
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0113350 A1

Carlos

US 201101.13350A1

(54)

(75)

(73)

(21)

(22)

(63)

METHOD, SYSTEMAND PROGRAM
PRODUCT FOR BUILDING
COLLABORATION APPLICATIONS USING
MULTIPLE-PEER USER INTERFACE
LIBRARIES

Inventor: Cohan S. Carlos, Raleigh, NC (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Appl. No.: 13/006,997

Filed: Jan. 14, 2011

Related U.S. Application Data

Continuation of application No. 1 1/546,991, filed on
Oct. 13, 2006.

(43) Pub. Date: May 12, 2011

Publication Classification

(51) Int. Cl.
G06F 3/048 (2006.01)

(52) U.S. Cl. .. T15/753
(57) ABSTRACT

A method, system and program product for building a col
laboration server for deploying a collaboration application.
The method includes installing on a server a collaboration
server application having multiple-peer user interface librar
ies capable of creating and synchronizing multiple peer wid
gets for each widget created by a collaboration application.
The method further includes deploying a collaboration appli
cation written using standard user interface libraries, and
launching execution of the collaboration application on the
server when one or more users connect to the server, Such that
a rendering of a shared State of the user interface is displayed
on a client program corresponding to the users. Further, the
method includes displaying the shared State on a client pro
gram of a new user connecting to the server. Also, when a
change is made to the state of a shared widget by a user, the
method includes updating the client programs of all remain
ing users.

-200

RECEIVE EVENT NOTIFICATION RECQUEST MESSAGE WITH PEERD 2O2

IDENTIFY WIDGET TO BE NOTIFIED, USING PEERIDAND PEER-TO-WIDGETMAPPING 204

CALL SUITABLE METHODS IN WIDGET AND PASSAS 206
PARAMETERSALL REQUIRED INFORMATIONABOUT EVENT

SEND EVENT FROM WIDGET TO EVENTHANDLERS IN COLLABORATION APPLICATION 208

SEND EVENT NOTIFICATION RESPONSE MESSAGE WITH ALL CHANGES TO THE 212
WDGET STATE TO CLIENT PROGRAM FROM WHICH EVENT WAS RECEIVED

NOTIFY OTHER CLIENT PROGRAMS THAT SHARE THE 214
WDGET THATA STATE CHANGE HAS TAKEN PLACE

DOES
YES CLIENT PROGRAM

INTERNET
PROTOCOL.

216

USE AREQUEST-BASED
SEND THE CLIENT

NO THE CHANGES IN 1N 218
WDGET STATE

C END D 220

US 2011/O113350 A1 May 12, 2011 Sheet 1 of 8 Patent Application Publication

May 12, 2011 Sheet 4 of 8 US 2011/O113350 A1 Patent Application Publication

ELVIS S, 130C]INA CIERHVHS EHL -JO ÅdOO W HO-?

Patent Application Publication May 12, 2011 Sheet 5 of 8 US 2011/O113350 A1

s

w
o

May 12, 2011 Sheet 6 of 8 US 2011/O113350 A1 Patent Application Publication

US 2011/0113350 A1 May 12, 2011 Sheet 7 of 8

!

Patent Application Publication

US 2011/0113350 A1

on

S

SEOW-RIBINI O||

May 12, 2011 Sheet 8 of 8

||—?),??lsassaindhog]]
CZ08

098~~[3:Esmael

909

Patent Application Publication

3

US 2011/O 113350 A1

METHOD, SYSTEMAND PROGRAM
PRODUCT FOR BUILDING

COLLABORATION APPLICATIONS USING
MULTIPLE-PEER USER INTERFACE

LIBRARIES

FIELD OF THE INVENTION

0001. The present invention relates to a method and sys
tem for building collaboration applications and a computer
program product for deploying the collaboration applications
in a deployment environment, often referred to as a collabo
ration server. More particularly, the present invention relates
to a method, system and computer program product for build
ing a collaboration server for facilitating deployment of col
laboration applications on the collaboration server using mul
tiple-peer user interface libraries.

BACKGROUND OF THE INVENTION

0002. In today’s business environment, organizations and/
or businesses facilitate collaboration among employees and/
or end users. Collaboration in various settings is achieved by
using collaboration technologies. With the use of collabora
tion technologies, employees of a business and/or organiza
tion scattered throughout the world can collaborate with one
another on a project or end users accessing various collabo
ration software can chat with one another or play a game with
one another. Traditional collaboration technologies for devel
oping collaboration applications require programmers to
write collaboration applications in multiple languages, with
Some pieces deployed on client programs and some pieces on
collaboration servers. Further, traditional technologies
require a programmer to be aware of the existence of a net
work and to use an application-specific communication pro
tocol for communicating with the different components, thus,
making the collaboration applications written in traditional
ways difficult to test and to initialize with a complex state. As
such, there is a need for an efficient and cost effective way to
develop collaboration technologies that promote collabora
tion and which overcome the limitations of traditional col
laboration technologies.

SUMMARY OF THE INVENTION

0003. In a first aspect of the invention, there is provided a
method of building a collaboration server for facilitating
deployment of a collaboration application. The method
includes installing a collaboration server application on a
server connected to a network and being configured to run a
collaboration application using one or more customized user
interface libraries having collaboration functionality, each of
the one or more customized user interface libraries having
one or more customized widgets capable of mapping to one or
more peer widgets, deploying a collaboration application on
the server, wherein a user interface of the collaboration appli
cation is written using one or more standard user interface
libraries, and launching execution of the collaboration appli
cation on the server when one or more collaborating users of
a collaborating group connect to the server over the network,
Such that a rendering of a shared State of the user interface is
displayed on a client program corresponding to each of the
one or more collaborating users connected to the server.
When a new collaborating user connects to the server for
collaborating with the one or more collaborating users, the
method further includes displaying the shared state of the user

May 12, 2011

interface on another client program corresponding to the new
collaborating user. Further, when a change is made to the
shared state of the user interface by a collaborating user
among the one or more collaborating users, the method
includes broadcasting the change made to the shared State to
a remainder of the one or more collaborating users. In an
embodiment, the displaying step includes keying the shared
state of the user interface to the collaboration group, storing
the shared state of the user interface on the server, and dis
playing the rendering of the shared State of the user interface
on the another client program corresponding to the new col
laborating user when the new collaborating user connects to
the server. In an embodiment, the broadcasting step includes
issuing a notification to each client program corresponding to
the remainder of the one or more collaborating users. Such
that the rendering of the shared state of the user interface is
updated to reflect the change made to the shared state of the
user interface. In an embodiment, the new collaborating user
is eithera first user in the collaborating group who connects to
the server at an initial point-in-time or is a Subsequent user in
the collaborating group who connects to the server at a Sub
sequent point-in-time. Further, in an embodiment, the change
made to the shared state of the user interface is broadcasted
across the network using a protocol chosen from an Internet
protocol suite. Moreover, in an embodiment, the collabora
tion application and the collaboration server application are
applications written in an object-oriented programming lan
gllage.

