
(12) STANDARD PATENT (11) Application No. AU 2010355801 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Store/store block instructions for communicating with adapters

(51) International Patent Classification(s)
G06F 9/312 (2006.01) G06F 13/38 (2006.01)

(21) Application No: 2010355801 (22) Date of Filing: 2010.11.08

(87) WIPONo: WO11/160710

(30) Priority Data

(31) Number (32) Date (33) Country
12/821,194 2010.06.23 US

(43) Publication Date: 2011.12.29
(44) Accepted Journal Date: 2014.04.24

(71) Applicant(s)
International Business Machines Corporation

(72) Inventor(s)
Greiner, Dan;Craddock, David;Gregg, Thomas;Farrell, Mark

(74) Agent / Attorney
Spruson & Ferguson, L 35 St Martins Tower 31 Market St, Sydney, NSW, 2000

(56) Related Art
WO 2002/041157 A2 (SUN MICROSYSTEMS INC) 23 May 2002

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2011/160710 AlPCT

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 December 2011 (29.12.2011)

(51) International Patent Classification:
G06F 9/312 (2006.01) G06F13/38 (2006.01)

(21) International Application Number:
PCT/EP2010/067028

(22) International Filing Date:
8 November 2010 (08.11.2010)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/821,194 23 June 2010 (23.06.2010) US

(71) Applicant (for all designated States except US): INTER­
NATIONAL BUSINESS MACHINES CORPORA­
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): GREINER, Dan

[US/USJ; IBM Corporation, M/P SVL/090/F374, 555
Bailey Avenue, SaiiLa Teresa Lab, San Jose, California
95141-1003 (US). CRADDOCK, David [GB/US]; IBM

Corporation, M/P P318, 2455 South Road, Poughkeepsie,
New York 12601-5400 (US). GREGG, Thomas
[US/US]; IBM Corporation, M/P P314, 2455 South
Road, Poughkeepsie, New York 12601-5400 (US). FAR­
RELL, Mark [US/US]; IBM Corporation, M/P P310,
2455 South Road, Poughkeepsie, New York 12601-5400
(US).

(74) Agent: STRETTON, Peter, John; IBM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Winch­
ester Hampshire SO21 2JN (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CII, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: STORE/STORE BLOCK INSTRUCTIONS FOR COMMUNICATING WITH ADAPTERS

PCI STORE

OPCODE FIELD 1 FIELD 2

w
o 2

01
1/

16
07

10
 A

l lll
ll»

llll
lll

llll
llll

lll
llll

llll
l«

602 604 606

FIG. 6A

FIELD 1

DATA STORED

FIG. 6B

-604

FIELD 2
610 ENABLED HANDLE

ADDRESS SPACE
OFFSET WITHIN ADDRESS SPACE
LENGTH
STATUS

-606

(57) Abstract: Communication with
adapters of a computing environment
is facilitated. Instructions are provid­
ed that explicitly target the adapters.
Information provided in an instruc­
tion is used to steer the instruction to
an appropriate location within the
adapter.

FIG. 6C

WO 2011/160710 Al llllllllihllllllllllNIHIIIII
(84) Designated States (unless otherwise indicated, for every

kind of regional protection available) : ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

ί

STORE/STORE BLOCK INSTRUCTIONS LOR COMMUNICATING WITH

ADAPTERS

20
10

35
58

01

25
 M

ar
 2

01
4

Technical Lield

This invention relates, in general, to input/output processing of a computing

environment, and in particular, to facilitating communication with adapters of the

computing environment.

Background

A computing environment may include one or more types of input/output devices,

including various types of adapters. One type of adapter is a Peripheral Component

Interconnect (PCI) or Peripheral Component Interconnect Express (PCie) adapter. This

adapter includes one or more address spaces used in communicating data between the

adapter and the system to which the adapter is attached. The PCI specification is

available from the World Wide Web at www.pcisig.com/home.

US Patent No. 6,704,831, issued March 9, 2004, Avery, "Method and Apparatus for

Converting Address Information Between PCI Bus Protocol and a Message-Passing

Queue- Oriented Bus Protocol," describes PCI load/store operations and DMA

operations are implemented via work queue pairs in a message-passing, queue-oriented

bus architecture. PCI address space is divided into segments and, each segment, in turn,

is divided into regions. A separate work queue is assigned to each segment. A first

portion of a PCI address is matched against the address ranges represented by the

segments and used to select a memory segment and its corresponding work queue. An

entry in the work queue holds a second portion of the PCI address which specifies a

region within the selected segment that is assigned to a specific PCI device. In one

embodiment, PIO load/store operations are implemented by selecting a work queue

assigned to PIO operations and creating a work queue entry with the PCI address of a

register on a PCI device and a pointer to the PIO data. The work queue entry is sent to a

PCI bridge where the PCI address is extracted and used to program the appropriate

device register with the data using the data pointer. DMA transfers are also

implemented by selecting a work queue by means comparing a portion of the PCI

address generated by the PCI device to an address range table and selecting a work

queue that services the address range. A work queue entry is created with the remainder

8425752V1

http://www.pcisig.com/home

2

20
10

35
58

01

25
 M

ar
 2

01
4

of the PCI address and a pointer to the DMA data. An RDMA operation is used to

perform the DMA transfer. The page and region data is used in connection with a

translation protection table in the host channel adapter to access physical memory and

perform the DMA transfer.

US Patent No. 7,613,847, issued November 3, 2009, Kjos et al, "Partially Virtualizing

an 1/0 Device for Use by Virtual Machines," describes a computer system comprises a

physical computer and a virtual machine monitor executable on the physical computer

and configured to create an emulation of at least one guest operating system adapted to

control the physical computer. The computer system further comprises a host executable

on the physical computer that manages physical resources coupled to the physical

computer on behalf of the virtual machine monitor and the at least one guest operating

system. The host is adapted to virtualize a Peripheral Component Interconnect (PCI)

configuration address space whereby the at least one guest operating system controls

PCI input/output (1/0) devices directly and in absence of 1/0 emulation.

In some systems, a portion of an address space of the central processing unit (CPU)

coupled to the adapter is mapped to an address space of the adapter enabling CPU

instructions that access storage to directly manipulate the data in the adapter's address

space.

The background discussion (including any potential prior art) is not to be taken as an

admission of the common general knowledge in the art in any country. Any references

discussed state the assertions of the author of those references and not the assertions of

the applicant of this application. As such, the applicant reserves the right to challenge

the accuracy and relevance of the references discussed.

An object of the present invention is to at least provide the public with a useful choice.

BRIEF SUMMARY

It is acknowledged that the terms "comprise", "comprises" and "comprising" may, under

varying jurisdictions, be attributed with either an exclusive or an inclusive meaning.

For the purpose of this specification, and unless otherwise noted, these terms are

intended to have an inclusive meaning - i.e. they will be taken to mean an inclusion of

8425752V1

2a

20
10

35
58

01

25
 M

ar
 2

01
4

the listed components that the use directly references, but optionally also the inclusion

of other non-specified components or elements. It will be understood that this intended

meaning also similarly applies to the terms mentioned when used to define steps in a

method or process.

In accordance with an aspect of the present invention, a capability is provided for

facilitating communication with adapters, such as PCI or PCie adapters. Control

instructions specifically designed for communicating data to and from adapters are

provided and used for communication.

The shortcomings of the prior art are overcome and advantages are provided through the

provision of a computer program product for executing a store instruction for storing

data in an adapter. The computer program product includes a computer readable storage

medium readable by a processing circuit and storing instructions for execution by the

processing circuit for performing a method. The method includes, for instance,

obtaining a machine instruction for execution, the machine instruction being defined for

computer execution

8425752V1

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

3

according to a computer architecture, the machine instruction including, for instance, an

opcode field identifying a store to adapter instruction; a first field identifying a first location

that includes data to be stored in an adapter; a second field identifying a second location, the

contents of which include a function handle identifying the adapter, a designation of an

address space within the adapter in which data is to be stored, and an offset within the

address space; and executing the machine instruction, the executing including using the

function handle to obtain a function table entry associated with the adapter; obtaining a data

address of the adapter using at least one of information in the function table entry and the

offset; and storing data from the first location in a specific location in the address space

identified by the designation of the address space, the specific location identified by the data

address of the adapter.

Further, a computer program product for executing a store block instruction for storing data

in an adapter is provided. The computer program product includes a computer readable

storage medium readable by a processing circuit and storing instructions for execution by the

processing circuit for performing a method. The method includes, for instance, obtaining a

machine instruction for execution, the machine instruction being defined for computer

execution according to a computer architecture, the machine instruction including, for

instance, an opcode field identifying a store block to adapter instruction; a first field

identifying a first location, the contents of which include a function handle identifying an

adapter, and a designation of an address space within the adapter in which data is to be

stored; a second field identifying a second location that includes an offset within the address

space; a third field identifying a third location that includes an address in memory that

includes data to be stored in the adapter; and executing the machine instruction, the

executing including using the function handle to obtain a function table entry associated with

the adapter; obtaining a data address of the adapter using information in the function table

entry and the offset; and storing data obtained from memory at the address in the third field

into a specific location in the address space identified by the designation of the address

space, the specific location identified by the data address of the adapter.

Methods and systems relating to one or more aspects of the present invention are also

described and claimed herein.

WO 2011/160710 PCT/EP2010/067028

4

5

10

15

20

25

30

Additional features and advantages are realized through the techniques of the present

invention. Other embodiments and aspects of the invention are described in detail herein

and are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

One or more aspects of the present invention are particularly pointed out and distinctly

claimed as examples in the claims at the conclusion of the specification. The foregoing and

other objects, features, and advantages of the invention are apparent from the following

detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1A depicts one embodiment of a computing environment to incorporate and use one or

more aspects of the present invention;

FIG. IB depicts one embodiment of a device table entry located in the I/O hub of FIG. 1A

and used in accordance with an aspect of the present invention;

FIG. 1C depicts another embodiment of a computing environment to incorporate and use one

or more aspects of the present invention;

FIG. 2 depicts one example of address spaces of an adapter function, in accordance with an

aspect of the present invention;

FIG. 3A depicts one example of a function table entry used in accordance with an aspect of

the present invention;

FIG. 3B depicts one embodiment of a function handle used in accordance with an aspect of

the present invention;

FIG. 4A depicts one embodiment of a PCI Load instruction used in accordance with an

aspect of the present invention;

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

5

FIG. 4B depicts one embodiment of a field used by the PCI Load instruction of FIG. 4A, in

accordance with an aspect of the present invention;

FIG. 4C depicts one embodiment of another field used by the PCI Load instruction of FIG.

4A, in accordance with an aspect of the present invention;

FIGs. 5A-5B depict one embodiment of the logic to perform a PCI Load operation, in

accordance with an aspect of the present invention;

FIG. 6A depicts one embodiment of a PCI Store instruction used in accordance with an

aspect of the present invention;

FIG. 6B depicts one embodiment of a field used by the PCI Store instruction of FIG. 6A, in

accordance with an aspect of the present invention;

FIG. 6C depicts one embodiment of another field used by the PCI Store instruction of FIG.

6A, in accordance with an aspect of the present invention;

FIGs. 7A-7B depict one embodiment of the logic to perform a PCI Store operation, in

accordance with an aspect of the present invention;

FIG. 8A depicts one embodiment of a PCI Store Block instruction used in accordance with

an aspect of the present invention;

FIG. 8B depicts one embodiment of a field used by the PCI Store Block instruction of FIG.

