A controlled release delivery dosage form for controlled release of an active ingredient, includes an active ingredient coated in a polymeric mixture of: at least a water insoluble polymer and a starch composition including at least one component selected from the group consisting of a starch having an amylose content of between 20 and 45%, a modified starch having an amylose content of between 50 and 80% and a legume starch. The present invention also relates to the use and method for making the same.
Figure 1
Figure 2

(Figure showing the dry film mass percentage over time for different materials.)

- Ethylcellulose
- MS7 A-PG: ethylcellulose
- Peas starch: ethylcellulose
- MS6 HP-PG: ethylcellulose
- BMD: ethylcellulose
- MS6 A-PG: ethylcellulose
- MD: ethylcellulose
- PS HP-PG: ethylcellulose
Figure 3
Figure 5
0.1 M HCl

phosphate buffer pH 6.8

Figure 6
Figure 7
0.1 M HCl

phosphate buffer pH 6.8

Figure 8
Figure 9

(a) Graph showing the energy at break, MJ/m², over time (h) for MS7 A-PG:ethylcellulose in various concentrations:
- 0:1
- 1:5
- 1:4
- 1:3
- 1:2

(b) Graph showing the energy at break, MJ/m³, over time (h) for MS7 A-PG:ethylcellulose in various concentrations:
- 0:1
- 1:2
- 1:5
- 1:3
- 1:4

Figure 9
0.1 M HCl

phosphate buffer pH 6.8

Figure 10
Figure 11

(a) MS6 A-PG: ethylcellulose

(b) MS6 A-PG: ethylcellulose

energy at break, MJ/m²

time, h
0.1 M HCl

phosphate buffer pH 6.8

Figure 12
Figure 13

Graph a)

Graph b)
Figure 14

(a) Peas starch:ethylcellulose ratio vs. time for water content.

(b) Peas starch:ethylcellulose ratio vs. time for water content.

Figure 14
Figure 15

a) Peas starch:ethylcellulose
- ▲ 0:1
- ○ 1:5
- ● 1:4
- □ 1:3
- ■ 1:2

Dry film mass, %

Time, h

b) Peas starch:ethylcellulose
- ▲ 0:1
- ○ 1:5
- ● 1:4
- □ 1:3
- ■ 1:2

Dry film mass, %

Time, h
Figure 16
Figure 18
Figure 19
a) 15% coating level
- 20% coating level

- with feces
- without feces

b) 15% coating level
- 20% coating level

- pH 1.2
- pH 6.8
- Feces or culture medium

Figure 20
peas starch: ethylcellulose 1:4

coating level 10%, after 1 year storage

coating level 10%, before storage

coating level 15%, after 1 year storage

coating level 15%, before storage

coating level 20%, after 1 year storage

coating level 20%, before storage

Figure 21
Figure 23

Ameho score
Denotes a p=1 between Asacol® and TNBS-induced colitis.
Denotes a p=0.57 between Pentasa® and TNBS-induced colitis.
Denotes a p=0.0038 between BMD:EC coated pellets and TNBS-induced colitis.
Denotes a p=0.024 between peas starch:EC coated pellets and TNBS-induced colitis.
Denotes a p=0.006 between BMD:EC coated pellets and Pentasa®.
Denotes a p=0.016 between peas starch:EC coated pellets and Pentasa®.
Figure 24
WATER INSOLUBLE POLYMER:
STARCH-BASED FILM COATINGS FOR
COLON TARGETING

FIELD OF THE INVENTION

[0001] The present invention relates to a dosage form for the controlled delivery of active ingredient(s). The present invention also relates to the use and method for making the same.

BACKGROUND OF THE INVENTION

[0002] Colon targeting can be very helpful for many pharma-co-therapies, including the treatment of inflammatory bowel diseases, such as Crohn’s Disease (CD) and Ulcerative Colitis (UC).

[0003] A locally acting drug is orally administered using a conventional pharmaceutical dosage form, the latter rapidly dissolves in the contents of the stomach, the drug is released and likely to be absorbed into the blood stream. This leads to elevated systemic drug concentrations and, thus, an increased risk of undesired side effects and at the same time to low drug concentrations at the site of action in the colon, resulting in poor therapeutic efficiency. These restrictions can be overcome if drug release is suppressed in the stomach and small intestine and time-controlled in the colon. This type of site-specific drug delivery to the colon might also offer an interesting opportunity for protein and peptide drugs to get absorbed into the systemic circulation upon oral administration.

[0004] To allow for colon targeting, the drug can for instance be embedded within a polymeric matrix former, or be drug-loaded tablets or pellets such as spherical beads, approximately 0.5-1 mm in diameter, or can be coated with a polymeric film. In the upper gastro intestinal tract (GIT), the permeability of the polymeric networks for the drug should be low, whereas the macromolecular barriers must become permeable once the colon is reached. This increase in drug permeability of the polymeric networks at the site of action might be induced by: (i) a change in the pH of the contents of the GIT, (ii) a change in the quality and/or quantity of enzymes along the GIT, or (iii) significant structural changes within the dosage form occurring after a pre-determined lag-time (e.g. crack formation in poorly permeable film coatings providing pulsatile drug release patterns). Alternatively, drug release might already start in the stomach and continue throughout the GIT, at a rate that is sufficiently low to assure that drug is still inside the dosage form once the colon is reached.

[0005] An attempt to solve the problem of colon targeting is disclosed in US20055220861A that relates to a controlled release formulation for delivery of prednisolone sodium metasulphobenzoate. The formulation comprises prednisolone sodium metasulphobenzoate surrounded by a coating comprising glassy amylase, ethyl cellulose and dibutyl sebacate, wherein the ratio of amylase to ethyl cellulose is from (1:3.5) to (1:4.5) and wherein the amylase is corn or maize amylase. In contrast to the American patent application number US20055220861, the system described in the present invention is adapted to the disease state of patients. This is a very crucial aspect, because to allow for colon targeting the dosage form must become more permeable for the drug once the colon is reached. This can for instance be assured by a preferential degradation of a compound that hinders rapid drug release in the upper gastro intestinal tract.

SUMMARY OF THE INVENTION

[0007] An object of the present invention is to provide a delivery dosage form to control the rate and extent of delivery of an active ingredient, for example, without limitation, an active pharmaceutical ingredient, biological, chemical, macromolecular, nutritional active ingredients.

[0008] Another object of the present invention is to provide new polymeric film coatings that allow for site-specific drug
targeting to the colon and that may be used for patients suffering from inflammatory bowel diseases as well as for patients with a healthy colon.

A further object of the present invention is to provide new polymeric film coatings having a sufficient mechanical stability to withstand the shear stress they are exposed to in the upper GIT (due to the gastrointestinal motility) and to withstand the potentially significant hydrostatic pressure developed within the dosage forms due to water penetration into the systems upon contact with aqueous media. Indeed, with known polymer coatings, the problem of accidental crack formation can result in premature drug release through water-filled channels.

A further object of the present invention is to provide new polymeric film coatings adjustable to the specific needs of a particular type of drug treatment e.g. osmotic activity of the drug and administered dose.

The present invention provides a controlled release delivery dosage form for controlled release of an active ingredient, comprising an active ingredient coated in a polymeric mixture of:

- at least a water insoluble polymer and
- a starch composition comprising at least one component selected from the group consisting of a starch having an amylose content of between 20 and 45%, preferably of between 25 and 44%, and more preferably still of between 30 and 40%, a modified starch having an amylose content of between 50 and 50% and a legume starch.

Preferentially the controlled release dosage form is an oral formulation and has a gastric resistance. In a preferred embodiment, the controlled release pharmaceutical dosage form is in a solid, liquid or semi-liquid form. Advantageously the controlled release pharmaceutical dosage form is a solid dispersion. According to the invention, the polymeric mixture is an intimate mix of the water insoluble polymer and the starch composition, said starch does not form particulates in the water insoluble polymer.

In a further embodiment of the present invention, the polymeric mixture of the controlled release delivery dosage form is a coating mixture, the controlled release delivery dosage form comprising a core, the active ingredient being dispersed or dissolved in the core and/or in the coating mixture.

In a further embodiment of the present invention, the starch composition:water insoluble polymer ratio in the controlled release delivery dosage form is between 1:2 and 1:8, preferably 1:3 to 1:6, and more preferably 1:4 to 1:5.

Preferably, the starch composition has a starch content of at least 50%, preferably of between 70 to 100% more preferably 70 to 100%, still more preferably between 90 to 100%.

Typically, the starch composition exhibits an amylose content of between 20 and 45%, preferentially an amylose content of between 25 and 44%, more preferentially of between 32 and 40%, this percentage being expressed in dry weight with respect to the dry weight of starch present in said composition.

In a further embodiment of the invention, the starch composition comprises at least one legume or cereal starch.

Preferably, the legume is selected from the group consisting of pea, bean, broad bean and horse bean.

According to another advantageous alternative form, the legume is a plant, for example a variety of pea or of horse bean, giving seeds comprising at least 25%, preferably at least 40%, by weight of starch (dry/dry). Preferably, the legume starch is a granular legume starch.

Advantageously, the legume is pea. Pea starch granules have two particularities. The first one is a large granule diameter, larger than for example corn starch granules, improving the granule’s surface area and thus contacts with water and micro flora enzymes in the colon. In addition, pea starch granules have a high swollen ability improving their surface area thus granules granules digestibility and consequently the active ingredient release in the colon.

According to another advantageous alternative the legume starch is a native legume starch.

Advantageously, this starch content of the starch composition is greater than 90% (dry/dry). It can in particular be greater than 95%, preferentially greater than 98%.

According to the invention, the modified starch is preferably stabilized. Indeed, according to a preferred embodiment of the invention, the chemical treatments, which are particularly well suited to the preparation of a film-forming composition, are the “stabilizing” treatments. Common stabilization modifications may be accomplished by esterifying or etherifying some of the hydroxyl groups along the starch chain. Preferentially, said modified starch is hydroxypropylated and/or acetylated; it being possible for these treatments optionally to be supplemented by a fluidification that is a chemical or enzymatic hydrolysis treatment. Preferably, said modified starch is fluidification-treated, for example by acid treatment. The starch composition according to the invention thus advantageously comprises at least one stabilized starch and preferably a hydroxypropylated starch exhibiting a degree of substitution (DS) of at most 0.2. The term "DS" is understood to mean, in the present invention, the mean number of hydroxpropyl groups per 10 anhydroglucose units. This mean number is determined by the standard analytical methods well known to a person skilled in the art.

In a further embodiment of the invention, the starch composition may additionally comprise at least one indigestible polysaccharide selected from the group consisting of xyllo-oligosaccharides, inulin, oligofructose, fructo-oligosaccharides (FOS), lactulose, galactomannan and suitable hydrolysates thereof, indigestible polydextrose, indigestible dextrin and partial hydrolysates thereof, trans-galacto-oligosaccharides (GOS), xylo-oligosaccharides (XOS), ace-mannan, lentenan or beta-glucan and partial hydrolysates thereof, polysaccharides-K (PSK), and indigestible maltodextrin and partial hydrolysates thereof, preferably an indigestible dextrin or an indigestible maltodextrin.