0004. In another aspect of the invention, there is provided
a system for facilitating collaboration in an online collabora
tive environment. The system includes a collaboration server
application installed on a server coupled to a network and
being configured to run a collaboration application using one
or more modified widget libraries includes of one or more
customized widgets, each customized widget of the one or
more customized widgets being configured to map to one or
more peer widgets created on one or more local user inter
faces corresponding to one or more collaborating users con
nected to the server, and a collaboration application deployed
on the server, the collaboration server application being con
figured to run the collaboration application on the server
when a collaborating user connects to the server, Such that a
shared part of a user interface of the collaboration application
run on the server is stored on the server in order to display the
shared part of the user interface on each local user interface
corresponding to each of the collaborating users connected to
the server and wherein any change made to the shared part of
the user interface displayed on a local user interface of a
collaborating user among the collaborating users is broad
casted and displayed on each remaining local user interface
corresponding to each remaining collaborating user among
the collaborating users connected to the server. In an embodi
ment, the collaboration server application is configured to key
the shared part of the user interface to a collaboration group
that includes the collaborating users. Further, the collabora
tion server application is configured to display the shared part
of the user interface on a local user interface of a new col
laborating user when the new collaborating user connects to
the server. In an embodiment, the new collaborating user is
either a first user in the collaborating group who connects to
the server at an initial point-in-time or a Subsequent user in the
collaborating group who connects to the server at a Subse
quent point-in-time. In an embodiment, the collaboration
server application is further configured to issue a notification

US 2011/O 113350 A1

to each local user interface corresponding to the each remain
ing collaborating users of the collaborating users connected
to the server in order to update and display any change made
to the shared part of the user interface. Further, in an embodi
ment, the change made to the shared State of the user interface
is broadcasted across the network using a protocol chosen
from an Internet protocol suite. Moreover, in an embodiment,
the collaboration application and the collaboration server
application are applications written in an object-oriented pro
gramming language.
0005. In yet another embodiment, the present invention
provides a computer program product for building a collabo
ration server application that facilitates deployment of a col
laboration application. The computer program product
includes a computer readable medium, first program instruc
tions to install a collaboration server application on a host
server connected to a network, the collaboration server appli
cation being configured to run a collaboration application
using customized widget libraries that include one or more
customized widgets, each of the customized widgets being
capable of creating one or more peer widgets on each local
user interface of a client program corresponding to each of
one or more collaborating users connected to the host server.
Further, the computer program product includes second pro
gram instructions to run on the host server a collaboration
application deployed thereon, the collaboration application
having a user interface written using one or more standard
widget libraries and third program instructions to display a
shared part of the user interface of the collaboration applica
tion on a local user interface of a client program correspond
ing to a new collaborating user when the new collaborating
user connects to the host server. In an embodiment, the new
collaborating user includes at least one of a first user in the
collaborating group who connects to the host server at an
initial point-in-time or a Subsequent user in the collaborating
group who connects to the host server at a Subsequent point
in-time. In an embodiment, the second program instructions
include instructions to key to a collaborating group the shared
part of the user interface displayed as each local user interface
corresponding to the one or more collaborating users. In an
embodiment, the third program instructions include instruc
tions to share between the one or more collaborating users one
or more customized widgets used to render the shared part of
the user interface displayed as the local user interface on the
client program corresponding to the one or more collaborat
ing users. Furthermore, the computer program product
includes fourth program instructions to update the shared part
of the user interface displayed on the each local user interface
corresponding to the one or more collaborating users when a
change is made to the shared part of the user interface by any
of the one or more collaborating users. In an embodiment, the
fourth program instructions include instructions to transmit
over the network the change made to the shared part of the
user interface displayed as the local user interface using a
protocol chosen from an Internet protocol Suite. In an
embodiment, each of the first, second, third and fourth pro
gram instructions are stored on the computer readable
medium. In an embodiment, both the collaboration applica
tion and the collaboration server application are applications
written in an object-oriented programming language.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 The accompanying drawings, which are incorpo
rated in and form a part of this specification, illustrate

May 12, 2011

embodiments of the invention and, together with the descrip
tion, serve to explain the principles of the invention:
0007 FIG. 1 depicts a flowchart which outlines the steps
involved in processing different types of events that are
received by a host server or system from a client program, in
accordance with an embodiment of the present invention.
0008 FIG. 2 depicts a flowchart which outlines the steps
involved in processing UI (User Interface) widget events that
are received by a host server or system from a client program,
in accordance with an embodiment of the present invention.
0009 FIG. 3 depicts a flowchart which outlines the steps
involved in creating peer widgets on collaborating client pro
grams when a shared widget is created by the collaboration
application running on the host server or system, in accor
dance with an embodiment of the present invention.
0010 FIG. 4 depicts a flowchart which outlines the steps
involved in communicating to one or more collaborating cli
ent programs changes in state of a shared widget that is
modified on the host server or system, in accordance with an
embodiment of the present invention.
0011 FIG.5 depicts a collaboration system that includes a
plurality of clients and a server connected over a network
communications channel, with the server having a collabora
tion server application implemented thereon for facilitating
deployment of a collaboration application on the server for
providing collaboration among one or more clients, in accor
dance with an embodiment of the present invention.
0012 FIG. 6 is a schematic block system diagram illus
trating an embodiment of a server having a collaboration
server application implemented thereon for facilitating
deployment of a collaboration application on the server, in
accordance with an embodiment of the present invention.
0013 FIG. 7 is a schematic block system diagram illus
trating an embodiment of a collaboration server application
for facilitating deployment of a collaboration application for
providing collaboration among one or more clients, in accor
dance with an embodiment of the present invention.
0014 FIG. 8 is a schematic block system diagram illus
trating an embodiment of a collaboration system having a
collaboration server application or computer program prod
uct implemented thereon for facilitating deployment of a
collaboration application on the server for collaboration
among users, in accordance with an embodiment of the
present invention.

BEST MODE FOR CARRYING OUT THE
INVENTION

00.15 Many of the functional units described in this speci
fication have been labeled as modules, in order to more par
ticularly emphasize their implementation independence. For
example, a module may be implemented as a hardware circuit
comprising custom VLSI circuits orgate arrays, off-the-shelf
semiconductors such as logic chips, transistors, or other dis
crete components. A module may also be implemented in
programmable hardware devices such as field programmable
gate arrays, programmable array logic, programmable logic
devices or the like. Modules may also be implemented in
Software for execution by various types of processors. An
identified module or component of executable code may, for
instance, comprise one or more physical or logical blocks of
computer instructions which may, for instance, be organized
as an object, procedure, or function. Nevertheless, the
executables of an identified module need not be physically
located together, but may comprise disparate instructions

US 2011/O 113350 A1

stored in different locations which, when joined logically
together, comprise the module and achieve the stated purpose
for the module.

