a unique
priority at reset. On each cycle, the arbiter only considers request candidates with data that is
ready to transfer, and grants to the requester with the highest priority. When granted, a request
candidate’s weight is decremented by one. If the granted candidate already had a weight of
zero, then the arbiter also updates request candidate priorities as follows: the granted
candidate’s priority is set to the lowest priority (e.g., zero): all candidates with priorities lower
than the granted candidate increment their priority, and all candidates with priorities higher
than the granted candidate leave their priority unchanged.

[0140] Request Tracker Read Data Return

[0141] Requesting agents either support in order data return or out-of-order data
return. To support out-of-order data return, an order ID field is used. An order ID is sent from
the agent with each request and is stored in the request tracker scoreboard. Requests from the
same agent that have the same order ID are returned in request order. Data for requests from
the same agent having different order IDs do not need to be returned in request order. In an
embodiment, the request tracker uses linked lists for ensuring read data is properly ordered
when it is returned to the requesting agent.

[0142] The entry of the internal data buffer where data is to be written is chosen prior
to a request being granted by the admit arbiter. When a request is granted by the admit arbiter,
request information including the index into the internal data buffer is forwarded to the request

tracker. As data is returned from the memory controller, the memory scheduler forwards a read

37

WO 2016/105864 PCT/US2015/062857

completion indication to the request tracker, which includes the index field into the internal
data buffer where the data is being written and an indication of which chunks of the memory
address have completed a read of memory. When the request tracker receives a read
completion, it compares the index field with the index fields for all requests Stored in the
request tracker scoreboard. If a scoreboard entries’ index field matches a read completion for
a request and all chunk bits for the request are set for the read completion, a bit is set in the
request tracker scoreboard indicating the read request has completed.

[0143] Ifaread request has reached the head of the linked list and the read completion
status bit in the request tracker is set and all coherency checks for the request have completed,
the request is available to return read data to the agent. Similar to write requests, the request
tracker uses the request deadline information for a scoreboard entry to indicate request priority.
In one embodiment, the request tracker creates two request bit vectors for scoreboard entries
that have data ready to return to the requesting agents. One bit vector is for low priority read
requests and the other bit vector is for high priority read requests. The request bit vectors are
input to the request tracker oldest of available queue. The oldest of available queue determines
which request is the oldest for both request hit vectors. The request tracker has a configuration
mode which when enabled will cause a return of data from the oldest high priority request
selected by the oldest of available queue before returning data for any low priority requests.
When support of the high priority data return is not enabled, the request tracker treats all
scoreboard entries that are ready to return read data as having the same priority level. In this
mode, only the low priority bit vector is used as an input to the oldest of available queue that
in turn determines the oldest read request in the scoreboard. Read data for the scoreboard entry
determined to be the oldest is then returned to the requesting agent.

[0144] Embodiments may be used in many different SoCs or other semiconductor
devices that integrate various IPs onto a single die to connect these 1Ps to memory via a memory
fabric. Still further a memory fabric in accordance with an embodiment of the present
Specification may be used to provide a QOS level for meeting isochronous requirements of at
least some of these IPs.

[0145] FIGURE 10 is a block diagram of an SoC according to one or more examples
of the present Specification. As shown in FIGURE 10, SoC 700 is a single die semiconductor
device including multiple IP blocks along with a shared memory arbiter as described above. In

the embodiment of FIGURE 10 a plurality of cores 710-1 — 710-n are provided, each of which
38

WO 2016/105864 PCT/US2015/062857

can independently execute instructions. In one embodiment, all of these cores are of a single
design such as an in-order core design, ¢.g., of an Intel Architecture™ such as an Core™-based
design. In other embodiments, the cores may be out-of-order processors such as an Intel
Architecture™ (IA) 32 core such as an Intel Core™-based design. In other embodiments, a
mix of heterogeneous cores may be provided. In addition, a plurality of graphics engines,
namely independent graphics units 720-0 — 720-n, may be provided each to independently
perform graphics operations. As seen, the multiple cores are coupled to a shared cache memory
715 such as a level 2 (L2) cache and similarly, the graphics engines are coupled to another
shared cache memory 725.

[0146] A system agent 730 is coupled to these cores and graphics engines via
corresponding in-die interconnects 728 and 729. As seen, system agent 730 includes a shared
memory fabric 735 which may be configured as described herein. Various other logic,
controllers and other units such as a power management unit may also be present within system
agent 730. As seen, shared memory fabric 735 communicates with a memory controller 740
that in turn couples to an off-chip memory such as a system memory configured as DRAM. In
addition, system agent 730 is coupled via a set of interconnects 744 to one or more internal
agents 750 such as various peripheral devices. In an embodiment, interconnect 744 may include
a priority channel interconnect, a sideband channel interconnect, and a memory channel
interconnect. A similarly configured interconnect 74 provides for communication between
system agent 730 and one or more off-chip agents (not shown for ease of illustration in the
embodiment of FIGURE 10). It should be noted that the block diagram of FIGURE 10 is
intended to be non-limiting, and that other elements and modifications may be present in
various embodiments.

[0147] FIGURE 11 is a block diagram of components present in a computer system
according to one or more examples of the present Specification. As shown in FIGURE 11,
system 800 can include many different components. These components can be implemented as
ICs, portions thereof, discrete electronic devices, or other modules adapted to a circuit board
such as a motherboard or add-in card of the computer system, or as components otherwise
incorporated within a chassis of the computer system. Note also that the block diagram of
FIGURE 11 is intended to show a high level view of many components of a computer system,

however, it is to be understood that additional components may be present in certain

39

WO 2016/105864 PCT/US2015/062857

implementations and furthermore, different arrangement of the components shown may occur
in other implementations.

[0148] Asseenin FIGURE 11, a processor 810, which may be a low power multicore
processor socket such as an ultra-low voltage processor, may act as a main processing unit and
central hub for communication with the various components of the system. Such a processor
can be implemented as a SoC as described herein. In one embodiment, processor 8§10 may be
an Intel® Architecture Core™-based processor such as an 13, 15, 17, or another such processor
available from Intel Corporation, Santa Clara, CA, such as a processor that combines one or
more Core™-based cores and one or more Intel® ATOM™-based cores to thus realize high
power and low power cores in a single SoC. However, understand that other low power
processors such as available from Advanced Micro Devices. Inc. (AMD) of Sunnyvale, CA,
and ARM-based design from ARM holdings, Ltd., or a MIPS-based design from MIPS
Technologies, Inc., of Sunnyvale. CA, or their licensees or adopters may instead be present in
other embodiments such as an Apple A5 or A6 processor. In yet other embodiments, processor
810 may be a virtual processor realized as a combination of hardware and/or software in a
virtual machine.