8A, in accordance with an aspect of the present invention ;

FIG. 8C depicts one embodiment of another field used by the PCI Store Block instruction of

FIG. 8 A, in accordance with an aspect of the present invention;

FIG. 8D depicts one embodiment of yet another field used by the PCI Store Block

instruction of FIG. 8A, in accordance with an aspect of the present invention;

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

6

FIGs. 9A-9B depict one embodiment of the logic to perform a PCI Store Block operation, in

accordance with an aspect of the present invention;

FIG. 10 depicts one embodiment of a computer program product incorporating one or more

aspects of the present invention;

FIG. 11 depicts one embodiment of a host computer system to incorporate and use one or

more aspects of the present invention;

FIG. 12 depicts a further example of a computer system to incorporate and use one or more

aspects of the present invention;

FIG. 13 depicts another example of a computer system comprising a computer network to

incorporate and use one or more aspects of the present invention;

FIG. 14 depicts one embodiment of various elements of a computer system to incorporate

and use one or more aspects of the present invention;

FIG. 15A depicts one embodiment of the execution unit of the computer system of FIG. 14

to incorporate and use one or more aspects of the present invention;

FIG. 15B depicts one embodiment of the branch unit of the computer system of FIG. 14 to

incorporate and use one or more aspects of the present invention;

FIG. 15C depicts one embodiment of the load/store unit of the computer system of FIG. 14

to incorporate and use one or more aspects of the present invention; and

FIG. 16 depicts one embodiment of an emulated host computer system to incorporate and

use one or more aspects of the present invention.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

7

DETAILED DESCRIPTION

In accordance with an aspect of the present invention, one or more control instructions are

provided to facilitate communication with adapters of a computing environment. The

control instructions are specifically designed for communicating data to and from the

address spaces of the adapters.

As used herein, the term adapter includes any type of adapter (e.g., storage adapter, network

adapter, processing adapter, PCI adapter, cryptographic adapter, other type of input/output

adapters, etc.). In one embodiment, an adapter includes one adapter function. However, in

other embodiments, an adapter may include a plurality of adapter functions. One or more

aspects of the present invention are applicable whether an adapter includes one adapter

function or a plurality of adapter functions. In one embodiment, if an adapter includes a

plurality of adapter functions, then each function may be communicated with in accordance

with an aspect of the present invention. Moreover, in the examples presented herein, adapter

is used interchangeably with adapter function (e.g., PCI function) unless otherwise noted.

One embodiment of a computing environment to incorporate and use one or more aspects of

the present invention is described with reference to FIG. 1A. In one example, a computing

environment 100 is a System z® server offered by International Business Machines

Corporation. System z® is based on the z/Architecture® offered by International Business

Machines Corporation. Details regarding the z/Architecture® are described in an IBM®

publication entitled, "z/Architecture Principles of Operation," IBM Publication No. SA22-

7832-07, February 2009. IBM®, System z® and z/Architecture® are registered trademarks

of International Business Machines Corporation, Armonk, New York. Other names used

herein may be registered trademarks, trademarks or product names of International Business

Machines Corporation or other companies.

In one example, computing environment 100 includes one or more central processing units

(CPUs) 102 coupled to a system memory 104 (a.k.a., main memory) via a memory controller

106. To access system memory 104, a central processing unit 102 issues a read or write

request that includes an address used to access system memory. The address included in the

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

8

request is typically not directly usable to access system memory, and therefore, it is

translated to an address that is directly usable in accessing system memory. The address is

translated via a translation mechanism (XLATE) 108. For example, the address is translated

from a virtual address to a real or absolute address using, for instance, dynamic address

translation (DAT).

The request, including the address (translated, if necessary), is received by memoiy

controller 106. In one example, memory controller 106 is comprised of hardware and is

used to arbitrate for access to the system memory and to maintain the memory's consistency.

This arbitration is performed for requests received from CPUs 102, as well as for requests

received from one or more adapters 110. Like the central processing units, the adapters issue

requests to system memory 104 to gain access to the system memory.

In one example, adapter 110 is a Peripheral Component Interconnect (PCI) or PCI Express

(PCIe) adapter that includes one or more PCI functions. A PCI function issues a request that

is routed to an input/output hub 112 (e.g., a PCI hub) via one or more switches (e.g., PCIe

switches) 114. In one example, the input/output hub is comprised of hardware, including

one or more state machines, and is coupled to memory controller 106 via an I/O-to-memory

bus 120.

The input/output hub includes, for instance, a root complex 116 that receives the request

from a switch. The request includes an input/output address that is provided to an address

translation and protection unit 118 which accesses information used for the request. As

examples, the request may include an input/output address used to perform a direct memory

access (DMA) operation or to request a message signaled interruption (MSI). Address

translation and protection unit 118 accesses information used for the DMA or MSI request.

As a particular example, for a DMA operation, information may be obtained to translate the

address. The translated address is then forwarded to the memory controller to access system

memory.

In one example, as described with reference to FIG. IB, information used for the DMA or

MSI request issued by an adapter is obtained from a device table entry 130 of a device table

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

9

132 located in the I/O hub (e.g., in the address translation and protection unit). The device

table entry includes information for the adapter, and each adapter has at least one device

table entry associated therewith. For instance, there is one device table entry per address

space (in system memory) assigned to the adapter. For a request issued from an adapter

(e.g., PCI function 138), a device table entry is located using a requestor ID provided in the

request.

Referring now to FIG. 1C, in a further embodiment of a computing environment, in addition

to or instead of one or more CPUs 102, a central processing complex is coupled to memory

controller 106. In this example, a central processing complex 150 includes, for instance, one

or more partitions or zones 152 (e.g., logical partitions LPl-LPn), one or more central

processors (e.g., CPl-CPm) 154, and a hypervisor 156 (e.g., a logical partition manager),

each of which is described below.

Each logical partition 152 is capable of functioning as a separate system. That is, each

logical partition can be independently reset, initially loaded with an operating system or a

hypervisor (such as z/VM® offered by International Business Machines Corporation,

Armonk, New York), if desired, and operate with different programs. An operating system,

a hypervisor, or an application program running in a logical partition appears to have access

to a full and complete system, but only a portion of it is available. A combination of

hardware and Licensed Internal Code (also referred to as microcode or millicode) keeps a

program in a logical partition from interfering with the program in a different logical

partition. This allows several different logical partitions to operate on a single or multiple

physical processor in a time slice manner. In this particular example, each logical partition

has a resident operating system 158, which may differ for one or more logical partitions. In

one embodiment, operating system 158 is a z/OS® or zLinux operating system, offered by

International Business Machines Corporation, Armonk, New York. z/OS® and z/VM® are

registered trademarks of International Business Machines Corporation, Armonk, New York.

Central processors 154 are physical processor resources that are allocated to the logical

partitions. For instance, a logical partition 152 includes one or more logical processors, each

of which represents all or a share of the physical processor resource 154 allocated to the

WO 2011/160710 PCT/EP2010/067028

10

5

10

15

20

25

30

partition. The underlying processor resource may either be dedicated to that partition or

shared with another partition.

Logical partitions 152 are managed by hypervisor 156 implemented by firmware running on

processors 154. Logical partitions 152 and hypervisor 156 each comprise one or more

programs residing in respective portions of central storage associated with the central

processors. One example of hypervisor 156 is the Processor Resource/Systems Manager

(PR/SM), offered by International Business Machines Corporation, Armonk, New York.

As used herein, firmware includes, e.g., the microcode, millicode and/or macrocode of the

processor. It includes, for instance, the hardware-level instructions and/or data structures

used in implementation of higher-level machine code. In one embodiment, it includes, for

instance, proprietary code that is typically delivered as microcode that includes trusted

software or microcode specific to the underlying hardware and controls operating system

access to the system hardware.

Although, in this example, a central processing complex having logical partitions is

described, one or more aspects of the present invention may be incorporated in and used by

other processing units, including single or multi-processor processing units that are not

partitioned, among others. The central processing complex described herein is only one

example.

As described above, adapters can issue requests to the processors requesting various

operations, such as direct memory accesses, message signaled interrupts, etc. Further, the

processors can issue requests to the adapters. For instance, returning to FIG. IB, a processor

102 can issue a request to access an adapter function 138. The request is routed from the

processor to the adapter function via FO hub 112 and one or more switches 114. In this

embodiment, the memory controller is not shown. However, the I/O hub may be coupled to

the processor directly or via a memory controller.

As an example, an operating system 140 executing within the processor issues an instruction

to the adapter function requesting a particular operation. In this example, instructions issued

WO 2011/160710 PCT/EP2010/067028

11

5

10

15

20

25

30

by the operating system are specific to the I/O infrastructure. That is, since the I/O

infrastructure is based on PCI or PCIe (both of which are referred to herein as PCI, unless

otherwise noted), the instructions are PCI instructions. Example PCI instructions include

PCI Load, PCI Store and PCI Store Block, to name a few. Although, in this example, the

I/O infrastructure and instructions arc based on PCI, in other embodiments, other

infrastructures and corresponding instructions may be used.

In one particular example, the instructions are directed to a specific location within an

address space of the adapter function. For instance, as shown in FIG. 2, an adapter function

138 includes storage 200, which is defined as a plurality of address spaces, including, for

instance: a configuration space 202 (e.g., PCI configuration space for a PCI function); an

I/O space 204 (e.g., PCI I/O space); and one or more memory spaces 206 (e.g., PCI memory

space). In other embodiments, more, less or different address spaces may be provided. The

instructions are targeted to a particular address space and a particular location within the

address space. This ensures that the configuration (e.g., operating system, LPAR, processor,

guest, etc.) issuing the instruction is authorized to access the adapter function.

To facilitate processing of the instructions, information stored in one or more data structures

is used. One such data structure that includes information regarding adapters is a function

table 300 stored, for instance, in secure memory. As shown in FIG. 3A, in one example, a

function table 300 includes one or more function table entries (FTEs) 302. In one example,

there is one function table entry per adapter function. Each function table entry 302 includes

information to be used in processing associated with its adapter function. In one example,

function table entry 302 includes, for instance:

Instance Number 308: This field indicates a particular instance of the function handle

associated with the function table entry;

Device Table Entry (DTE) Index 1...n 310: There may be one or more device table indices,

and each index is an index into a device table to locate a device table entry (DTE). There are

one or more device table entries per adapter function, and each entry includes information

associated with its adapter function, including information used to process requests of the

WO 2011/160710 PCT/EP2010/067028

12

5

10

15

20

25

30

adapter function (e.g., DMA requests, MSI requests) and information relating to requests to

the adapter function (e.g., PCI instructions). Each device table entry is associated with one

address space within system memory assigned to the adapter function. An adapter function

may have one or more address spaces within system memory assigned to the adapter

function.

Busy Indicator 312: This field indicates whether the adapter function is busy;

Permanent Error State Indicator 314: This field indicates whether the adapter function is in a

permanent error state;

Recovery Initiated Indicator 316: This field indicates whether recovery has been initiated

for the adapter function;

Permission Indicator 318: This field indicates whether the operating system trying to enable

the adapter function has authority to do so;

Enable Indicator 320: This field indicates whether the adapter function is enabled (e.g.,

l=enabled, 0=disabled);

Requestor Identifier (RID) 322: This is an identifier of the adapter function and may

include, for instance, a bus number, device number and function number. This field is used,

for instance, for accesses of a configuration space of the adapter function.

For instance, the configuration space may be accessed by specifying the configuration space

in an instruction issued by the operating system (or other configuration) to the adapter

function. Specified in the instruction is an offset into the configuration space and a function

handle used to locate the appropriate function table entry that includes the RID. The

firmware receives the instruction and determines it is for a configuration space. Therefore, it

uses the RID to generate a request to the I/O hub, and the I/O hub creates a request to access

the adapter. The location of the adapter function is based on the RID, and the offset

WO 2011/160710 PCT/EP2010/067028

13

5

10

15

20

25

30

specifies an offset into the configuration space of the adapter function. For instance, the

offset specifies a register number in the configuration space.