0016 Further, a module of executable code could be a
single instruction, or many instructions, and may even be
distributed over several different code segments, among dif
ferent programs, and across several memory devices. Simi
larly, operational data may be identified and illustrated herein
within modules, and may be embodied in any suitable form
and organized within any Suitable type of data structure. The
operational data may be collected as a single data set, or may
be distributed over different locations including over different
storage devices, over disparate memory devices, and may
exist, at least partially, merely as electronic signals on a
system or network. Furthermore, modules may also be imple
mented as a combination of Software and one or more hard
ware devices. For instance, a module may be embodied in the
combination of a software executable code stored on a
memory device. In a further example, a module may be the
combination of a processor that operates on a set of opera
tional data. Still further, a module may be implemented in the
combination of an electronic signal communicated via trans
mission circuitry.
0017 Reference throughout this specification to “one
embodiment,” “an embodiment, or similar language means
that a particular feature, structure, or characteristic described
in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of
the phrases “in one embodiment,” “in an embodiment, and
similar language throughout this specification may, but do not
necessarily, all refer to the same embodiment.
0.018 Moreover, the described features, structures, or
characteristics of the invention may be combined in any Suit
able manner in one or more embodiments. It will be apparent
to those skilled in the art that various modifications and varia
tions can be made to the present invention without departing
from the spirit and scope of the invention. Thus, it is intended
that the present invention cover the modifications and varia
tions of this invention provided they come within the scope of
the appended claims and their equivalents. Reference will
now be made in detail to the preferred embodiments of the
invention.

0019. In one embodiment, the invention provides a
method of building a collaboration server for facilitating
deployment of a collaboration application. The method
includes installing a collaboration server application on a
server connected to a network and being configured to run a
collaboration application using one or more customized user
interface libraries having collaboration functionality, each of
the one or more customized user interface libraries being
configured to create one or more customized widgets capable
of mapping to one or more peer widgets, deploying a collabo
ration application on the server, wherein a user interface of
the collaboration application is written using one or more
standard user interface libraries, and launching execution of
the collaboration application on the server when one or more
collaborating users of a collaborating group connect to the
server over the network, Such that a rendering of a shared State
of the user interface is displayed on a client program corre
sponding to each of the one or more collaborating users
connected to the server. When a new collaborating user con
nects to the server for collaborating with the one or more
collaborating users, the method further includes displaying
the shared State of the user interface on another client program

May 12, 2011

corresponding to the new collaborating user. Further, when a
change is made to the shared State of the user interface by a
collaborating user among the one or more collaborating users,
the method includes broadcasting the change made to the
shared State to a remainder of the one or more collaborating
users. In an embodiment, the displaying step includes keying
the shared state of the user interface to the collaboration
group, storing the shared State of the user interface on the
server, and displaying the rendering of the shared State of the
user interface on the another client program corresponding to
the new collaborating user upon launching of the collabora
tion application when the new collaborating user connects to
the server. In an embodiment, the broadcasting step includes
issuing a notification to each client program corresponding to
the remainder of the one or more collaborating users. Such
that the rendering of the shared state of the user interface is
updated to reflect the change made to the shared state of the
user interface.

0020. In an embodiment, the new collaborating user is
either a first user in the collaborating group who connects to
the server at an initial point-in-time or is a Subsequent user in
the collaborating group who connects to the server at a Sub
sequent point-in-time. Further, in an embodiment, the change
made to the shared state of the user interface is broadcasted
across the network using a protocol chosen from an Internet
protocol Suite. In an embodiment, the change made to the
shared state of the user interface is broadcasted across the
network using a HTTP (Hypertext Transfer Protocol) Internet
protocol. Moreover, in an embodiment, the collaboration
application and the collaboration server application are appli
cations written in an object-oriented programming language.
In an embodiment, the collaboration application and the col
laboration server application are applications written in the
Java programming language. Although, the description
herein below describes both the collaboration application or
program and the collaboration server application as programs
written in the Java programming language, it should be under
stood that the respective applications or programs can be
written in any other object-oriented or object-based or inter
preted or compiled programming language by one skilled in
the art. Moreover, in an embodiment, the client program used
by the one or more collaborating users is a web browser.
0021 Reference is now made to FIGS. 1 through 4, which
illustrate a method of building a collaboration server for
facilitating deployment of a collaboration application written
using standard UI (User Interface) libraries on the collabora
tion server. As used herein the term "host server” or "host
system” refers to a server or system that has installed thereon
a collaboration server application for facilitating deployment
of a collaboration application or program written using stan
dard UI libraries and which allows collaboration among
users. Further, the term “collaboration server application
refers to an application installed on the host server for facili
tating deployment of a collaboration application. Also, as
used herein the term “collaboration server” refers to the
deployment environment, namely, the host server having
installed thereon the collaboration server application. In par
ticular, the collaboration server application uses UI libraries
that are implemented so that UI widgets can have multiple
peer widgets. Furthermore, the term “collaboration applica
tion” refers to an application or program written by a pro
grammerto run using the collaboration server application, for
example, a gaming application or program or a chat applica
tion or program that is used for collaborating with other users.

US 2011/O 113350 A1

Further, the collaboration application deployed using the col
laboration server application may be written as a simple one
user or standalone single program rather than different pro
grams, where the standalone program can be run on a laptop
or computer using a virtual machine without the involvement
of a network. Thus, the collaboration server application
allows programmers to program using standard Java widget
or user interface (UI) libraries as if they were writing standa
lone applications rather than online collaboration applica
tions.