[0149] Processor 810 may communicate with a system memory 815, which in an
embodiment can be implemented via multiple memory devices to provide for a given amount
of system memory. To provide for persistent storage of information such as data, applications,
one or more operating systems and so forth, a mass storage 820 may also couple to processor
810. Also shown in FIGURE 11, a flash device 822 may be coupled to processor 810, ¢.g., via
a serial peripheral interface (SPI). This flash device may provide for non-volatile storage of
system software, including a basic input/output software (BIOS) as well as other firmware of
the system.

[0150] Various input/output (to) devices may be present within system 800.
Specifically shown in the embodiment of FIGURE 11 is a display 824 which may be a high
definition LCD or LED panel configured within a lid portion of the chassis. This display panel
may also provide for a touch screen 825, e.g., adapted externally over the display panel such
that via a user’s interaction with this touch screen, user inputs can be provided to the system to
enable desired operations. e.g., with regard to the display of information, accessing of
information and so forth. In one embodiment, display 824 may be coupled to processor 810 via

a display interconnect that can be implemented as a high performance graphics interconnect.

40

WO 2016/105864 PCT/US2015/062857

Touch screen 825 may be coupled to processor 810 via another interconnect, which in an
embodiment can be an I12C interconnect. As further shown in FIGURE 11, in addition to touch
screen 825, user input by way of touch can also occur via a touch pad 830 which may be
configured within the chassis and may also be coupled to the same 12C interconnect as touch
screen 825.

[0151] For perceptual computing and other purposes, various sensors may be present
within the system and can be coupled to processor 810 in different manners. Certain inertial
and environmental sensors may couple to processor 810 through a sensor hub 840, e.g., via an
12C interconnect. In the embodiment shown in FIGURE 11, these sensors may include an
accelerometer 841, an ambient light sensor (ALS) 842, a compass 843, and a gyroscope 844.
Other environmental sensors may include one or more thermal sensors 846, which may couple
to processor 810 via a system management bus (SMBus) bus in one embodiment.

[0152] Also seen in FIGURE 11, various peripheral devices may couple to processor
810 via a low pin count (LPC) interconnect. In the embodiment shown, various components
can be coupled through an embedded controller 835. Such components can include a keyboard
836 (e.g., coupled via a PS2 interface), a fan 837, and a thermal sensor 839. In some
embodiments, touch pad 830 may also couple to EC 835 via a PS2 interface. In addition, a
security processor such as a trusted platform module (TPM) 838 in accordance with the Trusted
Computing Group (TCG) TPM Specification Version 1.2, dated Oct. 2. 2003, may also couple
to processor 810 via this LPC interconnect.

[0153] System 800 can communicate with external devices in a variety of manners,
including wirelessly. In the embodiment shown in FIGURE 11, various wireless modules, each
of which can correspond to a radio configured for a particular wireless communication
protocol, are present. One manner for wireless communication in a short range such as a near
field may be via a near field communication (NFC unit 845 which may communicate, in one
embodiment with processor 810 via an SMBus. Note that via this NFC unit 845, devices in
close proximity to each other can communicate. For example. a user can enable system 800 to
communicate with another (e.g.,) portable device such as a smartphone of the user via adapting
the two devices together in close relation and enabling transfer of information such as
identification information payment information, data such as image data or so forth. Wireless

power transfer may also be performed using a NFC system.

41

WO 2016/105864 PCT/US2015/062857

[0154] As further seen in FIGURE 11, additional wireless units can include other
short range wireless engines including a WLAN unit 850 and a Bluetooth unit 852. Using
WLAN unit 850, Wi-Fi™ communications in accordance with a given Institute of Electrical
and Electronics Engineers (IEEE) 802.11 standard can be realized, while via Bluetooth unit
852, short range communications via a Bluetooth protocol can occur. These units may
communicate with processor 810 via, ¢.g., a USB link or a universal asynchronous receiver
transmitter (UART) link. Or these units may couple to processor 810 via an interconnect via a
Peripheral Component Interconnect Express™ (PCIe™) protocol in accordance with the PCI
Express Specification Base Specification version 3.0 (published January 17,2007), or another
such protocol such as a serial data input/output (SDIO) standard. Of course, the actual physical
connection between these peripheral devices, which may be configured on one or more add-in
cards, can be by way of the next generation form factor (NGFF) connectors adapted to a
motherboard.

[0155] In addition, wireless wide area communications. e.g., according to a cellular
or other wireless wide area protocol, can occur via a wireless wide area network (WWAN) unit
856 which in turn may couple to a subscriber identity module (SIM) 857. In addition, to enable
receipt and use of location information, a GPS module 855 may also be present. Note that in
the embodiment shown in FIGURE 11, WWAN unit 856 and an integrated capture device such
as a camera module 854 may communicate via a given USB protocol such as a USB 2.0 or 3.0
link, or a UART or 12C protocol. Again the actual physical connection of these units can be
via adaptation of a NGFF add-in card to an NGFF connector configured on the motherboard.

[0156] To provide for audio inputs and outputs, an audio processor can be
implemented via a digital signal processor (DSP) 860, which may couple to processor 810 via
a high definition audio (HDA) link. Similarly. DSP 860 may communicate with an integrated
coder/decoder CODEC) and amplifier 862 that in turn may couple to output speakers 863
which may be implemented within the chassis. Similarly, amplifier and CODEC 862 can be
coupled to receive audio inputs from a microphone 865 which in an embodiment can be
implemented via dual array microphones to provide for high quality audio inputs to enable
voice-activated control of various operations within the system. Note also that audio outputs

can be provided from amplifier/CODEC 862 to a headphone jack 864.

42

WO 2016/105864 PCT/US2015/062857

[0157] FIGURE 12 is a block diagram of an SoC i sifu in an example control system.
It should be noted, however, that a control system, and this particular control system, are
provided by way of non-limiting example only.

[0158] In the example of FIGURE 12, SoC 1200 includes a multicore processor,
including RT core 115-0 and auxiliary core 115-1. RT core 115-0 acts as a real-time agent,
while auxiliary core 115-1 acts as a best effort agent.

[0159] RT core 115-1 and auxiliary core 115-1 share memory controller 170-0 and
memory controller 170-1, which control memory bank 1220-0 and 1220-1 respectively. In
certain examples, memory bank 1220-0 and memory bank 1220-1 are completely independent
of one another, and may be interleaved such that even-numbered memory addresses go through
memory controller 170-0 to bank 1220-0, while odd-numbered memory locations are routed
through memory controller 170-1 to memory bank 1220-1. This is provided by way of example
only, and other memory configurations are available. It should also be noted that in this
example, memory controllers 170 and memory banks 1220 are shown on a separate memory
bus. This is also disclosed by way of non-limiting example. In other examples, other memory
architectures may be used, such as direct memory access (DMA) and memory architectures
that employee a common bus with other system resources.