Base Address Register (BAR) (1 to n) 324: This field includes a plurality of unsigned

integers, designated as BAR0 - BARn, which are associated with the originally specified

adapter function, and whose values are also stored in the base address registers associated

with the adapter function. Each BAR specifies the starting address of a memory space or I/O

space within the adapter function, and also indicates the type of address space, that is

whether it is a 64 or 32 bit memory space, or a 32 bit I/O space, as examples;

In one example, it is used for accesses to memory space and/or I/O space of the adapter

function. For instance, an offset provided in an instruction to access the adapter function is

added to the value in the base address register associated with the address space designated

in the instruction to obtain the address to be used to access the adapter function. The address

space identifier provided in the instruction identifies the address space within the adapter

function to be accessed and the corresponding BAR to be used;

Size 1n 326: This field includes a plurality of unsigned integers, designated as SIZE0 -

SIZEn. The value of a Size field, when non-zero, represents the size of each address space

with each entry corresponding to a previously described BAR.

Further details regarding BAR and Size are described below.

1. When a BAR is not implemented for an adapter function, the BAR field and its

corresponding size field are both stored as zeros.

2. When a BAR field represents either an I/O address space or a 32-bit memory address

space, the corresponding size field is non-zero and represents the size of the address space.

3. When a BAR field represents a 64-bit memory address space,

a. The BARn field represents the least significant address bits.

b. The next consecutive BARn+1 field represents the most significant address bits.

WO 2011/160710 PCT/EP2010/067028

14

5

10

15

20

25

30

c. The corresponding SIZEn field is non-zero and represents the size of the address

space.

d. The corresponding SIZEn+1 field is not meaningful and is stored as zero.

Internal Routing information 328: This information is used to perform particular routing to

the adapter. It includes, for instance, node, processor chip, and I/O hub addressing

information, as examples.

Status Indicator 330: This provides an indication of whether load/store operations are

blocked, as well as other indications.

In one example, the busy indicator, permanent error state indicator, and recovery initiated

indicator are set based on monitoring performed by the firmware. Further, the permission

indicator is set, for instance, based on policy. The BAR information is based on

configuration information discovered during a bus walk by the processor (e.g., firmware of

the processor). Other fields may be set based on configuration, initialization and/or events.

In other embodiments, the function table entry may include more, less or different

information. The information included may depend on the operations supported by or

enabled for the adapter function.

To locate a function table entry in a function table that includes one or more entries, in one

embodiment, a function handle is used. For instance, one or more bits of the function handle

are used as an index into the function table to locate a particular function table entry.

Referring to FIG. 3B, additional details regarding a function handle are described. In one

example, a function handle 350 includes an enable indicator 352 that indicates whether the

PCI function handle is enabled; a PCI function number 354 that identifies the function (this

is a static identifier, and in one embodiment, is an index into the function table); and an

instance number 356 which indicates the particular instance of this function handle. For

example, each time the function is enabled, the instance number is incremented to provide a

new instance number.

WO 2011/160710 PCT/EP2010/067028

15

5

10

15

20

25

30

In accordance with an aspect of the present invention, to access an adapter function, a

configuration issues a request to the adapter function, which is executed by a processor. In

the examples herein, the configuration is an operating system, but in other examples, it may

be a system, processor, logical partition, guest, etc. These requests are via specific

instructions, which access the adapter. Example instructions include PCI Load, PCI Store,

and PCI Store Block instructions. These instructions are specific to the adapter architecture

(e.g., PCI). Further details regarding these instructions are described below. For instance,

one embodiment of a PCI Load instruction is described with reference to FIGs. 4A-5B; one

embodiment of a PCI Store instruction is described with reference to FIGs. 6A-7B; and one

embodiment of a PCI Store Block instruction is described with reference to FIGs. 8A-9B.

Referring initially to FIG. 4A, one embodiment of a PCI Load instruction is depicted. As

shown, a PCI Load instruction 400 includes, for instance, an opcode 402 indicating the PCI

Load instruction; a first field 404 specifying a location at which data fetched from an adapter

function will be loaded; and a second field 406 specifying a location at which various

information is included regarding the adapter function from which data is to be loaded. The

contents of the locations designated by Fields 1 and 2 are further described below.

In one example, Field 1 designates a general register, and as depicted in FIG. 4B, the

contents 404 of that register include a contiguous range of one or more bytes loaded from the

location of the adapter function specified in the instruction. In one example, the data is

loaded into the rightmost byte positions of the register.

In one embodiment, Field 2 designates a pair of general registers that include various

information . As shown in FIG. 4B, the contents of the registers include, for instance:

Enabled Handle 410: This field is an enabled function handle of the adapter function from

which the data is to be loaded;

Address Space 412: This field identifies the address space within the adapter function from

which the data is to be loaded;

WO 2011/160710 PCT/EP2010/067028

16

5

10

15

20

25

30

Offset Within Address Space 414: This field specifies the offset within the specified address

space from which the data is to be loaded;

Length field 416: This field specifies the length of the load operation (e.g., the number of

bytes to be loaded); and

Status field 418: This field provides a status code which is applicable when the instruction

completes with a predefined condition code.

In one embodiment, the bytes loaded from the adapter function are to be contained within an

integral boundary in the adapter function's designated PCI address space. When the address

space field designates a memory address space, the integral boundary size is, for instance, a

double word. When the address space field designates an I/O address space or a

configuration address space, the integral boundary size is, for instance, a word.

One embodiment of the logic associated with a PCI Load instruction is described with

reference to FIGs. 5A-5B. In one example, the instruction is issued by an operating system

(or other configuration) and executed by the processor (e.g., firmware) executing the

operating system. In the examples herein, the instructions and adapter functions are PCI-

based. However, in other examples, a different adapter architecture and corresponding

instructions may be used.

To issue the instruction, the operating system provides the following operands to the

instruction (e.g., in one or more registers designated by the instruction): the PCI function

handle, the PCT address space (PC1AS), the offset into the PCI address space, and the length

of the data to be loaded. Upon succ essful completion of the PCI Load instruction, the data is

loaded in the location (e.g., register) designated by the instruction.

Referring to FIG. 5A, initially, a determination is made as to whether the facility allowing

for a PCI Load instruction is installed, INQUIRY 500. This determination is made by, for

instance, checking an indicator stored in, for instance, a control block. If the facility is not

installed, an exception condition is provided, STEP 502. Otherwise, a determination is made

WO 2011/160710 PCT/EP2010/067028

17

5

10

15

20

25

30

as to whether the operands are aligned, INQUIRY 504. For instance, if certain operands

need to be in cverfodd register pairs, a determination is made as to whether those

requirements are met. If the operands are not aligned, then an exception is provided, STEP

506. Otherwise, if the facility is installed and the operands are aligned, a determination is

made as to whether the handle provided in the operands of the PCI Load instruction is

enabled, INQUIRY 508. In one example, this determination is made by checking an enable

indicator in the handle. If the handle is not enabled, then an exception condition is provided,

STEP 510.

If the handle is enabled, then the handle is used to locate a function table entry, STEP 512.

That is, at least a portion of the handle is used as an index into the function table to locate the

function table entry corresponding to the adapter function from which data is to be loaded.

Thereafter, if the configuration issuing the instruction is a guest, a determination is made as

to whether the function is configured for use by a guest, INQUIRY 514. If it is not

authorized, then an exception condition is provided, STEP 516. This inquiry may be ignored

if the configuration is not a guest or other authorizations may be checked, if designated. (In

one example, in the z/Architecture®, a pageable guest is interpretively executed via the Start

Interpretive Execution (SIE) instruction, at level 2 of interpretation. For instance, the logical

partition (LPAR) hypervisor executes the SIE instruction to begin the logical partition in

physical, fixed memory. If z/VM® is the operating system in that logical partition, it issues

the SIE instruction to execute its guests (virtual) machines in its V=V (virtual) storage.

Therefore, the LPAR hypervisor uses level-1 SIE, and the z/VM® hypervisor uses level-2

SIE.)

A determination is then made as to whether the function is enabled, INQUIRY 518. In one

example, this determination is made by checking an enable indicator in the function table

entry. If it is not enabled, then an exception condition is provided, STEP 520.

If the function is enabled, then a determination is made as to whether the address space is

valid, INQUIRY 522. For instance, is the specified address space a designated address space

of the adapter function and one that is appropriate for this instruction. If the address space is

WO 2011/160710 PCT/EP2010/067028

18

5

10

15

20

25

30

invalid, then an exception condition is provided, STEP 524. Otherwise, a determination is

made as to whether load/store is blocked, INQUIRY 526. In one example, this

determination is made by checking the status indicator in the function table entry. If

load/store is blocked, then an exception condition is provided, STEP 528.

However, if load/store is not blocked, a determination is made as to whether recovery is

active, INQUIRY 530. In one example, this determination is made by checking the recovery

initiated indicator in the function table entry. If recovery is active, then an exception

condition is provided, STEP 532. Otherwise, a determination is made as to whether the

function is busy, INQUIRY 534. This determination is made by checking the busy indicator

in the function table entry. If the function is busy, then a busy condition is provided, STEP

536. With a busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the offset

specified in the instruction is valid, INQUIRY 538. That is, is the offset in combination with

the length of the operation within the base and length of the address space, as specified in the

function table entry. If not, then an exception condition is provided, STEP 540. However, if

the offset is valid, then a determination is made as to whether the length is valid, INQUIRY

542. That is, subject to the address space type, offset within the address space, and an

integral boundary size is the length valid. If not, then an exception condition is provided,

STEP 544. Otherwise, processing continues with the load instruction. (In one embodiment,

the firmware performs the above checks.)

Continuing with FIG. 5B, a determination is made by the firmware as to whether the load is

for a configuration address space of the adapter function, INQUIRY 550. That is, based on

the configuration of the adapter function's memory, is the specified address space provided

in the instruction a configuration space. If so, then the firmware performs various

processing to provide the request to a hub coupled to the adapter function; the hub then

routes the request to the function, STEP 552.

For example, the firmware obtains the requestor ID from the function table entry pointed to

by the function handle provided in the instruction operands. Further, the firmware

WO 2011/160710 PCT/EP2010/067028

19

5

10

15

20

25

30

determines based on information in the function table entry (e.g., the internal routing

information) the hub to receive this request. That is, an environment may have one or more

hubs and the firmware determines the hub coupled to the adapter function. It then forwards

the request to the hub. The hub generates a configuration read request packet that flows out

on the PCI bus to the adapter function identified by the RID in the function table entry. The

configuration read request includes the RID and offset (i.e., data address) that are used to

fetch the data, as described below.

Returning to INQUIRY 550, if the designated address space is not a configuration space,

then once again the firmware performs various processing to provide the request to the hub,

STEP 554. The firmware uses the handle to select a function table entry and from that entry

it obtains information to locate the appropriate hub. It also calculates a data address to be

used in the load operation. This address is calculated by adding the BAR starting address

(with the BAR being that associated with the address space identifier provided in the

instruction) obtained from the function table entry to the offset provided in the instruction.

This calculated data address is provided to the hub. The hub then takes that address and

includes it in a request packet, such as a DMA read request packet, that flows out over the

PCI bus to the adapter function.

Responsive to receiving the request either via STEP 552 or STEP 554, the adapter function

fetches the requested data from the specified location (i.e., at the data address) and returns

that data in a response to the request, STEP 556. The response is forwarded from the adapter

function to the I/O hub. Responsive to receiving the response, the hub forwards the response

to the initiating processor. The initiating processor then takes the data from the response

packet and loads it in the designated location specified in the instruction (e.g., field 1 404).

The PCI Load operation concludes with an indication of success (e.g., setting a condition

code of zero).

In addition to a load instruction that retrieves data from an adapter function and stores it in a

designated location, another instruction that may be executed is a store instruction. The store

instruction stores data at a specified location in the adapter function. One embodiment of a

PCI Store instruction is described with reference to FIG. 6A. As shown, a PCI Store

WO 2011/160710 PCT/EP2010/067028

20

5

10

15

20

25

30

instruction 600 includes, for instance, an opcode 602 indicating the PCI Store instruction; a

first field 604 specifying a location that includes data to be stored in an adapter function; and

a second field 606 specifying a location at which various information is included regarding

the adapter function to which data is to be stored. The contents of the locations designated

by Fields 1 and 2 are further described below.

