International Application Published Under the Patent Cooperation Treaty (PCT)

World Intellectual Property Organization
International Bureau

International Publication Date
19 May 2016 (19.05.2016)

(10) International Publication Number
WO 2016/076886 A1

(21) International Application Number:
PCT/US2014/065703

(22) International Filing Date:
14 November 2014 (14.11.2014)

(25) Filing Language:
English

(26) Publication Language:
English

(31) Priority Data:

(12) International Application Number:
PCT/US2014/065703

(19) Priority Data:

(11) International Filing Date:
14 November 2014 (14.11.2014)

(19) Priority Data:

(30) Priority Data:

(19) Priority Data:

(71) Applicants:
FUNDACION TECNALIA RESEARCH & INNOVATION [ES/ES]: Parque Tecnológico de San Sebastián, E-20009 San Sebastian (Guipuzcoa) (ES); THE REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 1111 Franklin Street, Twelfth Floor, Oakland, California 94607-5200 (US); EBERHARD KARLS UNIVERSITAET TUEBINGEN [DE/DE]; Medizinische Fakultät, Geschwister-Scholl-Platz, 72074 Tuebingen (DE).

(72) Inventors:
RAMOS MURGUIADAY, Dr. Ander; BISMARKETRADE, 36, 72072 Tuebingen (DE); Birbaumer, Niels; Brunnenstrasse 23, 7216 Moessingen (DE); CARMENA RAMON, Jose Miguel; 440 Tucker Avenue, Alameda, CA 94501 (US).

(51) International Patent Classification:
A61B 5/0488 (2006.01) A61B 5/11 (2006.01) A61B 5/04 (2006.01) A61B 5/00 (2006.01)

(74) Agent: DREXLER, Daniel; Cantor Colburn LLP, 20 Church Street, 22nd Floor, Hartford, Connecticut 06103 (US).

Published:
with international search report (Art. 21(3))

(54) Title: SYSTEM FOR MOTOR REHABILITATION OF A PARETIC LIMB IN STROKE PATIENTS

(57) Abstract: The invention relates to a system for motor rehabilitation of a paretic limb (102, 103) of a 5 patient (100) comprising:
- a plurality of sensors (90) (10) coupled to pre-established positions of a head (101) of the patient (100) for registering brain neuro-signals of the patient (100); a body-actuator (30, 40) coupled to, at least, the paretic limb (102, 103); a hybrid brain machine interface (200) for decoding brain neuro-signals into 10 movements of the body-actuator (30, 40). The system further comprises:
- a plurality of EMG sensors (20) (20) coupled to the paretic limb (102, 103) for registering its EMG activity; means for providing the patient (100) with instructions relative to a series of 15 exercises and/or tasks to be carried out with the paretic limb (102, 103), and in that upon carrying out a series of training sessions, each session comprising at least a set of such instructions, the hybrid brain machine interface (200) is configured to switch between controlling the movements of the body-actuator (30, 40) based on the decoded brain neuro-signals and a hybrid control of the movements of the body-actuator (30, 40) when a significant level of decoded EMG activity has been registered, the hybrid control being an EMG-gated brain control. The invention also relates to a method for motor rehabilitation of the paretic limb (102, 103).
System for motor rehabilitation of a paretic limb in stroke patients

TECHNICAL FIELD

The invention relates to the field of motor training and/or rehabilitation, especially for chronic stroke patients.

STATE OF THE ART

The cerebro-vascular accident caused by stroke, brain injury, or cerebral paralysis is one of the main causes of long-term motor disability worldwide and in more than 85% of these cases functional deficits in motor control occur. Incidence of first stroke in Europe is about 1.1 million and prevalence about 6 million. Of all stroke survivors showing no active upper limb motion at hospital admission 14% showed complete recovery, 30% showed partial recovery and 56% show little or no recovery, and the grand majority retained sensory function.

Standard and commonly used functional and activity level assessments in stroke like Fugl-Meyer and other known tests, despite their proven reliability, validity, and responsiveness, are highly subjective and depend directly on the therapist and sometimes on the patient (self-rating).

Movement is produced by a pattern of muscle activity normally distributed among different muscles. Dysfunction in a muscle involved in a motor movement results in inaccuracy. Overactivity of antagonistic muscles could even lead to total paralysis of the affected limb.

Spasticity, or continuous overcontraction of the muscles, is a handicap a stroke patient needs to overcome in order to produce the desired movement and could be one of the main causes of continued impairment besides the complete damage of the corticospinal tract. In the paralyzed arm extensor muscles are mostly paralyzed after stroke and flexors are more affected from spasticity. Thus patients are unable to open their hand and reach forwards to grasp.

The cessation of activity in extensor muscles after stroke is commonly accepted for paralyzed patients. If there are residual EMG signals present, these are mostly extremely small, partially involuntary and resulting in inaccurate motions. Such dysfunction leads to a reduction in muscle use (learned non-use) and muscle atrophy.

In order to overcome the absence of appropriate control of paretic muscles in stroke patients, new rehabilitation therapies based on neural signals and robotic devices have been proposed.
Over the past years, an increasing number of brain machine interface (BMI) systems have been developed. These systems record, decode, and ultimately translate some measurable neurophysiological signal into an effector action or behaviour. Using microelectrode implants in various cortical areas, monkeys and humans were trained to control robotic arms for reaching and grasping during feeding.