[0160] RT core 115-0 may be configured to control a system, such as controlled
system 1290. In one embodiment, controlled system 1290 may be a mission-critical or safety-
critical device such as a manufacturing robot, life support system, by way of non-limiting
example. The requirements of controlled system 1290 may be such that a guaranteed QoS is
necessary to maintain real-time operation. However, it may also be desirable to provide
auxiliary functions, such as a user interface so that a user can provide necessary inputs.
Auxiliary core 115-1 may also provide functions such as monitoring and user feedback. Thus,
it is desirable to design SoC 1200 so that RT core 150-0 is guaranteed its necessary QoS for its
real-time functions, but doesn’t completely monopolize shared uncore fabric 100 so that
auxiliary core 115-1 is unable to perform its function. To this end, a priority scheme may be
provided to grant higher priority to real-time traffic, while leaving sufficient bandwidth for
auxiliary core 115-1 to function properly.

[0161] In this example, RT core 115-0 communicatively couples to controlled system
1290 via suitable means, such as a network interface, dedicated bus, or other connection. In

this drawing, RT core 115-0 also communicatively couples to RT peripheral device 1210-0 via

43

WO 2016/105864 PCT/US2015/062857

shared interconnect resources 1230. In certain embodiments, shared interconnect resources
1230 may be provided as a single modular IP block for simplicity of design.

[0162] For simplicity of the drawing, and to illustrate that many different styles of
interconnect are possible, no physical or logical connection is illustrated here between RT
peripheral device 1210-0 and controlled system 1290. But this is not intended to exclude such
a connection. In some examples, RT peripheral device 1210-0 may be a control interface to
controlled system 1290, in which case a logical and/or physical connection may be provided.
In other embodiments, RT peripheral device 121-0 may provide other real-time functionality
that may or may not be directly logically related to controlled system 1290.

[0163] Similarly, auxiliary core 115-1 communicatively couples to user interface
1270 by way of example, or to any other suitable auxiliary system or subsystem. Auxiliary core
1150-1 communicatively couples to auxiliary peripheral device 1210-1 via shared interconnect
resources 1230. As with real-time peripheral device 1210-0, auxiliary peripheral device 1210-
1 may or may not communicatively couple to user interface 1270. For simplicity of the
drawing, and to illustrate that many different connection options are possible, no physical or
logical connection is shown in this figure between auxiliary peripheral device 1210-1 and user
interface 1270, but in some embodiments, such a connection may be provided.

[0164] In one example, shared uncore fabric 100 includes only one set of physical
buses, interconnects, registers, and other resources that real-time core 115-0 and auxiliary core
115-1 may use to communicatively couple to peripheral devices 1210, and to memory
controllers 170. Thus, to ensure a guaranteed QoS for real-time core 115-0, shared interconnect
resources 1230 may need to provide a priority scheme between agents 115, peripherals 1210,
and memory controllers 170.

[0165] Asdescribed above, certain embodiments employ only one virtual channel that
is shared between all agents. However, the present Specification also describes a method of
providing a plurality of virtual channels so that shared uncore fabric 100 can discriminate,
segregate, and prioritize between traffic for real-time core 115-0 and traffic for auxiliary core
150-1. This segregation may be desirable so that in cases where it is necessary, traffic from
real-time core 115-0 may receive priority, including preemptive priority over traffic from
auxiliary core 115-1.

[0166] In one example, two virtual channels are defined: namely virtual channel

VC_AUX 1240, and virtual channel VC_RT 1242. Division into virtual channels may be
44

WO 2016/105864 PCT/US2015/062857

accomplished in one example by decoding the source agent for each packet. It should be noted
that in certain known embodiments, the destination of each packet is decoded for routing
purposes. In this example, destination decoding may still be provided, and may be in addition
to decoding of the source agent. Once the source agent is decoded, the packet may be tracked
throughout shared interconnect resources 1230 according to the source agent. In one example,
shared uncore fabric 100 may prepend header data to each packet, identifying the virtual
channel on which the packet is to be carried. Certain virtual channels may be given certain
priority weights according to the QoS scheme described herein. Priority schemes may include
providing a high “grant count” number for high-priority traffic and/or assigning traffic on
VC_RT an expired deadline to expedite that traffic.

[0167] The virtual channels may also be further subdivided, for example according to
the destination of each packet. Thus, for example, traffic from real-time core 115-0 to any
memory controller 170 may be given very high or even preemptive priority to guarantee a
QOS. However, traffic from real-time core 115-0 to real-time peripheral device 1210-0 may be
less time critical. Thus, this traffic may be assigned a somewhat lower (though possibly still
expedited) priority. These configurations are, of course, provided by way of non-limiting
example only. A person having skill in the art will select an appropriate priority scheme
according to the design constraints of a particular embodiment.

[0168] In one embodiment, SoC 1200 also includes a power management agent
(PMA) 1232. PMA 1232 facilitates communication between requesting agents 115 and shared
interconnect fabric 100. For example, if requesting agents 115 inform PMA 1232 that they will
be idle for a particular time, PMA 1232 may inform shared interconnect fabric 100 that it may
enter a low-power state for that time.

[0169] FIGURE 13 is a block diagram of selected elements of an uncore shared
memory fabric 100 according to one or more examples of the present specification.

[0170] Inone example, uncore fabric 100 may be logically divided into a gated region
1320, and an ungated region 1310. These are logical divisions and do not necessarily represent
discrete physical regions of uncore fabric 100.

[0171] Gated region 1320 includes much of the primary functionality of uncore fabric
100, including memory scheduler 130, cache coherency tracker 140, and admit arbiter 120.
Gated region 1320 may also include other functions, such as an I/O root complex 1350, an I/O

interconnect fabric 1342, which may be hierarchical, and system decoder 1330. System decoder

45

WO 2016/105864 PCT/US2015/062857

1330 may specifically provide intelligence to uncore fabric 100. Finally, uncore fabric 100
gated region 1320 of uncore fabric 100 includes retention cells 1340. Retention cells 1340 may
be suitable flip-flops, which may be used to retain the state of uncore fabric 100 while in a
reduced power state, while consuming very little power for themselves.

[0172] Ungated region 1310 may include, for example, power gates 1360, clock gates
1370, clocks 1372, ungated controller 1380, and local power manager 1390.

[0173] Inone example, one or more clocks 1372 are provided to propagate throughout
uncore fabric 100. These clocks may pass through clock gates 1370 on their way to the rest of
uncore fabric 100. Thus, when clock gates 1370 are closed, clock 1372 remain idle and no
signals are propagated. Power gates 1360 may also cut off power to all or most of gated region
1320. Thus, when both power gates 1360 and clock gates 1370 are closed, uncore fabric 100
draws negligible power overall.

[0174] Local power manager 1390 exercises control over clock gates 1370 and power
gates 1360, and includes logic to monitor inputs to ungated controller 1380 to determine when
inputs “dry up.” When sufficient time has passed with no inputs, local power manager 1390
closes clock gates 1370 and power gates 1360.

[0175] Uncore fabric 100 then remains idle until an incoming signal is received by
ungated controller 1380. Ungated controller handles preliminary processing of incoming data.
In cases where uncore fabric 100 is pipelined or portions thereof are pipelined, ungated
controller 1380 may include selection logic and hashing that will be used to assign the incoming
memory access request to the appropriate pipeline. This may include, for example, hashing the
address to determine whether it is even or odd, and assigning it to either the even or odd
pipeline.