In one example, Field 1 designates a general register, and as depicted in FIG. 6B, the

contents 604 of that register include a contiguous range of one or more bytes of data to be

stored into the specified location of an adapter function. In one example, the data in the

rightmost byte positions of the register are stored.

In one embodiment, Field 2 designates a pair of general registers that include various

information. As shown in FIG. 6B, the contents of the register include, for instance:

Enabled Handle 610: This field is an enabled function handle of the adapter function to

which the data is to be stored;

Address Space 612: This field identifies the address space within the adapter function to

which the data is to be stored;

Offset Within Address Space 614: This field specifies the offset within the specified address

space to which the data is to be stored;

Length field 616: This field specifies the length of the store operation (e.g., the number of

bytes to be stored); and

Status field 618: This field provides a status code which is applicable when the instruction

completes with a predefined condition code.

On embodiment of the logic associated with a PCT Store instruction is described with

reference to FIGs. 7A-7B. In one example, the instruction is issued by an operating system,

and executed by the processor (e.g., firmware) executing the operating system.

WO 2011/160710 PCT/EP2010/067028

21

5

10

15

20

25

30

To issue the instruction, the operating system provides the following operands to the

instruction (e.g., in one or more registers designated by the instmction): the PCI function

handle, the PCI address space (PCIAS), the offset into the PCI address space, the length of

the data to be stored, and a pointer to the data to be stored. Upon successful completion of

the PCT Store instruction, the data is stored in the location designated by the instruction.

Referring to FIG. 7A, initially, a determination is made as to whether the facility allowing

for a PCI Store instruction is installed, INQUIRY 700. This determination is made by, for

instance, checking an indicator stored in, for instance, a control block. If the facility is not

installed, an exception condition is provided, STEP 702. Otherwise, a determination is made

as to whether the operands are aligned, INQUIRY 704. For instance, if certain operands

need to be in even/odd register pairs, a determination is made as to whether those

requirements are met. If the operands are not aligned, then an exception is provided, STEP

706. Otherwise, if the facility is installed and the operands are aligned, a determination is

made as to whether the handle provided in the operands of the PCI Store instruction is

enabled, INQUIRY 708. In one example, this determination is made by checking an enable

indicator in the handle. If the handle is not enabled, then an exception condition is provided,

STEP 710.

If the handle is enabled, then the handle is used to locate a function table entry, STEP 712.

That is, at least a portion of the handle is used as an index into the function table to locate the

function table entry corresponding to the adapter function at which data is to be stored.

Thereafter, if the configuration issuing the instruction is a guest, a determination is made as

to whether the function is configured for use by a guest, INQUIRY 714. If it is not

authorized, then an exception condition is provided, STEP 716. This inquiry may be ignored

if the configuration is not a guest or other authorizations may be checked, if designated.

A determination is then made as to whether the function is enabled, INQUIRY 718. In one

example, this determination is made by checking an enable indicator in the function table

entry. If it is not enabled, then an exception condition is provided, STEP 720.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

22

If the function is enabled, then a determination is made as to whether the address space is

valid, INQUIRY 722. For instance, is the specified address space a designated address space

of the adapter function and one that is appropriate for this instruction. If the address space is

invalid, then an exception condition is provided, STEP 724. Otherwise, a determination is

made as to whether load/store is blocked, INQUIRY 726. In one example, this

determination is made by checking the status indicator in the function table entry. If

load/store is blocked, then an exception condition is provided, STEP 728.

However, if the load/store is not blocked, a determination is made as to whether recovery is

active, INQUIRY 730. In one example, this determination is made by checking the recovery

initiated indicator in the function table entry. If recovery is active, then an exception

condition is provided, STEP 732. Otherwise, a determination is made as to whether the

function is busy, INQUIRY 734. This determination is made by checking the busy indicator

in the function table entry. If the function is busy, then a busy condition is provided, STEP

736. With a busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the offset

specified in the instruction is valid, INQUIRY 738. That is, is the offset in combination with

the length of the operation within the base and length of the address space, as specified in the

function table entry. If not, then an exception condition is provided, STEP 740. However, if

the offset is valid, then a determination is made as to whether the length is valid, INQUIRY

742. That is, subject to the address space type, offset within the address space, and an

integral boundary size is the length valid. If not, then an exception condition is provided,

STEP 744. Otherwise, processing continues with the store instruction. (In one embodiment,

the firmware performs the above checks.)

Continuing with FIG. 7B, a determination is made by the firmware as to whether the store is

for a configuration address space of the adapter function, INQUIRY 750. That is, based on

the configuration of the adapter function's memory, is the specified address space provided

in the instruction a configuration space. If so, then the firmw are performs various

processing to provide the request to a hub coupled to the adapter function; the hub then

routes the request to the function, STEP 752.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

23

For example, the firmware obtains the requestor ID from the function table entry pointed to

by the function handle provided in the instruction operands. Further, the firmware

determines based on information in the function table entry (e.g., the internal routing

information) the hub to receive this request. That is, an environment may have one or more

hubs and the firmware determines the hub coupled to the adapter function. It then forwards

the request to the hub. The hub generates a configuration write request packet that flows out

on the PCI bus to the adapter function identified by the RID in the function table entry. The

configuration write request includes the RID and offset (i.e., data address) that are used to

store the data, as described below.

Returning to INQUIRY 750, if the designated address space is not a configuration space,

then once again the firmware performs various processing to provide the request to the hub,

STEP 754. The firmware uses the handle to select a function table entry and from that entry

it obtains information to locate the appropriate hub. It also calculates a data address to be

used in the store operation. This address is calculated by adding the BAR starting address

obtained from the function table entry to the offset provided in the instruction. This

calculated data address is provided to the hub. The hub then takes that address and includes

it in a request packet, such as a DMA write request packet, that flows out over the PCI bus to

the adapter function.

Responsive to receiving the request either via STEP 752 or STEP 754, the adapter function

stores the requested data at the specified location (i.e., at the data address), STEP 756. The

PCI Store operation concludes with an indication of success (e.g., setting a condition code of

zero).

In addition to the load and store instructions, which typically load or store a maximum of,

e.g., 8 bytes, another instruction that may be executed is a store block instruction. The store

block instruction stores larger blocks of data (e.g., 16, 32, 64, 128 or 256 bytes) at a

specified location in the adapter function; the block sizes are not necessarily limited to

powers of two in size. In one example, the specified location is in a memory space ofthe

adapter function (not an I/O or configuration space).

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

24

One embodiment of a PCI Store Block instruction is described with reference to FIG. 8A.

As shown, a PCI Store Block instruction 800 includes, for instance, an opcode 802

indicating the PCI Store Block instruction; a first field 804 specifying a location at which

various information is included regarding the adapter function to which data is to be stored; a

second field 806 specifying a location that includes an offset within the specified address

space into which the data is to be stored; and a third field 808 specifying a location that

includes an address in system memory of data to be stored in the adapter function. The

contents of the locations designated by Fields 1, 2 and 3 are further described below.

In one embodiment, Field 1 designates a general register that includes various information.

As shown in FIG. 8B, the contents ofthe register include, for instance:

Enabled Handle 810: This field is an enabled function handle of the adapter function to

which the data is to be stored;

Address Space 812: This field identifies the address space within the adapter function to

which the data is to be stored;

Length field 814: This field specifies the length of the store operation (e.g., the number of

bytes to be stored); and

Status field 816: This field provides a status code which is applicable when the instruction

completes with a predefined condition code.

In one example, Field 2 designates a general register, and as depicted in FIG. 8C, the

contents of the register include a value (e.g., 64-bit unsigned integer) that specifies the offset

within the specified address space into which the data is to be stored.

In one example, Field 3, as depicted in FIG. 8D, includes the logical address in system

memory of the first byte of data 822 to be stored in the adapter function.

WO 2011/160710 PCT/EP2010/067028

25

5

10

15

20

25

30

One embodiment of the logic associated with a PCI Store Block instruction is described with

reference to FIGs. 9A-9B. In one example, the instruction is issued by an operating system,

and executed by the processor (e.g., firmware) executing the operating system.

To issue the instruction, the operating system provides the following operands to the

instruction (e.g., in one or more registers designated by the instruction): the PCI function

handle, the PCI address space (PCIAS), the offset into the PCI address space, the length of

the data to be stored, and a pointer to the data to be stored. The pointer operand may

comprise both a register and a signed or unsigned displacement. Upon successful

completion of the PCI Store Block instruction, the data is stored in the location in the adapter

designated by the instruction.

Referring to FIG. 9A, initially, a determination is made as to whether the facility allowing

for a PCI Store Block instruction is installed, INQUIRY 900. This determination is made

by, for instance, checking an indicator stored in, for instance, a control block. If the facility

is not installed, an exception condition is provided, STEP 902. Otherwise, if the facility is

installed, a determination is made as to whether the handle provided in the operands of the

PCI Store Block instruction is enabled, INQUIRY 904. Tn one example, this determination

is made by checking an enable indicator in the handle. If the handle is not enabled, then an

exception condition is provided, STEP 906.

If the handle is enabled, then the handle is used to locate a function table entry, STEP 912.

That is, at least a portion of the handle is used as an index into the function table to locate the

function table entry corresponding to the adapter function at which data is to be stored.

Thereafter, if the configuration issuing the instruction is a guest, a determination is made as

to whether the function is configured for use by a guest, INQUIRY 914. If it is not

authorized, then an exception condition is provided, STEP 916. This inquiry may be ignored

if the configuration is not a guest or other authorizations may be checked, if designated.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

26

A determination is then made as to whether the function is enabled, INQUIRY 918. In one

example, this determination is made by checking an enable indicator in the function table

entry. If it is not enabled, then an exception condition is provided, STEP 920.

If the function is enabled, then a determination is made as to whether the address space is

valid, INQUIRY 922. For instance, is the specified address space a designated address space

of the adapter function and one that is appropriate for this instruction (i.e., a memory space).

If the address space is invalid, then an exception condition is provided, STEP 924.

Otherwise, a determination is made as to whether load/store is blocked, INQUIRY 926. In

one example, this determination is made by checking the status indicator in the function

table entry. If load/store is blocked, then an exception condition is provided, STEP 928.

However, if the load/store is not blocked, a determination is made as to whether recovery is

active, INQUIRY 930. In one example, this determination is made by checking the recovery

initiated indicator in the function table entry. If recovery is active, then an exception

condition is provided, STEP 932. Otherwise, a determination is made as to whether the

function is busy, INQUIRY 934. This determination is made by checking the busy indicator

in the function table entry. If the function is busy, then a busy condition is provided, STEP

936. With a busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the offset

specified in the instruction is valid, INQUIRY 938. That is, is the offset in combination with

the length of the operation within the base and length of the address space, as specified in the

function table entry. If not, then an exception condition is provided, STEP 940. However, if

the offset is valid, then a determination is made as to whether the length is valid, INQUIRY

942. That is, subject to the address space type, offset within the address space, and an

integral boundary size is the length valid. If not, then an exception condition is provided,

STEP 944. Otherwise, processing continues with the store block instruction. (In one

embodiment, the firmware performs the above checks.)

Continuing with FIG. 9B, a determination is made by the firmware as to whether the storage

that includes the data to be stored is accessible, INQUIRY 950. If not, an exception

WO 2011/160710 PCT/EP2010/067028

27

5

10

15

20

25

30

condition is provided, STEP 952. If so, then the firmware performs various processing to

provide the request to a hub coupled to the adapter function; the hub then routes the request

to the function, STEP 954.

For example, the firmware uses the handle to select a function table entry and from that entiy

it obtains information to locate the appropriate hub. It also calculates a data address to be

used in the store block operation. This address is calculated by adding the BAR starting

address (with the BAR being identified by the address space identifier) obtained from the

function table entry to the offset provided in the instruction. This calculated data address is

provided to the hub. In addition, the data referenced by the address provided in the

instruction is fetched from system memory and provided to the I/O hub. The hub then takes

that address and data and includes it in a request packet, such as a DMA write request

packet, that flows out over the PCI bus to the adapter function.