According to the invention, an indigestible maltodextrin or indigestible dextrin having between 15 and 35% of 1->6 glucoside linkages, a reducing sugar content of less than 20%, a polymolecularity index of less than 5 and a number-average molecular mass Mn at most equal to 4500 g/mol.

According to a variant, all or some of the said indigestible maltodextrins are hydrogenated.

According to a variant, the core has a coating level of 5% to 30%, preferably of 10% to 20%.

In a further embodiment, the polymeric mixture comprises a plasticizer. Preferably the plasticizer content is between 25% to 30% w/w referred to the water insoluble polymer content.

Preferably, the water insoluble polymer is selected from the group consisting of ethyl cellulose, cellulose derivatives, acrylic and/or methacrylic ester polymers, polymers or copolymers of acrylate or methacrylate polyvinyl esters,
starch derivatives, polyvinyl acetates, polyacrylic acid esters, butadiene styrene copolymers methacrylate ester copolymers, cellulose acetate phthalate, polyvinyl acetate phthalate, shellac, methacrylic acid copolymers, cellulose acetate trimellitate, hydroxypropyl methylcellulose phthalate, zein, starch acetate.

[0032] According to a further embodiment the plasticizer is a water soluble plasticizer. Preferably the water soluble plasticizer is selected from the group consisting of polyols (glycerin, propylene glycol, polyethylene glycols), organic esters (phthalate esters, dibutyl sebacate, citrate esters, triacetin), oils/glycerides (castor oil, acetylated monoglycerides, fractionated coconut oil), soya lecithin alone or as a mixture with another.

[0033] In a preferred embodiment, the controlled release delivery dosage form is a multiparticulate dosage form.

[0034] The present invention also provides a method for preparing a controlled release delivery dosage form for controlled release of an active ingredient in the colon of patients having a colonic microflora imbalance or in the colon of healthy subjects, as claimed in claims 1 to 12, said method comprising:

[0035] forming a polymeric mixture of:

[0036] at least one water insoluble polymer and

[0037] a starch composition comprising at least one component selected from the group consisting of a starch having an amylose content of between 20 and 45%, preferably between 25 and 44%, and more preferably still of between 30 and 40%, modified starches, a modified starch having an amylose content of between 50 and 80% and a legume starch.

[0038] coating said active ingredient in the polymeric mixture.

[0039] In a further embodiment, the step of coating the active ingredient is a coating step at a core, the active ingredient being dispersed or dissolved in the core and/or the step of coating the active ingredient is a step of dispersing or dissolving the active ingredient in the polymeric mixture.

[0040] The conditions in the gastrointestinal tract of patients suffering from inflammatory bowel diseases (e.g. Crohn's Diseases and Ulcerative Colitis) can significantly differ from those in a healthy subject. The intra- and inter-individual variability can be substantial with respect to the pH of the GIT contents, types and concentrations of enzymes and enzymes-secreting bacteria as well as to the transit times within the various GIT segments. For instance, considerable amounts of bifidobacteria are generally present in the colon of healthy subjects and are able to degrade complex polysaccharides due to multiple extracellular glycodies. However, in the disease state their concentration can be significantly reduced.

[0041] For example, it was shown that the fecal glycodies activity (especially that of β-D-galactosidase) is decreased in patients suffering from Crohn's Disease and that the metabolic activity of the colonic flora is strongly disturbed in the active disease state. Thus, the impact of the pathophysiology can be crucial and can lead to the failure of the pharmaco-treatment.

[0042] FIG. 1: Water content of thin films consisting of different types of polymer blends (indicated in the figures) upon exposure to: (a) 0.1 M HCl, and (b) phosphate buffer pH 6.8. Films consisting only of plasticized ethylcellulose are shown for reasons of comparison.

[0043] FIG. 2: Dry mass of thin films consisting of different types of polymer blends (indicated in the figures) upon exposure to: (a) 0.1 M HCl, and (b) phosphate buffer pH 6.8. Films consisting only of plasticized ethylcellulose are shown for reasons of comparison.

[0044] FIG. 3: Water content of thin films consisting of branched maltodextrin or pea starch blended with ethylcellulose upon exposure to phosphate buffer pH 6.8 containing or not pancreatin or extract from rat intestine.

[0045] FIG. 4: Water content and dry mass of thin films consisting of different types of polysaccharides blended with ethylcellulose upon exposure to culture medium, culture medium inoculated with feces of Crohn's Disease (CD) patients and Ulcerative Colitis (UC) patients (as indicated in the figures). Films consisting only of plasticized ethylcellulose are shown for reasons of comparison.

[0046] FIG. 5: Pictures of the microflora developed upon incubation of thin, polymeric films of different composition (indicated in the figure) with fecal samples of inflammatory bowel disease patients.

[0047] FIG. 6: Water uptake and dry mass loss of thin films consisting of PS HP:PG:ethylcellulose blends upon exposure to 0.1 M HCl and phosphate buffer pH 6.8, respectively. The polymer blend ratio is indicated in the figures. For reasons of comparison also the behaviour of pure (plasticized) ethylcellulose films is shown.

[0048] FIG. 7: Changes in the energy at break of thin PS HP:PG:ethylcellulose films upon exposure to: (a) 0.1 M HCl and (b) phosphate buffer pH 6.8. The polymer blend ratio is indicated in the figures. For reasons of comparison also the results obtained with pure (plasticized) ethylcellulose films are shown.

[0049] FIG. 8: Water uptake and dry mass loss of thin films consisting of EURLON® 7 A-1PG: ethylcellulose blends upon exposure to 0.1 M HCl and phosphate buffer pH 6.8, respectively. The polymer blend ratio is indicated in the figures. For reasons of comparison also the behaviour of pure (plasticized) ethylcellulose films is shown.

[0050] FIG. 9: Changes in the energy at break of thin EURLON® 7 A-1PG:ethylcellulose films upon exposure to: (a) 0.1 M HCl and (b) phosphate buffer pH 6.8. The polymer blend ratio is indicated in the figures. For reasons of comparison also the results obtained with pure (plasticized) ethylcellulose films are shown.

[0051] FIG. 10: Water uptake and dry mass loss of thin films consisting of EURLON® 6 A-1PG:ethylcellulose blends upon exposure to 0.1 M HCl and phosphate buffer pH 6.8, respectively. The polymer blend ratio is indicated in the figures. For reasons of comparison also the behaviour of pure (plasticized) ethylcellulose films is shown.

[0052] FIG. 11: Changes in the energy at break of thin EURLON® 6 A-1PG: ethylcellulose films upon exposure to: (a) 0.1 M HCl and (b) phosphate buffer pH 6.8. The polymer
blend ratio is indicated in the figures. For reasons of comparison also the results obtained with pure (plasticized) ethylcellulose films are shown.

[0053] FIG. 12: Water uptake and dry mass loss of thin films consisting of EURYLYON® 6 HP-PG: ethylcellulose blends upon exposure to 0.1 M HCl and phosphate buffer pH 6.8, respectively. The polymer blend ratio is indicated in the figures. For reasons of comparison also the behaviour of pure (plasticized) ethylcellulose films is shown.

[0054] FIG. 13: Changes in the energy at break of thin EURYLYON® 6 HP-PG: ethylcellulose films upon exposure to: (a) 0.1 M HCl and (b) phosphate buffer pH 6.8. The polymer blend ratio is indicated in the figures. For reasons of comparison also the results obtained with pure (plasticized) ethylcellulose films are shown.

[0055] FIG. 14: Water uptake kinetics of thin peat starch: ethylcellulose films upon exposure to: (a) 0.1 M HCl, and (b) phosphate buffer pH 6.8. The polymer-polymer blend ratio (w:w) is indicated in the diagrams.

[0056] FIG. 15: Dry mass loss kinetics of thin peat starch: ethylcellulose films upon exposure to: (a) 0.1 M HCl, and (b) phosphate buffer pH 6.8. The polymer-polymer blend ratio (w:w) is indicated in the diagrams.

[0057] FIG. 16: Mechanical properties of thin peat starch: ethylcellulose films in the dry state: (a) puncture strength at break, (b) % elongation at break, and (c) energy at break. The polymer-polymer blend ratio (w:w) is indicated on the x-axes.

[0058] FIG. 17: Changes in the energy at break of thin peat starch: ethylcellulose films upon exposure to: (a) 0.1 M HCl (for 2 h), or (b) phosphate buffer pH 6.8 (for 8 h) at 37° C. The polymer-polymer blend ratio (w:w) is indicated in the diagrams.

[0059] FIG. 18: Drug release from pellets coated with peat starch:ethylcellulose 1:2 under conditions simulating the transit through the upper gastrointestinal tract: 2 h exposure to 0.1 M HCl, followed by 9 h exposure to phosphate buffer pH 6.8. The coating level is indicated in the diagram as well as the absorbance/presence of enzymes (0.32% pepsin at low pH, 1% pancreatin at neutral pH).

[0060] FIG. 19: Effects of the peat starch: ethylcellulose blend ratio (w:w) and coating level (indicated in the diagrams) on drug release from coated pellets under conditions simulating the transit through the upper gastrointestinal tract: 2 h exposure to 0.1 M HCl, followed by 9 h exposure to phosphate buffer pH 6.8. Solid/dotted curves indicate the absence/presence of enzymes (0.32% pepsin at low pH, 1% pancreatin at neutral pH).

[0061] FIG. 10: Drug release from pellets coated with peat starch:ethylcellulose 1:4 at a coating level of or 20% (as indicated) under conditions simulating the transit through the entire gastrointestinal tract: 2 h exposure to 0.1 M HCl, followed by 9 h exposure to phosphate buffer pH 6.8, followed by 10 h exposure to: (a) culture medium inoculated with fresh faecal samples from inflammatory bowel disease patients, or (b) culture medium inoculated with Bifidobacterium. For reasons of comparison, also drug release upon exposure to culture medium free of faecal samples is shown in (a) (dotted curves).

[0062] FIG. 21: Storage stability of pellets coated with 10, 15 and 20% peat starch:ethylcellulose 1:4: Drug release in 0.1 M HCl (for 2 h) and phosphate buffer pH 6.8 (for 9 h) before (solid curves) and after 1 year open storage (dotted curves).

[0063] FIG. 22: Macroscopic appearance of the colon of rats, receiving: (A) vehicle only intrarectally (negative control group), (B) TNBS intrarectally (positive control group), (C) TNBS intrarectally and BMD: EC coated pellets orally, or (D) TNBS intrarectally and Pentasa® pellets orally. TNBS/the vehicle only was administered intrarectally on day 3. The orally administered dose of 5-ASA was 150 mg/kg/day.

