

SCHWEIZERISCHE EIDGENOSSENSCHAFT

BUNDESAMT FÜR GEISTIGES EIGENTUM

① CH 657 849 **A5**

51 Int. Cl.4: C 07 D

239/42

C 07 D 251/12 A 01 N 47/36

Erfindungspatent für die Schweiz und Liechtenstein

Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

12 PATENTSCHRIFT A5

(21) Gesuchsnummer:

5481/80

(73) Inhaber:

CIBA-GEIGY AG, Basel

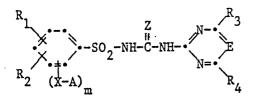
(22) Anmeldungsdatum:

17.07.1980

(24) Patent erteilt:

30.09.1986

(45) Patentschrift veröffentlicht:


30.09.1986

(72) Erfinder:

Meyer, Willy, Riehen Föry, Werner, Dr., Basel

64 N-Phenylsulfonyl-N'-pyrimidinyl- und -triazinylharnstoffe.

N-Phenylsulfonyl-N'-pyrimidinylund -triazinylharnstoffe der allgemeinen Formel

und die Salze dieser Verbindungen mit Aminen, Alkalioder Erdalkalimetallbasen oder mit quaternären Ammoniumbasen haben gute pre- und postemergent-selektive herbizide Eigenschaften.

In dieser Formel bedeutet

einen durch Halogen, C1-C4-Alkoxy, C1-C4-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Halogenalkylthio, C₁-C₄-Halogenalkylsulfinyl oder C₁-C₄-Halogenalkylsulfinyl oder C₁-C₄-Halogenalkylsulfinyl substituerten C₁-C₆-Alkylrest oder einen gegeben nenfalls durch die aufgezählten Substituenten substituierten C2-C6-Alkenylrest,

die Methingruppe oder Stickstoff,

Sauerstoff, Schwefel, eine Sulfinyl- oder Sulfonylbrücke,

Sauerstoff oder Schwefel,

die Zahl eins oder zwei, Wasserstoff, Halogen, C1-C5-Alkyl, C2-C5-Alkenyl oder einen Rest -Y-Rs,

Wasserstoff, Halogen, C₁-C₅-Alkyl, C₂-C₅-Alkenyl, C₁-C₄-Halogenalkyl, oder einen Rest -Y-R₅, -COOR₆, -NO2 oder -CO-NR7R8,

R₃ und R₄ abhängig voneinander Wasserstoff, C₁C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C1-C4-Alkoxy, Halogen oder Alkoxyalkyl mit höchstens 4 Kohlenstoffatomen.

Rs und R6 je C1-C5-Alkyl, C2-C5-Alkenyl oder C2-C6-Alki-

R7 und R8 unabhängig voneinander Wasserstoff, C1-C5-Alkyl, C2-C5-Alkenyl oder C2-C6-Alkinyl und

Sauerstoff, Schwefel, eine Sulfinyl- oder Sulfonylbrücke.

PATENTANSPRÜCHE

1. N-Phenylsulfonyl-N'pyrimidinyl- und triazinyl-harnstoffe der allgemeinen Formel I

worin

A einen durch Halogen, C_1 – C_4 -Alkoxy, C_1 – C_4 -Alkylthio, C_1 – C_4 -Alkylsulfinyl, C_1 – C_4 -Alkylsulfonyl, C_1 – C_4 -Halogenalkylthio, C_1 – C_4 -Halogenalkylsulfinyl oder C_1 – C_4 -Halogenalkylsulfonyl substituierten C_1 – C_6 -Alkylrest oder einen gegebenenfalls durch die aufgezählten Substituenten substituierten C_2 – C_6 -Alkenylrest,

E die Methingruppe oder Stickstoff,

X Sauerstoff, Schwefel, eine Sulfinyl- oder Sulfonylbrücke,

Z Sauerstoff oder Schwefel, m die Zahl eins oder zwei,

R₁ Wasserstoff, Halogen, C₁-C₅-Alkyl, C₂-C₅-Alkenyl oder einen Rest -Y-R₅,

R₂ Wasserstoff, Halogen, C₁–C₅-Alkyl, C₂–C₅-Alkenyl, C₁–C₄-Halogenalkyl, oder einen Rest – Y–R₅, –COOR₆, –NO₂ oder –CO–NR₇R₈,

 R_3 und R_4 unabhängig voneinander Wasserstoff, C_1 – C_4 -Alkyl, C_1 – C_4 -Alkoxy, C_1 – C_4 -Alkylthio, C_1 – C_4 -Halogenal-kyl, Halogen oder Alkoxyalkyl mit höchstens 4 Kohlenstoffatomen,

 R_5 und R_6 je C_1 – C_5 -Alkyl, C_2 – C_5 -Alkenyl oder C_2 – C_6 -Alkinyl,

R₇ und R₈ unabhängig voneinander Wasserstoff, C₁-C₅-Alkyl, C₂-C₅-Alkenyl oder C₂-C₆-Alkinyl und

Y Sauerstoff, Schwefel, eine Sulfinyl- oder Sulfonylbrücke bedeutet, sowie die Salze dieser Verbindungen, mit der Massgabe, dass nicht gleichzeitig

i) m die Zahl eins, X Schwefel, eine Sulfinyl- oder Sulfonylbrücke, A C₃–C₄-Alkenyl, R₁ Wasserstoff, R₂ Wasserstoff, 40 Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl oder Nitro, R₃ Methyl oder Methoxy und R₄ Methyl, Äthyl, Methoxy, Äthoxy oder Methoxymethyl; und

ii) m die Zahl eins, X und Z Sauerstoff, A Trifluormethyl, R_2 Wasserstoff, R_3 Wasserstoff, Methyl, Methoxy, Äthoxy, Methoxymethyl oder Chlor, R_4 Methyl, Methoxy oder Äthoxy und R_1 C_2 – C_5 -Alkenyl bedeuten und R_1 die ortho-Position zur SO_2 -Gruppe besetzt.

2. Verbindungen gemäss Anspruch 1, dadurch gekennzeichnet, dass ein Substituent – X-A in der 2- oder 3-Stellung 60 des Phenylkerns steht.

3. Verbindungen gemäss Anspruch 1, dadurch gekennzeichnet, dass m die Zahl 1 bedeutet.

4. Verbindungen gemäss Anspruch 2 und 3, dadurch gekennzeichnet, dass der Substituent –X–A die 2-Stellung des Phenylringes besetzt.

5. Verbindungen gemäss Anspruch 1, dadurch gekennzeichnet, dass A einen C_2 – C_3 -Alkenylrest, einen C_2 – C_3 -Halogenalkenylrest oder einen ein- oder mehrfach durch C_1 – C_2 -Alkoxy, C_1 – C_2 -Halogenalkoxy, Fluor, Chlor oder Brom substituierten C_1 – C_4 -Alkylrest bedeutet.

6. Verbindungen gemäss Ansprüchen 4 und 5, dadurch gekennzeichnet, dass sie nur einen Substituenten –X–A enthalten, dieser Substituent die 2-Stellung am Phenylring besetzt und A die in Anspruch 5 angegebene Bedeutung hat.

7. Verbindungen gemäss Anspruch 1, dadurch gekennzeichnet, dass die Reste R₃ und R₄ unabhängig voneinander jeweils höchstens 2 Kohlenstoffatome enthalten.

8. Verbindungen gemäss Anspruch 1, dadurch gekennzeichnet, dass sie die Reste R₁ und R₂ Wasserstoff bedeuten.

9. Verbindungen gemäss Ansprüchen 6 und 7, dadurch gekennzeichnet, dass sie nur einen Substituenten –X–A enthal-5 ten, dieser Substituent die 2-Stellung am Phenylring besetzt, A die in Anspruch 5 gegebene Bedeutung hat und die Reste R₃ und R₄ unabhängig voneinander höchstens jeweils 2 Kohlenstoffatome enthalten.

10. Verbindungen gemäss Ansprüchen 6 und 8, dadurch gekennzeichnet, dass sie nur einen Substituenten –X–A enthalten, der Substituent –X–A in der 2-Stellung des Phenylkerns steht, A die in Anspruch 5 gegebene Bedeutung hat und R₁ und R₂ Wasserstoff bedeutet.

11. Verbindungen gemäss Ansprüchen 9 und 10, dadurch gekennzeichnet, dass der Substituent –X–A in der 2-Stellung des Phenylkerns steht, R₁ und R₂ Wasserstoff und R₃ und R₄ unabhängig voneinander Methyl oder Methoxy bedeuten.

12. N-(2-Allyloxyphenylsulfonyl) -N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)- harnstoff gemäss Anspruch 1.

13. N-(2-Difluormethoxyphenylsulfonyl)- N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)- harnstoff gemäss Anspruch 1.

14. N-(2-Difluormethylthiophenylsulfonyl)- N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)- harnstoff gemäss Anspruch 1.

5 15. N-[2-(1,1,2,2-Tetrafluoräthoxy)- phenylsulfonyl]- N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)- harnstoff gemäss Anspruch 1.

16. N-(2-Trifluormethoxyphenylsulfonyl)- N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)- harnstoff gemäss Anspruch 1.

17. N-(2-Trifluormethoxyphenylsulfonyl)- N'-(4-methoxy-6-methyl-pyrimidin-2-yl)- harnstoff gemäss Anspruch 1.

18. N-(6-Chlor-2-difluormethoxyphenylsulfonyl)- N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)- harnstoff gemäss Anspruch 1.

19. N-(2-Difluormethoxyphenylsulfonyl)- N'-(4,6-diäthoxy-1,3,5-triazin-2-yl)- harnstoff gemäss Anspruch 1.

20. N-[2,5-Bis-(difluormethoxy)- phenylsulfonyl]- N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff gemäss Anspruch 1.

21. N-(2-Allyloxyphenylsulfonyl)- N'-(4,6-dimethoxy-1,3,5-triazin-2-yl)-harnstoff gemäss Anspruch 1.

22. N-[2-(1,2-Dichlorvinyloxy)-phenylsulfonyl]- N'-(4,6-dimethoxy-1,3,5-triazin-2-yl)-harnstoff gemäss Anspruch 1.

23. Verfahren zur Herstellung der Verbindungen der Formel I, Anspruch 1, dadurch gekennzeichnet, dass man ein Phenylsulfonamid der Formel II

$$R_{1} = \frac{\text{SO}_{2}^{-\text{NH}}_{2}}{\text{N}_{2}}$$

$$(II)$$

worin A, R₁, R₂, X und m die unter Formel I gegebene Bedeutung haben, in Gegenwart einer Base mit einem N-Pyrimidinyl- oder Triazinyl-carbamat der Formel

worin E, R₃, R₄ und Z die unter Formel I gegebene Bedeutung haben, umsetzt und gegebenenfalls in ihre Salze überführt.

24. Verfahren zur Herstellung der Verbindungen der Formel I, Anspruch 1, dadurch gekennzeichnet, dass man ein Phenylsulfonylisocyanat oder -isothiocyanat der Formel IV

$$R_{1} = \frac{1}{100} = \frac{1}{100$$

worin A, R₁, R₂, m, X und Z die unter Formel I gegebene Bedeutung haben, gegebenenfalls in Gegenwart einer Base, mit einem Amin der Formel V

$$H_2N - \underbrace{R_3}_{R_4}$$
 (V)

worin E, R₃ und R₄ die unter Formel I gegebene Bedeutung haben, umsetzt und gegebenenfalls in ihre Salze überführt.

25. Verfahren zur Herstellung der Verbindungen der Formel I, Anspruch 1, dadurch gekennzeichnet, dass man ein Sulfonamid der Formel II mit einem Isocyanat oder Isothiocyanat der Formel VI

$$Z=C=N- \cdot N= \cdot R_{4}$$
(VI)

worin E, R_3 , R_4 und Z die unter Formel I gegebene Bedeutung haben, umsetzt und gegebenenfalls in ihre Salze überführt.

26. Verfahren zur Herstellung der Verbindungen der Formel I, Anspruch 1, dadurch gekennzeichnet, dass man N-Phe
nylsulfonylcarbamat der Formel VII

worin A, R₁, R₂, m und X die unter Formel I gegebene Bedeutung haben, mit einem Amin der Formel V umsetzt.

27. Verfahren zur Herstellung von basischen Additionssalzen der Formel I gemäss einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, dass man einen Sulfonylharnstoff der Formel I mit einem Amin, einem Alkalimetall- oder Erdalkalimetallhydroxid oder einer quaternären Ammoniumbase umsetzt.

28. Mittel zur Durchführung des Verfahrens nach Anspruch 23, dadurch gekennzeichnet, dass man ein Phenylsulfonamid der Formel II

worin A, R₁, R₂, m und X die unter Formel I, Anspruch 1, gegebene Bedeutung haben, mit Ausnahme der Verbindungen 2-Trifluormethoxyphenyl- sulfonamid und 2-Trifluormethylthiophenyl- sulfonamid, verwendet.

29. Herbizides und den Pflanzenwuchs hemmendes Mittel, dadurch gekennzeichnet, dass es neben Träger- und/oder anderen Zuschlagstoffen als Wirkstoff mindestens einen N-Phenylsulfonyl-N'- triazinyl- oder -pyrimidinyl-harnstoff der Formel 1, Anspruch 1, enthält.

30. Verfahren zur Bekämpfung unerwünschten Pflanzenwachstums, dadurch gekennzeichnet, dass man einen N-Phenylsulfonyl-N- triazinyl- oder -pyrimidinyl-harnstoff der Formel I verwendet.

Verfahren zur Hemmung unerwünschten Pflanzen wachstums, dadurch gekennzeichnet, dass man einen N-Phenylsulfonyl- N-triazinyl- oder -pyrimidinyl-harnstoff der Formel I verwendet.

32. Verfahren gemäss Anspruch 30 zur selektiven preoder postemergenten Bekämpfung von Unkräutern in Nutz-20 pflanzenkulturen.

Die vorliegende Erfindung betrifft neue, herbizid wirksame N-Phenylsulfonyl-N'- pyrimid- und -triazinyl-harnstoffe, Verfahren zu ihrer Herstellung, sie als Wirkstoffe enthaltende herbizide Mittel, sowie deren Verwendung zum Bekämpfen von Unkräutern, vor allem selektiv in Nutzpflanzenkulturen oder zum Regulieren und Hemmen des Pflanzenwachstums. Darüber hinaus betrifft die Erfindung auch als
Zwischenprodukte hergestellte neue Phenylsulfonamide.

Die erfindungsgemässen N-Phenylsulfonyl-N'-pyrimidinyl- und triazinyl-harnstoffe entsprechen der allgemeinen Formel I

worin

A einen durch Halogen, C_1 – C_4 -Alkoxy, C_1 – C_4 -Alkylsulfino, C_1 – C_4 -Alkylsulfinyl, C_1 – C_4 -Alkylsulfonyl, C_1 – C_4 -Halogenalkylsulfinyl oder C_1 – C_4 -Halogenalkylsulfonyl substituierten C_1 – C_6 -Alkylrest oder einen gegebenenfalls durch die ausgezählten Substituierten substituierten C_2 – C_6 -Alkenylrest,

E die Methingruppe oder Stickstoff,

X Sauerstoff, Schwefel, eine Sulfinyl- oder Sulfonylbrücke,

Z Sauerstoff oder Schwefel, m die Zahl eins oder zwei,

 R_1 Wasserstoff, Halogen, C_1 – C_5 -Alkyl, C_2 – C_5 -Alkenyl oder einen Rest –Y– R_5 ,

R₂ Wasserstoff, Halogen, C₁–C₅-Alkyl, C₂–C₅-Alkenyl, C₁–C₄-Halogenalkyl, oder einen Rest –Y–R₅, –COOR₆, –NO₂ oder –CO–NR₇R₈,

R₃ und R₄ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenal-kyl, Halogen oder Alkoxyalkyl mit höchstens 4 Kohlenstoffatomen,

 $R_5\, und\, R_6\, je\, C_1-C_5-Alkyl,\, C_2-C_5-Alkenyl\, oder\, C_2-C_{6^-}$ Alkinyl,

R₇ und R₈ unabhängig voneinander Wasserstoff, C₁-C₅-Alkyl, C₂-C₅-Alkenyl oder C₂-C₆-Alkinyl und

Y Sauerstoff, Schwefel, eine Sulfinyl- oder Sulfonylbrücke

bedeutet, sowie die Salze dieser Verbindungen, mit der Massgabe, dass nicht gleichzeitig

i) m die Zahl eins, X Schwefel, eine Sulfinyl- oder Sulfonylbrücke, A C₃-C₄-Alkenyl, R₁ Wasserstoff, R₂ Wasserstoff, Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl oder Diäthyl- oder Triäthylamin, vor allem aber iso-Propylamin Nitro, R₃ Methyl oder Methoxy und R₄ Methyl, Äthyl, Methoxy, Athoxy oder Methoxymethyl; und

ii) m die Zahl eins, X und Z Sauerstoff, A Trifluormethyl, R₂ Wasserstoff, R₃ Wasserstoff, Methyl, Methoxy, Äthoxy, Methoxymethyl oder Chlor, R₄ Methyl, Methoxy oder Äthoxy und R₁ C₂-C₅-Alkenyl bedeuten und R₁ die ortho-Position zur SO₂-Gruppe besetzt.

Der ausgeklammerte Teil der vorliegenden Erfindung ist Gegenstand der für die Schweiz und Liechtenstein wirksamen 15 steht. Europäischen Patente 35893 und 44210.

Harnstoffverbindungen, Triazinverbindungen und Pyrimidinverbindungen mit herbizider Wirkung sind allgemein bekannt. Kürzlich wurden Arylsulfamoyl-heterocyclyl-aminocarbamoylverbindungen mit herbizider und pflanzwuchsregulierender Wirkung, beispielsweise in den europäischen Patentpublikationen Nr. 1514, 1515, dem US Patent No. 4 127 405, in der DT-OS 2 715 786 oder in der FR-PS 1 468 747 beschrieben.

In den Definitionen von A und R₁ bis R₄ ist unter Alkyl geradkettig oder verzweigt zu verstehen; z.B.: Methyl, Äthyl, n-Propyl, i-Propyl, die vier isomeren Butyl, n-Amyl, i-Amyl, 2-Amyl, 3-Amyl, n-Hexyl oder i-Hexyl, vorzugsweise ist der Alkylrest jedoch geradkettig.

verstehen: Methoxy, Äthoxy, n-Propyloxy, i-Propyloxy und die vier isomeren Butyloxyreste, insbesondere aber Methoxy oder Athoxy.

Beispiele für Alkylthio sind Methylthio, Äthylthio, n-Propylthio, i-Propylthio und n-Butylthio, insbesondere aber Methylthio und Äthylthio.

Beispiele für Alkenylreste sind Vinyl, Allyl, Isopropenyl, 1-Propenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Isobutenyl, 2-Isobutenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl und 4 Pentenyl, insbesondere aber Vinyl, Allyl und 4-Pentenyl.

Beispiele für Alkylsulfinyl sind Methylsulfinyl, Äthylsulfinyl, n-Propylsulfinyl und n-Butylsulfinyl, insbesondere aber Methylsulfinyl und Äthylsulfinyl.

Beispiele für Alkylsulfonyl sind Methylsulfonyl, Äthylsulfonyl, n-Propylsulfonyl und n-Butylsulfonyl, insbesondere aber Methylsulfonyl und Äthylsulfonyl.

Unter Halogen in den Definitionen von A, R₁ bis R₄ sowie in Halogenalkyl, -alkoxy, -alkylsulfinyl, -alkylsulfonyl und -alkylthio sind Fluor, Chlor und Brom, vorzugsweise jedoch Fluor und Chlor zu verstehen.

In der Definition von A sind unter substituierten Alkyloder Alkenylresten solche zu verstehen, die einen oder mehrere der aufgezählten Substituenten tragen, wobei vorzugsweise 1 Substituent gemeint ist. Bei Substitution durch Halogenatome sind vorzugsweise mehrere, gegebenenfalls sogar sämtliche Wasserstoffatome der Alkyl- oder Alkenylreste durch Halogenatome ersetzt.

Die Erfindung umfasst ebenfalls die Salze, die die Verbindungen der Formel I mit Aminen, Alkali- und Erdalkalimetallbasen oder quaternären Ammoniumbasen bilden können. 60

Unter Alkali- und Erdalkalimetallhydroxyden als Salzbildner sind die Hydroxyde von Lithium, Natrium, Kalium, Magnesium oder Calcium hervorzuheben, insbesondere aber die von Natrium oder Kalium.

Beispiele für zur Salzbildung geeignete Amine sind primäre, sekundäre und tertiäre aliphatische und aromatische Amine wie Methylamin, Äthylamin, Propylamin, i-Propylamin, die vier isomere Butylamine, Dimethylamin, Diäthylamin, Diäthanolamin, Dipropylamin, Diisopropylamin, Din-butylamin, Pyrrolidin, Piperidin, Morpholin, Trimethylamin, Triäthylamin, Tripropylamin, Chinuclidin, Pyridin, Chinolin und i-Chinolin, insbesondere aber Athyl-, Propyl-, und Diäthanolamin.

Beispiele für quaternäre Ammoniumbasen sind im allgemeinen die Kationen von Halogenammoniumsalzen, z.B. das Tetramethylammoniumkation, das Trimethylbenzylammoniumkation, das Triäthylbenzylammoniumkation, das Tetraäthylammoniumkation, das Trimethyläthylammoniumkation, aber auch das Ammoniumkation.

Bevorzugt sind Verbindungen der Formel I, in denen ein Substituent –X–A in der 2- oder 3-Stellung des Phenylkerns

Ebenfalls bevorzugt sind Verbindungen der Formel I, die nur einen Substituenten -X-A tragen, der vorteilhaft die 2-Stellung des Phenylkerns besetzt.

Ebenfalls bevorzugt sind Verbindungen der Formel I in 20 denen A einen C2-C3-Alkenylrest, einen C2-C3-Halogenalkenylrest oder einen ein- oder mehrfach durch C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, Fluor, Chlor oder Brom substituierten C₁--C₄-Alkylrest bedeutet.

Ebenso bevorzugt sind die Verbindungen der Formel I in 25 denen R₁ und R₂ Wasserstoff bedeutet.

Unter den Verbindungen der Formel I sind diejenigen besonders bevorzugt, die nur einen Substituenten -X-A enthalten, der die 2-Stellung am Phenylring besetzt und in denen A einen C₂-C₃-Alkenyl-, C₂-C₃-Halogenalkenyl- oder einen Unter Alkoxy in den Definitionen von A, R₃ und R₄ ist zu 30 ein- oder mehrfach durch C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, Fluor, Chlor oder Brom substituierten C₁-C₄-Alkylrest bedeutet.

> Eine andere Bevorzugung der Verbindungen der Formel I liegt darin, dass die Reste R3 und R4 unabhängig voneinander 35 jeweils höchstens 2 Kohlenstoffatome enthalten.

> Von diesen Verbindungen sind wiederum diejenigen bevorzugt, die nur einen Substituenten -X-A enthalten, der vorteilhaft die 2-Stellung als Phenylkern besetzt und in denen die Reste R₃ und R₄ unabhängig voneinander jeweils höchstens 2 40 Kohlenstoffatome enthalten.

> Eine besonders bevorzugte Unterklasse von Verbindungen der Formel I sind solche, die nur einen Substituenten -X-A in der 2-Position des Phenylkerns enthalten und in denen A einen C2-C3-Alkenyl-, C2-C3-Halogenalkenyl- oder ei-45 nen ein- oder mehrfach durch C₁-C₂-Alkoxy, C₁-C₈-Halogenalkoxy, Fluor, Chlor oder Brom substituierten, C1-C4-Alkylrest, R₁ und R₂ Wasserstoff bedeutet.

> Ganz besonders sind unter letzteren Verbindungen aber diejenigen bevorzugt, in denen die Reste R3 und R4 unabhän-50 gig voneinander Methyl oder Methoxy bedeutet.

Die Herstellung der Verbindungen der Formel I erfolgt in an sich bekannter Weise in einem inerten, organischen Lösungsmittel.

Nach einem ersten Verfahren werden die Verbindungen der Formel I erhalten, indem man ein Phenylsulfonamid der Formel II

worin A, R₁, R₂, X und m die unter Formel I gegebene Bedeutung haben, in Gegenwart einer Base mit einem N-Pyrimidinyl- oder Triazinyl-carbamat der Formel III

5 657 849

worin, E, R₃, R₄ und Z die unter Formel I gegebene Bedeutung haben, umsetzt.

Nach einem zweiten Verfahren gelangt man zu Verbindungen der Formel I, indem man ein Phenylsulfonylisocyanat oder -isothiocyanat der Formel IV

$$R_{1} \xrightarrow{\text{if}} SO_{2} - N = C = Z$$

$$R_{2} \times (X-A)_{m}$$
(IV)

worin A, R_1 , R_2 , m, X und Z die unter Formel I gegebene Bedeutung haben, gegebenenfalls in Gegenwart einer Base, mit einem Amin der Formel V

$$H_2N - \bullet R_3$$

$$R_4$$

$$(V)$$

worin E, R₃ und R₄ die unter Formel I gegebene Bedeutung haben, umsetzt.

Nach einem weiteren Verfahren werden die Verbindungen der Formel I hergestellt, indem man ein Sulfonamid der oben angegebenen Formel II gegebenenfalls in Gegenwart einer Base mit einem Isocyanat oder Isothiocyanat der Formel VI

$$Z=C=N-\bullet R_{3}$$

$$N=\bullet R_{4}$$
(VI)

worin E, R₃, R₄ und Z die unter Formel I gegebene Bedeutung haben, umsetzt.

Schliesslich kann man die Verbindungen der Formel I auch erhalten, indem man ein N-Phenylsulfonylcarbamat der Formel VII

$$R_{1} = \begin{bmatrix} & & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

worin A, R_1 , R_2 , m und X die unter Formel I gegebene Bedeutung haben, mit einem Amin der oben angegebenen Formel V umsetzt.

Die erhaltenen Harnstoffe der Formel I können gewünschtenfalls mittels Aminen, Alkalimetall- oder Erdalkalimetallhydroxiden oder quaternären Ammoniumbasen in basische Additionssalze übergeführt werden. Dieses geschieht beispielsweise durch Umsetzen mit der äquimolaren Menge Base und Verdampfen des Lösungsmittels. Solche Umsetzungen wie auch die Herstellung einzelner Ausgangsstoffe der Formel II–VII sind bekannt und beispielsweise in den US Patentschriften Nr. 3 384 757 und 3 410 887 beschrieben.

Die Ausgangsstoffe der Formeln II, IV und VII sind zum Teil neu und können nach folgenden Methoden hergestellt werden:

Die neuen und als Zwischenprodukte verwendeten Sulfonamide der Formel II werden aus den entsprechenden Anilinen durch Diazotierung und Austausch der Diazogruppe mit Schwefeldioxid in Gegenwart eines Katalysators wie Kupfer-I-chlorid in Salzsäure oder Essigsäure und Um-10 setzen des entstandenen Phenylsulfonylchlorids mit Ammoniumhydroxid-Lösung erhalten.

Die Verbindungen der Formel II können auch durch Sauerstoff- oder Schwefel-Alkylierung resp. Alkenylierung von Hydroxy- oder Thiophenylsulfonamiden mit den entsprechenden Halogeniden resp. Schwefelsäureestern oder durch Umsatz von ortho-Halogenphenylsulfonamiden mit Metall-Alkoholaten resp. Mercaptiden und gegebenenfalls durch deren Oxidation z.B. mit Perjodaten resp. Persäuren zu den entsprechenden Sulfoxiden und Sulfonen erhalten werden.

Ortho-substituierte Hydroxyphenyl- resp. substituierte ortho-Hydroxyphenylsulfonamide der Formel VIII,

worin R₁ und R₂ die unter Formel I angegebene Bedeutung haben und X' für Sauerstoff oder Schwefel steht, als Ausgangsprodukte bestimmter Sulfonamid-Vertreter der Formel II sind mit Ausnahme von ortho-Hydroxyphenylsulfonamid neu. Sie können durch Ätherspaltung der entsprechenden
 C₁-C₄-Alkoxyphenylsulfonamiden z.B. mit Bortrihalogeniden (solche Umsetzungen sind in der US-Patentschrift 3 904 680 und in J. Chem. Soc. 64, 1128 (1942) beschrieben) oder durch Hydrogenolyse der entsprechenden Benzyloxyphenylsulfonamiden erhalten werden, wie in J. Chem. Soc. 1958, 2903 beschrieben ist.

Die Alkoxyphenylsulfonamide wiederum können aus den entsprechenden Alkoxyaniliden wie bereits erwähnt oder durch Chlorsulfonylierung von Alkoxybenzolen und Umsatz der erhaltenen Phenylsulfonylchloriden mit Ammoniumhy-45 droxid-Lösung gewonnen werden. Solche Reaktionen sind aus J. Am. Chem. Soc. 62, 603 (1940) bekannt geworden.

Die als Zwischenprodukte verwendeten Verbindungen der Formeln II und VIII sind neu resp. z.T. neu und speziell für die Synthese von Verbindungen der Formel I entwickelt worden. Diese Zwischenprodukte bilden einen weiteren Aspekt der vorliegenden Erfindung.

Die Phenylsulfonylisocyanate der Formel IV können durch Umsetzungen der Sulfonamide der Formel II mit Phosgen in Anwesenheit von Butylisocyanat in einem chlorierten Wasserstoff als Lösungsmittel, bei Rückflusstemperatur erhalten werden. Siehe dazu «Newer Methods of Preparative Organic Chemistry» Band VI, 223–241, Academic Press New York und London.