Responsive to receiving the request, the adapter function stores the requested data at the

specified location (i.e., at the data address), STEP 956. The PCI Store Block operation

concludes with an indication of success (e.g., setting a condition code of zero).

Described in detail above is a capability for communicating with adapters of a computing

environment using control instructions specifically designed for such communication. The

communication is performed without using memory mapped I/O and is not limited to control

registers in the adapter function. The instructions ensure that the configuration that issues

the instruction is authorized to access the adapter function. Further, for the Store Block

instruction, it ensures that the specified main storage location is within the configuration's

memory.

In the embodiments described herein, the adapters are PCI adapters. PCI, as used herein,

refers to any adapters implemented according to a PCI-based specification as defined by the

Peripheral Component Interconnect Special Interest Group (PCI-SIG), including but not

limited to, PCI or PCIe. In one particular example, the Peripheral Component interconnect

Express (PCIe) is a component level interconnect standard that defines a bi-directional

communication protocol for transactions between I/O adapters and host systems. PCIe

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

28

communications are encapsulated in packets according to the PCIe standard for transmission

on a PCIe bus. Transactions originating at I/O adapters and ending at host systems are

referred to as upbound transactions. Transactions originating at host systems and

terminating at I/O adapters are referred to as downbound transactions. The PCIe topology is

based on point-to-point unidirectional links that are paired (e.g., one upbound link, one

downbound link) to form the PCIe bus. The PCIe standard is maintained and published by

the PCI-SIG, as noted above in the Background section.

As will be appreciated by one skilled in the art, aspects of the present invention may be

embodied as a system, method or computer program product. Accordingly, aspects of the

present invention may take the form of an entirely hardware embodiment, an entirely

software embodiment (including firmware, resident software, micro-code, etc.) or an

embodiment combining software and hardware aspects that may all generally be referred to

herein as a "circuit," "module" or "system". Furthermore, aspects of the present invention

may take the form of a computer program product embodied in one or more computer

readable medium(s) having computer readable program code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The

computer readable medium may be a computer readable storage medium. A computer

readable storage medium may be, for example, but not limited to, an electronic, magnetic,

optical, electromagnetic, infrared or semiconductor system, apparatus, or device, or any

suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the

computer readable storage medium include the following: an electrical connection having

one or more wires, a portable computer diskette, a hard disk, a random access memory

(RAM), a read-only memory (ROM), an erasable programmable read-only memory

(EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory

(CD-ROM), an optical storage device, a magnetic storage device, or any suitable

combination of the foregoing. In the context of this document, a computer readable storage

medium may be any tangible medium that can contain or store a program for use by or in

connection with an instruction execution system, apparatus, or device.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

29

Referring now to FIG. 10, in one example, a computer program product 1000 includes, for

instance, one or more computer readable storage media 1002 to store computer readable

program code means or logic 1004 thereon to provide and facilitate one or more aspects of

the present invention.

Program code embodied on a computer readable medium may be transmitted using an

appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF,

etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of the present invention may

be written in any combination of one or more programming languages, including an object

oriented programming language, such as Java, Smalltalk, C++ or the like, and conventional

procedural programming languages, such as the "C" programming language, assembler or

similar programming languages. The program code may execute entirely on the user's

computer, partly on the user's computer, as a stand-alone software package, partly on the

user's computer and partly on a remote computer or entirely on the remote computer or

server. In the latter scenario, the remote computer may be connected to the user's computer

through any type of network, including a local area network (LAN) or a wide area network

(WAN), or the connection may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

Aspects of the present invention are described herein with reference to flowchart illustrations

and/or block diagrams of methods, apparatus (systems) and computer program products

according to embodiments of the invention. It will be understood that each block of the

flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart

illustrations and/or block diagrams, can be implemented by computer program instructions.

These computer program instructions may be provided to a processor of a general purpose

computer, special purpose computer, or other programmable data processing apparatus to

produce a machine, such that the instructions, which execute via the processor of the

computer or other programmable data processing apparatus, create means for implementing

the functions/acts specified in the flowchart and/or block diagram block or blocks.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

30

These computer program instructions may also be stored in a computer readable medium

that can direct a computer, other programmable data processing apparatus, or other devices

to function in a particular manner, such that the instructions stored in the computer readable

medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other

programmable data processing apparatus, or other devices to cause a series of operational

steps to be performed on the computer, other programmable apparatus or other devices to

produce a computer implemented process such that the instructions which execute on the

computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate the architecture, functionality, and

operation of possible implementations of systems, methods and computer program products

according to various embodiments of the present invention. In this regard, each block in the

flowchart or block diagrams may represent a module, segment, or portion of code, which

comprises one or more executable instructions for implementing the specified logical

function(s). It should also be noted that, in some alternative implementations, the functions

noted in the block may occur out of the order noted in the figures. For example, two blocks

shown in succession may, in fact, be executed substantially concurrently, or the blocks may

sometimes be executed in the reverse order, depending upon the functionality involved. It

will also be noted that each block of the block diagrams and/or flowchart illustration, and

combinations of blocks in the block diagrams and/or flowchart illustration, can be

implemented by special purpose hardware-based systems that perform the specified

functions or acts, or combinations of special purpose hardware and computer instructions.

In addition to the above, one or more aspects of the present invention may be provided,

offered, deployed, managed, serviced, etc. by a service provider who offers management of

customer environments. For instance, the service provider can create, maintain, support, etc.

computer code and/or a computer infrastructure that performs one or more aspects of the

present invention for one or more customers. In return, the service provider may receive

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

31

payment from the customer under a subscription and/or fee agreement, as examples.

Additionally or alternatively, the service provider may receive payment from the sale of

advertising content to one or more third parties.

In one aspect of the present invention, an application may be deployed for performing one or

more aspects of the present invention. As one example, the deploying of an application

comprises providing computer infrastructure operable to perform one or more aspects of the

present invention.

As a further aspect of the present invention, a computing infrastructure may be deployed

comprising integrating computer readable code into a computing system, in which the code

in combination with the computing system is capable of performing one or more aspects of

the present invention.

As yet a further aspect of the present invention, a proc ess for integrating computing

infrastructure comprising integrating computer readable code into a computer system may be

provided. The computer system comprises a computer readable medium, in which the

computer medium comprises one or more aspects of the present invention. The code in

combination with the computer system is capable of performing one or more aspects of the

present invention.

Although various embodiments are described above, these are only examples. For example,

computing environments of other architectures can incorporate and use one or more aspects

of the present invention. As examples, servers other than System z® servers, such as Power

Systems servers or other servers offered by International Business Machines Corporation, or

servers of other companies can include, use and/or benefi t from one or more aspects of the

present invention. Further, although in the examples herein, the adapters and PCI hub are

considered a part of the server, in other embodiments, they do not have to necessarily be

considered a part of the server, but can simply be considered as being coupled to system

memory and/or other components of a computing environment. The computing environment

need not be a server. Further, although tables are described, any data structure can be used

and the term table is to include all such data structures. Yet further, although the adapters

WO 2011/160710 PCT/EP2010/067028

32

5

10

15

20

25

30

are PCI based, one or more aspects of the present invention are usable with other adapters or

other I/O components. Adapter and PCI adapter are just examples. Moreover, the FTE or

the parameters of the FTE can be located and maintained in other than secure memory,

including, for instance, in hardware (e.g., PCI function hardware). The DTE, FTE and/or

handl e may include more, less or different information, as well as any of the instructions or

instruction fields. Many other variations are possible.

Further, other types of computing environments can benefit from one or more aspects of the

present invention. As an example, a data processing system suitable for storing and/or

executing program code is usable that includes at least two processors coupled directly or

indirectly to memory elements through a system bus. The memory elements include, for

instance, local memory employed during actual execution of the program code, bulk storage,

and cache memory which provide temporary storage of at least some program code in order

to reduce the number of times code must be retrieved from bulk storage during execution.

Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing

devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.) can be

coupled to the system either directly or through intervening I/O controllers. Network

adapters may also be coupled to the system to enable the data processing system to become

coupled to other data processing systems or remote printers or storage devices through

intervening private or public networks. Modems, cable modems, and Ethernet cards are just

a few of the available types of network adapters.

Referring to FIG. 11, representative components of a Host Computer system 5000 to

implement one or more aspects of the present invention are portrayed. The representative

host computer 5000 comprises one or more CPUs 5001 in communication with computer

memory (i.e., central storage) 5002, as well as I/O interfaces to storage media devices 5011

and networks 5010 for communicating with other computers or SANs and the like. The

CPU 5001 is compliant with an architecture having an architected instruction set and

architected functionality. The CPU 5001 may have dynamic address translation (DAT) 5003

for transforming program addresses (virtual addresses) into real addresses of memory. A

DAT typically includes a translation lookaside buffer (TFB) 5007 for caching translations so

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

33

that later accesses to the block of computer memory 5002 do not require the delay of address

translation. Typically, a cache 5009 is employed between computer memory 5002 and the

processor 5001. The cache 5009 may be hierarchical having a large cache available to more

than one CPU and smaller, faster (lower level) caches between the large cache and each

CPU. Tn some implementations, the lower level caches are split to provide separate low

level caches for instruction fetching and data accesses. In one embodiment, an instruction is

fetched from memory 5002 by an instruction fetch unit 5004 via a cache 5009. The

instruction is decoded in an instruction decode unit 5006 and dispatched (with other

instructions in some embodiments) to instruction execution unit or units 5008. Typically

several execution units 5008 are employed, for example an arithmetic execution unit, a

floating point execution unit and a branch instruction execution unit. The instruction is

executed by the execution unit, accessing operands from instruction specified registers or

memory as needed. If an operand is to be accessed (loaded or stored) from memory 5002, a

load/store unit 5005 typically handles the access under control of the instruction being

executed. Instructions may be executed in hardware circuits or in internal microcode

(firmware) or by a combination of both.

As noted, a computer system includes information in local (or main) storage, as well as

addressing, protection, and reference and change recording. Some aspects of addressing

include the format of addresses, the concept of address spaces, the various types of

addresses, and the manner in which one type of address is translated to another type of

address. Some of main storage includes permanently assigned storage locations. Main

storage provides the system with directly addressable fast-access storage of data. Both data

and programs are to be loaded into main storage (from input devices) before they can be

processed.

Main storage may include one or more smaller, faster-access buffer storages, sometimes

called caches. A cache is typically physically associated with a CPU or an I/O processor.

The effects, except on performance, of the physical construction and use of distinct storage

media are generally not observable by the program.

WO 2011/160710 PCT/EP2010/067028

34

5

10

15

20

25

30

Separate caches may be maintained for instructions and for data operands. Information

within a cache is maintained in contiguous bytes on an integral boundary called a cache

block or cache line (or line, for short). A model may provide an EXTRACT CACHE

ATTRIBUTE instruction which returns the size of a cache line in bytes. A model may also

provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG instructions which

effects the prefetching of storage into the data or instruction cache or the releasing of data

from the cache.

Storage is viewed as a long horizontal string of bits. For most operations, accesses to storage

proceed in a left-to-right sequence. The string of bits is subdivided into units of eight bits.

An eight-bit unit is called a byte, which is the basic building block of all information

formats. Each byte location in storage is identified by a unique nonnegative integer, which

is the address of that byte location or, simply, the byte address. Adjacent byte locations have

consecutive addresses, starting with 0 on the left and proceeding in a left-to-right sequence.

Addresses are unsigned binary integers and are 24, 31, or 64 bits.

Information is transmitted between storage and a CPU or a channel subsystem one byte, or a

group of bytes, at a time. Unless otherwise specified, in, for instance, the z/Architecture®, a

group of bytes in storage is addressed by the leftmost byte of the group. The number of

bytes in the group is either implied or explicitly specified by the operation to be performed.