[0064] FIG. 23: Amelobean scores of rats, receiving: (i) TNBS intrarectally, (ii) TNBS intrarectally and Asacol® pellets orally, (iii) TNBS intrarectally and Pentasa® pellets orally, (iv) TNBS intrarectally and peat starch:ethylcellulose coated pellets orally, (v) TNBS intrarectally and BMD: ethylcellulose coated pellets orally. TNBS was administered intrarectally on day 3. The orally administered dose of 5-ASA was 150 mg/kg/day.

[0065] FIG. 24: Representative histological sections (normal transparietal section, x>200) of colon tissues of rats. The different layers are indicated: M—muscosa; SM—submu cosa; Mu—muscular layer.

Table 1: Concentrations of bacteria (log CFU/g) in the investigated samples of healthy subjects and inflammatory bowel disease patients.

Table 2: Effects of the type of polysaccharide blended with ethylcellulose and of the polysaccharide: ethylcellulose blend ratio on the mechanical properties of thin films in the dry state at room temperature.

Table 3: Dissolution test used to simulate the gradual increase in pH along the GIT.

DETAILED DESCRIPTION OF THE INVENTION

[0069] In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out herein.

[0070] As used herein, the term “active ingredient”, “drug” or “pharmacologically active ingredient” or any other similar term means any chemical or biological material or compound suitable for administration by the methods previously known in the art and/or by the methods taught in the present invention, that induces a desired biological or pharmacological effect, which may include but is not limited to (1) having a prophylactic effect on the organism and preventing an undesired biological effect such as preventing an infection, (2) alleviating a condition caused by a disease, for example, alleviating pain or inflammation caused as a result of disease, and/or (3) either alleviating, reducing, or completely eliminating the disease from the organism. The effect may be local, such as providing for a local anaesthetic effect, or it may be systemic.

[0071] As used herein, the expression “Colon microflora imbalance” also called Dysbiosis or dysbacteriosis is intended to mean, in the present invention, microbial imbalances as in quality and in quantity in the gastrointestinal tract. This phenomenon is reflected by the quality and quantity of the enzymes present in the colon. Particularly, this altered microflora is observed in the colon of patients suffering from inflammatory bowel diseases, such as Crohn’s Disease (CD) and Ulcerative Colitis (UC).

[0072] As used herein, the term “controlled release delivery” or “controlled release” means that the release of the active ingredient out of the dosage form is controlled with respect to time or with respect to the site of delivery.

[0073] The expression “modified starch” should be understood broadly, this expression refers for instance to reticulated or acetylated or hydroxypropylated, or more generally to esterification or etherification starch.

[0074] The term “coat” is used herein to encompass coatings for solid supports and also capsules enclosing fluids and/or solids and the term “coated” is used similarly.

[0075] The expression “water insoluble polymer” should be understood broadly, this expression refers to polymers that
do not completely dissolve in water, such as for example ethyl cellulose, certain starch derivatives or acrylic acid/meth-acrylic acid derivatives.

[0076] The term “indigestible polysaccharides” as used in the present invention refers to saccharides which are not or only partially digested in the intestine by the action of acids or digestive enzymes present in the human upper digestive tract (small intestine and stomach) but which are at least partially fermented by the human intestinal flora. Indigestible water-soluble polysaccharides that may be employed in preferred embodiments of the invention are xyloligosaccharides, inulin, oligofructoses, fructoo-oligosaccharides (POS), lactulose, galactomannan and suitable hydrolysates thereof, indigestible polydextrose, indigestible dextrins and partial hydrolysates thereof, trans-galacto-oligosaccharides (GOS), xyloligosaccharides (XOS), aminomannans, laminans or beta-glucans and partial hydrolysates thereof, polysaccharides-K (PSK), and indigestible maltodextrins and partial hydrolysates thereof.

[0077] Polysaccharide-K is also known as polysaccharide-Krestin (PSK) in Japan, and as polysaccharide-peptide (PS-P) in China. Both have the same chemical and structural characteristics. PSK is a proteoglycan found in the hyphophyic fungus Trametes versicolor and contains approximately 35% carbohydrate (91% beta-glukan), 35% protein and the remaining is free residues such as sugars, amino acids and moisture. PSK is a mixture of polysaccharides covalently linked to various peptides with an average molecular weight of 100 kilodaltons. The polysaccharide component is in a class of beta-glucans which comprise of glucopyranose units. Structural analysis showed that PSK has a 1,4-glucan configuration as the main glucoside portion with branches at positions 3 and 6 at a frequency of one branch per several residual groups of 1-4 bonds.

[0078] As used herein, the term “cereal” is intended to mean, in the present invention, any plant belonging to the Gramineae, preferably wheat, rice, rye, oats, barley, corn, sorghum and millets.

[0079] The term “legume” is intended to mean, in the present invention, any plant belonging to the Caesalpinaceae, Mimosaceae or Papilionaceae families and in particular any plant belonging to the Papilionaceae family, such as, for example, pea, bean, broad bean, horse bean, lentil, alfalfa, clover or lupin.

[0080] The expression “starch derivative” means a starch that has been enzymatically or chemically treated.

[0081] The “coating level” means the difference in weight between uncoated and coated cores that is the weight gain in percentage.

[0082] This definition includes in particular all the plants described in any one of the tables presented in the paper by R. Hoover et al. entitled “Composition, Structure, Functionality and Chemical Modification of Legume Starches: A Review”.

[0083] The term “pea” in this instance is considered in its broadest sense and includes in particular:

[0084] all the wild varieties of smooth pea and

[0085] all the mutant varieties of smooth pea and of wrinkled pea, this being the case whatever the uses for which said varieties are generally intended (food for man, animal nutrition and/or other uses).

[0087] The term “legume starch” is understood to mean any composition extruded, this being the case in whatever way, from a legume as defined hereinabove and having a starch content of greater than 40%, preferably of greater than 50% and more preferably still of greater than 75%, these percentages being expressed in dry weight with respect to the dry weight of said composition.

[0088] Furthermore, it is possible to use starches naturally exhibiting an amylose content within the range selected according to the invention. In particular, the starch resulting from legumes may be suitable. In accordance with the present invention, this legume starch exhibits an amylose content of less than 45%, more specifically of between 20 and 45%, preferably of between 25 and 44%, and more preferably still of between 32 and 40%.

[0089] For the purpose of the invention, the term “ingestible maltodextrin” means maltodextrin containing indigestible glucosidic linkages conferring on those maltodextrins additional properties identical to dietary fibers such as “branched maltodextrins”. As used herein, the term “branched maltodextrins” is intended to mean the ingestible maltodextrins described in patent EP 1 006 128, of which the applicant company is the proprietor.

[0090] According to a preferred variant, said branched maltodextrins have a reducing sugar content of between 2% and 5%, and a number-average molecular mass Mn of between 2000 and 3000 g/mole.

[0091] The branched maltodextrins have a total fiber content of greater than or equal to 50% on a dry basis, determined according to AOAC method No. 2001-03 (2001).

[0092] The invention provides novel polymeric film coatings for colon targeting which are adapted to the disease state of the patients suffering from inflammatory bowel diseases.

[0093] Novel polymeric films according to the invention serve as substrates for colonic bacteria for healthy patients as for patients suffering from inflammatory bowel diseases and are likely to exhibit beneficial effects on the ecosystem of the GIT of the patients. The polymeric film is especially adapted to the conditions at the target site, also in the disease state and able to deliver pharmaceutically active ingredients specifically to the colon.

[0094] In the following, the invention will be illustrated by means of the following examples as well as the figures.

Example 1

[0095] A. Materials and Methods

[0097] Branched maltodextrin (BMD) [a branched maltodextrin with non digestible glycosidic linkages: α-1,2 and α-1,3, NUTRIOSE® FB 06 Roquette Frères], Peas starch (granular pea starch N-735) (35% amylose), a pregelatinized hydroxypropyl pea starch (PS HP-PG)(LYCOAT® RS 780), a maltodextrin (MD)(GLUCIDE® 1, Roquette Freres), EURYLON® 7 A-PG (an acetylated and pregelatinized high amylose maize starch (70% amylose) (Roquette Freres, Lestrem, France), EURYLON® 6 A-PG (an acetylated and pregelatinized high amylose maize starch) (60% amylose) (Roquette Freres, Lestrem, France) and EURYLON® 6 HP-PG (a hydroxypropylated and pregelatinized high amylose maize starch (60% amylose) (Roquette Freres, Lestrem, France); aqueous ethylcellulose dispersion (Aquacoat® ECD
A.2. Film Preparation

Thin polymeric films were prepared by casting blends of different types of aqueous polysaccharides and aqueous ethylcellulose dispersion into Teflon moulds and subsequent drying for 1 day at 60°C. The water soluble polysaccharide was dissolved in purified water (5% w/w) and blended with plasticized ethylcellulose dispersion (25% TEC, overnight stirring; 15% w/w polymer content) at a ratio of 1:3 (polymer:polymer w/w). The mixture was stirred for 6 h prior to casting.

A.3. Film Characterization

The thickness of the film was measured using a thickness gauge (Minitest 600; Ehrler, Heimer, Germany). The mean thickness of all films was in the range of 300-340 μm. The water uptake and dry mass loss kinetics were measured gravimetrically upon exposure to:

(i) simulated gastric fluid (0.1 M HCl)
(ii) simulated intestinal fluid [phosphate buffer pH 6.8 (USP 30) with or without 1% pancreatin or 0.75% extract from rat intestine]
(iii) culture medium inoculated with feces from healthy subjects
(iv) culture medium inoculated with feces from inflammatory bowel disease patients
(v) culture medium free of feces for reasons of comparison.

Culture medium was prepared by dissolving 1.5 g beef extract, 3 g yeast extract, 5 g tryptone, 2.5 g NaCl and 0.3 g L-cysteine hydrochloride hydrate in 1 L distilled water (pH 7.0±0.2) and subsequent sterilization in an autoclave. Feces of patients with Crohn’s Disease or Ulcerative Colitis as well as feces of healthy subjects were diluted 1:200 with cysteinated Ringer solution; 25 ml of this suspension was diluted with culture medium to 100 ml. Film pieces of 1.5×5 cm were placed into 120 ml glass containers filled with 100 ml pre-heated medium, followed by horizontal shaking at 37°C. (GFL 3033, Gesellschaft für Labortechnik, Burgwedel, Germany). The incubation with fecal samples was performed under anaerobic conditions (5% CO₂, 10% H₂, 85% N₂). At predetermined time points samples were withdrawn, excess water removed, the films accurately weighed (wet mass) and dried to constant weight at 60°C. (dry mass). The water content (%) and dry film mass (%) at time t were calculated as follows:

\[
\text{water content} \, (\%) \, (t) = \left(\frac{\text{wet mass} \, (t) - \text{dry mass} \, (t)}{\text{wet mass} \, (t)}\right) \times 100\% \\
\text{dry film mass} \, (\%) \, (t) = \left(\frac{\text{dry mass} \, (t)}{\text{dry mass} \, (t = 0)}\right) \times 100\%
\]

A.4. Bacteriological Analysis

For the bacteriological analysis of fecal samples, the latter were diluted 1:10 with cysteinated Ringer solution. Eight further tenfold dilutions in cysteinated Ringer solution were prepared and 0.1 ml of each dilution was plated onto non-selective, modified Columbia blood agar (for total cultivable counts) and on McConkey agar (being selective for enterobacteria). Columbia blood agar plates were incubated during 1 week at 37°C under anaerobic conditions (5% CO₂, 10% H₂, 85% N₂). Colonies were outnumbered; predominant colonies subcultured and identified based on phenotypic identification criteria. 25 McConkey agar plates were incubated during 48 h at 37°C in air. The colonies were outnumbered and identified using the API 20E system (BioMerieux, Balme-les-Grottes, France). Counts were expressed as log CFU/g (Colon Forming Units per gram) of fresh feces.

