(12) STANDARD PATENT (11) Application No. AU 2010355801 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(61)

(21)
(87)
(30)

(31)

(43)

(44)

(71)

(72)

(74)

(56)

Title
Store/store block instructions for communicating with adapters

International Patent Classification(s)
GOG6F 9/312 (2006.01) GOG6F 13/38 (2006.01)

Application No: 2010355801 (22) Date of Filing: 2010.11.08
WIPO No: WO11/160710

Priority Data

Number (32) Date (33) Country
12/821,194 2010.06.23 us
Publication Date: 2011.12.29

Accepted Journal Date: 2014.04.24

Applicant(s)
International Business Machines Corporation

Inventor(s)
Greiner, Dan;Craddock, David;Gregg, Thomas;Farrell, Mark

Agent / Attorney
Spruson & Ferguson, L 35 St Martins Tower 31 Market St, Sydney, NSW, 2000

Related Art
WO 2002/041157 A2 (SUN MICROSYSTEMS INC) 23 May 2002

WO 2011/160710 A1) I} 0D 00 0O OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

AP\
nternational Burcau S,/ :)7
. A . L \ b (10) International Publication Number
(43) International Publication Datc
29 December 2011 (29.12.2011) WO 2011/160710 A1
(51) International Patent Classification: Corporation, M/P P318, 2455 South Road, Poughkeepsie,
GO6F 9/312 (2006.01) GO6F 13/38 (2006.01) New York 12601-5400 (US). GREGG, Thomas
21) International Application Number- [US/US]; IBM Corporation, M/P P314, 2455 South
(21) International Application Number: ~ Road, Poughkeepsie, New York 12601-5400 (US). FAR-
PCT/EP2010/067028 RELL, Mark [US/US]; IBM Corporation, M/P P310,
(22) International Filing Date: 2455 South Road, Poughkeepsie, New York 12601-5400
8 November 2010 (08.11.2010) (US).
(25) Filing Language: English (74) Agent: STRETTON, Peter, John; IBM United Kingdom
L . Limited, Intellectual Property Law, Hursley Park, Winch-
(26) Publication Language: English ester Hampshire SO21 2JN (GB).
(30) Priority Data: (81) Designated States (unless otherwise indicated, for every
12/821,194 23 June 2010 (23.06.2010) Us kind of national protection available): AE, AG, AL, AM,
(71) Applicant (for all designated States except US). INTER- AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
NATIONAL BUSINESS MACHINES CORPORA- CA, CII, CL, CN, CO, CR, CU, CZ, DL, DK, DM, DO,
TION [US/US]; New Orchard Road, Armonk, New York DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
10504 (US). HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(72) Inventors; and ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(75) Inventors/Applicants (for US only): GREINER, Dan NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
|US/US]; IBM Corporation, M/P SVL/090/F374, 555 SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
Bailey Avenue, Santa Teresa Lab, San Jose, California TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

95141-1003 (US). CRADDOCK, David [GB/US]; IBM

[Continued on next page]

(54) Title: STORLE/STORE BLOCK INSTRUCTIONS FOR COMMUNICATING WITH ADAPTERS

(57) Abstract: Communication with
adapters of a computing environment

600
PCI STORE)/V is facilitated. Instructions are provid-
ed that explicitly target the adapters.

Information provided in an instruc-
OPCODE FIELD 1 FIELD 2 tion is used to steer the instruction to
f S' S’ an appropriate location within the
dapter.
602 604 606 acapier
FIG. 6A
FIELD 1
L 604
DATA STORED
FIG. 6B
FIELD 2
10
6 "] ENABLED HANDLE
612—1 ADDRESS SPACE L———606

614— OFFSET WITHIN ADDRESS SPACE
616—— LENGTH
618 T STATUS

FIG. 6C

WO 20117160710 A1 IS 0IA00 O 0 0 0 000

(84) Designated States (unless otherwise indicated, for every SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
kind of regional protection available): ARTIPO (BW, GH, GW, ML, MR, NE, SN, TD, TG).
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, .
ZM, ZW), Furasian (AM. AZ, BY. KG. KZ, MD, RU, TJ, Published:
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — with international search report (4rt. 21(3))
FE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

25 Mar 2014

2010355801

STORE/STORE BLOCK INSTRUCTIONS FOR COMMUNICATING WITH
ADAPTERS

Technical Field
This invention relates, in general, to input/output processing of a computing
environment, and in particular, to facilitating communication with adapters of the

computing environment.

Background

A computing environment may include one or more types of input/output devices,
including various types of adapters. One type of adapter is a Peripheral Component
Interconnect (PCI) or Peripheral Component Interconnect Express (PCie) adapter. This
adapter includes one or more address spaces used in communicating data between the
adapter and the system to which the adapter is attached. The PCI specification is
available from the World Wide Web at www.pcisig.com/home.

US Patent No. 6,704,831, issued March 9, 2004, Avery, "Method and Apparatus for
Converting Address Information Between PCI Bus Protocol and a Message-Passing
Queue- Oriented Bus Protocol," describes PCI load/store operations and DMA
operations are implemented via work queue pairs in a message-passing, queue-oriented
bus architecture. PCI address space is divided into segments and, each segment, in tum,
is divided into regions. A separate work queue is assigned to each segment. A first
portion of a PCI address is matched against the address ranges represented by the
segments and used to select a memory segment and its corresponding work queue. An
entry in the work queue holds a second portion of the PCI address which specifies a
region within the selected segment that is assigned to a specific PCI device. In one
embodiment, PIO load/store operations are implemented by selecting a work queue
assigned to PIO operations and creating a work queue entry with the PCI address of a
register on a PCI device and a pointer to the PIO data. The work queue entry is sent to a
PCI bridge where the PCI address is extracted and used to program the appropriate
device register with the data using the data pointer. DMA transfers are also
implemented by selecting a work queue by means comparing a portion of the PCI
address generated by the PCI device to an address range table and selecting a work

queue that services the address range. A work queue entry is created with the remainder

8425752V1

http://www.pcisig.com/home

25 Mar 2014

2010355801

of the PCI address and a pointer to the DMA data. An RDMA operation is used to
perform the DMA transfer. The page and region data is used in connection with a
translation protection table in the host channel adapter to access physical memory and

perform the DMA transfer.

US Patent No. 7,613,847, issued November 3, 2009, Kjos et al, "Partially Virtualizing
an I/0 Device for Use by Virtual Machines," describes a computer system comprises a
physical computer and a virtual machine monitor executable on the physical computer
and configured to create an emulation of at least one guest operating system adapted to
control the physical computer. The computer system further comprises a host executable
on the physical computer that manages physical resources coupled to the physical
computer on behalf of the virtual machine monitor and the at least one guest operating
system. The host is adapted to virtualize a Peripheral Component Interconnect (PCI)
configuration address space whereby the at least one guest operating system controls

PCI input/output (I/0) devices directly and in absence of I/0 emulation.

In some systems, a portion of an address space of the central processing unit (CPU)
coupled to the adapter is mapped to an address space of the adapter enabling CPU
instructions that access storage to directly manipulate the data in the adapter's address

space.

The background discussion (including any potential prior art) is not to be taken as an
admission of the common general knowledge in the art in any country. Any references
discussed state the assertions of the author of those references and not the assertions of
the applicant of this application. As such, the applicant reserves the right to challenge

the accuracy and relevance of the references discussed.
An object of the present invention is to at least provide the public with a useful choice.
BRIEF SUMMARY

It is acknowledged that the terms "comprise”, "comprises" and "comprising" may, under
varying jurisdictions, be attributed with either an exclusive or an inclusive meaning.
For the purpose of this specification, and unless otherwise noted, these terms are

intended to have an inclusive meaning - i.e. they will be taken to mean an inclusion of

8425752V1

25 Mar 2014

2010355801

2a

the listed components that the use directly references, but optionally also the inclusion
of other non-specified components or elements. It will be understood that this intended
meaning also similarly applies to the terms mentioned when used to define steps in a

method or process.

In accordance with an aspect of the present invention, a capability is provided for
facilitating communication with adapters, such as PCI or PCie adapters. Control
instructions specifically designed for communicating data to and from adapters are

provided and used for communication.

The shortcomings of the prior art are overcome and advantages are provided through the
provision of a computer program product for executing a store instruction for storing
data in an adapter. The computer program product includes a computer readable storage
medium readable by a processing circuit and storing instructions for execution by the
processing circuit for performing a method. The method includes, for instance,
obtaining a machine instruction for execution, the machine instruction being defined for

computer execution

8425752V1

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

according to a computer architecturc, the machine instruction including, for instance, an
opcode field identifying a store to adapter instruction; a first field identifying a first location
that includes data to be stored in an adapter; a second field identifying a second location, the
contents of which include a function handle identifying the adapter, a designation of an
address space within the adaptcr in which data is to be stored, and an offset within the
address space; and executing the machine instruction, the executing including using the
function handle to obtain a function table entry associated with the adapter; obtaining a data
address of the adapter using at least one of information in the function table entry and the
offset; and storing data from thc first location in a specific location in the address space
identified by the designation of the address space, the specific location identified by the data
address of the adapter.

Further, a computer program product for cxccuting a store block instruction for storing data
in an adapter is provided. The computer program product includes a computcr rcadable
storage medium readable by a processing circuit and storing instructions for execution by the
processing circuit for performing a method. The method includes, for instance, obtaining a
machine instruction for execution, thc machine instruction being defined for computer
execution according to a computer architecture, the machine instruction including, for
instance, an opcode field identifying a store block to adapter instruction; a first field
identifying a first location, the contents of which include a function handle identifying an
adapter, and a designation of an address spacc within the adapter in which data is to be
stored; a second field identifying a second location that includes an offset within thc address
space; a third field identifying a third location that includes an address in memory that
includes data to be stored in the adapter; and executing the machine instruction, the
executing including using the function handlc to obtain a function table entry associated with
the adapter; obtaining a data address of the adapter using information in the function tablc
entry and the offset; and storing data obtained from memory at the address in the third field
into a specific location in the address space identified by the designation of the address

space, the specific location identified by the data address of the adapter.

Methods and systems relating to one or more aspects of the present invention are also

described and claimed herein.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

Additional features and advantages are realized through the techniqucs of the present
invention. Other embodiments and aspects of the invention are described in dctail hercin

and are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

One or more aspects of the present invention are particularly pointed out and distinctly
claimed as examples in the claims at the conclusion of the specification. The foregoing and
other objects, features, and advantagcs of the invention are apparent from the following

detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1A dcpicts one embodiment of a computing environment to incorporate and use one or

more aspects of the present invention;

FIG. 1B depicts one embodiment of a device table entry located in the I/O hub of FIG. 1A

and used in accordance with an aspect of the present invention;

FIG. 1C depicts another embodiment of a computing environment to incorporate and usc onc

or more aspects of the present invention;

FIG. 2 depicts one example of address spaccs of an adapter function, in accordance with an

aspect of the present invention;

FIG. 3A depicts one example of a function table entry used in accordance with an aspect of

the present invention;

FIG. 3B depicts one embodiment of a function handle used in accordance with an aspect of

the present invention;

FIG. 4A depicts one embodiment of a PCI Load instruction used in accordancc with an

aspect of the present invention;

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

FIG. 4B depicts one embodiment of a ficld used by the PCI Load instruction of FIG. 4A, in

accordance with an aspect of the present invention;

FIG. 4C depicts one embodiment of another field used by the PCI Load instruction of FIG.

4A, in accordance with an aspect of the present invention;

FIGs. 5A-5B depict one embodiment of the logic to perform a PCI Load operation, in

accordance with an aspect of the present invention;

FIG. 6A depicts one embodiment of a PCI Store instruction used in accordance with an

aspect of the present invention;

FIG. 6B depicts one embodiment of a field uscd by the PCI Store instruction of FIG. 6A, in

accordance with an aspect of the present invention;

FIG. 6C dcpicts one embodiment of another field used by the PCI Store instruction of FIG.

6A, in accordance with an aspect of the present invention;

FIGs. 7A-7B depict one embodiment of the logic to perform a PCI Store operation, in

accordancc with an aspect of the present invention;

FIG. 8A depicts one embodiment of a PCI Store Block instruction used in accordance with

an aspect of the present invention;

FIG. 8B depicts one embodiment of a ficld uscd by the PCI Store Block instruction of FIG.