Die Isothiocyanate der Formel IV werden durch Behandlung der Sulfonamide der Formel II mit Schwefelkohlenstoff und Kaliumhydroxyd und anschliessender Umsetzung des Dikaliumsalzes mit Phosgen erhalten, siehe Arch. Pharm. 229, 174 (1966).

Die N-Phenylsulfonylcarbamate der Formel VII werden durch Umsetzung der Sulfonamide der Formel II mit Diphenylcarbamat in Gegenwart einer Base erhalten, siehe japanische Patentschrift 61 169.

Die Ausgangsmaterialien der Formeln III, V und VI sind bekannt oder können nach bekannten Methoden hergestellt werden

Durch Umsetzung von Aminen der Formel V mit Phosgen oder Oxalylchlorid in chlorierten Kohlenwasserstoffen als Lösungsmittel, lassen sich die Isocyanate der Formel VI herstellen. Isothiocyanate werden beispielsweise durch Umsatz mit Thiophosgen erhalten. Amine der Formel V sind bekannt und zum Teil im Handel erhältlich oder sie können nach bekannten Methoden hergestellt werden, siehe «The Chemistry of Heterocyclic Compounds» Band XIV, Interscience Publishers New York, London.

Diese Umsetzungen werden vorteilhafterweise in aprotischen, inerten, organischen Lösungsmitteln vorgenommen wie Methylenchlorid, Tetrahydrofuran, Acetonitril, Dioxan, Toluol

Die Reaktionstemperaturen liegen vorzugsweise zwischen -20 °C und +120 °C. Die Umsetzungen verlaufen im allgemeinen leicht exotherm und können bei Raumtemperatur durchgeführt werden. Zwecks Abkürzung der Reaktionszeit oder auch zum Einleiten der Umsetzung wird zweckdienlich für kurze Zeit bis zum Siedepunkt des Reaktionsgemisches aufgewärmt. Die Reaktionszeiten können ebenfalls durch Zugabe einiger Tropfen Base oder Isocyanat als Reaktionskatalysator verkürzt werden.

Die Endprodukte können durch Einengen und/oder Verdampfen des Lösungsmittels isoliert und durch Umkristallisieren oder Zerreiben des festen Rückstandes in Lösungsmitteln in denen sie sich nicht gut lösen, wie Äther, aromatischen Kohlenwasserstoffen oder chlorierten Kohlenwasserstoffen gereinigt werden.

gen werden Vermischer witteln, wie Ather, aromatischen und gegebe (Tensiden).

Die Wirkstoffe der Formel I sind stabile Verbindungen. Ihre Handhabung bedarf keiner vorsorglichen Massnahmen.

Die Verbindungen der Formel I haben starke pflanzenwuchsregulierende, insbesondere pflanzenwuchshemmende, Eigenschaften. Es werden sowohl Monokotyledonen als auch Dikotyledonen in ihrem Wachstum beeinträchtigt.

So können z.B. die in der Landwirtschaft in tropischen Gegenden häufig als «cover crops» (Bodenbedecker) angepflanzten Leguminosen durch die Verbindungen der Formel I 40 in ihrem Wachstum selektiv gehemmt werden, so dass zwar die Bodenerosion zwischen den Kulturpflanzen verhindert wird, die «cover crops» jedoch nicht zur Konkurrenz für die Kultur werden können.

äther, Ketone wie Cyclohexanon, stark polare Lösungsmitte wie N-Methyl-2-pyrrolidon, Dimethylsulfoxid oder Sojaöl; oder Wasser.

Als feste Trägerstoffe, z.B. für Stäubemittel und dispergierbare Pulver, werden in der Regel natürliche Gesteinsmehle verwendet, wie Calcit, Talkum, Kaolin, Montmorillo-

Weiter eignen sich die Verbindungen der Formel I um das Keimen von eingelagerten Kartoffeln zu verhindern. Bei Kartoffeln entwickeln sich bei der Einlagerung über den Winter häufig Keime, die Schrumpfen, Gewichtsverlust und Faulen zur Folge haben.

Bei grösseren Aufwandmengen werden alle getesteten Pflanzen in ihrer Entwicklung so geschädigt, dass sie absterben.

Bei geringeren Aufwandmengen zeichnen sich die Verbindungen der Formel I durch gute selektiv-wuchshemmende und selektiv-herbizide Eigenschaften aus, die sie ausgezeichnet zum Einsatz in Kulturen von Nutzpflanzen, insbesondere in Getreide, Baumwolle, Soja, Mais und Reis, befähigen. Es werden dabei teilweise auch Unkräuter geschädigt, welchen bisher nur mit Totalherbiziden beizukommen war.

Die Wirkungsart dieser Wirkstoffe ist unüblich. Viele sind translozierbar, d.h. sie werden von der Pflanze aufgenommen und an andere Stellen transportiert, wo sie dann zur Wirkung kommen. Das unübliche daran ist, dass die Wirkstoffe nicht nur den Weg durch die Gefässbündel im Holzteil, von den Wurzeln in die Blätter nehmen, sondern auch durch die Siebröhren im Bastteil von den Blättern zurück in die Wurzel transloziert werden können. So gelingt es beispielsweise,

durch Oberflächenbehandlung perenierende Unkräuter bis in die Wurzeln zu schädigen. Die neuen Verbindungen der Formel I wirken bereits bei – im Vergleich zu anderen Herbiziden und Wuchsregulatoren – sehr geringen Aufwandmengen.

Die Erfindung betrifft auch herbizide und pflanzenwachstumsregulierende Mittel, welche einen neuen Wirkstoff der Formel I enthalten, sowie Verfahren zur pre- und post-emergenten Unkrautbekämpfung und zur Hemmung des Pflanzenwuchses von monokotylen und dikotylen Pflanzen, insbesondere Gräsern, tropischen Bodenbedeckern und Tabakgeiztrieben.

Die Verbindungen der Formel I werden in unveränderter Form oder vorzugsweise als Mittel zusammen mit den in der Formulierungstechnik üblichen Hilfsmitteln eingesetzt und werden daher z.B. zu Emulsionskonzentraten, direkt versprühbaren oder verdünnbaren Lösungen, verdünnten Emulsionen, Spritzpulvern, löslichen Pulvern, Stäubemitteln, Granulaten, auch Verkapselungen in z.B. polymeren Stoffen in bekannter Weise verarbeitet. Die Anwendungsverfahren wie Versprühen, Vernebeln, Verstäuben, Verstreuen oder Giessen werden gleich wie die Art der Mittel den angestrebten Zielen und den gegebenen Verhältnissen entsprechend gewählt.

Die Formulierungen, d.h. die den Wirkstoff der Formel I und gegebenenfalls einen festen oder flüssigen Zusatzstoff enthaltenden Mitteln, Zubereitungen oder Zusammensetzungen werden in bekannter Weise hergestellt, z.B. durch inniges Vermischen und/oder Vermahlen der Wirkstoffe mit Streckmitteln, wie z.B. mit Lösungsmitteln, festen Trägerstoffen, und gegebenenfalls oberflächenaktiven Verbindungen (Tensiden).

Als Lösungsmittel können in Frage kommen: Aromatische Kohlenwasserstoffe, bevorzugt die Fraktionen C₈ bis C₁₂, wie z.B. Xylolgemische oder substituierte Naphthaline, Phthalsäureester wie Dibutyl- oder Dicotylphthalat, aliphatische Kohlenwasserstoffe wie Cyclohexan oder Paraffine, Alkohole und Glykole sowie deren Äther und Ester, wie Äthanol, Äthylenglykol, Äthylenglykolmonomethyl- oder äthyläther, Ketone wie Cyclohexanon, stark polare Lösungsmittel wie N-Methyl-2-pyrrolidon, Dimethylsulfoxid oder Dimethylformamid, sowie gegebenenfalls epoxidierte Pflanzenöle, wie epoxidiertes Kokosnussöl oder Sojaöl; oder Wasser.

Als feste Trägerstoffe, z.B. für Stäubemittel und dispergierbare Pulver, werden in der Regel natürliche Gesteinsmehle verwendet, wie Calcit, Talkum, Kaolin, Montmorillonit oder Attapulgit. Zur Verbesserung der physikalischen Eigenschaften können auch hochdisperse Kieselsäure oder hochdisperse saugfähige Polymerisate zugesetzt werden. Als gekörnte, adsorptive Granulatträger kommen poröse Typen wie z.B. Bimsstein, Ziegelbruch, Sepiolit oder Bentonit, als nicht sorptive Trägermaterialien z.B. Calcit oder Sand in Frage. Darüberhinaus kann eine Vielzahl von vorgranulierten Materialien anorganischer oder organischer Natur wie insbesondere Dolomit oder zerkleinerte Pflanzenrückstände verwendet werden.

Als oberflächenaktive Verbindungen kommen je nach der Art des zu formulierenden Wirkstoffes der Formel I nichtionogene, kation- und/oder anionaktive Tenside mit guten Emulgier-, Dispergier- und Netzeigenschaften in Betracht. 60 Unter Tensiden sind auch Tensidgemische zu verstehen.

Geeignete anionische Tenside können sowohl sog. wasserlösliche Seifen als auch wasserlösliche synthetische oberflächenaktive Verbindungen sein.

Als Seifen seien die Alkali-, Erdalkali- oder gegebenen-65 falls substituierte Ammoniumsalze von höheren Fettsäuren (C₁₀-C₂₂), wie z.B. die Na- oder K-Salze der Öl- oder Stearinsäure, oder von natürlichen Fettsäuregemischen, die z.B. aus Kokosnuss- oder Talgöl gewonnen werden können, genannt. Ferner sind auch die Fettsäure-methyl-taurinsalze zu er-

Häufiger werden jedoch sogenannte synthetische Tenside verwendet, insbesondere Fettsulfonate, Fettsulfate, sulfonierte Benzimidazolderivate oder Alkylarylsulfonate.

Die Fettsulfonate oder -sulfate liegen in der Regel als Alkali-, Erdalkali- oder gegebenenfalls substituierte Ammoniumsalze vor und weisen einen Alkylrest mit 8 bis 22 C-Atomen auf, wobei Alkyl auch den Alkylteil von Acylresten einschliesst, z.B. das Na- oder Ca-Salz der Ligninsulfonsäure, des Dodecylschwefelsäureesters oder eines aus natürlichen Fettsäuren hergestellten Fettalkoholsulfatgemisches. Hierher gehören auch die Salze der Schwefelsäureester und Sulfonsäuren von Fettalkohol-Äthylenoxid-Addukten. Die sulfonierten Benzimidazolderivate enthalten vorzugsweise 2 Sulfonsäuregruppen und einen Fettsäurerest mit 8-22 C-Atomen. Alkylarylsulfonate sind z.B. die Na-, Ca- oder Triäthanolaminsalze der Dodecyclbenzolsulfonsäure, der Dibutylnaphthalinsulfonsäure oder eines Napthalinsulfonsäure-Formaldehydkondensationsproduktes.

Ferner kommen auch entsprechende Phosphate wie z.B. Salze des Phosphorsäureesters eines p-Nonylphenol-(4-14)-Äthylenoxid-Adduktes oder Phospholipide in Frage.

Als nicht ionische Tenside kommen in erster Linie Polyglykolätherderivate von aliphatischen oder cycloaliphatischen Alkoholen, gesättigten oder ungesättigten Fettsäuren und Alkylphenolen in Frage, die 3 bis 30 Glykoläthergruppen und 8 bis 20 Kohlenstoffatome im (aliphatischen) Kohlenwasserstoffrest und 6 bis 18 Kohlenstoffatome im Alkylrest der Alkylphenole enthalten können.

Weitere geeignete nichtionische Tenside sind die wasserlöslichen, 20 bis 250 Äthylenglykoläthergruppen und 10 bis 100 Propylenglykoläthergruppen enthaltenden Polyäthylenoxidaddukte an Polypropylenglykol, Äthylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit 1 bis 10 Kohlenstoffatomen in der Alkylkette. Die genannten Verbindungen enthalten üblicherweise pro Propylenglykol-Einheit 1 bis 5 Äthylenglykoleinheiten.

Als Beispiele nichtionischer Tenside seien Nonylphenolpolyäthoxyäthanole, Ricinusölpolyglykoläther, Polypropylen-Polyäthylenoxidaddukte, Tributylphenoxypolyäthanol, Polyäthylenglykol und Octylphenoxypolyäthoxyäthanol erwähnt.

Ferner kommen auch Fettsäureester von Polyoxyäthylensorbitan wie das Polyoxyäthylensorbitan-trioleat in Betracht. 45

Bei den kationischen Tensiden handelt es sich vor allem um quaternäre Ammoniumsalze, welche als N-Substituenten mindestens einen Alkylrest mit 8 bis 22 C-Atomen enthalten und als weitere Substituenten niedrige, gegebenenfalls halogenierte Alkyl-, Benzyl- oder niedrige Hydroxyalkylreste aufweisen. Die Salze liegen vorzugsweise als Halogenide, Methylsulfate oder Äthylsulfate vor, z.B. das Stearyltrimethylammoniumchlorid oder das Benzyldi(2-chloräthyl)äthylammoniumbromid.

sind u.a. in folgenden Publikationen beschrieben:

«Mc Cutcheon's Detergents and Emulsifiers Annual» MC Publishing Corp., Ridgewood, New Jersey, 1979. Sisley and Wood, «Encyclopedia of Surface Active

Chemical Publishing Co., Inc. New York, 1964. Die pestiziden Zubereitungen enthalten in der Regel 0,1 bis 95%, insbesondere 0,1 bis 80%, Wirkstoff der Formel I.

Insbesondere setzen sich bevorzugte Formulierungen folgendermassen zusammen: (% = Gewichtsprozent)

Lösungen

7

Aktiver Wirkstoff: 1 bis 30%, vorzugsweise 5 bis 20% Lösungsmittel: 99 bis 0%, vorzugsweise 95 bis 0% oberflächenaktives Mittel: 0 bis 99%, vorzugsweise 0 ₅ bis 95%.

Emulgierbare Konzentrate

Aktiver Wirkstoff: 1 bis 20%, bevorzugt 5 bis 10% oberflächenaktives Mittel: 5 bis 30%, vorzugsweise 10 10 bis 20%

flüssiges Trägermittel: 50 bis 94%, vorzugsweise 70 bis 85%.

Aktiver Wirkstoff: 0,1 bis 10%, vorzugsweise 0,1 bis 1% 15 festes Trägermittel: 99,9 bis 90%, vorzugsweise 99,9 bis 99%.

Suspension-Konzentrate

Aktiver Wirkstoff: 5 bis 75%, vorzugsweise 10 bis 50% Wasser: 94 bis 25%, vorzugsweise 90 bis 30% 20 oberflächenaktives Mittel: 1 bis 40%, vorzugsweise 2 bis 30%.

Benetzbare Pulver

Aktiver Wirkstoff: 0,5 bis 90%, vorzugsweise 1 bis 80% 25 oberflächenaktives Mittel: 0,5 bis 20%, vorzugsweise 1 bis

festes Trägermittel: 5 bis 95%, vorzugsweise 15 bis 90%.

Granulate

30 Aktiver Wirkstoff: 0,5 bis 30%, vorzugsweise 3 bis 15% festes Trägermittel: 99,5 bis 70%, vorzugsweise 97 bis 85%.

Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Mittel. Die Anwendungsformen können bis hinab 35 zu 0,001% an Wirkstoff verdünnt werden. Die Aufwandmengen betragen in der Regel 0,01 bis 10 kg AS/ha, vorzugsweise 0,025 bis 5 kg AS/ha.

Die Mittel können auch weitere Zusätze wie Stabilisatoren, Entschäumer, Viskositätsregulatoren, Bindemittel, Haft-40 mittel sowie Dünger oder andere Wirkstoffe zur Erzielung spezieller Effekte enthalten.

In den folgenden Beispielen sind die Temperaturen in Celsiusgraden °C, die Drücke in Millibar mb angegeben.

Herstellungsbeispiele:

Beispiel 1

2-Hydroxyphenylsulfonamid

Zu einer Suspension von 39 g 2-Methoxyphenylsulfonamid in 210 ml trockenem Methylenchlorid lässt man unter Stickstoffatmosphäre bei Raumtemperatur innerhalb von 15 Minuten 22,2 ml Bortribromid zutropfen. Die Reaktionsmischung wird danach für 1 Stunde bei Raumtemperatur ge-Die in der Formulierungstechnik gebräuchlichen Tenside 55 rührt. Anschliessend werden zur auf 0 °C gekühlten Mischung innerhalb von 15 Minuten 200 ml Methanol zugesetzt und die klare Lösung eingedampft. Der ölige Rückstand wird in Äthylacetat aufgenommen, zweimal mit Wasser gewaschen, mit Natriumsulfat getrocknet und eingedampft. Durch Verreiben des Rückstandes mit Petroläther erhält man 25,1 g 2-Hydroxyphenylsulfonamid vom Schmelzpunkt 136-138 °C.

> In analoger Weise werden die in der folgenden Tabelle aufgelisteten Hydroxyphenylsulfonamide der Formel VIII er-65 halten.

Tabelle 1

R_1	R ₂	Stellung von -OH	phys. Daten
CH₃ 5-CH CH₃	Н	2	Smp. 90–91°
2-CH ₃ 2-Cl	H H	5 5	
5–F 5–Br	H H	2 2 2	Smp. 169–70°
5–NO ₂ 3–CH ₃ 2–CH ₃	H H H	2 2 3	Smp. 133–134°
3-Cl 6-CH ₃	H H	2 2	
3-OCH ₃ 2-OCH ₃	H H 5 C.H.(t)	2 3 2	Smp. 134–137°
3-CH ₃ 6-OCH ₃ 6-OH	5–C ₄ H ₉ (t) H H	2 2	
5-OCH ₃ 2-OCH ₃	H H	2 5	Smp.: 119–20° Smp.: 213–15°
5-CH ₃ 6-Cl 3-NO ₂	H H H	. 2 2 2	
3–COOCH₃ 5–COOCH₃	H H	2 2	
5-Cl 5-NO ₂ 5-NO ₂	H 3-CF ₃ 3-Cl	2 2 2	
5-NO ₂ 5-CF ₃ 5-CH ₃	3-Cl 3-NO ₂ 3-CH ₃	2 2	
5-Cl 5-Cl	3–NO ₂ 3–Cl	2 2	
5–Br 5–Br 3–OCH ₃	3-OCH ₃ 2-OCH ₃ 5-COOCH ₃	3 2	
2-OCH ₃ 5CH ₃	5-COOCH ₃ 3-Br	3 2	
5–Br 5–Br 5–COOCH ₃	3–NO ₂ 3–COOCH ₃ 3–NO ₂	5 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	
5Cl 3NH ₂	3–Br H	2 2	
5-NH ₂ 5-COOC ₃ H ₇ (i) 5-CON(CH ₃) ₂	H 3–NO ₂ H	2 2 2	
5-CON(CI13)2 6-NO ₂ 6-COOCH3	H H	2 2	

Beispiel 2

2-Allyloxyphenylsulfonamid, Eine Mischung von 3,5 g 2-Hydroxyphenylsulfonamid, 5,5 g Pottasche und 1,7 ml Allylbromid in 100 ml Methyl-äthylketon wird unter Stickstoffatmosphäre bei Rückfluss-temperatur während 1 Stunde gerührt. Das Reaktionsge-

misch wird auf Raumtemperatur abgekühlt, filtriert und eingedampft. Man erhält nach einmaligem Umkristallisieren aus 65 Äthylacetat 3,27 g 2-Allyloxyphenylsulfonamid vom Schmelzpunkt 104–105 °C.

Analog herzustellende Sulfonamide der Formel II sind in der anschliessenden Tabelle aufgelistet.

Ta	hο	IΙρ	2

\mathbf{R}_1	R_2	X	A	Stellung von X–A	phys. Daten
H H H H H H H	H H H H H H H H	O S SO SO ₂ O S SO SO ₂ O	-CCl=CHCl -CCl=CHCl -CCl=CHCl -CCl=CHCl -CH=CCl ₂	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp. 147–149° Smp. 104–105°
			CH_3		
H H H	H H H	0 0 0	$-CH_2-C = CH_2$ $-(CH_2)_2-CH = CH_2$ $-(CH_2)_3-CH = CH_2$ $-(CH_3)_3-CH = CH_3$	2 2 2	Smp. 104–105°
Н	Н	O	$-CH_2-CH = C$ CH_3 CH_3	2	
Н	Н	S	$-CH_2-CH=C$ CH_3	2	w.
Н	Н	0	$-CH_2-CH=CH-CH_3$ CH_3	2	Smp. 113–114°
Н	Н	0	$-CH$ $CH = CH_2$	2	
H H H H H H 6-Cl	H H H H H H	0 0 0 0 8 0 0	-CH ₂ -OCH ₃ -CH ₂ -OC ₂ H ₅ -CH ₂ -S-CH ₃ -CH ₂ CH ₂ -OCH ₃ -CH ₂ CH ₂ -OC ₂ H ₅ -CH ₂ CH ₂ -SCH ₃ -CH ₂ CH = CH ₂ -CH ₃ -CH ₃	2 2 2 2 2 2 2 2 2 2 2	Zers. ab 121° Smp. 110–112°
6-C1	H	0	$-CH_2-C=CH_2$	2	
6-Cl	Н	O	$-CH_2-CH=C CH_3$ CH_3	2	
6-Cl 6-Cl 6-Cl 6-Cl 6-Cl 6-OCH ₃	Н Н Н Н Н	0 0 0 0 0	-CH ₂ OCH ₃ -(CH ₂) ₂ OCH ₃ -CH ₂ SCH ₃ -(CH ₂) ₂ SCH ₃ -CH ₂ -CH = CH-CH ₃ -CH ₂ -CH = CH ₂	2 2 2 2 2 2 2	
.6-OCH ₃ 6-OCH ₃	H H	0 0	CH_3 $-CH_2-C = CH_2$ $-(CH_2)_2-OC_2H_5$ $-CH_2$	2 2	
6-OCH ₃	Н	O	$-(CH_2)_2-OC_2H_5$ $-CH_2-CH=C$ CH_3	2	
6-OCH ₃ 6-CH ₃	H H	O O	$-(CH_2)_2-CH=CH_2$ $-CH_2-CH=CH_2$	2 2	

Tabelle 2 (Fortsetzung)								
R_1	R_2	X	A	Stellung				
				von X–A				
			CH_3					
6-CH ₃	Н	0	$-CH_2-C=CH_2$	2				
6-CH ₃	H	0	$-(CH_2)_2-OCH_3$	2 2 2				
6–CH₃	H	0	-CH ₂ SCH ₃	2				
H	Н	0	-CH ₂ CH ₂ -	2				
6-NO ₂	H	0	$OCH_2CH = CH_2$ $-CH_2-CH = CH_2$	2				
$6-NO_2$	Ħ··	ŏ	$-CH_2-CH=CH-CH_3$	2				
6-NO ₂	H	0	-CH ₂ -OCH ₃	2 2 2 2				
6-NO ₂	H	0	$-CH_2-CH_2-OC_2H_5$	2				
			CH_3					
6-NO ₂	Н	0	$-CH_2-C = CH_2$	2				
6–COOCH₃	H	Ö	$-CH_2-CH=CH_2$	$\frac{1}{2}$				
5–C1	H	0	$-CH_2-CH=CH_2$	2				
	•		CH ₃					
5-Cl	Н	0	$-CH_2-C=CH_2$	2				
0 01		· ·	CH ₃	2				
			j					
5–Br	H	0	$-CH_2-C=CH_2$	2				
.CH₂								
5-CON	H	0	$-CH_2-CH=CH_2$	2				
CH ₃								
			CII					
.CH ₂			$_{\parallel}^{\mathrm{CH}_{3}}$					
5-CON	H	O	$-CH_2-C=CH_2$	_				
$^{^{C}}\mathrm{CH}_{3}$				2				
5-COOCH ₃	Н	0	$-CH_2-CH=CH_2$	2				
3			2 +2	_				
April 1 a			CH ₃					
5-COOCH ₃	Н	0	$-CH_2-C=CH_2$	2				
5-COOCH ₃	H	ŏ	$-CH_2-OC_2H_5$	2				
5-NO ₂	3-CF ₃	0	$-CH_2-CH=CH_2$	2 2				
5-NO ₂	3Cl	0	$-CH_2-CH=CH_2$	2				
			CH_3					
5-NO ₂	3-C1	0	$-CH_2-C=CH_2$	2				
5-CF ₃	$3-NO_2$	Ō	$-CH_2-CH=CH_2$	2				
5-CH ₃	3-CH ₃	0	$-CH_2-CH=CH_2$	2				
5–CH₃ 5–Cl	3-CH ₃ 3-NO ₂	0	$-CH_2-CH=CH-CH_3$	2				
5-Cl	3–NO ₂ 3–Cl	0	-CH2-CH = CH-CH3 $-CH2-CH = CH2$	2				
5–Cl	3-C1	ŏ	$-CH_2-CH_2-OCH_3$	2				
5Cl	3-Cl	0	-CH ₂ -OCH ₃	2 2 2				
5–Br	3-OCH ₃	0	$-CH_2-CH=CH_2$	2				
5-Br 3-OCH ₃	2-OCH ₃ 5-COOCH ₃	0	-CH2-CH = CH2 $-CH2-CH = CH2$	3 2				
3 00113	3 COOCI13	O	$-CH_2$ $-CH_3$	2				
			-					
2-OCH ₃	5-COOCH ₃	0	$-CH_2-C=CH_2$	3 2 2 2				
5-CH ₃ 5-Br	3–Br 3–NO ₂	0 0	-CH2-OCH3 $-CH2CH = CH2$	2				
5-Cl	3–Br	ŏ	-CH2CH = CH2 $-CH2CH = CH2$	2				
	•		CH ₃	_				
5_C1	2 D	0		2				
5-Cl 5-Cl	3–Br 3–Br	0 0	-CH2-C = CH2 $-CH2-CH2-OCH3$	2				
H	H	ŏ	-CH ₂ -CH ₂ -OCH ₃	2 3 2 2				
H	Н	0	$-CH_2-SO_2-CH_3$	2				

Tabelle 2 (Fortset R ₁	tzung) R ₂	x	A	Stellung von X–A	phys. Daten
H H	H H	O	-CH ₂ -CH ₂ -SO-CH ₃ -CH ₂ -CH ₂ -SO ₂ -CH ₃	2 2	
Н	Н	o	Cl $-CH_2-C=CH_2$ Cl	2	
Н	Н	O	$-CH_2-C = CH-Cl$ Cl	2	-
Н	Н	O	$-CH_2-CH=C-CH_3$	2	
Н	Н	О	$-CH_2-CH=C \begin{pmatrix} Cl \\ Cl \end{pmatrix}$	2	
			Cl 		,
5-CH ₃	Н	0	$-CH_2-C=CH_2$ Cl	2	
5-NO ₂	Н	O	$-CH_2-C = CH-Cl$	2	
5–Br	Н	O	$-CH_2-CH=CH_2$	2 2	Smp. 110-111°
5–Br 5–F	H H	O O	-CH2-OCH3-CH2-CH=CH2	2	
5-F	Н	O	-CH2-CH = C $-CH3$ $-CH2-CH = C$ $-CH3$ $-CH2-CH = C$ $-CH3$	2	
CH ₃ 5-CH CH ₃ CH ₃	Н	0	$-CH_2-CH = CCH_3$ $-CH_3$	2	
5-CH/ CH ₃ CH ₃	Н	О	$-CH_2-CH=CH_2$	2	
5-CH	Н	О	-CH ₂ CH ₂ OCH ₃	2	
CH ₃ 5–CH ₃	Н	O	-CH ₂ CH ₂ OCH ₃	2	-
5-CH ₃	H H	O O	-CH2-CH = CH2 $-CH2-CH = CH-CH3$	2 2	
5–CH ₃ 5–NO ₂	H	0	$-CH_2-CH=CH-CH_3$		
5–NO ₂ 5–NO ₂	H H	O O	-CH2-S-CH3 $-CH2CH=CH2$	2	
5-NO ₂ 5-OCH ₃	H	ŏ	$-CH_2CH = CH_2$	2 2	Smp. 88–89°
			$_{\parallel}^{\mathrm{CH}_{3}}$		
5-OCH ₃	H	0	-CH2-C = CH2 $-CH2CH = CH-CH3$	2 2	
5-OCH ₃ 5-OCH ₃	H H	O O	−CH ₂ OCH ₃	2	
5-OCH ₃	Н	О	-CH ₂ CH ₂ -SCH ₃	2	
			CI		
5-Br	Н	0	$-CH_2$ - C - CH_2	2	
5-Cl	Н	O	-CH2-C-CH2 $-CH2-CH=C$ CI $-CH2-CH=C$	2	
5-CH(CH ₃) ₂	Н	0	-CH2-CH=C-CH3	2	
3-CH ₃	Н	O	Cl $-CH_2-C=CH_2$	2	

Tabelle 2 (Fort	tsetzung)				
R_1	R_2	X	A	Stellung von X–A	phys. Daten
			Cl		
$6-\mathrm{CH}_3$	H	O	$-CH_2-C-CH_2$	2	
-			ÇI		
6-OCH ₃	H	O	C1 $-CH_2-C=CH-C1$	2	
•			Cl		
5-OCH ₃	H	О	$-CH_2-CH=CCl$	2	
			CI		
6-Cl	H	0	$-CH_2-C'=CH_2$	2	
			CI		
3-NO ₂	H	0	$-CH_2-CH=C-CH_3$	2	
3-CH ₃	H	0	$-CH_2-CH=CH_3$	2 2 2 2 2	
3-NO ₂	H	0 0 0	$-CH_2-CH=CH_3$	2	
3-Cl	H	0	$-CH_2-CH=CH_3$	2	
3–C1	H	0	$-CH_2-CH=CH-CH_3$	2	
			CH_3		
3-C1	H	· O	$-CH-C = CH_2$	2	
			CH_3		
3-OCH ₃	H	O	$-CH-C = CH_2$	2	
3-OCH ₃	H	O	$-CH_2-CH=CH_2$	2	
2-OCH ₃	H	O	-CH2-CH=CH2	2 2 5	Smp. 113-114°
			2	-	~p. 115 114

35

Beispiel 3

a) 2-Difluormethoxyphenyl-sulfonylchlorid. Zu einer Lösung von 6,4 g Kupfersulfat in 276 ml 36%iger Salzsäure und 72 ml Wasser lässt man unter Kühlung bei 0° 101,2 g einer 40% igen Natriumhydrogensulfit-Lösung zutropfen. Zu der erhaltenen Lösung lässt man gleichzeitig 101,2 g einer 40%igen Natriumhydrogensulfit-Lösung und eine auf -10° gekühlte Diazoniumsalz-Lösung, die man durch Zutropfenlassen unter Kühlung von 28,8 g Natriumnitrit in 44 ml Wasser zu einer Lösung von 39 ml Wasser, 84 ml 36%iger Salzsäure und 63,7 g 2-Difluormethoxy-anilin 45 erhält, zutropfen. Dabei erwärmt sich das Reaktionsgemisch unter gleichzeitiger Gasentwicklung auf 30°. Nach Rühren des Reaktionsgemisches für 18 Stunden scheidet sich ein braunes Öl ab. Nach Abtrennen der organischen Phase extrahiert man die wässrige Phase mit Methylenchlorid. Durch Vereinigen und Eindampfen der organischen Phasen erhält man als Rohprodukt 80,3 g 2-Difluormethoxyphenyl-sulfonylchlorid als braunes Öl.

b) 2-Difluormethoxyphenyl-sulfonamid.