For the bacteriological analysis of the microflora developed upon film incubation with fecal samples, photomicrographs were taken after Gram-staining with an Axiostar plus microscope (Carl Zeiss, Jena, Germany), equipped with a camera (Unit DS-I, DS camera Head DS-Fi 1; Nikon, Tokyo, Japan). Incubation was performed in a glicides-free culture medium containing only small amounts of polypeptides (thus, favoring the use of the investigated polysaccharides as substrates) under anaerobic conditions.

B. Results and Discussion

The permeability of a polymeric system for a drug strongly depends on its water content and dry mass, which determine the density and mobility of the macromolecules. For instance, in dry hydroxypropyl methylcellulose (HPMC)-based matrix tablets the apparent diffusion coefficient of a drug approaches zero, whereas in a completely hydrated HPMC gel diffusivities can be reached, which are in the same order of magnitude as in aqueous solutions. With increasing water content the macromolecular mobility significantly increases and, thus, the free volume available for diffusion. In some systems, the polymer undergoes a glassy-to-rubbery phase transition as soon as a critical water content is reached. This leads to a significant, stepwise increase in polymer and drug mobility. Thus, the water content of a polymeric film coating can give important insight into the macromolecular mobility and, hence, permeability for a drug. FIGS. 1a and 1b show the water uptake kinetics of thin films consisting of various types of polysaccharide: polysaccharide ethylcellulose blends in 0.1 N HCl and phosphate buffer pH 6.8, respectively. The presence of ethylcellulose in all films allows avoiding premature dissolution in the upper GIT. The investigated polysaccharides are all water-soluble and aim at providing the sensitivity of the coatings’ drug permeability to the surrounding environment: Once the colon is reached, the polysaccharides are to be enzymatically degraded and drug release to be started. The polyaccharide: polysaccharide ethylcellulose blend ratio in FIG. 1 is constant: 1:3. Clearly, the water uptake rates and extents significantly depend on the type of polysaccharide. The ideal film coating allowing for colon targeting should take up only small amounts of water at a low rate in both media in order to prevent premature drug release in the upper GIT. As it can be seen, blends of ethylcellulose and BMD or pea starch are most promising for this purpose. Plasticized ethylcellulose films without water-soluble polysaccharide take up only minor amounts of water (empty circles).
In addition to the water uptake kinetics also the dry mass loss behaviour of thin polymeric films serves as an indicator for the coatings' permeability for the drug, and, hence, potential to suppress premature release within the upper GIT. If the films loose significant amounts of dry mass upon exposure to the release media, the coatings can be expected to become permeable for many drugs, in particular those with a low molecular weight such as 5-aminosalicylic acid (5-ASA, 153.1 Da). FIGS. 2a and 2b illustrate the experimentally determined dry mass loss of thin films consisting of various polysaccharides: polysaccharide ethylcellulose blends (constant ratio=1:3) upon exposure to 0.1 N HCl and phosphate buffer pH 6.8, respectively. The ideal film looses only minor amounts of dry mass at a low rate (or no mass at all), assuring dense polymeric networks which are poorly permeable for the incorporated drug under these conditions. As it can be seen, the dry mass loss of peans starch- and BMD-containing films is very low, even after up to 8 h exposure to these release media. The observed decrease in dry mass can at least partially be attributed to the leaching of the water-soluble plasticizer triethyl citrate (TEC, used to plasticize the aqueous ethylcellulose dispersion) into the bulk fluid. In addition, parts of the water-soluble polysaccharide might leach out of the films. Plasticized ethylcellulose films without water-soluble polysaccharide loose only very small amounts of water, irrespective of the type of release medium (empty circles). However, the permeability of intact ethylcellulose films is known to be very low for many drugs, which can at least partially be attributed to the low water uptake rates and extents of these systems. For this reason, intact ethylcellulose films are also used as moisture protective coatings. Please note that the loss of the water-soluble plasticizer TEC into the bulk fluids can be expected to be much more pronounced in films containing 25% (w/w) water-soluble polysaccharides compared to pure (plasticized) ethylcellulose films, because the increased water uptake rates and extents (FIG. 1) of the blended systems lead to much higher polymer chain mobility and, thus, also increased TEC mobility.

It has to be pointed out that the results shown in FIG. 2 were obtained in the absence of any enzymes. It is well known that pancreatic enzymes can degrade certain polysaccharides and, thus, potentially induce significant mass loss and water uptake under in vivo conditions. However, the use of enzymes did not significantly affect the resulting water uptake and dry mass loss kinetics of the investigated films. Thus, the latter do not serve as substrates for these enzymes.

Once the colon is reached, the polymeric film coatings should become permeable for the drug. This can for instance be induced by (partial) enzymatic degradation. Importantly, the concentrations of certain enzymes are much higher in the colon than in the upper GIT. This includes enzymes, which are produced by the natural microflora of the colon (this part of the GIT contains much more bacteria than the stomach and small intestine). However, great caution must be paid when using this type of colon targeting approach, because the microflora of patients suffering from inflammatory bowel diseases can be significantly different from the microflora of healthy subjects. Thus, the drug delivery system must be adapted to the disease state of the patient. Table 1 shows for instance the concentrations of the bacteria determined in the fecal samples of the healthy subjects as well as of the Crohn's Disease and Ulcerative Colitis patients included in this study. Importantly, there were significant differences, in particular with respect to the concentrations of *Bifidobacterium* (being able to degrade complex polysaccharides due to multiple extracellular glycosidases) and *Escherichia coli*, which where present at much higher concentrations in the feces of healthy subjects compared to the feces of the inflammatory bowel disease patients. In contrast, the fecal samples of the Crohn's Disease and Ulcerative Colitis patients contained lactose negative *E. coli*, *Citrobacter freundii*, *Klebsiella pneumoniae*, *Klebsiella oxytoca* and *Enterobacter cloacae*, which were not detected in healthy subjects. Thus, there are fundamental differences in the quality and quantity of the microflora, which must be taken into account: Polymeric film coatings, which allow for colon targeting under physiological conditions in a healthy volunteer, might fail under the pathophysiological conditions in the disease state of a patient. To address this very crucial point, which is very often neglected, the water uptake and dry mass loss of thin films consisting of various types of polysaccharides: polysaccharide ethylcellulose blends were determined upon exposure to fecal samples from Crohn's Disease and Ulcerative Colitis patients as well as to the feces of healthy subjects and to pure culture medium for reasons of comparison (FIG. 4). Appropriate films should take up considerable amounts of water and show significant dry mass loss upon exposure to patients' feces in order to induce drug release at the site of inflammation in the colon. As it can be seen in FIGS. 4a and 4b, films based on ethylcellulose: BMD and ethylcellulose: peas starch (which are the two most promising types of polymer blends based on the above described results obtained in media simulating the contents of the upper GIT) show significant water uptake and dry mass loss upon exposure to the feces of Crohn's Disease patients, Ulcerative Colitis patients as well as of healthy subjects. Please note that also other types of polymer blends look promising with respect to the presented films' water uptake and dry mass loss behaviour upon exposure to fecal samples (or even more appropriate than ethylcellulose: BMD and ethylcellulose: peas starch blends). However, these systems already take up considerable amounts of water and remarkably loose in dry mass upon contact with media simulating the contents of the upper GIT (FIGS. 1 and 2).

The fact that the investigated polymeric films serve as substrates for the bacteria in feces from inflammatory bowel disease patients could be further confirmed by the analysis of the microflora developed upon film exposure to fecal samples under anaerobic conditions at 37°C (FIG. 5). Clearly, specific types of bacteria proliferated upon incubation with the blended films. Importantly, this phenomenon can be expected to be highly beneficial for the ecosystem of the GIT of the patients in the disease state, normalizing the microflora in the colon. This very positive, pre-biotic effect comes in addition to the drug targeting effect. Biological samples incubated without any polymeric films or with pure (plasticized) ethylcellulose films showed much less bacterial growth (FIG. 5).

The novel polymeric film coatings identified for colon targeting are composed of water insoluble polymer:
polysaccharide particularly ethylcellulose: BMD, ethylcellulose; MD, ethylcellulose: EURYLON® 6 A-PG, ethylcellulose: EURYLON® 6 HP-PG and ethylcellulose: EURYLON® 7 A-PG blends, which are adapted to the disease state of the patients. Importantly, low water uptake and dry mass loss rates and extents in media simulating the contents of the upper GIT can be combined with elevated water uptake and dry weight loss upon contact with feces from inflammatory bowel disease patients. Changes in the composition of the flora in the colon of patients indicate that these polysaccharides serve as substrates for colonic bacteria in the disease state and are likely to exhibit beneficial effects on the ecosystem of the GIT of the patients. The obtained new knowledge, thus, provides the basis for the development of novel polymeric film coatings able to deliver drugs specifically to the colon. Importantly, these polymeric barriers are adapted to the conditions at the target site in the disease state.

Example 2

[0120] A. Materials and Methods
[0121] A.1. Materials
[0122] Preparatized hydroxypropyl pea starch (PS HP-PG) (LYCOAT® RS 780, Roquette Freres), EURYLON® 7 A-PG (an acetylated and preaplatized high amylase maize starch (70% amylose)) (Roquette Freres, Lestrem, France), EURYLON® 6 A-PG (an acetylated and preaplatized high amylase maize starch (60% amylose)) (Roquette Freres, Lestrem, France) and EURYLON® 6 HP-PG (a hydroxypropylated and preaplatized high amylase maize starch (60% amylose)) (Roquette Freres, Lestrem, France); aqueous ethylcellulose dispersion (Aquadro ECD 30; FMC Biopolymer, Philadelphia, USA); triethylicitrate (TEC; Morflex, Greensboro, USA).

