特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2006年9月8日 (08.09.2006)

(51) 国際特許分類:
A61K 35/74 (2006.01)
A23C 9/00 (2006.01)
A61P 37/08 (2006.01)
A23L 1/30 (2006.01)
A61P 43/00 (2006.01)
C12N 1/20 (2006.01)

(21) 国際出願番号:
PCT/JP2006/303295

(22) 国際出願日:
2006年2月23日 (23.02.2006)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 優先権データ:
特願2005-059460 2005年3月3日 (03.03.2005) JP

(71) 出願人 (米国を除く全ての指定期限内):
明治乳業株式会社 (MEIJI DAIRIES CORPORATION) [JP/JP]; 〒1368908 東京都江東区新砂1丁目2番1号東京 (JP)

(72) 発明者; および
(75) 発明者/出願人 (米国についてのみ):
指原 絢宏 (SASHIHARA, Toshihiro) [JP/JP]; 〒250862 神奈川県小田原市成田540明治乳業株式会社研究本部 内 (JP)
山口 真 (YAMAGUCHI, Makoto) [JP/JP]; 〒250862 神奈川県小田原市成田540明治乳業株式会社研究本部 内 (JP)
中村 吉孝 (NAKAMURA, Yoshitaka) [JP/JP]; 〒250862 神奈川県小田原市成田540明治乳業株式会社研究本部 内 (JP)
池上 幸二 (IKEGAMI, Shuji) [JP/JP]; 〒250862 神奈川県小田原市成田540明治乳業株式会社研究本部 内 (JP)
成島 爱子 (NARUSHIMA, Reiko) [JP/JP]; 〒250862 神奈川県小田原市成田540明治乳業株式会社研究本部 内 (JP)
木村 嘉寛 (KIMURA, Katsunori) [JP/JP]; 〒250862 神奈川県小田原市成田540明治乳業株式会社研究本部 内 (JP)

(84) 指定期限 (表示のない限り、全ての種類の広域保護が可能):

添付公開書類:
— 国際調査報告書
2文字コード及び他の略語については、定期発行される各PCTジャゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: IMMUNE FUNCTION MODULATING AGENT
(54) 発明の名称: 免疫機能調節剤

(57) Abstract: A strain of a probiotics lactic acid bacteria selected from the strains having the following properties (1) to (7) among the Lactobacillus lactic acid bacteria originally isolated from adult human feces: (1) they have high resistance against gastric acids/bile acids; (2) they can highly promote the IL-12 production from murine spleen cells and can highly improve the Th1/Th2 balance in the murine spleen cells; (3) they can highly inhibit the antigen-specific IgE production induced by intraperitoneal administration of ovalbumin to a BALB/c mouse; (4) they can highly inhibit the antigen-specific IgE production induced by the oral administration of a food antigen to a C57BL/6N mouse; (5) they can highly activate natural killer cells; (6) they can highly promote the IL-12 production and can highly improve the Th1/Th2 balance in spleen cells and mesenteric lymph node cells from a mouse immunized with ovalbumin; and (7) they can highly inhibit the eosinophilia induced by an antigen extracted from cedar pollen.

(57) 要約: ヒト成人の便便より独立に分離したLactobacillus属乳酸菌から、（1）胃酸・胆汁酸耐性が高く、（2）マウス由来脾臓細胞からのIL-12産生促進活性およびTh1/Th2バランス改善効果が高く、（3）BALB/cマウスに卵白アルブミンを腹腔内投与することで誘導される抗体特異的IgE産生の阻害能が高く、（4）C57BL/6Nマウスに食物抗原を経口的に投与することにより誘導される抗体特異的IgE産生の阻害能が高く、（5）ナチュラルキラー細胞の活性化能が高く、（6）卵白アルブミンで免疫したマウス由来の脾臓細胞および腸間膜リンパ節細胞に対するIL-12産生促進活性およびTh1/Th2バランス改善効果が高く、（7）スギ花粉抽出抗原で誘発される好酸球増多の抑制機能が高い菌株から選抜されたプロバイオティクス乳酸菌を見出し、本発明を完成した。
明細書

免疫機能調整剤

技術分野

[0001] 本発明は、アレルギー予防および／または治療剤、またはこれらを含有するアレルギー予防および／または治療用食品組成物に関する。

背景技術

[0002] 気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎などのアレルギー疾患はここ数十年で急激な増加が認められ、現在、少なくとも人口のおよそ1/5程度が何らかのアレルギー疾患に罹患していると考えられている。現在のアレルギー対症療法の多くは対症療法的であるので、罹患患者数の増大や長期使用に伴う副作用の点からも、より効果的な治療法が望まれている（非特許文献1）。

[0003] 乳酸菌は好ましい香味物質を産生すると共に乳酸やパクテリオン等の抗菌性物質産生能を有していることから、古来より発酵乳等を介して世界各地で食されてきたから極めて安全性の高い微生物である。近年、二重盲検プラセボ試験において乳酸菌の一種であるLactobacillus rhamnosus GG株（Lactobacillus rhamnosus ATCC 53103株）の投与がヘイリグス児におけるアトピー疾患の発症を約半分に抑制することが示されており（非特許文献2）、乳酸菌の使用は副作用を伴わずアレルギーを予防および／または治療するための手軽で有効な方法と言える。

[0004] これまでに各種の乳酸菌を用いたアレルギー予防および／または治療剤が提案されている。しかしながら、例えば特許文献1に開示された乳酸菌（Lactobacillus plantarum CCRC 12944株、Lactobacillus acidophilus CCRC 14079株）については、乳酸菌株の選定に際して培養細胞からのインターフェロン-γ産生能を評価しているものの、実際に動物が摂取した場合のアレルギー予防および／または治療効果は検討されていない。また、プロバイオティクスは安全性の問題からヒトから単離されたものが望ましいとされるが（非特許文献3）、特許文献2および特許文献3に記載された乳酸菌（ラクトコッカス ラクリス サブスピーシーズ ラクリス G50株、Lactobacillus paracasei KW3110株）については、乳酸菌株の選定に際して菌株がヒト由来のラクトバ
チルス属乳酸菌であることが考慮されていない。特許文献2および特許文献4に記載された乳酸菌（ラクトコックス ラクティス サブスピーシーズ ラクティス C50株、ラクトバチルス・アンドフィラスCP 1613株、ラクトバチルス・アンドフィラスL 92株、ラクトバチルス・ファーメンタムCP 34株）については、乳酸菌株の選定に際して、プロバイオティクスとしての特性である、腸内の低pH下での環境や腸管内の胆汁酸に耐性を有するという特性が考慮されていない（特許文献2、特許文献4）。また、特許文献3に開示された乳酸菌（Lactobacillus paracasei KW3110株）は、抗原をマウス腹腔内に投与することで誘導された全身性免疫における抗原特異的IgE抗体産生を指標として選抜されている（特許文献3）。しかし食物アレルギーに対する治療効果は、全身性免疫における抗体産生を指標としたのでは適切に評価できないと考えられる。経口的に摂取される食物は、腸管によって吸収されると同時に、腸管付属リンパ組織（gut-associated lymphatic tissue; GALT）と呼ばれる、全身性免疫系とは異なる腸管独自の免疫系によって認識され、通常であれば、経口免疫療法を誘導するが、一方で、IgE抗体産生を誘導して、食物アレルギーを発症させる場合もある。本来免疫療法を誘導するはずの食物が、食物アレルギーを誘発する発症機構は未だ十分に解明されていないが、少なくとも腸管免疫系と全身性免疫系との双方が食物アレルギー発症に絡んでいると考えられ、全身性免疫系を使用してアレルギー予防効果を評価した場合、食物アレルギーに対する治療効果が反映されていると考えにくい。

このように既存の乳酸菌では、目的とするアレルギー予防および／または治療剤、またはアレルギー予防および／または治療用食品組成物を調製するには未だ改良の余地が多く残されているのが現状である。

【0005】特許文献1：特開2004-91491号公報
特許文献2：特開2004-18469号公報
特許文献3：特許第3585487号公報
特許文献4：特開2004-26729号公報
非特許文献1：赤星光輝, 玉利真由美, 白川太郎, 「アレルギー疾患における最近の話題」, 最新医学, 58(2), pp.7-14(2003)
非特許文献2：Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri
発明の開示
発明が解決しようとする課題

[0006] すなわち、本発明が解決しようとする課題は、食物アレルギーを始めとする抗アレルギー活性を有し、かつ投与後の生命数の高いヒト腸内由来乳酸菌を選抜し、該乳酸菌および/または該乳酸菌の処理物を用いたアレルギー予防および/または治療剤、またはこれを含有するアレルギー予防および/または治療用食品組成物を提供することである。
課題を解決するための手段

[0007] 本発明は、上記した課題を解決するためになされたものであって、本発明者らは、目的とするアレルギー予防および/または治療剤に用いる乳酸菌を選抜するに際し、次のような基準を新たに設定し、鈍意選定作業を行った。具体的には、本発明者らは、ヒト成人の粪便より独自に分離したLactobacillus属乳酸菌273菌株から、（1）胃酸・胆汁酸耐性が高く、（2）マウス由来の脾臓細胞に対するIL-12産生促進活性およびTh1/Th2バランス改善効果が高く、（3）BALB/cマウスに卵白アルブミンを腹腔内投与することで誘導される抗原特異的IgE産生抑制効果が高く、（4）C57BL/6Nマウスに食物抗原（カゼイン）を経口的に投与することで誘導される抗原特異的IgE産生抑制効果が高く、（5）ナチュラルキラー細胞の活性化能が高く、（6）卵白アルブミンで免疫したマウス由来の脾臓細胞および腸間膜リンパ節細胞に対するIL-12産生促進活性およびTh1/Th2バランス改善効果が高く、（7）スギ花粉抽出抗原で誘発される好酸球増多の抑制能が高い菌株の選定について鈍意研究を重ねた結果、これら条件に合致するプロバイオティクス乳酸菌としてラクトパチルス・ガセリOLL2809菌株（
Lactobacillus gasseri OLL2809、受託番号：NITE BP-72) を見出し、本発明を完成した。