8A, in accordance with an aspect of the present invention;

FIG. 8C depicts one embodiment of another field used by the PCI Store Block instruction of

FIG. 8A, in accordance with an aspect of the present invention;

FIG. 8D depicts one embodiment of yet another field used by the PCI Store Block

instruction of FIG. 8A, in accordance with an aspect of the present invention;

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

FIGs. 9A-9B depict one embodiment of the logic to perform a PCI Store Block operation, in

accordance with an aspect of the present invention;

FIG. 10 depicts one embodiment of a computer program product incorporating one or more

aspects of the present invention;

FIG. 11 depicts one embodiment of a host computer system to incorporate and use one or

morc aspects of the present invention;

FIG. 12 depicts a further example of a computer system to incorporate and use onc or more

aspects of the present invention;

FIG. 13 depicts another examplc of a computer system comprising a computer network to

incorporate and use one or more aspects of the present invention;

FIG. 14 dcpicts one embodiment of various elements of a computer system to incorporate

and use one or more aspects of the present invention;

FIG. 15A depicts one embodiment of the execution unit of the computer system of FIG. 14

to incorporate and use one or more aspects of the present invention;

FIG. 15B depicts one embodiment of the branch unit of the computer system of FIG. 14 to

incorporate and use one or more aspects of the present invention;

FIG. 15C depicts one embodiment of thc load/storc unit of the computer system of FIG. 14

to incorporate and use one or more aspects of the present invention; and

FIG. 16 depicts one embodiment of an emulated host computer system to incorporate and

use one or more aspects of the present invention.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

DETAILED DESCRIPTION

In accordance with an aspect of the present invention, one or more control instructions are
provided to facilitate communication with adapters of a computing environment. The
control instructions are specifically designed for communicating data to and from the

address spaces of the adapters.

As used herein, the term adapter includes any type of adapter (e.g., storage adapter, network
adapter, processing adapter, PCI adapter, cryptographic adapter, other type of input/output
adapters, etc.). In one embodiment, an adapter includes one adapter function. However, in
other embodiments, an adapter may include a plurality of adapter functions. One or more
aspccts of the present invention are applicable whether an adapter includes one adapter
function or a plurality of adapter functions. In one embodiment, if an adapter includes a
plurality of adapter functions, then each function may be communicated with in accordance
with an aspect of the present invention. Moreover, in the examples presented herein, adapter

is uscd intcrchangeably with adapter function (e.g., PCI function) unless otherwise noted.

One embodiment of a computing environment to incorporate and use onc or more aspccts of
the present invention is described with reference to FIG. 1A. In one example, a computing
cnvironment 100 is a System z® server offered by International Business Machines
Corporation. System z® is bascd on the z/Architecture® offered by International Business
Machines Corporation. Details regarding the z/Architecture® are described in an IBM®
publication entitled, "z/Architecture Principles of Operation," IBM Publication No. SA22-
7832-07, February 2009. IBM®, System z® and z/Architecture® are registered trademarks
of International Business Machines Corporation, Armonk, New York. Other names used
herein may be registered trademarks, trademarks or product names of Intcrnational Business

Machines Corporation or other companies.

In one example, computing cnvironment 100 includes one or more central processing units
(CPUs) 102 coupled to a system memory 104 (a.k.a., main memory) via a memory controller
106. To access system memory 104, a central processing unit 102 issues a read or write

request that includes an address used to access system memory. The address included in the

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

request is typically not directly usablc to access system memory, and therefore, it is
translated to an address that is directly usable in accessing system memory. Thc address is
translated via a translation mechanism (XLATE) 108. For example, the address is translated
from a virtual address to a real or absolute address using, for instance, dynamic address

translation (DAT).

The request, including the address (translated, if necessary), is received by memory
controller 106. In one example, memory controller 106 is comprised of hardware and is
used to arbitrate for access to the system mcemory and to maintain the memory's consistency.
This arbitration is performed for requests received from CPUs 102, as well as for rcquests
received from one or more adapters 110. Like the central processing units, the adapters issue

requests to systcm memory 104 to gain access to the system memory.

In one example, adapter 110 is a Peripheral Component Interconnect (PCI) or PC1 Exprcess
(PCIe) adapter that includes one or more PCI functions. A PCI function issues a request that
is routed to an input/output hub 112 (e.g., a PCI hub) via one or more switches (e.g., PCle
switches) 114. In one examplc, the input/output hub is comprised of hardware, including
one or more state machines, and is coupled to memory controller 106 via an 1/0O-to-memory
bus 120.

The input/output hub includes, for instancc, a root complex 116 that receives the request
from a switch. The request includes an input/output address that is provided to an address
translation and protection unit 118 which accesses information used for the request. As
cxamples, the request may include an input/output address used to perform a direct memory
access (DMA) operation or to request a mcssage signaled interruption (MSI). Address
translation and protection unit 118 accesses information used for the DMA or MSI rcquest.
As a particular example, for a DMA operation, information may be obtained to translate the
address. The translated address is then forwarded to the memory controller to access system

memory.

In one example, as described with reference to FIG. 1B, information used for the DMA or

MSI request issued by an adapter is obtained from a device table entry 130 of a device table

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

132 located in the I/0 hub (c.g., in the address translation and protection unit). The device
table entry includes information for the adapter, and each adapter has at Icast onc device
table entry associated therewith. For instance, there is one device table entry per address
space (in system memory) assigned to the adapter. For a request issued from an adapter
(e.g., PCI function 138), a device table cntry is located using a requestor ID provided in the

request.

Referring now to FIG. 1C, in a further embodiment of a computing environment, in addition
to or instead of one or more CPUs 102, a central processing complex is coupled to memory
controller 106. In this example, a central processing complex 150 includcs, for instance, one
or more partitions or zones 152 (e.g., logical partitions LP1-LPn), one or more central
processors (¢.g., CP1-CPm) 154, and a hypervisor 156 (e.g., a logical partition manager),

each of which is described below.

Each logical partition 152 is capable of functioning as a separate system. That is, each
logical partition can be independently reset, initially loaded with an operating system or a
hypervisor (such as zZVM® offered by International Business Machines Corporation,
Armonk, New York), if desired, and operate with different programs. An opcrating systcm,
a hypervisor, or an application program running in a logical partition appears to have access
to a full and complete system, but only a portion of it is available. A combination of
hardware and Licensed Internal Code (also rcferred to as microcode or millicode) keeps a
program in a logical partition from interfering with the program in a different logical
partition. This allows several different logical partitions to operate on a single or multiple
physical processor in a time slice manner. In this particular example, each logical partition
has a resident operating system 158, which may differ for one or more logical partitions. In
one embodiment, operating system 158 is a zZOS® or zLinux operating system, offcred by
International Business Machines Corporation, Armonk, New York. z/OS® and z/’VM® are

rcgistered trademarks of International Business Machines Corporation, Armonk, New York.

Central processors 154 are physical processor resources that are allocated to the logical
partitions. For instance, a logical partition 152 includes one or more logical processors, each

of which represents all or a share of the physical processor resource 154 allocated to the

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

10

partition. The underlying proccssor resource may either be dedicated to that partition or

shared with another partition.

Logical partitions 152 are managed by hypervisor 156 implemented by firmware running on
processors 154. Logical partitions 152 and hypervisor 156 each comprise one or more
programs residing in respective portions of central storage associated with the central
processors. One example of hypervisor 156 is the Processor Resource/Systems Manager

(PR/SM), offered by International Business Machines Corporation, Armonk, New York.

As used herein, firmware includes, ¢.g., the microcode, millicode and/or macrocode of the
processor. It includes, for instance, the hardware-level instructions and/or data structures
uscd in implementation of higher-level machine code. In one embodiment, it includes, for
instance, proprietary code that is typically delivcred as microcode that includes trusted
software or microcode specific to the underlying hardware and controls opcrating systcm

access to the system hardware.

Although, in this example, a central processing complex having logical partitions is
described, one or more aspects of the present invention may be incorporated in and uscd by
other processing units, including single or multi-processor processing units that are not
partitioned, among others. The central processing complex described herein is only one

example.

As described above, adapters can issue requests to the processors requesting various
opcrations, such as direct memory accesses, message signaled interrupts, etc. Further, the
processors can issue requests to the adapters. For instancc, returning to FIG. 1B, a processor
102 can issue a request to access an adapter function 138. The request is routed from the
processor to the adapter function via I/O hub 112 and one or more switches 114. In this
cmbodiment, the memory controller is not shown. However, the I/O hub may be coupled to

the processor directly or via a memory controller.

As an example, an operating system 140 executing within the processor issues an instruction

to the adapter function requesting a particular operation. In this example, instructions issued

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

11

by the operating system are spccific to the I/0 infrastructure. That is, since the /O
infrastructure is based on PCI or PCle (both of which are referred to herein as PCI, unlcss
otherwise noted), the instructions are PCI instructions. Example PCI instructions include
PCI Load, PCI Store and PCI Store Block, to name a few. Although, in this example, the
I/0 infrastructure and instructions arc based on PCI, in other embodiments, other

infrastructures and corresponding instructions may be used.

In one particular example, the instructions are directed to a specific location within an
address space of the adapter function. For instance, as shown in FIG. 2, an adapter function
138 includes storage 200, which is defined as a plurality of address spaces, including, for
instance: a configuration space 202 (e.g., PCI configuration space for a PCI function); an
I/0 spacc 204 (c.g., PCI I/O space); and one or more memory spaces 206 (e.g., PCI memory
space). In other embodiments, morc, lcss or different address spaces may be provided. The
instructions are targeted to a particular address space and a particular location within the
address space. This ensures that the configuration (e.g., operating system, LPAR, processor,

gucst, ctc.) issuing the instruction is authorized to access the adapter function.

To facilitate processing of the instructions, information stored in one or more data structurcs
is used. One such data structure that includes information regarding adapters is a function
tablc 300 storcd, for instance, in securc memory. As shown in FIG. 3A, in one example, a
function table 300 includes one or morc function table entrics (FTEs) 302. In one example,
there is one function table entry per adapter function. Each function table entry 302 includcs
information to be used in processing associated with its adapter function. In one example,

function table entry 302 includes, for instance:

Instance Number 308: This field indicates a particular instance of the function handle

associated with the function table entry;

Device Table Entry (DTE) Index 1...n 310: There may be one or more device table indices,
and each index is an index into a device table to locate a device table entry (DTE). Thcre arc
one or more device table entries per adapter function, and each entry includes information

associated with its adapter function, including information used to process requests of the

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

12

adapter function (e.g., DMA requests, MSI requests) and information relating to requests to
the adapter function (e.g., PCI instructions). Each device table entry is associated with onc
address space within system memory assigned to the adapter function. An adapter function
may have one or more address spaces within system memory assigned to the adapter

function.

Busy Indicator 312: This field indicates whether the adapter function is busy;

Permanent Error State Indicator 314: This ficld indicates whether the adapter function is in a

permanent error state;

Rccovery Initiated Indicator 316: This field indicates whether recovery has been initiated

for the adapter function;

Permission Indicator 318: This field indicates whether the operating system trying to enable

the adapter function has authority to do so;

Enable Indicator 320: This field indicates whether the adapter function is cnabled (c.g.,
I=enabled, 0=disabled);

Requestor Identifier (RID) 322: This is an identificr of the adapter function and may
include, for instance, a bus number, device number and function number. This ficld is used,

for instance, for accesses of a configuration space of the adapter function.

For instance, the configuration space may bc accessed by specifying the configuration space
in an instruction issued by the operating system (or other configuration) to the adapter
function. Specified in the instruction is an offset into the configuration space and a function
handle used to locate the appropriate function table entry that includes the RID. The
firmware receives the instruction and dctermines it is for a configuration space. Therefore, it
uses the RID to generate a request to the I/O hub, and the I/0 hub creates a request to acccss

the adapter. The location of the adapter function is based on the RID, and the offset

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

13

specifies an offset into the configuration spacc of the adapter function. For instance, the

offset specifies a register number in the configuration space.

Basc Address Register (BAR) (1 to n) 324: This field includes a plurality of unsigned
integers, designated as BARO — BARn, which are associated with the originally specified
adapter function, and whose values are also stored in the base address registers associated
with the adapter function. Each BAR specifies the starting address of a memory space or I/O
space within the adapter function, and also indicates the type of address space, that is

whether it is a 64 or 32 bit memory spacc, or a 32 bit I/O space, as examples;

In one example, it is used for accesses to memory space and/or I/O space of the adapter
function. For instance, an offset provided in an instruction to access the adapter function is
added to the value in the basc addrcss register associated with the address space designated
in the instruction to obtain the address to be used to access the adapter function. The addrcss
space identifier provided in the instruction identifies the address space within the adapter

function to be accessed and the corresponding BAR to be used;

Size 1...n 326: This field includes a plurality of unsigned integers, designatcd as SIZEQ —
SIZEn. The value of a Size field, when non-zero, represents the size of each address space

with each ¢ntry corresponding to a previously described BAR.

Further details regarding BAR and Size are described below.

1. When a BAR is not implemented for an adapter function, the BAR field and its

corresponding size field are both stored as zcros.

2. When a BAR field represents either an I/O address space or a 32-bit memory address

space, the corresponding size field is non-zero and represents the size of the address space.