[0123] A.2. Preparation of thin, polymeric films
[0124] Thin polymeric films were prepared by casting blends of different types of polysaccharides and aqueous ethylcellulose dispersion into teflon moulds and subsequent drying for 1 day at 60 °C. The water soluble polysaccharide was dissolved in purified water (5% w/w, in the case of EURYLON® 7 A-PG, EURYLON® 6 A-PG and EURYLON® 6 HP-PG in hot water), blended with plasticized aqueous ethylcellulose dispersion (25.0, 27.5 or 30.0% w/w TEC, referred to the ethylcellulose content overnight stirring; 15% w/w polymer content) at a ratio of 1:2, 1:3, 1:4, 1:5 (polymer: polymer w/w), as indicated. The mixtures were stirred for 6 h prior to casting.
[0125] A.3. Film Characterization
[0126] The thickness of the films was measured using a thickness gauge (Minilotest 600; Erichsen, Henner, Germany). The mean thickness of all films was in the range of 300-340 µm. The water uptake and dry mass loss kinetics of the films were measured gravimetrically upon exposure to 0.1 M HCl and phosphate buffer pH 6.8 (USP 30) as follows: Pieces of 1.5 x 5 cm were placed into 120 mL plastic containers filled with 100 mL pre-heated medium, followed by horizontal shaking at 37 °C. (80 rpm, GFL 3033; Gesellschaft fuer Labortecnik, Burgwedel, Germany). At predetermined time points samples were withdrawn, excess water removed, the films accurately weighed (wet mass) and dried to constant weight at 60 °C. (dry mass). The water content (%) and dry film mass (%) at time t were calculated as follows:

\[
\text{Water content} (\%) = \frac{\text{wet mass (t)} - \text{dry mass (t)}}{\text{wet mass (t)}} \times 100\% \tag{1}
\]

\[
\text{Dry film mass} (\%) = \frac{\text{dry mass (t)}}{\text{dry mass (t = 0)}} \times 100\% \tag{2}
\]

[0128] The mechanical properties of the films in the dry and wet state were determined with a texture analyzer (TAXT. Plus, Winopal Forschungsbetar, Ahsneke, Germany) and the puncture test. Film specimens were mounted on a film holder (n=6). The puncture probe (spherical end: 5 mm diameter) was fixed on the load cell (5 kg), and driven downward with a cross-head speed of 0.1 mm/s to the center of the film holder’s hole. Load versus displacement curves were recorded until rupture of the film and used to determine the mechanical properties as follows:

\[
\text{Puncture strength} = \frac{F}{A} \tag{3}
\]

\[
\text{% elongation at break} = \frac{\sqrt{R^2 + D^2} - R}{R} \times 100\% \tag{4}
\]

[0130] Here, R denotes the radius of the film exposed in the cylindrical hole of the holder and D the displacement.

\[
\text{Energy at break unit volume} = \frac{\text{AUC}}{V} \tag{5}
\]

[0131] Where AUC is the area under the load versus displacement curve and V the volume of the film located in the die cavity of the film holder.

[0132] B. Results and Discussion
[0134] FIG. 6 shows the gravimetrically determined water uptake and dry mass loss kinetics of thin films consisting of different types of PS HP-PG: ethylcellulose blends upon exposure to 0.1 M HCl and phosphate buffer pH 6.8, respectively. PS HP-PG is a pregelatinized modified starch. As in the case of MD, the resulting extent and rate of water penetration into the systems significantly increased when increasing the polysaccharide:ethylcellulose ratio from 1:5 to 1:2 (FIG. 12, top row). This can again be attributed to the higher hydrophilicity of the polysaccharide compared to ethylcellulose. Appropriately elevated coating levels are likely to be required to suppress the premature release of freely water-soluble, small molecular weight drugs in the upper GIT at high initial PS HP-PG contents. Also the rate and extent of the films' dry mass loss significantly increased with increasing PS HP-PG contents, due to partial TEC and polysaccharide leaching. In all cases, the rates and extents of the water penetration and dry mass loss were higher in phosphate buffer pH 6.8 compared to 0.1 M HCl, because of the pH-dependent
ionization of SDS as discussed above. As in the case of MD: ethylcellulose blends, the mechanical stability of PS HP-PG: ethylcellulose films could effectively be adjusted by varying the initial ethylcellulose content. This was true for the puncture strength, % elongation at break and energy at break in the dry state at room temperature (Table 2) as well as for the mechanical resistance in the wet state upon exposure to 0.1 M HCl and phosphate buffer pH 6.8 (FIG. 7). The decrease in the energy at break with time can again be attributed to partial plasticizer and polysaccharide leaching into the bulk fluids, irrespective of the type of release medium.

[0136] The water uptake and dry mass loss kinetics of thin films consisting of 1:2 to 0:1 EURLYN® 7 A-PG: ethylcellulose blends in 0.1 M HCl and phosphate buffer pH 6.8 are shown in FIG. 8. EURLYN® 7 A-PG is an acetylated and pregelatinized high amylose maize starch (70% amylose) (Roquette Freres, Les trem, France). As it can be seen, the same tendencies as with MD: ethylcellulose and PS HP-PG: ethylcellulose blends were observed: (i) the water uptake rates and extents increased with decreasing ethylcellulose contents, (ii) the dry mass loss rates and extents increased with increasing polysaccharide contents, (iii) these effects were more pronounced in phosphate buffer pH 6.8 than in 0.1 M HCl. Importantly, the water contents of the films upon 2 h exposure to phosphate were considerable: about 50% w/w. Thus, also at high initial EURLYN® 7 A-PG contents, elevated coating levels are likely to be required in order to suppress the premature release of freely water-soluble, low molecular weight drugs in the upper GIT. Importantly, the mechanical resistance of the EURLYN® 7 A-PG: ethylcellulose based films was significantly higher than that of films consisting of MD: ethylcellulose and PS HP-PG: ethylcellulose blends in the dry state at room temperature (Table 2). However, these differences became minor when the films were exposed to 0.1 M HCl and phosphate buffer pH 6.8, irrespective of the type of release medium (FIG. 9). Importantly, the variation of the polymer blend ratio again allowed for an efficient adjustment of the mechanical stability of the films.

[0138] EURLYN® 6 A-PG is an acetylated and pregelatinized high amylose maize starch (60% amylose) (Roquette Freres, Les trem, France), and EURLYN® 6 HP-PG a hydroxypropylated and pregelatinized high amylose maize starch (60% amylose) (Roquette Freres, Les trem, France). Interestingly, the dry mass loss of thin films consisting of EURLYN® 6 A-PG: ethylcellulose and EURLYN® 6 HP-PG: ethylcellulose blends was much less pronounced than that of the other investigated polymer blends upon exposure to 0.1 M HCl and phosphate buffer pH 6.8, respectively (FIGS. 10 and 12, bottom rows). This was true for both, the rates and the extents of the dry mass loss and for all the investigated polymer blend ratios. In contrast, the water uptake rates and extents of these films upon exposure to the different release media were similar to those of the other polysaccharide: ethylcellulose blends, reaching water contents of approximately 50% w/w after 1-2 h exposure to phosphate buffer pH 6.8 in the case of high initial polysaccharide contents (FIGS. 10 and 12, top rows). Thus, also for EURLYN® 6 A-PG: ethylcellulose and EURLYN® 6 HP-PG: ethylcellulose blends elevated coating levels are likely to be required to suppress premature release of freely water-soluble, low molecular weight drugs in the upper GIT at low initial ethylcellulose contents. As it can be seen in Table 2, the mechanical properties of thin films consisting of these types of polymer blends in the dry state at room temperature are similar to those of EURLYN® 7 A-PG: ethylcellulose blends at the same blend ratios. As in the case of the latter blends, exposure to 0.1 M HCl or phosphate buffer pH 6.8 resulted in a decrease in the mechanical stability of the macromolecular networks, irrespective of the type of release medium and polymer blend ratio (FIGS. 11 and 13). Importantly, desired system stabilities can again effectively be adjusted by varying the polymer blend ratio.

[0139] The key properties of thin polymeric films consisting of polysaccharide: water insoluble polymer blends exhibiting an interesting potential to provide site specific drug delivery to the colon (and being adapted to the pathophysiology of inflammatory bowel disease patients) can effectively be adjusted by varying the polymer blend ratio and type of polysaccharide. This includes the water uptake and dry mass loss kinetics as well as the mechanical properties of the films before and upon exposure to aqueous media simulating the contents of the upper GIT. Thus, broad ranges of film coating properties can easily be provided, being adapted to the needs of the respective drug treatment (e.g., osmotic activity of the core formulation and administered dose)

Example 3

[0140] A. Materials and methods

[0141] A.1. Materials

[0142] Peas starch N-735 (peas starch; Roquette Freres, Les trem, France); Aquacoat ECD 30 (aqueous ethylcellulose dispersion; FMC Biopolymer, Brussels, Belgium); triethylcitrat (TEC; Morflex, Greensboro, N.C., USA); 5-aminosalicylic acid (5-ASA; Sigma-Aldrich, Isle d'Abeau Chesnes, France); microcrystalline cellulose (Avicel PH 101; FMC Biopolymer); bentonite and polyvinylpyrrolidone (PVP, Povidone K 30) (Cooperation Pharmaceutique Francaise, Melun, France); pancreatic (from mammalian pancreas—mixture of amylase, protease and lipase) and pepsin (Fisher Bioblock, Illkirch, France); extracts from beef and yeast as well as trypsite (human pancreas digest of casein) (Becton, Dickinson and Company, Franklin Lakes, N.J., USA); L-cysteine hydrochloride hydrate (Acros Organics, Geel, Belgium); ceyestrated Ringer solution (Merck, Darmstadt, Germany).

[0144] Thin, free films were prepared by casting blends of peas starch and aqueous ethylcellulose dispersion (plasticized with 25% TEC) onto Teflon moulds and subsequent controlled drying (1 d at 60°C). Peas starch was dispersed in purified water at 65-75°C (5% w/w). Aqueous ethylcellulose dispersion (15% w/w solids content) was plasticized for 24 h with 25% TEC (w/w, referred to the solids content of the dispersion). The peas starch and ethylcellulose dispersions were blended at room temperature at the following ratios: 1:2, 1:3, 1:4 and 1:5 (polymer:polymer, w/w). The mixtures were stirred for 6 h prior to casting.

[0146] The thickness of the films was measured using a thickness gauge (Minitest 600; Erichsen, Hemer, Germany). The mean thickness of all films was in the range of 300-340 μm.

[0147] The water uptake and dry mass loss kinetics of the films were measured gravimetrically upon exposure to: (i)
simulated gastric fluid (0.1 M HCl), and (ii) simulated intestinal fluid [phosphate buffer pH 6.8 (USP 32)] at 37° C. as follows: Pieces of 1.5 cm x 5 cm were placed into 120 mL plastic containers filled with 100 mL pre-heated medium, followed by horizontal shaking at 37° C. (80 rpm; GFL 3033; Gesellschaft fuer Labortechnik, Burgwedel, Germany). At predetermined time points samples were withdrawn, excess water removed, the films accurately weighed (wet mass) and dried to constant weight at 60° C. (dry mass). The water content (%) and dry film mass (%) at time t were calculated as follows:

\[
\text{water content (\%) at time t} = \frac{\text{wet mass (t)} - \text{dry mass (t)}}{\text{wet mass (t)}} \times 100%
\]

(1)

\[
\text{dry film mass (\%) at time t} = \frac{\text{dry mass (t)}}{\text{dry mass (t = 0)}} \times 100%
\]

(2)

[0148] The mechanical properties of the films were determined using a texture analyzer (TAXT.Plus; Winopal Forschungsbedarf, Alsnbeck, Germany) and the puncture test in the dry state and upon exposure to 0.1 M HCl and phosphate buffer pH 6.8 (in the wet state). Film specimens were mounted on a film holder (n=6). The puncture probe (spherical end: 5 mm diameter) was fixed on the load cell (5 kg), and driven downward with a cross-head speed of 0.1 mm/s to the center of the film holder's hole. Load versus displacement curves were recorded until rupture of the film and used to determine the mechanical properties as follows:

\[
\text{puncture strength at break} = \frac{F}{A}
\]

(3)

where F is the load required to puncture the film and A the cross-sectional area of the edge of the film located in the path.

\[
\text{% elongation at break} = \frac{\sqrt{R^2 + D^2} - R}{R} \times 100\%
\]

(4)

[0149] Here, R denotes the radius of the film exposed in the cylindrical hole of the holder and D the displacement.

\[
\text{energy at break per unit volume} = \frac{\text{AUC}}{V}
\]

(5)

Where AUC is the area under the load versus displacement curve and V the volume of the film located in the die cavity of the film holder.