Interestingly, it has been proposed that the combination of robotics and brain control of upper limb assistive technology could contribute to improve neurorehabilitation. One limitation of the use of control signals originated in the brain so far has been that the decoding performance using non-invasive brain signals like electroencephalogram (EEG), magnetoencephalogram (MEG), or functional near infrared spectroscopy (fNIRS) is limited.

The fact is that currently there is no accepted and efficient rehabilitation strategy available that aims at reducing focal impairments in patients with chronic stroke and no residual hand movements because residual movements are needed to produce a control signal (force or and movement).

DESCRIPTION OF THE INVENTION

The present invention refers to a system for motor rehabilitation of a paretic limb of a patient which links assisted movement of the paretic limb by means of a body-actuator with the cortical activity generated during this movement in order to promote functional neural pathways through a process based on neuroplasticity.

By means of the system of the present invention, and after a number of training sessions, neural circuits inducing motor recovery in a certain group of stroke patients are generated. That is, new neural connections are established between the brain and the paralyzed muscles of the patient within the central and peripheral nerve system circumventing the lesions and thereby allowing functional motor rehabilitation.

The system for motor rehabilitation of a paretic limb of a patient comprises:
- a first plurality of sensors couplable to pre-established positions of a head of the patient for registering brain neurosignals of the patient;
- a body-actuator couplable to, at least, a paretic limb of the patient;
- a hybrid brain machine interface for decoding the brain neurosignals into movements of the body-actuator;

According to a first embodiment the system further comprises:
- a second plurality of EMG sensors couplable to the paretic limb of the patient, for registering EMG activity of the paretic limb of the patient;
- means for providing the patient with instructions relative to a series of exercises and/or tasks to be carried out with the paretic limb; and wherein upon carrying out a series of training sessions, each session comprising at least a set of such instructions, the hybrid brain machine interface is configured to establish a transition between controlling the movements of the body-actuator based on the decoded brain neurosignals and whenever a significant level of decodable EMG activity has been registered, controlling the the movements of the body-actuator, by means of a hybrid control which is an EMG-gated brain control.

In the system of the present invention, the body actuator can be a device based on FES -functional electrical stimulation- or a robotic exoskeleton.

And the first plurality of sensors for registering the brain neurosignals are any or a combination of the following: an array of intracortical microelectrodes, a plurality of wireless ECoG (Electrocorticography) micro- or nano- electrodes, a plurality of EEG (Electroencephalography) sensors or any brain imaging system based on fMRI (functional magnetic resonance imaging) or fNIRS (functional near infrared).

The first plurality of sensors is preferably couplable in the motor cortex or in preilesional cortical areas.

The means for providing the patient with instructions relative to a series of exercises and/or tasks to be carried out with the paretic limb preferably comprise any device (or devices) including a screen or display and any sort of loudspeaker or headphone which present visual and auditory cues to the patient with instructions and/or imperative orders to execute a task. The device may present objects to the patient in a random but controlled manner, in such a way that the system knows at all times the task presented to the patient, and therefore, what the final limb posture should be, and is able to estimate the trajectory, which can be used to tune the brain machine interface at the beginning of each session.

Having registered a significant level of decodable EMG activity of the paretic limb is indicative of a working new neural circuit being generated or of an existing malfunctioning corticomuscular connection being reinforced by means of having excited the central and peripheral nervous system of the patient.

It is preferably considered that a significant level of decodable EMG activity has been registered when either a pre-established level of decodable EMG activity of the paretic limb or a pre-established level of decodable EMG accuracy between rest and activity of the paretic limb has been registered.

The significant level of decodable EMG activity is preferably determined by
comparing the decoded EMG activity of the paretic limb with a first reference EMG activity. This first reference EMG activity can be the EMG activity during rest of the paretic limb or the EMG activity of a healthy limb.

In a preferred embodiment the EMG-gated brain control includes modulating the decoded brain neurosignals with a variable weighting factor, the weighting factor being a function of the decoded EMG activity of the paretic limb.

Preferably, the weighting factor is a function of a difference between the decoded EMG activity of the paretic limb and a second reference activity model.

The second reference activity model is preferably the decoded EMG activity of a healthy limb of the patient, recorded prior to the training session or as retrieved from a database.

The second reference activity model can also be the trajectory as decoded from the brain activity only, and the weighting factor being a difference between this trajectory and the trajectory calculated from the decoded EMG activity during the same exact movement.

The efficacy of the system of the present invention is based on a training protocol based on neural/hebbian plasticity and instrumental learning, and a brain translation algorithm included in the hybrid brain machine interface (hybrid BMI, which combines brain neurosignals and EMG signals), which establishes a transition between brain control and an EMG-gated brain control of the body-actuator.

The relevance of the EMG activity is gradually increased thereby shifting from brain control to muscle control.