0022 Typically, a standard Java UI library is made up of
Java classes and Java interfaces, which implement or define
Java methods. When a Java collaboration application or pro
gram runs, it creates widget trees. A widget tree is the tree
representation of widgets, widget groups and frames in a
screen. The largest widget, the frame, is the root of the tree.
Each group that is contained within a larger widget is a branch
of the widget tree. The widgets that do not contain other
widgets, (buttons for example) are leaves of the widget tree.
The Java widgets are used to create the user interface of the
collaboration application. Each program typically uses one
widget library, though multiple libraries may be used. If a
programmer wants to add a Java widget to a parent widget tree
in an application, the programmer uses Java program calls.
The calls depend on the widget library. Each library has its
own procedures for adding widgets to widget trees. The asso
ciation between a java layer widget and a native layer widget
is created when a newly created java widget is added to a
widget tree or when the widget tree is made visible. The native
layer is the underlying display context where the user inter
face is displayed. In a typical Java program, the native layer is
the operating system, which includes the libraries that the
operating system uses to draw frames and widgets on a com
puter screen. For a simple Java program running on a laptop,
the native layer could be the Windows(R operating system
with its GDI (Graphic Device Interface) and SDK (software
Development Kit) libraries or the Macintosh(R) operating sys
tem and its associated libraries or the LinuxOR operating sys
tem with its Motif. GTK (Gimp Tool Kit) or a Qt libraries. The
programmer adds widgets to a widget tree to create a GUI
(Graphical User Interface).
0023. In a standard Java UI library, the Java widget objects
correspondone to one with the native widgets that they encap
Sulate. A Java widget is never associated with more than one
native or peer widget at any given time. A Java widget has a
peer widget that it uses to render itself on the host operating
system. The peer widget uses the Java widget to communicate
with the Java user program, through its event handlers and
through manipulation of the state of the Java widget. A typical
Java widget cannot be added to two widget trees because each
widget is only mapped to one peer. For a widget to appear in
two places, it must be mapped to two peers. To build a col
laboration server that can utilize the standard Java widget
libraries that programmers have used to write a standalone
Java program, the collaboration server application includes
multiple-peer or customized UI libraries. The customized or
multiple-peer widget libraries form part of the collaboration
server application and, therefore, are placed on the host
server. The customized or multiple-peer UI libraries with the
collaboration functionality allow clients to connect to the
collaboration server application using a web browser or any
other client program and to use the collaboration application
installed thereon. Client programs do not have to be built
using a non-standard UI library since the multiple-peer UI

May 12, 2011

libraries on the server have the same set of Java classes and
Java methods as a standard UI library. When a multiple-peer
UI library is requested by an instance of a collaboration
application to create a widget, it creates a Java object (the
widget) on the server and it creates a peer widget in the client
program as well. When there are multiple collaborating users
running multiple collaboration applications with shared wid
get trees, some widgets will need to manage multiple peer
widgets, one for each collaborating user. So the UI libraries in
the collaboration server application are capable of creating
multiple peer widgets and synchronizing multiple peer wid
gets (making Sure that shared widgets have the same state on
each of the client programs at any given time). Each Java
widget has a state, which can be changed by user actions and
the collaboration application. When a widget has a change in
shared, the widget redraws or renders the new state on each
user's client program. The state of a shared widget refers to
any attribute, for example, color and dimensions that a shared
widget possesses and displays to multiple users. Another
example of a shared State is the position of a shared widget,
for instance, a chess piece on a shared chessboard. The col
laboration application is launched when the first user belong
ing to a certain collaborating group connects to the server
using the collaboration server application. When the collabo
ration application runs, if a Java object representing a frame is
created in Java, then the user's client program is sent a rep
resentation of the frame to be displayed on the user's client
program. The object that is displayed in the user's client
program is called the peer object and a mapping of the peer
object to the Java object is stored on the collaboration server.
As such, every widget in Java has an equivalent peer widget
on the user's client program. When a user enters a collabora
tion context, the collaboration application creates the shared
parts of the user interface by reusing shared widgets and
widget trees. A new user commences working with the shared
widgets like all the other collaborating users. So collaboration
is achieved by sharing Java widgets or widget trees between
the collaborating users.
0024 Turning to FIG. 1, numeral 100 depicts a flowchart
which outlines the steps involved in processing different
types of events that are received by a host server or system
from a client program, for example, a browser program, and
are to be displayed to others by a collaboration server, in
accordance with an embodiment of the invention. The term
“event refers to an action or occurrence detected by a client
program, Such as the clicking of a button or the pressing of a
key, etc., as well as the launching of a program, for instance,
when a user first connects to a collaboration server applica
tion. As shown in FIG. 1, for each event notification received
in step 102 from a client program by the collaboration server
application (installed on a host server), the collaboration
server application determines whether the event has a peer
widgetID in step 104. If the event has a peer widget ID in step
104 (“Y” branch), then the process continues with step 202 in
FIG. 2, whereby the collaboration server application pro
cesses the event, as will be discussed herein below with
respect to FIG. 2. However, if the event does not have a peer
widget ID in step 104 (“N' branch), then the collaboration
server application determines in step 108 whether or not the
event is for starting or launching a collaboration application
or program. If the event is for starting a collaboration appli
cation or program in step 108 (“Y” branch), then the collabo
ration server application launches execution of the collabo
ration application or program and the process continues with

US 2011/O 113350 A1

step 302 in FIG. 3, whereby the collaboration server applica
tion creates peer widgets, as will be discussed herein below
with respect to FIG. 3. On the other hand, in step 108, if the
event is not for starting a collaboration program (“N' branch),
then the collaboration server application determines in step
110 whether or not the event is for requesting a screen refresh,
for instance, when a state of a shared widget has changed. If
the event is not for requesting a screen refresh in step 110
(“N' branch), then an error message is generated in step 112,
ending the process at step 116. However, if in step 110, the
event is for requesting a screen refresh (“Y” branch), then the
collaboration server application recreates all the peer widgets
that need to be updated by continuing the process outlined in
FIG. 4, starting with step 402, whereby any changes in state
are set for the new peer widgets and the changes in state are
communicated to one or more collaborating client programs,
as discussed herein below with respect to FIG. 4.
0025 Turning to FIG. 2, reference numeral 200 depicts a
flowchart which outlines the steps involved in processing UI
or peer widget events that are received by a collaboration
server application (on a host server or system) from a client
program in step 102 of FIG.1. In particular, when it is deter
mined in step 104 of FIG. 1 that the event has a peer widget
ID, the collaboration server application receives in step 202
the event notification request message along with the peer
widget ID. The collaboration server application identifies in
step 204 the widget that is to be notified using the peer widget
ID and the peer-to-widget mapping provided by the multiple
peer UI library. As such, the collaboration server application
calls in step 206 Suitable methods in the widget and passes as
parameters all required information about the event. In step
208, the collaboration server application sends the event from
the widget to event handlers in the collaboration application
deployed on the collaboration server application. In step 212,
the collaboration server application sends to the client pro
gram from which the event was received, a response message
with all changes to the widgets States resulting from the
handling of the event. Further, in step 214, the collaboration
server application notifies other client program(s) that share
any modified widgets that a state change has taken place. The
collaboration server application makes a determination in
step 216 as to whether or not the other client program(s) use
a request-based Internet protocol. If it is determined in step
216 that a client program uses a request-based Internet pro
tocol (“Y” branch), then the process continues with step 402
in FIG. 4, as will be discussed herein below with respect to
FIG. 4. However, if it is determined in step 216 that the client
program does not use a request-based Internet protocol ('N'
branch), then the collaboration server application sends to the
client program in step 218 the changes in the widget state,
ending the process at step 220. So the flowchart in FIG. 2
depicts how the collaboration server updates or displays any
changes in shared State on multiple browsers or client pro
grams when a user's actions (clicking a button, etc.) modify
the shared state of a user interface element or widget of the
collaboration application running on a server on a network.
For example, in an instant messaging collaboration program,
when a user A clicks on a user B who is in the contact list, the
click handler (event handler) creates a new collaboration
group, adds both self (user A) and user B to the group,
launches a chat client program through that collaboration
group. The client program then starts up. When a new user is
added to the group and the user's client program connects in,