[0150] Where AUC is the area under the load versus displacement curve and V the volume of the film located in the die cavity of the film holder.

[0153] Drug (5-amino salicylic acid, 5-ASA) loaded pellet startercore (diameter: 0.7-1.0 mm; 60% 5-ASA, 32% microcrystalline cellulose, 4% bentonite, 4% PVP) were prepared by extrusion and subsequent spheronisation as follows: The respective powders were blended in a high speed granulator (Gral 10; Collette, Antwerp, Belgium) and purified water was added until a homogeneous mass was obtained (41 g of water for 100 g of powder blend). The wetted mixture was passed through a cylinder extruder (SK M/R; holes: 1 mm diameter, 3 mm thickness, rotation speed: 96 rpm; Alexanderwerk, Remscheid, Germany). The extrudates were subsequently spheronised at 520 rpm for 2 min (Spheroniser Model 15; Calvea, Dorset, UK) and dried in a fluidized bed (ST 15; Aeromatic, Muttenz, Switzerland) at 40° C. for 30 min. The size fraction 0.7-1.0 mm was obtained by sieving. These drug loaded startercores were then coated in a fluidized bed coater, equipped with a Wurster insert (Strea 1; Aeromatic-Fielder, Bubendorf, Switzerland) with different peel starch: ethylcellulose blends until a weight gain of 5, 10, 15 or 20% (w/w) was achieved. The coating formulations were prepared in the same way as the dispersions used for film casting (as described in section 2.2. Preparation of free films). The process parameters were as follows: inlet temperature=39±2° C., product temperature=40±2° C., spray rate=1.5-3 g/min, atomization pressure=1.2 bar, nozzle diameter=1.2 mm. Afterwards, the pellets were further fluidized for 10 min and subsequently cured in an oven for 24 h at 60° C.

[0155] Drug release from coated pellets was measured in media simulating the conditions in the:

[0156] Upper gastro intestinal tract: Pellets were placed into 120 mL plastic containers, filled with 100 mL dissolution medium: 0.1 M HCl (optionally containing 0.32% pepsin) during the first 2 h, and phosphate buffer pH 6.8 (USP 32) (optionally containing 1% pancreatin) during the subsequent 9 h. The flask was agitated in a horizontal shaker (80 rpm; GFL 3033). At pre-determined time points, 3 mL samples were withdrawn and analyzed UV-spectrophotometrically for their drug content (A=302.6 nm in 0.1 M HCl; λ=330.6 nm in phosphate buffer pH 6.8) (UV-1650; Shimadzu, Champs Sur Marne, France). In the presence of enzymes, the samples were centrifuged for 15 min at 11000 rpm and subsequently filtered (0.2 μm) prior to UV-measurements. Each experiment was conducted in triplicate.

[0157] Entire gastro intestinal tract: Pellets were exposed to 0.1 M HCl for 2 h and subsequently to phosphate buffer pH 6.8 (USP 32) for 9 h in a USP Apparatus 3 (Bio-Dis; Varian, Paris, France) (dipping speed=10 rpm). Afterwards, the pellets were transferred into 120 mL flasks filled with: (i) 100 mL culture medium inoculated with feces from inflammatory bowel disease patients, (ii) culture medium inoculated with Bifidobacterium, or (iii) culture medium free of feces and bacteria for reasons of comparison. The samples were agitated (50 rpm) at 37° C. under anaerobic conditions (5% CO2, 10% H2, 85% N2). Culture medium was prepared by dissolving 1.5 g beef extract, 3 g yeast extract, 5 g tryptone, 2.5 g NaCl and 0.3 g L-cysteine hydrochloride hydrate in 1 L distilled water (pH 7.0±0.2) and subsequent sterilization in an autoclave. Feces of patients suffering from Crohn’s disease or ulcerative colitis were diluted 1:200 with cyclstinmated Ringer solution; 2.5 mL of this suspension was diluted with culture medium to 100 mL. At pre-determined time points, 2 mL samples were withdrawn, centrifuged at 13000 rpm for 5 min, filtered (0.22 μm) and analyzed by HPLC for their drug content (ProStar 230; Varian). The mobile phase consisted of 10% methanol and 90% of an aqueous acetic acid solution (1% w/v) (Siew et al., 2000a). Samples were injected into a Pursuit C18 column (150x4.6 mm; 5 μm), the flow rate was 1.5 mL/min. The drug was detected UV-spectrophotometrically at λ=300 nm.

[0158] Drug release was measured from freshly prepared pellets (if not otherwise stated), as well as from pellets stored...
for 1 year at room temperature (23±2°C) and ambient relative humidity (55±5%) in open glass vials.

[0159] B. Results and Discussion

[0161] Ideally, a polymeric film coating allowing for site specific drug delivery to the colon should effectively suppress drug release in the upper part of the gastrointestinal tract: the stomach and the small intestine. Thus, the film coating (which surrounds the drug reservoir) should be poorly permeable for the drug upon exposure to media simulating the contents of these organs (in order to avoid premature drug release and subsequent absorption into the blood stream). If a polymeric film coating takes up significant amounts of water or looses considerable amounts of dry mass upon exposure to a bulk fluid, its permeability for drug molecules can be expected to remarkably increase []. For this reason, the water uptake and dry mass loss kinetics of thin peas starch: ethylcellulose films were monitored upon exposure to: (a) 0.1 M HCl (simulating the contents of the stomach) for 2 h, and (b) phosphate buffer pH 6.8 (simulating the contents of the small intestine) for 8 h. FIG. 14 shows the experimentally determined water contents of the films as a function of time. The pease starch:ethylcellulose blend ratio was varied from 1:2 to 1:4, as indicated. For reasons of comparison, also films consisting only of (plasticized) ethylcellulose were studied (filled triangles). As it can be seen, the water uptake rates and extents increased with increasing pease starch contents, due to the hydrophilic nature of this polymer. Importantly, the water uptake remains limited in all cases (below 30%). The slightly higher water uptake rates and extents at pH 6.8 compared to pH 1.2 (FIG. 14b versus 14a) can probably be attributed to the presence of sodium dodecyl sulfate (SDS), which is present in the aqueous ethylcellulose dispersion used for film preparation, serving as a stabilizer of this dispersion. At low pH, SDS is protonated and non-charged, whereas at pH 6.8 it is deprotonated and, thus, negatively charged. Hence, its hydrophilicity is increased and water penetration into the films is facilitated [].

[0162] FIG. 15 shows the experimentally measured dry mass loss kinetics of various pease starch: ethylcellulose films upon exposure to: (a) 0.1 M HCl, and (b) phosphate buffer pH 6.8. As it can be seen, the dry mass loss rate and extent slightly increased with increasing pease starch content, because this polysaccharide significantly swells upon contact with water and, thus, facilitates the leaching of water-soluble film compounds (e.g., of the water-soluble plasticizer TEC []) into the surrounding bulk fluid. The lowest mass loss was observed with pease starch-free films, irrespective of the type of medium. This can be attributed to the fact that ethylcellulose is poorly swellable and permeable upon contact with aqueous media. It effectively hinders the leaching of water-soluble compounds.

[0163] Thus, the observed water uptake and dry mass loss kinetics of pease starch: ethylcellulose films are very promising with respect to the potential use of these films as barrier membranes hindering drug release in stomach and small intestine. If required, the film thickness and/or ethylcellulose contents might be increased. However, care should be taken that sufficient amounts of pease starch are present in the coatings, because this compound is intended to induce the onset of drug release in the colon (being degraded by enzymes secreted from colonic bacteria).

[0165] In addition to limited water uptake and dry mass loss, polymeric film coatings aiming at site specific drug delivery to the colon should provide a sufficient mechanical stability. Due to the physiological motility of the stomach and small intestine, mechanical stress is exerted onto the coated dosage forms. If the film coatings are fragile, crack formation occurs and the drug is rapidly released through water-filled channels. To evaluate the mechanical stability of the investigated pease starch: ethylcellulose blends, a texture analyzer and the puncture test were used. FIG. 16 shows the: (a) puncture strength at break, (b) % elongation at break, and (c) energy required to break thin polymeric films in the dry state. Clearly, the mechanical stability of the films significantly increased with increasing ethylcellulose content. Interestingly, all values are relatively high, suggesting that film coatings with a common thickness can withstand the mechanical stress experienced within the gastrointestinal tract in vivo.

[0166] However, it has to be pointed out that the results shown in FIG. 16 were obtained with dry films. Upon contact with aqueous bulk fluids, the mechanical properties of a polymeric film coating can significantly change, for instance due to compound leaching into the surrounding bulk fluid and/or the plasticizing effect of water [Erreur ! Signet non défini., Erreur ! Signet non défini.]. For these reasons, the mechanical properties of the investigated pease starch: ethylcellulose films were also measured upon up to 2 h exposure to 0.1 M HCl and up to 8 h exposure to phosphate buffer pH 6.8. FIGS. 17a and 17b show the respective energies required to break the wet films of different composition. Clearly, the mechanical strength of all films decreased with increasing exposure time, irrespective of the type of bulk fluid. This can at least partially be attributed to the leaching of the water-soluble plasticizer TEC into the bulk fluids [Erreur ! Signet non défini.]. As expected, an increase in the ethylcellulose content resulted in increased energies required to break the films in both media. Importantly, the observed values suggest that all film coatings are likely to withstand the mechanical stress encountered in vivo within the gastrointestinal tract, also in the wet state (at commonly used coating levels).

[0168] Ideally, no or very little drug should be released from the dosage form in the stomach and small intestine. The solid curves in FIG. 18 show the experimentally determined drug release kinetics from pellets coated with pease starch: ethylcellulose 1:2 at a coating level of 0, 5, 10, 15 and 20% (w/w) into: 0.1 M HCl (for 2 h), followed by phosphate buffer pH 6.8 (for 9 h) at 37°C. As it can be seen, 5-aminosalicylic acid was rapidly released from uncoted pellets as well as from pellets coated with only 5% pease starch: ethylcellulose 1:2. This can at least partially be attributed to the water uptake and dry mass loss of these film coatings upon exposure to the release media (FIGS. 14 and 15), in combination with an insufficient thickness of the polymeric barrier. Importantly, at coating levels equal to and above 10% (w/w), drug release was effectively slowed down (probably due to the increase in the length of the diffusion pathways and increased mechanical stability of the film coatings).