【0008】前記(1)に記載の効果は、投与後の生残性に関与するものである。この効果を有するラクトバチルス・ガセリ OLL2809 菌株（受託番号：NITE BP-72）は、アレルギー予防および／または治療剤中に生菌として投与した場合、腸管腔での生残性が高いものとして期待できる。また、前記（2）～（7）に記載の効果は、生体においてTh1応答の増強またはTh2応答の抑制に関与するものである。アレルギー疾患は、ヘルパーT細胞のTh1とTh2のバランス崩壊が原因の一つと考えられている。上記（2）～（7）の効果を有する本発明のアレルギー予防および／または治療剤、またはアレルギー予防および／または治療用食品組成物はTh2側に傾いたTh1／Th2バランスを総合的に改善し、免疫機能を調整する上で有用である。よって、本発明のアレルギー予防および／または治療剤は、用いるラクトバチルス・ガセリ OLL2809 菌株（受託番号：NITE BP-72）が死菌体であってもアレルギー予防および／または治療効果を奏し、さらに生菌として投与した場合は腸内細菌叢改善効果等の相乗効果が期待できるものである。特に前記（4）に記載の効果は、食物アレルギーモデルを用いて評価したものであり、本発明のアレルギー予防および／または治療剤は食物アレルギーに対し治療効果が高いと期待できる。

【0009】すなわち、本発明は

[1]ラクトバチルス・ガセリ（Lactobacillus gasseri）を有効成分とするアレルギー予防および／または治療剤、

[2]ラクトバチルス・ガセリの処理物であって、当該乳酸菌の培養物、濃縮物、ベースト化物、噴霧乾燥物、凍結乾燥物、真空乾燥物、ドラム乾燥物、液状物、希釈物、破砕物から選ばれる少なくとも1つである乳酸菌処理物を有効成分とするアレルギー予防および／または治療剤、

または治療剤、
[5]アレルギー予防および／または治療がナチュラルキラー細胞活性化によるもので
ある上記[1]～[2]のいずれか1項に記載のアレルギー予防および／または治療剤、
[7]アレルギー予防および／または治療が抗原特異的IgE産生抑制、IL-12産生促進
およびTh1/Th2バランス改善、ナチュラルキラー細胞活性化、好酸球の増多抑制の
少なくとも1つによるものである上記[1]～[2]のいずれか1項に記載のアレルギー予防および／または治療剤、
[8]ラクトバチルス・ガセリが、受託番号NITE BP-72で寄託されている、ラクトバチルス
・ガセリOLL2809菌株（Lactobacillus gasseri OLL2809）である、上記[1]～[7]のいずれか1項に記載のアレルギー予防および／または治療剤、
有効量を含有せめたアレルギー予防および／または治療用食品組成物、
[10]乳児用調製粉乳、幼児用粉乳等食品、授乳婦用粉乳等食品、保健機能食品、
病者用食品、または発酵乳である上記[8]記載のアレルギー予防および／または治療
用食品組成物、
[8]のいずれか1項に記載のアレルギー予防および／または治療剤の使用、
[12]アレルギー予防および／または治療用食品組成物が、乳児用調製粉乳、幼児
用粉乳等食品、授乳婦用粉乳等食品、保健機能食品、病者用食品、または発酵乳
である上記11記載の使用、
[13]ラクトバチルス・ガセリまたはその処理物を投与することを特徴とする、アレルギ
ー予防および／または治療方法、
[14]ラクトバチルス・ガセリまたはその培養物、濃縮物、ペースト化物、噴霧乾燥物、
凍結乾燥物、真空乾燥物、ドライドライド、液状物、希釈物、破砕物から選ばれる少
なくとも1つである処理物を用いることを特徴とする、アレルギー予防および／または
治療用食品組成物の製造方法、
[15]受託番号NITE BP-72で寄託されている、ラクトパチルス・ガセリOLL2809菌株（Lactobacillus gasseri OLL2809）。

[16]受託番号NITE BP-72で寄託されている、ラクトパチルス・ガセリOLL2809菌株の処理物であって、当該乳酸菌の培養物、濃縮物、ペースト化物、噴霧乾燥物、凍結乾燥物、真空乾燥物、ドラム乾燥物、液状物、希釈物、破砕物から選ばれる少なくとも1つである乳酸菌処理物。

を提供するものである。

発明の効果

[0010] 本発明のアレルギー予防および／または治療薬は、後述する実施例において確認されるとおり低pH環境および胆汁酸に耐性を有し、IL-12産生促進活性、Th1/Th2バランス改善効果、血清中の食物抗原特異的IgE産生阻害能、ナチュラルキラー細胞の活性化能および好酸球増多の抑制能を有することから、食物アレルギーを始めとする各種のアレルギーの予防および／または治療に有効な、新たなアレルギー予防および／または治療薬を提供することが可能になった。

図面の簡単な説明

[0011] [図1]BALB/c-OVA腹腔内投与アレルギーモデルへの胃酸耐性・胆汁酸耐性Lactobacillus属乳酸菌の経口投与によるIgE抑制効果。対照群（コントロール）、被検菌体投与群、比較対照群（L. crispatus JCM 1185ereal、L. plantarum JCM 1149ereal、L. gasseri JCM 1131ereal）における抗OVA特異的IgE抗体濃度（AU）の平均値±標準偏差（n=10）を示す。p<0.05（vs. コントロール、FisherのPLSDテスト）。

[図2]胃酸耐性・胆汁酸耐性Lactobacillus属乳酸菌がマウス脾臓細胞のナチュラルキラー活性に与える影響。コントロール、被検菌体投与、陽性対照（L. rhamnosus ATCC 53103）における脾細胞の細胞障害活性率の平均値±標準偏差（n=4）を示す
。＊：p<0.05（vs. L. gasseri OLL2809, Dunnetの多重比較検定）。

[図3] Lactobacillus属乳酸菌を経口投与したBALB/c-OVA腹腔内投与アレルギーモデルマウスから調製した脾細胞および腸間膜リンパ節細胞のサイトカイン産生。コントロール（対照）群、比較対照群（L. crispatus JCM 1185T）、および被検菌体投与群（
L. gasseri OLL2809, L. gasseri MEP170413）における各サイトカインの平均値±標準偏差（n=10）を示す。＊：p<0.05（vs. コントロール、FisherのPLSDテスト）。

発明を実施するための最良の形態

[0012] 以下、本発明を詳細に説明する。

[0013] 本発明は、乳酸菌を有効成分として含有するアレルギー予防および／または治療剤を提供する。本発明のアレルギー予防および／または治療剤は、乳酸菌としてLactobacillus gasseriを含有する。アレルギー予防／または治療効果を有する限り、Lactobacillus gasseriであればいずれも使用することができるが、体内投与後の生残性の高い種類が好ましい。本発明に使用可能なLactobacillus gasseriの具体例として、Lactobacillus gasseri OLL2809菌株を挙げることができる。今回、ヒト成人の食便より独自に分離したLactobacillus属乳酸菌273菌株から、(1) 酸酵・胆汁酸耐性試験、(2) マウス由来の脾臓細胞に対するIL-12産生促進効果、およびTh1/Th2バランス改善効果評価試験、(3) BALB/cマウスに卵白アルブミンを腹腔内投与することで誘導される抗原特異的IgE産生抑制効果評価試験、(4) C57BL/6Nマウスに食物抗原（カゼイン）を経口的に投与することで誘導される抗原特異的IgE産生抑制効果評価試験、(5) ナチュラルキラー細胞の活性化能評価試験、(6) 卵白アルブミンで免疫したマウス由来の脾臓細胞および腸間膜リンパ節細胞に対するIL-12産生促進効果評価試験およびTh1/Th2バランス改善効果評価試験、(7) スギ花粉で誘発される好酸球増多抑制能評価試験を用いて検討し、いずれの項目においても高い活性を示すことを特徴とするアレルギー予防および／または治療効果を有する乳酸菌としてラクトバチ

ルス・ガセリOLL2809菌株（Lactobacillus gasseri OLL2809、受託番号：NITE BP-72、以降L. gasseri OLL2809ともいう）を選抜した。したがって、該乳酸菌を使用することで食物アレルギーを含めた各種のアレルギーの予防および／または治療に有効な、新たなアレルギー予防および／または治療剤、またはこれを含有するアレルギー予

...
防および／または治療用食品組成物を提供することが可能になった。

[0014] 本発明者らは、この菌株を独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託した。以下に、寄託を特定する内容を記載する。

[0015] 本発明者らは、Lactobacillus gasseri OLL2809株を独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託した。以下に、寄託を特定する内容を記載する。

(1) 寄託機関名：独立行政法人製品評価技術基盤機構 特許微生物寄託センター
(2) 連絡先：〒292-0818 千葉県木更津市かずさ鎌2-5-8
 電話番号0438-20-5580
(3) 受託番号：NITE BP-72
(4) 識別のための表示：Lactobacillus gasseri OLL2809
(5) 原寄託日：平成17年（2005年）2月1日
(6) プダベスト条約に基づく寄託への移管日：2006年1月18日

[0016] Lactobacillus gasseri OLL2809株（受託番号：NITE BP-72）は、グラム陽性桿菌であり、Lactobacilli MRS Agar, Difco上でのコロニー形態は円形、淡黄色、扁平状である。生理学的特徴としては、ホモ乳酸発酵形成、45℃での発育性、グルコース、マンノース、フルクトース、ガラクトース、シュクロース、セロビオース、ラクトース、トレハロースに対する発酵性を有する。

[0017] Lactobacillus gasseri OLL2809（受託番号：NITE BP-72）を培養するための培地としては乳酸菌の培地に通常用いられる培地が使用される。すなわち主炭素源のほか窒素源、無機物その他の栄養素を適度に含有する培地ならばいずれの培地も使用可能である。炭素源としてはラクトース、グルコース、スクロース、フラクトース、澱粉加水分解物、腐糖蜜などが使用菌の資化性に応じて使用できる。窒素源としてはカゼインの加水分解物、ホエートンパク質加水分解物、大豆タンパク質加水分解物等の有機窒素含有物が使用できる。さらに増殖促進剤として肉エキス、魚肉エキス、酵母エキス等が用いられる。