May 12, 2011

the shared part of the UI would be displayed with the same
state that is displayed to the other users.
0026 Turning to FIG. 3, reference numeral 300 depicts a
flowchart which outlines the steps involved in creating peer
widgets on collaborating client programs when a shared wid
get is created by the collaboration application running using
the collaboration server application. In particular, when the
collaboration server application launches execution of a col
laboration application in step 114 of FIG. 1, the collaboration
server application executes program commands as the result
of the event received by the collaboration server application
from a client program. As already mentioned hereinabove, the
event can include the launching of a program. For each shared
widget created and displayed in a widget tree in step 304.
when the collaboration application is launched, the collabo
ration server application makes a determination in step 306,
as to whether or not the shared widget has a list of existing
peer widgets, that is, whether or not there are other existing
peer widgets mapped to the shared widget. If it is determined
in step 306 that the shared widget has a list of existing peer
widgets (“Y” branch), then a new peer widget is created in the
client program in step 308. In step 312, the new peer widget is
initialized with the current shared state of the shared widget.
However, if in step 306 it is determined that the shared widget
does not have a list of existing peer widgets (“N' branch),
then in step 310 a default state is set for the new peer widget
created in the client program, since this is the first peer wid
get. After the new peer widget is initialized with the current
shared state of the shared widget in step 312 and/or after a
default state is set for the new peer widget in step 310, the new
peer widget is added to the list of existing peer widgets
mapped to the widget in step 316. In step 318, a rendering of
the new peer widget is displayed on the client program, end
ing the process at step 320. For example, if a user, user A,
starts a Java collaboration application for a chess game, a
chessboard appears in the user's browsers, which contains the
peer objects. There is a Java chessboard stored on the collabo
ration server as well with Java objects, which hold state
information, that is, holds information as to where the pieces
are, etc. For example, in the chess game application, if there
is a black square widget in the chessboard, there will be a
black Square peer widget for the browser that is registered in
the Java black square widget object. Now when another user,
user B, connects to the same collaboration session, the col
laboration server, which stores all the state information, cre
ates another set of peers in the user B's browser. Further, the
collaboration server synchronizes the new peer widgets with
the state of the other peer widgets. So if a black square widget
is highlighted, it will be highlighted in the peer widget created
in the new user's browser or client program. The steps are the
same when a shared widget tree is added to a widget tree, but
one peer is added to each of the widgets in the shared widget
tree. Furthermore, the steps are the same for adding widgets
or widget trees into shared and unshared (non-collaborative)
widget trees.
0027 Turning to FIG. 4, reference numeral 400 depicts a
flowchart which outlines the steps involved in communicat
ing to one or more collaborating client programs changes in
state of a shared widget that is modified on the collaboration
server application. Referring to FIG. 1, when the event is for
requesting a screen refresh in step 110, the process continues
at step 402 in FIG. 4 with the collaboration server application
receiving requests from the client program for a copy of the
state of the shared widget. In step 404, a determination is

US 2011/O 113350 A1

made whether or not there are only a few changes to the
widget since the client program was last updated. If there are
more than only a few changes to the shared widget since the
client program was last updated (“N’ branch), then in step
408 the collaboration server application sends to the client
program a copy of the shared widget's state, ending the pro
cess at step 410. However, if there are only a few changes to
the shared widget since the client program was last updated
(“Y” branch), then in step 406 the collaboration server appli
cation sends to the client program a list of all the changes to
the shared widget since the last update, ending the process at
step 410. As such, the customized widget libraries used by the
collaboration server can automatically serialize the whole
screen (frame widget) and send it to a new user joining a
collaboration group. So the collaboration server communi
cates to a user, who joins a collaborating group at a later
point-in-time, the state of the screen at that particular point
in-time. Since they are connecting to the same widget (the
frame), they have access to the state information for that
widget. Additionally, the collaboration server has the capa
bility to synchronize state of the shared widget between mul
tiple peers, since the peer widgets could be created at different
times. For example, if there are four browsers that are con
nected to a server, the widget libraries used by the collabora
tion server realize that the window or frame is shared with
four peers, so anytime a change occurs in the window, the
widget libraries in the collaboration server handle the
changes by sending a message out that notifies all the peers of
the change. If one of the client programs notifies the server of
a change, for instance, if peer A has made a move, the server
is notified and the server notifies the other peers B, C and D.
In an embodiment, one way to track changes or record
changes to a shared widget is to check-point changes from the
start. A check-point is a label for a sequence of changes, for
instance, when a last person joined the group. When the state
ofa widget, (say its color) changes over the course of a period,
one can record or track changes from that check-point. As
Such, any and all changes to a widget since the last check
point are communicated to the other peer widgets, so that
those changes can be communicated to the widget which
would be set to the same state as the other user(s). Alterna
tively, the multiple peers could be synchronized by going
through an initialization sequence that transfers the state of
the Java widget completely to the new peer widgets.
0028. In another embodiment, the invention provides a
system for facilitating collaboration in an online collaborative
environment. Reference is now made to FIGS. 5-7, which
depict various components of a collaboration server system
having installed thereon a collaboration server application for
facilitating deployment of a collaboration application on the
collaboration server system. Turning to FIG. 5, reference
numeral 500 depicts a collaboration system that includes a
plurality of clients 502,504,506, 508,510,512 and 514 and
a host server 516 connected over a network communications
channel, with the host server 516 having a collaboration
server application implemented thereon for facilitating
deployment of a collaboration application using the collabo
ration server application installed on server 516 for providing
collaboration among the one or more clients 502 through 514,
in accordance with an embodiment of the present invention.
In one embodiment, the collaboration system 500 comprises
a network communications channel, for instance, the Internet
520, where a plurality of clients and servers are connected to
the network communications channel 520, which serves as a

May 12, 2011

communications channel for the various components of the
system 500. The communications channel 520 may be, in one
embodiment, an Ethernet communications channel, a wire
less communications channel, or another equivalent commu
nications channel. Further, in an embodiment, the clients
include clients, such as, personal computers (506 and 510),
laptops (502, 512 and 514), handheld devices, for instance,
cellphones (504), personal digital assistants (PDAs 508), etc.
Although, the depicted networked system 500 shown in FIG.
5 shows a single server 516 and clients 502 through 514, the
system 500 may comprise a combination of various network
configurations having fewer or more clients, additional serv
ers. Such as administrative servers, e-mail servers, etc. as well
as alternate client-server configurations. Preferably, the cli
ents 502-514 are configured to access the collaboration appli
cation deployed on the collaboration server 516 and to col
laborate with one another over the network 520.