3. When a BAR field represents a 64-bit memory address space,
a. The BARn field represents the least significant address bits.

b. The next consecutive BARn+1 field represents the most significant address bits.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

14
c. The corresponding SIZEn ficld is non-zero and represents the size of the address
space.
d. The corresponding SIZEn+1 field is not meaningful and is stored as zero.

Internal Routing Information 328: This information is used to perform particular routing to
the adapter. It includes, for instance, node, processor chip, and I/0O hub addressing

information, as examples.

Status Indicator 330: This providces an indication of whether load/store operations are

blocked, as well as other indications.

In onc¢ cxample, the busy indicator, permanent error state indicator, and recovery initiated
indicator are set based on monitoring performed by the firmware. Further, the permission
indicator is set, for instance, based on policy. The BAR information is bascd on
configuration information discovered during a bus walk by the processor (e.g., firmware of
the processor). Other fields may be set based on configuration, initialization and/or events.
In other embodiments, the function tablc entry may include more, less or different
information. The information included may depend on the operations supportcd by or

enabled for the adapter function.

To locate a function table entry in a function table that includes one or more entries, in one
embodiment, a function handle is used. For instance, one or more bits of the function handle

are used as an index into the function table to locate a particular function table entry.

Referring to FIG. 3B, additional details regarding a function handle are described. In one
example, a function handle 350 includes an enable indicator 352 that indicatcs whether the
PCI function handle is enabled; a PCI function number 354 that identifies the function (this
is a static identifier, and in one embodiment, is an index into the function table); and an
instance number 356 which indicates the particular instancc of this function handle. For
example, each time the function is enabled, the instance number is incremented to provide a

new instance number.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

15

In accordance with an aspect of the present invention, to access an adapter function, a
configuration issues a request to the adapter function, which is executed by a proccssor. In
the examples herein, the configuration is an operating system, but in other examples, it may
be a system, processor, logical partition, guest, etc. These requests are via specific
instructions, which access the adaptcr. Examplc instructions include PCI Load, PCI Store,
and PCI Store Block instructions. These instructions are specific to the adapter architecture
(e.g., PCI). Further details regarding these instructions are described below. For instance,
onc embodiment of a PCI Load instruction is described with reference to FIGs. 4A-5B; one
embodiment of a PCI Store instruction is described with reference to FIGs. 6A-7B; and one

embodiment of a PCI Store Block instruction is described with reference to FIGs. 8A-9B.

Referring initially to FIG. 4A, one embodiment of a PCI Load instruction is depicted. As
shown, a PCI Load instruction 400 includcs, for instance, an opcode 402 indicating the PCI
Load instruction; a first field 404 specifying a location at which data fetched from an adapter
function will be loaded; and a second field 406 specifying a location at which various
information is included regarding the adapter function from which data is to be loaded. The

contents of the locations designated by Ficlds I and 2 are further described below.

In one example, Field 1 designates a general register, and as depicted in FIG. 4B, the
contcnts 404 of that register include a contiguous range of one or more bytes loaded from the
location of the adapter function specificd in the instruction. In one example, the data is

loaded into the rightmost byte positions of the register.

In one embodiment, Field 2 designates a pair of general registers that include various

information. As shown in FIG. 4B, thc contents of the registers include, for instance:

Enabled Handlc 410: This field is an enabled function handle of the adapter function from

which the data is to be loaded;

Address Space 412: This field identifies the address space within the adapter function from

which the data is to be loaded;

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

16

Offset Within Address Space 414: This ficld specifies the offset within the specified address

space from which the data is to be loaded;

Length field 416: This field specifies the length of the load operation (e.g., the number of
bytes to be loaded); and

Status field 418: This field provides a status code which is applicable when the instruction

completes with a predefined condition code.

In one embodiment, the bytes loaded from the adapter function are to be containcd within an
integral boundary in the adapter function's designated PCI address space. When the address
spacc ficld designates a memory address space, the integral boundary size is, for instance, a

double word. When the address space ficld designates an I/0 address space or a

configuration address space, the integral boundary size is, for instance, a word.

Onc embodiment of the logic associated with a PCI Load instruction is described with
reference to FIGs. SA-5B. In one cxample, the instruction is issued by an operating system
(or other configuration) and executed by the processor (¢.g., firmware) executing the
operating system. In the examples herein, the instructions and adapter functions are PCI-
bascd. However, in other examples, a different adapter architecture and corresponding

instructions may be used.

To issue the instruction, the operating system provides the following operands to the
instruction (e.g., in one or more registers designated by the instruction): the PCI function
handle, the PCI address space (PCIAS), the offsct into the PCI address space, and the length
of the data to be loaded. Upon successful completion of the PCI Load instruction, the data is

loaded in the location (e.g., register) designated by the instruction.

Referring to FIG. 5A, initially, a determination is madc as to whether the facility allowing
for a PCI Load instruction is installed, INQUIRY 500. This determination is made by, for
instance, checking an indicator stored in, for instance, a control block. If the facility is not

installed, an exception condition is provided, STEP 502. Otherwise, a determination is made

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

17

as to whether the operands arc aligned, INQUIRY 504. For instance, if certain operands
need to be in even/odd register pairs, a determination is made as to whether thosc
requirements are met. If the operands are not aligned, then an exception is provided, STEP
506. Otherwise, if the facility is installed and the operands are aligned, a determination is
made as to whether the handlc provided in the operands of the PCI Load instruction is
enabled, INQUIRY 508. In one example, this determination is made by checking an enable
indicator in the handle. If the handle is not enabled, then an exception condition is provided,

STEP 510.

If the handle is enabled, then the handle is used to locate a function table entry, STEP 512.
That is, at least a portion of the handle is used as an index into the function table to locate the

function tablc entry corresponding to the adapter function from which data is to be loaded.

Thereafter, if the configuration issuing the instruction is a guest, a determination is madc as
to whether the function is configured for use by a guest, INQUIRY 514. If it is not
authorized, then an exception condition is provided, STEP 516. This inquiry may be ignored
if the configuration is not a gucst or othcr authorizations may be checked, if designated. (In
one example, in the z/Architecture®, a pageable guest is interpretively exccuted via the Start
Interpretive Execution (SIE) instruction, at level 2 of interpretation. For instance, the logical
partition (LPAR) hypervisor executes the SIE instruction to begin the logical partition in
physical, fixed memory. If z/VM® is thc opcrating systcm in that logical partition, it issues
the SIE instruction to execute its guests (virtual) machines in its V=V (virtual) storage.
Therefore, the LPAR hypervisor uses level-1 SIE, and the z/VM® hypervisor uses level-2
SIE.)

A determination is then made as to whether the function is enabled, INQUIRY 518. In one
example, this determination is made by checking an enable indicator in the function table

centry. If it is not enabled, then an exception condition is provided, STEP 520.

If the function is enabled, then a determination is made as to whether the address spacc is
valid, INQUIRY 522. For instance, is the specified address space a designated address space

of the adapter function and one that is appropriate for this instruction. If the address space is

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

18

invalid, then an exception condition is providcd, STEP 524. Otherwise, a determination is
made as to whether load/store is blocked, INQUIRY 526. In one example, this
determination is made by checking the status indicator in the function table entry. If

load/store is blocked, then an exception condition is provided, STEP 528.

However, if load/store is not blocked, a determination is made as to whether recovery is
active, INQUIRY 530. In one example, this determination is made by checking the recovery
initiated indicator in the function table entry. If recovery is active, then an exception
condition is provided, STEP 532. Otherwisc, a determination is made as to whether the
function is busy, INQUIRY 534. This determination is made by checking the busy indicator
in the function table entry. If the function is busy, then a busy condition is provided, STEP

536. With a busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the offsct
specified in the instruction is valid, INQUIRY 538. That is, is the offset in combination with
the length of the operation within the base and length of the address space, as specified in the
function table entry. If not, then an cxception condition is provided, STEP 540. However, if
the offset is valid, then a determination is made as to whether the length is valid, INQUIRY
542. That is, subject to the address space type, offset within the address space, and an
integral boundary size is the length valid. If not, then an exception condition is provided,
STEP 544. Otherwise, processing continucs with the load instruction. (In one embodiment,

the firmware performs the above checks.)

Continuing with FIG. 5B, a determination is made by the firmware as to whether the load is
for a configuration address space of the adapter function, INQUIRY 550. That is, based on
the configuration of the adapter function's memory, is the specified addrcss space provided
in the instruction a configuration space. If so, then the firmware performs various
processing to provide the request to a hub coupled to the adapter function; the hub then

routes the request to the function, STEP 552.

For example, the firmware obtains the requestor ID from the function table entry pointed to

by the function handle provided in the instruction operands. Further, the firmware

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

19

determines based on information in the function table entry (¢.g., the internal routing
information) the hub to receive this request. That is, an environment may have one or morc
hubs and the firmware determines the hub coupled to the adapter function. It then forwards
the request to the hub. The hub generates a configuration read request packet that flows out
on the PCI bus to the adaptcr function identificd by the RID in the function table entry. The
configuration read request includes the RID and offset (i.e., data address) that arc used to

fetch the data, as described below.

Returning to INQUIRY 550, if the designated address space is not a configuration space,
then once again the firmware performs various processing to provide the request to the hub,
STEP 554. The firmware uses the handle to select a function table entry and from that entry
it obtains information to locate the appropriate hub. It also calculates a data address to be
used in the load operation. This address is calculated by adding the BAR starting address
(with the BAR being that associated with the address space identifier provided in the
instruction) obtained from the function table entry to the offset provided in the instruction.
This calculated data address is provided to the hub. The hub then takes that address and
includes it in a request packct, such as a DMA read request packet, that flows out over the

PCI bus to the adapter function.

Rcsponsive to receiving the request either via STEP 552 or STEP 554, the adapter function
fetches the requested data from the specified location (i.c., at the data address) and returns
that data in a response to the request, STEP 556. The response is forwarded from the adapter
function to the 170 hub. Responsive to receiving the response, the hub forwards the response
to the initiating processor. The initiating processor then takes the data from the response
packet and loads it in the designated location specificd in the instruction (e.g., field 1 404).
The PCI Load operation concludes with an indication of success (e.g., setting a condition

code of zero).

In addition to a load instruction that retrieves data from an adapter function and stores it in a
designated location, another instruction that may be executed is a store instruction. The store
instruction stores data at a specified location in the adapter function. One embodiment of a

PCI Store instruction is described with reference to FIG. 6A. As shown, a PCI Store

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

20

instruction 600 includes, for instance, an opcode 602 indicating the PCI Store instruction; a
first field 604 specifying a location that includes data to be stored in an adapter function; and
a second field 606 specifying a location at which various information is included regarding
the adapter function to which data is to be stored. The contents of the locations designated

by Fields 1 and 2 are further described below.

In one example, Field 1 designates a general register, and as depicted in FIG. 6B, the
contents 604 of that register include a contiguous range of one or more bytes of data to be
stored into the specified location of an adapter function. In one example, the data in the

rightmost byte positions of the register are stored.

In one embodiment, Field 2 designates a pair of general registers that include various

information. As shown in FIG. 6B, thc contents of the register include, for instance:

Enabled Handle 610: This field is an enabled function handle of the adapter function to

which the data is to be stored;

Address Space 612: This field identifies the address space within the adapter function to

which the data is to be stored;

Offset Within Address Space 614: This ficld spccifies the offset within the specified address

space to which the data is to be stored;

Length field 616: This field specifies the length of the store operation (e.g., the number of
bytes to be stored); and

Status field 618: This field provides a status code which is applicable when the instruction

completes with a predefined condition code.

On embodiment of the logic associated with a PCI Store instruction is described with
reference to FIGs. 7A-7B. In one example, the instruction is issued by an operating system,

and executed by the processor (e.g., firmware) executing the operating system.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

21

To issue the instruction, the opcrating system provides the following operands to the
instruction (e.g., in one or more registers designated by the instruction): thc PCI function
handle, the PCI address space (PCIAS), the offset into the PCI address space, the length of
the data to be stored, and a pointer to the data to be stored. Upon successful completion of

the PCI Store instruction, the data is storcd in the location designated by the instruction.

Referring to FIG. 7A, initially, a determination is made as to whether the facility allowing
for a PCI Store instruction is installed, INQUIRY 700. This determination is made by, for
instance, checking an indicator storcd in, for instance, a control block. If the facility is not
installed, an exception condition is provided, STEP 702. Otherwise, a determination is made
as to whether the operands are aligned, INQUIRY 704. For instance, if certain operands
neced to be in even/odd register pairs, a determination is made as to whether those
requirements are met. [fthc opcrands arc not aligned, then an exception is provided, STEP
706. Otherwise, if the facility is installed and the operands are aligned, a determination is
made as to whether the handle provided in the operands of the PCI Store instruction is
cnabled, INQUIRY 708. In one example, this determination is made by checking an enable
indicator in the handle. If the handle is not cnablcd, then an exception condition is provided,

STEP 710.