When used in a CPU operation, a group of bytes is called a field. Within each group of

bytes, in, for instance, the z/Architecture®, bits are numbered in a left-to-right sequence. In

the z/Architecture®, the leftmost bits are sometimes referred to as the “high-order” bits and

the rightmost bits as the “low-order” bits. Bit numbers are not storage addresses, however.

Only bytes can be addressed. To operate on individual bits of a byte in storage, the entire

byte is accessed. The bits in a byte are numbered 0 through 7, from left to right (in, e.g., the

z/Architecture®). The bits in an address may be numbered 8-31 or 40-63 for 24-bit

addresses, or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit

addresses. Within any other fixed-length format of multiple bytes, the bits making up the

format are consecutively numbered starting from 0. For purposes of error detection, and in

preferably for correction, one or more check bits may be transmitted with each byte or with a

group of bytes. Such check bits are generated automatically by the machine and cannot be

WO 2011/160710 PCT/EP2010/067028

35

5

10

15

20

25

30

directly controlled by the program. Storage capacities are expressed in number of bytes.

When the length of a storage-operand field is implied by the operation code of an

instruction, the field is said to have a fixed length, which can be one, two, four, eight, or

sixteen bytes. Larger fields may be implied for some instructions. When the length of a

storage-operand field is not implied but is stated explicitly, the field is said to have a variable

length. Variable-length operands can vary in length by increments of one byte (or with some

instructions, in multiples of two bytes or other multiples). When information is placed in

storage, the contents of only those byte locations are replaced that are included in the

designated field, even though the width of the physical path to storage may be greater than

the length of the field being stored.

Certain units of information are to be on an integral boundary in storage. A boundary is

called integral for a unit of information when its storage address is a multiple of the length of

the unit in bytes. Special names are given to fields of 2, 4, 8, and 16 bytes on an integral

boundary. A halfword is a group of two consecutive bytes on a two-byte boundary and is

the basic building block of instructions. A word is a group of four consecutive bytes on a

four-byte boundary. A doubleword is a group of eight consecutive bytes on an eight-byte

boundary. A quadword is a group of 16 consecutive bytes on a 16-byte boundary. When

storage addresses designate halfwords, words, doublewords, and quadwords, the binary

representation of the address contains one, two, three, or four rightmost zero bits,

respectively. Instructions are to be on two-byte integral boundaries. The storage operands

of most instructions do not have boundary-alignment requirements.

On devices that implement separate caches for instructions and data operands, a significant

delay may be experienced if the program stores into a cache line from which instructions are

subsequently fetched, regardless of whether the store alters the instructions that are

subsequently fetched.

In one embodiment, the invention may be practiced by software (sometimes referred to

licensed internal code, firmware, micro-code, milli-code, pico-code and the like, any of

which would be consistent with the present invention). Referring to FIG. 8, software

program code which embodies the present invention is typically accessed by processor 5001

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

36

of the host system 5000 from long-term storage media devices 5011, such as a CD-ROM

drive, tape drive or hard drive. The software program code may be embodied on any of a

variety of known media for use with a data processing system, such as a diskette, hard drive,

or CD-ROM. The code may be distributed on such media, or may be distributed to users

from computer memory 5002 or storage of one computer system over a network 5010 to

other computer systems for use by users of such other systems.

The software program code includes an operating system which controls the function and

interaction of the various computer components and one or more application programs.

Program code is normally paged from storage media device 5011 to the relatively higher-

speed computer storage 5002 where it is available for processing by processor 5001. The

techniques and methods for embodying software program code in memory, on physical

media, and/or distributing software code via networks are well known and will not be further

discussed herein. Program code, when created and stored on a tangible medium (including

but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs),

DVDs, Magnetic Tape and the like is often referred to as a “computer program product”.

The computer program product medium is typically readable by a processing circuit

preferably in a computer system for execution by the processing circuit.

FIG. 12 illustrates a representative workstation or server hardware system in which the

present invention may be practiced. The system 5020 of FIG. 12 comprises a representative

base computer system 5021, such as a personal computer, a workstation or a server,

including optional peripheral devices. The base computer system 5021 includes one or more

processors 5026 and a bus employed to connect and enable communication between the

processor(s) 5026 and the other components of the system 5021 in accordance with known

techniques. The bus connects the processor 5026 to memory 5025 and long-term storage

5027 which can include a hard drive (including any of magnetic media, CD, DVD and Flash

Memory for example) or a tape drive for example. The system 5021 might also include a

user interface adapter, which connects the microprocessor 5026 via the bus to one or more

interface devices, such as a keyboard 5024, a mouse 5023, a printer/scanner 5030 and/or

other interface devices, which can be any user interface device, such as a touch sensitive

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

37

screen, digitized entry pad, etc. The bus also connects a display device 5022, such as an

LCD screen or monitor, to the microprocessor 5026 via a display adapter.

The system 5021 may communicate with other computers or networks of computers by way

of a network adapter capable of communicating 5028 with a network 5029. Example

network adapters are communications channels, token ring, Ethernet or modems.

Alternatively, the system 5021 may communicate using a wireless interface, such as a CDPD

(cellular digital packet data) card. The system 5021 may be associated with such other

computers in a Local Area Network (LAN) or a Wide Area Network (WAN), or the system

5021 can be a client in a client/server arrangement with another computer, etc. All of these

configurations, as well as the appropriate communications hardware and software, are

known in the art.

FIG. 13 illustrates a data processing network 5040 in which the present invention may be

practiced. The data processing network 5040 may include a plurality of individual networks,

such as a wireless network and a wired network, each of which may include a plurality of

individual workstations 5041, 5042, 5043, 5044. Additionally, as those skilled in the art will

appreciate, one or more LANs may be included, where a LAN may comprise a plurality of

intelligent workstations coupled to a host processor.

Still referring to FIG. 13, the networks may also include mainframe computers or servers,

such as a gateway computer (client server 5046) or application server (remote server 5048

which may access a data repository and may also be accessed directly from a workstation

5045). A gateway computer 5046 serves as a point of entry into each individual network. A

gateway is needed when connecting one networking protocol to another. The gateway 5046

may be preferably coupled to another network (the Internet 5047 for example) by means of a

communications link. The gateway 5046 may also be directly coupled to one or more

workstations 5041, 5042, 5043, 5044 using a communications link. The gateway computer

may be implemented utilizing an IBM eServer™ System z® server available from

International Business Machines Corporation.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

38

Referring concurrently to FIG. 12 and FIG. 13, software programming code which may

embody the present invention may be accessed by the processor 5026 of the system 5020

from long-term storage media 5027, such as a CD-ROM drive or hard drive. The software

programming code may be embodied on any of a variety of known media for use with a data

processing system, such as a diskette, hard drive, or CD-ROM. The code may be distributed

on such media, or may be distributed to users 5050, 5051 from the memory or storage of one

computer system over a network to other computer systems for use by users of such other

systems.

Alternatively, the programming code may be embodied in the memory 5025, and accessed

by the processor 5026 using the processor bus. Such programming code includes an

operating system which controls the function and interaction of the various computer

components and one or more application programs 5032. Program code is normally paged

from storage media 5027 to high-speed memory 5025 where it is available for processing by

the processor 5026. The techniques and methods for embodying software programming

code in memory, on physical media, and/or distributing software code via networks are well

known and will not be further discussed herein. Program code, when created and stored on a

tangible medium (including but not limited to electronic memory modules (RAM), flash

memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a

“computer program product”. The computer program product medium is typically readable

by a processing circuit preferably in a computer system for execution by the processing

circuit.

The cache that is most readily available to the processor (normally faster and smaller than

other caches of the processor) is the lowest (LI or level one) cache and main store (main

memory) is the highest level cache (L3 if there are 3 levels). The lowest level cache is often

divided into an instruction cache (I-Cache) holding machine instructions to be executed and

a data cache (D-Cache) holding data operands.

Referring to FIG. 14, an exemplary processor embodiment is depicted for processor 5026.

Typically one or more levels of cache 5053 are employed to buffer memory blocks in order

to improve processor performance. The cache 5053 is a high speed buffer holding cache

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

39

lines of memory data that are likely to be used. Typical cache lines are 64, 128 or 256 bytes

of memory data. Separate caches are often employed for caching instructions than for

caching data. Cache coherence (synchronization of copies of lines in memory and the

caches) is often provided by various “snoop” algorithms well known in the art. Main

memory storage 5025 of a processor system is often referred to as a cache. In a processor

system having 4 levels of cache 5053, main storage 5025 is sometimes referred to as the

level 5 (L5) cache since it is typically faster and only holds a portion of the non-volatile

storage (DASD, tape etc) that is available to a computer system. Main storage 5025

“caches” pages of data paged in and out of the main storage 5025 by the operating system.

A program counter (instruction counter) 5061 keeps track of the address ofthe current

instruction to be executed. A program counter in a z/Architecture® processor is 64 bits and

can be truncated to 31 or 24 bits to support prior addressing limits. A program counter is

typically embodied in a PSW (program status word) of a computer such that it persists

during context switching. Thus, a program in progress, having a program counter value,

may be interrupted by, for example, the operating system (context switch from the program

environment to the operating system environment). The PSW of the program maintains the

program counter value while the program is not active, and the program counter (in the

PSW) of the operating system is used while the operating system is executing. Typically,

the program counter is incremented by an amount equal to the number of bytes of the current

instruction. RISC (Reduced Instruction Set Computing) instructions are typically fixed

length while CISC (Complex Instruction Set Computing) instructions are typically variable

length. Instructions of the IBM z/Architecture® are CISC instructions having a length of 2,

4 or 6 bytes. The Program counter 5061 is modified by either a context switch operation or a

branch taken operation of a branch instruction for example. In a context switch operation,

the current program counter value is saved in the program status word along with other state

information about the program being executed (such as condition codes), and a new program

counter value is loaded pointing to an instruction of a new program module to be executed.

A branch taken operation is performed in order to permit the program to make decisions or

loop within the program by loading the result of the branch instruction into the program

counter 5061.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

40

Typically an instruction fetch unit 5055 is employed to fetch instructions on behalf of the

processor 5026. The fetch unit either fetches “next sequential instructions”, target

instructions of branch taken instructions, or first instructions of a program following a

context switch. Modem Instruction fetch units often employ prefetch techniques to

speculatively prefetch instructions based on the likelihood that the prefetched instructions

might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the

next sequential instruction and additional bytes of further sequential instructions.

The fetched instructions are then executed by the processor 5026. In an embodiment, the

fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit. The dispatch unit

decodes the instruction(s) and forwards information about the decoded instruction(s) to

appropriate units 5057, 5058, 5060. An execution unit 5057 will typically receive

mformation about decoded arithmetic instructions from the instruction fetch unit 5055 and

will perform arithmetic operations on operands according to the opcode of the instruction.

Operands are provided to the execution unit 5057 preferably either from memory 5025,

architected registers 5059 or from an immediate field of the instruction being executed.

Results of the execution, when stored, are stored either in memory 5025, registers 5059 or in

other machine hardware (such as control registers, PSW registers and the like).

A processor 5026 typically has one or more units 5057, 5058, 5060 for executing the

function of the instruction. Referring to FIG. 15A, an execution unit 5057 may

communicate with architected general registers 5059, a decode/dispatch unit 5056, a load

store unit 5060, and other 5065 processor units by way of interfacing logic 5071. An

execution unit 5057 may employ several register circuits 5067, 5068, 5069 to hold

information that the arithmetic logic unit (ALU) 5066 will operate on. The ALU performs

arithmetic operations such as add, subtract, multiply and divide as well as logical lunction

such as and, or and exclusive-or (XOR), rotate and shift. Preferably the ALU supports

specialized operations that are design dependent. Other circuits may provide other

architected facilities 5072 including condition codes and recovery support logic for example.

Typically the result of an ALU operation is held in an output register circuit 5070 which can

forward the result to a variety of other processing functions. There are many arrangements

WO 2011/160710 PCT/EP2010/067028

41

5

10

15

20

25

30

of processor units, the present description is only intended to provide a representative

understanding of one embodiment.