The system for motor rehabilitation of an impaired or paretic limb of the present invention is based on a totally unique link between the patient's neural signals and the movements of the limb muscles affected by the paresis, and the modulation and reorganization of neural processes using a brain-body linked actuator which enables instrumental learning by means of the assisted movement of the paretic arm. This modulation and reorganization is achieved by the hybrid brain machine interface that induces and controls the reorganization of brain processes adaptively by natural (visual, haptic and proprioceptive) stimulation of brain regions related to the impairment.

A second aspect of the invention refers to a method for motor rehabilitation of a paretic limb of a stroke patient, which comprises the steps of:
- placing a first plurality of sensors at pre-established positions of a head of the patient for registering brain neurosignals of the patient;
- coupling a body-actuator to, at least, a paretic limb of the patient;
- connecting a hybrid brain machine interface to the first plurality of sensors and to the body-actuator and decoding neurosignals into movements of the body-actuator; further comprising the steps of:
 - placing a second plurality of EMG sensors for registering EMG activity of the paretic limb of the patient and connecting this second plurality of EMG sensors to the hybrid brain machine interface;
 - providing the patient with instructions relative to a series of exercises and/or tasks to be carried out with the paretic limb;
 - carrying out a series of training sessions, each session comprising at least a set of such instructions, and

when a significant level of decodable EMG activity has been registered the hybrid brain machine interface switches between controlling the movements of the body-actuator based on the decoded brain neurosignals and an hybrid control of the movements of the body-actuator, the hybrid control being an EMG-gated brain control.

Each training session is divided in several phases preferably defining completion of the exercise and/or task going from simple to more complex movements, or following a proximal-to-distal approach.

Preferably, the time elapsed between the register of the neurosignals and their decoding by the BMI into movements of the body-actuator is below 1 s; more preferably it is in the order of 20-100 ms.

The method for motor rehabilitation of the present invention proposes a multi-phase rehabilitation process depending of the cortical innervation levels of the affected muscles:
1) brain control is used when no muscle control is present. If muscle activity is present a hybrid control based on muscle and brain activity is used to link brain activity due to intention to produce a movement and that same movement promoting correct EMG activity generation. This enhances and improves existing residual corticomuscular connections;
2) after some rehabilitation sessions with the system of the invention new neural circuits (via instrumental learning) are induced which circumvent the paresis and allow brain signals from cortical areas to reach the paralyzed muscles, inducing detectable EMG activity;
3) at a final phase of rehabilitation, brain signals from cortical areas reach the paralyzed muscles more efficiently, inducing controllable EMG activity and using the new neural circuit generated which closes the loop between the brain and the limb movement and
generates functional motor rehabilitation.

After this final phase of rehabilitation when a plateau or a maximum level of improvement in the patient has been reached (once those new neural circuits have been created which circumvent the paresis and allow the brain signals to reach the paralyzed muscles), all the components of the system of the invention can be definitely removed from the patient; or if intracortical or wireless microelectrodes have been implanted in the patient's head, the electrodes are not removed (since their removal could produce damage in the neural tissue surrounding them) but the rest of components are, and the patient is nevertheless able to move the paretic limb on their own as if he/she were using the system of the invention.

The different aspects and embodiments of the invention defined in the foregoing can be combined with one another, as long as they are compatible with each other.

Additional advantages and features of the invention will become apparent from the detailed description that follows and will be particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

To complete the description and in order to provide for a better understanding of the invention, a set of drawings is provided. Said drawings form an integral part of the description and illustrate an embodiment of the invention, which should not be interpreted as restricting the scope of the invention, but just as an example of how the invention can be carried out. The drawings comprise the following figures:

Figure 1 shows a preferred embodiment of a system for limb motor rehabilitation according to the invention.

Figure 2 schematically shows the equivalent movements made by both the healthy and the paretic arms from an equivalent starting position (shown by a continuous line) to an equivalent target position (shown by a dotted line).

Figure 3 schematically shows how the hybrid BMI operates.

DESCRIPTION OF A PREFERRED EMBODIMENT

The following description is not to be taken in a limiting sense but is given solely for the purpose of describing the broad principles of the invention. Next embodiments of the invention will be described by way of example, with reference to the above-mentioned drawings showing elements and results according to the invention.

As shown in Figure 1, the system of the invention comprises a hybrid brain
machine interface BMI 200 -not represented in Fig. 1- connected to an array of intracortical microelectrodes 10 installed in the head 101 of a patient 100. The hybrid brain machine interface BMI is also connected to a body actuator which in the example shown consists of a robotic exoskeleton 30 (an ArmAssist exoskeleton by Tecnalia) and a device based on FES 40 positioned at the fore-arm 102 and upper-arm 103 of the patient 100.

It is also possible to use as body actuator any device, which may be implanted in the body, which is able to move a part of the body by controlling spinal cord stimulation or deep brain stimulation.

The hybrid BMI also is connected to a plurality of EMG sensors 20, which in the example shown in Figure 1 are surface electrodes, coupled to the patients' upper- and fore- arms, thereby receiving EMG signals from the paretic arm.

As indicated, in the embodiment shown in Figure 1 the sensors for registering brain neurosignals used are intracortical microelectrodes 10. But it is also possible to register the brain neurosignals by means of blood oxygenation level-dependent (BOLD) signals, using both functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG), electroencephalography (EEG), deep brain electrodes, ultrasound, and/or any neuroimaging technique or the combination of any of them.