[0176] While ungated controller 1380 performs its preliminary processing of the
incoming memory requests, power manager 1390 opens power gates 1360 and clock gates
1370. This allows power and clock signals to propagate throughout the gated region 1320 of
uncore fabric 100, generally in a matter of nanoseconds. Because a typical idle time for uncore
fabric 100 may be on the order of microseconds, the nanosecond scale overhead for waking
gated region 1320 on a memory access event may be a suitable and acceptable trade-off.

[0177] FIGURE 14 is a flow diagram of a method performed by a uncore fabric 100

according to one or more examples of the present specification.

46

WO 2016/105864 PCT/US2015/062857

[0178] In block 1410, on a first parallel path, PMA 1230 of FIGURE 12 may send a
“CORES IDLE” signal to shared interconnect fabric 100.

[0179] Alternatively, in block 1420, ungated controller 1380 may determine that no
inputs have been received.

[0180] Block 1422 is a loop, wherein power manager 1390 waits until the idle time is
greater than a threshold. In one example, the threshold may be less than a microsecond. In one
example, the threshold can be dynamically managed by a user by programming a configuration
register

[0181] If the time has not yet exceeded the threshold, then in block 1424, the clocks
alone may be gated if a minor threshold (less than the first threshold) has been exceeded. This
provides an intermediate or partial power-down state, wherein power is still applied, but clocks
are not operating.

[0182] In block 1430, if the primary threshold has been exceeded, then power
manager 1380 of uncore fabric 100 determines that uncore fabric 100 may enter a power saving
state. Thus, power manager 1380 saves the state of uncore fabric 100 to retention cells 1340.

[0183] In block 1440, local power manager 1390 powers down uncore fabric 100 by
a closing power gates 1360 and clock gates 1370.

[0184] In block 1450, uncore fabric 100 waits for a new incoming access request.

[0185] In block 1460, ungated controller 1380 receives an access request or a “wake”
instruction (for example, from PMA 1232). Thus, it is time for uncore fabric 100 to begin the
process of waking up from its low-power state. This occurs in two parallel paths in one
example.

[0186] In block 1470, ungated controller 1380 may handle preliminary processing for
the new access request. This may include, for example, hashing the address and assigning the
incoming packet to an appropriate pipeline of uncore fabric 100.

[0187] In parallel, in block 1480, power manager 1390 restores the state of uncore
fabric 100 from retention cells 1340. In block 1482, power manager 1390 powers up uncore
fabric 100 by opening power gates 1360 and clock gates 1370. The power and clock signals
then propagate through uncore fabric 100, for example in a matter of nanoseconds. Once the
power and clock signals have been restored to uncore fabric 100, in block 1490, uncore fabric

100 is ready to handle the access request as described herein.

47

WO 2016/105864 PCT/US2015/062857

[0188] The picture needs to include a block called “Firewall”. When one side of an
interface (shared memory fabric) is powered down and another is not (requesting agent), then
the physical design needs firewalls to shut off (i.e. ground) signals from reaching the powered
down domain.

[0189] Advantageously, according to the system and method of the present
Specification, shared uncore fabric 100 may shut down clocks and/or power even if the
requesting agents 115 themselves still have clocks and power applied. Requesting agents 115
and shared uncore fabric 100 do not need to pre-negotiate to enter a low-power state. This is
allows aggressive power management and significant power savings in the SoC, especially for
situations when agents are themselves quite active (and hence needing power), but not sending
requests to the fabric.

[0190] While the present invention has been described with respect to a limited
number of embodiments, those skilled in the art will appreciate numerous modifications and
variations therefrom. It is intended that the appended claims cover all such modifications and
variations as fall within the true spirit and scope of this present invention.

[0191] A design may go through various stages, from creation to simulation to
fabrication. Data representing a design may represent the design in a number of manners. First,
as is useful in simulations, the hardware may be represented using a hardware description
language (HDL) or another functional description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some stages of the design process.
Furthermore, most designs, at some stage, reach a level of data representing the physical
placement of various devices in the hardware model. In the case where conventional
semiconductor fabrication techniques are used, the data representing the hardware model may
be the data specifying the presence or absence of various features on different mask layers for
masks used to produce the integrated circuit.

[0192] In some implementations, software based hardware models, and HDL and
other functional description language objects can include register transfer language (RTL) files,
among other examples. Such objects can be machine-parsable such that a design tool can accept
the HDL object (or model), parse the HDL object for attributes of the described hardware, and
determine a physical circuit and/or on-chip layout from the object. The output of the design
tool can be used to manufacture the physical device. For instance, a design tool can determine

configurations of various hardware and/or firmware elements from the HDL object, such as

48

WO 2016/105864 PCT/US2015/062857

bus widths, registers (including sizes and types), memory blocks, physical link paths, fabric
topologies, among other attributes that would be implemented in order to realize the system
modeled in the HDL object. Design tools can include tools for determining the topology and
fabric configurations of system on chip (SoC) and other hardware device. In some instances,
the HDL object can be used as the basis for developing models and design files that can be
used by manufacturing equipment to manufacture the described hardware. Indeed, an HDL
object itself can be provided as an input to manufacturing system software to cause the
described hardware.

[0193] In any representation of the design, the data may be stored in any form of a
machine readable medium. A memory or a magnetic or optical storage such as a disc may be
the machine readable medium to store information transmitted via optical or electrical wave
modulated or otherwise generated to transmit such information. When an electrical carrier
wave indicating or carrying the code or design is transmitted, to the extent that copying,
buffering, or re-transmission of the electrical signal is performed, a new copy is made. Thus,
a communication provider or a network provider may store on a tangible, machine-readable
medium, at least temporarily, an article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present disclosure.

[0194] A module as used herein refers to any combination of hardware, software,
and/or firmware. As an example, a module includes hardware, such as a micro-controller,
associated with a non-transitory medium to store code adapted to be executed by the micro-
controller. Therefore, reference to a module, in one embodiment, refers to the hardware, which
is specifically configured to recognize and/or execute the code to be held on a non-transitory
medium. Furthermore, in another embodiment, use of a module refers to the non-transitory
medium including the code, which is specifically adapted to be executed by the microcontroller
to perform predetermined operations. And as can be inferred, in yet another embodiment, the
term module (in this example) may refer to the combination of the microcontroller and the non-
transitory medium. Often module boundaries that are illustrated as separate commonly vary
and potentially overlap. For example, a first and a second module may share hardware,
software, firmware, or a combination thereof, while potentially retaining some independent
hardware, software, or firmware. In one embodiment, use of the term logic includes hardware,

such as transistors, registers, or other hardware, such as programmable logic devices.