An ADD instruction for example would be executed in an execution unit 5057 having

arithmetic and logical functionality while a floating point instruction for example would be

executed in a floating point execution having specialized floating point capability.

Preferably, an execution unit operates on operands identified by an instruction by performing

an opcode defined function on the operands. For example, an ADD instruction may be

executed by an execution unit 5057 on operands found in two registers 5059 identified by

register fields of the instruction.

The execution unit 5057 performs the arithmetic addition on two operands and stores the

result in a third operand where the third operand may be a third register or one of the two

source registers. The execution unit preferably utilizes an Arithmetic Logic Unit (ALU)

5066 that is capable of performing a variety of logical functions such as Shift, Rotate, And,

Or and XOR as well as a variety of algebraic functions including any of add, subtract,

multiply, divide. Some ALUs 5066 are designed for scalar operations and some for floating

point. Data may be Big Endian (where the least significant byte is at the highest byte

address) or Little Endian (where the least significant byte is at the lowest byte address)

depending on architecture. The IBM z/Architecture® is Big Endian. Signed fields may be

sign and magnitude, 1 ’s complement or 2’s complement depending on architecture. A 2’s

complement number is advantageous in that the ALU does not need to design a subtract

capability since either a negative value or a positive value in 2’s complement requires only

an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bit

field defines an address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilo­

byte) block, for example.

Referring to FIG. 15B, branch instruction information for executing a branch instruction is

typically sent to a branch unit 5058 which often employs a branch prediction algorithm such

as a branch history table 5082 to predict the outcome of the branch before other conditional

operations are complete. The target of the current branch instruction will be fetched and

speculatively executed before the conditional operations are complete. When the conditional

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

42

operations are completed the speculatively executed branch instructions are either completed

or discarded based on the conditions of the conditional operation and the speculated

outcome. A typical branch instruction may test condition codes and branch to a target

address if the condition codes meet the branch requirement of the branch instruction, a target

address may be calculated based on several numbers including ones found in register fields

or an immediate field of the instruction for example. The branch unit 5058 may employ an

ALU 5074 having a plurality of input register circuits 5075, 5076, 5077 and an output

register circuit 5080. The branch unit 5058 may communicate with general registers 5059,

decode dispatch unit 5056 or other circuits 5073, for example.

The execution of a group of instructions can be interrupted for a variety of reasons including

a context switch initiated by an operating system, a program exception or error causing a

context switch, an I/O interruption signal causing a context switch or multi-threading activity

of a plurality of programs (in a multi-threaded environment), for example. Preferably a

context switch action saves state information about a currently executing program and then

loads state information about another program being invoked. State information may be

saved in hardware registers or in memory for example. State information preferably

comprises a program counter value pointing to a next instruction to be executed, condition

codes, memory translation information and architected register content. A context switch

activity can be exercised by hardware circuits, application programs, operating system

programs or firmware code (microcode, pico-code or licensed internal code (L1C)) alone or

in combination.

A processor accesses operands according to instruction defined methods. The instruction

may provide an immediate operand using the value of a portion of the instruction, may

provide one or more register fields explicitly pointing to either general purpose registers or

special purpose registers (floating point registers for example). The instruction may utilize

implied registers identified by an opcode field as operands. The instruction may utilize

memory locations for operands. A memory location of an operand may be provided by a

register, an immediate field, or a combination of registers and immediate field as

exemplified by the z/Architecture® long displacement facility wherein the instruction

defines a base register, an index register and an immediate field (displacement field) that are

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

43

added together to provide the address of the operand in memory for example. Location

herein typically implies a location in main memory (main storage) unless otherwise

indicated.

Referring to FIG. 15C, a processor accesses storage using a load/store unit 5060. The

load/store unit 5060 may perform a load operation by obtaining the address of the target

operand in memory 5053 and loading the operand in a register 5059 or another memory

5053 location, or may perform a store operation by obtaining the address of the target

operand in memory 5053 and storing data obtained from a register 5059 or another memory

5053 location in the target operand location in memory 5053. The load/store unit 5060 may

be speculative and may access memory in a sequence that is out-of-order relative to

instruction sequence, however the load/store unit 5060 is to maintain the appearance to

programs that instructions were executed in order. A load/store unit 5060 may communicate

with general registers 5059, decode/dispatch unit 5056, cache/memory interface 5053 or

other elements 5083 and comprises various register circuits, ALUs 5085 and control logic

5090 to calculate storage addresses and to provide pipeline sequencing to keep operations in-

order. Some operations may be out of order but the load/store unit provides functionality to

make the out of order operations to appear to the program as having been performed in

order, as is well known in the art.

Preferably addresses that an application program “sees” arc often referred to as virtual

addresses. Virtual addresses are sometimes referred to as “logical addresses” and “effective

addresses”. These virtual addresses are virtual in that they are redirected to physical

memory location by one of a variety of dynamic address translation (DAT) technologies

including, but not limited to, simply prefixing a virtual address with an offset value,

translating the virtual address via one or more translation tables, the translation tables

preferably comprising at least a segment table and a page table alone or in combination,

preferably, the segment table having an entry pointing to the page table. In the

z/Architecture®, a hierarchy of translation is provided including a region first table, a region

second table, a region third table, a segment table and an optional page table. The

performance of the address translation is often improved by utilizing a translation lookaside

buffer (TLB) which comprises entries mapping a virtual address to an associated physical

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

44

memory location. The entries are created when the DAT translates a virtual address using

the translation tables. Subsequent use of the virtual address can then utilize the entry of the

fast TLB rather than the slow sequential translation table accesses. TLB content may be

managed by a variety of replacement algorithms including LRU (Least Recently used).

In the case where the processor is a processor of a multi-processor system, each processor

has responsibility to keep shared resources, such as I/O, caches, TLBs and memory,

interlocked for coherency. Typically, “snoop” technologies will be utilized in maintaining

cache coherency. In a snoop environment, each cache line may be marked as being in any

one of a shared state, an exclusive state, a changed state, an invalid state and the like in order

to facilitate sharing.

I/O units 5054 (FIG. 14) provide the processor with means for attaching to peripheral

devices including tape, disc, printers, displays, and networks for example. I/O units are often

presented to the computer program by software drivers. In mainframes, such as the System

z® from IBM®, channel adapters and open system adapters are I/O units of the mainframe

that provide the communications between the operating system and peripheral devices.

Further, other types of computing environments can benefit from one or more aspects of the

present invention. As an example, an environment may include an emulator (e.g., software

or other emulation mechanisms), in which a particular architecture (including, for instance,

instruction execution, architected functions, such as address translation, and architected

registers) or a subset thereof is emulated (e.g., on a native computer system having a

processor and memory). In such an environment, one or more emulation functions of the

emulator can impl ement one or more aspects of the present invention, even though a

computer executing the emulator may have a different architecture than the capabilities

being emulated. As one example, in emulation mode, the specific instruction or operation

being emulated is decoded, and an appropriate emulation function is built to implement the

individual instruction or operation.

In an emulation environment, a host computer includes, for instance, a memory to store

instructions and data; an instruction fetch unit to fetch instructions from memory and to

WO 2011/160710 PCT/EP2010/067028

45

5

10

15

20

25

30

optionally, provide local buffering for the fetched instruction; an instruction decode unit to

receive the fetched instructions and to determine the type of instructions that have been

fetched; and an instruction execution unit to execute the instructions. Execution may include

loading data into a register from memory; storing data back to memory from a register; or

performing some type of arithmetic or logical operation, as determined by the decode unit.

In one example, each unit is implemented in software. For instance, the operations being

performed by the units are implemented as one or more subroutines within emulator

software.

More particularly, in a mainframe, architected machine instructions are used by

programmers, usually today “C” programmers, often by way of a compiler application.

These instructions stored in the storage medium may be executed natively in a

z/Architecture® IBM® Server, or alternatively in machines executing other architectures.

They can be emulated in the existing and in fiiture IBM® mainframe servers and on other

machines of IBM® (e.g., Power Systems servers and System x® Servers). They can be

executed in machines running Linux on a wide variety of machines using hardware

manufactured by IBM®, Intel®, AMD™, and others. Besides execution on that hardware

under a z/Architecture®, Linux can be used as well as machines which use emulation by

Hercules or FSI (Fundamental Software, Inc), where generally execution is in an emulation

mode. In emulation mode, emulation software is executed by a native processor to emulate

the architecture of an emulated processor. Information about the above-referenced emulator

products is available on the World Wide Web at, respectively, www.hereules-390.org and

www.lunsoft.com.

The native processor typically executes emulation software comprising either firmware or a

native operating system to perform emulation of the emulated processor. The emulation

software is responsible for fetching and executing instructions of the emulated processor

architecture. The emulation software maintains an emulated program counter to keep track

of instruction boundaries. The emulation software may fetch one or more emulated machine

instructions at a time and convert the one or more emulated machine instructions to a

corresponding group of native machine instructions for execution by the native processor.

These converted instructions may be cached such that a faster conversion can be

390.org_andwww.lunsoft.com
390.org_andwww.lunsoft.com

WO 2011/160710 PCT/EP2010/067028

46

5

10

15

20

25

30

accomplished. Notwithstanding, the emulation software is to maintain the architecture rules

of the emulated processor architecture so as to assure operating systems and applications

written for the emulated processor operate correctly. Furthermore, the emulation software is

to provide resources identified by the emulated processor architecture including, but not

limited to, control registers, general purpose registers, floating point registers, dynamic

address translation function including segment tables and page tables for example, interrupt

mechanisms, context switch mechanisms, Time of Day (TOD) clocks and architected

interfaces to I/O subsystems such that an operating system or an application program

designed to run on the emulated processor, can be run on the native processor having the

emulation software.

A specific instruction being emulated is decoded, and a subroutine is called to perform the

function of the individual instruction. An emulation software function emulating a function

of an emulated processor is implemented, for example, in a “C” subroutine or driver, or

some other method of providing a driver for the specific hardware as will be within the skill

of those in the art after understanding the description of the preferred embodiment. Various

software and hardware emulation patents including, but not limited to U.S. Letters Patent

No. 5,551,013, entitled “Multiprocessor for Hardware Emulation”, by Beausoleil et al.; and

U.S. Letters Patent No. 6,009,261, entitled “Preprocessing of Stored Target Routines for

Emulating Incompatible Instructions on a Target Processor”, by Scalzi et al; and U.S. Letters

Patent No. 5,574,873, entitled “Decoding Guest Instruction to Directly Access Emulation

Routines that Emulate the Guest Instructions”, by Davidian et al; and U.S. Letters Patent No.

6,308,255, entitled “Symmetrical Multiprocessing Bus and Chipset Used for Coprocessor

Support Allowing Non-Native Code to Run in a System”, by Gorishek et al; and U.S. Letters

Patent No. 6,463,582, entitled “Dynamic Optimizing Object Code Translator for

Architecture Emulation and Dynamic Optimizing Object Code Translation Method”, by

Lethin et al; and U.S. Letters Patent No. 5,790,825, entitled “Method for Emulating Guest

Instructions on a Host Computer Through Dynamic Recompilation of Host Instructions”, by

Eric Traut; and many others, illustrate a variety of known ways to achieve emulation of an

instruction format architected for a different machine for a target machine available to those

skilled in the art.

WO 2011/160710 PCT/EP2010/067028

47

5

10

15

20

25

30

In FIG. 16, an example of an emulated host computer system 5092 is provided that emulates

a host computer system 5000' of a host architecture. In the emulated host computer system

5092, the host processor (CPU) 5091 is an emulated host processor (or virtual host

processor) and comprises an emulation processor 5093 having a different native instruction

set architecture than that of the processor 5091 of the host computer 5000'. The emulated

host computer system 5092 has memory 5094 accessible to the emulation processor 5093.