If the handle is enabled, then the handle is used to locate a function table entry, STEP 712.
That is, at least a portion of the handlc is used as an indcx into the function table to locate the

function table entry corresponding to the adapter function at which data is to be stored.

Thereafter, if the configuration issuing the instruction is a guest, a determination is made as
to whether the function is configured for usc by a gucst, INQUIRY 714. If it is not
authorized, then an exception condition is provided, STEP 716. This inquiry may be ignorcd

if the configuration is not a guest or other authorizations may be checked, if designated.

A determination is then madc as to whether the function is enabled, INQUIRY 718. In one
example, this determination is made by checking an enable indicator in the function table

entry. Ifitis not enabled, then an exception condition is provided, STEP 720.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

22

If the function is enabled, then a determination is made as to whether the address space is
valid, INQUIRY 722. For instance, is the specified address space a designated addrcss spacc
of the adapter function and one that is appropriate for this instruction. If the address space is
invalid, then an exception condition is provided, STEP 724. Otherwise, a determination is
made as to whether load/store is blockcd, INQUIRY 726. In one example, this
determination is made by checking the status indicator in the function table entry. If

load/store is blocked, then an exception condition is provided, STEP 728.

However, if the load/store is not blockcd, a detcrmination is made as to whether recovery is
active, INQUIRY 730. In one example, this determination is made by checking the recovery
initiated indicator in the function table entry. If recovery is active, then an exception
condition is provided, STEP 732. Otherwise, a determination is made as to whether the
function is busy, INQUIRY 734. This detcrmination is made by checking the busy indicator
in the function table entry. If the function is busy, then a busy condition is provided, STEP

736. With a busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the offset
specified in the instruction is valid, INQUIRY 738. That is, is the offset in combination with
the length of the operation within the base and length of the address space, as specified in the
function table cntry. If not, then an exception condition is provided, STEP 740. However, if
the offset is valid, then a determination is madc as to whether the length is valid, INQUIRY
742. That is, subject to the address space type, offset within the address spacc, and an
integral boundary size is the length valid. If not, then an exception condition is provided,
STEP 744. Otherwise, processing continues with the store instruction. (In one embodiment,

the firmware performs the above checks.)

Continuing with FIG. 7B, a determination is made by the firmware as to whether the store is
for a configuration address space of the adapter function, INQUIRY 750. That is, based on
the configuration of the adapter function's memory, is the specified address space provided
in the instruction a configuration space. If so, then the firmware performs various
processing to provide the request to a hub coupled to the adapter function; the hub then

routes the request to the function, STEP 752.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

23

For example, the firmware obtains the requestor ID from the function table entry pointed to
by the function handle provided in the instruction operands. Further, the firmware
determines based on information in the function table entry (e.g., the internal routing
information) the hub to receive this request. That is, an environment may have one or more
hubs and the firmware determines the hub coupled to the adapter function. It then forwards
the request to the hub. The hub generates a configuration write request packet that flows out
on the PCI bus to the adapter function identified by the RID in the function table entry. The
configuration write request includes the RID and offset (i.c., data address) that are used to

store the data, as described bclow.

Returning to INQUIRY 750, if the designated address space is not a configuration space,
then once again the firmware performs various processing to provide the request to the hub,
STEP 754. The firmware uscs the handle to sclect a function table entry and from that entry
it obtains information to locate the appropriate hub. It also calculates a data addrcss to be
used in the store operation. This address is calculated by adding the BAR starting address
obtaincd from the function table entry to the offset provided in the instruction. This
calculated data address is provided to the hub. The hub then takes that address and includes
it in a request packet, such as a DMA write request packet, that flows out over the PCI bus to

the adapter function.

Responsive to receiving the request either via STEP 752 or STEP 754, the adapter function
stores the requested data at the specified location (i.e., at the data address), STEP 756. The
PCI Store operation concludes with an indication of success (e.g., setting a condition code of

ZCr0).

In addition to the load and store instructions, which typically load or storc a maximum of,
e.g., 8 bytes, another instruction that may be executed is a store block instruction. The store
block instruction stores larger blocks of data (e.g., 16, 32, 64, 128 or 256 bytes) at a
specified location in the adapter function; the block sizes are not necessarily limited to
powers of two in size. In one example, the specified location is in a memory space of the

adapter function (not an I/O or configuration space).

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

24

One embodiment of a PCI Store Block instruction is described with reference to FIG. 8A.

As shown, a PCI Store Block instruction 800 includes, for instance, an opcode 802
indicating the PCI Store Block instruction; a first field 804 specifying a location at which
various information is included regarding the adapter function to which data is to be stored; a
second field 806 specifying a location that includes an offset within the specified address
space into which the data is to be stored; and a third field 808 specifying a location that
includes an address in system memory of data to be stored in the adapter function. The

contents of the locations designated by Fields 1, 2 and 3 are further described below.

In one embodiment, Field 1 designates a general register that includes various information.

As shown in FIG. 8B, the contents of the register include, for instance:

Enabled Handle 810: This ficld is an cnabled function handle of the adapter function to

which the data is to be stored;

Address Spacc 812: This ficld identifies the address space within the adapter function to

which the data is to be stored;

Length field 814: This field specifies the length of the store operation (e.g., the number of
bytes to be stored); and

Status field 816: This field provides a status code which is applicable when the instruction

completes with a predefined condition code.

In one example, Field 2 designates a gencral register, and as depicted in FIG. 8C, the
contents of the register include a value (e.g., 64-bit unsigned integer) that specifics the offsct

within the specified address space into which the data is to be stored.

In one example, Field 3, as depicted in FIG. 8D, includes the logical address in system

memory of the first byte of data 822 to be stored in the adapter function.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

25

One embodiment of the logic associated with a PCI Store Block instruction is described with
reference to FIGs. 9A-9B. In one example, the instruction is issued by an operating systcm,

and executed by the processor (e.g., firmware) executing the operating system.

To issue the instruction, the opcrating system provides the following operands to the
instruction (¢.g., in one or more registers designated by the instruction): the PCI function
handle, the PCI address space (PCIAS), the offset into the PCI address space, the length of
the data to be stored, and a pointer to the data to be stored. The pointer operand may
comprise both a register and a signed or unsigned displacement. Upon successful
completion of the PCI Store Block instruction, the data is stored in the location in the adapter

designated by the instruction.

Referring to FIG. 9A, initially, a dctermination is made as to whether the facility allowing
for a PCI Store Block instruction is installed, INQUIRY 900. This determination is madc
by, for instance, checking an indicator stored in, for instance, a control block. If the facility
is not installed, an exception condition is provided, STEP 902. Otherwise, if the facility is
installed, a determination is madc as to whether the handle provided in the operands of the
PCI Store Block instruction is enabled, INQUIRY 904. In one example, this dctcrmination
is made by checking an enable indicator in the handle. If the handle is not enabled, then an

cxception condition is provided, STEP 906.

If the handle is enabled, then the handle is used to locate a function table cntry, STEP 912.
That is, at least a portion of the handle is used as an index into the function table to locate the

function table entry corresponding to the adapter function at which data is to be stored.

Thereafter, if the configuration issuing the instruction is a guest, a determination is madc as
to whether the function is configured for use by a guest, INQUIRY 914. If it is not
authorized, then an exception condition is provided, STEP 916. This inquiry may be ignored

if the configuration is not a guest or othcr authorizations may be checked, if designated.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

26

A determination is then madc as to whcether the function is enabled, INQUIRY 918. In one
example, this determination is made by checking an enable indicator in the function table

entry. Ifit is not enabled, then an exception condition is provided, STEP 920.

If the function is enabled, then a determination is made as to whether the address space is
valid, INQUIRY 922. For instance, is the specified address space a designated address space
of the adapter function and one that is appropriate for this instruction (i.e., a memory space).
If the address space is invalid, then an exception condition is provided, STEP 924.
Otherwise, a determination is madc as to whcether load/store is blocked, INQUIRY 926. In
one example, this determination is made by checking the status indicator in the function

table entry. If load/store is blocked, then an exception condition is provided, STEP 928.

However, if the load/store is not blocked, a dctermination is made as to whether recovery is
active, INQUIRY 930. In one example, this determination is made by checking the recovery
initiated indicator in the function table entry. If recovery is active, then an exception
condition is provided, STEP 932. Otherwise, a determination is made as to whether the
function is busy, INQUIRY 934. This dctcrmination is made by checking the busy indicator
in the function table entry. If the function is busy, then a busy condition is provided, STEP

936. With a busy condition, the instruction can be retried, instead of dropped.

If the function is not busy, then a further determination is made as to whether the offset
specified in the instruction is valid, INQUIRY 938. That is, is the offset in combination with
the length of the operation within the base and length of the address space, as specified in the
function table entry. If not, then an exception condition is provided, STEP 940. However, if
the offset is valid, then a detcrmination is madc as to whcther the length is valid, INQUIRY
942. That is, subject to the address space type, offsct within the address spacc, and an
integral boundary size is the length valid. If not, then an exception condition is provided,
STEP 944. Otherwise, processing continues with the store block instruction. (In one

embodiment, the firmware performs the above checks.)

Continuing with FIG. 9B, a determination is made by the firmware as to whether the storage

that includes the data to be stored is accessible, INQUIRY 950. If not, an exception

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

27

condition is provided, STEP 952. If so, then the firmware performs various processing to
provide the request to a hub coupled to the adapter function; the hub then routcs the requcst
to the function, STEP 954.

For example, the firmware uscs the handle to sclcct a function table entry and from that entry
it obtains information to locate the appropriate hub. It also calculates a data address to be
used in the store block operation. This address is calculated by adding the BAR starting
address (with the BAR being identified by the address space identifier) obtained from the
function table entry to the offsct provided in the instruction. This calculated data address is
provided to the hub. In addition, the data referenced by the address provided in the
instruction is fetched from system memory and provided to the I/O hub. The hub then takes
that address and data and includes it in a request packet, such as a DMA write request

packet, that flows out over the PCI bus to the adapter function.

Responsive to receiving the request, the adapter function stores the requested data at the
spccificd location (i.e., at the data address) , STEP 956. The PCI Store Block operation

concludes with an indication of success (e.g., sctting a condition code of zero).

Described in detail above is a capability for communicating with adapters of a computing
cnvironment using control instructions specifically designed for such communication. The
communication is performed without using memory mapped 1/0 and is not limited to control
registers in the adapter function. The instructions ensure that the configuration that issucs
the instruction is authorized to access the adapter function. Further, for the Store Block
instruction, it ensures that the specified main storage location is within the configuration's

memory.

In the embodiments described herein, the adapters are PCI adapters. PCI, as used herein,
refers to any adapters implemented according to a PCI-based specification as defined by the
Peripheral Component Interconnect Special Interest Group (PCI-SIG), including but not
limited to, PCI or PCle. In one particular example, the Peripheral Component Interconnect
Express (PCle) is a component level interconnect standard that defines a bi-directional

communication protocol for transactions between 1/0 adapters and host systems. PCle

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

28

communications are encapsulatcd in packets according to the PCle standard for transmission
on a PCle bus. Transactions originating at I/O adapters and ending at host systcms arc
referred to as upbound transactions. Transactions originating at host systems and
terminating at 1/O adapters are referred to as downbound transactions. The PCle topology is
based on point-to-point unidircctional links that are paired (e.g., one upbound link, one
downbound link) to form the PCle bus. The PCle standard is maintained and published by

the PCI-SIG, as noted above in the Background section.

As will be appreciated by onc skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspccts of the
present invention may take the form of an entirely hardware embodiment, an entirely
softwarc cmbodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining softwarc and hardware aspects that may all generally be referred to

herein as a "circuit," "module" or "system". Furthermore, aspects of the prcsent invention
may take the form of a computer program product embodied in one or more computer

rcadable medium(s) having computer readable program code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable storage medium. A computer
rcadablc storage medium may be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared or semiconductor systcm, apparatus, or device, or any
suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the
computer readable storage medium include the following: an electrical connection having
onc or more wires, a portable computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasablc programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory
(CD-ROM), an optical storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store a program for use by or in

connection with an instruction execution system, apparatus, or device.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

29

Referring now to FIG. 10, in onc example, a computer program product 1000 includes, for
instance, one or more computer readable storage media 1002 to store computer rcadable
program code means or logic 1004 thereon to provide and facilitate one or more aspects of

the present invention.

Program code embodied on a computer readable medium may be transmitted using an
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF,

ctc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for aspects of the present invention may
be written in any combination of one or more programming languages, including an object
oricnted programming language, such as Java, Smalltalk, C++ or the like, and conventional
procedural programming languages, such as the "C" programming language, assembler or
similar programming languages. The program code may execute entirely on the uscr's
computer, partly on the user's computer, as a stand-alone software package, partly on the
user's computcr and partly on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computcr may be connected to the user's computer
through any type of network, including a local area network (LAN) or a widc arca network
(WAN), or the connection may be made to an external computer (for example, through the

Internet using an Internet Service Provider).