49

WO 2016/105864 PCT/US2015/062857

[0195] Use of the phrase ‘to’ or ‘configured to,” in one embodiment, refers to
arranging, putting together, manufacturing, offering to sell, importing and/or designing an
apparatus, hardware, logic, or element to perform a designated or determined task. In this
example, an apparatus or clement thereof that is not operating is still ‘configured to” perform a
designated task if it is designed, coupled, and/or interconnected to perform said designated
task. As a purely illustrative example, a logic gate may provide a 0 or a 1 during operation.
But a logic gate ‘configured to’ provide an enable signal to a clock does not include every
potential logic gate that may provide a 1 or 0. Instead, the logic gate is one coupled in some
manner that during operation the 1 or 0 output is to enable the clock. Note once again that use
of the term ‘configured to’ does not require operation, but instead focus on the latent state of
an apparatus, hardware, and/or element, where in the latent state the apparatus, hardware,
and/or element is designed to perform a particular task when the apparatus, hardware, and/or
element is operating.

[0196] Furthermore, use of the phrases ‘capable of/to,” and or ‘operable to,” in one
embodiment, refers to some apparatus, logic, hardware, and/or element designed in such a way
to enable use of the apparatus, logic, hardware, and/or element in a specified manner. Note as
above that use of to, capable to, or operable to, in one embodiment, refers to the latent state of
an apparatus, logic, hardware, and/or element, where the apparatus, logic, hardware, and/or
element is not operating but is designed in such a manner to enable use of an apparatus in a
specified manner.

[0197] A wvalue, as used herein, includes any known representation of a number, a
state, a logical state, or a binary logical state. Often, the use of logic levels, logic values, or
logical values is also referred to as 1’s and 0’s, which simply represents binary logic states.
For example, a 1 refers to a high logic level and 0 refers to a low logic level. In one
embodiment, a storage cell, such as a transistor or flash cell, may be capable of holding a single
logical value or multiple logical values. However, other representations of values in computer
systems have been used. For example the decimal number ten may also be represented as a
binary value of 1010 and a hexadecimal letter A. Therefore, a value includes any representation
of information capable of being held in a computer system.

[0198] Moreover, states may be represented by values or portions of values. As an
example, a first value, such as a logical one, may represent a default or initial state, while a

second value, such as a logical zero, may represent a non-default state. In addition, the terms

50

WO 2016/105864 PCT/US2015/062857

reset and set, in one embodiment, refer to a default and an updated value or state, respectively.
For example, a default value potentially includes a high logical value, i.e. reset, while an
updated value potentially includes a low logical value, i.c. set. Note that any combination of
values may be utilized to represent any number of states.

[0199] The embodiments of methods, hardware, software, firmware or code set forth
above may be implemented via instructions or code stored on a machine-accessible, machine
readable, computer accessible, or computer readable medium which are executable by a
processing clement. A non-transitory machine-accessible/readable medium includes any
mechanism that provides (i.c., stores and/or transmits) information in a form readable by a
machine, such as a computer or electronic system. For example, a non-transitory machine-
accessible medium includes random-access memory (RAM), such as static RAM (SRAM) or
dynamic RAM (DRAM); ROM; magnetic or optical storage medium; flash memory devices;
electrical storage devices; optical storage devices; acoustical storage devices; other form of
storage devices for holding information received from transitory (propagated) signals (e.g.,
carrier waves, infrared signals, digital signals); etc., which are to be distinguished from the
non-transitory mediums that may receive information there from.

[0200] Instructions used to program logic to perform embodiments of the invention
may be stored within a memory in the system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via a network or by way of other
computer readable media. Thus a machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a machine (e.g., a computer), but is
not limited to, floppy diskettes, optical disks, Compact Disc, Read-Only Memory (CD-ROMs),
and magneto-optical disks, Read-Only Memory (ROMs), Random Access Memory (RAM),
Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM), magnetic or optical cards, flash memory, or a tangible,
machine-readable storage used in the transmission of information over the Internet via
electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared
signals, digital signals, etc.). Accordingly, the computer-readable medium includes any type
of tangible machine-readable medium suitable for storing or transmitting electronic
instructions or information in a form readable by a machine (e.g., a computer).

[0201] The following examples pertain to embodiments in accordance with this

Specification. One or more embodiments may provide a method, an apparatus, a system, a

51

WO 2016/105864 PCT/US2015/062857

machine readable storage, a machine readable medium, hardware- and/or software-based logic,
to provide a shared fabric comprising a gated region, a local power manager to determine that
the shared fabric has not received an access request for a time greater than a threshold, and a
power gate to gate off power to the gated region on a power-down signal from the local power
manager.

[0202] In at least one example, a clock gate is provided to gate off a clock signal to
the gated region on a power-down signal from the local power manager.

[0203] In at least one example, the local power manager is further to detect an
incoming access request, and to send a power-up signal to the power gate.

[0204] In at least one example, the local power manager resides in the ungated region.

[0205] In atleast one example, an ungated controller is provided in the ungated region
to receive an incoming access request, notify the local power manager of the incoming access
request, and at least partly handle the incoming access request.

[0206] In at least one example, retention cells are provided to store state information
about the shared fabric upon the power-down signal.

[0207] In at least one example, the retention cells are further to restore state
information to the shared fabric upon a power-up signal from the local memory controller.

[0208] In at least one example, the local power manager is further to determine that
the shared fabric has not received an access request for a time greater than a minor threshold,
and gate off a clock to the gated region.

[0209] In at least one example, the power manager is to send the power-down signal
in the absence of an explicit power down signal for a requesting agent.

[0210] In at least one example, the shared fabric comprises an uncore fabric.

[0211] One or more embodiments may provide an apparatus, a system, a machine
readable storage, a machine readable medium, hardware- and/or software-based logic, a
method to monitor a shared interconnect fabric that communicatively couples a requesting
agent to an addressed data device and includes a gated region, determine that a memory access
request from the requesting agent has not been received for a time greater than a threshold,
cause power to the gated region to be gated-off on a power-down signal from a local power
manager, and store state information of the shared interconnect fabric in a retention cell.

[0212] Reference throughout this specification to “one embodiment” or “an

embodiment” means that a particular feature, structure, or characteristic described in

52

WO 2016/105864 PCT/US2015/062857

connection with the embodiment is included in at least one embodiment of the present
invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment”
in various places throughout this specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, structures, or characteristics may be
combined in any suitable manner in one or more embodiments.

[0213] In the foregoing specification, a detailed description has been given with
reference to specific exemplary embodiments. It will, however, be evident that various
modifications and changes may be made thereto without departing from the broader spirit and
scope of the invention as set forth in the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative sense rather than a restrictive sense. Furthermore,
the foregoing use of embodiment and other exemplarily language does not necessarily refer to
the same embodiment or the same example, but may refer to different and distinct

embodiments, as well as potentially the same embodiment.