The system of the present invention is to be used in a series of training sessions, each session comprising a set of instructions relative to a series of exercises and/or tasks to be carried out with the paretic limb.

As shown in Fig. 2, the brain neurosignals as detected by the intracortical microelectrodes 10 when the patient tries to move to accomplish one of the specific tasks in the training session (for example, moving from a first position to a target position, and then grasping) are input to the movement decoder (brain signal decoder) of the BMI which decodes such neurosignals into a set of kinematic features or parameters which define the desired body actuator control.

For instance, the hybrid BMI outputs angular velocities/accelerations of each of the body actuator joints: shoulder extension \(\Phi \), elbow extension \(\alpha \), pronation/supination \(\beta \) and hand open/close \(\gamma \).

Any type of decoding, such as CLDA (closed-loop decoder adaptation), linear regression or any kind of machine learning technique can be used to translate the brain activity of the patient as registered by the intracortical microelectrodes 10 into such kinematic features or parameters which define the movement of the patient's paralyzed limb.
It is important that the time elapsed between the brain neurosignals are processed and the corresponding set of kinematic features or parameters is sent to the body actuator is in the order of 20-100 ms, and in any case below 1 s, so that the patient interprets the movements imposed by the robotic exoskeleton 30 as if they were his/her own.

At the same time the patient tries to induce the movements indicated in the task, thereby evoking some EMG limb neurosignals -if present at all-. In the case of severe patients, these EMG neurosignals of the paretic limb are almost negligible and during the first sessions the hybrid BMI of the system just uses the decoded patient's brain neurosignals to control the robotic exoskeleton 30 and/or the FES 40. In the case of less severe patients with minimally active corticomuscular connections, there is already decodable residual EMG activity in their affected limbs. In these patients, the FES 40 helps to strengthen the muscle and improves EMG detection.

In any case, after some rehabilitation sessions with the system of the invention, either a predefined level of decodable EMG activity of the paretic arm or a pre-established level of decodable EMG accuracy between rest and activity of the paretic limb is reached. The EMG activity is decoded using, for example, a time domain feature like waveform length.

This predefined level is the minimum level of EMG activity of the paretic limb so that not only noise is input in the BMI's movement decoder when such EMG signals are added.

In order to know whether this predefined level of EMG activity has been reached, the decoded EMG activity is compared to a first reference EMG activity.

This first reference EMG activity can be the decoded EMG activity of the paretic arm during rest, as previously registered. Or it can also be a decoded EMG activity of the healthy arm which gives information regarding the EMG activation level at each electrode recorded on top of the different muscles, and the relevance of this activity for the execution of each movement.

Thus, the decoded EMG activity is compared to this first reference EMG activity of the paretic during rest or of the healthy arm, and analysed whether this EMG activity is taking place under control of the patient or whether it is the result of reflexes, spasticity spasms, etc. This analysis can be carried out by statistical means such as T- student tests or with classifiers such as neural networks (NNs) or with support vector machines (SVMs).

In fact, the achievement of this level of EMG activity or EMG decoding accuracy of the paretic limb is indicative of a new neural circuit being generated -in the case of severe patients- or the reinforcement of existing minimally active corticomuscular connections -in
the case of less severe patients-, by having sufficiently and correctly excited the central nervous system of the patient.

Thus, when the predefined level of decodable EMG activity in the paretic limb or the pre-established level of decodable EMG accuracy between rest and activity of the paretic limb is reached (for instance, 65%), the hybrid BMI switches to a hybrid control and starts using both the decoded brain neurosignals and also the decoded EMG limb neurosignals to control the robotic exoskeleton 30 and/or the FES 40. This analysis of the EMG activity registered on the paretic limb during each training session is carried out, normally offline, to prove there is significant EMG activity during the movement, that is, that there is consistent and significant muscle contraction during the movement and that this is different than resting EMG activity. In this case 65% has been chosen since it is considered to be the minimum level of acceptable control of the body actuator.

That is, the hybrid BMI starts using an EMG-gated brain control of the movements of the robotic exoskeleton 30 and/or the FES 40. This EMG-gated brain control includes modulating the set of kinematic features or parameters (as output of the brain neurosignals decoder) by a variable weighting factor, the weighting factor being a function of the decoded EMG activity of the paretic limb.

This decoded EMG activity of the paretic limb is quantified, for example, using cocontraction levels, EMG data transformed into frequency or time domain features or antagonist muscles ratio, etc. And it is compared (for example, using linear regressions) to a second reference activity model. This second reference activity model can be the EMG activity of the paretic limb previously registered offline. The second reference activity model can also be, for example, the EMG activity during those exact equivalent movements but performed with the healthy arm.

Healthy EMG activity, or EMG activity from the healthy arm, can be first recorded actively performing the rehabilitation movements using the body actuator. This healthy EMG activity can be used to calculate, for example, an antagonistic muscle pair ratio. Or it can also be used to decode movement (discrete decoding) or movements’ trajectories (continuous decoding) using any decoding algorithm, such as Artificial Neural Networks, Support Vector Machines, Linear Regressions...).