Einer Mischung aus 250 ml Methylenchlorid, 250 ml Wasser und 250 ml 30%iger Ammoniak-Lösung fügt man langsam eine Lösung von 80,3 g rohem 2-Difluormethoxyphenyl-sulfonyl-chlorid in 50 ml Methylenchlorid zu. Nach Abklingen der exothermen Reaktion wird die Reaktionsmischung für 2 Stunden am Rückfluss gekocht. Nach Waschen der organischen Phase mit Wasser, Trocknen über Natriumsulfat, Eindampfen und Umkristallisieren aus Methanol erhält man 40,5 g 2-Difluormethoxyphenyl-sulfonamid vom Schmelzpunkt 128–130°.

Beispiel 4

a) 2-Pentafluoräthoxy-sulfonylchlorid. Zu einer Lösung von 6,4 g Kupfersulfat in 276 ml 36%iger Salzsäure und 72 ml Wasser lässt man unter Kühlung bei 0° 101,2 g einer 40% igen Natriumhydrogensulfit-Lö-40 sung zutropfen. Zu der erhaltenen Lösung lässt man gleichzeitig 101,2 g einer 40% igen Natriumhydrogensulfit-Lösung und eine auf -10° gekühlte Diazoniumsalz-Lösung, die man durch Zutropfenlassen unter Kühlung von 28,8 g Natriumnitrit in 44 ml Wasser zu einer Lösung von 39 ml Wasser, 84 ml 36%iger Salzsäure und 90,8 g 2-Pentafluoräthoxy-anilin erhält, zutropfen. Dabei erwärmt sich das Reaktionsgemisch unter gleichzeitiger Gasentwicklung auf 30°. Nach Rühren des Reaktionsgemisches für 18 Stunden scheidet sich ein braunes Öl ab. Nach Abtrennen der organischen Phase extrahiert man die wässrige Phase mit Methylenchlorid. Durch Vereinigen und Eindampfen der organischen Phasen erhält man als Rohprodukt 2-Pentafluoräthoxyphenyl-sulfonylchlorid als braunes Öl.

b) 2-Pentafluoräthoxyphenyl-sulfonamid.

Einer Mischung aus 250 ml Methylenchlorid, 250 ml
Wasser und 250 ml 30%iger Ammoniak-Lösung fügt man
eine Lösung des im Beispiel 2a erhaltenen rohen 2-Pentafluoräthoxyphenyl-sulfonyl-chlorids in 50 ml Methylenchlorid zu. Nach Abklingen der exothermen Reaktion wird die
Reaktionsmischung für 2 Stunden am Rückfluss gekocht.
Nach Waschen der organischen Phase mit Wasser, Trocknen
über Natriumsulfat, Eindampfen und Umkristallisieren aus
Methanol erhält man 65,0 g 2-Pentafluoräthoxyphenyl-sulfonamid vom Schmelzpunkt 145–146°.

In analoger Weise werden die folgenden neuen, speziell für die Synthese der Verbindungen I entwickelten Zwischenprodukte hergestellt.

Ta	ha	110	. 2
10	ne.	ие	J

R_1	R_2	X	A	m	Stellung von X–A	phys. Daten
H 6-COOCH ₃ CH ₃ 6-COOCH ₂ CH ₃ 6-COOCH ₂ CH ₃ 6-COOCH ₂ CH ₃ 6-CI 6-CI 6-CI H H H H H H H H G-COOCH ₂ CH ₃ 6-COOCH ₃ 6-COOCH ₄ CH ₃ 6-COOCH ₂ CH ₃ 6-	H H H H H	$\begin{array}{ccc} \mathbf{I_3} & \mathbf{S} \\ \mathbf{I_3} & \mathbf{SO} \end{array}$	-C ₂ F ₅ -CHF ₂ -CF ₃ -CF ₃ -CF ₃ -CF ₃ -CF ₃ -CF ₃ -CF ₂ -CHF ₂ -CH ₂ F -CH ₂ CH ₂ F -CH ₂ CH ₂ F -CH ₂ CH ₂	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Smp. 176–178°

			14			
Tabelle 3 (For R ₁	tsetzung) R_2	X	A	m	Stellung	physikalische
H H	H H	SO SO ₂	-CF ₂ Cl -CF ₂ Cl	1 1	von X–A 2 2	Daten
H H	H H	O S	CH ₂ CH ₂ Cl CH ₂ CH ₂ Cl	1 1	2 2	Smp. 110°
6-COOCH ₃ 6 NO ₂ H	H H H	0	CHF ₂ CHF ₂	1	2 2	
H H	H H	O S SO	CF ₃ CF ₃ CF ₃	1	2 2	Smp. 176–178°
H H	H H	SO ₂ O	-CF ₃ -CF ₃ -CHF ₂	1 1 1	2 2 2	Smp. 128–130°
H H	H H	S SO	-CHF ₂ -CHF ₂	1 1	2 2	Smp. 141–142° Smp. 158–160°
H H H	H H H	SO ₂ O S	-CHF ₂ -CF ₂ -CHCIF	1 1	2 2	Smp. 110–112°
H H	H H	SO SO ₂	-CF ₂ -CHClF -CF ₂ -CHClF -CF ₂ -CHClF	1 1 1	2 2 2	Smp. 99–101°
H H	H H	O S	-CF ₂ -CHF ₂ -CF ₂ -CHF ₂	1 1	2 2	Smp. 116–118° Smp. 106–108°
H H H	H	SO SO ₂	-CF ₂ -CHF ₂ -CF ₂ -CHF ₂	1 1	2 2	
H H	H .H H	O S SO	-CF ₂ -CHBrF -CF ₂ -CHBrF -CF ₂ -CHBrF	1 1 1	2 2 2	
H 6–Cl	H H	${ m SO_2} \over { m O}$	-CF ₂ -CHBrF -CHF ₂	1 1 1	2 2 2	Smp. 90–95°
6-Cl 6-Cl 6-Cl	H H	S SO	-CHF ₂ -CHF ₂	1 1	2 2	2mp. 70 75
H H	H 5Cl 5Cl	SO ₂ O S	-CHF ₂ -CHF ₂ -CF ₂ -CHCIF	1 1 1	2 2 2	Smp. 129–131°
H H	5–Cl 5–Cl	SO SO ₂	-CF ₂ -CHClF CF ₂ -CHClF	1 1 1	2 2 2	
H H -	5–Cl 5–Cl	O S	-CF ₃ -CF ₃	1 1	2 2	
H H H	5–F 5–F 5–F	S O SO	-CHF ₂ -CHF ₂	1	2 2	Smp. 138–120°
H H	5–F 5–Cl	SO ₂ SO	-CHF2 -CHF2 -CF3	1 1 1	2 2 2	
H H	5–Cl H	$rac{SO_2}{S}$	-CF ₃ -CHF ₂	1 1	2 2 3	
H H 6–F	H H H	SO SO ₂	-CHF ₂ -CHF ₂	1 1	3 3 2	
6–F 6–F	H H	O S SO ₂	-CHF ₂ -CHF ₂ -CHF ₂	1	2 2 2	
H H	6-CH ₃ 6-CH ₃	O S	-CHF ₂ -CHF ₂	1	3 3	
H H H	6-CH ₃ 6-CH ₃	SO SO ₂	-CHF ₂ -CHF ₂	1	3 3	
H H	6–C1 6–C1 6–C1	O S SO	$-CHF_2$ $-CHF_2$ $-CHF_2$	1	3	
H H	6–Cl 6–Cl	${ m SO}_2 \ { m O}$	-CHF ₂ -CF ₃	1 1	3 3 3	
H H H	6–Cl 6–Cl 6–Cl	S SO	CF ₃ CF ₃	1 :	3 3	
5-Cl 5-Cl	о-Сі Н Н	${ m SO_2} \\ { m O} \\ { m O}$	-CF ₃ -CF ₂ -CHF ₂ -CF ₂ -CHClF	1 2	3 2 2	
5–Cl H	H H	0 0	-CF ₂ -CHBrF -CH ₂ -CF ₃	1 2	2	Smp. 86–90° Smp. 127–129°
5–Br	H	О	CF ₃	1 2	2	

Tabelle 3 (Fo	rtsetzung)					
R ₁	R_2	X	A	m	Stellung von X-A	physikalische Daten
5-F	Н	О	CF ₃	1	2	
5-CH ₃	H	O	-CF ₂ -CHF ₂	1	2	
5-Cl	. H	S	-CF ₂ -CHF ₂	1	2	
H	H	0	-CF ₂ -CHF-CF ₃	1	2	Smp. 94–96°
H	H	Ś	-CF ₂ -CHF-CF ₃	1	2	
5–Br	H	О	$-CF_2-CHF_2$	1	2	
6-CH ₃	H	0	$-CF_2-CHF_2$	1	2	Smp. 104–105°

Beispiel 5

a) N-(2-Allyloxyphenylsulfonyl)- phenyl-carbamat Zur Suspension von 0,56 g Natriumhydrid (55%) in 5 ml absolutem Dimethylformamid lässt man bei höchstens 20 °C unter einer Stickstoffatmosphäre innerhalb von 5 Minuten 2,76 g 2-Allyloxyphenylsulfonamid in 20 ml Dimethylformamid zutropfen und rührt vor dem tropfenweisen Zusatz von 2,91 g Diphenylcarbamat in 20 ml Dimethylformamid die Suspension für ca. 10 Minuten. Nach weiterem Rühren für 0,5 Stunden wird das Reaktionsgemisch mit einer Mischung von 80 ml Äthylacetat, 80 g Eis und 12,3 ml 2N Salzsäure aufgenommen. Die organische Phase wird zweimal mit Eiswasser gewaschen, über Natriumsulfat getrocknet und eingedampft. Kristallisation aus Äther/Petroläther (1:1) ergibt

3,5 g N-(2-Allyloxyphenylsulfonyl)- phenyl-carbamat, Smp. 140–141 $^{\circ}\mathrm{C}.$

b) N-(2-Allyloxyphenylsulfonyl)- N'- (4-methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff

Eine Mischung von 3,33 g N-(2-Allyloxyphenylsulfonyl)
-phenyl-carbamat und 1,4 g 2-Amino-4-methoxy-6- methyl-1,3,5- triazin in 30 ml absolutem Dioxan wird für 0,5
Stunden zum Rückfluss erhitzt, danach auf 20 °C abgekühlt, filtriert, eingedampft und aus Äther kristallisiert. Durch Umkristallisieren aus Äthylacetat/Petroläther (1:1) erhält man 2,0 g N-(2-Allyloxyphenylsulfonyl) -N'- (4-methoxy-6-methyl-1,3,5-triazin-2-yl) -harnstoff, Smp. 146–147 °C.

In analoger Weise werden die in der folgenden Tabelle aufgelisteten Verbindungen der Formel I hergestellt.

	*			4			
Nr.	A	R_1	R_3	R_4	X	E	phys. Daten
1 2	-CH2-CH = CH2 $-CH2-CH = CH2$	6-Cl 6-Cl	$\mathrm{CH_3}$ $\mathrm{CH_3}$	OCH ₃ OCH ₃	0	N CH	
2 3	$-CH_3-CH=CH_2$	6–Cl	C_2H_5	OCH ₃	Ō	N	
4	$-CH_2-CH=CH_2$	6-Cl	OCH_3	OCH_3	0	CH	
5	$-CH_2-CH=CH_2$	6-Cl	OCH_3	OCH_3	0	N	
	CH_3						
6	$-CH_2-C = CH_2$	6-Cl	CH_3	OCH ₃	0	N	
_	CH ₃	-	J				
~	1	(CI	CII	OCH	0	СН	
7	$-CH_2-C=CH_2$	6C1	CH_3	OCH ₃	О	Сп	
	$_{ m LH_3}$						
8	$-CH_2-C=CH_2$	6-Cl	C_2H_5	OCH_3	Ο	N	-
	CH_3						
9	$-CH_2-C=CH_2$	6-Cl	OCH ₃	OCH ₃	0	N	
,	$-CH_2-C=CH_2$ CH_3	0 C1	00113	00113	Ŭ	- 1	
	1						
10	$-CH_2-C=CH_2$	6-Cl	OCH ₃	OCH₃	0	CH	-
11	$-CH_2-CH=CH-CH_3$	6-Cl	OCH ₃ OCH ₃	OCH ₃ OCH ₃	0	CH N	
12 13	-CH2-CH=CH-CH3 -CH2-CH=CH-CH3	6-Cl 6-Cl	OCH ₃	CH ₃	ŏ	N	
14	-CH2-CH=CH-CH3 $-CH2-CH=CH-CH3$	6-Cl	OCH ₃	CH ₃	ŏ	CH	
• •	CH ₃	J	J				
15	$-CH_2-CH=C$	6-Cl	CH_3	OCH_3	O	N	
	3						
16	$-CH_2-CH=C$	6-Ci	CH_3	OCH_3	0	СН	
10	$-cH_2-cH=c$ CH ₃	0-01	O113	Jong	•	~	

			10				
	lle 4: (Fortsetzung)						•
Nr.	Α	R_1	R_3	R_4	X	E	phys. Daten
17	-CH ₂ -OCH ₃	6–C1	CH_3	OCH_3	O	CH	
18	-CH ₂ -OCH ₃	6C1	CH ₃	OCH ₃	ŏ	N	
19	-CH ₂ -OCH ₃	6–C1	C_2H_5	OCH ₃	ŏ	N	
20	-(CH ₂) ₂ -OCH ₃	6-Cl	C ₂ H ₅ CH ₃	OCH ₃	ŏ	N	
21	-(CH ₂) ₂ -OCH ₃	6–Cl	CH ₃	OCH ₃	ŏ	CH	
22	-CH ₂ -SCH ₃	6-Cl	CH ₃	OCH ₃	ŏ	CH	
23	-CH ₂ -SCH ₂	6–Cl	CH_3	OCH ₃	ő	N N	
24	-(CH ₂) ₂ -SCH ₃	6–C1	CH ₃	OCH ₃	ŏ	N	
25	-(CH2)2-SCH3	6–C1	CH ₃	OCH ₃	ŏ	CH	
26	$-CH_2-CH=CH_2$	6-OCH ₃	CH ₃	OCH ₃	ŏ	CH	
27	$-CH_2-CH=CH_2$	6-OCH ₃	CH ₃	OCH ₃	ŏ	N	
28	$-CH_2-CH=CH_2$	6-OCH ₃	C_2H_5	OCH ₃	ŏ	N	
29	$-CH_2-CH=CH_2$	6-OCH ₃	OCH ₃	OCH ₃	ŏ	N	
30	$-CH_2-CH=CH_2$	6-OCH ₃	OCH ₃	OCH ₃	ŏ	СH	
	CH ₃	,	,	0011,	Ŭ	OII	
	1						
31	$-CH_2-C=CH_2$	6-OCH3	OCH_3	OCH_3	O	CH	
	CH ₃	•	J	,			
32	$-CH_2-C=CH_2$	6-OCH ₃	CH_3	OCH_3	O	N	
	CH_3	-	Ū	_			
	l -						
33	$-CH_2-C=CH_2$	6 -OCH $_3$	CH_3	OCH_3	O	CH	
34	$-(CH_2)_2-OC_2H_5$	6–OCH₃	CH_3	OCH_3	Ο	CH	
35	$-(CH_2)_2-OC_2H_5$	6-OCH ₃	CH_3	OCH_3	О	N	
	· CH						
36	-CHCH = C	6C1	CH_3	OCH_3	0	N	
20	$-CH_2-CH=C$ CH_3 CH_3	U CI	OII3	OCH	O	14	
	CH ₃						
37	$-CH_2-CH=C$	6–Cl	CH_3	OCH_3	Ο	CH	
	$_{\text{Cl}}$ $_{\text{CH}_3}$		J	,			
38	l						
50	$-CH-C=CH_2$	6-OCH ₃	CH_3	OCH_3	О	N	
	Cl						
20					_		
39	$-CH_2-C=CH_2$	6-OCH ₃	CH_3	OCH_3	O	CH	
	Ç1					-	
40	СП С СП	6 CI	CII	OCIT	_	CII	C 162 1640
40	$-CH_2-C=CH_2$	6–C1	CH_3	OCH_3	О	CH	Smp. 163–164°
	Çl						
41	$-CH_2-C = CH_2$	6-Cl	CH_3	OCH ₃	0	NT	S 142 1450
42	-CH2-CH=CH2	6-CH ₃	CH ₃	OCH ₃	0	N N	Smp. 142–145°
43	-CH2-CH=CH2	6-CH ₃	CH_3	OCH ₃	ŏ	CH	
44	-CH2-CH=CH2	6-CH ₃	OCH ₃	OCH ₃	ŏ	CH	
45	-CH2-CH=CH2	6-CH ₃	OCH ₃	OCH ₃	ŏ	N	
	CH ₃	0 0113	00113	OCIL	O	11	
	Cn ₃						
46	$-CH_2-C=CH_2$	6-CH ₃	CH_3	OCH_3	0	N	
	. CH ₃	,	,	,			
	1						
47	$-CH_2-C=CH_2$	6 – CH_3	CH_3	OCH_3	О	CH	
	CH_3						
	1						
48	$-CH_2-C=CH_2$	6 – CH_3	OCH_3	OCH_3	О	N	
	CH_3						
40	CH C-CH	6 CII	OCT	OCIT	0	CIT	
49 50	$-CH_2-C=CH_2$	6-CH ₃	OCH ₃	OCH ₃	0	CH	
50 51	-CH ₂ -OCH ₃	6−CH ₃	OCH ₃	OCH ₃	0	CH	
51 52	-CH ₂ -OCH ₃	6-CH ₃	OCH ₃	CH₃	0	CH	
52 53	-CH ₂ -OCH ₃	6-CH ₃	OCH ₃	CH ₃	0	N	
53 54	-(CH2)2-CH=CH2	6-OCH₃	OCH₃	CH_3	0	N	
54 55	-(CH2)2-CH=CH2	6–OCH₃	OCH₃	CH_3	0	CH	
JJ	-CH ₂ -SCH ₃	6–CH₃	OCH_3	CH ₃	0	CH	

	4 (Fortsetzung)	D	n.	D	v	T:	nhva Daton
Nr.	A	R_i	R_3	R_4	X	E	phys. Daten
56 57 58 59 60	-CH ₂ -SCH ₃ -CH ₂ -CH = CH ₂ -CH ₂ -CH = CH ₂ -CH ₂ -CH = CH ₂ -CH ₂ -CH = CH ₂	6-CH ₃ 6-NO ₂ 6-NO ₂ 6-NO ₂	OCH ₃ CH ₃ CH ₃ OCH ₃	CH ₃ OCH ₃ OCH ₃ OCH ₃	0 0 0 0	N N CH CH N	
61 62 63 64	-CH ₂ -CH = CH-CH ₃ -CH ₂ -CH = CH-CH ₃ -CH ₂ -CH = CH-CH ₃ -CH ₂ -CH = CH-CH ₃	6-NO ₂ 6-NO ₂ 6-NO ₂ 6-NO ₂	OCH ₃ OCH ₃ OCH ₃	OCH ₃ OCH ₃ CH ₃	0 0 0 0	N CH CH N	
65 66	-CH ₂ -OCH ₃ -CH ₂ -OCH ₃	6-NO ₂ 6-NO ₂ 6-NO ₂	OCH ₃ OCH ₃ OCH ₃	CH ₃ CH ₃ CH ₃	0 0 0	N CH CH	
67 68	-CH ₂ -CH ₂ -OC ₂ H ₅ -CH ₂ -CH ₂ -OC ₂ H ₅ CH ₃	6-NO ₂	OCH ₃	CH ₃	ŏ	N	
69	$-CH_2-C=CH_2$ CH_3	6-NO ₂	OCH ₃	CH ₃	0	N	
70 71 72 73 74	-CH ₂ -C = CH ₂ -CH ₂ -CH = CH ₂	6-NO ₂ 6-COOCH ₃ 6-COOCH ₃ 6-COOCH ₃	OCH ₃ OCH ₃ OCH ₃ OCH ₃	CH ₃ CH ₃ CH ₃ OCH ₃	0 0 0 0	CH CH N N CH	
75 76 77 78 79	-CH2-CH = CH2 $-CH2-CH = CH2$ $-CH2-CH = CH2$ $-CH2-CH = CH2$ $-CH2-CH = CH2$	5–Cl 5–Cl 5–Cl 5–Cl 5–Cl	CH ₃ CH ₃ OCH ₃ OCH ₃ C ₂ H ₅	OCH ₃ OCH ₃ OCH ₃ OCH ₃	0 0 0 0	N CH N N N	~
	CH₃ │				_		
80	$-CH_2-C=CH_2$ CH_3	5–Cl	CH ₃	OCH ₃	0	N	
81 82 83 84	$-CH_2-C = CH_2$ $-CH_2-CH = CH_2$ $-CH_2-CH = CH_2$ $-CH_2-CH = CH_2$ $-CH_3$	5–Cl 5–Br 5–Br 5–Br	CH_3 CH_3 CH_3 C_2H_5	OCH ₃ OCH ₃ OCH ₃ CH ₃	0 0 0 0	CH CH N	Smp. 190-191°
85	$-CH_2-C = CH_2$ CH_3	5–Br	CH ₃	OCH ₃	0	N	
86	$-CH_2-C = CH_2$ CH_3	5–Br	OCH_3	OCH ₃	0	N	
87 88 89 90 91 92 93	-CH ₂ -C = CH ₂ -CH ₂ -OCH ₃ -CH ₂ -OCH ₃ -CH ₂ -CH = CH ₂ -CH ₂ -CH = CH ₂ -CH ₂ -CH = CH ₂ -CH ₂ -CH = CH ₂	5-Br 5-Br 5-Br 5-F 5-F 5-F	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ C ₂ H ₅ OCH ₃	0 0 0 0 0	CH CH N N CH N	Smp. 159–161° Smp. 200–201° Smp. 162–164°
94	-CH ₂ -CH = C CH ₃ CH ₃	5–F	CH ₃	OCH ₃	0	N	
95	$-CH_2-CH=C$ CH_3 CH_3	5–F	CH_3	OCH ₃	0	СН	
96	$-CH_2-C = CH_2$ CH_3	5–F	CH ₃	OCH ₃	0	CH	
97	$-CH_2-C = CH_2$	5-F	CH ₃	OCH ₃	Ο	N	

	e 4 (Fortsetzung)						
Nr.	A	R_1	R_3	\mathbb{R}_4	X	E	phys. Daten
	CH ₃						
	1	∠CH ₃					
98	$-CH_2-C=CH_2$	5-CH(CH_3	OCH ₃	Ο	N	
	CH₃ 	`CH₃					
99		∠CH ₃					
,	$-CH_2-C=CH_2$	5-CH	CH_3	OCH_3	О	CH	
		CH_3					
	CH₃	CH ₃					•
100	-CH ₂ -CH=C CH ₃	5CH\(CH_3	OCH_3	О	CH	
	CH ₃	℃H ₃					
	∠CH ₃	∠CH ₃					
101	$-CH_2-CH=C'$	5CH(CH_3	OCH_3	О	N	
	`CH₃	`CH ₃					
		CH₃			_		
102	$-CH_2-CH=CH_2$	5-CH(CH_3	OCH_3	O	N ·	Smp. 259–260°
		CH ₃					
		CH₃			_		
103	$-CH_2-CH=CH_2$	5-CH	CH_3	OCH_3	О	CH	Smp. 139–140°
		`CH₃					
		,CH₃					
104	$-CH_2-CH=CH_2$	5CH(C_2H_5	OCH_3	О	N	
		`CH₃					
		$ ho CH_3$					
105	$-CH_2-CH=CH_2$	5CH \	OCH_3	OCH_3	О	N	Smp. 219-220°
	*	`CH₃					
		,CH₃					
106	-CH ₂ -CH ₂ -OCH ₃	5-CH	CH_3	OCH_3	0	N	
100		CH ₃	CII	COII	•	11	
		CH ₃					
107	-CH ₂ -CH ₂ -OCH ₃	5-CH	CH_3	OCH_3	0	CH	
		CH ₃	CII	OCH	J	CII	
	·	-					
108	-CH ₂ -CH ₂ -OCH ₃	5-CH ₃	CH_3	OCH_3	О	CH	•
109	$-CH_2-CH_2-OCH_3$	5-CH ₃	CH_3	OCH_3	О	N	
110	-CH ₂ -CH ₂ -OCH ₃	5–CH ₃	CH_3	Cl	О	CH	
111	-CH ₂ -CH ₂ -OCH ₃	°5–CH₃	OCH_3	Cl	0	CH	
112	$-CH_2-CH=CH_2$	5-CH ₃	CH_3	OCH_3	О	N	Smp. 158–162°
113	$-CH_2-CH=CH_2$	5CH ₃	CH_3	OCH_3	О	N	
114	$-CH_2-CH=CH_2$	5–CH₃	C_2H_5	OCH_3	О	N	
115	$-CH_2-CH=CH_2$	5-CH ₃	OCH_3	OCH_3	О	N	Smp. 160–165°
116	$-CH_2-CH=CH_2$	5-CH ₃	OCH_3	OCH_3	О	CH	
117	$-CH_2-CH=CH-CH_3$	5–CH₃	OCH_3	OCH_3	О	CH	
118	$-CH_2-CH=CH-CH_3$	5-CH ₃	CH_3	OCH_3	Ο	\mathbf{CH}	Smp. 179–182°
119	$-CH_2-CH=CH-CH_3$	5-CH ₃	CH_3	OCH_3	О	N	
120	$-CH_2-CH=CH-CH_3$	$5-NO_2$	CH_3	OCH ₃	О	N	
121	$-CH_2-CH=CH-CH_3$	$5-NO_2$	CH_3	OCH_3	О	\mathbf{CH}	
122	$-CH_2-CH=CH-CH_3$	$5-NO_2$	C_2H_5	OCH_3	О	N	
123	$-CH_2-CH=CH-CH_3$	$5-NO_2$	OCH_3	OCH_3	О	N	
124	$-CH_2-CH=CH_2$	$5-NO_2$	OCH_3	OCH_3	О	N	
125	$-CH_2-CH=CH_2$	$5-NO_2$	CH_3	OCH_3	О	N	
126	$-CH_2-CH=CH_2$	$5-NO_2$	CH_3	OCH_3	Ο	CH	
127	-CH ₂ -SCH ₃	5-NO ₂	CH ₃	OCH ₃	О	CH	
128	-CH ₂ -SCH ₃	$5-NO_2$	CH ₃	OCH_3	Ο	N	
129	-CH ₂ -SCH ₃	$5-NO_2$	OCH_3	OCH_3	О	N	
130	-CH ₂ -SCH ₃	$5-NO_2$	OCH_3	OCH_3	0	CH	
131	$-CH_2-CH=CH_2$	5-OCH ₃	CH ₃	OCH ₃	0	N	Smp. 142-143°
132	$-CH_2-CH=CH_2$	5-OCH ₃	CH_3	OCH_3	0	\mathbf{CH}	Smp. 138–139°
133	$-CH_2-CH=CH_2$	5-OCH ₃	OCH_3	OCH_3	0	\mathbf{CH}	
134	$-CH_2-CH=CH_2$	5-OCH ₃	OCH_3	OCH_3	0	N	
135	$-CH_2-CH=CH_2$	5-OCH ₃	OCH_3	C_2H_5	0	N	
	CH ₃	-					
	1						
136	$-CH_2-C=CH_2$	5-OCH ₃	OCH_3	CH_3	0	N	
	CH ₃	-					
	1						
137	$-CH_2-C=CH_2$	5-OCH ₃	OCH_3	CH_3	0	CH	
		•					