(0029. Turning to FIG. 6, FIG. 6 shows an embodiment of
a collaboration server 600 having implemented thereon a
collaboration server application 612 that is configured to
deploy a collaboration application 614 on the server 600, in
accordance with the invention. In an embodiment, the col
laboration server 600 includes a central processing unit
(CPU) 604, a local storage device 602, a network interface
608, and a memory 610. The CPU 604 is configured generally
to execute operations within the collaboration server 600. The
user interface 606, in one embodiment, is configured to allow
a user to interact with the server 600, including allowing input
data and commands from a user and communicating output
data to the user. The network interface 608 is configured, in
one embodiment, to facilitate network communications of the
collaboration server 600 over a network communications
channel, for instance, the Internet 502 of the network 500
(shown in FIG. 5). The local memory 610 is configured, in
one embodiment, to store a collaboration server application
612 that is configured to deploy a collaboration application
614 (also stored in one embodiment in memory 610) on the
server 600. The collaboration server application 612 is dis
cussed further herein below with respect to FIG. 7. In an
embodiment, the collaboration application is a web based or
online collaboration application that is accessed via a web
browser. However, the collaboration application does not
have to be accessed using a web browser. So in an embodi
ment, a host server having a collaboration server application
installed thereon is provided, such that when the collabora
tion application is dropped into the collaboration server, it lets
multiple people collaborate, such as, play a game. Further,
parts of the program that are shared will Synchronize across
the two or more client programs, so when player A moves a
game piece on one screen, it will be shown on player B's
screen. As such, the collaboration application running using
the collaboration server application allows a screen to be
displayed on the client programs of multiple users.
0030 Turning to FIG. 7, reference numeral 700 shows an
embodiment of a collaboration server application installed on
a host server, such as server 600 (shown in FIG. 6), where the
collaboration server application 700 facilitates deployment of
a collaboration application, such as the collaboration appli
cation 614 deployed on the host server 600 of FIG. 6 having
installed thereon a collaboration server application (referred
to by reference numeral 612 in FIG. 6) for facilitating deploy
ment of the collaboration application 614 on the host server
600. As shown in FIG. 7, the collaboration server application
700 installed on a host server contains a plurality of modules

US 2011/O 113350 A1

configured to functionally execute the necessary steps of
facilitating deployment of the collaboration application
deployed thereon. In particular, the collaboration server
application 700 includes a web server module 724, an appli
cation container module 722, a peer-widget mappings mod
ule 708, a multiple-peer UI library module 710, a collabora
tion sessions module 712, a synchronization and notification
module 704, a persistence module 706, a scalability module
714, a language compiler translation module 716, an event
module 718, and an entry point application module 720. In an
embodiment, the web server module 724 is configured to
provide functionality needed to handle communications
between one or more clients and the collaboration server,
where the clients utilize the HTTP (Hypertext Transfer Pro
tocol) Internet protocol for communication. Further, the
application container module 722 is configured to convert the
application interface of the server into a form usable by the
programming language in which the collaboration applica
tion is written. For example, if the application is written in
Java, the application container module is a servlet engine or a
J2EE container. Moreover, the entry point application module
720 is configured to serve as the single point of entry of events
from the client program, including even requests to start a
collaboration application, as described with respect to FIG.1.
Further, the peer-widget mappings module 708 is configured
to allow events from peer widgets to be routed to the corre
sponding widgets in the language of the collaboration appli
cation running on the collaboration server application. In
particular, the multiple-peer UI library module 710 is config
ured to handle the functions of processing widget events
(described with respect to FIG. 2), creating peer widgets on
collaborating client programs when a shared widget is created
(described with respect to FIG. 3), and communicating
changes in state of a shared widget to collaborating client
programs (described with respect to FIG. 4). The multiple
peer UI library module 710 uses peer-widget mappings and
Some knowledge regarding the collaboration sessions gath
ered from the collaboration sessions module 712. The col
laboration sessions module 734 is configured to maintain
information on the client programs that correspond to the peer
widgets and allows instructions to be sent to the peer widgets
by the multiple-peer UI library module. The synchronization
and notification module 704 is configured to perform the task
of notifying client programs that changes have taken place to
shared widgets due to the actions of other client programs, so
that the client programs can update their shared State infor
mation. The scalability module 714 is configured to use one
of several possible strategies to take objects out of server
memory and to store them in a Suitable storage space until
they are needed in memory again, which allows a large num
ber of clients to simultaneously use the server without run
ning out of memory. Further, the language compiler (Just-In
Time or JIT) translation module 716 is configured to translate
parts of the collaboration application into the language used
by the client programs so that these parts of the collaboration
application can be executed on the clients rather than on the
server, thus, improving response times and reducing network
traffic and server loads. Moreover, the event module 728 is
configured to convert the events sent from the client program
to the collaboration server application into events of a form
that the multiple-peer UI library used by the collaboration
server application can understand. Further, the persistence
module 706 of the collaboration server application is config
ured to comprise of enterprise middleware or persistence

May 12, 2011

tools used by certain Scalability mechanisms to store data on
a database for the collaboration application.
0031. The collaboration applications deployed in this
environment can be written just like simple one-user Java
programs. All the code is in one piece, a single application,
rather than different programs. The programmer can write
shared UI elements like chessboards by sharing the Frame or
Shell where the chessboard is rendered. The programmer
does not have to be aware of the network and need not write
any networking or communication code. The programmer
does not have to be aware of the browser and need not write
any browser code. The programmer does not have to be aware
ofan HTTP (Hypertext Transfer Protocol) server and does not
write any server code. The programmer does not have to know
what part of his code runs on the server and what part of the
code runs on the client. Further, the programmer can test the
collaboration application code as a single user application
using a framework, Such as Eclipse or any other Java IDE
(Integrated Development Environment). Moreover, a server
API (Application Programming Interface) is used to store
shared state in the collaboration server. There is no client API.
In an embodiment, the collaboration server automatically
initializes the state of the application of a new user to be
consistent with the state of all other users already collaborat
ing. Changes in shared State are propagated to all collaborat
ing users automatically, for instance, using a refresh notifica
tion, such as a repaint call mechanism for communicating
changes in shared State to collaborating users.
0032. In yet another embodiment, the invention provides a
computer program product for building a collaboration server
application that facilitates deployment of a collaboration
application upon it in the context of a host server. The com
puter program product comprises a computer readable or
computer-usable medium, which provides program code for
use by or in connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer readable medium can be any
apparatus that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device. Prefer
ably, the computer storage medium can be an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc
tor System (or apparatus or device) or a propagation medium.
Examples of a computer-readable medium include a semi
conductor or Solid State memory, magnetic tape, a removable
computer diskette, a random access memory (RAM), a read
only memory (ROM), a rigid magnetic disk and an optical
disk. Current examples of optical disks include compact
disk read only memory (CD-ROM), compact disk read/
write (CD-R/W) and DVD. Further, preferably, network
medium can comprise of transmission devices on a network,
Such as, cables, routers, Switches and/or network adapter
cards.
0033 Preferably, the computer program product is in a
form accessible from the computer-usable or computer-read
able medium, which provides program codes or instructions
for use by or in connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer readable medium can be any
apparatus that can contain, store, communicate, propagate, or
transport the codes or instructions for use by or in connection
with the instruction execution system, apparatus, or device.
Preferably, the medium can comprise an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system