[0169] However, it has to be pointed out that the presence of enzymes within the gastrointestinal tract in vivo might significantly affect the film coating properties, e.g. due to partial polymer degradation. For this reason, drug release from the coated pellets was also measured in: (i) 0.1 M HCl containing 0.32% pepsin (for 2 h), followed by (ii) phosphate buffer pH 6.8 containing 1% pancreatic (for 9 h). The respective results are indicated by the dotted curves in FIG. 18. Clearly, in all cases the drug release rate only slightly increased. Thus, the importance of such enzymatic degradation in vivo is likely to be limited.
As an increase in the relative ethylcellulose contents of the films resulted in decreased water uptake and dry mass loss rates and extents (FIGS. 14 and 15) as well as increased mechanical stability of the films in the dry and wet state (FIGS. 16 and 17), drug release was also measured from pellets coated with pea starch:ethylcellulose 1:3, 1:4 and 1:5 blends at different coating levels (FIG. 19). Interestingly, in these cases even a film coating of only 5% (w/w) is able to slow down drug release. However, coating levels of 10% or more are more appropriate, because drug release is almost completely suppressed within the observation period.

Based on the obtained results (FIGS. 14-19), pellets coated with pea starch:ethylcellulose 1:4 at a coating level of 15 and 20% have been selected for further studies.

Once the dosage form reaches the colon, the film coating should become permeable for the drug and release the latter in a time-controlled manner. FIG. 20a shows the experimentally measured release of 5-amino salicylic acid from pellets coated with pea starch:ethylcellulose 1:4 at a coating level of 15 and 20% (w/w) into: (i) 0.1 M HCl for 2 h, followed by (ii) phosphate buffer pH 6.8 for 9 h, and (c) culture medium inoculated with fecal samples from inflammatory bowel disease patients for 10 h (solid curves). For reasons of comparison, also drug release upon exposure to culture medium free of feces is illustrated (dotted curves).

Clearly, drug release set on as soon as the pellets came into contact with fecal samples. This can be attributed to the (at least partial) degradation of pea starch by the enzymes secreted by the bacteria present in the colon of the patients. The decrease in polymer molecular weight and subsequent diffusion of degradation products into the surrounding bulk fluids renders the remaining macromolecular network more mobile. Consequently, also the mobility of the drug molecules within the film coating increases and, thus, the release rate increases. In contrast, the drug release rate remained low upon exposure to culture medium free of feces (dotted curves in FIG. 20a). This confirms that drug release is triggered by the enzymes present in the colon of IBD patients. From a practical point of view, a coating level of 15% seems to be preferable to a coating level of 20% (potentially resulting in too low drug release in the colon).

As the regular supply of fresh fecal samples from inflammatory bowel disease patients is difficult to assure (and since the samples cannot be deep-frozen or freeze-dried without significant damage of the microflora), it is highly desirable to provide an alternative type of release medium, simulating the conditions in the colon of a patient. For drug delivery systems that are sensitive to the presence of bacterial enzymes, caution has to be paid that the bulk fluid contains the crucial types and amounts of bacteria. In this study, culture medium inoculated with Bifidobacterium has been tested as potential alternative to culture medium inoculated with fresh fecal samples. FIG. 20b shows the observed drug release rate from the same type of pellets as shown in FIG. 20a upon exposure to: 0.1 M HCl (for 2 h), phosphate buffer pH 6.8 (for 9 h) and culture medium inoculated with Bifidobacterium (for 10 h). Comparing FIGS. 20a and 20b, it becomes obvious that culture medium inoculated with Bifidobacterium shows a promising potential as substitute for fresh fecal samples from IBD patients, in particular for routine applications (such as quality controls during large scale production).

Similar results were obtained using dibutyl sebacate as plasticizer (data not shown) confirming that the efficiency of pea starch in controlled release delivery is not plasticizer dependent.

B.5. Storage Stability

A very important aspect from a practical point of view is the long term stability of a controlled drug delivery system. Dosage forms should ideally be stable during at least 3 years. In case of polymer coated delivery systems the resulting drug release rate might eventually increase with increasing storage time, e.g., due to drug migration into the film coating. FIG. 21 shows the drug release kinetics from pellets coated with pea starch:ethylcellulose 1:4 at a coating level of 10, 15 and 15% (as indicated) before and after 1 year storage in open glass vials (solid and dotted curves). The systems were exposed to 0.1 M HCl for 2 h, and subsequently to phosphate buffer pH 6.8 for 9 h. As it can be seen, the release rate remained unaltered during long term storage. The same is true for pellets coated with pea starch:ethylcellulose 1:2, 1:3 and 1:5 at a coating level of 10, 15 and 20% (data not shown). Thus, the proposed drug delivery systems are long term stable.

C. Conclusions

Pea starch: ethylcellulose-based film coatings have been proposed with a highly promising potential for site specific drug delivery to the colon: Drug release from coated pellets can effectively be suppressed in media simulating the contents of the stomach and small intestine. But once the devices come into contact with fecal samples, drug release sets on and is time-controlled, due to the partial degradation of the pea starch by enzymes secreted from bacteria present in the colon of inflammatory bowel disease patients. Thus, this type of advanced delivery systems allows avoiding premature drug release in the upper gastro intestinal tract and subsequent absorption into the blood stream, while assuring that the drug is released at the site of action. Consequently, undesired side effects in the rest of the human body can be expected to be minimized, while the therapeutic effects of the drug are likely to be optimized.

Example 4

A. Materials and Methods

A.1 Materials

2,4,6-Trinitrobenzene sulfonic acid (TNBS) (Sigma-Aldrich, Isle d’Abeau Chesnes, France); cetostimulated Ringer solution (Merck, Darmstadt, Germany); BMD (NU-TROISE® FB 06; Roquette Freres, Lestrem, France); Peas starch N-735 (peas starch; Roquette Freres, Lestrem, France); aqueous ethylcellulose dispersion (Aquacoat ECD 30; FMC Biopolymer, Philadelphia, USA); triethylcitrate (TEC; Morflex, Greensboro, USA); 5-amino salicylic acid (5-ASA; Sigma-Aldrich, Isle d’Abeau Chesnes, France); microcrystalline cellulose (Avicel PH 101; FMC Biopolymer, Brussels, Belgium); polyvinylpyrrolidone (PVP, Povidone K 30) (Co-operation Pharmaceutique Francaise, Melun, France); Pentasa® (coated pellets, Ferring, batch number: JX 155), Asacol® (coated granules, Meduna, batch number: TX 143).

A.2 Preparation of Bmi: Ethylcellulose and Peas Starch: Ethylcellulose Coated Pellets

5-Amino salicylic acid (5-ASA) loaded pellet starter cores (diameter: 0.7-1.0 mm; 60% 5-ASA, 32% microcrystalline cellulose, 4% bentonite, 4% PVP) were prepared by extrusion and subsequent spheronisation as follows: The respective powders were blended in a high speed granulator.
(Gral 10; Collette, Antwerp, Belgium) and purified water was added until a homogeneous mass was obtained (41 g of water for 100 g of powder blend). The wetted mixture was passed through a cylinder extruder (SK M/R, holes: 1 mm diameter, 3 mm thickness, rotation speed: 96 rpm; Alexanderwerk, Remscheid, Germany). The extrudates were subsequently spheronised at 520 rpm for 2 min (Spheroniser Model 15; Calveva, Dorset, UK) and dried in a fluidized bed (ST 15; Aeromatic, Muttenz, Switzerland) at 40° C. for 30 min. The size fraction 0.7-1.0 mm was obtained by sieving.

0185] The obtained drug loaded starter cores were subsequently coated in a fluidized bed coater, equipped with a Wurster insert (Strea 1; Aeromatic-Fielder, Bubendorf, Switzerland) with BDM:ethylcellulose 1:4 blends (BDM:EC coated pellets) or with pea starch: ethylcellulose 1:2 blends (pea starch:EC coated pellets) until a weight gain of 15% (w/w) (BDM:EC coated pellets) or 20% (w/w) (pea starch: EC coated pellets) was achieved.

0186] BDM was dissolved in purified water (5% w/v), blended with plasticized aqueous ethylcellulose dispersion (25%w/w, overnight stirring; 15% w/w/polymer content) at a ratio of 1:4 (w/w, based on the non-plasticized polymer dry mass) and stirred for 6 h prior to coating. The drug-loaded pellet cores were coated in a fluidized bed coater equipped with a Wurster insert (Strea 1; Aeromatic-Fielder, Bubendorf, Switzerland) until a weight gain of 15% (w/w) was achieved. The process parameters were as follows: inlet temperature=39 ± 2° C., product temperature=40 ± 2° C., spray rate=1.5–3 g/min, atomization pressure=1.2 bar, nozzle diameter=1.2 mm. After coating, the beads were further fluidized for 10 min and subsequently cured in an oven for 24 h at 60° C.

0187] Pea starch was dispersed in purified water at 65–75° C. (5% w/v). Aqueous ethylcellulose dispersion (15% w/w solids content) was plasticized for 24 h with 25% TEC (w/w, referred to the solids content of the dispersion). The pea starch and ethylcellulose dispersions were blended at room temperature at the following ratio: 1:2 (polymer:polymer, w/w). The mixture was stirred for 6 h prior to coating. The drug-loaded pellet cores were coated in a fluidized bed coater equipped with a Wurster insert (Strea 1; Aeromatic-Fielder, Bubendorf, Switzerland) until a weight gain of 20% (w/w) was achieved. The process parameters were as follows: inlet temperature=39 ± 2° C., product temperature=40 ± 2° C., spray rate=1.5–3 g/min, atomization pressure=1.2 bar, nozzle diameter=1.2 mm. Afterwards, the pellets were further fluidized for 10 min and subsequently cured in an oven for 24 h at 60° C.

0188] A.3 Induction of Colitis and Study Design

0189] Male Wistar rats (250 g) were used for the in vivo study, which was conducted in accredited establishment at the Institut Pasteur de Lille (A 35090), according to governmental guidelines (86/609/CEE). Four animals were housed per cage, all rats had free access to tap water.

0190] At the beginning of the experiment (day 0), the rats were divided in six groups (5-8 animals/group). Two groups received standard chow (negative and positive control groups). The other groups received food with either Pentasa® pellets (n=8), Asacol® pellets (n=8), BDM: ethylcellulose coated pellets (n=8) or pea starch: ethylcellulose coated pellets (n=8). These four different chows were prepared using the “food admix” technique. All systems were added to obtain a dose of 5-ASA of 150 mg/kg/day.