The difference in EMG activity (measured by antagonistic muscle pair ratio or trajectory decoding) of the paretic arm at each electrode during a BMI driven movement compared to the one obtained in the equivalent electrode on the healthy limb during the equivalent movement (i.e. equivalent to the trajectory decoded from brain activity only: taken as ground truth of movement intention) is used to calculate the weighting factor. The
weighting factor modulates the corresponding output (i.e. kinematic parameter to control
the body actuator e.g. Φ, α, β and γ) in the BMI’s movement decoder, previously
calculated using brain activity only.

The computed weighting factor is normalized (for example, between 0.5 and 1.5;
0.5 when there is no correspondence between the healthy and the paretic arms and 1.5
when there is perfect match between them) for each specific kinematic parameter, and
then it multiplies the corresponding control signal parameter which has been obtained
using only the brain activity. For example, if significant EMG activity is detected at the
antagonistic muscle pair (for example, triceps and biceps), the correspondent angular
velocity of the movement produced by those muscles -elbow extension a in the case of
the triceps/biceps antagonistic pair- is weighted.

Another option could be to sum both the resulting brain only and muscle only
output kinematic control vectors (e.g. velocities of each motor in the body actuator) and
use this sum as final weighted decoder output vector.

This way each control signal of the body-actuator previously computed only with
brain signals is modulated with the muscle activity of the paretic limb as registered by the
EMG sensors, thereby preventing that the brain control is so simple that the patients do
not need to use the muscles to activate the body-actuator and can control it by merely
thinking of that movement, or learning how to regulate their neuron firing without involving
corticomuscular connection in the process: the patient needs to do some muscle
contraction to operate the body-actuator.

In any case, the control of the brain activity during the intention to produce a
specific movement is the ground truth of the patient's intention, that is, the brain
neurosignals prevail over the decoded EMG activity; however, minimal, residual and
erratic EMG activity conditions the functioning of the hybrid BMI decoder.

By modifying the variable weighting factor the level of EMG activity of the paretic
limb is gradually increased to reflect the increased relevance of the EMG input related to
muscle activity in the hybrid BMI. However, this shift might not be linear since the final
goal is to have a supervised control of the body actuators, which needs muscle activity as
a requirement for their activation and cortical activity to supervise that the muscle
contraction is not due to compensatory movements but to correct synergistic muscle
activity.

As previously indicated, the decoded brain activity is used always as "ground truth"
of the motor intention of the patient and as control for proper muscle activation during the
EMG-weighted brain decoding control: for example, proper activation of patterns of
muscle activity (muscle synergies) and not activation of a single muscle which could lead
to biased decoding of erratic movements. If feedback of this erratic movement is provided
as a proper movement the system fails to induce the proper muscle activity, and therefore
brain supervision is necessary.

In fact, the contingent artificial connection between brain signals and body
actuators stimulates the afferent pathways involved in a visuomotor task bridging the gap
between the brain signals due to an intention to move and that same movement. The
feedback perceived by the patient from his brain activity modulation while trying to move
produces the generation of new neural circuits either via axonal sprouting or rewiring
existing neural connections due to hebbian and instrumental learning driven plasticity.
These new neural circuits connect supraspinal cortical areas responsible for volitional
movement generation with the muscles responsible for that same movement, generating
motor recovery.

Figure 3 schematically shows an example of how the recorded brain and muscle
activities are merged in the hybrid BMI 200.

In this example, the brain neurosignals from the intracortical microelectrodes 10
when the patient tries to do the task or exercise are inputted (arrow 201) in the hybrid BMI
and decoded as a velocity vector "V" of every joint of the robotic exoskeleton 30, which
has as many terms as degrees of freedom (motors) of the robotic exoskeleton 30, \(V=(V_1,\)
\(V_2, ..., V_n) \).

If there is no significant EMG activity as registered in the previous training session,
the output of the hybrid BMI is the velocity vector V as indicated above.

However, if any of the electrodes 20 (e1 in the upper-arm, e2 in the fore-arm)
presents significant EMG activity in the previous session, this EMG activity of the paretic
limb is compared to the EMG activity obtained from the healthy arm when performing the
same movement (mirrored) and is used as weighting factor "w" for the velocity vector "V".

This can be done by comparing the EMG activity (activity ratio between
antagonistic muscle pairs, or each electrode activity) during that movement in the healthy
and the paretic arms and generating a weighting factor w that takes into account not only
a normalized difference in EMG activity between the paretic and healthy arms, but also
the influence of that muscle (i.e. electrode) activity in the overall movement performed by
the body actuator (i.e. influence in each motor of the body actuator).

This weighting factor vector w can multiply the velocity vector V obtained by the
movement decoder of the BMI using only brain activity to obtain a new weighted velocity
vector \(Vw, Vw=V^w \).
Another option could be to decode the trajectory with whatever EMG is available (i.e. from one electrode, some electrodes or all of them) and sum, project or combine the resulting weighting factor vector to the velocity vector V obtained using only brain activity, the weighted velocity vector being \(V_{w}=V+w \).