In the example embodiment, the memory 5094 is partitioned into a host computer memory

5096 portion and an emulation routines 5097 portion. The host computer memory 5096 is

available to programs of the emulated host computer 5092 according to host computer

architecture. The emulation processor 5093 executes native instructions of an architected

instruction set of an architecture other than that of the emulated processor 5091, the native

instructions obtained from emulation routines memory 5097, and may access a host

instruction for execution from a program in host computer memory 5096 by employing one

or more instruction(s) obtained in a sequence & access/decode routine which may decode the

host instruction(s) accessed to determine a native instruction execution routine for emulating

the function of the host instruction accessed. Other facilities that are defined for the host

computer system 5000' architecture may be emulated by architected facilities routines,

including such facilities as general purpose registers, control registers, dynamic address

translation and I/O subsystem support and processor cache, for example. The emulation

routines may also take advantage of functions available in the emulation processor 5093

(such as general registers and dynamic translation of virtual addresses) to improve

performance of the emulation routines. Special hardware and off-load engines may also be

provided to assist the processor 5093 in emulating the function of the host computer 5000'.

The terminology used herein is for the purpose of describing particular embodiments only

and is not intended to be limiting of the invention. As used herein, the singular forms “a”,

“an” and “the” are intended to include the plural forms as well, unless the context clearly

indicates otherwise. It will be further understood that the terms “comprises” and/or

“comprising”, when used in this specification, specify the presence of stated features,

integers, steps, operations, elements, and/or components, but do not preclude the presence or

addition of one or more other features, integers, steps, operations, elements, components

and/or groups thereof.

WO 2011/160710 PCT/EP2010/067028

48

The corresponding structures, materials, acts, and equivalents of all means or step plus

function elements in the claims below, if any, are intended to include any structure, material,

or act for performing the function in combination with other claimed elements as specifically

claimed. The description of the present invention has been presented for purposes of

5 illustration and description, but is not intended to be exhaustive or limited to the invention in

the form disclosed. Many modifications and variations will be apparent to those of ordinary

skill in the art without departing from the scope of the invention. The embodiment was

chosen and described in order to best explain the principles of the invention and the practical

application, and to enable others of ordinary skill in the art to understand the invention for

10 various embodiments with various modifications as are suited to the particular use

contemplated.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

49

CLAIMS

1. A method for executing a store instruction for storing data in an adapter, comprising

the steps of:

a computer readable storage medium readable by a processing circuit and storing

instructions for execution by the processing circuit for performing a method comprising:

obtaining a machine instruction for execution, the machine instruction being defined

for computer execution according to a computer architecture, the machine instruction

comprising:

an opcode field identifying a store to adapter instruction;

a first field identifying a first location that includes data to be stored in an adapter;

a second field identifying a second location, the contents of which include a function

handle identifying the adapter, a designation of an address space within the adapter in which

data is to be stored, and an offset within the address space; and

executing the machine instruction, the executing comprising:

using the function handle to obtain a function table entry associated with the adapter;

obtaining a data address of the adapter using at least one of information in the

function table entry and the offset; and

storing data from the first location in a specific location in the address space

identified by the designation of the address space, the specific location identified by the data

address of the adapter.

2. The method of claim 1, wherein the address space to be accessed is one of a memory

space or an I/O space, and wherein the obtaining the data address comprises using one or

more parameters of the function table entry to obtain the data address.

3. The method of claim 2, wherein the using one or more parameters comprises adding

a value of a base address register of the function table entry to the offset to obtain the data

address.

WO 2011/160710 PCT/EP2010/067028

5

10

15

20

25

30

50

4. The method of claim 1, wherein the address space to be accessed is a configuration

space, and wherein the data address is the offset provided by the instruction, the offset

identifying a register number in the configuration space.

5. The method of claim 1, wherein the contents of the second location includes an

amount of data to be stored.

6. The method of claim 1, wherein the instruction is implemented based on the

architecture of the adapter.

7. A computer program comprising computer program code stored on a computer

readable medium to, when loaded into a computer system and executed thereon, cause said

computer system to perform all the steps of a method according to any of claims 1 to 6.

8. A computer system for executing a store instruction for storing data in an adapter,

said computer system comprising:

a memory;

a processor in communications with the memory;

the processor obtaining a machine instruction for execution, the machine instruction

being defined for computer execution according to a computer architecture, the machine

instruction comprising:

an opcode field identifying a store to adapter instruction;

a first field identifying a first location that includes data to be stored in an adapter;

a second field identifying a second location, the contents of which include a function

handle identifying the adapter, a designation of an address space within the adapter in which

data is to be stored, and an offset within the address space; and

the processor executing the machine instruction, the executing comprising:

using the function handle to obtain a function table entry associated with the adapter;

obtaining a data address of the adapter using at least one of information in the

function table entry and the offset; and

WO 2011/160710 PCT/EP2010/067028

51

5

10

15

20

25

30

storing data from the first location in a specific location in the address space

identified by the designation of the address space, the specific location identified by the data

address of the adapter.

9. A computer system for executing a store instruction for storing data in an adapter,

said computer system comprising:

a memory;

a processor in communications with the memory, wherein the computer system is

configured to perform a method, said method comprising:

obtaining a machine instruction for execution, the machine instruction being defined

for computer execution according to a computer architecture, the machine instruction

comprising:

an opcode field identifying a store to adapter instruction;

a first field identifying a first location that includes data to be stored in an adapter;

a second field identifying a second location, the contents of which include a function

handle identifying the adapter, a designation of an address space within the adapter in which

data is to be stored, and an offset within the address space; and

executing the machine instruction, the executing comprising:

using the function handle to obtain a function table entry associated with the adapter;

obtaining a data address of the adapter using at least one of information in the

function table entry and the offset: and

storing data from the first location in a specific location in the address space

identified by the designation of the address space, the specific location identified by the data

address of the adapter.

10. The computer system of claim 9, wherein the address space to be accessed is one of a

memory space or an I/O space, and wherein the obtaining the data address comprises using

one or more parameters of the function table entry to obtain the data address.

11. The computer system of claim 10, wherein the using one or more parameters

comprises adding a value of a base address register of the function table entry to the offset to

obtain the data address.

WO 2011/160710 PCT/EP2010/067028

52

12. The computer system of claim 9, wherein the address space to be accessed is a

configuration space, and wherein the data address is the offset provided by the instruction,

the offset identifying a register number in the configuration space.

5 13. The computer system of claim 9, wherein the contents of the second location

includes an amount of data to be stored.

14. The computer system of claim 9, wherein the instruction is implemented based on the

architecture of the adapter.

10

15. A computer program product for executing a store instruction for storing data in an

adapter, said computer program product comprising:

a computer readable storage medium readable by a processing circuit and storing

instructions for execution by the processing circuit for performing all the steps of the method

15 of any of claims 1 to 6.

WO 2011/160710 PCT/EP2010/067028

1/22

100
106

102

104
108-

Γ
MEMORY

CONTROLLER
XLATE CPU

XLATE CPU

102E
XLATE CPU

l/O-TO-M EMORY
BUS -120

I/O
HUB ADDRESS TRANSLATION

& PROTECTION

ROOT COMPLEX

^118

116
-112

PCIe

PCIe
SWITCH

PCIe

PCIe PCIe
* SWITCH

PCIe'

■114

ADAPTER ADAPTER ADAPTER ADAPTER

110 110
FIG. 1A

WO 2011/160710 PCT/EP2010/067028

2/22

102

FIG. 1B

138 138

WO 2011/160710 PCT/EP2010/067028

3/22

oo

C
EN

TR
AL

 P
R
O
C
ES

SI
N

G
 C

O
M

PL
EX

CD

CDO

StO

A
D

A
PT

ER
 ADAPT

ER
 ADAPT

ER
 ADAPT

ER

WO 2011/160710 PCT/EP2010/067028

4/22

ADAPTER FUNCTION
138

FIG. 2

■200

FUNCTION TABLE

FUNCTION TABLE ENTRY 300

• INSTANCE NUMBER
• DTE INDEX - 1...Π
• BUSY INDICATOR
• PERM. ERROR STATE INDICATOR
• RECOVERY INITIATED INDICATOR
• PERMISSION INDICATOR
• ENABLE INDICATOR
• REQUESTOR IDENTIFIER
• BAR - 1...Π
• SIZE 1.. .n
• INTERNAL ROUTING INFORMATION
• STATUS INDICATOR

302

FIG. 3A

PCI FUNCTION HANDLE

ENABLE PCI FUNCTION INSTANCE
INDICATOR NUMBER #

354
FIG. 3B

350

356352

WO 2011/160710 PCT/EP2010/067028

5/22

•400
PCI LOAD

OPCODE FIELD 1 FIELD 2

402 404 406

FIG. 4A

FIELD 1

DATA LOADED

FIG.4B

FIELD 2
410 ENABLED HANDLE

ADDRESS SPACE
OFFSET WITHIN ADDRESS SPACE
LENGTH
STATUS

■404

■406

FIG.4C

WO 2011/160710 PCT/EP2010/067028

6/22

WO 2011/160710 PCT/EP2010/067028

7/22

FIG. 5B

WO 2011/160710 PCT/EP2010/067028

8/22

PCI STORE

OPCODE FIELD 1 FIELD 2

602
ί

604

FIG. 6A

606

FIELD 1

DATA STORED

FIG. 6B

FIELD 2
610 ENABLED HANDLE

ADDRESS SPACE
OFFSET WITHIN ADDRESS SPACE
LENGTH
STATUS

■606

FIG. 6C

WO 2011/160710 PCT/EP2010/067028

9/22

st
CN·
E-

z z 00 zz CN z z CO z o zz z z
oo
i-i—

CN
I"- oo

i-i—

co^_
r- oo

1- l·-
COx^" o Γ"- TI

O
TI

O oo
1—1—

SjQ

*8
LU O

SjO

*8
LU O

SjO

^8
LU O

CO
=>O
□o z

o
o EX

C
EP

CO
ND

I SjO

*8
LU O

<

0

CN
O-
r-

z z
oo

CO
O xyx

z z
OO O

t-x/·'·

ZZ
oo

£jg

go

LU O

1- 1-
Lug
go
LU O

Γ"-
LU g
go

LU O

CD
< λ
ZZ O

< λ
z z

oo C\|x/· ooΓ**·

2jg

go

LU O

1- 1-
Lug
go
LU O

WO 2011/160710 PCT/EP2010/067028

10/22

FIG. 7B

WO 2011/160710 PCT/EP2010/067028

11/22

800

PCI STORE BLOCK

OPCODE FIELD 1 FIELD 2 FIELD 3
i

802 804 806 808

FIG. 8A

804
FIELD 1

810 —

812'

814—
816-

ENABLED HANDLE
ADDRESS SPACE
LENGTH
STATUS

FIG. 8B

806
FIELD 2

820

FIG. 8C

808
FIELD 3

FIG. 8D

822

WO 2011/160710 PCT/EP2010/067028

12/22

WO 2011/160710 PCT/EP2010/067028

13/22

FIG. 9B

WO 2011/160710 PCT/EP2010/067028

14/22

COMPUTER
PROGRAM
PRODUCT

FIG. 10

WO 2011/160710 PCT/EP2010/067028

15/22

WO 2011/160710 PCT/EP2010/067028

16/22

5032

FIG. 12

WO 2011/160710 PCT/EP2010/067028

17/22

5040
REMOTE SERVER

USER1

CLIENT 2 5042

FIG. 13

WO 2011/160710 PCT/EP2010/067028

18/22

FIG. 14

WO 2011/160710 PCT/EP2010/067028

19/22

5057
EXECUTION UNIT (

LOAD/STORE UNIT

FIG. 15A

WO 2011/160710 PCT/EP2010/067028

20/22

5058

FIG. 15B

WO 2011/160710 PCT/EP2010/067028

21/22

5060
LOAD/STORE UNIT (

CACHE/MEMORY
INTERFACE

FIG. 15C

WO 2011/160710 PCT/EP2010/067028

22/22

5092

FIG. 16