53

WO 2016/105864 PCT/US2015/062857

Claims:

1. An apparatus comprising:
a shared uncore fabric comprising a gated region, and further comprising:
a local power manager to determine that the shared fabric has not received
an access request for a time greater than a threshold; and
a power gate to gate off power to the gated region on a power-down signal
from the local power manager.
2. The apparatus of claim 1, further comprising a clock gate to gate off a clock signal to
the gated region on a power-down signal from the local power manager.
3. The apparatus of claim 1, wherein the local power manager is further to detect an
incoming access request, and to send a power-up signal to the power gate.
4. The apparatus of claim 1, further comprising an ungated region, wherein the local
power manager resides in the ungated region.
5. The apparatus of claim 4, further comprising an ungated controller in the ungated
region, the ungated controller to:
receive an incoming access request;
notify the local power manager of the incoming access request; and
at least partly handle the incoming access request.
6. The apparatus of any of claims 1 — 5, further comprising retention cells to store state
information about the shared fabric upon the power-down signal.
7. The apparatus of claim 8, wherein the retention cells are further to restore state
information to the shared fabric upon a power-up signal from the local memory controller.

8. The apparatus of any of claims 1 — 5, wherein the local power manager is further to:

54

WO 2016/105864 PCT/US2015/062857

determine that the shared fabric has not received an access request for a time greater
than a minor threshold; and
gate off a clock to the gated region.

9. The apparatus of any of claims 1 — 5, wherein the power manager is to send the power-
down signal in the absence of an explicit power down signal for a requesting agent.

10. A system on a chip, comprising:

a requesting agent;

an addressed data device; and

an uncore fabric to communicatively couple the requesting agent to the addressed data
device, the uncore fabric comprising a gated region, and further comprising:

a local power manager to determine that the shared fabric has not received
an access request from the requesting agent to the addressed data device for a time greater
than a threshold; and

a power gate to gate off power to the gated region on a power-down signal
from the local power manager.

11. The system on a chip of claim 10, wherein the uncore fabric further comprises a clock
gate to gate off a clock signal to the gated region on a power-down signal from the local power
manager.

12. The system on a chip of claim 10, wherein the local power manager is further to detect
an incoming access request, and to send a power-up signal to the power gate.

13. The system on a chip of claim 10, further comprising an ungated region, wherein the
local power manager resides in the ungated region.

14. The system on a chip of claim 13, further comprising an ungated controller in the

ungated region, the ungated controller to:

55

WO 2016/105864 PCT/US2015/062857

receive an incoming access request;
notify the local power manager of the incoming access request; and
at least partly handle the incoming access request.
15. The apparatus of claim 1, further comprising retention cells to store state information
about the shared fabric upon the power-down signal.
16. The apparatus of claim 8, wherein the retention cells are further to restore state
information to the shared fabric upon a power-up signal from the local memory controller.
17. The apparatus of claim 1, wherein the local power manager is further to:
determine that the shared fabric has not received an access request for a time greater
than a minor threshold; and
gate off a clock to the gated region.
18. The apparatus of claim 1, wherein the power manager is to send the power-down signal
in the absence of an explicit power down signal for a requesting agent.
19. A method of managing power for a shared fabric, comprising:
determining that a memory access request has not been received for a time greater
than a threshold; and
storing state information of the shared fabric in a retention cell.
20. The method of claim 19, further comprising gating off power and clock signals to the

shared fabric.

56

PCT/US2015/062857

I "&314d g T T e e, - ————— 1

1/13

WO 2016/105864

m |
| gvi VPN yzaane oL ||
r.f)]
{ > 314 4 i
w SANIND ‘ 4 as M
m TOUMLNGD D TYd | (DYL |
m UIIOVEL AONRUFHOD m
m CNY 1S3 |
w FY % M
- d £-GLL
| o »f O0SIEINTOV |
M = M T ONILSINDTY
; | 1S3N0TY
! m W03 | 7Ly
| L L -y w1670 ZINIDY
{ShITIodiNGD |] N 5 - 174) j ONLLSINDSEH
dowan | M T ualewy - HALIEHY M
/ ; HANIHHDS LGy - i JOGHLANIOY |
041 : T TG L N
; | 1SINDTY
; m 10443
; g »| 1536 0INIDY |
; ; onLsanmIy | - 06EL
§ 2 4 4 2]
w 001 051 M
; o £ |
, SHTL SIOTY :
i | NOUYHNOINGD HEILVEOTD
| uFY- AHONIN OIHYHS |

PCT/US2015/062857

WO 2016/105864

2/13

e -
m w |
m LHEEM 30Y !
’ HUDDTHD b P
M OLNZDY | | OLNZOV “SATvie T anrovan ._?w, od
| BZL~ | 1HOEM ESC A I 74 LNEOHN f i WhED
m VNZDY |] LiNEey e T ULZL SNONOHHOOSH
| HOEM 57 LA TR T EANIOY ONLS3N0RY
w ZINZOV | | ZiNZOV (ALMOR NI w wrm
| LHOIM 35y mmmwm« : eGLL
CINIOV | | oinzov
M - " q38YE 30V |, HITIHD &?M; a8l
m LHOEM I0Y il ELELEE]
: N3N \ {LNIDY 1M0-443
P 62 EIR A TR NN izl 15560 ZLNIDY
Loy NCHLYH LY . m NSO
M oA 7 153nnay w
o - INIEY
p | AHHOR 01 | (INIEY 120443
P 1HOEM d0LOFS - | 1539) LIN3DY
F] oALMORdH | dALiEEY - L 183N03Y 4 ONLLSINDY
m ALHOR Q&mﬁm& INFOY g
o - I omon e m C O 0rGL
[1S3n0 , 22V waleuy : Ve)
| NOLLYHLIEMY HINNIM g3svg 3oy |]
g 50 NoLwLEY - || oo
m “ m
| 0 1SN0 INTOY | A iy
e e e e e e o e e e e e e e e e J

WO 2016/105864
3/13

200
Y

210

AGE .
7 VALUE OF AGENT
“ EQUALS WINNER

¥

PCT/US2015/062857

S vaE?

UPDATE AGE
VALUE TO LOWEST
PRIORITY LEVEL

215

AGEVALUE ™ g
< OF AGENTLESS
. WINNER VALUE? "

220

¥

Yves
INCREMENT AGE VALUE

2257

o
)