Aspects of the present invention are described herein with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer program instructions.
These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which cxccutc via the processor of the
computer or other programmable data processing apparatus, create means for implemcenting

the functions/acts specified in the flowchart and/or block diagram block or blocks.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

30

These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or othcr devices
to function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions which implement the

function/act specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may rcpresent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative implementations, the functions
notcd in the block may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be exccuted substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be
implemented by special purposc hardware-bascd systcms that perform the specified

functions or acts, or combinations of special purpose hardware and computer instructions.

In addition to the above, one or more aspects of the present invention may be provided,
offered, deployed, managed, scrviced, ctc. by a service provider who offers management of
customer environments. For instance, the service provider can create, maintain, support, ctc.
computer code and/or a computer infrastructure that performs one or more aspects of the

present invention for one or more customers. In return, the service provider may receive

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

31

payment from the customer under a subscription and/or fee agreement, as examples.
Additionally or alternatively, the service provider may receive payment from the salc of

advertising content to one or more third parties.

In one aspect of the present invention, an application may be deployed for performing one or
more aspects of the present invention. As one example, the deploying of an application
comprises providing computer infrastructure operable to perform onc or more aspects of the

present invention.

As a further aspect of the present invention, a computing infrastructure may be deployed
comprising integrating computer readable code into a computing system, in which the code
in combination with the computing system is capable of performing one or more aspects of

the present invention.

As yet a further aspect of the present invention, a process for integrating computing
infrastructure comprising integrating computer readable code into a computer system may be
provided. The computer system compriscs a computer readable medium, in which the
computer medium comprises one or more aspects of the present invention. The codc in
combination with the computer system is capable of performing one or more aspects of the

present invention.

Although various embodiments are described above, these are only cxamples. For example,
computing environments of other architectures can incorporate and use one or more aspects
of the present invention. As examples, servers other than System z® servers, such as Power
Systems servers or other servers offcred by Intcrnational Business Machines Corporation, or
servers of other companies can include, use and/or benefit from one or more aspects of the
present invention. Further, although in the examples herein, the adapters and PCI hub are
considered a part of the server, in other embodiments, they do not have to necessarily be
considered a part of the server, but can simply be considcred as being coupled to system
memory and/or other components of a computing environment. The computing environment
need not be a server. Further, although tables are described, any data structure can be used

and the term table is to include all such data structures. Yet further, although the adapters

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

32

are PCI based, one or more aspects of the present invention are usable with other adapters or
other I/O components. Adapter and PCI adapter are just examples. Morcover, the FTE or
the parameters of the FTE can be located and maintained in other than secure memory,
including, for instance, in hardware (e.g., PCI function hardware). The DTE, FTE and/or
handle may include more, lcss or diffcrent information, as well as any of the instructions or

instruction fields. Many other variations are possible.

Further, other types of computing environments can benefit from one or more aspects of the
present invention. As an example, a data proccssing system suitable for storing and/or
executing program code is usable that includes at least two processors coupled directly or
indirectly to memory elements through a system bus. The memory elements include, for
instance, local memory employed during actual execution of the program code, bulk storage,
and cache memory which provide temporary storage of at least some program code in order

to reduce the number of times code must be retrieved from bulk storage during cxccution.

Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing
devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening I/O controllers. Network
adapters may also be coupled to the system to enable the data processing system to become
coupled to other data processing systems or remote printers or storage devices through
intervening private or public networks. Modcms, cablc modems, and Ethernet cards are just

a few of the available types of network adapters.

Referring to FIG. 11, representative components of a Host Computer system 5000 to
implement one or more aspects of the present invention are portrayed. The representative
host computer 5000 comprises one or more CPUs 5001 in communication with computer
memory (i.e., central storage) 5002, as well as I/O interfaces to storage media devices 5011
and networks 5010 for communicating with other computers or SANs and the like. The
CPU 5001 is compliant with an architecturc having an architected instruction set and
architected functionality. The CPU 5001 may have dynamic address translation (DAT) 5003
for transforming program addresses (virtual addresses) into real addresses of memory. A

DAT typically includes a translation lookaside buffer (TLB) 5007 for caching translations so

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

33

that later accesses to the block of computer memory 5002 do not require the delay of address
translation. Typically, a cache 5009 is employed between computer memory 5002 and the
processor 5001. The cache 5009 may be hierarchical having a large cache available to more
than one CPU and smaller, faster (lower level) caches between the large cache and each
CPU. In some implementations, the lower Icvel caches are split to provide separate low
level caches for instruction fetching and data accesses. In one embodiment, an instruction is
fetched from memory 5002 by an instruction fetch unit 5004 via a cache 5009. The
instruction is decoded in an instruction decode unit 5006 and dispatched (with other
instructions in some embodiments) to instruction execution unit or units 5008. Typically
several execution units 5008 are employed, for example an arithmetic exccution unit, a
floating point execution unit and a branch instruction execution unit. The instruction is
exccuted by the execution unit, accessing operands from instruction specified registers or
memory as needed. If an operand is to be accessed (loaded or stored) from memory 5002, a
load/store unit 5005 typically handles the access under control of the instruction being
executed. Instructions may be executed in hardware circuits or in internal microcode

(firmware) or by a combination of both.

As noted, a computer system includes information in local (or main) storagc, as well as
addressing, protection, and reference and change recording. Some aspects of addressing
include the format of addresses, the concept of address spaces, the various types of
addresses, and the manner in which onc typc of address is translated to another type of
address. Some of main storage includes permanently assigned storage locations. Main
storage provides the system with directly addressable fast-access storage of data. Both data
and programs are to be loaded into main storage (from input devices) before they can be

processed.

Main storage may include one or more smaller, faster-access buffer storages, sometimes
called caches. A cache is typically physically associated with a CPU or an I/O processor.
The effects, except on performance, of the physical construction and use of distinct storage

media are generally not observable by the program.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

34

Separate caches may be maintained for instructions and for data operands. Information
within a cache is maintained in contiguous bytes on an integral boundary called a cache
block or cache line (or line, for short). A model may provide an EXTRACT CACHE
ATTRIBUTE instruction which returns the size of a cache line in bytes. A model may also
provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG instructions which
effects the prefetching of storage into the data or instruction cache or the releasing of data

from the cache.

Storage is viewed as a long horizontal string of bits. For most operations, accesses to storage
proceed in a left-to-right sequence. The string of bits is subdivided into units of eight bits.
An eight-bit unit is called a byte, which is the basic building block of all information
formats. Each byte location in storage is identified by a unique nonnegative integer, which
is the address of that byte location or, simply, thc byte address. Adjacent byte locations have
consecutive addresses, starting with 0 on the left and proceeding in a left-to-right scquence.

Addresses are unsigned binary integers and are 24, 31, or 64 bits.

Information is transmitted between storage and a CPU or a channel subsystem one byte, or a
group of bytes, at a time. Unless otherwise specified, in, for instance, thc z/Architecture®, a
group of bytes in storage is addressed by the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly specified by the operation to be performed.
When used in a CPU operation, a group of bytes is callcd a field. Within each group of
bytes, in, for instance, the z/Architecture®, bits are numbered in a left-to-right scquence. In
the z/Architecture®, the leftmost bits are sometimes referred to as the “high-order” bits and
the rightmost bits as the “low-order” bits. Bit numbers are not storage addresses, however.
Only bytes can be addressed. To operate on individual bits of a byte in storage, the entire
byte is accessed. The bits in a byte are numbered 0 through 7, from left to right (in, ¢.g., the
z/Architecture®). The bits in an address may be numbered 8-31 or 40-63 for 24-bit
addresses, or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit
addresses. Within any other fixed-length format of multiple bytes, the bits making up the
format are consecutively numbered starting from 0. For purposes of error detection, and in
preferably for correction, one or more check bits may be transmitted with each byte or with a

group of bytes. Such check bits are generated automatically by the machine and cannot be

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

35

directly controlled by the program. Storage capacities are expressed in number of bytes.
When the length of a storage-operand field is implied by the operation code of an
instruction, the field is said to have a fixed length, which can be one, two, four, eight, or
sixtcen bytes. Larger fields may be implied for some instructions. When the length of a
storage-operand field is not implicd but is stated explicitly, the field is said to have a variable
length. Variable-length operands can vary in length by increments of onc byte (or with some
instructions, in multiples of two bytes or other multiples). When information is placed in
storage, the contents of only those byte locations are replaced that are included in the
designated field, even though the width of the physical path to storage may be greater than
the length of the field being stored.

Certain units of information are to be on an integral boundary in storage. A boundary is
called integral for a unit of information when its storage address is a multiple of the length of
the unit in bytes. Special names are given to fields of 2, 4, 8, and 16 bytcs on an integral
boundary. A halfword is a group of two consecutive bytes on a two-byte boundary and is
the basic building block of instructions. A word is a group of four consecutive bytes on a
four-byte boundary. A doublcword is a group of cight consecutive bytes on an eight-byte
boundary. A quadword is a group of 16 consecutive bytes on a 16-byte boundary. When
storage addresses designate halfwords, words, doublewords, and quadwords, the binary
representation of the address contains one, two, three, or four rightmost zero bits,
respectively. Instructions are to be on two-byte integral boundaries. The storage operands

of most instructions do not have boundary-alignment requirements.

On devices that implement separate caches for instructions and data operands, a significant
delay may be experienced if the program storcs into a cachc line from which instructions are
subsequently fetched, regardless of whether the store alters the instructions that arc

subsequently fetched.

In one embodiment, the invention may be practiced by software (sometimes referred to
licensed internal code, firmware, micro-code, milli-code, pico-code and the like, any of
which would be consistent with the present invention). Referring to FIG. 8, software

program code which embodies the present invention is typically accessed by processor 5001

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

36

of the host system 5000 from long-term storagc media devices 5011, such as a CD-ROM
drive, tape drive or hard drive. The software program code may be embodicd on any of a
variety of known media for use with a data processing system, such as a diskette, hard drive,
or CD-ROM. The code may be distributed on such media, or may be distributed to users
from computer memory 5002 or storagce of one computer system over a network 5010 to

other computer systems for use by users of such other systems.

The software program code includes an operating system which controls the function and
interaction of the various computer componcnts and one or more application programs.
Program code is normally paged from storage media device 5011 to the rclatively higher-
speed computer storage 5002 where it is available for processing by processor 5001. The
techniques and methods for embodying software program code in memory, on physical
media, and/or distributing softwarc code via networks are well known and will not be further
discussed herein. Program code, when created and stored on a tangible medium (including
but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs),
DVDs, Magnetic Tape and the like is often referred to as a “computer program product”.
The computer program product medium is typically readable by a processing circuit

preferably in a computer system for execution by the processing circuit.

FIG. 12 illustrates a representative workstation or server hardware system in which the
present invention may be practiced. The system 5020 of FIG. 12 comprises a representative
base computer system 5021, such as a personal computer, a workstation or a servcr,
including optional peripheral devices. The base computer system 5021 includes one or more
processors 5026 and a bus employed to connect and enable communication between the
processor(s) 5026 and the other componcnts of the system 5021 in accordance with known
techniques. The bus connects the processor 5026 to memory 5025 and long-tcrm storage
5027 which can include a hard drive (including any of magnetic media, CD, DVD and Flash
Mcmory for example) or a tape drive for example. The system 5021 might also include a
user interface adapter, which connects the microprocessor 5026 via the bus to one or more
interface devices, such as a keyboard 5024, a mouse 5023, a printer/scanner 5030 and/or

other interface devices, which can be any user interface device, such as a touch sensitive

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

37

screen, digitized entry pad, etc. The bus also connects a display device 5022, such as an

LCD screen or monitor, to the microprocessor 5026 via a display adapter.

The system 5021 may communicate with other computers or networks of computers by way
of a network adapter capable of communicating 5028 with a network 5029. Example
network adapters are communications channels, token ring, Ethernet or modems.
Alternatively, the system 5021 may communicate using a wireless interface, such as a CDPD
(cellular digital packet data) card. The system 5021 may be associated with such other
computers in a Local Area Network (LAN) or a Wide Area Network (WAN), or the system
5021 can be a client in a client/server arrangement with another computer, etc. All of thesc
configurations, as well as the appropriate communications hardware and software, are

known in thc art.

FIG. 13 illustrates a data processing network 5040 in which the present invention may be
practiced. The data processing network 5040 may include a plurality of individual networks,
such as a wircless network and a wired network, each of which may include a plurality of
individual workstations 5041, 5042, 5043, 5044. Additionally, as those skilled in the art will
appreciate, one or more LANs may be included, where a LAN may comprisc a plurality of

intelligent workstations coupled to a host processor.