US 2011/O 113350 A1

(or apparatus or device) or a propagation medium. More
preferably, the computer-readable medium can comprise a
semiconductor or Solid state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk
and an optical disk. Further, examples of optical disks include
compact disc—read only memory (CD-ROM), compact
disc read/write (CD-R/W) and digital versatile/video disc
(DVD). The invention can take the form of an entirely hard
ware embodiment, an entirely software embodiment or an
embodiment containing both hardware and Software ele
ments. In a preferred embodiment, the invention is imple
mented in software, which includes but is not limited to
firmware, resident Software, microcode, etc.
0034. The computer program product comprises first pro
gram instructions to install a collaboration server application
on a host server connected to a network, the collaboration
server application being configured to run a collaboration
application using customized widget libraries which include
one or more customized widgets, each of the customized
widgets being capable of creating one or more peer widgets
on each local user interface of a client program corresponding
to each of one or more collaborating users connected to the
host server. Further, the computer program product comprises
second program instructions to run on the host server a col
laboration application deployed thereon, the collaboration
application having a user interface written using one or more
standard widget libraries and third program instructions to
display a shared part of the user interface of the collaboration
application on a local user interface of a client program cor
responding to a new collaborating user when the new collabo
rating user connects to the host server. In an embodiment, the
new collaborating user comprises at least one of a first user in
the collaborating group who connects to the host server at an
initial point-in-time or a Subsequent user in the collaborating
group who connects to the host server at a Subsequent point
in-time. In an embodiment, the second program instructions
include instructions to key to a collaborating group the shared
part of the user interface displayed as each local user interface
corresponding to the one or more collaborating users. In an
embodiment, the third program instructions include instruc
tions to share between the one or more collaborating users one
or more customized widgets used to render the shared part of
the user interface displayed as the local user interface on the
client program corresponding to the one or more collaborat
ing users. Furthermore, the computer program product com
prises fourth program instructions to update the shared part of
the user interface displayed on the each local user interface
corresponding to the one or more collaborating users when a
change is made to the shared part of the user interface by any
of the one or more collaborating users. In an embodiment, the
fourth program instructions include instructions to transmit
over the network the change made to the shared part of the
user interface displayed as the local user interface using a
protocol chosen from an Internet protocol Suite. In an
embodiment, each of the first, second, third and fourth pro
gram instructions are stored on the computer readable
medium. In an embodiment, both the collaboration applica
tion and the collaboration server application are applications
written in an object-oriented programming language, for
instance, the Java programming language.
0035 Referring now to FIG. 8, there is illustrated a system
800 for building a collaboration server application that facili
tates deployment of a collaboration application, according to

May 12, 2011

the present invention. As depicted, system 800 includes a
computer infrastructure 802, which is intended to represent
any type of computer architecture that is maintained in a
secure environment (i.e., for which access control is
enforced). As shown, infrastructure 802 includes a computer
system 804 that typically represents a web server or the like.
It should be understood, however, that although not shown,
other hardware and Software components (e.g., additional
computer systems, such as, metric servers, administrative
servers, routers, firewalls, etc.) could be included in infra
Structure 802.

0036. In general, a user A830 interfaces with infrastruc
ture 802 for accessing a collaboration application, for
instance, a collaboration application 818 deployed on the
computer system or server 804 for collaborating with other
users over a network, such as the network 500 shown in FIG.
5. Similarly, one or more users B, C and D (designated by
numerals 840, 842 and 844) can interface with infrastructure
802 for accessing the collaboration application 818 for col
laborating with each other. For example, if the collaboration
application 818 is a chess application or program, the users
830, 840, 842 and 844 can connect to the server 804 using
computer infrastructure 802 for playing chess over a network
with each other. To this extent, infrastructure 802 provides a
secure environment. In general, the parties could access infra
structure 802 directly, or over a network via interfaces (e.g.,
client web browsers) loaded on computerized devices (e.g.,
personal computers, laptops, handheld devices, etc. shown in
FIG. 5). In the case of the latter, the network can be any type
of network such as the Internet (as shown in FIG. 5), or can be
any other network, Such as, a local area network (LAN), a
wide area network (WAN), a virtual private network (VPN),
etc. In any event, communication with infrastructure 802
could occur via a direct hardwired connection (e.g., serial
port), or via an addressable connection that may utilize any
combination of wire line and/or wireless transmission meth
ods. Moreover, conventional network connectivity, Such as
Token Ring, Ethernet, WiFi or other conventional communi
cations standards could be used. Still yet, connectivity could
be provided by conventional TCP/IP sockets-based protocol.
In this instance, the parties could utilize an Internet service
provider to establish connectivity to infrastructure 802. It
should be understood that under the present invention, infra
structure 802 could be owned and/or operated by a party such
as provider 832, or by an independent entity. Regardless, use
of infrastructure 802 and the teachings described herein could
be offered to the parties on a subscription or fee-basis. In
either scenario, an administrator at an administrative server or
any other designated computer system (not shown in FIG. 8)
could support and configure infrastructure 802.
0037 Computer system or server 804 is shown to include
a CPU (hereinafter “processing unit 806”), a memory 812, a
bus 810, and input/output (I/O) interfaces 808. Further, com
puter system 800 is shown in communication with external
I/O devices/resources 824 and storage system 822. In general,
processing unit 806 executes computer program codes. Such
as the collaboration server application 814 or program code
stored in memory 812. Similarly, processing unit 806
executes the computer program code for the JVM (Java Vir
tual Machine) 816 having customized or multiple-peer wid
get libraries 816, and the collaboration application 818 that is
metric collector and transmitter script inserted within each of
the other web pages 816, 818 and 820. While executing the
collaboration application 818 using the JVM (Java Virtual