[0018] 培養は嫌気条件下で行うことが望ましいが、通常用いられる液体静置培養などによる嫌気条件下手でもよい。嫌気培養には炭素ガス気層下で培養する方法などの公
知の手法を適用することができるが、他の方法でもかまわない。培養温度は一覧に30〜40℃が好ましいが、菌が生育する温度であれば他の温度条件でもよい。培養中の培地のpHは6.0〜7.0に維持することが好ましいが、菌が生育する温度であれば他のpH条件でもよい。また、バッチ培養条件下で培養することもできる。培養時間は通常10〜24時間が好ましいが、菌が生育することができる時間であれば、他の培養時間であってもよい。

[0019] 本発明に使用可能なその他のLactobacillus gasseri、グラム陽性桿菌である点や、その他の生理学的特徴について、Lactobacillus gasseri OLL2809と同様の特徴を示す。このようなLactobacillus gasseriは、当業者であれば他便と協力して生理学的特徴に基づいて分離することができる。アレルギー予防もまたは治療効果は、IL-12産生促進効果、およびTh1/Th2バランス改善効果評価試験、抗原特異的IgE産生抑制効果評価試験（抗原腹腔内投与、経口投与）ナチュラルキラー細胞の活性化能評価試験、好酸球増多の抑制能評価試験の実施例によって確認することができ、具体的には実施例に示す方法によって確認できる。また、体内投与後の生残性は、胃酸・胆汁酸耐性試験によって確認でき、具体的には実施例記載の方法によって確認可能である。培養も、Lactobacillus gasseri OLL2809について上述したのと同様の方法によって可能である。

[0020] 本発明のアレルギー予防およびまたは治療剤は、上記Lactobacillus gasseriを種々の状態で含むことができ、例えば乳酸菌懸濁液、乳酸菌培養物（菌体、培養上清液（培地成分を含む）、）乳酸菌発酵物（乳酸菌飲料、酸乳、ヨーグルト等）、等の状態で含むことができる。

[0021] 本発明のアレルギー予防およびまたは治療剤は、上記Lactobacillus gasseriをそのまま含んでもよく、または、Lactobacillus gasseriに何らかの処理を施した乳酸菌処理物として含んでもよい。本発明のアレルギー予防およびまたは治療剤に用いられる乳酸菌処理物としては、例えば乳酸菌、乳酸菌含有物、発酵乳の濃縮物、ベースト化物、乾燥物（蒸発乾燥物、凍結乾燥物、真空乾燥物、ドラム乾燥物から選ばれる少なくてともひとつ）、液状物、希釈物、破砕物等が挙げられる。また、乳酸菌としては生菌体、湿潤菌、乾燥菌等が適宜使用可能である。殺菌すなわち加熱殺菌処理、
放射線殺菌処理、または破砕処理等を施した死菌体であってもよい。粉ミルクなど生物学的規格を有する医薬品および、または飲食品においても添加することも可能であり、医薬品および、または飲食品の形態などによらず様々な医薬品および、または飲食品に応用できる。

[0022] 本発明のアレルギー予防および、または治療剤は、単独、または医薬品や食品に通常使用される他の成分と混合して経口投与したり、他の抗アレルギー活性を有する化合物や微生物等と併用することにより、ヒトおよび動物におけるアレルギー予防、およびアレルギー症状の軽減（治療）に有効である。アレルギー予防および、または治療に使用できる。アトピー性皮膚炎やアレルギー性鼻炎などのアレルギー疾患は、Th1/Th2バランスがTh2側に偏っていることが原因の1つであることが明らかになっている（Hopkin, J. M. 2002. The rise of atopy and links to infection. Allergy 57:5-9.

症候群等が知られている（Howanitz JH, Howanitz PJ 編著, 河野均也 監訳、「Laboratory Medicine 臨床検査の選択と解釈」、医歯薬出版、pp.583(1995)）。また、I型アレルギーではIgE産生も高まるため、好酸球増多やIgE産生を抑制する効果のある本発明品は、アレルギー性鼻炎、アレルギー性結膜炎、気管支喘息、アトピー性皮膚炎、食物アレルギー、外来蛋白に対する過敏症、アナフィラキシー反応等の症状を軽減する効果が期待できる。本発明のアレルギー予防および/または治療剤を適用可能なアレルギーの種類、症状、疾患は特に限定されないが、例えば、I型～IV型アレルギー、食物アレルギー、花粉症、アトピー性皮膚炎、気管支喘息、アレルギー性結膜炎、アレルギー性鼻炎、アレルギー性胃腸炎、アナフィラキシー反応、薬物アレルギー、じんましん、血清病、溶血性貧血、接触性皮膚炎、重症筋無力症、グッドバストチア症候群、糸球体腎炎等を挙げることができる。アレルゲンも特に限定されないが、例えば食品（小麦、大麦、オーツ麦、ライ麦、そば、卵、乳、チーズ、落花生、米、トウモロコシ、アワ、キビ、ヒエ、大豆、じゃがいも、やまいも、にんにく、たまねぎ、ニンジン、バセリ、セロリ、トマト、オレンジ、もも、りんご、キウイフルーツ、梅、イチゴ、バナナ、くるみ、ゴマ、まつなげ、あわび、いか、いくら、えび、かに、さけ、さば、アジ、イワシ、サーモン、タチウオ、ホタテ、牛肉、鶏肉、豚肉、ゼラチン等）、動物（イヌ、ネコ、マウス、ラット、ハト等やその皮膚、体毛、糞、羽毛等）、昆虫（蛾、蝶、エスリカ、スズメバチなど、およびこれら昆虫の分泌物、鱗粉）、ダニ、寄生虫（アシナシ、回虫など）、草木（スギ、ヒノキ、ブタクラ、イネ科植物、ヨモギ、ウルシ、ハンノキ等やこれら草木の花粉、樹液等）、かび、ほこり、ハウスダスト、ゴム、金属、化学物質、医薬品等を挙げることができる。

[0023] 本発明のアレルギー予防および/または治療剤としては培養終了後乳酸菌培養液をそのまま、あるいは濃縮して濃縮物とするほか、濃縮物をさらに乾燥して使用できる。この菌体濃度は特に限定されないが、濃縮液で4×10^{10}個/g以上、乾燥物で5×10^{11}個/g以上とするのが好ましい。

[0024] 本発明のアレルギー予防および/または治療剤の医薬品または飲食品への配合量は形態、剤型、症状、体重、用途などによって異なるため、特に限定されないが、あえて挙げると、0.001～100 % (w/w)の含量で配合することができ、好ましくは0.01
～100%(w/w)、さらに好ましくは0.1～100%(w/w)の含量で配合することができる。

[0025] 本発明のアレルギー予防および/または治療剤の医薬品または飲食品の一日当たりの摂取量は年齢、症状、体重、用途などによって異なるため、特に限定されないが、あえて挙げるなら、0.1～10000mg/kg体重を摂取することができ、好ましくは0.1～1000mg/kg体重を摂取することができる。

[0026] 本発明のアレルギー予防および/または治療剤は、医薬品または飲食品いずれの形態でも利用することができる。例えば、医薬品として直接投与することにより、または特定保健用食品等の特別用途食品や栄養機能食品として直接摂取することにより各種のアレルギーの予防および/または治療をすることが期待される。また、各種飲食品（牛乳、加工乳、乳飲料、清涼飲料、発酵乳、ヨーグルト、チーズ、パン、ピスケット、クラッカー、ピッツァクラスト、アイスクリーム、キャンディ、調製粉乳、流動食、病者用食品、幼児用粉乳等食品、授乳婦用粉乳等食品、栄養食品等）に添加し、これを摂取してもよい。

本発明のアレルギー予防および/または治療剤を含有する飲食品には、水、タンパク質、糖質、脂質、ビタミン類、ミネラル類、有機酸、有機塩基、果汁、フレーバー類等を混合して使用することができる。タンパク質としては、例えば全脂粉乳、脱脂粉乳、部分脱脂粉乳、卡ゼイン、ホエー粉、ホエートンパク質、ホエートンパク質濃縮物、ホエートンパク質分離物、α－カゼイン、β－カゼイン、κ－カゼイン、β－ラクトグロブリン、α－ラクトアルブミン、ラクトフェリン、大豆タンパク質、鶏卵タンパク質、肉タンパク質等の動植物性タンパク質、これら加水分解物；パター、乳性ミネラル、クリーン、ホエー、非タンパク態窒素、シアル酸、リン脂質、乳糖等の各種乳由来成分などが挙げられる。糖類、加工澱粉（テキストリンのほか、可溶性澱粉、ブリティッシュスターチ、酸化澱粉、澱粉エステル、澱粉エーテル等）、食物繊維などが挙げられる。脂質としては、例えば、ラード、魚油等、これらの分別油、水素添加油、エステル交換油等の動物性油脂；パーム油、サフラワー油、コーン油、ナタネ油、ヤシ油、これらの分別油、水素添加油、エステル交換油等の植物性油脂などが挙げられる。ビタミン類としては、例えば、ビタミンA、カロチン類、ビタミンB群、ビタミンC、ビタミンD群、ビタミンE、ビタミンK群、ビタミンP、ビタミンQ、ナイアシン、ニコチン酸、パントテン酸、ビ
オチン、イノシトール、コリン、葉酸などが挙げられ、ミネラル類としては、例えば、カルシウム、カリウム、マグネシウム、ナトリウム、銅、鉄、マンガン、亜鉛、セレンなどが挙げられる。有機酸としては、例えば、リンゴ酸、クエン酸、乳酸、酒石酸などが挙げられる。本発明のアレルギー予防および／または治療剤を含有する飲食品の製造において、これらの成分は、合成品であっても、天然由来品のいずれでもよく、および／またはこれらを多く含む食品を原材料として用いてもよい。またこれらの成分は、2種以上を組み合わせて使用することができる。