(A)
FIG. 3

RESET 250

GRANTED - -
AGENT NO ' NO
WEIGHT== REQUEST \ REQUEST
NO REQUEST |
GRANTED DECREMENT

UPDATEAGE Lo
A WEIGHT==

GRANTED AGENT WEIGHT==
GRANTED AGENT WEIGHT =0

FIG. 4

270

\AGENT WEIGHT /-
T 280

GRANTED
AGENT
WEIGHT =0

GRANTED
1o AGENT
WEIGHT =0

WO 2016/105864

4/13

PCT/US2015/062857

310
N 300
RECEIVE MEMORY REQUEST WITH DEADLINE VALUE FROM ¥
LATENCY SENSITIVE DEVICE COUPLED TO FABRIC
315 _
-7 ISDEADUNE ™
< VALUE LESS THAN LATENCY 2 3200
. THRESHOLD? p
~ P FORWARD MEMORY REQUEST
S TO LOW PRIORITY ARBITER
I8 7
3208~ FORWARD MEMORY REQUEST
TO HIGH PRIORITY ARBITER PERFORM ARBITRATION IN
! LOW PRIORITY ARBITER
BASED ON BIT VECTOR
PERFORM AREITRATION IN HIGH ASSOCIATED WITH AGE
3258~ PRIORITY ARBITER BASED ON BIT VALUES FOR ALL DEVICES
VECTOR ASSOCIATED WITH AGE VALUES
FOR LATENCY SENSITIVE DEVICES S
I , 3250
| FORWARD WINNING MEMORY FORWARD WINNING MEMORY
3302~ REQUEST TO FINAL ARBITER REQUEST TO FINAL ARBITER
- CN
¥ 330b
PERFORM FINAL ARBITRATION TO SELECT
| WINNER MEMORY REQUEST AND
335~ FORWARD WINNER MEMORY REQUEST
TO MEMORY SCHEDULER SCOREBOARD
WEIGHT VALUE ™ NO
< OF WINNERAGENT 3
. EQUALS ZERG?
:
UPDATE WEIGHT VALUE OF WINNER
345" AGENT TO CONFIGURED VALUE DECREMENT
I WEIGHT VALUE OF gz
WINNER AGENT
350| UPDATE AGENT AGE VALUES FOR ALL AGENTS

FIG. 5

PCT/US2015/062857

WO 2016/105864

5/13

L8%

LNNGO
At ELE L

9 Did

588

INAREH 00 @&wﬁ

INNOO
IAHTSTY IAET
.Y

|
[L-NIAMANT FAHESTY INFWIUOA] AULNT D3 |
\uJE (ENNYHO N
m/:e|_ /../../.

LAMINT JANISTY INTWTH0EC
7HL

P-MIAHINT SAMESTS INSHIHON \Vi

LNZNZHON

IDIAMANT FAMISTY INSHIHON

N

A X
oY1 TIN4 -
LR
///
.,

(IOHSEMHL
Tid Lsray

s

Git

(68
NCLLYHIDIANGD
AT 0 1S3INDTy
IHLIM
i m\wm
NG
TTINNYHS L~ 08¢ oa
LYY - HALNMOO 1S3NDEN 0 DY
% STLNT OIANISEY 0 DAY 9/c
NOLLYRINORENGD g
JAHISTH 0 03
SHUIND OVL QUVYDI0TH 40 HISNNN oa
e L LA = C R ELRE
N
™ oxe
dnt P
T m
SN LNACD SANISTH INIWIHON
OAAMISTY SIMIND OYL
40 HIEANN
o -
/.
7 mmm_ SARING IANEST WIOL

09t

I

NOLYHNOIINGD 3AMIS 3 INJOY

- GOE

PCT/US2015/062857

WO 2016/105864

6/13

L 34 114
% RIS,
[NbEom
YAON DHYDETH00S m
(3 INYHD k
vy QM_H GLNYHE
N OX 0N
0-GLY
NS OLNYHS
F-
L-U0eY
.
wm,cmmw 0-GZy -0y
\\\\ﬁasjfff,\\\\ss R SO E i -07%
7d w i % % 4 Y P % 4 Iy i HOLT0HEA
u-(3g 18annay
U-0Le ey OHaHO0s
N
\.msewv
Syelels D e 0ag = 0aQ = 5 e Daq = 0Q = na ﬂm 0aq i VET
4 Lid YO8 IH008
=

\
00F 1z3ono

LSEMIN

PCT/US2015/062857

WO 2016/105864

7/13

NOLLIGNOD S183n034 D081 ALINOR M0

; m
P j
| DEG mmm NOLLIGNGD S153N03Y NOLLIONGD S1S3N0T Qvad ON ees m
; P 081 ALMOMD M0 - s i
| NHOV/comay g153nnay NOILIONDD SLEAND3Y/ & sannay HOLLIONGD ;
| S 7 gymioos o undd3 104431838 [gvad oo S183M03Y INGED
g Ovad ALIHORd NOLLIGNOS 1539 PES1 Ao Ov3% ON SoYdAE /1
M h,m%wwmww 3 INGIO/psiTianGs Sigannan ~ I INID AsTanes sisannay , M
m Y T 3081 ALHOMd HOH 08! ALIMON HOM w
m NOULIONGD NOILIGNGO S1S3nDay 9E5 w
m SLS3N0IA D08 114 0081 ALRIORMd MO L NOILIONDD 15303 140443 1838 m
ALIMOIM HOH
A —, W EE ﬁ
e e | o o ot St o i ol o it i i ol s i ot o o
NOLLIGNOS S153M03Y
m 555 ves NOLLIONOD SS90 [H0-449 1558 3081 ALTHORI HIH f
m . NOLLIONGD SLSINDTM 2081 ALNORd MO m
| NHOVH - s1gannay CE8 |
L 9ivis NS ™ w NOLLIONGD S1S3N0TH JLMM LNVES iy 1
| ST INVHS > j NOLLIONGD j
i NOLLIGNOD S1S3NM053 QY3 INvHD CILANDEN YU 0N |
- e oo — H...”””””“”H”H“HH”””“HH”””“H“ﬁ EEEEEEEEEEEEEEEEEEEEEE aw
M..... — NOLLIONCO S1S3N1DZY VY INVHO im
: Ois | NOILIGNGO S183M034 ;
m INIHOY JLIHM LNYHO » / m
; 3IYIS [HSTUAR xmwwwm NOLIONGD HSHU4TY ;
i MY | ATES HAING ; NOULIGNGD HS ¥3iNd [Pe 8 L83N03 \ELbel m
| T8 . s - ZHOLIONOO NS IS o f
i FARS 7L 1A i
m S1HISSYI0 1355 :
L o e] Ny X L
@ A % ,
W g0g N
5Ty 00%

WO 2016/105864

PCT/US2015/062857

8/13

600

810~

SELECT MEMORY REQUEST
FROM MEMORY SCHEDULER
SCOREBOARD FOR DELIVERY
TO MEMORY CONTROLLER

¥

820~

UPDATE WEIGHT VALUE
FOR SELECTED AGENT

WEIGHT VALUE ™y
< OF SELECTED AGENT >
. EQUALS ZERQ? o~

Yyes

840~

MASK SELECTED AGENT
FROM FURTHER ARBITRATION

S _WITH NON-ZERO WEIGHT o

3

‘

~ WEIGHT VALUE ™S _
< OF ALL AGENTS EQUAL >
. ZERO?

| REMANING .
REQUESTS FOR AGENTS

w. VALUE?
570

Yves
¥

860"