0191] At day 3, colitis was induced as follows: The rats were anaesthetized for 90-120 min using pentobarbital (40 mg/kg) and received an intrarectal administration of TNBS (250 µl, 20 mg/rat) dissolved in a 1:1 mixture of an aqueous 0.9% NaCl solution with 100% ethanol. Control rats (negative control) received an intrarectal administration of the vehicle only (1:1 mixture of an aqueous 0.9% NaCl solution with 100% ethanol). Animals were sacrificed 3 days after intrarectal TNBS or vehicle administration (day 6).

0192] A.4 Macroscopic and Histological Assessment of Colitis

0193] Macroscopic and histological indications of colitis were evaluated blindly by two investigators. A colon specimen located precisely 4 cm above the anal canal was used for histological evaluation according to the Ameho criteria. This grading on a scale from 0 to takes into account the degree of inflammation infiltrate, the presence of erosion, ulceration, or necrosis, and the depth and surface extension of lesions.

0194] A.5 Statistics

0195] All comparisons were analyzed using the nonparametric test (Mann-Whitney) test. Differences were judged statistically significant if the P value was <0.05.

0196] B Results and Discussion

0197] TNBS-induced colitis is improved by the treatment with BDM: ethylcellulose coated pellets and pea starch: ethylcellulose coated pellets.

0198] The development of colitis in animals subjected to intrarectal TNBS administration was characterized. Control rats (negative control group), sacrificed 3 days after intrarectal administration of the vehicle only (a 1:1 mixture of an aqueous 0.9% NaCl solution with 100% ethanol), had no macroscopic lesions in the colon (FIG. 22A). In contrast, a severe colitis was induced as early as 3 days after administration of TNBS (FIG. 22B). On the histological level, no abnormalities were detected in control rats (FIG. 24: control - negative control group). In contrast, 3 days after the administrations of TNBS, colon histology was characterized by large areas of ulceration with a neutrophilic infiltrate, necrosis extending deeply into the muscular layer (FIG. 24: TNBS). The colon of animals treated with BDM: ethylcellulose coated pellets showed a significant reduction of the lesion (FIG. 22). The results were similar for rats treated with pea starch: ethylcellulose coated pellets (data not shown). Furthermore, the effects of treatments with Pentasa® pellets, Asacol® pellets, BDM: ethylcellulose coated pellets and pea starch: ethylcellulose coated pellets on TNBS-induced colon lesions were studied using the Ameho score (FIG. 29). Untreated rats with colitis were investigated for reasons of comparison. Optimal effects were obtained with BDM: ethylcellulose coated pellets and with pea starch: ethylcellulose coated pellets. Three days after induction of colitis, a significant decrease in the macroscopic lesion score was observed in rats that had received BDM: ethylcellulose coated pellets and pea starch: ethylcellulose coated pellets compared with untreated rats with colitis. Parallel to the macroscopic inflammation, histological analysis also confirmed major differences between animals treated with: (i) TNBS intrarectally, (ii) TNBS intrarectally and Pentasa® pellets orally, (iii) TNBS intrarectally and Asacol® pellets orally, (v) TNBS intrarectally and BDM: ethylcellulose coated pellets orally, and (v) TNBS intrarectally and pea starch: ethylcellulose coated pellets orally (FIG. 24). This was reflected by a significant decrease of the Ameho inflammation score at 3 d after TNBS administration (FIG. 23). Clearly, the administration
of BMD: ethylcellulose coated pellets and of peas starch: ethylcellulose coated pellets reduced the inflammatory lesions which consisted of smaller polymorphic inflammatory infiltrates, limited edema and small focal necrosis lesions (FIG. 24). Thickening of the colon wall, with a predominant inflammatory infiltrate in the lamina propria, and necrosis extending deep into the muscular and serosal layer are evident in the case of treatment with TNBS, TNBS and Pen
tassa® pellets and TNBS and Asacol® pellets.

[0199] These results clearly prove the efficacy of the proposed novel film coatings for colon targeting in vivo.

| TABLE 1 |
|-------------------------------|------------------|------------------|------------------|
| Healthy subjects | Crohn's Disease | Ulcerative Colitis |
| Number | 10 | 11 | 5 |
| Mean age | 40 ± 15 | 32 ± 12 | 36 ± 20 |
| Mean total counts | 9.88 ± 0.48 | 9.15 ± 1.30 | 9.88 ± 0.57 |
| Number of strains | 28 | 34 | 14 |
| Mean | 2.8 | 3.1 | 2.8 |
| Anaerobes | | | |
| Bacteroides | 9 | 10 | 3 |
| Prevotella | 2 | 2 | 2 |
| Fusobacterium | 3 | 3 | 2 |
| Veillonella | 0 | 0 | 1 |
| Clostridium | 0 | 1 | 1 |
| Bifidobacterium | 9 | 3 | 1 |
| Other Gram + rods | 3 | 2 | 2 |
| Gram + cocci | 1 | 2 | 0 |
| Aerobes | | | |
| E. coli | 3 | 2 | 2 |
| Escherichia coli | 1 | 2 | 1 |
| Citrobacter freundii | 0 | 2 | 1 |
| Lactobacillus | 0 | 2 | 0 |
| Streptococcus | 0 | 2 | 0 |
| Mean counts McConkey agar | 6.30 ± 1.19 | 7.16 ± 1.48 | 8.01 ± 1.06 |
| Number of strains | 10 | 14 | 8 |
| Escherichia coli | 10 | 6 | 4 |
| E. coli lac | 0 | 1 | 0 |
| Citrobacter freundii | 0 | 3 | 1 |
| Klebsiella pneumoniae | 0 | 1 | 1 |
| Klebsiella oxytoca | 0 | 2 | 0 |
| Enterobacter cloacae | 0 | 1 | 0 |
| Other Gram - rods | 0 | 0 | 1 |

<p>| TABLE 2 |
|-------------------------------|------------------|------------------|------------------|</p>
<table>
<thead>
<tr>
<th>Blend ratio</th>
<th>Puncture strength at break (s), MPa</th>
<th>Elongation at break (s), %</th>
<th>Energy at break (s), MJ/m^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>1:2</td>
<td>0.34 ± (0.05)</td>
<td>0.43 ± (0.08)</td>
</tr>
<tr>
<td></td>
<td>1:3</td>
<td>0.36 ± (0.09)</td>
<td>0.57 ± (0.05)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>0.43 ± (0.07)</td>
<td>0.53 ± (0.04)</td>
</tr>
<tr>
<td></td>
<td>1:5</td>
<td>0.42 ± (0.11)</td>
<td>0.58 ± (0.07)</td>
</tr>
<tr>
<td>PS HP-PG</td>
<td>1:2</td>
<td>0.45 ± (0.04)</td>
<td>0.55 ± (0.09)</td>
</tr>
<tr>
<td></td>
<td>1:3</td>
<td>0.40 ± (0.03)</td>
<td>0.53 ± (0.07)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>0.42 ± (0.09)</td>
<td>0.60 ± (0.09)</td>
</tr>
<tr>
<td></td>
<td>1:5</td>
<td>0.50 ± (0.08)</td>
<td>0.60 ± (0.05)</td>
</tr>
<tr>
<td>MST A-PG</td>
<td>1:2</td>
<td>0.78 ± (0.09)</td>
<td>0.63 ± (0.02)</td>
</tr>
<tr>
<td></td>
<td>1:3</td>
<td>0.84 ± (0.05)</td>
<td>0.67 ± (0.08)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>0.85 ± (0.04)</td>
<td>0.66 ± (0.07)</td>
</tr>
<tr>
<td></td>
<td>1:5</td>
<td>0.87 ± (0.05)</td>
<td>0.75 ± (0.02)</td>
</tr>
<tr>
<td>MMS A-PG</td>
<td>1:2</td>
<td>0.60 ± (0.01)</td>
<td>0.50 ± (0.07)</td>
</tr>
<tr>
<td></td>
<td>1:3</td>
<td>0.52 ± (0.05)</td>
<td>0.75 ± (0.10)</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>0.76 ± (0.02)</td>
<td>0.82 ± (0.04)</td>
</tr>
<tr>
<td></td>
<td>1:5</td>
<td>0.77 ± (0.03)</td>
<td>0.81 ± (0.06)</td>
</tr>
</tbody>
</table>

1. A controlled release delivery dosage form for controlled release of an active ingredient, comprising an active ingredient coated in a polymeric mixture of: at least a water insoluble polymer and a starch composition comprising one component selected from the group consisting of a starch having an amylose content of between 25 and 45%, a modified starch having an amylose content of between 50 and 80% and a legume starch.

2. The controlled release delivery dosage form according to claim 1, comprising a core, the active ingredient being dispersed or dissolved in the core.

3. The controlled release delivery dosage form according to claim 1, wherein the starch composition: water insoluble polymer ratio is between 1:2 and 1:8.

4. The controlled release delivery dosage form according to claim 1, wherein the starch composition exhibits an amylose content of between 25 and 45%, this percentage being expressed by dry weight with respect to the dry weight of starch present in said composition.

5. The controlled release delivery dosage form according to claim 1, wherein the starch composition comprises at least one legume or cereal starch.

6. The controlled release delivery dosage form according to claim 1, wherein the starch composition comprises at least one modified starch, said modified starch being stabilized.

7. The controlled release delivery dosage form according to claim 2, wherein the core has a coating level of 5% to 30%.

8. The controlled release delivery dosage form according to claim 2, wherein the core has a coating level of 10% to 20%.

9. The controlled release delivery dosage form according to claim 1, wherein the polymeric mixture comprises a plasticizer, preferably in a content between 25% to 30% w/w referred to the water insoluble polymer content.

10. The controlled release delivery dosage form according to claim 1, wherein the water insoluble polymer is selected from the group consisting of acrylic and/or methacrylic ester polymers, polymers or copolymers of acrylate or methacyr-
late polyvinyl esters, polyvinyl acetates, polyacrylic acid esters, and butadiene styrene copolymers methacrylate ester copolymers, ethyl cellulose, cellulose acetate phthalate, polyvinyl acetate phthalate, shellac, methacrylic acid copolymers, cellulose acetate trimellitate, hydroxypropyl methylcellulose phthalate, zein, starch acetate.

11. The controlled release delivery dosage form according to claim 9, wherein the plasticizer is a water soluble plasticizer, the plasticizer being preferably selected from the group consisting of polyols, organic esters, oils or glycerides, soya lecithin, alone or as a mixture with one another.

12. The controlled release delivery dosage form according to, wherein said controlled release delivery dosage form is a multiparticulate dosage form.

13. A method for preparing a controlled release delivery dosage form for controlled release of an active ingredient in the colon of patients having a colonic microflora imbalance or in the colon of healthy subjects, as claimed in claim 1, said method comprising:

- forming a polymeric mixture of:
 - at least one water insoluble polymer and
 - a starch composition comprising at least one component selected from the group consisting of a starch having an amylose content of between 25 and 45%, a modified starch having an amylose content of between 50 and 80% and a legume starch,
- coating said active ingredient in the polymeric mixture.