The new weighted velocity vector \(V_{w} \) is sent (arrow 210) to control the robotic exoskeleton 30. Before doing so, a security check 211 to avoid undesired velocities (exoskeleton singularities, dangerous postures for the patients, speed control, ...) is performed using sensor information (arrow 212) provided by the body actuators.

The patient controls his/her own upper limb movement via brain only or brain and muscle activity produced when trying to perform that exact movement. Doing so, the patient receives visual and proprioceptive feedback (arrows 220, 230, respectively) contingently and concurrently to his brain activity promoting brain plasticity.

In the following example the system of the invention is used for upper limb rehabilitation.

Once the system of the invention is properly installed on the patient, he/she is instructed (by means of a screen with loudspeakers) to try to move their paretic limb as if it were healthy performing a task in several phases, producing EMG activity (if present) in the muscles affected by the paresis without producing compensatory movements. The different phases for completing the task augment in difficulty or complexity, preferably in a proximal-to-distal approach, involving at the end simultaneous coordinated multiple joint movements. That is to say, the first training stage includes movements involving more proximal muscles, such as deltoid and triceps; subsequently, proximal and distal muscles are trained, such as deltoid, triceps, biceps and hand extensors and flexors.

The tasks or exercises to be carried by the patient in this example are as follows:

1) First task, Task1: the first movement consists on 2D movements in a horizontal plane. The patient uses the body actuator, for instance, an Arm-assist or Kinarm. The hybrid BMI outputs a set of kinematic features o parameters, such as the end-point velocity or joint velocities, to reach different targets in space and these are used to control each body actuator. This Task1 has six different levels:

- level 1.1: the patient starts every trial from a starting point, reaches towards the target and comes back to the initial position;
- level 1.2: the patient starts every trial from a starting point, reaches towards the target and comes back to the initial position, needing to stay within a predefined circular area around the target for a specific time, for instance, 300 m;
- level 1.3: the patient starts every trial from a starting point, reaches towards the
target and comes back to the initial position, and has to reach the target using specific velocity profiles following a rhythmic stimulation, for example, using a metronome the volume and pitch of which is gradually increased as stimulus tone, the fourth stimulus determining the time to reach the target;

- level 1.4: the targets change in the 2D space, but there is no need to come back to the initial position;
- level 1.5: the targets change in the 2D space, not needing to come back to the initial position, but having to stay within a predefined circular area around the target for a specific time, for instance, 300 ms;
- level 1.6: the targets change in the 2D space without the need to come back to the initial position, but the patient has to reach the target using specific velocity profiles following a rhythmic stimulation, for example, by means of a metronome the volume and pitch of which is gradually increased as stimulus tone, the fourth stimulus determining the time to reach the target.

The transition from one level to the next level within the same task occurs when an acceptable performance is reached in the previous level, for example, 75% of EMG decoding accuracy (in this case 75% has been chosen as representative of acceptable level of performance). Every session comprises 300 trials divided in 10 blocks of 30 trials.

2) Second task, Task2: after reaching the pre-established level of satisfactory performance (for instance, 75% of EMG decoding accuracy in all levels) in the previous task, Task1, the patient is asked to perform the same levels as in Task1 with an additional pronation/supination sub-task. That is to say, Task2 is the same as Task1 but additionally, when the target is reached, the patient has to do an active hand orientation movement. This hand orientation sub-task in Task2 is divided in three levels:

- level 2.1: after reaching the target in any Task1 level, the patient should perform a hand orientation movement, such as a pronation and supination movement, to satisfactorily complete the level;
- level 2.2: after reaching the target in any Task1 level, the patient should perform the supination/pronation hand movement, for example, randomly following imperative cues such as “twist your hand to the left/right” presented as pronation or supination movements respectively, and has to maintain either the hand opened or closed (randomly defined by an imperative cue) during a predefined time period, for example, 300 ms;
- level 2.3: after reaching the target in any Task1 level, the patient should orient their hand and has to reach the final supination or pronation position/angle using specific velocity profiles following a rhythmic stimulation, for example, by means of a metronome
the volume and pitch of which is gradually increased as stimulus tone, the fourth stimulus determining the time when the complete pronation/supination position should be reached.

The hybrid BMI outputs a set of kinematic features, such as the end-point velocity or joint velocities, to reach different targets in space and orient the hand. The control of the body actuators of the upper- and fore-arm are simultaneously activated allowing for simultaneous reaching and hand orientation. Again, the transition from level to level occurs when a pre-established performance, for instance, 75 %, is reached in the previous level. Every session comprises 300 trials divided in 10 blocks of 30 trials.

3) Third task, Task3: after reaching the pre-established level of satisfactory performance (for instance, 75 % accuracy in all levels) in Task2, the patients is asked to perform the same levels as in Task2 with an additional grasping sub-task. That is to say, Task3 is the same as Task2 but additionally, when the target is reached and the hand has been oriented, the patient has to do an active grasping movement. This grasping sub-task in Task3 is divided in three levels:

- level 3.1: after reaching the target and orienting the hand in any Task2 level, the patient should perform a grasping movement, such as an opening and closing the hand to satisfactorily complete the level;
- level 3.2: after reaching the target and orienting the hand in any Task2 level, the patient should open and close their hand, and additionally, the hand should be maintained opened or closed (randomly defined by an imperative cue) during a predefined time period, for instance, 300 ms;
- level 3.3: after reaching the target and orienting the hand in any Task2 level, the patient should open and close their hand, and additionally, the final open or close position has to be reached using specific velocity profiles following a rhythmic stimulation, for example, using a metronome the volume and pitch of which is gradually increased as stimulus tone, the fourth stimulus determining the time to reach the complete open/close position.