[0027] 本発明のアレルギー予防／または治療剤を食品組成物や薬剤の製造に使用する場合、製造方法は当業者に周知の方法によって行うことができる。当業者であれば、本発明のLactobacillus gasseri菌体または処理物を他の成分と混合する工程、成形工程、殺菌工程、発酵工程、焼成工程、乾燥工程、冷却工程、造粒工程、包装工程等を適宜組み合わせて、所望の食品や薬剤を作ることが可能である。

[0028] また本発明のLactobacillus gasseriを各種乳製品の製造に使用する場合も、当業者に周知の方法で所望の乳製品を製造できる。ヨーグルトの場合の一例を示せば、本発明のLactobacillus gasseriを用いてスターターを調整する工程、該スターターを前処理した牛乳に加えて培養する工程、冷却工程、フレーバーリング工程、充填工程、等を経てヨーグルトを製造できる。チーズであれば、例えば、殺菌等の前処理をした牛乳に本発明のLactobacillus gasseriをスターターとして添加して乳酸発酵させる工程、レンネットを添加してチーズカードを生成する工程、カード切断工程、ホエー排出工程、加塩工程、熟成工程などを経て製造可能である。あるいは、前記各種乳製品の製造において、本発明のLactobacillus gasseriにおきかえて他の乳酸菌をスターターとして用い、製造工程中に本発明のLactobacillus gasseri菌体または処理物を添加してもよい。

[0029] 本発明のアレルギー予防および／または治療剤を医薬品として使用する場合には、種々の形態で投与することができる。その形態としては、例えば、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤等による経口投与を挙げることができる。これらの各種製剤は、常法に従って主剤に賦形剤、結合剤、崩壊剤、滑沢剤、塗粧剤、溶媒補助剤、懸濁剤、コーティング剤などの医薬の製剤技術分野において通常使用し得る既知の
補助剤を用いて製剤化することができる。
なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。

実施例

[0030] 以下本発明を実施例を挙げて説明するが、本発明はこれらにより限定されるものではない。

[0031] [実施例1] (胃酸耐性試験および胆汁酸耐性試験)
ヒトの糞便から単離したLactobacillus属乳酸菌273菌株を試験に供した。
1) 胃酸耐性試験
試験に供する乳酸菌菌体を生理食塩水で2回洗浄し、乳酸菌懸濁液1mlを、ろ過滅菌した人工胃液 [NaCl (0.2%)、ペプシン (1:5000、東京化成工業) (0.35%)] (pH 2) 9mlに添加した。37℃で2時間、好気的に培養した後、この乳酸菌を含む人工胃液から1mlを取り、リン酸緩衝液 (67mM、pH 6.5) 9mlに添加して反応を停止させた。人工胃液に接触前および接触後の生菌数をLactobacilli MRS Agar (DIFCO) を用いて計測し、生残率 (%) を算出して胃酸耐性 (%)とした。

2) 胆汁酸耐性試験
Lactobacilli MRS Brothで2回放置培養 (37℃、18時間) した乳酸菌を、0.9%のBacto-
Oxgall (DIFCO) を含むLactobacilli MRS Broth 5mlに10 µl接種し、37℃で嫌気的に培養した。培養18時間後に培地の波長650nmの吸光度 (OD650) を測定し、その値を胆汁酸耐性の指標とした。

[0032] 胃酸耐性試験および胆汁酸耐性試験の結果を表1に示す。273株のLactobacillus属乳酸菌の胃酸耐性および胆汁酸耐性を調べた結果、胃酸耐性が低い菌株は胆汁酸耐性が低く、胆汁酸耐性が高い菌株は胃酸耐性が低い傾向が認められ、菌種別にみると胃酸耐性はLactobacillus gasseri（以降、L. gasseriともいう）が高く、胆汁酸耐性はLactobacillus plantarum（以降、L. plantarumともいう）が高かった。胆汁酸耐性は多くの菌株が1.0以下であった。胆汁酸耐性が高い菌株として、L. plantarumを6株、Lactobacillus crispatus（以降、L. crispatusともいう）を2株、Lactobacillus amylovorus（以降、L. amylovorusともいう）を2株、Lactobacillus casei（以降、L. caseiともいう）
を1株およびLactobacillus brevis（以降、L. brevisともいう）を1株選択した。また、胃酸耐性は多くの菌株が0.5%以下であった。胃酸耐性が高い（0.5%以上）菌株のうち、胆汁酸耐性の比較的高い（0.1以上）菌株としてL. gasseriを8株選択した。

<table>
<thead>
<tr>
<th>菌株名</th>
<th>胃酸耐性(%)</th>
<th>胆汁酸耐性(OD650)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. plantarum MEP170401</td>
<td>0.14</td>
<td>9.31</td>
</tr>
<tr>
<td>L. plantarum MEP170402</td>
<td>0.15</td>
<td>10.79</td>
</tr>
<tr>
<td>L. plantarum MEP170403</td>
<td>0.02</td>
<td>8.7</td>
</tr>
<tr>
<td>L. plantarum MEP170404</td>
<td>0.03</td>
<td>6.55</td>
</tr>
<tr>
<td>L. plantarum MEP170405</td>
<td>0.03</td>
<td>4.42</td>
</tr>
<tr>
<td>L. plantarum MEP170406</td>
<td>0.39</td>
<td>7.45</td>
</tr>
<tr>
<td>L. gasseri MEP170407</td>
<td>22.41</td>
<td>0.13</td>
</tr>
<tr>
<td>L. gasseri MEP170408</td>
<td>24.91</td>
<td>0.12</td>
</tr>
<tr>
<td>L. gasseri MEP170409 (OLL2809)</td>
<td>0.86</td>
<td>0.31</td>
</tr>
<tr>
<td>L. gasseri MEP170410</td>
<td>2.10</td>
<td>0.24</td>
</tr>
<tr>
<td>L. gasseri MEP170411</td>
<td>20.78</td>
<td>0.45</td>
</tr>
<tr>
<td>L. gasseri MEP170412</td>
<td>0.80</td>
<td>0.43</td>
</tr>
<tr>
<td>L. gasseri MEP170413</td>
<td>6.21</td>
<td>0.12</td>
</tr>
<tr>
<td>L. gasseri MEP170414</td>
<td>0.53</td>
<td>0.14</td>
</tr>
<tr>
<td>L. crispatus MEP170415</td>
<td>0.12</td>
<td>1.76</td>
</tr>
<tr>
<td>L. crispatus MEP170416</td>
<td>0.12</td>
<td>3.69</td>
</tr>
<tr>
<td>L. amylivorus MEP170417</td>
<td>0.06</td>
<td>2.71</td>
</tr>
<tr>
<td>L. amylivorus MEP170418</td>
<td>0.04</td>
<td>2.49</td>
</tr>
<tr>
<td>L. brevis MEP170419</td>
<td>0.00</td>
<td>1.48</td>
</tr>
<tr>
<td>L. casei MEP170420</td>
<td>0.00</td>
<td>1.31</td>
</tr>
</tbody>
</table>

[0034] 表1は、選抜されたLactobacillus属乳酸菌20株の胃酸耐性(%)・胆汁酸耐性(OD650)の結果を示す。

[0035] [実施例2]（凍結乾燥乳酸菌体の調製）

実施例1で選択した20株のLactobacillus属乳酸菌について、Lactobacilli MRS Brothで2回、賦活培養（37℃、18時間）した。同培地で賦活化した菌体を1%接種し、37℃で18時間培養した。集菌後、生理食塩水で2回、滅菌蒸留水で1回洗浄した。75℃で
60分間加熱して滅菌し、凍結乾燥した。凍結乾燥菌末は以下のin vitroでの実験や動物投与試験に用いた。

[0036] [実施例3]（マウス由来脾臓細胞からのIL-12産生促進効果、およびTh1/Th2バランス改善効果評価試験）
実施例1で選択した胃酸耐性・胆汁酸耐性Lactobacillus属乳酸菌20菌株を以下の方法で評価した。

[0037] 6週齢の雄性、BALB/cマウス（n=4、日本エスエルシー）に20μgの卵白アルブミン（以降、OVAといい、和光純薬工業）と2mgの水酸化アルミニウム（和光純薬工業）を腹腔内投与し、その8日後に脾臓を摘出した。赤血球を除去した脾細胞を、実施例2により調製した1μg/mlの乳酸菌加熱処理菌体と100μg/mlのOVAを含む10% FCS-RPMI 1640培地（ギブス社）に2.5 x 10^6/mlとなるように懸濁し5%CO_2インキュベーターで6日間培養した。比較対照として、Lactobacillus属乳酸菌の標準株（L. plantarum JCM 1149^T、L. gasseri JCM 1131^T、L. crispatus JCM 1185^T、L. amylovorus JCM 1126^T）、および他の菌の標準株（Bifidobacterium bifidum JCM 1255^T（以降、B. bifidum JCM 1255^Tともいう）、Bifidobacterium longum JCM 1217^T（以降、B. bifidum longum JCM 1217^Tともいう）、Lactococcus delbrueckii subsp. lactis JCM 1248^T（以降、L. delbrueckii subsp. lactis JCM 1248^Tともいう）、Enterococcus faecalis IFO 3971（以降、E. faecalis IFO 3971ともいう）、Bacteroides vulgatus JCM 5826^T（以降、B. vulgatus JCM 5826^Tともいう）、Eschericia coli JCM 1649^T（以降、E. coli JCM 1649^Tともいう）を用いた。上記菌株のうち、菌株名にJCMと記載された菌株は独立行政法人理化学研究所バイオリソースセンターの微生物材料開発室から入手した基準株、菌株名にIFOと記載された菌株は、財団法人発酵研究所から入手した基準株、菌株名にMEPと記載された菌株は明治乳業株式会社保有菌株である。また、微生物を添加しない点を除いては上記と同様に調製したものをコントロールとした。培養液上清のIFN-γ、IL-12およびIL-4をELISA法（BD OptEIATM ELISA set、ベクトンディッキンソン）により測定した。Studentのt検定により対照群に対する有意差を5%の危険率で検定した。結果を表2に示す。