Tabelle Nr.	4 (Fortsetzung) A	R_i	R _{3.}	R ₄	X	E	phys. Daten
111.	CH ₃	K ₁	rcg.	104	Λ	L	phys. Daten
138 139 140 141 142 143 144 145 146 147 148 149	-CH ₃ -CH ₂ -C = CH ₂ -CH ₂ -CH = CH-CH ₃ -CH ₂ -OCH ₃ -CH ₂ -OCH ₃ -CH ₂ -OCH ₃ -CH ₂ -OCH ₃ -CH ₂ -CH ₂ -SCH ₃ -CH ₂ -CH ₂ -SCH ₃ -CH ₂ -CH ₂ -SCH ₃	5-OCH ₃ 5-OCH ₃	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	OCH ₃ CH ₃ CH ₃ OCH ₃	0 0 0 0 0 0 0 0 0 0 0 0	N N CH CH N N CH N CH	·
150	-CH2-CH=CH2	5-CON,	CH ₃	OCH ₃	0	N N	
151	$-CH_2-CH=CH_2$ $-CH_3$	CH ₃ CH ₃ 5-CON CH ₃ CH ₃	CH ₃	OCH ₃	0	СН	
152	$-CH_2-C=CH_2$ CH_3	5-CON CH ₃	CH ₃	OCH ₃	O	N	
153	$-CH_2-C=CH_2$ $-CH_3$	5-CON CH ₃	CH ₃	OCH ₃	0	СН	
154	$-CH_2-C = CH_2$ CH_3	5-COOCH ₃	CH ₃	OCH_3	О	СН	
155 156 157 158 159 160 161 162	-CH ₂ -C = CH ₂ -CH ₂ -CH = CH ₂ -CH ₂ -OC ₂ H ₅ -CH ₂ -OC ₂ H ₅ -CH ₂ -C = CH ₂	5-COOCH ₃ 5-COOCH ₃ 5-COOCH ₃ 5-COOCH ₃ 5-COOCH ₃ 5-COOCH ₃ 5-COOCH ₃	CH ₃ CH ₃ CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ CH ₃ CH ₃	0 0 0 0 0 0	N N CH N CH N N	
163	Cl	5-CH ₃	OCH ₃	CH ₃	0	СН	-
164	Cl $-CH_2-C = CH-Cl$ Cl	5-NO ₂	OCH ₃	CH ₃	0	СН	
165	$-CH_2-\overset{!}{C} = CH-Cl$ Cl	5-NO ₂	OCH_3	CH ₃	0	N	
166	$-CH_2-C=CH-Cl$	5–Br	OCH ₃	CH ₃	0	N	
167	-CH ₂ -C = CH-Cl	5–Br	OCH ₃	CH ₃	0	СН	
168	-CH ₂ -C = CH-Cl Cl	5-Cl	OCH ₃	CH ₃	O	N	
169	$-CH_2-C = CH_2$	5C1	CH ₃	OCH ₃	O	CH	
170	-CH2-C = CH2 $-CH2-CH = C$ $CH3$	5-Cl	CH ₃	OCH ₃	0	N	

			20				
Tabelle	e 4 (Fortsetzung)						
Nr.	À	\mathbf{R}_{1}	R_3	R_4	X	\mathbf{E}	phys. Daten
	-CH2-CH = C $-CH3$ $-CH2-CH = C$ $-CI$ $-CH2-CH = C$ CI $-CI$				_		
171	$-CH_2-CH=C$	5–Cl	CH_3	OCH_3	О	CH	
	CH ₃						
150	Cl	CH ₃	~~~		_		
172	$-CH_2-CH=C$	5-CH	CH_3	OCH_3	O	CH	
	Cl	CH ₃					
172	CII CII C	CH ₃	CIT	0.077	_		
1/3	$-CH_2-CH=C$	5-CH	CH_3	OCH_3	O	N	
	Ci	CH ₃					
	C1 						
174	$-CH_2-C=CH_2$	2 (1)	CII	OCIT	_	3.7	
1/4		$3-CH_3$	CH_3	OCH_3	О	N	
	Cl i						
175	$-CH_2-C = CH_2$	2 CII	CII	OCH	•	CIT	
175		$3-CH_3$	CH_3	OCH ₃	О	CH	
	Ç1						
176	CH C CH	CII	CII	OOH	_	N.T	
176	$-CH_2-C=CH_2$	0-CH ₃	CH_3	OCH_3	О	N	
	Çl						
177		COTT	CIT	OCIT	_	CTT	
177	$-CH_2-C=CH_2$	$0-CH_3$	CH_3	OCH_3	0	CH	
	Çl						
170		(O CTT			_		
178	$-CH_2-C=CH-Cl$	6-OCH ₃	CH_3	OCH_3	0	CH	
	Cl					•	
150			~		_		
179	CI $-CH_2$ - C = CH - CI $-CH_2$ - CH = CI $-CH_2$ - CH = CI	6-OCH ₃	CH_3	OCH_3	0	N	
180	Cl Cl				_		
100	$-CH_2-CH=C$	5-OCH ₃	CH_3	OCH_3	0	N	
	ČI.						
181	,Cl						
101	$-CH_2-CH=C$	5–OCH₃	CH_3	OCH_3	О	CH	
	`CI						
	Cl						
182	$-CH_2-C=CH_2$	6–C1	CH_3	OCH_3	О	N	
	Cl	-					
	CI 						
183	$-CH_2-C=CH_2$	6-Cl	CH_3	OCH_3	О	CH	
184	$-CH_2-CH=CH_2$	$3-NO_2$	CH_3	OCH_3	О	\mathbf{CH}	
185	$-CH_2-CH=CH_2$	$3-NO_2$	CH_3	OCH_3	О	N	
186	$-CH_2-CH=CH_2$	$3-NO_2$	C_2H_5	OCH_3	О	N	
187	$-CH_2-CH=CH_2$	$3-NO_2$	OCH_3	OCH_3	О	N	
188	$-CH_2-C=CH_2$	$3-NO_2$	CH_3	OCH_3	О	N	
100	CH ₃						
189	$-CH_2-C=CH_2$	$3-NO_2$	CH ₂	OCH ₂	0	CH	
	l	2.02	3	0 022,	•	022	
	CH_3						
190	$-CH_2-C=CH_2$	2 NO	OCH	OCH	_	N T	
	$-CH_2-C=CH_2$	$3-100_2$	OCH_3	OCH_3	O	N	
	ĊH₃		-				
	•						
191	$-CH_2-C=CH_2$	$3-NO_2$	OCH_3	OCH_3	О	CH	
	CII						
	CH_3						
	Cl						
100						-	
192	$-CH_2-CH=C-CH_3$	3-NO ₂	OCH ₂	OCH_3	0	CH	
		2			-	~	
	Cl 						
193	$-CH_2-CH=C-CH_3$	3-NO ₂	OCH ₂	CH_3	O	CH	
		3 2.02	~ ~ ~ x x 3	 3	•	011	
	Cl 						
194	$-CH_2-CH=C-CH_3$	3-NO ₂	OCH_3	CH_3	O	N	
'	511 ₂ 511=5 511 ₃	5 1102	00113	OLLI	9	1.4	

Nr.	elle 4 (Fortsetzung)	D	D	D	X	E	nhve	. Daten
	Α	\mathbf{R}_1	R_3	R_4				
195 196	-CH2-CH = CH2 $-CH2-CH = CH2$	3-CH ₃ 3-CH ₃	OCH_3 OCH_3	CH_3 CH_3	0 0	N CH		255–256° 163–164°
197	-CH2-CH=CH2 $-CH2-CH=CH2$	3-CH ₃	C_2H_5	CH ₃	ŏ	N	Sinp.	100 101
198	$-CH_2-CH=CH_2$	3-CH ₃	OCH_3	CH_3	О	N	Smp.	183–184°
199	$-CH_2-CH=CH_2$	$3-CH_3$	OCH_3	CH_3	0	CH		
200	$-CH_2-CH=CH_2$	3-Cl	OCH ₃	CH_3	0	CH		
201 202	-CH2-CH = CH2 $-CH2-CH = CH2$	3–Cl 3–Cl	OCH_3 OCH_3	CH_3 OCH_3	0	N N		
202	-CH2-CH=CH2 $-CH2-CH=CH2$	3–Cl	OCH ₃	OCH ₃	ŏ	CH		
	CH ₃		,	J				
204	1	2.01	OCH	OCH	o	N		
204	$-CH_2-C=CH_2$. 3–Cl	OCH_3	OCH ₃	U	11		
	CH ₃							
205	$-CH_2-C=CH_2$	3-Cl	OCH_3	CH_3	O	N		
	CH_3							
206	$-CH_2-C=CH_2$	3Cl	OCH ₃	CH_3	0	CH		
207	$-CH_2-CH=CH-CH_3$	3-C1	CH_3	OCH_3	О	N		
208	$-CH_2-CH=CH-CH_3$	3–C1	CH_3	OCH_3	O	CH		
	CH_3							
209	$-CH_2-C = CH_2$	3-OCH ₃	CH_3	OCH_3	О	CH		
	CH ₃	J	,	,				
210		2 OCH	CH_3	OCH ₃	Ω	N		
210 211	-CH2-C = CH2 $-CH2-CH = CH2$	3-OCH ₃ 3-OCH ₃	CH_3	OCH ₃	0	N N	,	
212	$-CH_2-CH=CH_2$	3-OCH ₃	CH_3	OCH ₃	ŏ	CH		
213	$-CH_2-CH=CH_2$	$3-OCH_3$	OCH_3	OCH_3	0	CH		
214	$-CH_2-CH=CH_2$	3-OCH ₃	C_2H_5	OCH ₃	0	N		
215	$-CH_2-CH=CH_2$	3-OCH ₃	OCH ₃	OCH ₃	О	N		
				∕ ^R 3				
, m			N-	.•				
Tab	pelle 5	SO ₂ -NH-C-	-NH	<u> </u>				
	Ĭ,	Ī	74-	· • • • • • • • • • • • • • • • • • • •				
		Χ-Δ		¹⁴ 4				
Nr.	A	R_3	R_4			X	E	phys. Daten
INI.	CH ₃	К3	17.4			21.	L	phys. Duton
	1			_		_		~ 0.5.1040
301	$-CH_2-C=CH_2$	CH ₃	CF	I_3		О	N	Smp. 95–103°
	CH_3							
302	$-CH_2-C=CH_2$	CH_3	00	CH_3		0	N	Smp. 142–143°
	CH ₃	-		-				
303	$-CH_2-C=CH_2$	OCH_3	00	CH_3		O	N	Smp. 145–153°
303		OCH3	00	2113		J	11	ыр. 145-155
	CH ₃		_			_		
304	$-CH_2-C=CH_2$	OCH ₃	00	C_2H_5		o	N	
304		OCH ₃	00	C_2H_5		0	N	
304 305	$-CH_2-C=CH_2$	OCH ₃		C ₂ H ₅ CH ₃		0	N N	Smp. 150–152°
	-CH2-C = CH2 $CH3$							Smp. 150–152°
305	$-CH_{2}-C = CH_{2}$ CH_{3} $-CH_{2}-C = CH_{2}$ CH_{3}	CH ₂ -CH ₃	00	CH ₃		O	N	-
	$-CH_{2}-C = CH_{2}$ CH_{3} $-CH_{2}-C = CH_{2}$ CH_{3} $-CH_{2}-C = CH_{2}$		00	CH ₃				Smp. 150–152° Smp. 129–130°
305 306	$-CH_{2}$ $-CH_{2}$ $-CH_{3}$ $-CH_{2}$ $-CH_{2}$ $-CH_{2}$ $-CH_{3}$ $-CH_{2}$ $-CH_{2}$ $-CH_{2}$ $-CH_{3}$ $-CH_{4}$ $-CH_{5}$ $-$	CH ₂ -CH ₃ CH ₂ -CH ₃	O(CH_3		0	N N	-
305	$-CH_{2}-C = CH_{2}$ $-CH_{3}$ $-CH_{2}-C = CH_{2}$ $-CH_{3}$ $-CH_{2}-C = CH_{2}$ $-CH_{3}$ $-CH_{3}$ $-CH_{2}-C = CH_{2}$	CH ₂ -CH ₃	O(CH ₃		O	N	-
305 306	$-CH_{2}$ $-CH_{2}$ $-CH_{3}$ $-CH_{2}$ $-CH_{2}$ $-CH_{2}$ $-CH_{3}$ $-CH_{2}$ $-CH_{2}$ $-CH_{2}$ $-CH_{3}$ $-CH_{4}$ $-CH_{5}$ $-$	CH ₂ -CH ₃ CH ₂ -CH ₃	OG CE OG	CH_3		0	N N	-

Tabelle	e 5 (Fortsetzung)					
Nr.	A CH ₃	R_3	R ₄	X	E	phys. Daten
309	-CH2-C=CH2 $-CH3$	-OCH(CH ₃) ₂	OCH ₃	0	N	
310	$-CH_2-C=CH_2$ CH_3	-OCH(CH ₃) ₂	CH₃	O	N	
311	$-CH_2-C = CH_2$ CH_3	OCH ₃	SCH ₃	O	N	
312	-CH2-C = CH2 $CH3$	OC ₂ H ₅	OC ₂ H ₅	0	N	Smp. 118–120°
313	$-CH_2-C=CH_2$ CH_3	OCH ₃	-CH ₂ OCH ₃	0	N	
314	$-CH_2-C=CH_2$ CH_3	CH₂Cl	OCH_3	O	N	
315	-CH2-C = CH2 $ -CH3$	CH₂F	OCH₃	O	N	
316	-CH2-C=CH2 $CH3$	CH ₃	OCH ₃	O	СН	Smp. 172–177°
317	-CH2-C=CH2 $CH3$	OCH ₃	OCH ₃	0	СН	ŕ
318	$-CH_2-C=CH_2$ CH_3	CH ₃	CH₃	O	СН	
319	-CH2-C=CH2 $CH3$	C_2H_5	OCH ₃	0	СН	
320	-CH2-C=CH2 $CH3$	OCH ₃	Cl	О	СН	Smp. 179–180°
321	$-CH_2-C = CH_2$ CH_3	CH ₃	Cl	0	СН	
322	$-CH_2-C=CH_2$ CH_3	CF ₃	OCH ₃	0	СН	
323	-CH2-C=CH2 $CH3$	-CH ₂ -OCH ₃	OCH ₃	0	СН	
324	$-CH_2-C=CH_2$ CH_3	Br	OCH ₃	0	СН	
325	$-CH_2-C = CH_2$ CH_3	Br	CH ₃	0	СН	
326	$-CH_2-C=CH_2$ CH_3	OCH ₃	SCH ₃	0	СН	
327	$-CH_2-C = CH_2$ CH_3	CH ₃	SCH ₃	0	СН	÷
328	$-CH_2-C=CH_2$	OCH ₃	OC_2H_5	O	CH	
329	$-CH_2-CH=CH-CH_3$	CH ₃	OCH ₃	Ö	N	Smp. 163–164°
330	$-CH_2-CH=CH-CH_3$	CH_3	CH ₃	0	N	-
331	$-CH_2-CH=CH-CH_3$	C_2H_5	OCH ₃	0	N	Smp. 139–140
332 333	-CH2-CH = CH-CH3 $-CH2-CH = CH-CH3$	C_2H_5 OCH ₃	CH_3 OCH_3	0 0	N N	Smp. 148–151° Smp. 148–149°
	_	-	-			-

Tahelle	5 (Fortsetzung)					
Nr.	A	R_3	R_4	X	E	phys. Daten
		3	T			1 7
224		OCH	0011	_	N.T	
334	$-CH_2-CH=CH-CH_3$	OCH₃	OC ₂ H ₅	0	N	
335	$-CH_2-CH=CH-CH_3$	OC ₂ H ₅	OC ₂ H ₅	0	N	
336	-CH2-CH=CH-CH3	-CH ₂ -OCH ₃	OCH ₃	0	N	C 105 1060
337	$-CH_2-CH=CH-CH_3$	CH ₃	OCH ₃	0	CH	Smp. 185–186°
338	$-CH_2-CH=CH-CH_3$	OCH ₃	OCH ₃	0	CH	
339	-CH2-CH=CH-CH3	CH ₃	CH ₃	0	CH	
340	-CH2-CH=CH-CH3	-CH ₂ -OCH ₃	OCH ₃	0	CH	
341	$-CH_2-CH=CH-CH_3$	CH ₃	Cl	0	CH	
342	-CH2-CH = CH-CH3	OCH ₃	Cl OC II	0	CH CH	
343	$-CH_2-CH=CH-CH_3$	OCH_3	OC_2H_5	U	Сп	
344	CH CH-C	CH_3	OCH ₃	0	N	
344	-CH ₂ -CH ₋ CH ₋	C11 ₃	OC113	U	14	
	CH.					
345	-CHCH == C	CH_3	CH_3	0	N	
545	CH ₂ CH ₂	City	CII3	Ü	11	
	CH ₂					
346	-CHCH = C	C_2H_5	CH_3	O	N	
310	CH ₂	02113	011,	·	- '	
	.CH ₂					
347	-CH ₂ -CH=C	C_2H_5	OCH_3	0	N	
	CH ₃	- 23	· · J			
	CH ₃					
348	$-CH_2-CH=C$	OCH ₃	OCH_3	0	N	
	CH ₃	•	•			
	∠CH ₃					
349	$-CH_2-CH=C$	OCH_3	OC_2H_5	0	N ·	•
	CH ₃					
	∠CH ₃					
350	$-CH_2-CH=C$	OC_2H_5	OC_2H_5	О	N	
	CH ₃					
	CH ₃	CTT OCTT	OCIT	_	3.7	,
351	$-CH_2-CH=C$	-CH ₂ -OCH ₃	OCH_3	О	N	
	-CH ₂ -CH = C CH ₃ -CH ₃ -CH ₂ -CH = C CH ₃ -CH ₃ -CH ₂ -CH = C CH ₃ -CH ₃ -CH ₂ -CH = C CH ₃ -CH ₃ -CH ₂ -CH = C CH ₃ -CH ₃	,				
252	CH CH C	CII	OCH	0	CII	
352	$-CH_2-CH=C_{CII}$	CH_3	OCH_3	0	CH	
	, CH ₃					
353	CH CH-C	OCH_3	OCH	0	CH	
333	$-CH_2-CH=C CH_3$	ОСП3	OCH_3	U	CII	
	CH.					
354	-CHCHC	CH_3	CH ₃	0	CH	
334	CH.	CII3	CII3		OII	
	CH ₃					
355	$-CH_2-CH=C$	OCH_3	Cl	0	CH	
555	CH ₂	0 011,	•-	_		
	.CH ₃					
356	$-CH_2-CH=C$	CH_3	Cl	0	\mathbf{CH}	
	CH ₃	J				
	CH ₃					·
357	$-CH_2-CH=C'$	OCH_3	OC_2H_5	0	\mathbf{CH}	
	Cl `CH₃					i
	1					
358	$-CH_2-C=CH_2$	CH_3	OCH_3	0	N	
	Cl					
2.50		CTT	CIT	_		
359	$-CH_2-C=CH_2$	CH ₃	CH ₃	0	N	
	Cl					
	<u> </u>					
360	$-CH_2-C=CH_2$	C_2H_5	CH_3	0	N	
		- •	•	-		
	Cl 				•	
361	$-CH_2-C=CH_2$	C_2H_5	OCH_3	0	N	
		•				

047		22	+			
Taball	a 5 (Fortsetming)					
	e 5 (Fortsetzung)					
Nr.	A	R_3	R_4	X	\mathbf{E}	phys. Daten
		5	4	••	_	phys. Daton
	Cl					
	Çı					-
	1					
362	$-CH_2-C=CH_2$	OCH_3	OCH_3	0	N	
		3	J	_		
	Cl					
363	$-CH_2-C=CH_2$	OCH_3	OC_2H_5	0	N	
303	$-CII_2-C=CII_2$	OC113	OC2115	U	IA	
	Cl					
	Ŭ1					
264	CII C CII	00.77	~~	_		
364	$-CH_2-C=CH_2$	OC_2H_5	OC_2H_5	0	N	
		2 3	2 3			
	Cl					
	1					
365	$-CH_2-C=CH_2$	$-CH_2-OCH_3$	OCH_3	0	N	
	_	0112 00113	OCLIG	U	14	
	Cl					
	ĺ					
366	$-CH_2-C=CH_2$	CH_3	OCIT	^	CIT	
200	$-C11_2-C-C11_2$	CH ₃	OCH_3	О	CH	
	Cl					
	Çı					
267		OCTT	0.077	_		
367	$-CH_2-C=CH_2$	OCH_3	OCH_3	0	CH	
	CI	-	-			
	Çl					
	j					
368	$-CH_2-C=CH_2$	CH_3	CH_3	0	CH	
200		CII3	City	U	CII	
	· Cl					
	Ī		÷			
369	$-CH_2-C=CH_2$	OCII	CI	^	OTT	
309	$-Cn_2-C=Cn_2$	OCH_3	Cl	0	CH	
	Cl					
	Çı					
	!					
370	$-CH_2-C=CH_2$	CH_3	Cl	0	CH	
		3		•	011	
	Cl					
	1					
371	$-CH_2-C=CH_2$	OC_2H_5	OCH_3	0	\mathbf{CH}	
371		OC2115	OCI13	U	Сп	
	Cl					
	Ŭ.					
272	OH C OH	CIT OCIT	OCTT	_	~	
372	$-CH_2-C=CH_2$	-CH ₂ -OCH ₃	OCH_3	0	\mathbf{CH}	
373	-CH ₂ -OCH ₃	CH_3	OCH_3	0	N	Smp. 155–157°
374						Ship. 155–157
	-CH ₂ -OCH ₃	OCH_3	OCH_3	0	N	
375	-CH ₂ -OCH ₃	C_2H_5	OCH_3	0	N	
	CII OCII	O II			11	
376	-CH ₂ -OCH ₃	C_2H_5	CH_3	0	N	
377	-CH ₂ -OCH ₃	OCH_3	OCH_3	0	N	
378	-CH ₂ -OCH ₃		OCH			
		OCH_3	OC_2H_5	0	N	
379	-CH ₂ -OCH ₃	OC_2H_5	OC_2H_5	0	N	
380	-CH ₂ -OCH ₃	-CH ₂ -OCH ₃				
			OCH_3	O	N	
381	-CH ₂ -OCH ₃	OCH_3	SCH_3	0	N	
382	-CH ₂ -OCH ₃	OCH_3	CH_3			C 160 1750
				О	CH	Smp. 168–175°
383	-CH ₂ -OCH ₃	OCH_3	OCH_3	0	CH	
384	-CH ₂ -OCH ₃	CH_3	CH ₃	0	CH	
		C113				
385	-CH ₂ -OCH ₃	CH_3	Cl	0	CH	Smp. 137–143°
386	-CH ₂ -OCH ₃	OCH_3	Cĺ	0	CH	-
387	-CH ₂ -OCH ₃	C_2H_5	OCH_3	0	CH	
388	-CH ₂ -OCH ₃	OC_2H_5	OCH_3	0	CH	
500		002115	OC113	U	CH	
	Cl					
	Ī. ·					
389	$-CH_2-\dot{C}=CH_2$	CII	OCIT	_	OTT	
309		C_2H_5	OCH_3	0	CH	
	$-CH_2-CH=C$	-				
390	Ch Ch C	CII	OCIT	_	OTT	
330	$-cn_2-cn=c$	C_2H_5	OCH_3	0	CH	
	CH ₃					
391	$-CH_2-CH=CH-CH_3$	C_2H_5	OCH	^	OTT	
			OCH_3	О	CH	
392	-CH ₂ -S-CH ₃	CH_3	OCH_3	0	N	
393	$-CH_2-S-CH_3$	CH ₃				
			CH_3	О	N	
394	-CH ₂ -S-CH ₃	C_2H_5	CH_3	0	N	
395	-CH ₂ -S-CH ₃	C_2H_5	OCH ₃			
				0	N	
396	$-CH_2-S-CH_3$	OCH_3	OCH_3	0	N	
397	-CH ₂ -S-CH ₃	OCH_3	OC ₂ H ₅	ŏ	N	
	CII C CII					
398	-CH ₂ -S-CH ₃	-CH ₂ -OCH ₃	OCH_3	0	N	
399			-			
	-CH ₂ -S-CH ₃	CH_3	OCH_3	0	CH	
400	-CH ₂ -S-CH ₃	OCH_3	OCH_3	0	CH	
			5	•		

	5 (Fortsetzung)	R_3	$ m R_4$	X	E	phys. Daten
Nr.	A	-		0	CH	phys. Daten
401 402	-CH ₂ -S-CH ₃ -CH ₂ -S-CH ₃	$\mathrm{CH_3} \ \mathrm{C_2H_5}$	CH₃ OCH₃	ŏ	CH	
403	-CH ₂ -S-CH ₃ -CH ₂ -S-CH ₃	OCH ₃	Cl	ŏ	CH	
404	$-CH_2-S-CH_3$	CH ₃	Cl	0	CH	
405	$-CH_2-S-CH_3$	OCH_3	OC_2H_5	0	CH	
406	$-CH_2-CH_2-OC_2H_5$	CH_3	OCH_3	0	N	
407	$-CH_2-CH_2-OC_2H_5$	CH_3	CH ₃	0	N	
408	-CH ₂ -CH ₂ -OC ₂ H ₅	C_2H_5	CH ₃	0	N N	
409 410	-CH ₂ -CH ₂ -OC ₂ H ₅ -CH ₂ -CH ₂ -OC ₂ H ₅	C_2H_5 OCH $_3$	$ \begin{array}{c} OCH_3\\ OCH_3 \end{array} $	0	N	
411	-CH ₂ -CH ₂ -OC ₂ H ₅	CH ₃	OCH ₃	ŏ	CH	
412	$-CH_2-CH_2-OC_2H_5$	OCH ₃	OCH ₃	Ŏ	CH	Smp. 163-164°
413	-CH ₂ -CH ₂ -OCH ₃	OCH_3	Cl	0	CH	Smp. 166–168°
414	-CH ₂ -CH ₂ -OCH ₃	CH ₃	Cl	0	CH	
432	-CH ₂ -SO-CH ₃	CH ₃	OCH ₃ OCH ₃	0 0	N CH	
433 434	-CH ₂ -SO-CH ₃ -CH ₂ -SO-CH ₃	CH_3 OCH_3	OCH ₃	Ö	N	
435	-CH ₂ -SO-CH ₃	OCH ₃	OCH ₃	ŏ	CH	
436	-CH ₂ -SO ₂ -CH ₃	OCH_3	OCH_3	О	\mathbf{CH}	
437	-CH ₂ -SO ₂ -CH ₃	CH_3	OCH ₃	0	CH	
438	-CH ₂ -SO ₂ -CH ₃	CH₃	CH ₃	0	CH	
439	-CH ₂ -SO ₂ -CH ₃	CH_3 OCH_3	OCH ₃ OCH ₃	0 0	N N	
440 441	-CH ₂ -SO ₂ -CH ₃ -CH ₂ -CH ₂ -SO-CH ₃	OCH ₃	OCH ₃	ŏ	N	
442	-CH ₂ -CH ₂ -SO-CH ₃	OCH ₃	CH ₃	Ŏ	N	
443	-CH ₂ -CH ₂ -SO-CH ₃	OCH_3	CH_3	0	CH	
444	$-CH_2-CH_2-SO_2-CH_3$	OCH_3	CH_3	0	CH	
445	-CH ₂ -CH ₂ -SO ₂ -CH ₃	OCH ₃	CH ₃	0	N N	
446	-CH ₂ -CH ₂ -SO ₂ -CH ₃	CH_3	OCH_3	0	IN	
449	-CH2-CH=C $-CH3$ $-CH2-CH=C$ $-CH3$ $-CH2-CH=C$ $-CH3$	CH_3	OCH_3	S	CH	
	CH ₃					•
450	CH CH C	CII	OCH	S	N	
450	-CH ₂ -CH=C	CH_3	OCH_3	S	14	4
453	-CH ₂ -CH ₂ -OCH ₃	CH_3	OCH_3	S	$\mathbf{C}\mathbf{H}$	
454	-CH ₂ -CH ₂ -OCH ₃	CH_3	OCH_3	S	N	
455	$-(CH_2)_2-CH=CH_2$	CH_3	OCH_3	0	N	
456	-(CH2)2-CH=CH2	CH ₃	OCH_3	0	CH	
457	$-(CH_2)_2-CH=CH_2$ $-(CH_2)_2-CH=CH_2$	CH_3 CH_3	$ \begin{array}{c} \text{CH}_3\\ \text{CH}_3 \end{array} $	0 0	N CH	
458 459	$-(CH_2)_2-CH=CH_2$ - $(CH_2)_3-CH=CH_2$	CH ₃	OCH_3	ŏ	N	
460	$-(CH_2)_3-CH=CH_2$	CH ₃	OCH_3	Ö	CH	
	∠CH ₃	-	·	_		
461	-CH	CH_3	OCH_3	О	N	
	$CH = CH_2$ CH_3					
462	-CH,	CH_3	OCH_3	0	CH	
102	$CH = CH_2$	3	,			
463	$-CH_2-OC_2H_5$	CH_3	OCH_3	0	CH	
464	$-CH_2-OC_2H_5$	CH_3	OCH ₃	0	N	
465 466	-CH ₂ -OC ₂ H ₅ -CH ₂ -OC ₂ H ₅	C_2H_5 CH_3	${{ m OCH_3}\atop { m CH_3}}$	0	N N	
467	$-CH_2-OC_2H_5$ $-CH_2-OC_2H_5$	CH ₃	CH ₃	Ö	СH	
468	-CH ₂ -CH ₂ -OCH ₃	CH ₃	CH ₃	0	CH	Smp. 179-180°
469	-CH ₂ -CH ₂ -OCH ₃	OCH_3	OCH_3	0	N	Smp. 140–141°
470	-CH ₂ -CH ₂ -OCH ₃	CH_3	OCH₃	0	N	Smp. 134–138°
471 472	-CH ₂ -CH ₂ -OCH ₃	CH ₃	$ \begin{array}{c} OCH_3\\ OCH_3 \end{array} $	0	CH CH	Smp. 160–162°
472 473	-CH ₂ -CH ₂ -SCH ₃ -CH ₂ -CH ₂ -SCH ₃	$\mathrm{CH_{3}}$ $\mathrm{CH_{3}}$	OCH ₃	ő	N	
-11J	Cl	~~·,	J V 3	-	= -:	
	·		_	_		
474	$-CH_2-C = CH-Cl$	CH_3	OCH_3	О	N	
-	C1					•
475	$-CH_2-C = CH-Cl$	CH_3	OCH_3	0	CH	