Still referring to F1G. 13, the networks may also include mainframe computers or servers,
such as a gateway computer (client server 5046) or application server (remotc server 5048
which may access a data repository and may also be accessed directly from a workstation
5045). A gateway computer 5046 serves as a point of entry into each individual network. A
gateway is needed when connecting onc nctworking protocol to another. The gateway 5046
may be preferably coupled to another network (the Internet 5047 for example) by means of a
communications link. The gateway 5046 may also be directly coupled to one or more
workstations 5041, 5042, 5043, 5044 using a communications link. The gateway computer
may be implemented utilizing an 1BM cServer™ System z® server available from

International Business Machines Corporation.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

38

Referring concurrently to FIG. 12 and FIG. 13, software programming code which may
embody the present invention may be accessed by the processor 5026 of the system 5020
from long-term storage media 5027, such as a CD-ROM drive or hard drive. The software
programming code may be embodied on any of a variety of known media for use with a data
processing system, such as a diskettc, hard drive, or CD-ROM. The code may be distributed
on such media, or may be distributed to users 5050, 5051 from the memory or storage of one
computer system over a network to other computer systems for use by users of such other

systems.

Alternatively, the programming code may be embodied in the memory 5025, and accesscd
by the processor 5026 using the processor bus. Such programming code includes an
opcrating systcm which controls the function and interaction of the various computer
components and one or morc application programs 5032. Program code is normally paged
from storage media 5027 to high-speed memory 5025 where it is available for proccssing by
the processor 5026. The techniques and methods for embodying software programming
codc in memory, on physical media, and/or distributing software code via networks are well
known and will not be further discussed herein. Program code, when created and stored on a
tangible medium (including but not limited to electronic memory modulcs (RAM), flash
memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a
“computer program product”. The computer program product medium is typically readable
by a processing circuit preferably in a computcr system for cxecution by the processing

circuit.

The cache that is most readily available to the processor (normally faster and smaller than
other caches of the processor) is the lowest (L1 or level onc) cache and main store (main
memory) is the highest level cache (L3 if there are 3 levels). The lowest level cache is often
divided into an instruction cache (I-Cache) holding machine instructions to be executed and

a data cache (D-Cache) holding data operands.

Referring to FIG. 14, an exemplary processor embodiment is depicted for processor 5026.
Typically one or more levels of cache 5053 are employed to buffer memory blocks in order

to improve processor performance. The cache 5053 is a high speed buffer holding cache

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

39

lines of memory data that arc likcly to be used. Typical cache lines are 64, 128 or 256 bytes
of memory data. Separate caches are often employed for caching instructions than for
caching data. Cache coherence (synchronization of copies of lines in memory and the
caches) is often provided by various “snoop” algorithms well known in the art. Main
memory storage 5025 of a processor system is often referred to as a cache. In a processor
system having 4 levels of cache 5053, main storage 5025 is sometimes referred to as the
level 5 (L5) cache since it is typically faster and only holds a portion of the non-volatile
storage (DASD, tape etc) that is available to a computer system. Main storage 5025

“caches” pages of data paged in and out of thc main storage 5025 by the operating system.

A program counter (instruction counter) 5061 keeps track of the address of the current
instruction to be executed. A program counter in a z/Architecture® processor is 64 bits and
can be truncated to 31 or 24 bits to support prior addressing limits. A program counter is
typically embodied in a PSW (program status word) of a computer such that it persists
during context switching. Thus, a program in progress, having a program counter value,
may bc intcrrupted by, for example, the operating system (context switch from the program
environment to the operating systcm cnvironment). The PSW of the program maintains the
program counter value while the program is not active, and the program countcr (in the
PSW) of the operating system is used while the operating system is executing. Typically,
the program counter is incremented by an amount equal to the number of bytes of the current
instruction. RISC (Reduced Instruction Sct Computing) instructions are typically fixed
length while CISC (Complex Instruction Set Computing) instructions are typically variablc
length. Instructions of the IBM z/Architecture® are CISC instructions having a length of 2,
4 or 6 bytes. The Program counter 5061 is modified by either a context switch operation or a
branch taken operation of a branch instruction for cxample. In a context switch operation,
the current program counter value is saved in the program status word along with other statc
information about the program being executed (such as condition codes), and a new program
counter value is loaded pointing to an instruction of a new program module to be executed.
A branch taken operation is performed in order to permit the program to make decisions or
loop within the program by loading the result of the branch instruction into the program

counter 5061.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

40

Typically an instruction fetch unit 5055 is employed to fetch instructions on behalf of the
processor 5026. The fetch unit either fetches “next sequential instructions”, target
instructions of branch taken instructions, or first instructions of a program following a
context switch. Modern Instruction fetch units often employ prefetch techniques to
speculatively prefetch instructions bascd on the likelihood that the prefetched instructions
might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the

next sequential instruction and additional bytes of further sequential instructions.

The fetched instructions arc then cxccuted by the processor 5026. In an embodiment, the
fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit. The dispatch unit
decodes the instruction(s) and forwards information about the decoded instruction(s) to
appropriate units 5057, 5058, 5060. An execution unit 5057 will typically receive
information about decoded arithmctic instructions from the instruction fetch unit 5055 and
will perform arithmetic operations on operands according to the opcode of the instruction.
Operands are provided to the execution unit 5057 preferably either from memory 5025,
architected registers 5059 or from an immediate field of the instruction being executed.
Results of the execution, when stored, are stored cither in memory 5025, registers 5059 or in

other machine hardware (such as control registers, PSW registers and the likc).

A proccssor 5026 typically has one or more units 5057, 5058, 5060 for executing the
function of the instruction. Referring to FIG. 15A, an execution unit 5057 may
communicate with architected general registers 5059, a decode/dispatch unit 5056, a load
store unit 5060, and other 5065 processor units by way of interfacing logic 5071. An
execution unit 5057 may employ several register circuits 5067, 5068, 5069 to hold
information that the arithmetic logic unit (ALU) 5066 will operate on. The ALU performs
arithmetic operations such as add, subtract, multiply and divide as well as logical function
such as and, or and exclusive-or (XOR), rotate and shift. Preferably the ALU supports
spccialized operations that are design dependent. Other circuits may provide other
architected facilities 5072 including condition codes and rccovery support logic for example.
Typically the result of an ALU operation is held in an output register circuit 5070 which can

forward the result to a variety of other processing functions. There are many arrangements

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

41

of processor units, the present description is only intended to provide a representative

understanding of one embodiment.

An ADD instruction for example would be executed in an execution unit 5057 having
arithmetic and logical functionality whilc a floating point instruction for example would be
executed in a floating point execution having specialized floating point capability.
Preferably, an execution unit operates on operands identified by an instruction by performing
an opcode defined function on the operands. For example, an ADD instruction may be
executed by an execution unit 5057 on opcrands found in two registers 5059 identified by

register fields of the instruction.

The exccution unit 5057 performs the arithmetic addition on two operands and stores the
result in a third operand where the third opcrand may be a third register or one of the two
source registers. The execution unit preferably utilizes an Arithmetic Logic Unit (ALU)
5066 that is capable of performing a variety of logical functions such as Shift, Rotate, And,
Or and XOR as well as a variety of algebraic functions including any of add, subtract,
multiply, divide. Some ALUs 5066 arc designed for scalar operations and some for floating
point. Data may be Big Endian (where the least significant byte is at the highest byte
address) or Little Endian (where the least significant byte is at the lowest byte address)
depending on architecture. The IBM z/Architecture® is Big Endian. Signed fields may be
sign and magnitude, 1’s complement or 2°s complement depending on architecture. A 2°s
complement number is advantageous in that the ALU does not need to design a subtract
capability since either a negative value or a positive value in 2’s complement requires only
an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bit
field defines an address of a 4,096 bytc block and is commonly described as a 4 Kbyte (Kilo-
byte) block, for example.

Referring to FIG. 15B, branch instruction information for executing a branch instruction is
typically sent to a branch unit 5058 which often cmploys a branch prediction algorithm such
as a branch history table 5082 to predict the outcome of the branch beforc other conditional
operations are complete. The target of the current branch instruction will be fetched and

speculatively executed before the conditional operations are complete. When the conditional

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

42

operations are completed the spcculatively cxecuted branch instructions are either completed
or discarded based on the conditions of the conditional operation and the spcculated
outcome. A typical branch instruction may test condition codes and branch to a target
address if the condition codes meet the branch requirement of the branch instruction, a target
address may be calculated bascd on scveral numbers including ones found in register fields
or an immediate field of the instruction for example. The branch unit 5058 may cmploy an
ALU 5074 having a plurality of input register circuits 5075, 5076, 5077 and an output
register circuit 5080. The branch unit 5058 may communicate with general registers 5059,

decode dispatch unit 5056 or other circuits 5073, for example.

The execution of a group of instructions can be interrupted for a variety of reasons including
a contcxt switch initiated by an operating system, a program ¢xception or error causing a
context switch, an 1/0 interruption signal causing a context switch or multi-threading activity
of a plurality of programs (in a multi-threaded environment), for example. Prcfcrably a
context switch action saves state information about a currently executing program and then
loads statc information about another program being invoked. State information may be
saved in hardware registers or in mecmory for example. State information preferably
comprises a program counter value pointing to a next instruction to be exccuted, condition
codes, memory translation information and architected register content. A context switch
activity can be exercised by hardware circuits, application programs, operating system
programs or firmware code (microcode, pico-code or licensed internal code (LIC)) alone or

in combination.

A processor accesses operands according to instruction defined methods. The instruction
may provide an immediate operand using the valuc of a portion of the instruction, may
provide one or more register fields explicitly pointing to either general purposc rcgisters or
special purpose registers (floating point registers for example). The instruction may utilize
implied registers identified by an opcode field as operands. The instruction may utilize
memory locations for operands. A memory location of an operand may be provided by a
register, an immediate field, or a combination of registers and immediate field as
exemplified by the z/Architecture® long displacement facility wherein the instruction

defines a base register, an index register and an immediate field (displacement field) that are

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

43

added together to provide the address of the operand in memory for example. Location
herein typically implies a location in main memory (main storage) unless othcrwisc

indicated.

Referring to FIG. 15C, a proccssor accesses storage using a load/store unit 5060. The
load/store unit 5060 may perform a load operation by obtaining the address of the target
operand in memory 5053 and loading the operand in a register 5059 or another memory
5053 location, or may perform a store operation by obtaining the address of the target
operand in memory 5053 and storing data obtaincd from a register 5059 or another memory
5053 location in the target operand location in memory 5053. The load/storc unit 5060 may
be speculative and may access memory in a sequence that is out-of-order relative to
instruction sequence, however the load/store unit 5060 is to maintain the appearance to
programs that instructions werce exccuted in order. A load/store unit 5060 may communicate
with general registers 5059, decode/dispatch unit 5056, cache/memory intcrface 5053 or
other elements 5083 and comprises various register circuits, ALUs 5085 and control logic
5090 to calculate storage addresses and to provide pipeline sequencing to keep operations in-
order. Some operations may bc out of order but the load/store unit provides functionality to
make the out of order operations to appear to the program as having been performed in

order, as is well known in the art.

Preferably addresses that an application program *‘sccs” arc often referred to as virtual
addresses. Virtual addresses are sometimes referred to as “logical addresscs” and “cffective
addresses”. These virtual addresses are virtual in that they are redirected to physical
mcmory location by one of a variety of dynamic address translation (DAT) technologies
including, but not limited to, simply prcfixing a virtual address with an offset value,
translating the virtual address via one or more translation tables, the translation tablcs
preferably comprising at least a segment table and a page table alone or in combination,
prcferably, the segment table having an entry pointing to the page table. In the
z/Architecture®, a hierarchy of translation is provided including a region first table, a region
second table, a region third table, a segment table and an optional page table. Thc
performance of the address translation is often improved by utilizing a translation lookaside

buffer (TLB) which comprises entries mapping a virtual address to an associated physical

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

44

memory location. The entries arc crcated when the DAT translates a virtual address using
the translation tables. Subsequent use of the virtual address can then utilize the cntry of the
fast TLB rather than the slow sequential translation table accesses. TLB content may be

managed by a variety of replacement algorithms including LRU (Least Recently used).

In the case where the processor is a processor of a multi-pracessor system, cach processor
has responsibility to keep shared resources, such as 1/0, caches, TLBs and memory,
interlocked for coherency. Typically, “snoop” technologies will be utilized in maintaining
cache coherency. In a snoop environment, cach cache line may be marked as being in any
one of a shared state, an exclusive state, a changed state, an invalid state and the like in order

to facilitate sharing.

I/0 units 5054 (FIG. 14) provide thc proccssor with means for attaching to peripheral
devices including tape, disc, printers, displays, and networks for example. 1/0 units arc often
presented to the computer program by software drivers. In mainframes, such as the System
z® from IBM®, channel adapters and open system adapters are I/O units of the mainframe

that provide the communications between the operating system and peripheral devices.