[0038] [表2]
<table>
<thead>
<tr>
<th></th>
<th>IL-12 (pg/ml)</th>
<th>IFN-γ (ng/ml)</th>
<th>IL-4 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>SD</td>
<td>Average</td>
</tr>
<tr>
<td>コントロール</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>L. plantarum JCM 1149T</td>
<td>39</td>
<td>26</td>
<td>10.6 *</td>
</tr>
<tr>
<td>L. plantarum MEP170401</td>
<td>4907</td>
<td>1160</td>
<td>30.4 *</td>
</tr>
<tr>
<td>L. plantarum MEP170402</td>
<td>4723</td>
<td>971</td>
<td>26.9 *</td>
</tr>
<tr>
<td>L. plantarum MEP170403</td>
<td>4602</td>
<td>889</td>
<td>20.5 *</td>
</tr>
<tr>
<td>L. plantarum MEP170404</td>
<td>4748</td>
<td>950</td>
<td>25.5 *</td>
</tr>
<tr>
<td>L. plantarum MEP170405</td>
<td>4966</td>
<td>985</td>
<td>24.4 *</td>
</tr>
<tr>
<td>L. plantarum MEP170406</td>
<td>3407</td>
<td>602</td>
<td>27.8 *</td>
</tr>
<tr>
<td>L. gasseri JCM 1131T</td>
<td>3721</td>
<td>1338</td>
<td>28.0 *</td>
</tr>
<tr>
<td>L. gasseri MEP170407</td>
<td>4521</td>
<td>1101</td>
<td>27.5 *</td>
</tr>
<tr>
<td>L. gasseri MEP170408</td>
<td>1213</td>
<td>405</td>
<td>19.5 *</td>
</tr>
<tr>
<td>L. gasseri MEP170409 (OLL2809)</td>
<td>2990</td>
<td>617</td>
<td>19.8 *</td>
</tr>
<tr>
<td>L. gasseri MEP170410</td>
<td>3039</td>
<td>627</td>
<td>30.9 *</td>
</tr>
<tr>
<td>L. gasseri MEP170411</td>
<td>1667</td>
<td>285</td>
<td>29.7 *</td>
</tr>
<tr>
<td>L. gasseri MEP170412</td>
<td>43</td>
<td>77</td>
<td>7.8 *</td>
</tr>
<tr>
<td>L. gasseri MEP170413</td>
<td>3662</td>
<td>582</td>
<td>24.8 *</td>
</tr>
<tr>
<td>L. gasseri MEP170414</td>
<td>557</td>
<td>147</td>
<td>18.7 *</td>
</tr>
<tr>
<td>L. crispatus JCM 1185T</td>
<td>41</td>
<td>47</td>
<td>2.7 *</td>
</tr>
<tr>
<td>L. crispatus MEP170415</td>
<td>0</td>
<td>0</td>
<td>0.8 *</td>
</tr>
<tr>
<td>L. crispatus MEP170416</td>
<td>0</td>
<td>0</td>
<td>1.6 *</td>
</tr>
<tr>
<td>L. amylovorum JCM 1126T</td>
<td>742</td>
<td>292</td>
<td>31.0 *</td>
</tr>
<tr>
<td>L. amylovorum MEP170417</td>
<td>0</td>
<td>0</td>
<td>5.6 *</td>
</tr>
<tr>
<td>L. amylovorum MEP170418</td>
<td>0</td>
<td>0</td>
<td>4.7 *</td>
</tr>
<tr>
<td>L. brevis MEP170419</td>
<td>0</td>
<td>0</td>
<td>2.0 *</td>
</tr>
<tr>
<td>L. casei MEP170420</td>
<td>0</td>
<td>0</td>
<td>4.0 *</td>
</tr>
<tr>
<td>B. bifidum JCM 1255T</td>
<td>0</td>
<td>0</td>
<td>0.2 *</td>
</tr>
<tr>
<td>B. longum JCM 1217T</td>
<td>0</td>
<td>0</td>
<td>1.8 *</td>
</tr>
<tr>
<td>L. delbrueckii subsp. lactis JCM 1248T</td>
<td>1032</td>
<td>234</td>
<td>17.1 *</td>
</tr>
<tr>
<td>E. faecalis IFO 3971</td>
<td>4816</td>
<td>1324</td>
<td>31.1 *</td>
</tr>
<tr>
<td>B. vulgaris JCM 5626T</td>
<td>43</td>
<td>50</td>
<td>1.8 *</td>
</tr>
<tr>
<td>E. coli JCM 1649T</td>
<td>225</td>
<td>120</td>
<td>18.0 *</td>
</tr>
</tbody>
</table>

* p<0.05 (対 コントロール、Student's t-test)

[0039] 表2は、実施例1で選抜されたLactobacillus属乳酸菌20株が脾細胞のサイトカイン(IL-12、IFN-γ、IL-4)産生に与える影響を示す。各測定値の平均値±標準偏差を示す。*: P<0.05(vs. コントロール、Student’s t-test)。

[0040] L. plantarumやL. gasseriなどを中心に、30株中13株がIL-12の産生を有意に(p<0.05)強く促進した。しかし、そのIL-12誘導活性は同菌種でも強いものと全くないものもあり、菌種によらず菌株特異的であった。また、IFN-γおよびIL-4は、IL-12産生量との間にそれぞれ、正の相関(r=0.8047, p<0.01)および負の相関(r=-0.2047, p<0.05)を認めた。
6544, p<0.01)が認められた。すなわち、IL-12産生を強く誘導する菌株は、IFN-γの産生促進効果およびIL-4の産生抑制効果も高く、Th1/Th2バランスを改善した。以上の結果から、L. gasseri MEP170409（Lactobacillus gasseri OLL2809（受託番号：NITE BP—72））を含むL. gasseriやL. plantarum等に属す特定の株は、強いIL-12産生促進活性とTh1/Th2バランス改善効果を有することが分かった。

[0041] このようにして、IL-12産生促進活性とTh1/Th2バランス改善効果の高いL. plantarum MEP170402、L. gasseri MEP170407、L. gasseri MEP170409（Lactobacillus gasseri OLL2809（受託番号：NITE BP—72））およびL. gasseri MEP170413の4菌株を選択した。

[0042] [実施例4] (BALB/cマウスに卵白アルブミンを腹腔内投与することで誘導される抗原特異的IgE産生抑制効果評価試験)
実施例3で選択したLactobacillus属乳酸菌4菌株を以下的方法で評価した。

[0043] 6週齢の雄性BALB/cマウス（各群n=10、日本エスエルシー）に0.2 μg/g-body massのOVA（和光純薬工業）と0.1mg/g-body massの水酸化アルミニウム（和光純薬工業）を腹腔内投与した（一次免疫）。2週間後に同様の条件でOVAと水酸化アルミニウムを二次免疫した。一次免疫から二次免疫の1週間後までの21日間、マウスに実施例2により調製した種々の乳酸菌凍結乾燥粉末を0.1%含むMF飼料（オリエンタル酵母工業）を自由摂取させた。乳酸菌は、実施例3の結果でIL-12誘導活性の低かったL. crispatus JCM 1185T、L. plantarum JCM 1149TとIL-12誘導活性の高かったL. gasseri JCM 1131Tを乳酸菌の比較対照とし、L. plantarum MEP170402、L. gasseri MEP170407、L. gasseri MEP170409（Lactobacillus gasseri OLL2809（受託番号：NITE BP—72））、L. gasseri MEP170413の抗OVA特異的IgE産生抑制効果を検討した。コントロールはMF飼料のみとした。二次免疫から1週間後に採血を行い、血清中の抗OVA特異的IgE抗体濃度をELISA法により測定した。抗OVA特異的IgE抗体濃度は、6週齢の雄性BALB/cマウス（日本エスエルシー）に20 μgのOVAと2mgの水酸化アルミニウムを2週間の間隔で2回腹腔内投与し、その1週間後の血清中に含まれる抗OVA特異的IgE濃度を10,000AUと定義した。抗OVA特異的IgE濃度の測定はItouらの方法（It o, K., K. Inagaki-Ohara, S. Muroasaki, H. Nishimura, T. Shimokata, S. Torii, T. Matsuda, and Y. Yoshikai, Murine model of IgE production with a predominant Th2—res
pionse by feeding protein antigen without adjuvants., Eur. J. Immunol. 27:3427-3437 (1997)）を改変し、ビオチン化ラット抗マウスIgEモノクローナル抗体（BD biosciences）およびストレプトアビジン-ホースラディッシュペルオキシダーゼ（BD biosciences）を用いて検出した。結果は一元配置分散分析を行い、さらにFisherのPLSDテストにより5%の危険率で多重検定を行った。結果を図1に示す。

[0044] コントロールと比較して、L. crispatus JCM 1185, L. plantarum JCM 1149, L. gasseri OLL2809（受託番号：NITE BP−72）株が最も抗OVA特異的IgE産生抑制作用が強く、コントロールと比較して有意な（p<0.05）低下が認められた。また、L. gasseri JCM 1131, L. gasseri MEP170407では抗原特異的IgE誘導を抑制する傾向を示した（それぞれp=0.072, p=0.064）。in vivoにおいてはL. plantarumはIgE産生抑制効果を示さず、概してL. gasseriの効果が高かった。以上から、Lactobacillus gasseri OLL2809（受託番号：NITE BP−72）株に強い抗OVA特異的IgE産生抑制効果があることが明らかになった。

[0045] [実施例5]（C57BL/6Nマウスに食物抗原を経口的に投与することで誘導される抗原特異的IgE産生抑制効果評価試験）
実施例1で選択した胃酸耐性・胆汁酸耐性Lactobacillus属乳酸菌20菌株を以下の方法で評価した。

[0046] 3週齢の雌性、C57BL/6Nマウス（コントロールn=20、被検菌体投与群n=10、日本クレア）に、実施例2により調製した種々の乳酸菌凍結乾燥粉末を0.1%添加した表3に示す組成の飼料を2週間自由摂取させた（被検菌体投与群）。コントロールには表3に示す組成の飼料を与えた。その後7週間、全ての群にMF飼料（オリエンタル酵母）を与えた。さらに、被検菌体投与群には実施例2により調製した種々の乳酸菌凍結乾燥粉末を0.1%添加した表3に示す組成の飼料を、対照群には表3に示す組成の飼料を2週間自由摂取させた。飼育終了後、全採血を行い、それぞれのマウスの血清を用いてラット皮内急性アナフィラキシー反応（以降、PCA（passive cutaneous anaphylaxis）反応ともいう）試験を行い、抗カゼイン特異的IgEの陽性率をコントロール、被
検菌体投与群の間で比較した。