Tabelle	5 (Fortsetzung)					
Nr.	À	R_3	R_4	X	E	phys. Daten
	Cl					•
476	1	CII	OCH	0	CII	
476	$-CH_2-CH=C-CH_3$	CH ₃	OCH_3	О	CH	
	Çl					
477	$-CH_2-CH=C-CH_3$	CH ₃	OCH_3	0	N	
7//		CH3	00113	U	14	
	.Cl		•			
478	$-CH_2-CH=C$	CH_3	OCH ₃	О	N	
	Cl	-	•			
	$-CH_2-CH=C$					
	$-CH_2-CH=C Cl$			_		
479	$-CH_2-CH=C$	CH_3	OCH_3	О	CH	
	Cl					
480	-CH ₂ -CH ₂ -O-				-	
	CH_2 - $CH = CH_2$	CH_3	OCH ₃	0	CH	
481	-CH ₂ -CH ₂ -O-	•	-			
	CH_2 - $CH = CH_2$	CH_3	OCH ₃		N	
482	$-CCl = CCl_2$	CH_3	OCH_3	O	N	
483	-CCl = CHCl	OCH_3	OCH ₃	0	CH	Smp. 244–246°
484	$-CCl = CCl_2$	OCH_3	OCH ₃	0	N	
485	$-CCl = CCl_2$	CH ₃	OCH₃	0	CH	
486	-CCl=CCl ₂	OCH ₃	OCH₃	0	CH	
487	-CCl=CCl ₂	CH ₃	Cl C'	0	CH	
488	-CCl=CCl ₂	OCH₃	Cl Cl	0 0	N N	
489 490	$ -CF = CF_2 -CF = CF_2 $	$ \begin{array}{c} OCH_3\\ CH_3 \end{array} $	Cl	Ö	CH	
491	$-CH = CCl_2$	OCH ₃	OCH ₃	ŏ	N	
492	$-CH = CCl_2$	CH ₃	OCH ₃	ŏ	CH	
493	$-CH = CCl_2$	OCH ₃	OCH ₃	Ō	CH	
494	$-CH = CCl_2$	C_2H_5	OCH_3	O	N	
495	$-CF = CF_2$	C_2H_5	OCH_3	Ο	N	
496	-CCl = CHCl	OCH_3	OCH_3	S	N	
497	-CCl=CHCl	CH_3	OCH ₃	0	N	Smp. 169–172°
498	-CCl=CHCl	C ₂ H ₅	OCH ₃	0	N	
499	-CCl=CHCl	CH₃	CH ₃	0	N	Smp. 196–198°
500	-CCl=CHCl	$ \begin{array}{c} OCH_3\\ OCH_3 \end{array} $	Cl OC₂H₅	0 0	CH N	Simp. 190–196
501 502	-CCl=CHCl -CCl=CHCl	OCH ₃	OC_2H_5 OCH_3	ŏ	CH	
503	-CCl=CHCl	C_2H_5	OCH ₃	ŏ	CH	
504	-CCl=CHCl	CH ₃	Cl	ŏ	CH	
505	-CCl=CHCl	CH ₃	OCH ₃	OS	CH	
506	-CCl=CHCl	OCH_3	OCH ₃	S	CH	
507	$-CF = CF_2$	CH ₃	OCH_3	O	N	
508	$-CF = CF_2$	OCH_3	OCH_3	Ο	N	
509	$-CF = CF_2$	CH ₃	OCH_3	0	CH	
510	$-CF = CF_2$	OCH ₃	OCH₃	0	CH	
511	$-CH_2-CH=CH_2$;	-CH(CH ₃) ₂	OCH ₃	0	CH	
512	$-CH_2-CH=CH_2$	OCH₃	SC ₂ H ₅ .	0 0	CH N·	
513 514	-CH2-CH = CH2 $-CH2-CH = CH2$	$ \begin{array}{c} OCH_3\\ OCH_3 \end{array} $	SC_2H_5 -SCH(CH ₃) ₂	Ö	N.	
515	-CH2-CH=CH2 $-CH2-CH=CH2$	Cl	CH ₃	ŏ	N	Smp. 128–130°
516	-CH2-CH=CH2 $-CH2-CH=CH2$	CH ₃	Br	ŏ	N	bmp. 120 130
517	-CH2-CH=CH2	CHF ₂	OCH ₃	ŏ	Ñ	
518	$-CH_2-CH=CH_2$	CHF_2	CH ₃	О	N	
519	$-CH_2-CH=CH_2$	$-CH_2-CF_3$	Cl	О	N	
520	$-CH_2-CH=CH_2$	$-CH_2-CF_3$	OCH_3	О	N	
521	$-CH_2-CH=CH_2$	$-CH_2-CF_3$	CH ₃	0	N	g 160 1155
522	$-CH_2-CH=CH_2$	OC_2H_5	OC ₂ H ₅	0	N	Smp. 138–142°
523	$-CH_2-CH=CH_2$	OC ₂ H ₅	OC ₂ H ₅	0	CH	C 2060
524 525	$-CH_2-CH=CH_2$	C_2H_5	OCH₃	0	N N	Smp.206°
525	$-CH_2-CH=CH_2$	C ₂ H ₅	OC ₂ H ₅	0	N N	C 100 1010
526	$-CH_2-CH=CH_2$	CH ₃	OC ₂ H ₅	0 0	N CH	Smp. 129–131° Smp. 180–182°
527 528	$-CH_2-CH=CH_2$	CH_3 CH_3	CH_3 OCH_3	0	CH	
J&8	$-CH_2-CH=CH_2$	C113	OCII3	J	CII	2mb 20_100

	5 (Fortsetzung)	.	n.	37	-	
Nr.	A	R_3	R_4	X	E	phys. Daten
529	$-CH_2-CH=CH_2$	CH ₃	Br	0	N	
530 531	$-CH_2-CH=CH_2$	CH ₃	H	0	N	
532	-CH2-CH = CH2 $-CH2-CH = CH2$	C_2H_5 CH_3	Cl Cl	0	CH CH	Smp. 153–154°
533	-CH2-CH=CH2	CH ₃	SCH ₃	ŏ	CH	5mp. 155–154
534	$-CH_2-CH=CH_2$	CH ₃	F	0	CH	
535	$-CH_2-CH=CH_2$	CH ₃	Br	0	CH	
536 537	-CH2-CH = CH2 $-CH2-CH = CH2$	C_2H_5	OC ₂ H ₅	0	CH	
538	$-CH_2-CH=CH_2$ $-CH_2-CH=CH_2$	C_2H_5 CF_3	SCH ₃ CH ₃	0	CH CH	
539	-CH2-CH=CH2	CH ₂ Cl	CH ₃	ŏ	CH	
540	$-CH_2-CH=CH_2$	CH ₂ Cl	OCH₃	O	CH	
541	$-CH_2-CH=CH_2$	OCH₃	Cl	0	CH	Smp. 173–179°
542 543	-CH2-CH = CH2 $-CH2-CH = CH2$	Cl OCH ₃	Cl SCH ₃	0	CH CH	
544	-CH2-CH=CH2 $-CH2-CH=CH2$	OCH ₃	-OCH(CH ₃) ₂	ŏ	CH	
545	$-CH_2-CH=CH_2$	CH ₂ F	OCH ₃	ŏ	CH	
546	$-CH_2-CH=CH_2$	CH_2F	CH_3	0	CH	
547	$-CH_2-CH=CH_2$	CF ₃	OCH(CH)	0	CH	
548 549	-CH2-CH = CH2 $-CH2-CH = CH2$	C_2H_5 C_2H_5	-OCH(CH ₃) ₂ Cl	0	N N	
550	-CH2-CH=CH2	C_2H_5	SCH ₃	ŏ	N	
551	$-CH_2-CH=CH_2$	C_2H_5	CH_3	0	N	Smp. 128-131°
552	$-CH_2-CH=CH_2$	C_2H_5	C_2H_5	O	N	
553 554	$-CH_2-CH=CH_2$	OCH₃	-OCH(CH ₃) ₂	0	N	Smp. 119–120°
555	-CH2-CH = CH2 $-CH2-CH = CH2$	OCH_3 CH_3	-OCH(CH ₃)-CH ₂ CH ₃ -CH(CH ₃) ₂	0	N N	Smp. 96–98°
556	$-CH_2-CH=CH_2$	$-CH(CH_3)_2$	Cl	ŏ	N	5mp. 70 70
557	$-CH_2-CH=CH_2$	$-CH(CH_3)_2$	OCH ₃	0	N	Smp. 124–128°
558 550	$-CH_2-CH=CH_2$	-CH(CH ₃) ₂	OC ₂ H ₅	0	N	
559 560	-CH2-CH = CH2 $-CH2-CH = CH2$	-CH(CH ₃) ₂ CH ₂ Cl	SCH ₃ CH ₃	0	N N	
561	-CH2-CH=CH2 $-CH2-CH=CH2$	CH ₂ Cl	OCH ₃	ŏ	N	
562	$-CH_2-CH=CH_2$	CH ₂ F	CH ₃	Ŏ	N	
563	$-CH_2-CH=CH_2$	CH ₂ F	OCH ₃	0	N	
564 565	-CH2-CH = CH2 $-CH2-CH = CH2$	CH ₂ F	OC_2H_5	0	N N	
565 566	-CH2-CH = CH2 $-CH2-CH = CH2$	-CH ₂ -OCH ₃ -CH ₂ -SCH ₃	C ₂ H ₅ OCH ₃	0	N N	
567	$-CH_2-CH=CH_2$	-CH ₂ -SCH ₃	CH ₃	ŏ	N	
568	$-CH_2-CH=CH_2$	-CH ₂ -SCH ₃	SCH_3	0	N	
569	$-CH_2-CH=CH_2$	-CH ₂ -SCH ₃	Cl	0	N	
570 571	-CH2-CH = CH2 $-CH2-CH = CH2$	-CH ₂ -SCH ₃ SCH ₃	OC₂H₅ Cl	0 0	N N	
572	-CH2-CH=CH2 $-CH2-CH=CH2$	SCH ₃	OCH ₃	ŏ	N	
573	$-CH_2-CH=CH_2$	SCH ₃	OC_2H_5	0	N	
574	$-CH_2-CH=CH_2$	SCH ₃	-OCH CH	0	N	
575	$-CH_2-CH=CH_2$	-OCH(CH ₃) ₂	CH ₃	O	N	
576	-CH2-CH=CH2 $-CH2-CH=CH2$	CF ₃	OCH ₃	ŏ	N	
577	$-CH_2-CH=CH_2$	CF ₃	CH_3	Ŏ	N	
578	$-CH_2-CH=CH_2$	CF_3	OC_2H_5	0	N	
579 590	$-CH_2-CH=CH_2$	CCl ₃	OCH ₃	0	N	
580 581	-CH2-CH = CH2 $-CH2-CH = CH2$	CCl_3 CH_3	SCH ₃ Cl	0	N N	Smp. 128–130°
582	-CH2-CH=CH2	OCH ₃	Cl	ŏ	N	Dimp. 120 100
583	$-CH_2-CH=CH_2$	OCH ₃	F	Ο	N	
584	$-CH_2-CH=CH_2$	OCH₃	Br	0	N	
585 586	-CH2-CH = CH2 $-CH2-CH = CH2$	CH_3 OCH_3	F OCH₃	0	N CH	Smp. 184–186°
587	-CH2-CH=CH2 $-CH2-CH=CH2$	CH ₃	CH ₃	ŏ	N	Smp. 139–141°
588	$-CH_2-CH=CH_2$	OCH ₃	OC_2H_5	0	N	•
589	$-CH_2-CH=CH_2$	OCH ₃	OC ₂ H ₅	0	CH	
590 501	$-CH_2-CH=CH_2$	CH ₂ OCH ₃	OCH ₃ OCH ₃	0	CH N	
591	$-CH_2-CH=CH_2$	CH_2OCH_3	OC113	U	T.A.	

Tabelle 5 (Fortsetzung)

Nr.	A	R_3		R_4		X	E	phys. Daten
592 593 596 597 598 599 600 601 602	$-CH_2-CH=CH_2$ $-CH_2-CH=CH_2$ $-CH=CHCl$ $-CH=CHCl$ $-CCl=CHCl$ $-CH=CCl_2$ $-CCl=CHCl$ $-CH_2-CH=CH_2$ $-CH_2-CH=CH_2$	C_2H_5 CH_2OC CH_3 CH_3 CH_3 CCH_3 CCH_3 CCH_3 $CCCH_3$	H ₃	OCH ₃ CH ₃ OCH ₃		O O O S O O O	CH N N CH N N	Smp. 208–209° Smp. 146–147°
Tabell	e 5a	i ii	2-NH-C-	NH-• N=• I	^R 3 E R ₄			
Nr.	A	R_3		R ₄		X	E	
650 651 652 653 654 655	-CH ₂ -CH = CH ₃ -CH ₂ -CH ₂ -OCH ₃ -CCl = CHCl -CH ₂ -OCH ₃ -CH ₂ -CH = CH-CH ₃ -CH ₂ -C(CH ₃) = CH ₂	CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃		OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃		0 0 0 0 0	N N N N N	
Tabeli	le 6: R	SO ₂ ¹	ин-С-ин-	OCH3	3			
Nr.	A	Stellung von X–A	R_1	R ₂	X	E	phys. D	Daten
701	ATT ATT ATT	_						
702	-CH2-CH = CH2 $-CH2-CH = CH2$ $CH3$	5 5	2-CH ₃ 2-CH ₃	H H	0 0	N CH		
702 703		5 5 5				N CH		
	-CH2-CH = CH2 $CH3$ $-CH3-C = CH2$	5	2-CH ₃	Н	0	СН		
703 704 705	-CH ₂ -CH=CH ₂ CH ₃ -CH ₃ -C=CH ₂ CH ₃ -CH ₃ -C=CH ₂ -CH ₂ -CH=CH-CH ₃ -CH ₂ -CH=CH-CH ₃	5 5 5 5	2-CH ₃ 2-CH ₃ 2-CH ₃ 2-CH ₃	H H H	0 0 0	CH CH N		
703 704 705 706	-CH ₂ -CH=CH ₂ CH ₃ -CH ₃ -C=CH ₂ CH ₃ -CH ₃ -C=CH ₂ -CH ₂ -CH=CH-CH ₃ -CH ₂ -CH=CH-CH ₃ -CH ₂ -CH=CH-CH ₃	5 5 5 5 5	2-CH ₃ 2-CH ₃ 2-CH ₃ 2-CH ₃ 2-CH ₃	Н Н Н Н	0 0 0 0 0	CH CH N N CH		
703 704 705 706 707 708 709	-CH ₂ -CH=CH ₂ CH ₃ -CH ₃ -C=CH ₂ CH ₃ -CH ₃ -C=CH ₂ -CH ₂ -CH=CH-CH ₃ -CH ₂ -CH=CH-CH ₃ Cl -CH ₂ -C=CH ₂ Cl -CH ₂ -C=CH ₂ -CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	5 5 5 5 5 5 5	2-CH ₃	H H H H H	0 0 0 0 0 0 0 0	CH CH N N CH CH N N N		

Tabelle 6 (Fortsetzung)								
Nr.	A	Stellung von X–A	R_1	\mathbf{R}_2	X	E	phys. Daten	
	CH_3							
713	$-CH_2-C = CH_2$ CH_3	5	2-Cl	Н	0	N		
714 715 716	-CH ₂ -C = CH ₂ -CH ₂ -O-CH ₃ -CH ₂ -O-CH ₃	5 5 5	2-Cl 2-Cl 2-Cl	H H H	0 0 0	CH CH N		
717 718 719	-CH ₂ -S-CH ₃ -CH ₂ -S-CH ₃ -CH ₂ -CH=CH-CH ₃	5 5 5	2–Cl 2–Cl 2–Cl	H H H	0 0 0	N CH CH		
720 721 722	-CH ₂ -CH = CH-CH ₃ -CH ₂ -CH ₂ -OCH ₃ -CH ₂ -CH ₂ -OCH ₃	5 5 5	2–Cl 2–Cl 2–Cl	H H H	0 0 0	N N CH		
723 724 725	-CH ₂ -OC ₂ H ₅ -CH ₂ -OC ₂ H ₅ -CH ₂ -CH ₂ -SCH ₃	5 5 5	2–Cl 2–Cl 2–Cl	H H H	0 0 0	N CH CH		
726 727 728	-CH ₂ -CH ₂ -SCH ₃ -CH ₂ -CH = CH ₂ -CH ₂ -CH = CH ₂	5 3 3	2–Cl 2–CH ₃ 2–CH ₃	H H H	0 0 0	N N CH		
	CH_3					1		
729	$-CH_2-C=CH_3$ CH_3	3	2-CH ₃	Н	0	СН		
730 731 732	$-CH_2-C = CH_3$ $-CH_2-CH = CH_2$ $-CH_2-CH = CH_2$	3 3 3	2–CH ₃ 2–OCH ₃ 2–OCH ₃	H H H	0 0 0	N N CH	- mage de	
733	CH_3 $-CH_2-C=CH_2$	3	2-OCH ₃	Н	0	СН		
734	CH ₃ -CH ₂ -C = CH ₂ Cl	3	2-OCH ₃	Н	0	N .		
735	-CH2-C = CH2 $-Cl$	3	2-OCH ₃	Н	0	N		
736	$-CH_2-C=CH_2$	3	2-OCH ₃	Н	О	CH		
737 738	-CH ₂ -CH = CH-CH ₃ -CH ₂ -CH = CH-CH ₃	3	2-OCH ₃ 2-OCH ₃	H H	0	CH N		
739 740	-CH2-CH = CH2 $-CH2-CH = CH2$	5 5	2-OCH ₃ 2-OCH ₃	H H	0	N CH		
741	CH_3 $-CH_2-C=CH_2$	5	2-OCH ₃	Н	0	СН	·	
742	CH ₃ -CH ₂ -C = CH ₂	5	2-OCH ₃	H H	0	N N		
743 744	-CH ₂ -CH = CH-CH ₃ -CH ₂ -CH = CH-CH ₃ Cl	5 5	2-OCH ₃ 2-OCH ₃	H	ŏ	CH		
745	$-CH_2-C = CH_2$ Cl	5	2-OCH ₃	Н	0	СН		
746	$-CH_2-C=CH_2$	5	2-OCH ₃	Н	0	N	a a a a a a a a a a a a a a a a a a a	
747 748	-CH2-CH = CH2 $-CH2-CH = CH2$ $CH3$	3 3	5–Br 5–Br	2-OCH ₃ 2-OCH ₃	0	N CH	Smp. 258–259° Smp. 156–157°	
749	$-CH_2-C=CH_2$	3	5–Br	2-OCH ₃	О	СН		

Tabelle	6 (Fortsetzung)						
Nr.	À	Stellung	R_1	R_2	X	E	phys. Daten
		von X-A					• •
	CH_3						
750	$-CH_2-C = CH_2$	3	5–Br	2-OCH ₃	0	N	
730	$-Cn_2-C=Cn_2$	3	J— D I	2-OCH3	U	14	
751	$-CH_2-CH=CH_2$	3	5-COOCH ₃	2-OCH ₃	0	N	
752	$-CH_2-CH=CH_2$	3	5-COOCH ₃	2-OCH ₃	0	CH	
	CH_3						
	-				_	CIT	
753	$-CH_2-C=CH_2$	3	5-COOCH ₃	$2-OCH_3$	0	CH	
	CH_3		-				•
754	$-CH_2-C=CH_2$	3	5-COOCH ₃	2-OCH ₃	0	N	
755	$-CH_2-CH=CH-CH_3$	3	5-COOCH ₃	2-OCH ₃	Ŏ	N .	
756	$-CH_2-CH=CH-CH_3$	3	5-COOCH ₃	2-OCH ₃	Ο	CH	
757	$-CH_2-CH=CH_2$	2	5-NO ₂	3-CF ₃	O	N	
758	$-CH_2-CH=CH_2$. 2	5-NO ₂	$3-CF_3$	0	CH	
759	$-CH_2-CH=CH_2$	2	5-NO ₂	3-C1	0	CH	
760	$-CH_2-CH=CH_2$	2	5–NO ₂	3C1	0	N	
	CH_3						
761	$-CH-C=CH_2$	2	5-NO ₂	3-C1	0	N	
	CH ₃		· - Z				
	-						
762	$-CH_2-C=CH_2$	2	5-NO ₂	3-C1	0	CH	
763	$-CH_2-CH=CH_2$	2	5-CF ₃	3-NO ₂	0	CH	
764 765	-CH2-CH = CH2 $-CH2-CH = CH2$	2 2	5-CF ₃ 5-CH ₃	3-NO ₂	0	N N	
765 766	$-CH_2-CH = CH_2$ $-CH_2-CH = CH_2$	2	5-CH ₃ 5-CH ₃	3-CH ₃ 3-CH ₃	ŏ	CH	
767	$-CH_2-CH=CH-CH_3$	2	5-CH ₃	3-CH ₃	ŏ	CH	•
768	$-CH_2-CH=CH-CH_3$	2	5-CH ₃	$3-CH_3$	Ŏ	N	
769	$-CH_2-CH=CH-CH_3$	2	5-Cl	$3-NO_2$	0	N	
770	$-CH_2-CH=CH-CH_3$	2	5-Cl	$3-NO_2$	0	CH	
771	$-CH_2-CH=CH_2$	2	5-Cl	3-NO ₂	0	CH	
772	$-CH_2-CH=CH_2$	2 2 2	5-Cl	$3-NO_2$	0	N	
773 774	-CH2-CH = CH2 $-CH2-CH = CH2$	2	5–Cl 5–Cl	3–Cl 3–Cl	0	N CH	
775	-CH ₂ -CH ₂ -OCH ₃	2	5-Cl	3-Cl	ŏ.	CH	
776	-CH ₂ -CH ₂ -OCH ₃	$\overline{2}$	5-Cl	3–Cl	Ō	N	
777	-CH ₂ -OCH ₃	2	5C1	3C1	O	N	
778	-CH ₂ -OCH ₃	$\overline{2}$	5Cl	3C1	0	CH	
	CH ₃						
770	ĺ		5 67	2 (7)	_	(111	
779	$-CH_2-C=CH_2$	2	· 5–C1	3–Cl	О	CH	
	CH_3						
780	$-CH_2-C = CH_2$	2	5-Cl	3C1	O	N	
781	$-CH_2-CH=CH_2$	2	5–Br	3-OCH ₃	ŏ	N	
782	$-CH_2-CH=CH_2$	2 3	5–Br	3-OCH ₃	0	CH	
783	$-CH_2-CH=CH_2$	3	5Br	2-OCH ₃	0	CH	
784 785	$-CH_2-CH=CH_2$	3 2	5–Br	2–OCH₃	0	N	
785	$-CH_2-CH=CH_2$	2	5-COOCH ₃	3-OCH	0	N	
786 787	-CH2-CH = CH2 $-CH2-CH = CH2$	3	5-COOCH ₃ 5-COOCH ₃	3-OCH ₃ 2-OCH ₃	0	CH CH	
788	-CH2-CH=CH2 $-CH2-CH=CH2$	3	5-COOCH ₃	2-OCH ₃	ŏ	N	
	CH ₃	-	2 2000113		-	<i>-</i> .	
	1				_		
789	$-CH_2-C=CH_2$	3	5-COOCH ₃	2-OCH ₃	О	N	
	CH_3		-				
790	$-CH_2-C=CH_2$. 3	5-COOCH ₃	2-OCH ₃	O	СН	
791	-CH2-CH=CH2 $-CH2-CH=CH2$	2	5-CH ₃	3-Br	ŏ	CH	
792	-CH2-CH=CH2	2	5-CH ₃	3–Br	ŏ	N	
793	-CH ₂ -OCH ₃	2 2	5-CH ₃	3–Br	0	N	
794	-CH ₂ -OCH ₃	2	5-CH ₃	3–Br	О	CH	

31 657 849

Tabelle	6 (Fortsetzung)						
Nr.	A	Stellung von X–A	\mathbf{R}_1	R ₂	X	E	phys. Daten
795 796 797 798	$-CH_2-CH = CH_2$ $-CH_2-CH = CH_2$ $-CH_2-CH = CH_2$ $-CH_2-CH = CH_2$ $-CH_3$	2 2 2 2	5–Br 5–Br 5–Cl 5–Cl	3–NO ₂ 3–NO ₂ 3–Br 3–Br	0 0 0 0	N CH CH N	Smp. 175°
799	$-CH_2-C=CH_2$ CH_3	2	5–Cl	3–Br	0	N	
800	$-CH_2-C=CH_2$	2	5Cl	3-Br	0	\mathbf{CH}	
801	-CH ₂ -CH ₂ -O-CH ₃	2	5-Cl	.3-Br	0	CH	
802	$-CH_2-CH_2-O-CH_3$	2 2 5	5-Cl	3–Br	0	N	
803	$-CH_2-O-CH_3$		$2-NO_2$	H	О	CH	
804	$-CH_2-O-CH_3$	3	H	H	S	\mathbf{CH}	
805	$-CH_2-CH_2-OCH_3$	2	$5-OC_2H_4-OCH_3$	H	0	N	
806	$-CH_2-CH=CH_2$	2	$5-OCH_2-CH=CH_2$		O	N	
807	$-CH_2-OCH_3$	2	5-OCH ₂ -OCH ₃	H	О	N	
808	-CH ₂ -CH ₂ -OCH ₃	2 2	$5-S-C_2H_4-OCH_3$	H	S	N	
809	-CH ₂ -SCH ₃	2	5-S-CH ₂ -SCH ₃	H	S	N	
810	-CH ₂ SO-CH ₃	2	5-S-CH ₂ -SOCH ₃	H	S	N	
811	$-CH_2-SO_2-CH_3$	2	$5-CH_2-SO_2-CH_3$	H	S	N	

Beispiel 6

a) N-(2-Difluormethoxyphenyl-sulfonyl)- phenyl-carbamat.

Zu einer auf 0-10° gekühlten Suspension von 0,84 g 57,5% iger Natriumhydrid-Dispersion in 5 ml absolutem Dimethylformamid lässt man eine Lösung von 4,5 g 2-Difluormethoxy-phenyl-sulfonamid in 5 ml absolutem Dimethylformamid zutropfen. Zur Vervollständigung der Wasserstoffentwicklung erwärmt man die Reaktionsmischung unter Rühren auf 25°. Nach beendeter Wasserstoffentwicklung und 35 Abkühlen der Mischung auf -30° wird eine Lösung von 4,7 g Diphenylcarbonat in 5 ml absulutem Dimethylformamid zugesetzt und danach die Reaktionsmischung unter Erwärmenlassen bis auf 25° für 18 Stunden gerührt. Nach Eingiessen der 40 Reaktionslösung in ein Gemisch aus 11 ml 2 N Salzsäure und 100 g Eis nimmt man das ausgefallene Produkt mit Äthylacetat auf. Durch Trocknen und Eindampfen der Äthylacetat-Phase und Umkristallisieren aus Methanol erhält man 5,6 g N-(2-Difluormethoxyphenyl-sulfonyl)- phenyl-carbamat als farblose Kristalle vom Schmelzpunkt 115-117°

b) N-(2-Difluormethoxyphenyl-sulfonyl)- N'-(4-äthyl-6-methoxy-1,3,5,-triazin-2-yl)-harnstoff.

Eine für 5 Stunden am Rückfluss gekochte Lösung von 5,4 g N-(2-Difluormethoxyphenyl-sulfonyl)- phenyl-carbamat und 2,42 g 2-Amino-4-äthyl- 6-methoxy-1,3,5-triazin in 60 ml absolutem Dioxan wird in 600 ml Eiswasser gegossen. Das ausgefallene Produkt wird mit Äthylacetat aufgenommen. Das nach Waschen mit Wasser, Trocknen und Eindampfen der Äthylacetat-Phase erhaltene Öl wird erneut in Äthylacetat gelöst und fünfmal mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen. Die vereinigten wässrigen Phasen werden mit verdünnter Salzsäure angesäuert und mit Äthylacetat extrahiert. Nach Trocknen und Eindampfen der Äthylacetat-Phase und Umkristallisieren aus Methanol erhält man 5,1 g N-(2-Difluormethoxyphenyl-sulfonyl)- N'- (4-äthyl-6-methoxy-1,3,5-triazin-2-yl)-harnstoff vom Schmelzpunkt 114–116°.

Beispiel 7

N-(2-Difluormethoxyphenyl-sulfonyl)- N'-(4-chlor-6-methyl-pyrimidin-2-yl)-harnstoff.

Analog dem Beispiel 9c erhält man aus N-(Difluor-

methoxyphenyl-sulfonyl)- isocyanat durch Umsetzen mit 2-Amino-4-chlor- 6-methyl-pyrimidin den N-(2-Difluormethoxyphenyl-sulfonyl)-N'-(4-chlor-6-methyl-pyrimidin-2-yl)-harnstoff, Smp. $190-191^{\circ}$.

Beispiel 8

a) N-(2-Difluormethoxyphenyl-sulfonyl)- N-(4,6-dichlor-1,3,5-triazin-2-yl)-harnstoff.