Further, other types of computing environments can benefit from one or more aspects of the
present invention. As an example, an environment may include an emulator (e.g., software
or other emulation mechanisms), in which a particular architecture (including, for instance,
instruction execution, architected functions, such as address translation, and architectcd
registers) or a subset thereof is emulated (e.g., on a native computer system having a
processor and memory). In such an environment, one or more emulation functions of the
emulator can implement one or more aspects of the present invention, even though a
computer executing the emulator may have a different architecture than the capabilities
being emulated. As one example, in emulation mode, the specific instruction or operation
being emulated is decoded, and an appropriate emulation function is built to implement the

individual instruction or operation.

In an emulation environment, a host computer includes, for instance, a memory to store

instructions and data; an instruction fetch unit to fetch instructions from memory and to

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

45

optionally, provide local buffcring for the fetched instruction; an instruction decode unit to
receive the fetched instructions and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the instructions. Execution may include
loading data into a register from memory; storing data back to memory from a register; or
performing some type of arithmetic or logical opcration, as dctermined by the decode unit.
In one example, each unit is implemented in software. For instance, the operations being
performed by the units are implemented as one or more subroutines within emulator

software.

More particularly, in a mainframe, architected machine instructions are used by
programmers, usually today “C” programmers, often by way of a compiler application.
Thesc instructions stored in the storage medium may be executed natively in a
z/Architecture® IBM® Server, or altcrnatively in machines executing other architectures.
They can be emulated in the existing and in future IBM® mainframe servers and on other
machines of IBM® (e.g., Power Systems servers and System x® Servers). They can be
cxecuted in machines running Linux on a wide variety of machines using hardware
manufactured by IBM®, Intcl®, AMD™, and others. Besides execution on that hardware
under a z/Architecture®, Linux can be used as well as machines which use emulation by
Hercules or FSI (Fundamental Software, Inc), where generally execution is in an emulation
modc. In emulation mode, emulation software is executed by a native processor to emulate
the architecture of an emulated processor. Information about the above-referenced emulator

products is available on the World Wide Web at, respectively, www hercules-39{.0rg and

www.funsoft.com.

The native processor typically executes cmulation softwarc comprising cither firmware or a
native operating system to perform emulation of the emulated processor. The emulation
software is responsible for fetching and executing instructions of the emulated processor
architecture. The emulation software maintains an cmulated program counter to keep track
of instruction boundaries. The emulation softwarc may fetch one or more emulated machine
instructions at a time and convert the one or more emulated machine instructions to a
corresponding group of native machine instructions for execution by the native processor.

These converted instructions may be cached such that a faster conversion can be

390.org_andwww.lunsoft.com
390.org_andwww.lunsoft.com

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

46

accomplished. Notwithstanding, the emulation software is to maintain the architecture rules
of the emulated processor architecture so as to assure operating systems and applications
written for the emulated processor operate correctly. Furthermore, the emulation software is
to provide resources identified by the emulated processor architecture including, but not
limited to, control registers, general purposc registers, floating point registers, dynamic
address translation function including segment tables and page tables for example, intcrrupt
mechanisms, context switch mechanisms, Time of Day (TOD) clocks and architected
interfaces to I/0 subsystems such that an operating system or an application program
designed to run on the emulated proccssor, can be run on the native processor having the

emulation software.

A spccific instruction being emulated is decoded, and a subroutine is called to perform the
function of the individual instruction. An cmulation software function emulating a function

ARl

of an emulated processor is implemented, for example, in a “C” subroutine or drivcer, or
some other method of providing a driver for the specific hardware as will be within the skill
of thosc in the art after understanding the description of the preferred embodiment. Various
software and hardware emulation patents including, but not limited to U.S. Letters Patent
No. 5,551,013, entitled “Multiprocessor for Hardware Emulation”, by Beausolcil ct al.; and
U.S. Letters Patent No. 6,009,261, entitled “Preprocessing of Stored Target Routines for
Emulating Incompatible Instructions on a Target Processor”, by Scalzi et al; and U.S. Letters
Patent No. 5,574,873, entitled “Decoding Gucst Instruction to Directly Access Emulation
Routines that Emulate the Guest Instructions”, by Davidian et al; and U.S. Letters Patent No.
6,308,255, entitled “Symmetrical Multiprocessing Bus and Chipset Used for Coprocessor
Support Allowing Non-Native Code to Run in a System”, by Gorishek et al; and U.S. Letters
Patent No. 6,463,582, entitled “Dynamic Optimizing Objcct Code Translator for
Architecture Emulation and Dynamic Optimizing Object Code Translation Method”, by
Lethin et al; and U.S. Letters Patent No. 5,790,825, entitled “Method for Emulating Guest
Instructions on a Host Computer Through Dynamic Recompilation of Host Instructions”, by
Eric Traut; and many others, illustrate a variety of known ways to achieve emulation of an
instruction format architected for a different machine for a target machine available to thosc

skilled in the art.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

47

In FIG. 16, an example of an cmulated host computer system 5092 is provided that emulates
a host computer system 5000' of a host architecture. In the emulated host computer systcm
5092, the host processor (CPU) 5091 is an emulated host processor (or virtual host
processor) and comprises an emulation processor 5093 having a different native instruction
set architecture than that of the processor 5091 of the host computer 5000'. The emulated
host computer system 5092 has memory 5094 accessible to the emulation proccssor 5093.
In the example embodiment, the memory 5094 is partitioned into a host computer memory
5096 portion and an emulation routines 5097 portion. The host computer memory 5096 is
available to programs of the emulated host computer 5092 according to host computer
architecture. The emulation processor 5093 executes native instructions of an architected
instruction set of an architecture other than that of the emulated processor 5091, the native
instructions obtained from emulation routines memory 5097, and may access a host
instruction for execution from a program in host computer memory 5096 by employing one
or more instruction(s) obtained in a sequence & access/decode routine which may decodc the
host instruction(s) accessed to determine a native instruction execution routine for emulating
the function of the host instruction accessed. Other facilities that are defined for the host
computer system 5000' architccturc may be cmulated by architected facilities routines,
including such facilities as general purpose registers, control registers, dynamic address
translation and I/0 subsystem support and processor cache, for example. The emulation
routines may also take advantage of functions available in the emulation processor 5093
(such as general registers and dynamic translation of virtual addresses) to improve
performance of the emulation routines. Special hardware and off-load engincs may also be

provided to assist the processor 5093 in emulating the function of the host computer 5000'.

The terminology used herein is for the purposc of describing particular embodiments only
and is not intended to be limiting of the invention. As used herein, the singular forms “a”,
“an” and “the” are intended to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the terms “comprises” and/or
“comprising”, when used in this spccification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but do not preclude the prescnce or
addition of one or more other features, integers, steps, operations, elements, components

and/or groups thercof.

10

WO 2011/160710 PCT/EP2010/067028

48

The corresponding structures, materials, acts, and equivalents of all means or step plus
function elements in the claims below, if any, are intended to include any structure, material,
or act for performing the function in combination with other claimed elements as specifically
claimed. The description of the present invention has been presented for purposes of
illustration and description, but is not intcnded to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will be apparent to those of ordinary
skill in the art without departing from the scope of the invention. The embodiment was
chosen and described in order to best explain the principles of the invention and the practical
application, and to enable others of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited to the particular use

contemplated.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

49

CLAIMS

1. A method for executing a store instruction for storing data in an adapter, comprising
the steps of:

a computer readable storage medium rcadable by a processing circuit and storing
instructions for execution by the processing circuit for performing a method comprising:

obtaining a machine instruction for execution, the machine instruction being defined
for computer execution according to a computer architecture, the machine instruction
comprising:

an opcode field identifying a store to adapter instruction;

a first field identifying a first location that includes data to be stored in an adapter;

a sccond field identifying a second location, the contents of which include a function
handle identifying the adapter, a designation of an address space within the adapter in which
data is to be stored, and an offset within the address space; and

executing the machine instruction, the executing comprising:

using the function handle to obtain a function table entry associated with the adapter,

obtaining a data address of the adapter using at least one of information in the
function table entry and the offset; and

storing data from the first location in a specific location in the address space
identificd by the designation of the address space, the specific location identified by the data

address of the adapter.

2. The method of claim 1, wherein the address space to be accessed is one of a memory
space or an I/O space, and wherein the obtaining the data address comprises using one or

more parameters of the function table entry to obtain the data address.

3. The method of claim 2, wherein the using one or more parameters comprises adding
a value of a base address register of the function table entry to the offset to obtain the data

address.

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

50

4. The method of claim 1, whercin the address space to be accessed is a configuration
space, and wherein the data address is the offset provided by the instruction, the offsct

identifying a register number in the configuration space.

5. The method of claim 1, whercin the contents of the second location includes an

amount of data to be stored.

6. The method of claim 1, wherein the instruction is implemented based on the

architecture of the adapter.

7. A computer program comprising computer program code stored on a computer
rcadable medium to, when loaded into a computer system and executed thereon, cause said

computer system to perform all the steps of a mcthod according to any of claims 1 to 6.

8. A computer system for executing a store instruction for storing data in an adapter,
said computer system comprising:

a memory;

a processor in communications with the memory;

the processor obtaining a machine instruction for execution, the machine instruction
being defined for computer execution according to a computer architecture, the machine
instruction comprising:

an opcode field identifying a store to adapter instruction;

a first field identifying a first location that includes data to be stored in an adapter;

a second field identifying a second location, the contents of which include a function
handle identifying the adapter, a designation of an address space within the adapter in which
data is to be stored, and an offset within the address space; and

the processor executing the machine instruction, the executing comprising:

using the function handle to obtain a function table entry associated with the adapter;

obtaining a data address of the adapter using at least one of information in the

function table entry and the offset; and

10

15

20

25

30

WO 2011/160710 PCT/EP2010/067028

51

storing data from the first location in a specific location in the address space
identified by the designation of the address space, the specific location identificd by the data
address of the adapter.

9. A computer system for exccuting a storc instruction for storing data in an adapter,
said computer system comprising:

a memory;

a processor in communications with the memory, wherein the computer system is
configured to perform a method, said method comprising:

obtaining a machine instruction for execution, the machine instruction being defined
for computer execution according to a computer architecture, the machine instruction
comprising:

an opcode field identifying a storc to adapter instruction;

a first field identifying a first location that includes data to be stored in an adapter;

a second field identifying a second location, the contents of which include a function
handle identifying the adapter, a designation of an address space within the adapter in which
data is to be stored, and an offsct within the address space; and

executing the machine instruction, the executing comprising:

using the function handle to obtain a function table entry associated with the adapter;

obtaining a data address of the adapter using at least one of information in the
function table entry and the offsct; and

storing data from the first location in a specific location in the address space
identified by the designation of the address space, the specific location identified by the data

address of the adapter.

10. The computer system of claim 9, wherein the address space to be accessed is one of a
memory space or an I/O space, and wherein the obtaining the data address comprises using

one or more parameters of the function table entry to obtain the data address.

11. The computer system of claim 10, wherein the using one or more parameters
comprises adding a value of a base address register of the function table entry to the offset to

obtain the data address.

10

15

WO 2011/160710 PCT/EP2010/067028

52

12. The computer system of claim 9, wherein the address space to be accessed is a
configuration space, and wherein the data address is the offset provided by the instruction,

the offset identifying a register number in the configuration space.

13. The computer system of claim 9, whcrein the contents of the second location

includes an amount of data to be stored.

14. The computer system of claim 9, wherein the instruction is implemented based on the

architecture of the adapter.

15. A computer program product for executing a store instruction for storing data in an
adapter, said computer program product comprising:

a computer readable storage medium rcadable by a processing circuit and storing
instructions for execution by the processing circuit for performing all the steps of the method

of any of claims 1 to 6.