表3

<table>
<thead>
<tr>
<th>原料</th>
<th>配合量（重量％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>カゼイン（ARACID、NZMP社）</td>
<td>22.0%</td>
</tr>
<tr>
<td>ショ糖</td>
<td>5.0%</td>
</tr>
<tr>
<td>コンスターチ</td>
<td>60.3%</td>
</tr>
<tr>
<td>セルロース粉末</td>
<td>3.0%</td>
</tr>
<tr>
<td>大豆油</td>
<td>5.0%</td>
</tr>
<tr>
<td>AIN-76ビタミンミックス</td>
<td>1.0%</td>
</tr>
<tr>
<td>AIN-76ミネラルミックス</td>
<td>3.5%</td>
</tr>
<tr>
<td>重酒石酸コリン</td>
<td>0.2%</td>
</tr>
<tr>
<td>計</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

表3に記載のAIN-76ビタミンミックスおよびAIN-76ミネラルミックスは、米国国立栄養研究所（AIN）から1977年に発表された、マウスやラットにおける栄養研究用の標準精製飼料であるAIN-76に配合されているビタミンミックスおよびミネラルミックスを指す。

【PCA反応によるIgE産生抑制効果の判定】

PCA反応は7週齢の雄性、SDラット（日本SLC）の背部を除毛し、皮内にマウスの血清を25μlずつ注射した。マウスの血清の皮内注射より24時間後、カゼインを2mg/mlとエタンスプレー（和光純薬工業）を1%含む溶液0.5mlをラットの尾静脈に注射した。さらにカゼイン、エタンスプレーの静脈注射から30分後に、背部皮下のエタンスプレー色素の漏出の有無を目視判定し、色素漏出が認められたものをPCA反応陽性とし、各群中のPCA反応陽性数を求め、対照群と被検菌体投与群のPCA反応陽性数をカイニ乗検定により危険率5%で有意差検定を行った。結果を表4に示す。
<table>
<thead>
<tr>
<th>試験群</th>
<th>PCA反応陽性数/試験匹数</th>
</tr>
</thead>
<tbody>
<tr>
<td>コントロール</td>
<td>18/20</td>
</tr>
<tr>
<td>L. plantarum MEP170401</td>
<td>8/10</td>
</tr>
<tr>
<td>L. plantarum MEP170402</td>
<td>7/10</td>
</tr>
<tr>
<td>L. plantarum MEP170403</td>
<td>7/10</td>
</tr>
<tr>
<td>L. plantarum MEP170404</td>
<td>7/10</td>
</tr>
<tr>
<td>L. plantarum MEP170405</td>
<td>8/10</td>
</tr>
<tr>
<td>L. plantarum MEP170406</td>
<td>9/10</td>
</tr>
<tr>
<td>L. gasseri MEP170407</td>
<td>8/10</td>
</tr>
<tr>
<td>L. gasseri MEP170408</td>
<td>10/10</td>
</tr>
<tr>
<td>L. gasseri MEP170409 (OLL2809)</td>
<td>5/10 *</td>
</tr>
<tr>
<td>L. gasseri MEP170410</td>
<td>10/10</td>
</tr>
<tr>
<td>L. gasseri MEP170411</td>
<td>8/10</td>
</tr>
<tr>
<td>L. gasseri MEP170412</td>
<td>9/10</td>
</tr>
<tr>
<td>L. gasseri MEP170413</td>
<td>6/10</td>
</tr>
<tr>
<td>L. gasseri MEP170414</td>
<td>8/10</td>
</tr>
<tr>
<td>L. crispatus MEP170415</td>
<td>7/10</td>
</tr>
<tr>
<td>L. crispatus MEP170416</td>
<td>7/10</td>
</tr>
<tr>
<td>L. amylivorans MEP170417</td>
<td>5/10 *</td>
</tr>
<tr>
<td>L. amylivorans MEP170418</td>
<td>10/10</td>
</tr>
<tr>
<td>L. brevis MEP170419</td>
<td>9/10</td>
</tr>
<tr>
<td>L. casei MEP170420</td>
<td>6/10</td>
</tr>
</tbody>
</table>

* : p < 0.05（対 コントロール、カイ二乗検定）

[0051] 表4は、実施例1で選抜されたLactobacillus属乳酸菌20菌株の経口投与が食物アレルギーマウスのIgE産生に与える影響を示す。PCA反応陽性数/試験匹数を示す。※ : p<0.05(vs. コントロール、カイ二乘検定)。

[0052] 対照群では20匹中18匹で陽性となった。一方、Lactobacillus gasseri OLL2809（受託番号: NITE BP-72）株投与群およびL. amylivorans MEP170417では陽性数が10匹中5匹と有意（p<0.05）に抑制された。その他の菌株では顕著な効果は認められなかった。

[0053] 以上から、Lactobacillus gasseri OLL2809（受託番号: NITE BP-72）株はカゼインの経口投与で惹起する食物アレルギーモデルマウスへの経口投与において他の菌株に比べ抗原特異的なIgE産生抑制効果が高いことが示された。

[0054] [実施例6] （ナチュラルキラー細胞の活性化能評価試験）
実施例1で選択した胃酸耐性・胆汁酸耐性Lactobacillus属乳酸菌20菌株を以下
の方法で評価した。

[0055] 10週齢の雌性、BALB/cマウス（日本エスエルシー）から脾臓細胞を採取した。標的細胞として、YAC-1細胞株（ナチュラルキラー細胞に高い感受性を示す細胞株）を用
いた。YAC-1細胞の蛍光標識として、1 x 10^6個/mlの細胞にCalcein（Dojindo社）を最
終濃度20 μMで添加して1時間静置した後、洗浄した。96ウェルプレートにて1ウェル
当たり脾細胞を液量100 μlで5 x 10^5個、および実施例2により調製した種々の乳酸菌
凍結乾燥粉末を液量50 μlで0.20 μg（最終濃度1.3 μg/ml）を添加して一晩培養し
た。その後、上記の蛍光標識したYAC-1細胞を液量50 μlで1 x 10^4個（脾細胞：YAC
-1細胞 = 50:1の比率）加えて3時間培養した。コントロールのウェルは、脾細胞に乳
酸菌凍結乾燥粉末を添加せずに同様の操作を行った。また、陽性対照としてL. rha
mnosus ATCC 5013株（Lactobacillus rhamnosus GG株）を用いた。培養後、上清中
の蛍光強度（Excitation：485 nm、Emission：535 nm）を測定し、この値をTest測定値
とした。さらに、脾細胞あるいはYAC-1細胞単独で培養したときの培養上清中の蛍光
強度をそれぞれ脾細胞Spontaneous測定値、YAC-1 Spontaneous測定値とした。また
、YAC-1細胞のみを培養後、Triton X100（和光純薬工業）を加えて細胞を破壊したときの蛍光強度をTotal測定値とした。これらの値を以下の式にあてはめて細胞傷害
活性を計算した。

\[
\text{細胞傷害活性（％）} = \frac{\text{Test} - \text{Y} - \text{S}}{\text{Total} - \text{Y}} \times 100
\]

[0057] 上記式中、TestはTest測定値、TotalはTotal測定値、Sは脾細胞Spontaneous測定
値、YはYAC-1 Spontaneous測定値を示す。

[0058] 検討した20菌株のうち、特にL. plantarumまたはL. gasseriに属する菌株を添加した
場合において細胞障害活性が高くなった。また、Lactobacillus gasseri OLL2809（受託番号：NITE BP-72）株を添加した検体は陽性対照の検体に対して有意に（p<0.05）高い細胞障害活性を示した。

[0059] 以上から、Lactobacillus gasseri OLL2809（受託番号：NITE BP-72）株は脾細胞を用いた系において、ナチュラルキラー細胞活性化能が高いことが示された。

[0060] 以上から、（1）胃酸・胆汁酸耐性試験、（2）マウス由来脾臓細胞からのIL-12産生促進効果、およびTh1/Th2バランス改善効果評価試験、（3）BALB/cマウスに卵白アルプミンを腹腔内投与することで誘導される抗原特異的IgEの抑制評価試験、（4）C57BL/6Nマウスに食物抗原を経口的に投与することで誘導される抗原特異的IgE産生の阻害能評価試験、（5）ナチュラルキラー細胞活性化能評価試験のいずれにおいて高い活性を示す乳酸菌としてLactobacillus gasseri OLL2809（受託番号：NITE BP-72）株が見出された。

[0061] [実施例7]（OVAを腹腔内投与したBALB/cマウスを用いた脾細胞および腸間膜リンパ節細胞のTh1/Th2バランス改善効果評価試験）

実施例3で選択したLactobacillus属乳酸菌2菌株を以下の方法で評価した。

[0062] 6週齢の雄性BALB/cマウス（各群n=10、日本エスエルシー）に0.2 μg/g・body massのOVA（和光純薬工業）と0.1mg/g・body massの水酸化アルミニウム（和光純薬工業）を腹腔内投与した（一次免疫）。2週間後に同様の条件でOVAと水酸化アルミニウムを二次免疫した。一次免疫から二次免疫の1週間後までの21日間、マウスに実施例2により調製した種々の乳酸菌凍結乾燥粉末を0.1%含むMF飼料（オリエンタル酵母工業）を自由摂取させた。二次免疫から1週間後の各群のマウスから脾細胞および腸間膜リンパ節細胞を調製した。脾細胞は赤血球を除去した後に2.5x10^6/ウェルの濃度で24ウェルプレートに、腸間膜リンパ節細胞は1.25x10^6/ウェルの濃度で48ウェルプレートに播種した。各細胞を100 μg/mlのOVAを含む10% FCS–RPMI1640培地（ギブコ社、1 ml/ウェル）で2日間または6日間、5%湿度のCO₂インキュベーターで37℃で培養した。それぞれ、2日間の培養液上清中のIL-12（p70）を、6日間の培養液上清中のIFN-γおよびIL-4濃度をELISA法（BD OptEIATM ELISA set、ベクトンディッキンソン）で測定した。結果は一元配置分散分析を行い5%の危険率で有意と認められた。
場合、さらにFisherのPLSDテストにより5%の危険率で多重検定を行った。
乳酸菌は、実施例3の結果で選択したL. gasseri OLL2809（受託番号：NITE BP-72）
と、L. gasseri MEP170413、および比較対照としてIL-12誘導活性の低かったL. crispatus JCM 1185Tを用いた。コントロールはMF飼料のみを摂取させた。結果を図3に示す。