Einer Lösung von 3,9 g 4,6-Dichlor-2-isocyanato-1,3,5-triazin in 50 ml absolutem Dioxan werden 4,5 g 2-Difluormethoxyphenyl-sulfonamid zugesetzt. Nach 5 Stunden Kochen am Rückfluss wird die entstandene klare Lösung in 500 ml Eiswasser gegossen. Das ausgefallene Produkt wird mit Äthylacetat extrahiert. Durch Trocknen und Einengen der organischen Phase erhält man als Kristallisat vom Schmelzpunkt 105–107° 8,5 g eines 1:1-Adduktes von Dioxan und N-(2-Difluormethoxyphenyl-sulfonyl)- N-(4,6-dichlor-1,3,5-triazin-2-yl)- harnstoff.

b) N-(2-Difluormethoxyphenyl-sulfonyl)- N'-(4,6-äthoxy-1,3,5-triazin-2-yl)-harnstoff.

Zur Lösung von 5,5 g des nach Beispiel 8a erhaltenen N-(2-Difluormethoxyphenyl- sulfonyl)- N'-(4,6-dichlor-1,3,5-triazin-2-yl)- harnstoff-Dioxan-Adduktes in 10 ml absolutem Äthanol lässt man innerhalb von 15 Minuten eine Lösung von 1,9 g Natriumäthylat in 10 ml absolutem Äthanol zutropfen. Nach 2 Stunden Kochen am Rückfluss wird die Reaktionsmischung eingedampft und der Rückstand in 200 ml Eiswasser gelöst. Beim Ansäuern der Lösung mit verdünnter Salzsäure fallen 3,2 g N-(2-Difluormethoxyphenyl-sulfonyl)-N'-(4,6-diäthoxy-1,3,5-triazin-2-yl)-harnstoff als farblose Kristalle vom Schmelzpunkt 117–118° an.

Beispiel 9

a) N-(2-Pentafluoräthoxyphenyl-sulfonyl)- N'-methylharnstoff.

Das nach Beispiel 4b erhaltene 2-Pentafluoräthoxyphenyl-sulfonamid wird in 400 ml Methylenchlorid suspendiert. Dann werden 16,3 g Methylisocyanat zugegeben und anschliessend während 15 min 28,2 g Triäthylamin zutropfen gelassen. Es entsteht eine klare Lösung. Durch vollständiges Eindampfen, Lösen des Rückstandes in 5%iger Sodalösung und Wiederansäuern mit 10%iger Salzsäure erhält man

74,6 g N-(2-Pentafluoräthoxyphenyl-sulfonyl)- N'-methylharnstoff vom Schmelzpunkt 177-179°.

b) 2-Pentafluoräthoxyphenyl-sulfonylisocyanat.

74,6 gN-(2-Pentafluoräthoxyphenyl-sulfonyl)-N'-methylharnstoff werden in 1300 ml Chlorbenzol suspendiert und durch azeotropes Abdestillieren von ca. 100 ml Lösungsmittel absolutiert. Dann werden während 3 Stunden 48 g Phosgen bei 120-130° eingeleitet. Durch vollständiges Abdestillieren des Chlorbenzols erhält man 65 g 2-Pentafluoräthoxyphenyl-sulfonylisocyanat als fast farbloses Öl.

c) N-(2-Pentafluoräthoxyphenyl-sulfonyl)- N'-(4methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff.

3,2 g 2-Pentafluoräthoxyphenyl-sulfonylisocyanat und 1,4 g 2-Amino-4-methoxy-6-methyl-1,3,5-triazin werden mit 40 ml absolutem Dioxan während 3 Stunden bei 90-100° ver- 15 4-methoxy-6-methyl-1,3,5-triazin in N-(2-Difluormethylrührt. Dann wird die Lösung auf 20° abgekühlt, filtriert und auf ca. 1/4 des Volumens eingedampft. Aus dem Rückstand kristallisieren, nach Zugabe von 50 ml Äther 3,3 g N-(2-Pentafluoräthoxyphenyl-sulfonyl)- N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff vom Schmelzpunkt 157–159°.

Beispiel 10

N-(2-Difluormethoxyphenyl-sulfonyl)- N'-(4-methoxy-6methyl-1,3,5-triazin-2-yl)-harnstoff.

Eine für 5 Stunden am Rückfluss gekochte Lösung von 5,4 g N-(2-Difluormethoxyphenyl-sulfonyl)- phenyl-carbamat und 2,2 g 2-Amino-4-methoxy-6-methyl-1,3,5-triazin in 60 ml absolutem Dioxan wird in 600 ml Eiswasser gegossen. Das ausgefallene Produkt wird mit Äthylacetat aufgenommen. Das nach Waschen mit Wasser, Trocknen und Eindampfen der Athylacetat-Phase erhaltene Öl wird erneut in Äthylacetat gelöst und fünfmal mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen. Die vereinigten wässrigen Phasen werden mit verdünnter Salzsäure angesäuert und

mit Äthylacetat extrahiert. Nach Trocknen und Eindampfen der Äthylacetat-Phase und Umkristallisieren aus Methanol erhält man 5,0 g N-(2-Difluormethoxyphenyl-sulfonyl)-N'-(4methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff vom 5 Schmelzpunkt 132-134°.

Beispiel 11

N-(2-Difluormethylthiophenyl-sulfonyl)- N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff.

Analog den Beispielen 3a-b erhält man aus 2-Difluormethylthioanilin über das Sulfonylchlorid das 2-Difluormethylthiophenyl-sulfonamid, Smp. 141-142°. Dieses Sulfonamid wird in das entsprechende N-(2-Difluormethylthiophenyl-sulfonyl)- phenyl-carbamat und durch Umsetzen mit 2-Aminothiophenyl-sulfonyl)- N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff überführt, Smp. 169-172 °C.

Beispiel 12

20 N-(2-Dilfuormethoxyphenyl-sulfonyl)- N'-(4,6-dimethoxy-1,3,5-triazin-2-yl)-harnstoff.

Zur Lösung von 5,5 g des nach Beispiel 7a erhaltenen N-(2-difluormethoxyphenyl-sulfonyl)- N'-(4,6-dichlor-1,3,5triazin-2-yl)- harnstoff-Dioxan-Adduktes in 10 ml absolutem 25 Methanol lässt man innerhalb von 15 Minuten eine Lösung von 1,5 g Natriummethylat in 10 ml absolutem Methanol zutropfen. Nach 2 Stunden Kochen am Rückfluss wird die Reaktionsmischung eingedampft und der Rückstand in 200 ml Eiswasser gelöst. Beim Ansäuern der Lösung mit verdünnter 30 Salzsäure fallen 3,2 g N-(2-Difluormethoxyphenyl-sulfonyl)-N'-(4,6-dimethoxy-1,3,5-triazin-2-yl)-harnstoff als farblose Kristalle vom Schmelzpunkt 135-137° an.

In analoger Weise werden die in den folgenden Tabellen aufgelisteten Verbindungen der Formel I hergestellt.

	(T)					
	(Fortsetzung)	172	n	D	X	phys. Daten
Nr.	Α	E	R_3	R_4		phys. Daten
925	C_2F_5	N	CH_3	OC_2H_5	O	
926	C_2F_5	N	OC ₂ H ₅	OC_2H_5	0	a
927	C_2F_5	CH	CH ₃	CH ₃	0	Smp. 173–175°
928	C_2F_5	\mathbf{CH}	C_2H_5	OCH_3	O	
929	C_2F_5	\mathbf{CH}	CH_3	OCH_3	O	Smp. 165–170°
930	C_2F_5	CH	OCH_3	OCH_3	0	
931	C_2F_5	N	CH_3	CH_3	0	
932	CHF_2	N	Cl	Cl	O	Smp. 105–107° mit 1 Mol Dioxan
933	-CF ₂ -CHFBr	N	CH ₃	$n-OC_4H_9$	S	
934	$-CF_2-CF_2Cl$	N	OCH_3	OCH_3	S	
935	$-CF_2-CBrF_2$	N	OCH_3	OCH_3	S S S	
936	CHF_2	N	CCl ₃	CCl ₃	S	
937	CHF_2	N	C_2H_5	OCH_3	S	Smp. 146–147°
938	CHF_2	N	C_2H_5	OCH_3	SO	
939	CHF_2	N	C_2H_5	OCH_3	SO_2	
940	C_2F_5	N	OCH_3	OCH ₃	S	
941	CHF_2	N	OC_2H_5	OC_2H_5	S	
942	CHF_2	N	CH ₃	n–OC ₄ H ₉	S	
943	CHF ₂	CH	OC ₂ H ₅	OC_2H_5	S	
944	CHF ₂	N	OC_2H_5	OC_2H_5	SO	
945	CHF_2	CH	OC_2H_5	OC_2H_5	SO	
946	CHF_2	N	OC ₂ H ₅	OC_2H_5	SO_2	
947	CHF_2	CH	OC ₂ H ₅	OC_2H_5	SO_2	
948	CHF ₂	N	CH ₃	n-OC ₄ H ₉	SO_2	
949	CF ₃	N	OC ₂ H ₅	OC ₂ H ₅	S	•
950	CF ₃	CH	OC_2H_5	OC ₂ H ₅	S	
951	CF ₃	N	CH ₃	OC ₄ H ₉	S	
952	-CF ₂ -CHF ₂	N	OC ₂ H ₅	OC ₂ H ₅	S S	tor a sec
953	-CF ₂ -CHF ₂	CH	OC ₂ H ₅	OC ₂ H ₅	S	
954	-CF ₂ -CHF ₂	N N	CH₃	n-OC ₄ H ₉	S	
955 956	-CF ₂ -CHFCl -CF ₂ -CHFCl	CH	OC₂H₅	OC ₂ H ₅	S	
950 957	-CF ₂ -CHFCl	N	OC_2H_5 CH_3	OC_2H_5 nOC_4H_9	S	
958	-CF ₂ -CHFBr	N	OCH ₂ CH ₃	OCH ₂ CH ₃	S	
959	-CF ₂ -CHFBr	CH	OC_2H_5	OC_2H_5	S	
960	C_2F_5	CH	CH ₃	Cl	Ö	
961	C_2F_5	N	OCH ₃	Cl	ŏ	Smp. 153–155°
962	C_2F_5	CH	CH ₃	F	ŏ	
963	C_2F_5	N	OCH_3	OCH ₃	Ō	Smp. 185–187°
964	C_2F_5	N	OCH_3	OC_2H_5	O	
965	C_2F_5	N	CH ₂ Cl	OCH_3	O	
966	C_2F_5	N	$-C\ddot{H}(CH_3)_2$	OCH ₃	O	
967	C_2F_5	N	C_2H_5	Cl	О	
968	C_2F_5	N	C_2H_5	CH_3	О	
969	C_2F_5	N	-CH2OCH3	OCH_3	О	
970	C_2F_5	CH	-CH2OCH3	OCH_3	0	
971	C_2F_5	N	OCH_3	$-OCH(CH_3)_2$	0	
972	C_2F_5	N	OCH_3	SCH_3	0	
973	C_2F_5	N	CH_3	OCH_3	S S	
974	C_2F_5	CH	CH_3	OCH_3	S	
975	C_2F_5	N	OCH_3	OCH_3	S	
976	CF_2Br	N	CH_3	OCH_3	S S	
977	CF_2Br	N	OCH ₃	OCH ₃	S	•
978	CF_2Br	CH	CH ₃	OCH_3	S	
979	CF ₂ Br	CH	OCH ₃	OCH ₃		
980	CF ₂ Br	CH	CH ₃	CH ₃	S S S	
981	CF ₂ Br	N	C_2H_5	OCH ₃	2	
982	CF ₂ Br	N	CH ₃	OCH ₃	0	
983 984	CF ₂ Br	N	OCH ₃	$ \begin{array}{c} OCH_3 \\ OCH_3 \end{array} $	0	
984 985	CF₂Br CF₂Br	N CH	C_2H_5 CH_3	OCH ₃ OCH ₃	0	
985 986	CF ₂ Br CF ₂ Br	CH	OCH ₃	OCH ₃	Ö	
986	CF ₂ Br CF ₃	CH	CH ₃	OCH₃ Cl	0	
988	CF ₃	N N	OCH ₃	-OCH(CH ₃) ₂	ő	
989	CF ₃	N	Cl	OCH ₃	ŏ	
990	CF ₃	N	C_2H_5	OCH ₃	ŏ	
,,,,	~- <u>,</u>	4.1	~2~=3	~ ~~,	•	

Tabelle	7 (Fortsetzung)				
Nr.	Α	E	R_3	R_4	X
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1039 1039 1030 1031 1032 1033 1034 1035 1036 1037 1037 1038 1039 1039 1039 1039 1039 1039 1039 1039	CF ₃ CF ₄ CF ₅ -CH ₂ -CF ₃ -CF ₂ Cl CF	N N C N C C N N N N N N N N N N N N C	-CH(CH ₃) ₂ -OCH(CH ₃) ₂ -OCH(CH ₃) ₂ CH ₃ OCH ₃ -CH(CH ₃) ₂ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ CCI ₃ CH ₅ CH ₇ CH ₇ CF ₅ CH ₇ CF ₅ CH ₇ CF ₅ CH ₇ CF ₅ CH ₇ CH ₃ CH ₄ CH ₃ CH ₃ CH ₄ CH ₃ CH ₄ CH ₅ CH ₇ CI CH ₇ C	OCH ₃ OCH ₃ OCH ₃ Cl Cl Cl OCH ₃ -SC ₂ H ₅ -SC ₂ H ₅ -SCH(CH ₃) ₂ CH ₃ Br OCH ₃ CH ₃ Cl OC ₂ H ₅ OC ₂ H ₅ OC ₂ H ₅ OCH ₃ CH ₃ Cl Cl SCH ₃ CH ₄ CH ₃ CH ₃ CH ₄ C	
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051	CF ₂ Cl		CH ₃ -CH(CH ₃) ₂ -CH ₂ Cl CH ₂ Cl CH ₂ F CH ₂ F CH ₂ F -CH ₂ OCH ₃ -CH ₂ SCH ₃ -CH ₂ SCH ₃	-OCH-CH ₃ -CH ₂ CH ₃ -CH(CH ₃) ₂ Cl OCH ₃ OC ₂ H ₅ SCH ₃ CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OC ₂ H ₅ CC ₂ H ₅ CC ₂ H ₅ CC ₄ H ₅ CCH ₃ CCH ₃	0 0 0 0 0 0 0 0 0 0 0 0

			55		
	(Fortsetzung)	_	_		
Nr.	A	E	R_3	R_4	X
	~~ ~.				_
1053	CF ₂ Cl	N	-CH ₂ SCH ₃	SCH₃	0
1054	CF ₂ Cl	N	-CH ₂ SCH ₃	Cl	0
1055	CF ₂ Cl	N	-CH ₂ SCH ₃	OC ₂ H ₅	0
1056	CF ₂ Cl	N	SCH₃	Cl	0
1057 1058	CF₂Cl CF₂Cl	N N	SCH ₃ SCH ₃	OCH3 $ OC2H5$	Ö
1058	CF ₂ Cl	N	SCH ₃	-OCH(CH ₃) ₂	ŏ
1060	CF ₂ Cl	N	-OCH(CH ₃) ₂	Cl	ŏ
1061	CF ₂ Cl	N	CF ₃	OCH ₃	ŏ
1062	CF ₂ Cl	N	CF ₃	CH ₃	ŏ
1063	CF ₂ Cl	N	CF ₃	OC_2H_5	ŏ
1064	CF ₂ Cl	N	CCl_3	OCH ₃	Ō
1065	CF ₂ Cl	N	CCl ₃	SCH_3	Ο
1066	CF ₂ Cl	N	CH_3	Cl	O
1067	CF_2Cl	N	OCH_3	Cl	О
1068	CF ₂ Cl	- N	OCH_3	F	O.
1069	CF ₂ Cl	N	OCH_3	Br	O
1070	CF ₂ Cl	N	CH ₃	F	0
1071	CF ₂ Cl	CH	OCH ₃	OCH₃	S
1072	CF ₂ Cl	N	CH ₃	CH ₃	S
1073	CF₂Cl	N	OCH ₃	OC ₂ H ₅	S
1074	CF ₂ Cl	CH	-CH ₂ OCH ₃ OCH ₃	OCH_3 OCH_3	S S
1075 1076	CF₂Cl CF₂Cl	N CH	C_2H_5	OCH ₃	S
1070	CF ₂ Cl	N	C_2H_5 C_2H_5	CH ₃	S
1077	CF ₂ Cl	N	CH ₃	OCH ₃	ŠO
1079	CF ₂ Cl	N	OCH ₃	OCH ₃	ŠÖ
1080	CF ₂ Cl	CH	CH ₃	OCH ₃	SO
1081	CF ₂ Cl	CH	OCH ₃	OCH_3	SO
1082	CF ₂ Cl	N	CH_3	OCH_3	SO_2
1083	CF ₂ Cl	N	CH_3	CH_3	SO_2
1084	CF ₂ Cl	N	OCH_3	OCH_3	SO_2
1085	CF ₂ Cl	CH	CH_3	OCH_3	SO_2
1086	CF ₂ Cl	CH	CH ₃	CH ₃	SO_2
1087	CF ₂ Cl	, CH	OCH ₃	OCH ₃	SO_2
1088	-CF ₂ -CF ₃	N	OCH ₃	-OCH(CH ₃) ₂	0
1089	-CF ₂ -CF ₃	N	Cl	$-OCH(CH_3)_2)$ OCH_3	O S
1090	CF ₂ Cl	N N	SCH ₃	OCH ₃ OCH ₃	S
1091 1092	CF₂Cl CF₂Cl	·N	CF ₃ CH ₃	Cl	
1092	CF ₂ Cl	N	OCH ₃	Cl	S S
1094	CF ₂ Cl	N	C_2H_5	CH ₃	Š
1095	CF ₂ Cl	N	OCH_3	-OCH(CH ₃) ₂	S S S
1096	CF ₂ Cl	N	$-CH(CH_3)_2$	OCH_3	S
1097	CF ₂ Cl	N	CH ₂ Cl	OCH_3	S
1098	CF ₂ Cl	N	CH ₂ F	OCH ₃	S
1099	CF ₂ Cl	CH	C ₂ H ₅	Cl	S S S
1100	CF ₂ Cl	CH	CH_3	Cl F	9
1101	CF ₂ Cl	CH	CH ₃	r Cl	S
1102	CF ₂ Cl	CH N	OCH_3 OC_2H_5	OC ₂ H ₅	S S S
1103 1104	CF₂Cl CF₂Cl	N	C_2H_5	OC ₂ H ₅ OCH ₃	S
1105	CF ₂ Cl	N	CH ₃	OCH ₃	Š
1106	CF ₂ Cl	N	CH ₃	OC_2H_5	Š
1107	CF ₂ Cl	CH	CH ₃	CH ₃	S S
1108	CF ₂ Cl	CH	CH_3	OCH_3	S
1109	CF ₂ Cl	CH	OCH_3	OCH_3	0
1110	CF ₂ Cl	N	CH ₃	CH_3	0
1111	CF ₂ Cl	N	OCH_3	OC_2H_5	0
1112	CF ₂ Cl	CH	OCH ₃	OC_2H_5	0
1113	CF ₂ Cl	CH	-CH ₂ OCH ₃	OCH ₃	0
1114	CF ₂ Cl	N	-CH ₂ OCH ₃	OCH ₃	0
1115	CF ₂ Cl	N	OCH₃	$ \begin{array}{c} OCH_3\\ OCH_3 \end{array} $	0
1116	CF ₂ Cl	CH N	C ₂ H ₅ -CH ₂ OCH ₃	CH ₃	Ö
1117	CF ₂ Cl	IA	-CH ₂ OCH ₃	C113	J

35

			30			
Tabelle 7	7 (Fortsetzung)					
Nr.	` A	E	R_3	R_4	X	phys Datan
			=	•		phys. Daten
1118	CHF_2	CH	$-CH(CH_3)_2$	OCH_3	S	
1119	CHF_2	\mathbf{CH}	OCH_3	SC_2H_5	S	
1120	CHF_2	N	OCH_3	SC_2H_5	S	
1121	CHF_2^2	N	OCH ₃	-SCH(CH ₃) ₂	Š	
1122	CHF ₂	Ň	CCl ₃	CH ₃	Š	
1123	CHF ₂	N	CH ₃	Br	S	
					ລ	
1124	CHF ₂	N	CHF_2	OCH ₃	S	
1125	CHF_2	N	CHF ₂	CH ₃	S	
1126	CHF_2	N	$-CH_2CF_3$	Cl	S	
1127	CHF_2	N	$-CH_2-CF_3$	OCH_3	S	
1128	CHF_2	\mathbf{N}	$-CH_2-CF_3$	CH ₃	S	•
1129	CHF_2	N	-CH ₂ -OCH ₃	CH_3	S	
1130	CHF_2^2	N	-CH ₂ -SCH ₃	CH ₃	S	
1131	CHF ₂	N	-CH ₂ -SCH ₃	SCH ₃	Š	
1132		N		Cl	S S	
	CHF ₂		-CH ₂ -SCH ₃		ည	•
1133	CHF ₂	N	-CH ₂ -SCH ₃	OC_2H_5	S	
1134	CHF_2	N	SCH_3	Cl .	S	Smp. 162–163°
1135	CHF_2	N	SCH_3	OCH_3	S	Smp. 159–161°
1136	CHF_2	N	SCH_3	OC_2H_5	S	
1137	CHF_2	N	SCH ₃	-OCH(CH ₃) ₂	S	
1138	CHF_2	N	-OCH(CH ₃) ₂	C1	S	Smp. 147-149°
1139	CHF ₂	N	CF ₃	OCH₃	Š	biiip. 147
1140	CHF ₂	N	CF ₃	CH ₃	S	
					S	
1141	CHF ₂	N	CF ₃	OC_2H_5	S	
1142	CHF_2	N	CCl_3	OCH_3	S S	
1143	CHF_2	N	CCl ₃	SCH_3	S	
1144	CHF_2	N	CH ₃	Cl	S	
1145	CHF_2	N	OCH ₃	Cl	S	Smp. 151–153°
1146	CHF_2	N	OCH_3	F	S	
1147	CHF ₂	N	OCH ₃	Br	Š	
1148	CHF ₂	N		F	S	
			CH₃		S	
1149	CHF_2	N	CH ₃	Br	S	
1150	CHF_2	N	CH ₃	H	S	
1151	CHF_2	CH	C_2H_5	Cl	S	
1152	CHF_2	\mathbf{CH}	CH_3	Cl	S	Smp. 194-196°
1153	CHF_2	CH	CH_3	SCH_3	S	•
1154	CHF_2	CH	CH_3	F	S	Smp. 186–187°
1155	CHF ₂	CH	CH ₃	Br	Š	D
1156	CHF ₂	CH	C_2H_5	OC ₂ H ₅	S	
			$C_2\Pi_5$			
1157	CHF_2	CH	C_2H_5	SCH ₃	S	
1158	CHF ₂	CH_2	CF ₃	CH_3	S	
1159	CHF_2	CH	CH ₂ Cl	CH_3	S	
1160	CHF_2	$\mathbf{C}\mathbf{H}$	CH₂Cl	OCH_3	S	
1161	CHF_2	$\mathbf{C}\mathbf{H}$	OCH_3	Cl	S	Smp. 159-164°
1162	CHF_2	CH	Cl	Cl	S	Smp. 201–202°
1163	CHF_2	CH	OCH_3	SCH ₃	Š	
1164	CHF ₂	CH	OCH ₃	-OCH(CH ₃) ₂	Š	
1165	CHF ₂	CH	CH ₂ F		S	
				OCH₃	S.	
1166	CHF_2	CH	CH₂F	CH ₃	S	
1167	CHF_2	CH	CF_3	OCH_3	S	
1168	CHF_2	N	C_2H_5	$-OCH(CH_3)_2$	S	
1169	CHF_2	N	C_2H_5	Cl	S	Smp. 163-164°
1170	CHF_2	N	C_2H_5	SCH_3	S	.
1171	CHF_2	N	C_2H_5	CH ₃	Š	Smp. 166-167°
1172	CHF ₂	N	C_2H_5	C_2H_5	Š	biiip. 100 107
				OCH (CH.)		G 100 1000
1173	CHF ₂	N	OCH ₃	-OCH(CH ₃) ₂	S	Smp. 120–122°
1174	CHF_2	N	OCH_3	–OCH–CH₃	S	
				OTT CTT		
				CH_2CH_3		
1175	CHF ₂	N	CH ₃	_Спсп /	c	
				-CH(CH ₃) ₂	S	C 1/0: 1700
1176	CHF ₂	N	-CH(CH ₃) ₂	Cl	S	Smp. 169–170°
1177	CHF ₂	N	$-CH(CH_3)_2$	OCH ₃	S	Smp. 148–150°
1178	CHF_2	N	$-CH(CH_3)_2$	OC_2H_5	S	
1179	CHF_2	N	$-CH(CH_3)_2$	SCH_3	S	
1180	CHF_2	N	CH ₂ Cl	CH ₃	Š	
	4		-	J	-	