The hybrid BMI outputs a set of kinematic features, such as the end-point velocity or joint velocities, to reach different targets in space, orient the hand and control the grasping actuator. The control of the actuators of the upper- and fore-arm are simultaneously activated allowing for simultaneous reaching, hand orientation and hand opening/closing. The transition from level to level will occur when a pre-established performance, for instance, above 75 % is reached in the previous level. Every session comprises 300 trials divided in 10 blocks of 30 trials.

4) Fourth task, Task4: after reaching the pre-established level of satisfactory
performance (above 75% of accuracy in all levels) in Task3, the patient is asked to perform: reaching, hand orientation and opening/closing of the hand, and additionally, or manipulate different objects, such as turning a door handle, eating soup, pouring water in a cup, etc.

This fourth task is especially important from a behavioural and instrumental learning point of view.

It is also important that after every rehabilitation session using the rehabilitation system of the invention, at least one session takes place in which the patient tries to carry out the movements of that session, but where the hybrid BMI is partially turned off: brain and limb activities are registered, but not signals are sent to the body actuator.

In the context of the present invention, the term "approximately" and terms of its family (such as "approximate", etc.) should be understood as indicating values very near to those which accompany the aforementioned term. That is to say, a deviation within reasonable limits from an exact value should be accepted, because a skilled person in the art will understand that such a deviation from the values indicated is inevitable due to measurement inaccuracies, etc. The same applies to the terms "about" and "around" and "substantially".
CLAIMS

1. System for motor rehabilitation of a paretic limb (102, 103) of a patient (100) comprising:
 - a first plurality of sensors (10) couplable to pre-established positions of a head (101) of the patient (100) for registering brain neurosignals of the patient (100);
 - a body-actuator (30, 40) couplable to, at least, a paretic limb (102, 103) of the patient (100);
 - a hybrid brain machine interface (200) for decoding brain neurosignals into movements of the body-actuator (30,40);
 characterised in that the system further comprises:
 - a second plurality of EMG sensors (20) couplable to the paretic limb (102, 103) of the patient, for registering EMG activity of the paretic limb of the patient;
 - means for providing the patient (100) with instructions relative to a series of exercises and/or tasks to be carried out with the paretic limb (102, 103);
 and in that upon carrying out a series of training sessions, each session comprising at least a set of such instructions, the hybrid brain machine interface (200) is configured to switch between controlling the movements of the body-actuator (30, 40) based on the decoded brain neurosignals and a hybrid control of the movements of the body-actuator (30, 40), when a significant level of decodable EMG activity has been registered, the hybrid control being an EMG-gated brain control.

2. System according to claim 1, wherein the hybrid brain machine interface is configured to determine that a significant level of decodable EMG activity has been registered when a pre-established level of decodable EMG activity of the paretic limb (102, 103) or pre-established level of decodable EMG accuracy between rest and activity of the paretic limb (102, 103) has been registered.

3. System according to any of claims 1-2, wherein the hybrid brain machine interface is configured to determine the significant level of decodable EMG activity by comparing the decoded EMG activity of the paretic limb with a first reference EMG activity.

4. System according to claim 2, wherein the first reference EMG activity is the EMG activity during rest of the paretic limb or the EMG activity of a healthy limb.
5. System according to any of claims 1-4, wherein the EMG-gated brain control includes modulating the decoded brain neurosignals by a variable weighting factor, the weighting factor being computed as a function of the decoded EMG activity of the paretic limb (102, 103).

6. System according to claim 5, wherein the weighting factor is a function of the difference in the decoded EMG activity of the paretic limb (102, 103) and a second reference activity model.

7. System according to claim 6, wherein the second reference activity model is the decoded EMG activity of a healthy limb (102, 103) of the patient, recorded prior to the training session or as retrieved from a database.

8. System according to claims 6, wherein the second reference activity model is the trajectory as decoded from only the brain neurosignals, and the weighting factor being a difference between this trajectory and the trajectory calculated from the decoded EMG activity during the same exact movement.

9. System according to any of claims 1-8, wherein the body actuator comprises FES and/or a robotic exoskeleton.

10. System according to any of claims 1-9, wherein each training session is divided in several phases defining completion of the exercise and/or task following simple to more complex movements.