[0063] 腦細胞からのIL-12 (p70)産生はL. gasseri OLL2809（受託番号：NITE BP-72）株
投与群において、コントロールと比較して有意な（p<0.05）増加が認められた。また、L.
gasseri OLL2809（受託番号：NITE BP-72）株投与群における脳細胞および腸間膜
リンパ節細胞からのIL-4産生量もコントロールと比較して有意な（p<0.05）減少が認められた。
L. gasseri MEP170413では脳細胞からのIL-12 (p70)産生量に有意な（p<0.05）増
加が認められたが、IL-4産生は脳細胞および腸間膜リンパ節細胞のどちらにおいても影響は認められなかった。L. crispatus JCM 1185Tでは、これらの細胞のサイトカイ
ン産生に変化は認められなかった。以上から、L. gasseri OLL2809（受託番号：NITE
BP-72）株は、OVAを腹腔内投与したBALB/cマウスに経口投与した場合、脳細胞
および腸間膜リンパ節細胞のTh1/Th2バランスを改善する効果があることが見出され
た。

[0064] [実施例8]（スギ花粉抽出抗原誘発好酸球増多モデルを用いた好酸球増多抑制効果
評価試験）
[0065] 7週齢の雄性BALB/cマウス（n=9または10／群、日本エスエルシー）にスギ花粉抽
出抗原液（0.4 μg/mlのCry j 1を含む）を0.2 ml/bodyずつ、実験開始から0、1、6、8、
14日目に背部皮下に投与し、抗原感作を行った。20日目に同様の方法でCry j 1を
投与して好酸球の増多を誘発した。陰性対照群は感作を行わず、誘発のみを行った。
各群に水（対照）または実施例2により調製したL. gasseri OLL2809（受託番号：NIT
E BP-72）株を種々の用量（0.5、1.0、2.0mg）で実験開始から21日間毎日、強制胃内
投与した。全動物は以下に示す。21日目に腹腔内に1%のFCSを含むリン酸緩衝生理
食塩水を5 mL注入し、腹腔細胞を採取した。腹腔細胞の総細胞数を自動血球計
数装置（F-800、シスメックス社）で測定後、集細胞遠心装置（Cytospin 3、Shandon社

）を用いて腹腔細胞培養標本を作製した。腹腔細胞をヘマカー迅速染色キット（メルク社）で染色を行い、顕微鏡で好酸球数を計測した。好酸球抑制率は以下の式により求めた。

\[
\text{好酸球抑制率} \% = \left(\frac{1 - \frac{\text{各群の好酸球数} - \text{陰性対照群の好酸球数}}{\text{対照群の好酸球数} - \text{陰性対照群の好酸球数}}}{\frac{\text{各群の好酸球数} - \text{陰性対照群の好酸球数}}{\text{対照群の好酸球数} - \text{陰性対照群の好酸球数}}} \right) \times 100
\]

[0067] [表5]

<table>
<thead>
<tr>
<th>群</th>
<th>感作</th>
<th>誘発</th>
<th>OLL2809投与量（mg/body/day）</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照群</td>
<td>○</td>
<td>○</td>
<td>0 (水のみ)</td>
</tr>
<tr>
<td>陰性対照群</td>
<td>×</td>
<td>○</td>
<td>0 (水のみ)</td>
</tr>
<tr>
<td>0.5 mg群</td>
<td>○</td>
<td>○</td>
<td>0.5</td>
</tr>
<tr>
<td>1.0 mg群</td>
<td>○</td>
<td>○</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0 mg群</td>
<td>○</td>
<td>○</td>
<td>2.0</td>
</tr>
</tbody>
</table>

[0068] 対照群においてスギ花粉抽出抗原で感作・誘発させることで、陰性対照群と比較して腹腔回収液中の総細胞濃度、好酸球濃度および好酸球比率（好酸球数／総細胞数）は有意に（p<0.01）増加した。L. gasseri OLL2809（受託番号：NITE BP-72）株を投与した群ではどの投与量においても対照群と比較して好酸球比率は有意に（p<0.05または0.01）抑制された。また、全ての感作・誘発を行った群で腹腔回収液の総細胞濃度に有意な差は認められなかったが、2.0 mg投与群のみにおいて対照群と比較して好酸球濃度は有意な低値を示し（p<0.05）、好酸球の増多は約44%と有意に（p<0.05）抑制された。

以上の結果から、OLL2809株は好酸球増多モデルマウスへの経口投与で、好酸球の増多を抑制する事が明らかとなった。

[0069] [表6]
表

<table>
<thead>
<tr>
<th>群</th>
<th>総細胞濃度 (x 10^5 cell/ml)</th>
<th>好酸球濃度 (x 10^6 cell/ml)</th>
<th>好酸球比率 (%)</th>
<th>好酸球抑制率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>対 照 群</td>
<td>16.7±2.1</td>
<td>4.30±0.70</td>
<td>25.5±1.6</td>
<td>0.0±17.0</td>
</tr>
<tr>
<td>陽 性 対 照 群</td>
<td>8.5±1.2</td>
<td>0.18±0.05</td>
<td>1.9±0.3</td>
<td>100.0±1.2</td>
</tr>
<tr>
<td>0.5 mg 群</td>
<td>18.7±2.1</td>
<td>3.29±0.54</td>
<td>17.2±2.0**</td>
<td>24.7±13.2</td>
</tr>
<tr>
<td>1.0 mg 群</td>
<td>19.4±1.6</td>
<td>3.35±0.35</td>
<td>17.6±1.9*</td>
<td>23.2±8.5</td>
</tr>
<tr>
<td>2.0 mg 群</td>
<td>15.8±1.7</td>
<td>2.48±0.35*</td>
<td>16.2±1.6**</td>
<td>44.3±8.6*</td>
</tr>
</tbody>
</table>

平均値±標準誤差。対照群のみn=9、その他はn=10。*: p<0.05, **: p<0.01 (vs 対照群、Dunnettの多重比較検定)。細胞濃度は腹腔回収液中の濃度を示す。

産業上の利用可能性

[0070] 本発明により新たなアレルギー予防および/または治療剤が提供された。該アレルギー予防および/または治療剤は乳児用調製粉乳、保健機能食品、または病者用食品にその有効性を添加することによりアレルギー予防および/または治療用食品組成物を提供する。
請求の範囲

[1] ラクトバチルス・ガセリ（Lactobacillus gasseri）を有効成分とするアレルギー予防および／または治療剤。

[2] ラクトバチルス・ガセリの処理物であって、当該乳酸菌の培養物、濃縮物、ペースト化物、噴霧乾燥物、凍結乾燥物、真空乾燥物、ドラム乾燥物、液状物、希釈物、破砕物から選ばれる少なくとも1つである乳酸菌処理物を有効成分とするアレルギー予防および／または治療剤。

[3] アレルギー予防および／または治療が抗原特異的IgE産生抑制によるものである請求項1～2のいずれか1項に記載のアレルギー予防および／または治療剤。

[4] アレルギー予防および／または治療がIL-12産生促進およびTh1/Th2バランス改善によるものである請求項1～2のいずれか1項に記載のアレルギー予防および／または治療剤。

[5] アレルギー予防および／または治療がナチュラルキラー細胞活性化によるものである請求項1～2のいずれか1項に記載のアレルギー予防および／または治療剤。

[6] アレルギー予防および／または治療が好酸球の増多抑制によるものである請求項1～2のいずれか1項に記載のアレルギー予防および／または治療剤。

[7] アレルギー予防および／または治療が抗原特異的IgE産生抑制、IL-12産生促進およびTh1/Th2バランス改善、ナチュラルキラー細胞活性化、好酸球の増多抑制の少なくとも1つによるものである請求項1～2のいずれか1項に記載のアレルギー予防および／または治療剤。

[8] ラクトバチルス・ガセリが、受託番号NITE BP-72で寄託されている、ラクトバチルス・ガセリOLL2809菌株（Lactobacillus gasseri OLL2809）である、請求項1～7のいずれか1項に記載のアレルギー予防および／または治療剤。

[9] 請求項1～8のいずれか1項に記載のアレルギー予防および／または治療剤の有効量を含有せめたアレルギー予防および／または治療用食品組成物。

[10] 乳児用調製粉乳、幼児用粉乳等食品、授乳婦用粉乳等食品、保健機能食品、病者用食品、または発酵乳である請求項8記載のアレルギー予防および／または治療用食品組成物。
アレルギー予防および／または治療用食品組成物を製造するための請求項1〜8のいずれか1項に記載のアレルギー予防および／または治療剤の使用。

アレルギー予防および／または治療用食品組成物が、乳児用調製粉乳、幼児用粉乳等食品、授乳婦用粉乳等食品、保健機能食品、病者用食品、または発酵乳である請求項11記載の使用。

ラクトバチルス・ガゼリまたはその処理物を投与することを特徴とする、アレルギー予防および／または治療剤。

ラクトバチルス・ガゼリまたはその培養物、濃縮物、ペースト化物、塩霧乾燥物、凍結乾燥物、真空乾燥物、ドラム乾燥物、液状物、希釈物、破砕物から選ばれる少なくとも1つである処理物を用いることを特徴とする、アレルギー予防および／または治療用食品組成物の製造方法。