657 849

Nr. A E R ₃ R ₄ X phys. Daten 1181 CHF ₂ N CH ₂ Cl OCH ₃ S 1182 CHF ₂ N CH ₂ F CH ₃ S 1183 CHF ₂ N CH ₂ F OCH ₃ S 1184 CHF ₂ N CH ₂ F OCH ₃ S 1185 CHF ₂ N CH ₂ F OCH ₃ S 1186 CHF ₂ N CH ₂ F OCH ₃ S 1187 CHF ₂ N CH ₂ SCH ₃ OCH ₃ S 1188 CHF ₂ CH OCH ₃ C ₂ H ₅ S 1188 CHF ₂ CH OCH ₃ SC ₂ H ₅ O 1189 CHF ₂ N OCH ₃ SC ₂ H ₅ O 1190 CHF ₂ N OCH ₃ SC ₂ H ₅ O 1191 CHF ₂ N CCI ₃ CH ₃ OCH ₃ O 1192 CHF ₂ N CH ₃ Br O 1193 CHF ₂ N CHF ₂ CH ₃ OCH ₃ O 1194 CHF ₂ N CHF ₂ CH ₃ OCH ₃ O 1195 CHF ₂ N CHF ₂ CH ₃ OCH ₃ O 1196 CHF ₂ N CH ₂ CH ₃ OCH ₃ O 1197 CHF ₂ N CH ₃ OCH ₃ O 1198 CHF ₂ N CH ₂ CH ₃ OCH ₃ O 1199 CHF ₂ N CH ₂ CH ₃ OCH ₃ O 1190 CHF ₂ N CH ₂ CH ₃ OCH ₃ O 1191 CHF ₂ N CHF ₂ CH ₃ OCH ₃ O 1192 CHF ₂ N CHF ₂ CH ₃ OCH ₃ O 1194 CHF ₂ N CHF ₂ CH ₃ OCH ₃ O 1195 CHF ₂ N CH ₂ CH ₃ OCH ₃ O 1196 CHF ₂ N CH ₂ CH ₃ OCH ₃ O 1197 CHF ₂ N CH ₃ Br O 1100 CHF ₂ N CH ₃ Br O 1100 CHF ₂ N CH ₃ Br O 1200 CHF ₂ N CH ₃ Br O 1200 CHF ₂ N CH ₃ Br O 1201 CHF ₂ CH CH ₃ CH C ₃ SCH ₃ O Smp. 158–1512 1202 CHF ₂ CH CH ₃ SCH ₃ O Smp. 171–1712 1204 CHF ₂ CH CH ₃ Br O 1206 CHF ₂ CH CH ₃ Br O 1207 CHF ₂ CH CH ₄ C ₂ H ₅ OC ₂ H ₅ O 1207 CHF ₂ CH CH ₄ C ₂ H ₅ OC ₂ H ₅ O 1207 CHF ₂ CH CH ₄ C ₂ H ₅ OC ₂ H ₅ OC ₄ H ₅ OC ₄ H ₅ OC ₄ H ₅ OC ₄ H ₅	
1182	
1184	
1185 CHF2 N -CH2-OCH3 C2H5 S 1186 CHF2 N -CH2-SCH3 OCH3 S 1187 CHF6 CH -CH(CH3)2 OCH3 O Smp. 141-14 1188 CHF2 CH OCH3 SC2H5 O 1189 CHF2 N OCH3 SC2H5 O 1190 CHF2 N OCH3 SC2H5 O 1190 CHF2 N OCH3 SC2H5 O 1191 CHF2 N OCH3 SC2H5 O 1191 CHF2 N OCH3 SC2H5 O 1191 CHF2 N OCH3 O O 1192 CHF2 N CH3 D O 1193 CHF2 N CHF2 CH3 O 1194 CHF2 N CHF2 CH3 O 1195 CHF2 N CH2-CF3 Cl	
1186 CHF2 N -CH2-SCH3 OCH3 S 1187 CHF2 CH -CH(CH3)2 OCH3 O Smp. 141-14 1188 CHF2 CH OCH3 SC2H5 O 1189 CHF2 N OCH3 SC2H5 O 1190 CHF2 N OCH3 SC2H5 O 1191 CHF2 N OCH3 O O 1191 CHF2 N CCI3 CH3 O 1192 CHF2 N CH3 Br O 1193 CHF2 N CHF2 OCH3 O 1194 CHF2 N CHF2 CH3 O 1195 CHF2 N -CH2-CF3 CI O 1196 CHF2 N -CH2-CF3 CH3 O 1197 CHF2 N -CH2-CF3 CH3 O 1198 CHF2 N CH2-CF3 CH3 <td></td>	
1188 CHF2 CH OCH3 SC2H5 O 1189 CHF2 N OCH3 SC2H5 O 1190 CHF2 N OCH3 -SCH(CH3)2 O 1191 CHF2 N CCI3 CH3 O 1191 CHF2 N CCI3 CH3 O 1192 CHF2 N CH3 Br O 1192 CHF2 N CH3 O 1193 CHF2 N CHF2 OCH3 O 1194 CHF2 N CHF2 CH3 O 1195 CHF2 N CH2-CF3 CI O 1196 CHF2 N -CH2-CF3 CH3 O 1197 CHF2 N -CH2-CF3 CH3 O 1198 CHF2 N -CH2-CF3 CH3 O 1199 CHF2 N CH3 H O 1200 <td>100</td>	100
1189 CHF2 N OCH3 SC2H5 O 1190 CHF2 N OCH3 -SCH(CH3)2 O 1191 CHF2 N CCl3 CH3 O 1192 CHF2 N CH3 Br O 1193 CHF2 N CHF2 OCH3 O 1194 CHF2 N CHF2 CH3 O 1195 CHF2 N CHF2 CH3 O 1196 CHF2 N -CH2-CF3 Cl O 1197 CHF2 N -CH2-CF3 CH3 O 1198 CHF2 N -CH2-CF3 CH3 O 1199 CHF2 N -CH2-CF3 CH3 O 1199 CHF2 N CH3 Br O 1200 CHF2 N CH3 H O 1201 CHF2 CH CH3 Cl O Smp. 158-15 1202 CHF2 CH CH3 SCH3 O Smp. 171-	13°
1190 CHF2 N OCH3 —SCH(CH3)2 O 1191 CHF2 N CCl3 CH3 O 1192 CHF2 N CH3 Br O 1193 CHF2 N CHF2 OCH3 O 1194 CHF2 N CHF2 CH3 O 1195 CHF2 N —CH2—CF3 Cl O 1196 CHF2 N —CH2—CF3 OCH3 O 1197 CHF2 N —CH2—CF3 CH3 O 1198 CHF2 N —CH2—CF3 CH3 O 1199 CHF2 N CH3 Br O 1200 CHF2 N CH3 H O 1201 CHF2 CH CH3 H O 1202 CHF2 CH CH3 SCH3 O Smp. 174—17 1204 CHF2 CH CH3 F O Smp. 174—17 1205 CHF2 CH CH3 Br O <td></td>	
1192	
1193	
1194	
1196	
1197	
1198 CHF2 N -CH2OCH3 CH3 O 1199 CHF2 N CH3 Br O 1200 CHF2 N CH3 H O 1201 CHF2 CH C2H5 Cl O Smp. 158-15 1202 CHF2 CH CH3 Cl O Smp. 190-19 1203 CHF2 CH CH3 SCH3 O Smp. 171-17 1204 CHF2 CH CH3 F O Smp. 174-17 1205 CHF2 CH CH3 Br O 1206 CHF2 CH C2H5 OC2H5 O 1207 CHF2 CH C2H5 SCH3 O	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1202 CHF ₂ CH CH ₃ Cl O Smp. 190–19 1203 CHF ₂ CH CH ₃ SCH ₃ O Smp. 171–17 1204 CHF ₂ CH CH ₃ F O Smp. 174–17 1205 CHF ₂ CH CH ₃ Br O 1206 CHF ₂ CH C ₂ H ₅ OC ₂ H ₅ O 1207 CHF ₂ CH C ₂ H ₅ SCH ₃ O	59°
1203 CHF ₂ CH CH ₃ SCH ₃ O Smp. 171–1′ 1204 CHF ₂ CH CH ₃ F O Smp. 174–1′ 1205 CHF ₂ CH CH ₃ Br O 1206 CHF ₂ CH C ₂ H ₅ OC ₂ H ₅ O 1207 CHF ₂ CH C ₂ H ₅ SCH ₃ O	91°
1205 CHF ₂ CH CH ₃ Br O 1206 CHF ₂ CH C ₂ H ₅ OC ₂ H ₅ O 1207 CHF ₂ CH C ₂ H ₅ SCH ₃ O	72°
1206 CHF ₂ CH C ₂ H ₅ OC ₂ H ₅ O 1207 CHF ₂ CH C ₂ H ₅ SCH ₃ O	/6°
1207 CHF ₂ CH C ₂ H ₅ SCH ₃ O	
1208 CHF ₂ CH ₂ CF ₃ CH ₃ O 1209 CHF ₂ CH CH ₂ Cl CH ₃ O	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68°
1211 CHF ₂ CH OCH ₃ Cl O Smp. 165–16	67°
1212 CHF ₂ CH Cl Cl O Smp. 183–15	88°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1215 CHF ₂ CH CH ₂ F OCH ₃ O Smp. 175–1	76°
1216 CHF ₂ CH CH ₂ F CH ₃ O	
1217 CHF_2 CH CF_3 OCH_3 O 1218 CHF_2 N C_2H_5 $OCH(CH_3)_2$ O	
C_{2}^{1218} C_{1}^{1219} C_{2}^{117} C_{2}^{118} C_{1}^{1219} C_{1}^{1219} C_{2}^{118} C_{2}^{118} C_{2}^{118} C_{1}^{1218} C_{1}^{12	37°
1220 CHF_2 N C_2H_5 SCH_3 O	200
1221 CHF ₂ N C ₂ H ₅ CH ₃ O Smp. 136–1 1222 CHF ₂ N C ₂ H ₅ C ₂ H ₅ O	.38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15°
1224 CHF ₂ N OCH ₃ -OCH-CH ₃ O	
${ m ^{'}CH_{2}CH_{3}}$	
1225 CHF ₂ N CH ₃ –CH(CH ₃) ₂ O Smp. 137–1	40°
1226 CHF_2 N $-CH(CH_3)_2$ Cl O Smp. 160–1	
1227 CHF ₂ N -CH(CH ₃) ₂ OCH ₃ O Smp. 75–78	30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1230 CHF ₂ N CH ₂ Cl CH ₃ O Smp. 113–1	
1231 CHF ₂ N CH ₂ Cl OCH ₃ O Smp. 94–96 1232 CHF ₂ N CH ₂ F CH ₃ O	o°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1234 CHF_2 N CH_2F OC_2H_5 O	
1235 CHF_2 N $-CH_2OCH_3$ C_2H_5 O 1236 CHF_2 N $-CH_2SCH_3$ OCH_3 O	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1238 CHF_2 N $-CH_2SCH_3$ SCH_3 O	
1239 CHF ₂ N -CH ₂ SCH ₃ Cl O 1240 CHF ₂ N -CH ₂ SCH ₃ OC ₂ H ₅ O	
1240 CHF ₂ N -CH ₂ SCH ₃ OC ₂ H ₅ O 1241 CHF ₂ N SCH ₃ Cl O Smp. 147-1	149°
1242 CHF ₂ N SCH ₃ OCH ₃ O Smp. 161-	
1243 CHF_2 N SCH_3 OC_2H_5 O	

Tabelle	7 (Fortsetzung)					
Nr.	A	E	R_3	R_4	X	phys. Daten
					_	
1244	CHF ₂	N	SCH ₃	OCH(CH ₃) ₂	0	Smp. 163–164°
1245	CHF ₂	N	-OCH(CH ₃) ₂	Cl	0	Smp. 103–104°
1246	CHF ₂	N	CF ₃	OCH ₃	0	
1247 1248	$ \begin{array}{c} \text{CHF}_2\\ \text{CHF}_2 \end{array} $	N N	CF ₃	CH ₃	0	
1248	CHF ₂ CHF ₂	N	$ CF_3 $ $ CCl_3 $	OC_2H_5 OCH_3	0	
1250	CHF ₂	N	CCl ₃	SCH ₃	ŏ	
1251	CHF ₂	N	CH ₃	Cl	ŏ	Smp. 160–161°
1252	CHF ₂	Ň	OCH ₃	Cl	ŏ	Smp. 167–168°
1253	CHF ₂	N	OCH_3	F	O	
1254	CHF_2	N	OCH_3	\mathbf{Br}	O	
1255	CHF ₂	N	CH_3	• F	O	
1256	CH₂F	N	CH₃	OCH ₃	0	•
1257	CH ₂ F	N	OCH₃	OCH₃	0	
1258 1259	CH₂F CH₂F	N N	CH ₃	CH₃	0	
1260	CH ₂ F	CH	C_2H_5 CH_3	OCH₃ OCH₃	S	
1261	CH ₂ F	CH	OCH ₃	OCH ₃	S	
1262	CH ₂ F	CH	CH ₃	CH ₃	Š	
1263	CH_2F	N	CH_3	OCH_3	O	
1264	CH_2F	CH	CH_3	OCH_3	O	
1265	CH_2F	CH	OCH_3	OCH ₃	O	
1266	CH₂F-	N	C_2H_5	OCH ₃	0	
1267 1268	CH ₂ F	N N	CH ₃	CH ₃	0	
1269	$-CF_2-CF_2Br$ $-CF_2-CF_2Br$	CH	CH₃ CH₃	OCH₃ OCH₃	0	
1270	$-CF_2-CF_2Br$	CH	OCH ₃	OCH ₃	ŏ	-
1271	-CF ₂ -CF ₂ Cl	N	CH ₃	OCH ₃	Š	
1272	$-CH_2-CH_2F$	N	CH_2	OCH_3	Õ	
1273	-CH ₂ -CH ₂ F	N	CH_3	CH ₃	О	
1274	$-CH_2-CH_2F$	N	OCH_3	OCH_3	0	
1275	-CH ₂ -CH ₂ F	N	C_2H_5	OCH ₃	0	
1276	-CH ₂ -CH ₂ F	CH	CH ₃	OCH₃	0	
1277 1278	−CH ₂ −CH ₂ F	CH CH	OCH₃	OCH₃ CH₃	0	
1279	-CH ₂ -CH ₂ F -CH ₂ -CH ₂ F	N	CH_3 CH_3	OCH ₃	S	•
1280	-CH ₂ -CH ₂ F	N	OCH ₃	OCH ₃	S	
1281	-CH ₂ -CCl ₃	Ň	CH ₃	OCH ₃	õ	
1282	-CH ₂ -CCl ₃	N	OCH_3	OCH_3	O	
1283	-CH ₂ -CCl ₃	CH	CH ₃	OCH_3	О	
1284	-CH ₂ -CCl ₃	CH	OCH ₃	OCH_3	0	
1285	-CH ₂ -CCl₃	N	C_2H_5	OCH ₃	0	
1286 1287	-CF ₂ -CH ₃	N · N	OCH₃	OCH ₃	0	
1288	$-CF_2-CH_3$ $-CF_2-CH_3$	N	$\mathrm{CH_3}$ $\mathrm{CH_3}$	OCH_3 CH_3	0	
1289	-CF ₂ -CH ₃ -CF ₂ -CH ₃	CH	CH ₃	OCH ₃	ŏ	
1290	$-CF_2-CH_3$	CH	OCH ₃	OCH ₃	ŏ	
1291	-CH ₂ -CH ₂ Cl	N	CH ₃	OCH ₃	S	
1292	-CH ₂ -CH ₂ Cl	N	OCH_3	OCH ₃	S	
1293	-CH ₂ -CH ₂ Cl	N	C_2H_5	OCH_3	S	
1294	-CH ₂ -CH ₂ Cl	N	CH₃	OC ₂ H ₅	S	
1295	-CH ₂ -CH ₂ Cl	CH	C_2H_5	OCH ₃	S	
1296 1297	-CH ₂ -CH ₂ Cl -CH ₂ -CH ₂ Cl	N N	$\mathrm{CH_3}$ $\mathrm{CH_3}$	$ OC_2H_5 $ $ OC_2H_5 $	O S	
1297	-CH ₂ -CH ₂ Cl -CH ₂ -CH ₂ Cl	CH	OCH ₃	OC_2H_5 OCH_3	S	
1299	-CH ₂ -CH ₂ Cl	CH	CH ₃	OCH ₃	S	
1300	-CH ₂ -CH ₂ Cl	N	CF ₃	OCH ₃	õ	
1301	-CH ₂ -CH ₂ Cl	. N	CH ₂ F	OCH_3	О	
1302	-CH ₂ -CH ₂ Cl	CH	CH_2CH_3	Cl	0	
1303	-CH ₂ -CH ₂ Cl	CH	OCH₃	Cl	0	
1304	-CH ₂ -CH ₂ Cl	CH	-CH ₂ OCH ₃	OCH ₃	0	
1305	-CH ₂ -CH ₂ Cl	N	-CH2OCH3	OCH_3	0	

Tabelle 7 (F	Fortsetzung)		25			
Nr.	A	Е	R_3	R_4	X	phys. Daten
1306	-CH ₂ -CH ₂ Cl	N	CH ₃	OCH ₃	0	Smp. 174–175°
1307	-CH ₂ -CH ₂ Cl	N	OCH ₃	OCH ₃	ŏ	Simp. 177 175
1308	-CH ₂ -CH ₂ Cl	N	CH_3	CH_3	Ō	
1309	-CH ₂ -CH ₂ Cl	N	C_2H_5	OCH₃	0	
1310	-CH ₂ -CH ₂ Cl	N	C_2H_5	CH_3	0	
1311	-CH ₂ -CH ₂ Cl	N	CH ₃	Cl	0	
1312	-CH ₂ -CH ₂ Cl	N	CH ₂ Cl	OCH ₃	0	
1313 1314	-CH ₂ -CH ₂ Cl -CH ₂ -CH ₂ Cl	N N	OCH_3 OCH_3	-OCH(CH ₃) ₂ SCH ₃	0	
1314	-CH ₂ -CH ₂ Cl	N	-CH(CH ₃) ₂	OCH ₃	ŏ	
1316	-CH ₂ -CH ₂ Cl	N	OC_2H_5	OCH ₃	ŏ	
1317	-CH ₂ -CH ₂ Cl	N	OC_2H_5	OC ₂ H ₅	ŏ	
1318	-CH ₂ -CH ₂ Cl	N	OCH ₃	Cl	0	
1319	-CH ₂ -CH ₂ Cl	CH	CH_3	OCH_3	0	Smp. 208-209°
1320	-CH ₂ -CH ₂ Cl	CH	OCH ₃	OCH ₃	0	
1321	-CH ₂ -CH ₂ Cl	CH	CH ₃	CH₃	0	Smp. 181–183°
1322 1323	-CH ₂ -CH ₂ Cl -CH ₂ -CH ₂ Cl	CH CH	CH ₃ CH ₃	Cl F	0	
1323	-CH ₂ -CH ₂ -Cl -CH ₂ -CH ₂ Cl	CH	C_2H_5	OCH ₃	ŏ	
1325	-CH ₂ -CHCl-CH ₂ Cl	N	CH ₃	OCH ₃	ŏ	
1326	-CH ₂ -CHCl-CH ₂ Cl	N	OCH ₃	OCH ₃	ŏ	
1327	-CH ₂ -CHCl-CH ₂ Cl	N	CH ₃	CH ₃	0	
1328	-CH ₂ -CHCl-CH ₂ Cl	N	C_2H_5	OCH_3	0	
1329	-CH ₂ -CHCl-CH ₂ Cl	CH	CH ₃	OCH ₃	0	
1330	-CH ₂ -CHCl-CH ₂ Cl	CH	OCH ₃	OCH₃	0	
1331 1332	-CH ₂ -CHCl-CH ₂ Cl -CH ₂ -CHCl-CH ₂ Cl	CH N	CH ₃	CH ₃	0	
1332	-CH ₂ -CHCl-CH ₂ Cl	N	CH_3 OCH_3	OCH_3 OCH_3	S S	
1334	-CH ₂ -CHCl-CH ₂ Cl	CH	CH ₃	OCH ₃	S	
1335	-CH ₂ -CHCl-CH ₂ Cl	CH	OCH ₃	OCH ₃	Š	
1336	-CH ₂ -CHCl-CH ₂ Cl	N	C_2H_5	CH_3	0	
1337	-CH ₂ -CHCl-CH ₂ Cl	N	OCH_3	Cl	0	
1338	-CH ₂ -CHCl-CH ₂ Cl	CH	CH_3	Cl	0	
1339	CH₂F	N	CH ₃	OC ₂ H ₅	0	
1340	CH ₂ F	CH	CH₃	Cl	0	
1341 1342	CH ₂ F -CH ₂ -CHCl-CH ₂ Cl	N CH	OCH3 $ C2H5$	Cl Cl	0	
1343	-CH ₂ -CHBr-CH ₂ Br	N	CH ₃	OCH ₃	ŏ	
1344	-CH ₂ -CHCl-CHCl	N	CH ₃	OCH ₃	ŏ	
	_		, J	.		
	CH_3					
1345	-CH ₂ -CHCl-CHCl	N	OCH_3	OCH_3	0	
	$\overset{ }{\mathrm{CH}_{3}}$					
1346	-CH ₂ -CHCl-CHCl	N	CH ₃	CH_3	O	
			J	-		
	CH_3					
1347	-CH ₂ -CHCl-CHCl	CH	CH_3	OCH_3	О	
-	$\overset{\mid}{\mathrm{CH}_3}$					
	•					
1348	-CH ₂ -CHCl-CHCl	CH	CH_3	Ci	О	
	ĊH ₃					
1349	-CH ₂ -CHCl-CHCl	СН	OCH	OCH	0	
1349		Cn	OCH_3	OCH_3	О	
	CH_3					
1350	-CH ₂ -CHCl-CHCl	N	C_2H_5	OCH ₃	0	
1000		• •	0 2113	0011,	Ŭ	
	CH ₃					•
1351	-CF ₂ -CHF ₂	N	C_2H_5	OCH_3	O	Smp. 158–160°
1352	-CF ₂ -CHF ₂	CH	CH ₃	Cl	0	A
1353	-CF ₂ -CHF ₂	CH	OCH ₃	Cl	0	Smp. 164–165°
1354	-CF ₂ -CHFCl	N	C_2H_5	OCH ₃	0	Smp. 144–146°
1355	-CF ₂ -CHFCl	CH	CH_3	Cl	0	Smp. 177–179°

05/84	19			40				
	Tabelle 7 (F	ortsetzung)						
	Nr.	A	E R	4	R_4	X	phys. Dat	en
	1356	-CF ₂ -CHFCl		CH ₃	Ci	0	Smp. 164-	
	1357	-CF ₂ -CHFCl		CH(CH ₃) ₂	OCH ₃	ŏ		
	1337	-Cr ₂ -Crir Cr	14 -		OC113	U	Smp. 128-	-130
				Ö	NR			
					/ *\\^*\3			
			/•\ / ^S	O ₂ -NH-C-NH-	-i ii			
Tabell	e 8		* `*	4	ħ, Ĕ			
			. II					
			ХX		1			
			R. X-	A	^K 4			
			71 7		•			
Nr.	Α	Stellung	R_1	R_3	\mathbf{R}_4	X	E	phys. Daten
		von X–Ä	•	J	,			• •
1401	CHF	2	5–F	C_2H_5	OCH_3	0	N	Smp. 140-141°
1402	CHF	$\frac{1}{2}$ $\frac{1}{2}$	5–F	CH ₃	Cl	0		
1403	CHF	$\frac{1}{2}$	5–F	OCH ₃	SCH ₃	Ö		
1404	CHF	2 2	5F	OCH ₃	-OCH(CH ₃) ₂)			•
1405	CHF	2 2	5–F	OCH ₃	Cl	Ó		
1406	CHF	2 2	5–F	C_2H_5	OCH₃	Š	N	
1407		2 2	5–F			S S	N	
	CHF	2 2		CH₃	Cl Cl	S C	1/1	
1408	CHF		5–F	CH ₃	Cl CU	S		
1409	CHF	2 2	5–F	C_2H_5	CH_3	0		
1410	CHF	2 2	5F	C_2H_5	CH ₃	0		0 160 1610
1411	CHF	2 2	5–F	OCH₃	Cl	O		Smp. 160–161°
1412	CHF	2 2	5–F	OC_2H_5	Cl	C		
1413	CHF	2 2	5-F	CH_3	F	O		
1414	CHF	2 2	5–F	CH_3	\mathbf{Br}	C		
1415	CHF	2 2	5-F	CH_3	Br	C		
1416	CHF	2 2	5F	CH_3	F	C		
1417	CHF	2 2	5-F	C_2H_5	Cl	C		
1418	CHF	2	5-F	CH_2F	OCH_3	C) N	
1419	C_2F_5	2	5–F	CH_3	OCH_3	C) N	
1420	C_2F_5	2	5–F	CH ₃	OCH_3	C) N	
1421	C_2F_5	2	5–F	CH_3	OCH_3	C) CH	
1422	C_2F_5	2	5–F	OCH_3	OCH_3	C		
1423	C_2F_5	2	5–F	CH ₃	Cl	C		
1424	C_2F_5	$\overline{2}$	6-F	CH ₃	OCH_3	C		
1425	C_2F_5	$\overline{2}$	6–F	CH ₃	OCH ₃	Č		
1426	C_2F_5	2	6–F	C_2H_5	OCH_3	Č		
1427	C_2F_5	2	6–F	CH ₃	OCH_3	Š		
1428	C_2F_5	$\overline{2}$	6–F	CH ₃	OCH ₃	Š	CH	
1429	C_2F_5	2	6–F	C_2H_5	OCH ₃	Š		
1430	C_2F_5	2	6-COOCH ₃	CH ₃	OCH ₃	Č		
1431	C_2F_5	2	6-COOCH ₃	OCH ₃	OCH ₃	Č		
1432	C_2F_5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6-COOCH ₃	CH ₃	OCH ₃	Č		
1433	C_2F_5	$\bar{2}$	6–F	C_2H_5	OCH ₃	Č		
1434	CHF	$\bar{2}$	6–F	C_2H_5	OCH ₃	Č		
1435	CHF	$\frac{1}{2}$	6–F	CH ₃	Cl	Č		
1436	CHF	· 5	6–F	CH ₃	Br	Č		
1437	CHF	2 2	6–F	OCH ₃	-OCH(CH ₃) ₂			
1438	CHF	2 2	6–F	OCH ₃	Cl	C		
1439		2 2	6–F		OCH ₃	Č		
1440	CHF ₂ CHF ₃	2 2	6-г 6-F	$-CH(CH_3)_2$ C_2H_5	OCH ₃	C		
		2 2						
1441	CHE	2 2	6-F	C_2H_5	Cl SCH	C		
1442	CHF	2 2	6-F	CH ₃	SCH ₃	C		
1443	CHF	2 4	6–F	OCH CH)	SCH ₃	C		
1444	CHF	2 2	6-F	-OCH(CH ₃) ₂	Cl	C		
1445	CHF	2 2	6–F	C ₂ H ₅	CH ₃	C		
1446	CHF	2 2	6-F	-CH(CH ₃) ₂	CH ₃	C		
1447	CHF	2 2	6-F	CH ₂ F	OCH_3	C		
1448	CHF		6–F	C_2H_5	OCH_3	S		
1449	CHF	2	6–F	CH_3	Cl	S		
1450	CHF		6–F	CH_3	Br	S		
1451	CHF		6–F	OCH_3	Cl	S		

Tabelle 8	§ (Fortse	tzung) `		71					
Nr.	A	Stelli von 2		R_3		R ₄	X	E	phys. Daten
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486	-CF	72 72 72 73 73 73 73 73 73 74 75 75 75 75 75 75 75 75 75 75	6-F 5-F 6-Cl 6-Cl 7-Cl 7-Cl 7-Cl 7-Cl 7-Cl 7-Cl 7-Cl 7	C ₂ H ₅ -CH(CH CH ₃ OCH ₃ -OCH(C OCH ₃ -OCH(C OCH ₃ CH ₃ CCH ₃ OCH ₃ OCH ₃ OCH ₃ CCH ₃	I ₃) ₂ CH ₃) ₂	CH ₃ OCH ₃ CI CI CI OCH ₃ SCH ₃ CH ₃ CCH ₄ —OCH ₃ OC ₂ H ₄ —OCH ₃ OC ₂ H ₄ —OCH ₃ OC ₂ H ₄ —OCH ₃ CC ₃ CC ₄	s o o o o o o o o o o o o o o o o o o o	CH NN CH NN NC CN CC	Smp. 150–151° Smp. 162–165° Smp. 148–154° Smp. 189–191° Smp. 164–166° Smp. 130–132° Smp. 149–151° Smp. 182° (Zers.) Smp. 170–172° Smp. 128–135°
	Tabelle Nr.	9 A	R ₂	SO ₂ -NH-C-N X-A R ₁	R ₂	CH ₃	E	phy	rs. Daten
	1501 1502 1503 1504 1505 1506 1507 1508 1509	CHF ₂ CF ₃ CF ₃ CF ₅ CHF ₂ CHF ₂ CHF ₂ CHF ₂ CHF ₂ CHF ₂	von –X–A 3 3 3 3 3 3 3 3 3 3 3 3 3	6-NO ₂ 6-COOC ₂ H ₅ 6-COOC ₂ H ₅ 6-CH ₃ 6-CH ₃ 2-NO ₂ 2-NO ₂ 2-COOC ₂ H ₅ 2-COOC ₂ H ₅	3-Br 3-Br 3-Br 2-Cl 2-Cl 2-Cl 2-Cl 2-Cl 2-Cl 2-Cl	S O S SO ₂ SO ₂ O O O	N N N CH CH N CH N	.	
	1510 1511 1512 1513 1514 1515	CHF ₂ CHF ₂ CHF ₂ CHF ₂ CHF ₂	3 3 3 3 3	6-Cl 6-Cl 6-Cl 6-Cl 2-CF ₃ 5-NO ₂	2-Cl 2-Cl 2-Cl 2-Cl 2-Cl 2-Cl	O S SO SO ₂ O	CH CH N N N	Sm	ър. 170–172°

1712

Tabelle 9 (Fortsetzung)

Nr.	A	Stellung von –X–A	R_1	R_2	X	E	phys. Daten
1516	CHF_2	3	6-OCH ₃	2C1	0	CH	
1517	CHF_2	3	6-OCH ₃	2-C1	Ο	N	
1518	CHF_2	3	6-SCH ₃	2-C1	0	CH	
1519	CHF_2	3	6-SCH ₃	2-C1	О	N	
1520	CHF_2	3	$2-SO_2CH_3$	2–C1	О	CH	
1521	CHF_2	3	$2-SO_2CH_3$	2–C1	О	N	

-OCH(CH₃)₂

OCH₃

			43				
			73	_)	R ₃	
		/	-SONH	Z 1-C-NH-	· N-	E	
Tabelle 12		•=•	2		N=•	ס	
	-	X.	-A			[~] 4	
Nr.	A	E	R_3	R_4	X	Z	phys. Daten
1801 1802	CHF ₂ CHF ₂	N N	${ m CH_3} \ { m CH_3}$	${{\rm OCH_3}\atop{\rm OC_2H_5}}$	0	0 0	Smp. 132–134° Smp. 121–122°
1803 1804	CHF ₂	CH CH	CH_3 CH_3	CH_3 OCH_3	0	0	Smp. 199–201° Smp. 189–191°
1805 1806	CHF ₂ CHF ₂	CH N	OCH ₃ CH ₃	OCH ₃ OCH ₃	0	O S	Smp. 152–154° Smp. 148–150°
1807	CHF ₂	N	CH_3	CH_3	S	0	-
1808 1809	CHF ₂ CHF ₂	N N	CH ₃ CH ₃	OCH ₃ OC ₂ H ₅	S S	0	Smp. 169–172° Smp. 145–155°
1810 1811	CHF ₂ CHF ₂	N CH	CH_3 CH_3	OCH_3 CH_3	S S	S O	Smp. 176–178°
1812 1813	CHF ₂ CHF ₂	CH CH	CH ₃ OCH ₃	OCH ₃ OCH ₃	S S	0 0	Smp. 172–174° Smp. 155–162°
1814	CHF ₂	N	CH_3	CH_3	О	0	Smp. 155–162
1815 1816	CF₃ CF₃	N CH	CH_3 CH_3	OCH_3 OCH_3	SO SO	0 0	•
1817 1818	CF ₃ CF ₃	N CH	CH ₃ CH ₃	OCH ₃ OCH ₃	$SO_2 SO_2$	0 0	
1819 1820	CHF ₂ CHF ₂	N N	CH ₃ CH ₃	OCH ₃ CH ₃	SO SO	0	Smp. 165–167°
1821	CHF ₂	Ν.	CH_3	OC_2H_5	SO	0	Smp. 156–158°
1822 1823	CHF ₂ CHF ₂	CH CH	CH ₃ CH ₃	CH_3 OCH_3	SO SO	0	Smp. 195–197°
1824 1825	CHF ₂ CHF ₂	CH N	OCH_3 CH_3	OCH_3 OCH_3	SO SO	O S	
1826 1827	CHF ₂ CHF ₂	N N	CH₃ CH₃	CH ₃ OCH ₃	$SO_2 SO_2$	0 0	
1828	CHF_2	N	CH_3	OC_2H_5	SO_2	Ο	
1829 1830	CHF ₂ CHF ₂	N CH	CH₃ CH₃	OCH ₃ CH ₃	SO_2 SO_2	S O	
1831 1832	CHF ₂ CHF ₂	CH CH	CH_3 OCH_3	OCH_3 OCH_3	$SO_2 SO_2$	0	
1833 1834	CF ₃ CF ₃	N N	CH ₃ CH ₃	OCH ₃ CH ₃	0	0	Smp. 160–162°
1835	CF ₃	N	CH_3	OC_2H_5	0	0	
1836 1837	$ CF_3 $ $ CF_3 $	CH CH	CH_3 CH_3	CH ₃ OCH ₃	0 0	0 0	Smp. 148–152°
1838 1839	CF ₃ CF ₃	CH N	OCH_3 CH_3	OCH_3 OCH_3	0 0	O S	
1840 1841	CF ₃ CF ₃	N N	$ \begin{array}{c} \text{CH}_3\\ \text{CH}_3 \end{array} $	CH ₃ OCH ₃	S S	0 0	
1842	CF_3	N	CH_3	OC_2H_5	S	О	
1843 1844	CF ₃ CF ₃	N CH	$\mathrm{CH_{3}}$ $\mathrm{CH_{3}}$	OCH ₃ CH ₃	S S	S O	
1845 1846	CF ₃ CF ₃	CH CH	CH_3 OCH_3	OCH_3 OCH_3	S S	0	
1847 1848	-CF ₂ -CHF ₂ -CF ₂ -CHF ₂	N N	CH ₃ CH ₃	OCH ₃ CH ₃	0 0	0	Smp. 170–174°
1849	$-CF_2-CHF_2$	N	CH_3	OC_2H_5	O	О	Smp. 136–140°
1850 1851	-CF ₂ -CHF ₂ -CF ₂ -CHF ₂	CH CH	CH₃ CH₃	CH ₃ OCH ₃	0	0	Smp. 190–193° Smp. 178–180°
1852 1853	-CF ₂ -CHF ₂ -CF ₂ -CHF ₂	CH N	OCH_3 CH_3	OCH_3 OCH_3	0 0	O S	Smp. 172–175°
1854 1855	-CF ₂ -CHF ₂ -CF ₂ -CHF ₂	N N	CH ₃ CH ₃	CH ₃ OCH ₃	S S	0	Smp. 156–158°
1856 1857	-CF ₂ -CHF ₂ -CF ₂ -CHF ₂ -CF ₂ -CHF ₂	N N	CH ₃ CH ₃	OC ₂ H ₅ OCH ₃	S S	o S	Simp. 150-150
1858	-CF ₂ -CHF ₂ -CF ₂ -CHF ₂	CH	CH ₃	CH ₃	S	0	Smp. 196 (Zers.)