WO 2011/160710 PCT/EP2010/067028

1/22
100
104 106
108
8 \‘ 102
MEMORY
XLATE| CPU
SYSTEM MEMORY CONTROLLER <—>
—{| XLATE| CPU
<>

XLATE| CPU

I/0-TO-MEMORY
BUS @\ 120

/0
ADDRESS TRANSLATION
HUB & PROTECTION <118

ROOT COMPLEX [——116

——112

PCle
SWITCH

PCle
SWITCH

PCle

Y

ADAPTER ADAPTER ADAPTER ADAPTER

e

110 110
FIG. 1A

WO 2011/160710

2/22

PCT/EP2010/067028

FIG. 1B

1(}2
PROCESSOR
OPERATING
140— SYSTEM
I/O HUB I
DEVICE TABLE _//_1 32
DEVICE TABLE ENTRY
INFORMATION —~—}—130
——112
114
PCle
SWITCH(es)
PCI PCI
FUNCTION FUNCTION
138 138

PCT/EP2010/067028

WO 2011/160710

3/22

¥3ldvav Y3aLdvav Y¥3Ldvav Y3ldvav
. A
Jl ©Il4
910d
HOLIMS
810d
anH o/l 2L
¥GlL
sng
w ozl AHOW3W - 0L - O/l
wdd | €d0 | 2d0 | 1dO
9SG l~ HOSIAYIJAH 851
. YITIONINOD | o AHOW3W
SO SO SO SO AJOWN3IN W3LSAS
udl | ed1 | zd1 | 11 | -est))
X31dWOD ONISSIOOHd TWHINID 0L oL

N _

(0[] 0[¢]3

WO 2011/160710 PCT/EP2010/067028

4/22
138
ADAPTER FUNCTION
PCI FUNCTION STORAGE
202 — CONFIGURATION SPACE ————— 200
204——" [/O SPACE
206——"T__MEMORY SPACE
MEMORY SPACE
FIG. 2
FUNCTION TABLE
208 FUNCTION TABLE ENTRY ——300
310— T T* INSTANCE NUMBER
\{—eDTE INDEX - 1...n
312—~—1 ¢ BUSY INDICATOR 302
314—— ® PERM. ERROR STATE INDICATOR
316—T* RECOVERY INITIATED INDICATOR
318t PERMISSION INDICATOR
300—T* ENABLE INDICATOR
__|-+*REQUESTOR IDENTIFIER
32271 _LeBAR-1..n
32471 1eSIZE1..n
326—"] L« INTERNAL ROUTING INFORMATION
328—| e STATUS INDICATOR
330
FIG. 3A
PCI FUNCTION HANDLE
ENABLE PCIFUNCTION | INSTANCE | — a5
INDICATOR NUMBER #
352 354 356

FIG. 3B

WO 2011/160710

5/22

PCT/EP2010/067028

)/V 400

PCI LOAD
OPCODE FIELD 1 FIELD 2
402 404 406
FIG. 4A
FIELD 1
404
DATA LOADED
FIG. 4B
FIELD 2
410~
- ENABLED HANDLE
412— ADDRESS SPACE ———406

414——+ OFFSET WITHIN ADDRESS SPACE

416—T LENGTH
- STATUS

FIG. 4C

PCT/EP2010/067028

WO 2011/160710

6/22

NOILIANOD
NOILd430X3

/)

NOILIANOD
NOILd30X3

)

5
0vS

NOILIANOD
ASNng

m

)

9€s

NOILIONOD
NOILd30X3

§
A%

NOILIANOD
NOILd430X3

3

8¢S

NOILIONOD
NOILd30X3

NS OO D)

§

vcs

ON
[4

S3A
Z anvA
ON 135440
865

S3A
2%

125

S3A

0€s

((39vd 1X3aN))

ON
¢ ASNG
Sar —~—_NOILONN4
ON

¢ ANLOV
AH3IAOD3Y

ON

¢ daxnd0o1g

SaA JHO0L1S/avo’l
9¢S
S3A
¢ alnvAa
ON SvVIOd
[44S]

S3A

NOILIANOD ¢ A31gvN3
NOILd30OX3 NOILONNA
9
0cs
Qm__%%w £ GazhOHINY
S
991G
AY1IN3 379V.L NOILONNS
¢lS~_4 3LVvO01 0L I1ANVH 3SN
NOILIONOD ¢ d3719vN3
NOILd3OX3 JTANVH
0LS
NOILIANOD ¢ A3aANSIVY
NOILd3OX3 SANVYH3dO
9
908
NOILIANOD ¢ A3TIVLSNI
NOILd30X3 ALMIOVA
20s

((z401) avol)

WO 2011/160710 PCT/EP2010/067028

7/22

(LOAD(20F2))

550
NO CONFIG. YES

SPACE ?

554 ?2
RID (OBTAINED FROM FTE)
BAR STARTING ADDRESS
(OBTAINED FROM FTE) + IS USED TO GENERATE
OFFSET FORMS DATA CONFIGURATION REQUEST
ADDRESS IN PCIAS. FROM THE I/0 HUB

INFO FROM FTE USED TO
LOCATE ADAPTER'S I/O
HUB; DATA ADDRESS
PROVIDED TO I/O HUB TO
INITIATE PCI REQUEST

FETCH "LENGTH" BYTES OF 556

REQUESTED DATA FROM
COMPUTED LOCATION

'

(' NORMAL COMPLETION)

FIG. 5B

WO 2011/160710 PCT/EP2010/067028

8/22

600
PCI STORE e

OPCODE FIELD 1 FIELD 2
602 604 606
FIG. 6A
FIELD 1
604
DATA STORED
FIG. 6B
FIELD 2
1
610 ~_"ENABLED HANDLE
612——F ADDRESS SPACE 606

614 —1 OFFSET WITHIN ADDRESS SPACE
616—1 LENGTH
618—T STATUS

FIG. 6C

PCT/EP2010/067028

WO 2011/160710

9/22

NOILIANOD
NOILd3OX3

NOILIANOD
NOILd30X3

9
ovL

NOILIANOD
ASNd

N O (D)

)

9€L

NOILIANOD
NOILd30X3

5
2eL

NOILIONOD
NOILd30X3

)

8¢L

NOILIANOD
NOILd30X3

N N D)

)

vcL

ON
¢

S3A
2 anvA
ON 135440
8€L
ON
¢ ASNE
SaA —~NOILONNA
ON

12>

S3A

S3A
v.

L

0€L

S3A

9¢

ON

[4

((29vd 1xaN))

¢ ANLOVY
AY3IANOD3IY

ON

¢ @axnd0on1g
JH0L1S/avo

L

S3A

¢ ariva
SVIOd

cL

NOILIONOD ¢ A3719vN3
NOILd30X3 NOILONN4
5
0Z.
Qm__w_m%w £ GazINOHLAY
§
9L
AY1N3 379V1 NOILONNA
ZlZ~_{ 31¥D01 0L I1aNVH 3SN
NOILIANOD ¢ @379vN3
NOILd3OX3 I1ANVH
oL
NOILIANOD ¢ QaNDINV
NOILd3OX3 SANVH3dO
§
90.
NOILIONOD ¢ QITIVLSNI
NOILd3OX3 ALNIDOV4
20.

((z401) 38018)

WO 2011/160710

10/22

PCT/EP2010/067028

(STORE (20F 2))

NO CONFIG.

750

YES

SPACE ?

754

?

BAR STARTING ADDRESS
(OBTAINED FROM FTE) +
OFFSET FORMS DATA
ADDRESS IN PCIAS.
INFO FROM FTE USED TO
LOCATE ADAPTER'S I/O
HUB; DATA ADDRESS
PROVIDED TO I/O HUB TO
INITIATE PCI REQUEST

752

RID (OBTAINED FROM FTE)
IS USED TO GENERATE
CONFIGURATION REQUEST
FROM THE I/O HUB

'

STORE "LENGTH" BYTES
OF DATA AT THE —~— 756
COMPUTED LOCATION

'

(' NORMAL COMPLETION)

FIG. 7B

WO 2011/160710

11/22

PCT/EP2010/067028

800
PCI STORE BLOCK
OPCODE FIELD1 | FIELD 2 FIELD 3
/ / \ \
((
802 804 806 808
FIG. 8A
804
FIELD 1
810
81 2\- ENABLED HANDLE
"1~ ADDRESS SPACE
814——— LENGTH
816—T STATUS
FIG. 8B

806
FIELD 2

820~"1" OFFSET WITHIN ADDRESS SPACE

FIG. 8C

808
FIELD 3

822 —

~ LOGICAL ADDRESS IN MAIN STORAGE

FIG. 8D

PCT/EP2010/067028
12/22

WO 2011/160710

V6 Ol ((39vd 1xaN))

(Ve S3A
mzo_:ozoo Z arnvA
1354
NOIL430X3 ON 49 NOILIONOD ¢ @31gvN3
26— o, NOILdIDX3 NOILONNA

NOILINOD 026
NOILd30OX3 ON

4 8¢6 NOILIONOD
ov6 ON NOILd30OX3

S
NOILIANOD & ASNg 916
AsSNg S3A .\zo:ozi AMLIN3T 378V.L NOILONNA

w 12%¢) Cl6~{ ILVOO0T OL ITANVH 3SN
omm OZ

TN DY LD

NOILIONOD ¢ ANILOV
NOILd30X3 San AHINOOTY NOLLIGNOD ~OanayNd
§ NOILd3OX3 JTANVH
Z€6 0€6 ON 7
906
NOILIONOD ¢ aanoo7g
NOILd30X3 s3A \JHO0.S/avOl NOILIANOD ¢ G3ITIVISNI
w NOILd430X3 ALNIDVA
9z6
8¢6 S3A S
. 206
NOLLIANOI ¢ QYA ((z 40 1) 0078 34018)
NOILd30X3 ON SvVIod
¢ 226

vc6

WO 2011/160710

PCT/EP2010/067028

13/22

(' STORE BLOCK (2 OF 2))

952
r__

EXCEPTION
CONDITION

STORAGE
ACCESSIBLE ?

BAR STARTING ADDRESS
(OBTAINED FROM FTE) +
OFFSET FORMS DATA
ADDRESS IN PCIAS.
INFO FROM FTE USED TO |——~954
LOCATE ADAPTER'S II0
HUB; DATA PROVIDED TO
I/O HUB TO INITIATE PCI
REQUEST

%

STORE "LENGTH" BYTES
OF DATA AT THE — 956
COMPUTED LOCATION

'

(' NORMAL COMPLETION)

FIG. 9B

WO 2011/160710 PCT/EP2010/067028

14/22

COMPUTER
PROGRAM
PRODUCT

1000

(‘1004

PROGRAM
CODE LOGIC

COMPUTER
READABLE

STORAGE
N MEDIUM
1002
\

FIG. 10

WO 2011/160710

15/22

PCT/EP2010/067028

HOST COMPUTER 5000
5001
| [
PROCESSOR (CPU)
5003 DAT ADDRESS
TLB |
5007 — }
i
LOAD/STORE .
UNIT - }
|
|
5005 — 5004 v Y
[C
e et
C CENTRAL
E STORAGE
INSTRUCTION |
DECODE UNIT [2090 /
5009
5008
INSTRUCTION Lsooz
EXECUTION UNIT [*® ‘
yi A
MEDIA
NETWORK

5011

FIG. 11

5010

WO 2011/160710

5020

5022 D

////

V4

7/
BASE COMPUTER /

PCT/EP2010/067028

16/22

OPERATING SYSTEM
APPLICATION 1 —"4_ 5032
APPLICATION 2
APPLICATION 3

i L5031

2z /L

DISPLAY

/
/

MEMORY

’_f 5025 / 5021

PROCESSOR

| |
STORAGE >027

MEDIA

5024f KEYBOARD

5028

E 5030

L

PRINTER/SCANNER

NETWORK
5029

FIG. 12

WO 2011/160710 PCT/EP2010/067028

17/22

5040

REMOTE SERVER

5048

INTERNET
5047

5050

CLIENT 1

=,

CLIENT 2

FIG. 13

WO 2011/160710

18/22

5025—"

PCT/EP2010/067028

MEMORY

\ (5053

5026
a

PROCESSOR CACHES
5055
PROGRAM COUNTER X /
5061—/)
INSTRUCTION FETCH
5056—\ [~ 5060
DECODE/DISPATCH 5058 LOAD/STORE UNIT
BRANCH (—5062
UNIT
EXECUTION DAT
UNIT
\ | REGISTERS 5059

\

5057)

FIG. 14

5054 — I/OUNITS

WO 2011/160710 PCT/EP2010/067028

19/22

5057
EXECUTION UNIT

5072

T sor0

| 5071
_/ / A\ AN
OTHER
5065 5056
DECODE/DISPATCH
5059~ REGISTERS
(—5060

LOAD/STORE UNIT

FIG. 15A

WO 2011/160710 PCT/EP2010/067028

20/22

BRANCH UNIT e

BHT

\I / \ 5077

OTHER

_)
5073 5056
f_

DECODE/DISPATCH

5059 REGISTERS

FIG. 15B

WO 2011/160710 PCT/EP2010/067028

21/22

LOAD/STORE UNIT %

CTL

(T~ 5084
\ \

OTHER

5083—) f—5056

DECODE/DISPATCH

5059 REGISTERS

CACHE/MEMORY | ~_
INTERFACE 5053

FIG. 15C

WO 2011/160710 PCT/EP2010/067028

22/22
5092
EMULATED (VIRTUAL)
HOST COMPUTER
MEMORY 5094
5000 5096
COMPUTER
MEMORY
(HOST)
5?291
A B
| EMULATED (VIRTUAL) !
| PROCESSOR (CPU) |
: 5097 :
| |
| |
509
l 3 EMULATION |
i ROUTINES |
| PROCESSOR |
| NATIVE ;
| | INSTRUCTION SET [!
| ACHITECTURE 'B' |
| |
| |
| |
| |
| |
| |
| |
| |
| |
e J
/ ANS
MEDIA
5011 NETWORK
5010

FIG. 16