UPDATE WEIGHT VALUES FOR ALL
AGENTS TO CONFIGURED VALUES

< BN)
FIG. 9

WO 2016/105864 PCT/US2015/062857
9/13
?i){}
£
710-0 710-n 720-0 720-n
N\ N / ;
GRAPHICS GRAPHICS
COREQ |°e=) COREn ENGINED |~ "1 ENGINEnR
SHARED CACHE MEMORY SHARED CACHE MEMORY
{/ & & \
¥ ¥ /
75| SHARED MEMORY FABRIC i"ggﬁf 730 NG
744 PR s8 omem| o Th 48
780" INTERNAL AGENT(S)

FI1G. 10

PCT/US2015/062857

WO 2016/105864

10/13

O Nmm 2% N - LES
GOB \ 288~ HEYH (YOBAD RE
INOHAOHMOM e 0gg | Md SO | BEE T
pog diva |\ T . ! 868
R SOV ONY HOSNIS L
ANOHHQYIH — y .
~_ 4) ,/ 4
SHIMWADS e VaH IdS ceo
(328~ v g yodl 7Sd
COH HO 085 s o W
12 a—wl DOOSOUAD
O — L gsn > £ >z EV8
1E58T i Hioosame |1 . g HOSNIS D o B
M m Lvn SNENS | TYARIHL Jy o
% B -
ipog—-] HNIWYIM TTgia8 P— ST
BN T T T T H0d 27! 7
foTe a-pd WILINOUTTIIOV |
158~ m\mw - ovg) 3yl ~ 198
i Olg aepd [INA DN T avdHONOL A
858~ t/e BN 2 d »i NITUOSHONOL |
P S » - » > AYTdSIO]
4568 0 71 HO Luvn ~yE8
VHINYD 0L G980 He
2
4007 > - ~
G wm\m,e ; (0%

PCT/US2015/062857

WO 2016/105864

11/13

¢l Hid

30IN3A TvY¥IHdI¥3d dIHD-V-NO 30IA3A
AUV ITIXNY -INJLSAS TVHIHdIY3d 1Y
T-022T T-0LT
ANVE ¥ITIOYLNOD
AHOWIN AHOWIW
—— \ ;
Ovel % s3ounosay L vzt
09N 15INNODYLNI L uon
A3YVHS
——
4 V4
0-02¢T 0-0LT
YNVE ¥3T10¥LNOD VIAd
AJOWIIN AdOWIN 00T \\
J1Hav4
JYODONN I<IT cect 0-<IT
d3dvHS 340D AYVITIXNY 340D 14
— 06¢T
occt INILSAS
3OV4YILNI ¥3ISN Q3TI08.LNOD

PCT/US2015/062857

WO 2016/105864

12/13

_

_ _ _

_ 06T 08ET =7ET

_ YIOVNVIN YITIOYLNOD (SHPOT
_ YIMOd V201 d3LVONN

_

_

| _

_ Y

_

_ OTET — —

_ NOIDIY 0LET 09¢T

" Q3LYONN (S)3Lvo 201D (S)3LVD ¥Imod
_

_

ST142 NOILN3L3d

H3A0I3A INFLSAS

0cel

V4

oveT

ocel
NOIS3Y
diLvd

(IVDIHDYVYITH)
J1¥gv4
123INNODYILNI O/

\

el

Y1194V LIWAY

V4

oct

001
Jldavd
FHOINN dIHVHS

0€t

ori

0s€l

H3TNAIHOS
AHOWIIN

HINOVHL
AINFHIHOD FHOVD

X31dINOD LO0Y 0/I

WO 2016/105864

PMA SENDS CORES IDLE SIGNAL

1470

PCT/US2015/062857
13/13
UNGATED CONTROLLER GOES IDLE
1410 \\\
1424 1420
W 1422
GATE CLOCKS IF > MINOR
?
HRESHOLD t > THRESHOLD?
1430 YES
SAVE STATE TO RETENTION CELLS |e¢—-
l 1440
POWER DOWN 4
l 1450
WAIT FOR INCOMING ACCESS REQUEST 4
l 1460
UNGATED CONTROLLER RECEIVES |/
ACCESS REQUEST OR WAKE INSTR.
| 1480

\\ v

HANDLE PRELIMINARY PROCESSING FOR
ACCESS REQUEST

v V4

RESTORE STATE

v

POWER UP UNCORE FABRIC

Y

HANDLE ACCESS REQUEST

1490

V4

FIG. 14

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2015/062857

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 1/32(2006.01)i, GOGF 1/26(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOO6F 1/32; GO6F 15/16; GO6F 13/16; GO6F 12/14; GO6F 1/00; GOGF 1/26

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & keywords: shared fabric, access request, power gate, clock gate

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See paragraphs [0014]-[0020]; and figure 1.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2012-0102344 A1 (ANDREJ KOCEV et al.) 26 April 2012 1-20
See paragraphs [0043]-[0053], [0074]-[0076]; and figures 3, 8.
Y US 2014-0201471 A1 (DANIEL F. CUTTER et al.) 17 July 2014 1-18
See paragraphs [0025]-[0031]; claim 1; and figure 1.
Y US 2013-0086139 A1l (SRIDHAR LAKSHMANAMURTHY et al.) 04 April 2013 6-7,15-16,19-20
See paragraphs [0030]-[0040]; claims 1-12; and figures 56.
A US 2011-0264934 A1 (ALEXANDER BRANOVER et al.) 27 October 2011 1-20
See paragraphs [0034]-[0049]; and figures 2-3.
A US 2012-0079590 A1 (MANOJ R. SASTRY et al.) 29 March 2012 1-20

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

i

K

nQr

npr

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ng"

Date of the actual completion of the international search
11 March 2016 (11.03.2016)

Date of mailing of the international search report

11 March 2016 (11.03.2016)

Name and mailing address of the [SA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Dagjeon, 35208, Republic of Korea

Facsimile No. +82-42-472-7140

Authorized officer g
v vy

g
S
T

LEE, Dong Yun

Telephone No. +82-42-481-8734

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2015/062857
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2012-0102344 Al 26/04/2012 US 8438416 B2 07/05/2013
US 2014-0201471 Al 17/07/2014 CN 104321758 A 28/01/2015
EP 2946301 Al 25/11/2015
JP 2015-511052 A 13/04/2015
KR 10-2015-0086514 A 28/07/2015
TW 201439771 A 16/10/2014
WO 2014-113225 Al 24/07/2014
US 2013-0086139 Al 04/04/2013 US 2015-0012681 Al 08/01/2015
US 8805926 B2 12/08/2014
US 9122815 B2 01/09/2015
WO 2013-048856 A2 04/04/2013
WO 2013-048856 A3 18/07/2013
US 2011-0264934 Al 27/10/2011 US 8656198 B2 18/02/2014
US 2012-0079590 Al 29/03/2012 CN 103124975 A 29/05/2013
JP 05636501 B2 03/12/2014
JP 2013-537347 A 30/09/2013
TW 201224838 A 16/06/2012
US 2014-0298408 Al 02/10/2014
US 8789170 B2 22/07/2014
US 9112867 B2 18/08/2015
WO 2012-040691 Al 29/03/2012

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - wo-search-report
	Page 73 - wo-search-report