US 2011/O 113350 A1

Machine) 816 having customized or multiple-peer widget
libraries 816, the processing unit 806 can read and/or write
data, to/from memory 812, storage system 822, and/or I/O
interfaces 808. Bus 810 provides a communication link
between each of the components in computer system 800.
External devices 824 can comprise any devices (e.g., key
board, pointing device, display, etc.) that enable a user to
interact with computer system 800 and/or any devices (e.g.,
network card, modem, etc.) that enable computer system 800
to communicate with one or more other computing devices.
0038 Computer infrastructure 802 is only illustrative of
various types of computer infrastructures for implementing
the invention. For example, in one embodiment, computer
infrastructure 802 comprises two or more computing devices
(e.g., a server cluster) that communicate over a network to
perform the various process steps of the invention. Moreover,
computer system 800 is only representative of various pos
sible computer systems that can include numerous combina
tions of hardware. To this extent, in other embodiments, com
puter system 800 can comprise any specific purpose
computing article of manufacture comprising hardware and/
or computer program code for performing specific functions,
any computing article of manufacture that comprises a com
bination of specific purpose and general purpose hardware/
Software, or the like. In each case, the program code and
hardware can be created using standard programming and
engineering techniques, respectively. Moreover, processing
unit 806 may comprise a single processing unit, or be distrib
uted across one or more processing units in one or more
locations, e.g., on a client and server. Similarly, memory 812
and/or storage system 822 can comprise any combination of
various types of data storage and/or transmission media that
reside at one or more physical locations. Further, I/O inter
faces 808 can comprise any system for exchanging informa
tion with one or more external devices 824. Still further, it is
understood that one or more additional components (e.g.,
system software, math co-processing unit, etc.) not shown in
FIG. 8 can be included in computer system 800. Similarly, it
is understood that the one or more external devices 824 (e.g.,
a display) and/or storage system(s) 822 could be contained
within computer system 804, and not externally as shown.
0039 Storage system 822 can be any type of system (e.g.,
a database) capable of providing storage for information
under the present invention. To this extent, storage system
822 could include one or more storage devices, such as a
magnetic disk drive or an optical disk drive. In another
embodiment, storage system 822 includes data distributed
across, for example, a local area network (LAN), wide area
network (WAN) or a storage area network (SAN) (not
shown). Although not shown, additional components, such as
cache memory, communication systems, system Software,
etc., may be incorporated into computer system 800.
0040. The foregoing descriptions of specific embodiments
of the present invention have been presented for the purpose
of illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms dis
closed, and obviously many modifications and variations are
possible in light of the above teaching. The embodiments
were chosen and described in order to best explain the prin
ciples of the invention and its practical application, to thereby
enable others skilled in the art to best utilize the invention and
various embodiments with various modifications as are Suited

May 12, 2011

to the particular use contemplated. It is intended that the
scope of the invention be defined by the claims appended
hereto and their equivalents.

1. A method of collaboration between users at respective
client computers, the method comprising the steps of

in response to a plurality of the users at respective different
times requesting, via their respective client computers
and one or more networks coupled to a collaboration
server computer, participation in a collaboration speci
fied in the request, the collaboration server computer
identifying, for each of the plurality of users, a respec

tive set of peer Java widgets for objects in a shared
user interface for the specified collaboration, and
mapping the respective set of peer Java widgets to a
respective set of base Java widgets stored in the col
laboration server computer and previously identified
for the shared user interface of the specified collabo
ration,

updating, for each of the plurality of users, states of the
respective set of peer Java widgets to represent a state
of the specified collaboration which is approximately
current at the respective time of the respective request,
and

sending to the client computers of the respective col
laboration users data defining the shared user inter
face including the respective set of peer widgets with
the respective state of the collaboration which is
approximately current at the respective time of the
respective request.

2. The method of claim 1 wherein the collaboration server
computer at different times receives notifications of events
from the plurality of users via the respective client computers,
the events identifying updates to the respective peer widgets
at the respective shared user interfaces of the respective users,
and in response, the collaboration server computer updating
the status of the base Java widget, identifying from the map
ping the peer Java widgets of the respective users, and sending
data identifying corresponding updates to the peer Java wid
gets at the client computers of the respective users.

3. A computer program product for collaboration between
users at respective client computers, the computer program
product comprising:

a computer-readable, tangible storage device; and
program instructions, for execution in a collaboration

server computer, responsive to a plurality of the users at
different respective times requesting, via their respective
client computers and one or more networks coupled to
the collaboration server computer, participation in a col
laboration specified in the request, to
identify, for each of the plurality of users, a respective set

of peer Java widgets for objects in a shared user inter
face for the specified collaboration, and map the
respective set of peer Java widgets to a respective set
of base Java widgets stored in the collaboration server
computer and previously identified for the shared user
interface of the specified collaboration,

update, for each of the plurality of users, states of the
respective set of peer Java widgets to represent a state
of the specified collaboration which is approximately
current at the respective time of the respective request,
and

send to the client computers of the respective collabora
tion users data defining the shared user interface
including the respective set of peer widgets with the

US 2011/O 113350 A1

respective state of the collaboration which is approxi
mately current at the respective time of the respective
request; and wherein

the program instructions are stored in the computer-read
able tangible storage device.

4. The computer program product of claim 3 further com
prising:

second program instructions, for execution in the collabo
ration server computer, to receive at different times noti
fications of events from the plurality of users via the
respective client computers, the events identifying
updates to the respective peer widgets at the respective
shared user interfaces of the respective users, and in
response, update the status of the base Java widget,
identify from the mapping the peer Java widgets of other
of the respective users, and send data identifying corre
sponding updates to the peer Java widgets at the client
computers of the other respective users; and wherein

the second program instructions are stored in the com
puter-readable tangible storage device.

5. A computer system for collaboration between users at
respective client computers, the computer program product
comprising:

a CPU, a computer-readable memory and a computer
readable, tangible storage device; and

program instructions, for execution in a collaboration
server computer, responsive to a plurality of the users at
different respective times requesting, via their respective
client computers and one or more networks coupled to
the collaboration server computer, participation in a col
laboration specified in the request, to
identify, for each of the plurality of users, a respective set

of peer Java widgets for objects in a shared user inter
face for the specified collaboration, and map the

May 12, 2011

respective set of peer Java widgets to a respective set
of base Java widgets stored in the collaboration server
computer and previously identified for the shared user
interface of the specified collaboration,

update, for each of the plurality of users, states of the
respective set of peer Java widgets to represent a state
of the specified collaboration which is approximately
current at the respective time of the respective request,
and

send to the client computers of the respective collabora
tion users data defining the shared user interface
including the respective set of peer widgets with the
respective state of the collaboration which is approxi
mately current at the respective time of the respective
request; and wherein

the program instructions are stored in the computer-read
able tangible storage device for execution by the CPU
via the computer-readable memory.

6. The computer system of claim 5 further comprising:
second program instructions, for execution in the collabo

ration server computer, to receive at different times noti
fications of events from the plurality of users via the
respective client computers, the events identifying
updates to the respective peer widgets at the respective
shared user interfaces of the respective users, and in
response, update the status of the base Java widget,
identify from the mapping the peer Java widgets of other
of the respective users, and send data identifying corre
sponding updates to the peer Java widgets at the client
computers of the other respective users; and wherein

the second program instructions are stored in the com
puter-readable tangible storage device for execution by
the CPU via the computer-readable memory.

c c c c c