349				44					
	Tabelle	212 (Fortsetzung)							
	Nr.	A S	E	R_3	R_4	X	Z	phys. Date	n
		A -CF ₂ -CHF ₂ -CF ₂ -CHF ₂ -CF ₂ -CHCIF -CF ₂ -CHB ₁ F -CF ₂ -CHB ₂ F -CF ₂ -CHB ₂ F -CF ₂ -CHB ₂ F -CF ₂ -CHB ₃ F -CF ₂ -CHG ₂ -CF ₂ -CHF ₂ -	N	R ₃ CH ₃ CCH	R ₄ OCH ₃ OCH	X	z 00000000s000s00000000s000s00000000000	Smp. 148–1 Smp. 178–1 Smp. 178–1 Smp. 145–1 Smp. 145–1 Smp. 174° (Smp. 179–1 Smp. 132–1 Smp. 135–1 Smp. 169–1 Smp. 203–2	150° 180° 180° 27° 16° 28° 28° 28° 29° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20
	1909	-CF ₂ -CHF-CF ₃	CH_3	OCH_3	CH ₃	0	O	Smp. 169-1	70°
Tabelle 13		• <u>*</u> A-X	R ₂	: ·so ₂ -nh-	0 -С-Nн-•;	N-• E	^H 3 ^{CH} 3		
Nr.		A E		R_2	R_1		X		phys. Daten
2001		CHF ₂ N		CH ₃	Н		0		_ -
2002 2003		$ \begin{array}{ccc} CHF_2 & N \\ CF_3 & N \end{array} $		Cl Cl	H H		0		
2003		CHF ₂ N		H	H		0 0		Smp. 153–154°
2005		CHF ₂ CH		H	H		ő		omp. 155-154
		2			**		3		

			43			037 04.
Tabelle 13 (Fortsetzu Nr.	ng) A	Е	R_{2}	R_1	X	phys. Daten
2006 2007	CHF ₂ CHF ₂	N CH	F F	H H	0	
Tabelle 14	R	R ₂	0 2-nh-C-nh-•	CH ₃ N=• OCH ₃		
Nr.	A	E	R_1	R_2	X	phys. Daten
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115	CHF ₂ CHF ₂ CHF ₂ CHF ₂ -CF ₂ -CHCIF CF ₃ CHF ₂	N CH CH N N N N CH CH CH CH N	H H H Cl Cl Cl H F F Cl Cl Cl CH 3	CI CI CI H H H F F H H H H	O O O O O O O O O O O O O O O O O O O	Smp. 154–157° Smp. 168–170° Smp. 116–118° Smp. 152–154° Smp. 139–143°
2116 2117	CHF ₂ CHF ₂	CH N	Br Br	H H	O O	

Formulierungsbeispiele

Beispiel 13

	Б еіsріе	u 15		
Formulierungsbeisp	iele für f	lüssige W	irkstoffe der For	mel
I (% = Gewichtsprozer	ıt)	_		
a) Emulionskonzentrate	e a)	b)	c)	
Wirkstoff	20%	10%	50%	
Ca-Dodecylbenzol-				
sulfonat	5%	4%	5,8%	
Ricinusöl-poly-				
äthylenglykoläther				
(36 Mol AeO)	5%	4%	_	
Cyclohexanon	30%	20%	_	
Xylolgemisch	40%	62%	44,2%	
A 1 1 TZ	1	. 1	1 37 1"	. • .

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden

stellt werden.								
b) Lösungen	a)	b)	c)	d)				
Wirkstoff	20%	10%	5%	1%				
Äthylenglykol-								
monomethyläther	30%	_	50%	50%				
Polyäthylenglykol								
M G 400	_	70%	_	20%				
N-Methyl-2-pyrrolidon	50%	20%	44%	28%				
Epoxidiertes								
Kokosnussöl		_	1%	1%				
Die Lösungen sind zur Anwendung in Form kleinster								

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

 Der Wirkstoff wird in Methylenchlorid gelöst, auf den Träger aufgesprüht und das Lösungsmittel anschliessend im Vakuum abgedampft.

	d) Stäubemittel	•	a)	b)
40	Wirkstoff		0,1%	1%
	Hochdisperse			
	Kieselsäure		1%	5%
	Talkum		98,9%	_
	Kaolin		_	94%

Durch inniges Vermischen der Trägerstoffe mit dem Wirkstoff erhält man gebrauchsfertige Stäubemittel.

Beispiel 14

		Deispie	i 1 4		
50	Formulierungsbei	spiele für fe	este Wirks	stoffe der Formel	Ι
	(% = Gewichtsproze	nt)			
	a) Spritzpulver	a)	b)	c)	
	Wirkstoff	20%	60%	0,5%	
	Na-Ligninsulfonat	5%	5%	5%	
55	Na-Laurylsulfat	3%	-	_	
	Na-Diisobutyl-				
	naphthalinsulfonat		6%	6%	
	Octylphenolpoly-				
	äthylenglykoläther				
60	(7–8 Mol AeO)	-	2%	2%	
	Hochdisperse				
	Kieselsäure	5%	27%	27%	
	Kaolin	67%	_	- ,	
	Natriumchlorid	-	_	59,5%	
65	Der Wirkstoff wir	d mit den Z	Zusatzstof	fen gut vermisch	t
		3 6 "1 1	, 1	1 3 4	

Der Wirkstoff wird mit den Zusatzstoffen gut vermischt und in einer geeigneten Mühle gut vermahlen. Man erhält Spritzpulver, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen lassen.

657 849			
b) Emulsions-			
Konzentrat	a)	b)	
Wirkstoff	10%	1%	
Octylphenolypoly-			
äthylenglykoläther			
(4-5 Mol AeO)	3%	3%	
Ca-Dodecylbenzol-			
sulfonat	3%	3%	
Ricinusölpolyglykol-			
äther (36 Mol AeO)	4%	4%	
Cyclohexanon	30%	10%	
Xylolgemisch	50%	79%	
Aus diesem Konzer	ntrat könne	en durch	Verdünnen mit
Wasser Emulsionen jed	ler gewüns	chten Ko	nzentration herg
stellt werden.	•		-
c) Stäubemittel	a)	b)	
Wirkstoff	0,1%		
Talkum	99,9%		

99% Kaolin Man erhält anwendungsfertige Stäubemittel, indem der Wirkstoff mit dem Träger vermischt und auf einer geeigneten Mühle vermahlen wird.

d) Extruder Granulat.	a)	b)
Wirkstoff	10%	1%
Na-Ligninsulfonat	2%	2%
Carboxymethylcellulose	1%	1%
Kaolin	87%	96%
Der Wirkstoff wird n	it den	Zusatzstoffen ve

Polyäthylenglykol

ermischt, vermahlen und mit Wasser angefeuchtet. Dieses Gemisch wird extrudiert und anschliessend im Luftstrom getrocknet. e) Umhüllungs-Granulat 3% Wirkstoff

3% (MG 200) 94% Kaolin Der fein gemahlene Wirkstoff wird in einem Mischer auf das mit Polyäthylenglykol angefeuchtete Kaolin gleichmässig

	aufgetragen. Auf diese W				
-	lungs-Granulate.				
	f) Suspensions-				
	Konzentrat	a)	b)		
	Wirkstoff	40%	5%	o	
	Äthylenglykol	10%	10%	ó	
	Nonylphenolpoly-				
	äthylenglykoläther			-	
	(15 Mol AeO)	6%	1%	ó	
	Na-Ligninsulfonat	10%	5%	o	
	Carboxymethylcellulose	1%	1%	o	
	37%ige wässrige				
	Formaldehyd-				
	Lösung	0,2%	0,29	%	
	Silikonöl in Form				
	einer 75%igen				
	wässrigen Emulsion	0,8%	0,89	%	

32% 77% Wasser Der fein gemahlene Wirkstoff wird mit den Zusatzstoffen innig vermischt. Man erhält so ein Suspensions-Konzentrat, aus welchem durch Verdünnen mit Wasser Suspensionen jeder gewünschten Konzentration hergestellt werden können.

g) Salzlösung Wirkstoff 5% Isopropylamin 1% Octylphenolpolyäthylenglykoläther

(78 Mol AeO) 3% Wasser 91%

Biologische Beispiele

Beispiel 15 Nachweis der Herbizidwirkung vor dem Auflaufen der Pflanzen

Im Gewächshaus werden Pflanzensamen in Blumentöpfe von 12-15 cm Durchmesser gesät. Unmittelbar danach wird 10 die Erdoberfläche mit einer wässrigen Dispersion oder Lösung der Wirkstoffe behandelt. Es werden Konzentrationen von 4 kg Wirkstoffmengen pro Hektar angewendet. Die Töpfe werden dann im Gewächshaus bei einer Temperatur von 22-25 °C und 50-70% relativer Luftfeuchtigkeit gehal-15 ten. Nach 3 Wochen wird der Versuch ausgewertet und die Wirkung nach folgendem Massstab beurteilt:

1: Pflanzen nicht gekeimt oder total abgestorben,

2-3: sehr starke Wirkung,

4-6: mittlere Wirkung,

7-8: geringe Wirkung,

9: keine Wirkung (wie unbehandelte Kontrolle).

Pre-emergente Wirkung

Aufwandmenge: 4 kg Wirksubstanz/Hektar											
	Verb.	Avena	Setaria	Sinapis	Stellaria						
25	Nr.			_							
	901	2	1	2	1						
	902	2 6	4	2	2						
	919	2 6	1	2	1						
30	1161		3	2	2						
	1202	4 3	1	2	2						
	1203	3	1	2	2						
	1212	7	3	2	2						
	1223	3 5	3 2 4	2	2						
35	1242	5		2	2						
	1212 1223 1242 1244	4	2 1 2 1	2	2						
5	1245	3	1	2	2						
	1252	4	2	2	2						
	1252 1453	2		2	2						
40	1454	2	1	2	2						
	1455	4	1	2	1						
	1456	2	1	2	2						
	1457	3	2 1 3 2 1	2	2						
	1601	2	1	2	1						
45	1806	6	3	2	2						
	1809	5	2	2	1						
	1812 1813 1823 1861	2		2	2						
	1813	3	1	2	1						
	1823	3	2	2	2						
50	1861	6	3	2	2						
	1890	5	1 2 3 3 2 2 1	2	1						
	1893	3	2	2	2						
	1898	3	2	2	2						
	2004	2		2	2						
55	2101	2	1	2	2						
	2102	2	1	2	1						
	2110	2	1	2	2						
	2110 2111 2113	4 2 2 4 2 3 2 6 5 2 3 3 6 5 3 3 6 5 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
	2113	2	1	2	2						

Beispiel 16

Nachweis der Selektivität bei Vorauflaufanwendung In der gleichen Versuchsanordnung wie im Beispiel 15 werden eine grössere Anzahl von Pflanzensamen mit verschiedenen Aufwandmengen an Wirksubstanz behandelt. Die Auswertung erfolgte nach dem gleichen Massstab.

Versuchsergebnisse (pre-emergent)

Wirkung Aufwandmenge kg AS/ha	Verb.	Nr. 60	1		Verb.	Nr. 91	3			Nr. 92						
Testpflanze	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03				
Weizen Mais Avena fatua Alopecurus myos. Echinochloa c.g. Rottboellia ex. Cyperus escul. Soja Baumwolle Abutilon Xanthium Sp. Chenopodium Sp. Ipomoea Sinapis Galium aparine Viola tricolor Wirkung	4 2 2 2 2 2 2 3 2 2 1 2 1 2 2 2 2 2 2 2 2	7 2 2 2 2 2 3 3 2 2 1 3 1 2 2 2 2 2 2 2 2	9 2 3 2 2 3 3 2 2 2 2 3 2 2 2 2 2 2 2 2	9 2 4 2 2 3 3 2 3 2 2 3 2 2 3 2 2 3 2 2 2 2	5 3 5 2 2 3 2 2 1 1 2 2 2 1 2 1 2 1	6 3 6 2 2 3 3 2 2 1 2 2 2 1 2 1	7 7 6 2 3 4 3 3 2 1 2 2 2 1 3	9 8 8 3 3 4 5 3 2 1 3 2 2 1 3 1	9 9 9 4 6 7 3 4 2 1 2 2 2 1 5 2	9 9 9 9 6 9 4 4 2 1 2 2 2 6 2	9 9 9 9 9 9 9 9 8 6 2 9 2 4 6 6 2	9 9 9 9 9 9 9 9 9 9 6 2 9 2 7 6 9 2				,
Aufwandmenge kg AS/ha	Verb	. Nr. 1				. Nr. 1				. Nr. 1				Nr. 18		0.02
Testpflanze	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03
Weizen Mais Avena fatua Alopecurus myos. Echinochloa c.g. Rottboellia ex. Cyperus escul. Soja Baumwolle Abutilon Xanthium Sp. Chenopodium Sp. Ipomoea Sinapis Galium aparine Viola tricolor	7 9 7 4 2 4 1 6 4 1 4 2 2 1 2 2 1 2 2 2	8 9 8 4 3 4 2 9 4 2 6 2 2 1 3 2	9 9 8 5 3 7 3 9 4 4 6 3 3 2 3 2	9 9 7 3 7 3 9 9 4 8 3 4 3 3 2	2 1 2 2 2 2 2 3 2 2 3 1 1 2 2 2 2 1	3 2 2 2 2 3 7 2 4 3 1 1 2 2 2 2 2 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2	6 3 3 2 2 3 7 3 6 4 2 2 2 2 2 4 2	9 5 4 2 2 3 7 3 7 4 2 2 3 3 6 3	9 4 6 2 4 3 5 2 2 1 3 1 2 1 3 1	9 5 7 2 5 4 6 2 2 1 4 1 3 1	9 5 7 3 6 5 6 3 3 1 4 1 3 1 4 2	9 7 8 3 6 5 6 3 3 2 5 2 4 2 4 2	2 2 2 2 2 2 3 2 2 1 1 2 2 2 2 2 2 2 2 2	2 2 3 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2	3 4 2 2 3 4 2 2 2 2 2 3 1 3 2	7 4 5 2 2 4 4 4 2 3 2 2 4 3 2 4 3 3 3
Wirkung Aufwandmenge kg AS/ha	Verb	o. Nr. 1	1899		Vert	o. Nr. 1	.901		Vert	o. Nr. 1	900		Verb	. Nr. 2	113	
Testpflanze	0.12	0.06	0.03	0.01:	5 0.5	0.25	0.12	0.06	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03
Gerste Weizen Mais Sorghum hybr.	5 6 2 2	6 7 2 2	6 7 3 2	7 8 4 2	7 9 2 2	8 9 3 2	8 9 6 3	8 9 7 3	7 9 4 4	8 9 6 5	9 9 6 7	9 9 8 8	- 3 2 -	- 4 3 -	- 7 7 -	- 9 9 -
Avena fatua Bromus tectorum Lolium perenne Alopecurus myos Digitaria sang. Echinochloa c.g Sorghum halep. Rottboellia ex. Cyperus escul. Soja Baumwolle Abutilon	4 3 1 1 2 2 3 3 3 3 2 2	5 3 1 1 2 2 3 3 4 4 2 2 2	6 3 1 1 2 3 3 3 4 2 2 2	7 4 1 2 3 3 3 4 5 2 2 2	4 3 2 2 2 2 4 1 2 2 1	5 6 2 2 2 2 5 1 2 2 1	6 8 2 2 3 3 5 1 2 2 1	7 8 3 2 4 3 7 2 2 2 1 1	8 5 2 2 3 4 4 5 5 2 2 2	9 6 3 3 5 6 6 6 5 2 2 2	9 6 4 7 6 7 7 6 3 3 2	9 8 6 4 9 7 9 8 7 4 4 4 3	2 1 1 2 4 2 2 1	2 - 1 - 2 - 3 6 2 2 2 2	4 - - 2 - 2 - 3 9 3 3 2	9 - 2 - 2 - 8 9 3 6 3

Wirkung Aufwandmenge kg AS/ha	Verb	o. Nr. 1	899		Vert	o. Nr. 1	901		Verb). Nr. 1	900		Verb	o. Nr. 2	2113	
Testpflanze	0.12	0.06	0.03	0.01	5 0.5	0.25	0.12	0.06	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03
Sida spinosa	2	2	2	2	1	1	í	1	2	2	2	2				
Xanthium Sp.	3	3	3	3	ī	ī	1	1	4	4	4	6	1	2	3	_
Amaranthus ret.	1	1	1	1	ī	2	2	2	1	1	1	2	_	2	3	3
Chenopodium sp.	2	2	2	2	î	1	2	2	2	2	2	2	_	2	_	_
Solanum nigrum	$\bar{2}$	2	$\bar{2}$	$\bar{2}$	1	1	2.	2	1	2	2	_		2	2	2
Ipomoea	$\overline{2}$	2	2	2	1	1	1	2	2	2	2	3	-	_	_	_
Sinapis	1	1	ī	1	2	2	2	2	2	2	3	2	1	2	2	7
Stellaria	Î	î	1	1	2	2	2	2	2	2	2	2	1	1	2	2
Chrysanthe. leuc.	î	1	1	1	2	2	2	2	2	2	2	2	_	_	_	_
Galium aparine	1	1	3	4	2	2	2	4	2	2	2	2	_	_	_	
Viola tricolor	1	1	1	1	2		3	4	2	2	3	3	1	2	3	7
Veronica Sp.	1	1	1	1	2	2	2	2	2	2	2	3	1	1	1	2
veromea sp.	1	1	1	1	1	1	1	1	2	2	2	3	_	_	_	

Beispiel 17

Nachweis der Herbizidwirkung nach dem Auflaufen der Pflanzen (Kontaktwirkung)

Eine Anzahl Unkräuter und Kulturpflanzen, sowohl monocotyle wie dicotyle, wurden nach dem Auflaufen, im 4- bis 6-Blattstadium mit einer wässrigen Wirkstoffdispersion in

Dosierungen von 4 kg/AS/ha gespritzt und dann bei 24° bis 26 °C und 45–60% relativer Luftfeuchtigkeit gehalten. 15 Tage nach der Behandlung wird der Versuch ausgewertet und die Wirkung nach dem gleichen Massstab wie im Beispiel 15 bewertet.

Post-emergente Wirkung Aufwandmenge: 4 kg Wirksubstanz/Hektar											
Verb. Nr.	Avena	Setaria	Lolium	Solanum	Sinapis	Stellaria	Phaseolus				
141.											
901	2 .	4	3	2	2	3	3				
902	7	7	3	2	2 2	3	3				
919	3	4	2	2	2	4	2				
1161	7	6	4	1	2	3	4				
1202	3	3	3	2	2 2 3	4	3				
1203	4	2	4	3	2	2	4				
1212	7	6	4	6	3	7	7				
1223	3	4	4	1	2	2	3				
1242	6	5	3	3	1	2 2 2	3				
1244	4	4	· 4	2	2	2	4				
1245	5	4	3	3	2 2	4	5				
1252	6	5	4	3	2	4	4				
1453	2 2 2 3	1	2 2 2 3 3 3 3 3 3	1	2 2 2 2 2 2 2	2	3				
1454	2	3	2	1	2	3	3				
1455	2	3	2	2	2	3	2				
1456		5	3	1	2	2	3				
1457	4	4	3	1	2	2 3 3 2 2 2 3	4				
1601	2	3	3	2	2	3	3				
1806	6	2	3	2 2 1	3	2	2				
1809	4	6	3	2	2	2	2 3 3				
1812	4	5	2		3	3	3				
1813	5	4	3	2 2	2	4	3				
1823	4	4	3	2	2	2	4				
1861	8	8	3	2	2	2 3 2	4				
1890	6	6	4	1	2	2					
1893	4	4	2	2	2	3	2				
1898	4	4	3	1	2		2				
2004	2	2 3	3	2	2	2 2 2	3				
2101	2	3	2	2	2	2	2				
2102	2 2 2	2	2 3 3 2 3 2 3 2	2 2 2 2 2 2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	3 2 2 3 2 2 2 3 3 2 2				
2110	2	1	2	2	2	1	3				
2111	2	1 .	3	2	2	2	3				
2113	3	2	2	2	2	2	2				

Beispiel 18

Nachweis der Selektivität bei Nachauflaufanwendung. In der gleichen Versuchsanordnung wie im Beispiel 17 werden eine grössere Anzahl von Pflanzen mit verschiedenen Aufwandmengen an Wirksubstanz behandelt. Die Auswertung erfolgte nach dem in Beispiel 15 angegebenen Massstab.

Versuchsergebnisse (pos Wirkung	st-emer	gent):											
Aufwandmenge	Verb. Nr. 601					Verb. Nr. 924				Verb. Nr. 1601			
kg AS/ha													
Testpflanze	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03	
Gerste	_	_	_	_	9	9	9	9	_	_			
Weizen	7	9	9	9	9	9	9	9	4	6	9	9	
Mais	3	4	7	9	9	9	9	9	2	4	4	8	
Reis trocken	4	5	8	9	4	4	6	9	7	7	7	9	
Avena fatua	4	5	8	9	_	_	_	_	2	3	4	6	
Alopecurus myos.	1	2	2	2	7	9	9	9	2	3	3	3	
Echinochloa c.g.	2	2	6	6	_	_	_	_	2	2	3	3	
Soja	2	3	3	3	1	2	3	3	4	4	6	6	
Baumwolle	4	6	7	9	7	7	7	7	9	9	9	9	
Abutilon	2	2	2	2	-	_	_	_	_	_	_	_	
Xanthium Sp.	1	1	1	1	1	1	1	2	1	1	2	3	
Amarantus ret.	_	_	_		2	2	3	3	_	_		_	
Chenopodium Sp.	1	2 3	2 3	2	3	3	4	4	3	3	4	4	
Ipomoea	2	3	3	4	3	3	3	3	2	2	2	2 2	
Sinapis	_	_	_	_	3	3	3	3	2	2	2	2	
Stellaria	1	1	1	1	4	4	4	4	_	_	_		
Chrysanth. leuc.				_	3	3	3	3	_	_		_	
Galium aparine	1	2	2	2	_		_	_	2	2	4	4	
Viola tricolor	2	2	2	2	_	_	_	_	2	2	2	2	

Wirkung Aufwandmenge kg/AS/ha	Verb. Nr. 1899				Verb. Nr. 1901			Verb. Nr. 1900			Verb. Nr. 2113					
Testpflanze	0.12	0.06	0.03	0.015	0.5	0.25	0.12	0.06	0.25	0.12	0.06	0.03	0.25	0.12	0.06	0.03
Gerste Weizen Mais Reis trocken	6 7 2 4	7 9 7 4	9 9 7 7	9 9 8 7	7 7 4 7	9 9 7 7	9 9 7 8	9 9 7 9	8 9 3 4	9 9 6 4	9 9 7 4	9 9 8 4	- 8 4 4	- 9 4 4	- 9 9 6	- 9 9 6
Avena fatua Alopecurus myos. Echinochloa c.g.	7 3 3	8 3 3	8 3 3	9 3 3	6 4 6	9 4 7	9 6 7	9 6 9	3 3 3	6 4 3	7 4 4	9 5 4	3 3 2	4 4 2	9 4 2	9 4 2
Soja Baumwolle	2 6	2 6	2 6	2 6	2 6	2 6	2 7	2 7	2 3	2 4	2 5	2 6	3 9	4 9	4 9	4 9
Abutilon Xanthium Sp. Amaranthus ret. Chenopodium sp. Solanum nigrum Ipomoea	1 2 1 1 2 3	1 3 1 1 2 3	3 3 2 1 3 3	4 3 2 1 3 4	3 1 2 1 4 4	4 1 2 1 4 4	4 1 2 2 4 4	4 1 3 2 4 5	2 2 2 2 5 4	2 2 3 2 6 4	3 2 3 4 6 4	3 3 4 7 4	6 1 - 3 - 5	7 1 - 6 - 6	8 1 - 6 - 6	9 2 - 7 - 7
Sinapis Stellaria Chrysanthe. leuc. Galium aparine Viola tricolor	2 2 1 7 2	3 2 1 7 3	2 2 1 7 3	2 2 1 7 3	3 2 3 3 6	3 3 4 6	3 4 3 6 6	3 4 3 6 6	2 2 2 1 2	2 2 2 1 2	2 2 2 1 2	2 2 2 1 2	4 - - 2 2	4 - - 3 2	4. - 4 2	4 - - 9 3
Veronica Sp.	2	2	2	2	6	6	6	6	2	2	2	2	_	_	-	_

Beispiel 19

Nachweis der Keimhemmung an Lagerkartoffeln. Eine Anzahl im Handel erhältliche Kartoffeln der Sorte «Urgenta» ohne Keime werden gewaschen und abgetrocknet. Danach werden die Kartoffeln für jeweils eine Minute in Wirkstoffemulsionen verschiedener Konzentration getaucht, in Kunststoffschalen auf Filterpapier ausgelegt und bei Temperaturen von 14° und 21 °C im Dunkeln bei 50% relativer

- 60 Luftfeuchtigkeit gehalten. Die Auswertung erfolgte 34 Tage nach der Applikation. Die Bewertung wurde nach folgendem Massstab vorgenommen:
 - 1: Keine Keimbildung (wie bei Applikation)
 - 5: ca. 50% Hemmung der Keimbildung

65 9: Keimbildung wie bei der unbehandelten Kontrolle. Gleichzeitig wird der Gewichtsverlust der Knollen in % und das Gewicht der Keime im Vergleich zur unbehandelten Kontrolle ermittelt.

Versuchsergebnisse: Keimhemmung bei Lagerkartoffeln

Verb.	Konz.	Lagerort 14°C	_			Lagerort 2	21°C		
Nr.	Tauch-	Keime			Knollen	Keime			Knollen
	brühe	Keim-	Gewicht	Gewicht	Gewichts-	Keim-	Gewicht	Gewicht	Gewichts-
	(ppm)	bildung	(gr)	(% Kontrolle)	verlust (%)	bildung	(gr)	(% Kontrolle)	verlust (%)
Kontr.	0	9	52,8	100	10,4	9	50,9	ìo ´	12,2
1899	1000	1	0	0	5,5	3	3,0	5,9	8,4
1900	1000	3	4,8	9,1	5,4	7	39,4	77,4	11,3

Beispiel 20

Nachweis der Wuchshemmung bei tropischen Bodenbedeckern-Leguminosen (cover crops).

Die Versuchspflanzen (centrosema plumieri und centrosema pubescens) werden bis zum ausgewachsenen Stadium herangezogen und bis auf eine Höhe von 60 cm zurückgeschritten. Nach 7 Tagen wird der Wirkstoff als wässrige Emulsion gespritzt. Die Versuchspflanzen werden bei 70% relativer Luftfeuchtigkeit und 6000 lux Kunstlicht, pro Tag 14

- 10 Stunden, bei Temperaturen von 27° bei Tag und 21 °C bei Nacht gehalten.
 - 4 Wochen nach der Applikation wird der Versuch ausgewertet. Es werden dabei
 - a) der Neuzuwachs in % zur Kontrolle abgeschätzt
 - b) der Neuzuwachs in % zur Kontrolle gewogen und
 - c) die Phytotoxizität nach der folgenden Linearskala bewertet:
 - 1: Pflanze abgestorben; 9: Pflanze nicht geschädigt.

20

Versuchsergebnisse: Wachstumshemmung bei cover crops.

Pflanze	Verb.	Aufwand-	Neuzuwachs visuell	Neuzuw	achs gewogen	Phytoxizität		
	Nr.	menge g AS/ha	% Kontrolle	g	% Kontrolle	•		
Centrosema	1899	10	0	2	4	8		
pubescens	1899	30	10	9	18	8		
•	1899	100	0	2	4	8		
	1900	10	0	1	2	9		
	1900	30	0	2	4	9		
	1900	100	0	0	0	9		
Centrosema	1899	10	20	31	50	9		
plumieri	1899	30	0	0	0	8		
	1899	100	0	4	6	8		
	1900	10	30	29	47	9		
	1900	30	10	26	42	9		
	1900	100	0	6	10	9		