11. Method for motor rehabilitation of a paretic limb (102, 103) of a stroke patient (100) comprising the steps of:
- placing a first plurality of sensors (20) at pre-established positions of a head (101) of the patient (100) for registering brain neurosignals of the patient (100);
- coupling a body-actuator (30, 40) to, at least, a paretic limb (102, 103) of the patient (100);
- connecting a hybrid brain machine interface (200) to the first plurality of sensors (20) and to the body-actuator (30, 40) and decoding neurosignals into movements of the body-actuator (30, 40);

wherein the method further comprises:
- placing a second plurality of EMG sensors (20) for registering EMG activity of the paretic limb (102, 103) of the patient (100) and connecting this second plurality of EMG sensors (20) to the hybrid brain machine interface (200);
- providing the patient (100) with instructions relative to a series of exercises and/or tasks to be carried out with the paretic limb (102, 103); and
- carrying out a series of training sessions, each session comprising at least a set of such instructions, and
when a significant level of decodable EMG activity has been registered the hybrid brain machine interface (200) switches between controlling the movements of the body-actuator (30, 40) based on the decoded brain neurosignals and an hybrid control of the movements of the body-actuator (30, 40), the hybrid control being an EMG-gated brain control.

12. Method according to claim 11, wherein a significant level of decodable EMG activity has been registered when a pre-established level of decodable EMG activity of the paretic limb (102, 103) or pre-established level of decodable EMG accuracy between rest and activity of the paretic limb (102, 103) has been registered.

13. Method according to any of claims 11-12, wherein the significant level of decodable EMG activity is determined by comparing the decoded EMG activity of the paretic limb with a first reference EMG activity.

14. Method according to any of claims 11-13, wherein the EMG-gated brain control includes modulating the decoded brain neurosignals by a variable weighting factor, the weighting factor being a function of the decoded EMG activity of the paretic limb (102, 103).

15. Method according to claim 14, wherein the weighting factor is a function of the difference in the decoded EMG activity of the paretic limb (102, 103) and a second reference activity model.

16. Method according to claim 15, wherein the second reference activity model is the decoded EMG activity of a healthy limb (102, 103) of the patient, recorded prior to the training session or as retrieved from a database.

17. Method according to claims 15, wherein the second reference activity model is the
trajectory as decoded from only the brain neurosignals, and the weighting factor being a
difference between this trajectory and the trajectory calculated from the decoded EMG
activity during the same exact movement.

18. Method according to any of claims 11-17, wherein the time elapsed between the
neurosignals are registered and they are decoded into movements of the body-actuator is
below 1 s.

19. Method according to any of claims 11-18, which further comprises the step of
removing from the patient any or all of: the first plurality of sensors, the body-actuator and
the second plurality of EMG sensors, once a plateau or a maximum level of improvement
in the patient has been reached.
FIG. 3

Brain

Motor 1

Motor 2

Body Actuator

Trajectory decoding → several joints → \(V = (V_1, V_2, \ldots, V_n) \) → \(V_w \) = combination of (V and w)

Significance check (antagonistic-muscle-pair)

EMG activity difference between what it is (decoded EMG active) and what it should be (second reference EMG activity) → \(w = (w_1, w_2, \ldots, w_n) \)

Safety check

Actuator control data

Sensor data
A. CLASSIFICATION OF SUBJECT MATTER

INV.

A61B5/0488 A61B5/04 A61B5/11

ADD.

A61B5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F A61B A61F A63B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2009/221928 A1 (EINAV OMER [IL] ET AL) 3 September 2009 (2009-09-03) figures 6a, 7, 10,11 paragraphs [0004], [0018], [0061] - [0063], [0083] - [0084], [0217] - [0225], [0246] - [0248] paragraphs [0253], [0256], [0268], [0274], [0346], [0368] - [0373], [0406] - [0421], [0449] - [0454] ----- ----------</td>
<td>1-19</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.

X See patent family annex.

* Special categories of cited documents:

 A document defining the general state of the art which is not considered to be of particular relevance

 E earlier application or patent but published on or after the international filing date

 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 O document referring to an oral disclosure, use, exhibition or other means

 P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

10 July 2015

Date of mailing of the international search report

23/07/2015

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Carta, Riccardo
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>figures 1,2,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0010], [0011], [0057],</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0062], [0063], [0069], [0077], [0081]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- [0083], [0135] - [0141], [0159] - [0163]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0187], [0220] - [0221],</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0241] - [0249]</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>THILINA DULANTHA LALITHARATNE ET AL:</td>
<td>1-19</td>
</tr>
<tr>
<td></td>
<td>"Abstract", PALADYN, JOURNAL OF BEHAVIORAL ROBOTICS, vol. 4, no. 2,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 December 2013 (2013-12-10), XP055201600, ISSN: 2081-4836, DOI:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2478/pjbr-2013-0009 abstract; figures 1-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction; pages 147-148</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review of Hybrid EEG-EMG Based Control Approaches; pages 148-152</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conclusion and Future Directions; page 152</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0009], [0020], [0063],</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0073], [0095] - [0096]</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2009221928 AI</td>
<td>03-09-2009</td>
<td>CA 2584612 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1838270 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5113520 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008510560 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009221928 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015141773 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2006021952 A2</td>
</tr>
<tr>
<td>US 2014200432 Al</td>
<td>17-07-2014</td>
<td>CN 103764021 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2709522 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014200432 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2012161657 Al</td>
</tr>
<tr>
<td>US 2008288020 Al</td>
<td>20-11-2008</td>
<td>CA 2564997 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4926042 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007534425 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008288020 Al</td>
</tr>
</tbody>
</table>