受託番号NITE BP-72で寄託されている、ラクトバチルス・ガゼリOLL2809菌株（Lactobacillus gasseri OLL2809）。

受託番号NITE BP-72で寄託されている、ラクトバチルス・ガゼリOLL2809菌株の処理物であって、当該乳酸菌の培養物、濃縮物、ペースト化物、噴霧乾燥物、凍結乾燥物、真空乾燥物、ドラム乾燥物、液状物、希釈物、破砕物から選ばれる少なくとも1つである乳酸菌処理物。

請求項15記載のラクトバチルス・ガゼリOLL2809菌株または請求項16記載の乳酸菌処理物を含む、食品組成物または飲料。

請求項15記載のラクトバチルス・ガゼリOLL2809菌株または請求項16記載の乳酸菌処理物を含む薬剤。
図1

OVA-IgE (AU)

コントロール
L. crispatus JCM 1185
L. plantarum JCM 1149
L. plantarum MEP170402
L. gasseri JCM 1131
L. gasseri MEP170407
L. gasseri MEP170409 (OLL2809)
L. gasseri MEP170413

p < 0.05
細胞障害活性（％）

<table>
<thead>
<tr>
<th>株名</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>コントロール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. plantarum MEP170401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. plantarum MEP170402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| L. plantarum MEP170403| | | | | *
| L. plantarum MEP170404| | | | | *
| L. plantarum MEP170405| | | | | |
| L. plantarum MEP170406| | | | | |
| L. gasseri MEP170407 | | | | | |
| L. gasseri MEP170408 | | | | | *
| L. gasseri MEP170409 (OLL2809) | | | | | |
| L. gasseri MEP170410 | | | | | |
| L. gasseri MEP170411 | | | | | |
| L. gasseri MEP170412 | | | | | *
| L. gasseri MEP170413 | | | | | |
| L. gasseri MEP170414 | | | | | *
| L. crispatus MEP170415| | | | | *
| L. crispatus MEP170416| | | | | *
| L. amylovorus MEP170417| | | | | *
| L. amylovorus MEP170418| | | | | *
| L. brevis MEP170419 | | | | | *
| L. casei MEP170420 | | | | | *
| L. rhamnosus ATCC 53103 (GG) | | | | | *

*: p < 0.05 (v.s. L. gasseri OLL2809, Dunnetの多重比較検定)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A23C9/00, A23L1/30, A61K35/74, A61P37/08, A61P43/00, C12N1/20

Documented searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Jitsuyo Shinan Toroku Koho 1996-2006
Kokai Jitsuyo Shinan Koho 1971-2006
Toroku Jitsuyo Shinan Koho 1994-2006

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

BIOSIS (STN), CAPIlus (STN), EMBASE (STN), MEDLINE (STN), JST7580 (JDream2), JSTPlus (JDream2)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2004-250337 A (Sunstar Inc.), 09 September, 2004 (09.09.04), Particularly, Claims; page 3, lines 13 to 24, 31 to page 4, lines 21, 34 to 38; examples (Family: none)</td>
<td>1-12,14-18</td>
</tr>
<tr>
<td>X</td>
<td>JP 2003-252772 A (Snow Brand Milk Products Co., Ltd.), 10 September, 2003 (10.09.03), Particularly, Claims; examples (Family: none)</td>
<td>9-12,14,17</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [] See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means of particular relevance the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "P" document published prior to the international filing date but later than the priority claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search

17 May, 2006 (17.05.06)

Date of mailing of the international search report

30 May, 2006 (30.05.06)

Name and mailing address of the ISA/Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (April 2005)
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2003-253262 A (Snow Brand Milk Products Co., Ltd.), 10 September, 2003 (10.09.03), Particularly, Claims; examples (Family: none)</td>
<td>9-12,14,17</td>
</tr>
<tr>
<td>X</td>
<td>JP 2003-306436 A (Snow Brand Milk Products Co., Ltd.), 28 October, 2003 (28.10.03), Particularly, Claims; examples (Family: none)</td>
<td>9-12,14,17</td>
</tr>
<tr>
<td>X</td>
<td>JP 2003-95963 A (Snow Brand Milk Products Co., Ltd.), 03 April, 2003 (03.04.03), Particularly, Claims; examples (Family: none)</td>
<td>9-12,14,17</td>
</tr>
<tr>
<td>X</td>
<td>JP 2004-315477 A (Zaidan Hojin Tokyo-to Koreisha Kenkyu Fukushi Shinko Zaidan, Snow Brand Milk Products Co., Ltd.), 11 November, 2004 (11.11.04), Particularly, Claims; examples (Family: none)</td>
<td>9-12,14,17</td>
</tr>
<tr>
<td>E,X</td>
<td>Fan HO et al., “Allergy-sei Shikkan ni Taisuru Fukugo Probiotics Nyusankin no Yuekisei”, Allergy no Rinsho, Vol.26, No.2, 20 February, 2006 (20.02.06), pages 140 to 144</td>
<td>1-12,14-18</td>
</tr>
<tr>
<td>E,X</td>
<td>Fan HO et al., “Probiotics Nyusankin Lactobacillus gasseri TMC0356 Kabu no Men’eki Shushoku oyobi Ko Allergy Sayo”, Allergy no Rinsho, Vol.25, No.12, 20 November, 2005 (20.11.05), pages 75 to 80</td>
<td>1-12,14-18</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2006/303295

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: 13
 because they relate to subject matter not required to be searched by this Authority, namely:

 Claim 13 pertains to methods for treatment of the human body by therapy and thus relates to a subject matter which this International Searching Authority is not required, under the provisions of the PCT Rule 39.1(iv), to search.

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest the

□ The additional search fees were accompanied by the applicant’s protest and, where applicable, payment of a protest fee.

□ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

□ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)
A. 発明の属する分野の分類（国際特許分類（ＩＰＣ））
Int.Cl. A61K35/74 (2006.01), A61P37/08 (2006.01), A61P43/00 (2006.01), A23C9/00 (2006.01), A23L1/30 (2006.01), C12N1/20 (2006.01)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（ＩＰＣ））
Int.Cl. A23C 9/00, A23L 1/30, A61K 35/74, A61P 37/08, A61P 43/00, C12N 1/20

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922－1996年
日本国公開実用新案公報 1971－2006年
日本国実用新案登録公報 1996－2006年
日本国登録実用新案公報 1994－2006年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
BIOSIS (STN), C plus (STN), EMBASE (STN), MEDLINE (STN), JST7850 (J Dream2), JSTPlus (J Dream2)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献の カテゴリー*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2004－250337 A（サンスター株式会社）2004.09.09，特に、特許請求の範囲、第3頁第13～24行、第31行～第4頁第21行、第34～38行及び実施例（ファミリーなし）</td>
<td>1－12，14－18</td>
</tr>
</tbody>
</table>

C欄の続きにも文献が列挙されている。

バシテントファミリーに関する別紙を参照。

* 引用文献のカテゴリ
「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
「E」国際出願日の出願または特許であるが、国際出願日以前に公表されたもの
「L」優先権主張に疑義を提起する文献は他の文献の発行日前か他の特別な理由を確立するために引用する文献（理由を付す）
「O」出願による開示、使用、展示等に言及する文献
「P」特許の出願期間で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 17.05.2006
国際調査報告の発送日 30.05.2006

特許庁審査官（権限のある職員） 4C 9454
上條 のぶ
電話番号 03－3581－1101 内線 3452

様式PCT／ISA／210（第2ページ）（2005年4月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ※</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2003-252772 A（雪印乳業株式会社）2003.09.10,特に、特許請求の範囲及び実施例（ファミリーなし）</td>
<td>9-12, 14, 17</td>
</tr>
<tr>
<td>X</td>
<td>JP 2003-253262 A（雪印乳業株式会社）2003.09.10,特に、特許請求の範囲及び実施例（ファミリーなし）</td>
<td>9-12, 14, 17</td>
</tr>
<tr>
<td>X</td>
<td>JP 2003-306436 A（雪印乳業株式会社）2003.10.28,特に、特許請求の範囲及び実施例（ファミリーなし）</td>
<td>9-12, 14, 17</td>
</tr>
<tr>
<td>X</td>
<td>JP 2003-95963 A（雪印乳業株式会社）2003.04.03,特に、特許請求の範囲及び実施例（ファミリーなし）</td>
<td>9-12, 14, 17</td>
</tr>
<tr>
<td>X</td>
<td>JP 2004-315477 A（財団法人東京都高齢者研究・福祉振興財団，雪印乳業乳業株式会社）2004.11.11,特に、特許請求の範囲及び実施例（ファミリーなし）</td>
<td>9-12, 14, 17</td>
</tr>
<tr>
<td>E, X</td>
<td>何方，他，アレルギー性疾患に対する複合プロバイオティックス乳酸菌の有益性，アレルギーの臨床，Vol. 26, No. 2, 2006.02.20, p. 140-144</td>
<td>1-12, 14-18</td>
</tr>
<tr>
<td>E, X</td>
<td>何方，他，プロバイオティックス乳酸菌 Lactobacillus gasseri TMC0356 株の免疫修飾及び抗アレルギー作用，アレルギーの臨床，Vol. 25, No. 12, 2005.11.20, p. 75-80</td>
<td>1-12, 14-18</td>
</tr>
</tbody>
</table>
国際調査報告

第Ⅱ欄 請求の範囲の一部の調査ができないときの意見（第１ページの２の続き）

法第8条第3項（ＰＣＴ17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

１．☐ 請求の範囲 １３ は、この国際調査機関が調査をすることを要しない対象に係るものである。
 つまり、請求の範囲１３は、治療による人体の処置方法に関するものであって、PCT規則39.1(iv)の規定により、国際調査をすることを要しない対象に係るものである。

２．☐ 請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

３．☐ 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第Ⅲ欄 発明の単一性が欠如しているときの意見（第１ページの３の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

１．☐ 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。

２．☐ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。

３．☐ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。

４．☐ 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

☐ 追加調査手数料及び、該当する場合には、異議申立手数料の納付と共に、出願人から異議申立てがあった。
☐ 追加調査手数料の納付と共に出願人から異議申立てがあったが、異議申立手数料が納付命令書に示した期間内に支払われなかった。
☐ 追加調査手数料の納付を伴う異議申立てがなかった。

様式PCT／ISA／210（第1ページの続き（2））（2005年4月）